WO2019162488A1 - A sole for a shoe - Google Patents

A sole for a shoe Download PDF

Info

Publication number
WO2019162488A1
WO2019162488A1 PCT/EP2019/054547 EP2019054547W WO2019162488A1 WO 2019162488 A1 WO2019162488 A1 WO 2019162488A1 EP 2019054547 W EP2019054547 W EP 2019054547W WO 2019162488 A1 WO2019162488 A1 WO 2019162488A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
outsole
sole
midsole
shoe
Prior art date
Application number
PCT/EP2019/054547
Other languages
French (fr)
Inventor
Frank Jensen
Jakob Møller HANSEN
Original Assignee
Ecco Sko A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecco Sko A/S filed Critical Ecco Sko A/S
Priority to US16/970,727 priority Critical patent/US20200375312A1/en
Priority to EP19706634.3A priority patent/EP3758537A1/en
Priority to CN201980012913.6A priority patent/CN111741692B/en
Publication of WO2019162488A1 publication Critical patent/WO2019162488A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/223Profiled soles
    • A43B13/226Profiled soles the profile being made in the foot facing surface
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/122Soles with several layers of different materials characterised by the outsole or external layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/223Profiled soles

Definitions

  • a sole for a shoe comprising: an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole, a midsole having an foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use.
  • shoe production there are a number of ways to manufacture a pair of shoes, where the manufacturing method, the choice of material, the form of the upper, the form and material of the midsole, and the form and shape of the outsole have a huge impact in how the shoe performs.
  • different types of shoes such as hiking boots, sport shoes, golf shoes, running shoes where the shoes have different qualities such as the stiffness of the upper, the stiffness of the outsole or midsole, where the qualities of the shoe are controlled by different factors.
  • the sole and/or the outsole of the shoe is injected directly to the upper of the shoe, where a last holds the upper, and a mould having the shape of the sole is introduced onto the upper and a thermoplastic material is injected directly onto the upper, fixing the midsole and/or the outsole to the upper.
  • a mould having the shape of the sole is introduced onto the upper and a thermoplastic material is injected directly onto the upper, fixing the midsole and/or the outsole to the upper.
  • the outsole is injected directly onto the upper, and there is no need for adhering or otherwise fixing the midsole/outsole to the upper.
  • the introduction of reinforcement elements inside the midsole requires a modification of the mould and the equipment needed to manufacture the shoe, which is time consuming and may be expensive, in view of simpler shoes, that do not have reinforcement elements, and where the midsole is uniform throughout the shoe.
  • in order to provide complex midsoles, where certain areas are reinforced, while others are not may require a number of different steps of injection moulding, using a number of different mould
  • WO 2008/1 15743 discloses an article of footwear having an upper and a sole structure secured to the upper.
  • the sole structure includes a midsole and an outsole.
  • the midsole has an upper surface and an opposite lower surface.
  • the upper surface defines a plurality of depressions
  • the lower surface defines a plurality of indentations extending toward the depressions.
  • the outsole forms projections that extend into the indentations of the midsole, and the outsole has grooves located opposite the projections.
  • This structure increases the flexibility of the midsole and the outsole, as the midsole and the outsole have indentation that reduce the thickness of the sole assembly.
  • a sole for a shoe comprising: an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole, a midsole having an foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use, where the outsole comprises at least a first projection and a second projection that extend from the foot facing surface and in a direction towards midsole, where each projection has a proximal part that is joined/integrated/attached to the foot facing surface and an opposite distal part, so that the distal part of the first projection and the second projection extends into the midsole of the sole, where the first projection and the second projection are positioned adjacent to each other, having a predefined space/volume between the first projection and the second projection, where
  • an outsole having at least two projections it is possible to use the polymer material of the midsole to connect or interact with each other, and thereby allowing the two projections as well as the midsole material to provide an increased rigidity compared to the midsole material on its own, or each single projection on its own.
  • the polymeric material extending between the two projections will mechanically couple the two projections, so that if a force is applied to one of the projections, the polymeric material will transfer at least part of this force to the other projection and thereby link the two projections.
  • the force applied to the polymeric material may be either compression force, tension force, and/or shearing force, or a combination of any of the aforementioned forces.
  • An example of this could be if there are two parallel projections that extend upwards into the midsole, intended to increase the rigidity of the sole, and the polymeric material of the midsole couples the two projections to each other along the length of the projection, the two projections and the polymeric material of the midsole in between the projections form a unitary reinforcement element, where the combined reinforcement is more than the reinforcement of the each projection on its own, and more than the two projections, without connecting the two along their length.
  • the outsole By providing at least two projections on the outsole it is possible to reinforce the midsole and the outsole, i.e. the sole of the shoe in a manner that would otherwise only be done with additional elements that would increase the weight of the sole, where the reinforcement element would most likely be in the form of the combined projections/polymer element, and would most likely have a density that is higher than the midsole and/or likely to have a less compressive material than the midsole, or otherwise if it was in a lighter material, would be costly both in material cost and/or manufacturing, if the reinforcement element would be of a carbon fibre, glass fibre, thermoplastic material.
  • the manufacturing cost of a sole is reduced, as the complexity of the mould and the additional steps that need to be taken to introduce a foreign reinforcement element would be reduced considerably.
  • the adaptability of the production facilities would be increased dramatically, as it is only the shape inner surface of the outsole that would change, if the designers would want to reinforce the sole in a different manner. I.e. the manufacturer could be able to use the same mould to produce a sole that has vastly different properties, as it is only the inner surface of the outsole (foot facing surface) that would change, while the mould would have its original shape, size and form.
  • the outsole and the midsole are two separate elements, where the outsole is positioned into a mould, and the midsole is injected between the upper and the mould creating a sole of the shoe.
  • the outsole may be moulded from any type of suitable material, such as TPU or PU, and introduced into the bottom of the mould for the midsole prior to injection moulding.
  • the injection moulding of the midsole may be a type of moulding where a polymeric material is introduced into the mould and the material expands into the free volume of the mould to create the midsole of the shoe, and creating a sole for a shoe, and thereby connecting the outsole to the upper.
  • the density and the stiffness of the material in that volume of the sole is different from the density of each material on their own, and have different stiffness than the materials on their own.
  • the thickness, width, height, length of the projection made of the outsole material will influence the stiffness of sole when the polymeric material has been introduced to couple the two projections to each other. This, therefore creates a synergistic effect between the two projections and/or the polymeric material, and thereby creating a synergistic assembly having an increase rigidity compared to the outsole on its own or the midsole of its own.
  • the polymer material provides a coupling between the first projection and the second projection in order to increase the stiffness of the sole for the shoe.
  • an adhesive layer between the midsole and the outsole may cause an area of weakness in the construction of the sole, as the adhesion depends on the specific type of adhesive.
  • Many types of adhesives are chemical products that may be seen as damaging to the environment as well as being toxic, and may require protection when the adhesive is being applied to the sole, as well as being toxic when the sole is being disposed of after use.
  • adhesives chemically less toxic than in the past, however the reduction in toxicity has also reduced the adhesion abilities of the adhesive layer.
  • an adhesive layer reduces the risk that the outsole is released from the midsole during use, and reduces the risk of providing a defective shoe, as it is the polymer material of the midsole that provides the coupling to the outsole. It is well known in the shoe industry that an adhesive is more likely to deter or become non-functional during the lifetime of the shoe, causing the detachment of the outsole from the midsole. Thus, an adhesive free sole structure is a stronger sole structure.
  • the outsole may be provided in a material that is different from the polymeric material of the midsole.
  • the outsole may be in a more durable TPU material, while the midsole is of a PU material.
  • the material of the outsole may be more firm or rigid than the polymeric material of the midsole, or may have a higher density than the polymeric material of the midsole.
  • the material of the outsole and/or the midsole may further be of a latex material, rubber, thermoplastic rubber, PVC or any suitable type of TPE.
  • the area where the first projection and/or the second projection, and/or any subsequent projection may provide the outsole with a higher rigidity than in an area of the foot facing surface that is adjacent to the first projection and/or the second projection, and/or any subsequent projection.
  • the area of the outsole where the first projection and/or the second projection are positioned provide a ground contacting surface of the outsole.
  • the projections are capable of transferring force from the ground contacting surface and towards the distal part of the projections when the outsole is in use, and/or when a force is applied to the distal part of the projection, the force can be transferred via the projection in a direction towards the ground contacting surface below the projection.
  • the thickness of the outsole in the area of the projection may be larger than the thickness of the outsole in an area void of a projection.
  • the thickness may be seen as the height of the outsole from the ground contacting surface to the foot facing surface, where the thickness may be measured along an axis that is substantially normal to the plane of the ground contacting surface and/or the foot facing surface.
  • the axis extends upwards when the ground contacting surface is positioned on a horizontal surface. This means that the projection may be seen as part of the outsole, and that the projection increases the thickness in a direction from the ground facing surface and towards the foot facing surface.
  • the first projection and the second projection may have a height that is between 10% to 100% of the height of the midsole.
  • the height of the projection may be controlled in order to increase or decrease the rigidity of the sole, as the coupling of the projections via the midsole material will create a stiffening element.
  • a height of the projections that extend throughout the height of the midsole will increase the rigidity of the sole in the area, where a thickness of 10% of the height of the midsole will provide a slight increase in rigidity.
  • the sole may be adapted to have the desired resistance and stiffness in the predefined area, where areas of the sole where the projections are not present the shoe may have an increased flexibility compared to the area where the projections are present.
  • the first projection has a side wall and the second projection may have a side wall, where the polymer material connects/joins the side wall of the first projection to the side wall of the second projection.
  • the side walls of the projections may be adjacent to each other, so when the polymer material of the midsole fills the space between the two side walls, the polymer material couples the two side walls to each other, and thereby couples the two projections in a mechanical manner to each other.
  • the first projection may have a height that is different from the second projection.
  • the polymer material fills the predefined space/volume between the first projection and the second projection.
  • the polymeric material seeks to fill all void spaces inside the mould as it expands.
  • the polymeric material will expand and fill up the space and thereby filling up the void between the projections.
  • the first projection and/or the second projection extend a predefined length along a plane/surface of the foot facing surface of the outsole.
  • the stiffening projections along the length or width of the shoe, where the extension ensures that the projections extend a length that is longer than the width of the projections.
  • the length of the projection increases the surface area to which the projections are capable of bonding with the polymeric material of the midsole, and thereby is capable of providing an extended stiffening element along the outsole and thereby the sole of the shoe.
  • first and/or the second projection extend from a peripheral edge of the outsole and in a direction inwards towards a central part of the outsole.
  • the projections may extend from a peripheral edge of the outsole, e.g. from a peripheral part in a heel area, from a peripheral part of a forefoot area, from a peripheral part of an arch area of the sole.
  • the projections may extend inwards towards the body of the outsole, where the direction of the projection may be in any direction in a direction inwards from the peripheral edge.
  • the outsole further comprises a third projection, fourth projection or a further subsequent projection that is adjacent to another projection, and where a space is defined between the projections allowing the midsole to couple the two projections to each other.
  • further projections it may be possible to adjust and provide areas of increased stiffness of the sole in a larger area of the sole.
  • a plurality of projections are provided in the heel area of the shoe, where it may be advantageous to increase the stiffness of the heel area in order to minimize dampening during heel impact during gait.
  • a plurality of projections could be provided in areas of the heel where the heel strike occurs, and e.g. its surrounding area. I.e. on the back part and medial side of the heel on the outsole.
  • this plurality of projections could be provided in any area of the outsole, i.e. the hell area, arch area or forefoot area, and both on the medial and lateral side of the sole.
  • the sole may comprise a direct injected midsole.
  • the polymeric material of a direct injected midsole is advantageous in relation to providing the coupling between the projections, as the polymeric material bonds with the projections and the outsole while it is expanding and cooling down after the material has been injected into the mould.
  • the direct injection moulded midsole may therefore be directly bonded to the upper and/or the outsole, which means that there is no adhesive layer between the midsole and the upper and/or the outsole.
  • the sole material expands during the injection moulding, the injected material expands, and when the material cures the injected material creates a chemical bond between the upper facing surface of the midsole and/or the ground facing surface of the midsole.
  • the midsole may be moulded directly to the foot facing surface of the outsole and a lower surface of an upper. This means that during the manufacturing of the sole, the upper and the outsole may be positioned in a mould, where the upper and the outsole are separated by an injection cavity. The material of the midsole may subsequently be injected into the injection cavity, allowing the material of the midsole to fill the cavity. The material of the midsole may therefore be connected the outsole to the upper, where the material of the midsole connects the projections on the midsole to each other, and attaches the outsole to the upper.
  • first and/or the second projection are solid from a proximal part of the projection to the distal part of the projection.
  • the proximal part of the projection extends from a foot facing surface of the outsole and in a direction towards the foot and may terminate in a distal part, which may be seen as the top part of the projection.
  • the projection may be seen as being solid in a cross sectional view, where the material of the outsole extends from a first side wall of a projection to an opposite second side wall of the same projection.
  • the material of the projection may be uninterrupted from a proximal part of the projection towards the distal end of the projection, and/or from one side of the projection towards the opposing side of the projection.
  • the ground facing surface of the outsole may be uninterrupted in the area where the projection extends from the foot facing surface of the outsole. This means that in the area where the projection extends from the foot facing surface of the outsole and into the midsole, the ground contacting surface does not have an indentation in the area where the projection extends from the foot facing surface.
  • first and/or the second projection, or any subsequent projection may have a width, which extends from a first side wall of the projection towards a second side wall of the projection.
  • the width of the projection may be larger in a proximal part of the projection than in a distal part of the projection.
  • the proximal part of the projection may be joined/integrated/attached to the foot facing surface across its entire width from one side wall to the opposing side wall seen in a cross sectional view of the projection.
  • first and the second projection may extend in parallel along the foot facing surface. It may be advantageous that the projections extend in parallel along the foot facing surface, as the bonding of the polymeric material creates a balanced or constant stiffness along the length of the projections when the sole has been moulded.
  • first and the second projections may extend at an angle towards each other.
  • the projections are not parallel to each other, but are adapted so that an imaginary axis of the projections is capable of intersecting at some point in the plane of the foot facing surface of the outsole.
  • the projections may have a longitudinal axis where the longitudinal axis of the two projections may be seen as having a V shape, where the intersection may be in a direction towards the sole or in the opposite direction.
  • the first and/or the second projection may have a variable height along the length of the projection.
  • the projection may have a height in one area which may be 70% of the thickness of the midsole, and along the length of the projection the height of the projection may either increase or reduce along its length.
  • the projection may have numerous heights, where it may have a wavy form seen in the height direction, so that it may start at a low height and increase in height along its length, and then reduce again in height when extending further along the length of the projection.
  • first and/or the second projection may have an annular shape seen from above.
  • first and/or the second projections may be seen as annular shapes that are positioned adjacent to each other, similar to the annular shapes of a target, i.e. a plurality of different sized ring shapes having a space between them for the polymeric material to enter the void between the two projections.
  • first and/or the second projection may have first width in the proximal part of the projection and a second width in the distal part of the projections, optionally where the first thickness is different than the second width.
  • the differing width allows the stiffness to be varied along the width of the sole, where the sole in the area close to the outsole may be relatively stiff, while the stiffness of the sole reduces when in the area close to the upper (i.e. in an upper part of the sole).
  • the first and/or the second projection may have a variable width along the length of the projection.
  • the projections may have a first thickness at one end, while having another width at the opposing end. This helps to provide specific stiffness in certain areas, where the increased width reduces the amount of polymeric midsole material, where the projections are thick and increases the amount of polymeric material between the projections in areas where the projections are thinner.
  • Fig. 1 a and 1 b is a top and perspective view of one embodiment of an outsole in accordance with the invention
  • Fig. 2a - 2c is a sectional view of shoe having a sole in accordance with the invention
  • Fig. 3a and 3b is a top and perspective view of one embodiment of an outsole in accordance with the invention.
  • Fig. 4a and 4b is a top and perspective view of one embodiment of an outsole in accordance with the invention.
  • Fig. 5a and 5b is a top and perspective view of one embodiment of an outsole in accordance with the invention
  • Fig. 6a and 6b is a top and perspective view of one embodiment of an outsole in accordance with the invention.
  • Fig. 1 a and 1 b shows an outsole 1 in accordance with the invention, where the outsole 1 comprises a foot facing surface 2 and an opposite ground contacting surface 3, where the outsole has a peripheral edge 4 defining the outer periphery of the outsole 1.
  • the outsole 1 comprises a forefoot area 5, a heel area 6 and an arch area 7, where the arch area 7 extends between the forefoot area 5 and the heel area 6.
  • the ground contacting surface 3 of the outsole 1 may have any type of suitable surface, where the outsole may comprise treads 8, or alternatively comprise spikes, cleats, pads, or any type of suitable ground contacting surface that is suitable for the specific use of the outsole 1.
  • the outsole is provided with a plurality of projections 9, that extend from the peripheral edge 4 in the heel area 6 and inwards towards the body 10 of the outsole.
  • the projections 9 in this embodiment may be seen as being of two different types, where the outsole 1 comprises central projections 1 1 , as well as two projections 12, 13 that are positioned on the medial side 14 of the heel area 6 and on the lateral side 15 of the heel area 6.
  • the central projections 1 1 are intended to provide stability both in the longitudinal and transversal direction of the sole, where the projections increase the stability in a heel strike, where an in increase in rigidity in the longitudinal direction provides an improved comfort, while the increase in lateral rigidity improves the stability and predictability of the sole.
  • the medial 12 and peripheral projections 13 also improve the stability of the sole, so that the peripheral area of the sole has an increased rigidity and a reduced risk that the medial and peripheral sides of the sole may collapse during gait.
  • central projections 9 By having the central projections 9 extending a shorter longitudinal distance than the peripheral 12 and medial 13 projections, it is possible to maintain a softness of the sole in the heel area, especially in the area 16 that is configured to be below calcaneus bone of the foot, and thereby improving the comfort level of the sole, while the central projections 1 1 and the peripheral projections 12, 13 may be configured support the calcaneus from the back and from the medial and lateral sides.
  • Fig. 2a - 2c shows numerous sectional views of a heel area of a sole 17, similar to that shown in Fig. 1 , where the sole comprises a midsole 18 and the outsole 1 , where the sole is direct injection moulded to an upper 19 of a shoe 20.
  • the outsole comprises a foot facing surface 2 and an opposing ground contacting surface 3, where the outsole comprises a plurality of projections 1 1 , 12, 13 extending in a direction away from the foot facing surface
  • the projections have a proximal part 22 and a distal part 23, where the distal part extends in a direction towards the foot facing surface of the midsole 21 .
  • the projections 1 1 , 12, 13 of the outsole 1 are provided in such a way that there is a space 24 between any of the two projections 1 1 , 12, 13, where the polymeric material of the midsole 18 is intended to fill when the midsole is injected in a space between the upper 19 and the outsole 1.
  • it is the midsole material 18 that connects the outsole 1 to the upper 19.
  • the polymeric material of the midsole 18 that fills the space 24 between the projections 1 1 , 12, 13 ensures that at least two adjacent projection 1 1 , 12, 13 are coupled to each other, so that the synergy of the midsole material and the projections 1 1 , 12, 13 create a reinforcement element in the sole 17 of the shoe, where the reinforcement element reinforces a predefined area of the sole 17.
  • the reinforcement of the sole 17 is intended in the heel area of the sole. This also allows the production of a shoe without introducing a separate reinforcement element into the shoe, such as a shank or a stiffening rib inside or outside the midsole.
  • Fig. 3a and 3b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 25, that extend from the peripheral edge 4 in the arch 7 and forefoot area 5, and extend substantially diagonally towards the forefoot end 26 of the outsole 1.
  • the projections shown in this embodiment may be utilized to stabilize the lateral forefoot part 27 of the sole.
  • This example may e.g. be a hiking boot where the projections are provided in this area to improve the stability of the takeoff during gait, where the sole provides for a stable lateral forefoot area so that when a user e.g. sets off at an incline, the stability may be improved when the set off is done on the reinforced side.
  • Fig. 4a and 4b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 28, where the projections are tapered seen both from the side and from the top, from a peripheral edge 4 of the heel area 6, and extend inwards towards the heel area 6 where the width and/or the height of the projections 28 reduce on the way inwards towards the heel area 6.
  • This may be utilized where the peripheral area of the heel area of the sole needs more stability than the central are of the heel area of the sole.
  • Fig. 5a and 5b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 29, where the projections 29 are in the form of a plurality of circular projections 30, 31 that differ in size, and are provided with a space in the area between the projections.
  • the outermost projection 30 has the largest diameter, while the next projection 31 has a slightly smaller diameter, so that there is created a volume 32 between the projections 30, 31 where a midsole material can fill up the space, and create a synergistic reinforcement element of both a midsole material and the outsole material in the form of the projections 29, 30, 31 .
  • This may be utilized where a sole needs a reduced absorption of the impact during gait, and where the projections are positioned at a short distance from the sole of the foot to increase the stability and/or reduce any absorption. This may e.g. when the sole is used in a running shoe.
  • Fig. 6a and 6b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 33, where the projections extend in a heel area 6 and an arch area 7 of the outsole 1 from one peripheral edge, i.e. the lateral peripheral edge 34, to the opposing peripheral edge, e.g. the medial peripheral edge 35.
  • These projections are intended to provide an increased rigidity in the heel 6 and arch area 7 of the shoe, where the distance between the projections 36, along the length of the projections can vary, and thereby allow for a non-uniform increase in rigidity along the length of the projections.
  • the projections in this manner, it may be possible to adapt the shoe for a specific gait of the user, i.e. where the user needs shoes that stabilize a pronating food during gait.
  • the direction and the shape of the projections may be inversed, where the main stability is on the medial side of the foot, in order to compensate for at supinating gait.
  • the width and the height of the projections in all of the embodiments may be adjusted, as well as the distance between the projections, in order to provide a suitable rigidity of the sole.

Abstract

A sole for a shoe comprising: an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole, a midsole having an foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use, where the outsole comprises at least a first projection and a second projection that extend from the foot facing surface and in a direction towards midsole, where each projection has a proximal part that is joined/integrated/attached to the foot facing surface and an opposite distal part, so that the distal part of the first projection and the second projection extends into the midsole of the sole, where the first projection and the second projection are positioned adjacent to each other, having a predefined space/volume between the first projection and the second projection, where the polymer material of the midsole extends into the predefined space/volume between the first projection and the second projection so that the polymer material provides a coupling between the first projection and the second projection in an area that is distal to the proximal end of the projection.

Description

TITLE
A SOLE FOR A SHOE TECHNICAL FIELD
A sole for a shoe comprising: an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole, a midsole having an foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use.
BACKGROUND
In shoe production there are a number of ways to manufacture a pair of shoes, where the manufacturing method, the choice of material, the form of the upper, the form and material of the midsole, and the form and shape of the outsole have a huge impact in how the shoe performs. There are a number of different types of shoes, such as hiking boots, sport shoes, golf shoes, running shoes where the shoes have different qualities such as the stiffness of the upper, the stiffness of the outsole or midsole, where the qualities of the shoe are controlled by different factors.
One of the important factors for producing a specific type of shoe, that acts in a certain way is the design, shape and hardness of the sole of the shoe. This has traditionally been done by introducing items such as shanks or embedded reinforcement elements to improve the stiffness of the material in a certain area, while maintaining a certain flexibility in other areas or to apply reinforcements to the outer surfaces of the sole in order to change the characteristics of the sole.
In direct injection moulding techniques for shoes, the sole and/or the outsole of the shoe is injected directly to the upper of the shoe, where a last holds the upper, and a mould having the shape of the sole is introduced onto the upper and a thermoplastic material is injected directly onto the upper, fixing the midsole and/or the outsole to the upper. This means that the outsole is injected directly onto the upper, and there is no need for adhering or otherwise fixing the midsole/outsole to the upper. In direct injection moulding techniques, the introduction of reinforcement elements inside the midsole, requires a modification of the mould and the equipment needed to manufacture the shoe, which is time consuming and may be expensive, in view of simpler shoes, that do not have reinforcement elements, and where the midsole is uniform throughout the shoe. Furthermore, in order to provide complex midsoles, where certain areas are reinforced, while others are not, may require a number of different steps of injection moulding, using a number of different moulds to obtain the required properties. This is both costly and time consuming for manufacturing purposes.
WO 2008/1 15743 discloses an article of footwear having an upper and a sole structure secured to the upper. The sole structure includes a midsole and an outsole. The midsole has an upper surface and an opposite lower surface. The upper surface defines a plurality of depressions, and the lower surface defines a plurality of indentations extending toward the depressions. The outsole forms projections that extend into the indentations of the midsole, and the outsole has grooves located opposite the projections. This structure increases the flexibility of the midsole and the outsole, as the midsole and the outsole have indentation that reduce the thickness of the sole assembly.
Thus, there is a need to improve the structure of a shoe, where a certain property may be obtained through simpler means, using a simplified design of the shoe, to obtain certain reinforcement properties in the shoe.
GENERAL DESCRIPTION
In accordance with the invention, there is provided a sole for a shoe comprising: an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole, a midsole having an foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use, where the outsole comprises at least a first projection and a second projection that extend from the foot facing surface and in a direction towards midsole, where each projection has a proximal part that is joined/integrated/attached to the foot facing surface and an opposite distal part, so that the distal part of the first projection and the second projection extends into the midsole of the sole, where the first projection and the second projection are positioned adjacent to each other, having a predefined space/volume between the first projection and the second projection, where the polymer material of the midsole extends into the predefined space/volume between the first projection and the second projection so that the polymer material provides a coupling between the first projection and the second projection in an area that is distal to the proximal end of the projection.
By providing an outsole having at least two projections it is possible to use the polymer material of the midsole to connect or interact with each other, and thereby allowing the two projections as well as the midsole material to provide an increased rigidity compared to the midsole material on its own, or each single projection on its own. The polymeric material extending between the two projections will mechanically couple the two projections, so that if a force is applied to one of the projections, the polymeric material will transfer at least part of this force to the other projection and thereby link the two projections. The force applied to the polymeric material may be either compression force, tension force, and/or shearing force, or a combination of any of the aforementioned forces.
An example of this could be if there are two parallel projections that extend upwards into the midsole, intended to increase the rigidity of the sole, and the polymeric material of the midsole couples the two projections to each other along the length of the projection, the two projections and the polymeric material of the midsole in between the projections form a unitary reinforcement element, where the combined reinforcement is more than the reinforcement of the each projection on its own, and more than the two projections, without connecting the two along their length.
By providing at least two projections on the outsole it is possible to reinforce the midsole and the outsole, i.e. the sole of the shoe in a manner that would otherwise only be done with additional elements that would increase the weight of the sole, where the reinforcement element would most likely be in the form of the combined projections/polymer element, and would most likely have a density that is higher than the midsole and/or likely to have a less compressive material than the midsole, or otherwise if it was in a lighter material, would be costly both in material cost and/or manufacturing, if the reinforcement element would be of a carbon fibre, glass fibre, thermoplastic material.
Furthermore, the manufacturing cost of a sole is reduced, as the complexity of the mould and the additional steps that need to be taken to introduce a foreign reinforcement element would be reduced considerably. Furthermore, the adaptability of the production facilities would be increased dramatically, as it is only the shape inner surface of the outsole that would change, if the designers would want to reinforce the sole in a different manner. I.e. the manufacturer could be able to use the same mould to produce a sole that has vastly different properties, as it is only the inner surface of the outsole (foot facing surface) that would change, while the mould would have its original shape, size and form.
It is to be understood that within the meaning of the present invention, the outsole and the midsole are two separate elements, where the outsole is positioned into a mould, and the midsole is injected between the upper and the mould creating a sole of the shoe. Thus, the outsole may be moulded from any type of suitable material, such as TPU or PU, and introduced into the bottom of the mould for the midsole prior to injection moulding. The injection moulding of the midsole may be a type of moulding where a polymeric material is introduced into the mould and the material expands into the free volume of the mould to create the midsole of the shoe, and creating a sole for a shoe, and thereby connecting the outsole to the upper.
When the polymeric material between the two projections is bound to both projections the density and the stiffness of the material in that volume of the sole is different from the density of each material on their own, and have different stiffness than the materials on their own. The thickness, width, height, length of the projection made of the outsole material will influence the stiffness of sole when the polymeric material has been introduced to couple the two projections to each other. This, therefore creates a synergistic effect between the two projections and/or the polymeric material, and thereby creating a synergistic assembly having an increase rigidity compared to the outsole on its own or the midsole of its own.
The polymer material provides a coupling between the first projection and the second projection in order to increase the stiffness of the sole for the shoe. By using the polymer material to provide the coupling, there is no need to provide an adhesive layer between the midsole and the outsole. An adhesive layer between the midsole and the outsole may cause an area of weakness in the construction of the sole, as the adhesion depends on the specific type of adhesive. Many types of adhesives are chemical products that may be seen as damaging to the environment as well as being toxic, and may require protection when the adhesive is being applied to the sole, as well as being toxic when the sole is being disposed of after use. Furthermore, due to environmental protection standards adhesives chemically less toxic than in the past, however the reduction in toxicity has also reduced the adhesion abilities of the adhesive layer. By providing a sole where the outsole is bonded to the midsole without an adhesive, the sole has a reduced amount of toxic material, which means that the material of the shoe is more viable to recycling.
Furthermore, the absence of an adhesive layer reduces the risk that the outsole is released from the midsole during use, and reduces the risk of providing a defective shoe, as it is the polymer material of the midsole that provides the coupling to the outsole. It is well known in the shoe industry that an adhesive is more likely to deter or become non-functional during the lifetime of the shoe, causing the detachment of the outsole from the midsole. Thus, an adhesive free sole structure is a stronger sole structure.
In accordance with the invention, the outsole may be provided in a material that is different from the polymeric material of the midsole. As an example, the outsole may be in a more durable TPU material, while the midsole is of a PU material. Furthermore, the material of the outsole may be more firm or rigid than the polymeric material of the midsole, or may have a higher density than the polymeric material of the midsole. The material of the outsole and/or the midsole may further be of a latex material, rubber, thermoplastic rubber, PVC or any suitable type of TPE.
In one embodiment the area where the first projection and/or the second projection, and/or any subsequent projection, may provide the outsole with a higher rigidity than in an area of the foot facing surface that is adjacent to the first projection and/or the second projection, and/or any subsequent projection.
In one embodiment the area of the outsole where the first projection and/or the second projection are positioned provide a ground contacting surface of the outsole. This means that the projections are capable of transferring force from the ground contacting surface and towards the distal part of the projections when the outsole is in use, and/or when a force is applied to the distal part of the projection, the force can be transferred via the projection in a direction towards the ground contacting surface below the projection.
In one embodiment the thickness of the outsole in the area of the projection may be larger than the thickness of the outsole in an area void of a projection. The thickness may be seen as the height of the outsole from the ground contacting surface to the foot facing surface, where the thickness may be measured along an axis that is substantially normal to the plane of the ground contacting surface and/or the foot facing surface. Thus, the axis extends upwards when the ground contacting surface is positioned on a horizontal surface. This means that the projection may be seen as part of the outsole, and that the projection increases the thickness in a direction from the ground facing surface and towards the foot facing surface.
In one embodiment the first projection and the second projection may have a height that is between 10% to 100% of the height of the midsole. The height of the projection may be controlled in order to increase or decrease the rigidity of the sole, as the coupling of the projections via the midsole material will create a stiffening element. By applying a height of the projections that extend throughout the height of the midsole will increase the rigidity of the sole in the area, where a thickness of 10% of the height of the midsole will provide a slight increase in rigidity. By positioning the height of the projections anywhere between 10% and 100%, the sole may be adapted to have the desired resistance and stiffness in the predefined area, where areas of the sole where the projections are not present the shoe may have an increased flexibility compared to the area where the projections are present.
In one embodiment the first projection has a side wall and the second projection may have a side wall, where the polymer material connects/joins the side wall of the first projection to the side wall of the second projection. The side walls of the projections may be adjacent to each other, so when the polymer material of the midsole fills the space between the two side walls, the polymer material couples the two side walls to each other, and thereby couples the two projections in a mechanical manner to each other.
In one embodiment the first projection may have a height that is different from the second projection. By providing projections that are of a differing height, it is possible to reduce the stiffness of the sole in a direction towards the projection that has a lower height than the adjacent projection, or vice versa. Thus, it is possible to gradually reduce the stiffness of the sole in a certain direction, based on the configuration of the projections on the outsole.
In one embodiment the polymer material fills the predefined space/volume between the first projection and the second projection. When the polymeric material is injected into the mould, where the outsole having the projections is present, the polymeric material seeks to fill all void spaces inside the mould as it expands. Thus, by creating voids in the predefined space/volume between the projections the polymeric material will expand and fill up the space and thereby filling up the void between the projections.
In one embodiment the first projection and/or the second projection extend a predefined length along a plane/surface of the foot facing surface of the outsole. By extending the projections along a predefined length of the foot facing surface, it is possible to extend the stiffening projections along the length or width of the shoe, where the extension ensures that the projections extend a length that is longer than the width of the projections. Thus, the length of the projection increases the surface area to which the projections are capable of bonding with the polymeric material of the midsole, and thereby is capable of providing an extended stiffening element along the outsole and thereby the sole of the shoe.
In one embodiment the first and/or the second projection extend from a peripheral edge of the outsole and in a direction inwards towards a central part of the outsole. In some embodiments the projections may extend from a peripheral edge of the outsole, e.g. from a peripheral part in a heel area, from a peripheral part of a forefoot area, from a peripheral part of an arch area of the sole. The projections may extend inwards towards the body of the outsole, where the direction of the projection may be in any direction in a direction inwards from the peripheral edge.
In one embodiment the outsole further comprises a third projection, fourth projection or a further subsequent projection that is adjacent to another projection, and where a space is defined between the projections allowing the midsole to couple the two projections to each other. By providing further projections, it may be possible to adjust and provide areas of increased stiffness of the sole in a larger area of the sole. One example could be where a plurality of projections are provided in the heel area of the shoe, where it may be advantageous to increase the stiffness of the heel area in order to minimize dampening during heel impact during gait. Thus, a plurality of projections could be provided in areas of the heel where the heel strike occurs, and e.g. its surrounding area. I.e. on the back part and medial side of the heel on the outsole. Thus, when the polymeric material has been introduced, the stiffness of this area has been increased. Alternatively, this plurality of projections could be provided in any area of the outsole, i.e. the hell area, arch area or forefoot area, and both on the medial and lateral side of the sole.
In one embodiment the sole may comprise a direct injected midsole. The polymeric material of a direct injected midsole is advantageous in relation to providing the coupling between the projections, as the polymeric material bonds with the projections and the outsole while it is expanding and cooling down after the material has been injected into the mould. The direct injection moulded midsole may therefore be directly bonded to the upper and/or the outsole, which means that there is no adhesive layer between the midsole and the upper and/or the outsole. When the sole material expands during the injection moulding, the injected material expands, and when the material cures the injected material creates a chemical bond between the upper facing surface of the midsole and/or the ground facing surface of the midsole.
In one embodiment the midsole may be moulded directly to the foot facing surface of the outsole and a lower surface of an upper. This means that during the manufacturing of the sole, the upper and the outsole may be positioned in a mould, where the upper and the outsole are separated by an injection cavity. The material of the midsole may subsequently be injected into the injection cavity, allowing the material of the midsole to fill the cavity. The material of the midsole may therefore be connected the outsole to the upper, where the material of the midsole connects the projections on the midsole to each other, and attaches the outsole to the upper.
In one embodiment the first and/or the second projection are solid from a proximal part of the projection to the distal part of the projection. The proximal part of the projection extends from a foot facing surface of the outsole and in a direction towards the foot and may terminate in a distal part, which may be seen as the top part of the projection. Thus, the projection may be seen as being solid in a cross sectional view, where the material of the outsole extends from a first side wall of a projection to an opposite second side wall of the same projection. Optionally, the material of the projection may be uninterrupted from a proximal part of the projection towards the distal end of the projection, and/or from one side of the projection towards the opposing side of the projection.
In one embodiment the ground facing surface of the outsole may be uninterrupted in the area where the projection extends from the foot facing surface of the outsole. This means that in the area where the projection extends from the foot facing surface of the outsole and into the midsole, the ground contacting surface does not have an indentation in the area where the projection extends from the foot facing surface.
In one embodiment the first and/or the second projection, or any subsequent projection may have a width, which extends from a first side wall of the projection towards a second side wall of the projection. Optionally the width of the projection may be larger in a proximal part of the projection than in a distal part of the projection. In one embodiment the proximal part of the projection may be joined/integrated/attached to the foot facing surface across its entire width from one side wall to the opposing side wall seen in a cross sectional view of the projection.
In one embodiment the first and the second projection may extend in parallel along the foot facing surface. It may be advantageous that the projections extend in parallel along the foot facing surface, as the bonding of the polymeric material creates a balanced or constant stiffness along the length of the projections when the sole has been moulded.
In one embodiment the first and the second projections may extend at an angle towards each other. This means that the projections are not parallel to each other, but are adapted so that an imaginary axis of the projections is capable of intersecting at some point in the plane of the foot facing surface of the outsole. Thus, the projections may have a longitudinal axis where the longitudinal axis of the two projections may be seen as having a V shape, where the intersection may be in a direction towards the sole or in the opposite direction.
In one embodiment the first and/or the second projection may have a variable height along the length of the projection. This means that the projection may have a height in one area which may be 70% of the thickness of the midsole, and along the length of the projection the height of the projection may either increase or reduce along its length. Furthermore, the projection may have numerous heights, where it may have a wavy form seen in the height direction, so that it may start at a low height and increase in height along its length, and then reduce again in height when extending further along the length of the projection.
In one embodiment the first and/or the second projection may have an annular shape seen from above. Thus, the first and/or the second projections may be seen as annular shapes that are positioned adjacent to each other, similar to the annular shapes of a target, i.e. a plurality of different sized ring shapes having a space between them for the polymeric material to enter the void between the two projections.
In one embodiment the first and/or the second projection may have first width in the proximal part of the projection and a second width in the distal part of the projections, optionally where the first thickness is different than the second width. The differing width allows the stiffness to be varied along the width of the sole, where the sole in the area close to the outsole may be relatively stiff, while the stiffness of the sole reduces when in the area close to the upper (i.e. in an upper part of the sole). In one embodiment the first and/or the second projection may have a variable width along the length of the projection. Thus, the projections may have a first thickness at one end, while having another width at the opposing end. This helps to provide specific stiffness in certain areas, where the increased width reduces the amount of polymeric midsole material, where the projections are thick and increases the amount of polymeric material between the projections in areas where the projections are thinner.
Various exemplary embodiments and details are described hereinafter, with reference to the figures when relevant. It should be noted that the figures may or may not be drawn to scale and that elements of similar structures or functions are represented by like reference numerals throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the embodiments. They are not intended as an exhaustive description of the invention or as a limitation on the scope of the invention. In addition, an illustrated embodiment needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced in any other embodiments even if not so illustrated, or if not so explicitly described.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is explained in detail below with reference to the drawings, in which
Fig. 1 a and 1 b is a top and perspective view of one embodiment of an outsole in accordance with the invention,
Fig. 2a - 2c is a sectional view of shoe having a sole in accordance with the invention,
Fig. 3a and 3b is a top and perspective view of one embodiment of an outsole in accordance with the invention,
Fig. 4a and 4b is a top and perspective view of one embodiment of an outsole in accordance with the invention,
Fig. 5a and 5b is a top and perspective view of one embodiment of an outsole in accordance with the invention, and Fig. 6a and 6b is a top and perspective view of one embodiment of an outsole in accordance with the invention.
DETAILED DESCRIPTION
The use of the terms“first”,“second”,“third” and“fourth”,“primary”,“secondary”,“tertiary” etc. does not imply any particular order, but are included to identify individual elements. Moreover, the use of the terms“first”,“second”,“third” and“fourth”,“primary”,“secondary”, “tertiary” etc. does not denote any order or importance, but rather the terms“first”,“second”, “third” and“fourth”,“primary”,“secondary”,“tertiary” etc. are used to distinguish one element from another. Note that the words “first”, “second”, “third” and “fourth”, “primary”, “secondary”,“tertiary” etc. are used here and elsewhere for labelling purposes only and are not intended to denote any specific spatial or temporal ordering.
Furthermore, the labelling of a first element does not imply the presence of a second element and vice versa.
It is to be noted that the word "comprising" does not necessarily exclude the presence of other elements or steps than those listed.
It is to be noted that the words "a" or "an" preceding an element do not exclude the presence of a plurality of such elements. It should further be noted that any reference signs do not limit the scope of the claims, that the exemplary embodiments may be implemented at least in part by means of both hardware and software, and that several "means", "units" or "devices" may be
represented by the same item of hardware.
In the following the reference numbers relating to similar parts of the invention of different embodiments will have the same reference numbers
Fig. 1 a and 1 b shows an outsole 1 in accordance with the invention, where the outsole 1 comprises a foot facing surface 2 and an opposite ground contacting surface 3, where the outsole has a peripheral edge 4 defining the outer periphery of the outsole 1. The outsole 1 comprises a forefoot area 5, a heel area 6 and an arch area 7, where the arch area 7 extends between the forefoot area 5 and the heel area 6.
The ground contacting surface 3 of the outsole 1 may have any type of suitable surface, where the outsole may comprise treads 8, or alternatively comprise spikes, cleats, pads, or any type of suitable ground contacting surface that is suitable for the specific use of the outsole 1.
In the embodiment shown in Fig. 1 the outsole is provided with a plurality of projections 9, that extend from the peripheral edge 4 in the heel area 6 and inwards towards the body 10 of the outsole. The projections 9 in this embodiment may be seen as being of two different types, where the outsole 1 comprises central projections 1 1 , as well as two projections 12, 13 that are positioned on the medial side 14 of the heel area 6 and on the lateral side 15 of the heel area 6. The central projections 1 1 are intended to provide stability both in the longitudinal and transversal direction of the sole, where the projections increase the stability in a heel strike, where an in increase in rigidity in the longitudinal direction provides an improved comfort, while the increase in lateral rigidity improves the stability and predictability of the sole. The medial 12 and peripheral projections 13 also improve the stability of the sole, so that the peripheral area of the sole has an increased rigidity and a reduced risk that the medial and peripheral sides of the sole may collapse during gait.
By having the central projections 9 extending a shorter longitudinal distance than the peripheral 12 and medial 13 projections, it is possible to maintain a softness of the sole in the heel area, especially in the area 16 that is configured to be below calcaneus bone of the foot, and thereby improving the comfort level of the sole, while the central projections 1 1 and the peripheral projections 12, 13 may be configured support the calcaneus from the back and from the medial and lateral sides.
Fig. 2a - 2c shows numerous sectional views of a heel area of a sole 17, similar to that shown in Fig. 1 , where the sole comprises a midsole 18 and the outsole 1 , where the sole is direct injection moulded to an upper 19 of a shoe 20. The outsole comprises a foot facing surface 2 and an opposing ground contacting surface 3, where the outsole comprises a plurality of projections 1 1 , 12, 13 extending in a direction away from the foot facing surface
2 of the outsole 1 , and towards the foot facing surface 21 of the midsole 18. The projections have a proximal part 22 and a distal part 23, where the distal part extends in a direction towards the foot facing surface of the midsole 21 . The projections 1 1 , 12, 13 of the outsole 1 are provided in such a way that there is a space 24 between any of the two projections 1 1 , 12, 13, where the polymeric material of the midsole 18 is intended to fill when the midsole is injected in a space between the upper 19 and the outsole 1. Here it can be seen that it is the midsole material 18 that connects the outsole 1 to the upper 19. The polymeric material of the midsole 18 that fills the space 24 between the projections 1 1 , 12, 13 ensures that at least two adjacent projection 1 1 , 12, 13 are coupled to each other, so that the synergy of the midsole material and the projections 1 1 , 12, 13 create a reinforcement element in the sole 17 of the shoe, where the reinforcement element reinforces a predefined area of the sole 17. In this embodiment the reinforcement of the sole 17 is intended in the heel area of the sole. This also allows the production of a shoe without introducing a separate reinforcement element into the shoe, such as a shank or a stiffening rib inside or outside the midsole.
Fig. 3a and 3b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 25, that extend from the peripheral edge 4 in the arch 7 and forefoot area 5, and extend substantially diagonally towards the forefoot end 26 of the outsole 1. The projections shown in this embodiment may be utilized to stabilize the lateral forefoot part 27 of the sole. This example may e.g. be a hiking boot where the projections are provided in this area to improve the stability of the takeoff during gait, where the sole provides for a stable lateral forefoot area so that when a user e.g. sets off at an incline, the stability may be improved when the set off is done on the reinforced side.
Fig. 4a and 4b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 28, where the projections are tapered seen both from the side and from the top, from a peripheral edge 4 of the heel area 6, and extend inwards towards the heel area 6 where the width and/or the height of the projections 28 reduce on the way inwards towards the heel area 6. This may be utilized where the peripheral area of the heel area of the sole needs more stability than the central are of the heel area of the sole.
Fig. 5a and 5b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 29, where the projections 29 are in the form of a plurality of circular projections 30, 31 that differ in size, and are provided with a space in the area between the projections. The outermost projection 30 has the largest diameter, while the next projection 31 has a slightly smaller diameter, so that there is created a volume 32 between the projections 30, 31 where a midsole material can fill up the space, and create a synergistic reinforcement element of both a midsole material and the outsole material in the form of the projections 29, 30, 31 . This may be utilized where a sole needs a reduced absorption of the impact during gait, and where the projections are positioned at a short distance from the sole of the foot to increase the stability and/or reduce any absorption. This may e.g. when the sole is used in a running shoe.
Fig. 6a and 6b is a top and perspective view of one embodiment of an outsole 1 in accordance with the invention, where the outsole comprises a plurality of projections 33, where the projections extend in a heel area 6 and an arch area 7 of the outsole 1 from one peripheral edge, i.e. the lateral peripheral edge 34, to the opposing peripheral edge, e.g. the medial peripheral edge 35. These projections are intended to provide an increased rigidity in the heel 6 and arch area 7 of the shoe, where the distance between the projections 36, along the length of the projections can vary, and thereby allow for a non-uniform increase in rigidity along the length of the projections. By providing the projections in this manner, it may be possible to adapt the shoe for a specific gait of the user, i.e. where the user needs shoes that stabilize a pronating food during gait. The direction and the shape of the projections may be inversed, where the main stability is on the medial side of the foot, in order to compensate for at supinating gait.
Furthermore, the width and the height of the projections, in all of the embodiments may be adjusted, as well as the distance between the projections, in order to provide a suitable rigidity of the sole.
It is to be understood that the person skilled in the art would have no problem in combining one embodiment shown in the invention with the other embodiments disclosed.
Although features have been shown and described, it will be understood that they are not intended to limit the claimed invention, and it will be made obvious to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the claimed invention. The specification and drawings are, accordingly to be regarded in an illustrative rather than restrictive sense. The claimed invention is intended to cover all alternatives, modifications, and equivalents.

Claims

1 . A sole for a shoe comprising:
- an outsole having a ground contacting surface and an opposite foot facing surface, the outsole having a peripheral edge defining the outer periphery of the outsole,
- a midsole having a foot facing surface and an opposing outsole facing surface, the midsole comprising a polymer that is configured to be injected into a mould adapted to define a volume of the midsole, so that the midsole is configured to be positioned between the outsole and the foot of the user during use,
- where the outsole comprises at least a first projection and a second projection that extend from the foot facing surface and in a direction towards midsole, where each projection has a proximal part that is joined/integrated/attached to the foot facing surface and an opposite distal part, so that the distal part of the first projection and the second projection extends into the midsole of the sole,
- where the first projection and the second projection are positioned adjacent to each other, having a predefined space/volume between the first projection and the second projection,
- where the polymer material of the midsole extends into the predefined space/volume between the first projection and the second projection so that the polymer material provides a coupling between the first projection and the second projection in an area that is distal to the proximal end of the projection.
2. A sole for a shoe in accordance with claim 1 , where the thickness of the outsole in the area of the projection larger than the thickness of the outsole in an area void of a projection.
3. A sole for a shoe in accordance with any of the preceding claims, where the first projection has a side wall and the second projection has a side wall, where the polymer material connects/joins the side wall of the first projection to the side wall of the second projection.
4. A sole for a shoe in accordance with any of the preceding claims, where the polymer material fills the predefined space/volume between the first projection and the second projection.
5. A sole for a shoe in accordance with any of the preceding claims, where the first projection and/or the second projection extend a predefined length along a plane/surface of the foot facing surface of the outsole.
6. A sole for a shoe in accordance with any of the preceding claims, where the first and/or the second projection extend from a peripheral edge of the outsole and in a direction inwards towards a central part of the outsole.
7. A sole for a shoe in accordance with any of the preceding claims, where the outsole further comprises a third projection, fourth projection or a further subsequent projection that is adjacent to another projection, and where a space is defined between the projections allowing the midsole to couple the two projections to each other.
8. A sole for a shoe in accordance with any of the preceding claims, where the sole comprises a direct injected midsole.
9. A sole for a shoe in accordance with any of the preceding claims, where the first and the second projections extend in parallel along the foot facing surface.
10. A sole for a shoe in accordance with any of the preceding claims, where the first and the second projections extend at an angle towards each other.
1 1. A sole for a shoe in accordance with any of the preceding claims, where the first and/or the second projection have a variable height along the length of the projection.
12. A sole for a shoe in accordance with any of the preceding claims, where the first and/or the second projection may have an annular shape seen from above.
13. A sole for a shoe in accordance with any of the preceding claims, wherein the first and/or the second projection may have first width in the proximal part of the projection and a second width in the distal part of the projections, optionally where the first width is different than the second width.
14. A sole for a shoe in accordance with any of the preceding claims, wherein the first and/or the second projection are solid from a proximal part of the projection to the distal part of the projection.
15. A sole for a shoe in accordance with any of the preceding claims, wherein the proximal part of the projection is joined/integrated/attached to the foot facing surface across its entire width from one side wall to the opposing side wall seen in a cross sectional view of the projection.
PCT/EP2019/054547 2018-02-26 2019-02-25 A sole for a shoe WO2019162488A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/970,727 US20200375312A1 (en) 2018-02-26 2019-02-25 A sole for a shoe
EP19706634.3A EP3758537A1 (en) 2018-02-26 2019-02-25 A sole for a shoe
CN201980012913.6A CN111741692B (en) 2018-02-26 2019-02-25 Sole for shoes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18158538.1 2018-02-26
EP18158538 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019162488A1 true WO2019162488A1 (en) 2019-08-29

Family

ID=61283049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/054547 WO2019162488A1 (en) 2018-02-26 2019-02-25 A sole for a shoe

Country Status (4)

Country Link
US (1) US20200375312A1 (en)
EP (1) EP3758537A1 (en)
CN (1) CN111741692B (en)
WO (1) WO2019162488A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3928969A1 (en) * 2020-06-26 2021-12-29 Ecco Sko A/S Footwear sole moulding assembly and manufacturing method for an article of footwear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115743A1 (en) 2007-03-21 2008-09-25 Nike, Inc. Article of footwear having a sole structure with an articulated midsole and outsole
US20090151196A1 (en) * 2007-12-17 2009-06-18 Nike, Inc. Article Of Footwear Having A Sole Structure With A Fluid-Filled Chamber
WO2014066940A1 (en) * 2012-10-30 2014-05-08 Attey Greame Scott Footwear sole structure with suspended elastomeric web or mesh support
FR3008587A1 (en) * 2013-07-22 2015-01-23 Decathlon Sa FOOTWEAR WITH IMPROVED FLEXIBILITY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171655B2 (en) * 2009-03-18 2012-05-08 Wolverine World Wide, Inc. Sole construction and related method of manufacture
US8322049B2 (en) * 2010-07-30 2012-12-04 Nike, Inc. Wear-resistant outsole
CN203262398U (en) * 2013-05-06 2013-11-06 江西皇力塑胶有限公司 Rubber overshoes
US9894958B2 (en) * 2015-01-30 2018-02-20 Wolverine Outdoors, Inc. Flexible article of footwear and related method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115743A1 (en) 2007-03-21 2008-09-25 Nike, Inc. Article of footwear having a sole structure with an articulated midsole and outsole
US20090151196A1 (en) * 2007-12-17 2009-06-18 Nike, Inc. Article Of Footwear Having A Sole Structure With A Fluid-Filled Chamber
WO2014066940A1 (en) * 2012-10-30 2014-05-08 Attey Greame Scott Footwear sole structure with suspended elastomeric web or mesh support
FR3008587A1 (en) * 2013-07-22 2015-01-23 Decathlon Sa FOOTWEAR WITH IMPROVED FLEXIBILITY

Also Published As

Publication number Publication date
EP3758537A1 (en) 2021-01-06
US20200375312A1 (en) 2020-12-03
CN111741692A (en) 2020-10-02
CN111741692B (en) 2023-03-24

Similar Documents

Publication Publication Date Title
AU2016244231B2 (en) Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
US10849387B2 (en) Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
US10856612B2 (en) Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
US9241535B2 (en) Sole structures and articles incorporating same
US20050268492A1 (en) Footwear with multi-piece midsole
US9044882B2 (en) Article of footwear with support columns having portions with different resiliencies and method of making same
CN110650645B (en) Article of footwear including an auxetic sole structure with filled auxetic apertures
EP2961594B1 (en) Method of forming midsole of two materials
TWI794760B (en) Footwear sole structure with nested foam core
US20030046832A1 (en) Shoe soles and methods of manufacture
US20200375312A1 (en) A sole for a shoe
US20200345103A1 (en) Article of footwear
US20210401113A1 (en) Article of footwear
US20170332728A1 (en) Lightweight Thermoplastic Soles
CN113925256A (en) Shoe with net sole structure
EP3928969A1 (en) Footwear sole moulding assembly and manufacturing method for an article of footwear
US20240057724A1 (en) Outsole for a Shoe
KR102555298B1 (en) An outsole structure
EP4268659A1 (en) Outsole for a shoe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19706634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019706634

Country of ref document: EP

Effective date: 20200928