WO2019161593A1 - 一种煤岩动力灾害危险的电磁辐射和地音监测预警方法 - Google Patents
一种煤岩动力灾害危险的电磁辐射和地音监测预警方法 Download PDFInfo
- Publication number
- WO2019161593A1 WO2019161593A1 PCT/CN2018/081210 CN2018081210W WO2019161593A1 WO 2019161593 A1 WO2019161593 A1 WO 2019161593A1 CN 2018081210 W CN2018081210 W CN 2018081210W WO 2019161593 A1 WO2019161593 A1 WO 2019161593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- early warning
- time
- monitoring
- electromagnetic radiation
- period
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 70
- 230000005670 electromagnetic radiation Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000003245 coal Substances 0.000 title claims abstract description 33
- 239000011435 rock Substances 0.000 title claims abstract description 12
- 238000011160 research Methods 0.000 claims abstract description 31
- 238000005065 mining Methods 0.000 claims abstract description 11
- 231100001261 hazardous Toxicity 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 208000010392 Bone Fractures Diseases 0.000 description 3
- 206010017076 Fracture Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 208000013201 Stress fracture Diseases 0.000 description 2
- 238000010921 in-depth analysis Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/10—Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/18—Special adaptations of signalling or alarm devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/18—Special adaptations of signalling or alarm devices
- E21F17/185—Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/14—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
- G01L1/142—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
- G01L1/146—Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0004—Force transducers adapted for mounting in a bore of the force receiving structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/725—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables by using magneto-acoustical effects or the Barkhausen effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
Definitions
- the invention relates to a monitoring and early warning indicator and an early warning method for coal mine dynamic disaster risk, in particular to a coal mine thermal disaster risk early warning index and early warning method based on electromagnetic radiation and geophone monitoring technology, which is mainly used for coal mine impact ground pressure Real-time monitoring and quantitative warning of dynamic disasters such as coal and gas outburst.
- Coal-rock dynamic disasters mainly include impact ground pressure, coal and gas outburst, etc.
- the impact of mining action often occurs in high-stress concentrated areas, which is highly destructive, often causing damage to the roadway, casualties and equipment damage.
- Due to the long-term exploitation of coal resources shallow resources have gradually dried up, China's coal mines have gradually entered deep mining, and the frequency, intensity and destructiveness of power disasters are on the rise.
- Accurate and efficient monitoring and early warning is the premise and guarantee for coal mines to take precautionary measures in advance and ensure safe production.
- the monitoring and early warning methods for coal-rock dynamic disasters mainly include drilling debris monitoring, electromagnetic radiation monitoring, geophone monitoring, coal body stress monitoring, and microseismic monitoring.
- the amount of drill cuttings is large in quantity, high in cost, small in monitoring range, and limited in information obtained. At present, it has gradually become an auxiliary monitoring method.
- Electromagnetic radiation monitoring can monitor stress concentration and micro-fracture and large fracture of coal and rock.
- the monitoring and early warning indicators are mainly energy and pulse, and the warning effect is limited.
- the geophone monitoring is mainly used to monitor the high-frequency low-energy micro-fracture in the early stage of the development of dynamic disasters.
- the monitoring and early warning indicators are mainly energy and frequency, and the early warning effect needs to be improved;
- Body stress monitoring belongs to point monitoring, and the monitoring range is small.
- the early warning effect is not good;
- the microseismic monitoring can realize the time series monitoring of the coal rock fracture and the source of the fracture. Spatial positioning and wide monitoring range, but microseisms are mainly used to monitor the large-scale rupture of low-frequency and high-energy, and it is difficult to capture the micro-rupture events in the early stage of the dynamic disaster.
- the electromagnetic radiation and geophone monitoring data is huge, sensitive to micro-rupture events, and can reflect many detailed information. It is an ideal means of monitoring and warning of dynamic disasters.
- due to the lack of in-depth and meticulous research on the electromagnetic radiation and geophone precursor parameters only the original statistical parameters such as energy, pulse number and frequency are simply used for monitoring and early warning, resulting in more false alarms and false negatives, which have affected the mine. Safe Production. It can be seen that it is necessary to provide a new early warning index and early warning method for coal mine dynamic hazard based on electromagnetic radiation and geophone monitoring through in-depth analysis of electromagnetic radiation and geophone precursor parameters to improve coal and rock dynamic disaster monitoring. The purpose of early warning reliability.
- the invention aims at the above problems, and provides an electromagnetic radiation and geophone monitoring early warning index and early warning method for coal mine dynamic disaster danger, so as to realize real-time monitoring of coal rock thermal disaster breeding development process and reliable early warning of dynamic disaster.
- an electromagnetic radiation and geophone monitoring and early warning method for coal mine dynamic disaster risk characterized in that: the method is to arrange electromagnetic radiation and ground sound respectively on the coal body and the rock body.
- the sensor collects the energy and the number of pulses of the electromagnetic radiation and the energy and frequency of the ground signal in real time as the original data, and specifically includes the following steps:
- Step (1) calculating a weighted average value P(t) of the research parameter over a period of time according to the monitoring data collected by the electromagnetic radiation and the ground sound monitoring system in real time;
- Step (2) calculating a deviation value D(t) of the weighted average value P(t) of the research parameter
- Step (3) Calculate the average value of the absolute value of the research parameter deviation value
- Step (4) Calculating the research parameter deviation value D(t) is greater than the deviation threshold within one day The number of times D S ;
- Step (5) normalizes the D S to obtain a monitoring early warning indicator ⁇ ;
- Step (6) According to the monitoring and early warning indicators and early warning methods, real-time early warning of the dynamic hazard state of the working face, and determine the hazard level of the dynamic disaster.
- the research parameter is one or more of electromagnetic radiation energy, electromagnetic radiation pulse number, geophone energy or ground audio frequency, and the parameter weighted average value P is studied.
- (t) is the cumulative sum of the research parameters over a period of time divided by the length of the time window during that time.
- the period of time is taken for 10 minutes.
- the research parameter deviation value D(t) described in the step (2) is calculated by: among them Where T t represents the time interval, which is related to the time t, which is the time interval from the time before t time to the time t ; n is the weighted average P(t) of the research parameters in the time interval of T t number.
- a period of time before time t is taken as 24 hours.
- the normal mining period refers to a period of time when the working surface is not affected by geological structures such as faults and folds, and no abnormality such as roof pressure and dynamic appearance occurs during the mining period. This time can be a month or a few months.
- the value of the monitoring early warning indicator ⁇ described in the step (5) is calculated by: D S-max which is the maximum period of time of D S, D S-min period of time to a minimum value of D S.
- the period of time takes a period of time between the current time and the previous power development time.
- the risk level of the power disaster is divided into four levels: non-hazardous, weak, medium and strong, and the method and basis for determining the hazard level are: ⁇ 0.5 Time is not dangerous; 0.5 ⁇ 0.65 is a weak hazard; 0.65 ⁇ 0.8 is a medium hazard; 0.8 ⁇ is a strong hazard.
- the invention provides an electromagnetic radiation and geophone monitoring and early warning index and early warning method for coal mine dynamic disaster danger, and through in-depth analysis of original data monitored by electromagnetic radiation and geophone monitoring equipment, the specific time window research is obtained.
- the deviation of the weighted average of the parameters and the deviation threshold, and the number of times Ds of the daily research parameter deviation value is greater than the deviation threshold, and the normalization of Ds is obtained, and the new parameter ⁇ is obtained as the monitoring and early warning indicator.
- the value is used to determine the dangerous state of the coal-rock dynamic disaster in the monitoring range in real time.
- the early warning indicator and early warning method have clear physical meaning and are easy to program, which can realize real-time and quantitative early warning of the danger of power disasters, and play an active role in mine safety production.
- Figure 1 is a flow chart showing the implementation of the present invention
- Figure 2 is a weighted average P dE (t) of a period of time calculated from geophone energy of an embodiment
- Figure 3 is a deviation value D dE (t) calculated from the ground energy of the embodiment
- Fig. 5 is a normalized monitoring early warning indicator ⁇ calculated from the geophone energy of the embodiment.
- the present invention provides a technical solution: an electromagnetic radiation and geophone monitoring and early warning method for coal mine dynamic disaster risk, electromagnetic radiation and geophone sensors are respectively arranged on the coal body and the rock body, and real-time acquisition is performed.
- the energy and frequency of electromagnetic radiation and the energy and frequency of the ground signal are used as raw data. It is characterized in that it comprises the following steps:
- Step (1) calculating a weighted average value P(t) of the research parameter over a period of time according to the monitoring data collected by the electromagnetic radiation and the ground sound monitoring system in real time, and the research parameter may be electromagnetic radiation energy, electromagnetic radiation pulse number, The geophone energy and the ground audio frequency are studied.
- the weighted average value P(t) of the study parameter is the cumulative value of the research parameters and the time window length divided by the time period (which can take 10 minutes).
- Step (2) calculates a deviation value D(t) of the weighted average value P(t) of the research parameter, and the deviation value D(t) is calculated by: among them
- T t represents the time interval, which is related to the time t, which is the time interval between the time period before t time (which can take 24 hours) to time t
- n is the weighted average of the research parameters in the time interval of T t
- Step (3) Calculate the average value of the absolute value of the research parameter deviation value
- the normal recovery period refers to a period of time when the working surface is not affected by geological structures such as faults and folds, and there is no abnormality such as roof pressure and dynamic display during the recovery period. This period may be one month or several. month.
- Step (4) Calculating the research parameter deviation value D(t) is greater than the deviation threshold within one day The number of times D S .
- Step (5) normalizes the D S to obtain the monitoring early warning indicator ⁇ , and the value of the monitoring and early warning indicator ⁇ is calculated by the following formula: Wherein the maximum value (time period between the time the power is generally taken to show the time prior to the current time) D S-max is the period of the D S, D S-min period of time (usually a power take the current time to the time before appearance The minimum value of D S within the time period).
- Step (6) the real-time early warning of the dynamic hazard state of the working face is used to determine the hazard level of the dynamic hazard.
- the hazard level of the dynamic hazard is classified into non-hazardous, weak, medium and strong.
- the method and basis for determining the hazard level are: ⁇ 0.5 is no danger; 0.5 ⁇ 0.65 is a weak hazard; 0.65 ⁇ 0.8 is a medium hazard; 0.8 ⁇ is a strong hazard.
- the geophone energy of August 8th, 2016 to January 25th, 2017, which is monitored by the geophone monitoring system of a dangerous ground working face, is used as the original data, and the original data processing analysis is performed by the method of the invention.
- the implementation of the present invention will be described by obtaining the monitoring and early warning indicator of the present invention and using an early warning method to determine the impact hazard state of the working face.
- the geophone energy is selected as the research parameter, and the weighted average P dE (t) of the geophone energy is calculated every 10 minutes. The calculation result is shown in Fig. 2.
- D dE (t) is the value calculated by the formula: among them T t represents the time interval, which is the time interval between 24 hours and t time before time t, and n is the number of weighted average values of the ground energy in the T t time interval, and D dE (t) is calculated according to the result of FIG. 2 . , the calculation results are shown in Figure 3.
- the impact hazard level is determined.
- the method and basis for determining the hazard level are: ⁇ dE ⁇ 0.5 is no danger; 0.5 ⁇ dE ⁇ 0.65 is weak risk; 0.65 ⁇ dE ⁇ 0.8 is a medium risk; ⁇ dE ⁇ 0.8 is a strong hazard.
- the impact level of the working surface impact from November 24, 2016 to January 25, 2017 is shown in Figure 5.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Remote Sensing (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Electrochemistry (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其包括如下步骤:1)根据电磁辐射和地音监测系统实时采集到的监测数据计算研究参量在一段时间内的加权平均值P(t);(2)计算研究参量加权平均值P(t)的偏差值D(t);(3)计算工作面正常开采期间研究参量偏差值绝对值|D(t)|的平均值 (I)并将 (I)作为偏差阈值;(4)计算研究参量一天内偏差值D(t)大于偏差阈值(I)的次数Ds;(5)对Ds进行归一化处理,得到监测预警指标ε;(6)根据监测预警指标和预警方法对工作面的动力灾害危险状态实时预警,确定危险等级。该预警指标和预警方法物理意义明确、易于编程,可实现对动力灾害危险的实时和定量化预警,为矿井安全生产起到积极作用。
Description
本发明涉及一种煤岩动力灾害危险的监测预警指标和预警方法,具体是一种基于电磁辐射和地音监测技术的煤岩动力灾害危险性预警指标和预警方法,主要用于煤矿冲击地压和煤与瓦斯突出等动力灾害的实时监测和定量化预警。
煤岩动力灾害主要包含冲击地压、煤与瓦斯突出等,受采动作用影响常发生在高应力集中区,其破坏性大,常造成井巷破坏、人员伤亡和设备损坏。由于煤炭资源长期开采,浅部资源逐渐枯竭,我国煤矿已逐步进入深部开采,动力灾害的频次、强度及其破坏性均呈上升趋势。准确高效的监测预警是煤矿提前采取解危措施、确保安全生产的前提和保障。
目前,煤岩动力灾害的监测预警方法主要包括钻屑量监测、电磁辐射监测、地音监测、煤体应力监测、微震监测等。钻屑量监测工程量大、成本高、监测范围小、获得的信息量有限,现阶段已逐渐成为一种辅助的监测手段;电磁辐射监测可对煤岩应力集中以及微破裂、大破裂进行监测,监测预警指标主要为能量和脉冲,预警效果有限;地音监测主要用于对动力灾害孕育发展初期的高频低能微破裂进行监测,监测预警指标主要为能量和频次,预警效果有待提高;煤体应力监测属于点监测,监测范围较小,钻孔应力计与煤体钻孔耦合不佳时起不到很好的预警作用;微震监测可实现对煤岩破裂的时序监测和对破裂源的空间定位,监测范围广,但微震主要用于对低频高能的大破裂进行监测,难以捕捉到动力灾害孕育初期的微破裂事件。
电磁辐射和地音监测数据量庞大,对微破裂事件十分敏感,能反映出众多细节信息,是较为理想的动力灾害监测预警手段。然而,由于缺乏对电磁辐射和地音前兆参量的深入细致研究,仅简单使用能量、脉冲数、频次等原始统计参数进行监测预警,导致误报、漏报出现的次数较多,已影响到矿井安全生产。可见,有必要通过对电磁辐射和地音前兆参量的深入分析,提出一种新的基于电磁辐射和地音监测的煤岩动力灾害危险性预警指标和预警方法,以达到提高煤岩动力灾害监测预警可靠性的目的。
本发明针对以上问题,提供一种煤岩动力灾害危险的电磁辐射和地音监测预警指标和预警方法,以便实现对煤岩动力灾害孕育发展过程的实时监测和动力灾害的可靠预警。
发明内容
为实现上述目的,本发明提供如下技术方案:一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:该方法是在煤体和岩体上分别布置电磁辐射和地音传感器,实时采集电磁辐射的能量和脉冲数以及地音信号的能量和频次作为原始数据,其具体包括如下步骤:
步骤(1)根据电磁辐射和地音监测系统实时采集到的监测数据计算研究参量在一段时间内的加权平均值P(t);
步骤(2)计算研究参量加权平均值P(t)的偏差值D(t);
步骤(5)对D
S进行归一化处理得到监测预警指标ε;
步骤(6)根据监测预警指标和预警方法对工作面的动力灾害危险状态实时预警,确定动力灾害的危险等级。
进一步,作为优选,在所述步骤(1)中,所述的研究参量为电磁辐射能量、电磁辐射脉冲数、地音能量或地音频次中的一种或者几种,研究参量加权平均值P(t)为一段时间内研究参量的累积和除以这段时间的时间窗长度。
进一步,作为优选,所述一段时间取10分钟。
进一步,作为优选,在所述步骤(2)中所述的研究参量偏差值D(t)由下式计算:
其中
其中T
t表示时间间隔,这一时间间隔与t时刻相关,是t时刻之前一段时间到t时刻之间的时间间隔;n为T
t时间间隔内的研究参量加权 平均值P(t)的个数。
进一步,作为优选,t时刻之前一段时间取为24小时。
进一步,作为优选,在所述步骤(3)中,所述的正常回采期间是指工作面不受断层、褶曲等地质构造影响且回采期间未出现顶板来压、动力显现等异常情况的一段时间,这段时间可以是一个月或者数月。
进一步,作为优选,该一段时间取当前时刻至前一次动力显现时刻之间的时间段。
进一步,作为优选,在所述步骤(6)中,所述的动力灾害的危险等级分为无危险、弱危险、中等危险和强危险四级,危险等级的确定方法和依据为:ε<0.5时为无危险;0.5≤ε<0.65时为弱危险;0.65≤ε<0.8时为中等危险;0.8≤ε时为强危险。
与现有技术相比,本发明的有益效果是:
本发明提供的一种煤岩动力灾害危险的电磁辐射和地音监测预警指标和预警方法,其通过对电磁辐射和地音监测设备监测到的原始数据进行深入分析,求出特定时间窗内研究参量加权平均值的偏差值以及偏差阈值,并得到每日研究参量偏差值出现大于偏差阈值的次数Ds,并将Ds作归一化处理,得到新的参量ε作为监测预警指标,通过ε的实时值来实时确定监测范围的煤岩动力灾害危险状态。该预警指标和预警方法物理意义明确、易于编程,可实现对动力灾害危险的实时和定量化预警,为矿井安全生产起到积极作用。
图1是本发明的实施流程图;
图2是实施例的由地音能量计算的一段时间的加权平均值P
dE(t);
图3是实施例的由地音能量计算的偏差值D
dE(t);
图4是实施例的由地音能量计算的的偏差值在一天内大于偏差阈值的次数D
SdE;
图5是实施例的由地音能量计算的归一化监测预警指标ε。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-5,本发明提供一种技术方案:一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,在煤体和岩体上分别布置电磁辐射和地音传感器,实时采集电磁辐射的能量和脉冲次数以及地音信号的能量和频次作为原始数据。其特征在于:包括如下步骤:
步骤(1)根据电磁辐射和地音监测系统实时采集到的监测数据计算研究参量在一段时间内的加权平均值P(t),所述的研究参量可以为电磁辐射能量、电磁辐射脉冲数、地音能量、地音频次,研究参量加权平均值P(t)为一段时间(可以取10分钟)内研究参量的累积和除以这段时间的时间窗长度。
步骤(2)计算研究参量加权平均值P(t)的偏差值D(t),所述的偏差值D(t)由下式计算:
其中
其中T
t表示时间间隔,这一时间间隔与t时刻相关,是t时刻之前一段时间(可以取24小时)到t时刻之间的时间间隔,n为T
t时间间隔内的研究参量加权平均值P(t)的个数。
步骤(3)计算工作面正常开采期间研究参量偏差值绝对值|D(t)|的平均值
并将
作为偏差阈值,所述的正常回采期间是指工作面不受断层、褶曲等地质构造影响且回采期间未出现顶板来压、动力显现等异常情况的一段时间,这段时间可以是一个月或者数月。
步骤(5)对D
S进行归一化处理得到监测预警指标ε,所述的监测预警指标ε的取值由下式计算:
其中D
S-max为一段时间(一般取当前时刻至前一次动力显 现时刻之间的时间段)内D
S的最大值,D
S-min为一段时间(一般取当前时刻至前一次动力显现时刻之间的时间段)内D
S的最小值。
步骤(6)根据监测预警指标和预警方法对工作面的动力灾害危险状态实时预警,确定动力灾害的危险等级,所述的动力灾害的危险等级分为无危险、弱危险、中等危险和强危险四级,危险等级的确定方法和依据为:ε<0.5时为无危险;0.5≤ε<0.65时为弱危险;0.65≤ε<0.8时为中等危险;0.8≤ε时为强危险。
下面结合附图对本发明的一个实施例作进一步的描述:
本实施例以某冲击地压危险工作面的地音监测系统监测到的2016年8月8日至2017年1月25日的地音能量作为原始数据,利用本发明的方法对原始数据处理分析,得到本发明的监测预警指标,并利用预警方法判定该工作面的冲击危险状态,来说明本发明的实施。
选取地音能量作为研究参量,计算每10分钟的地音能量加权平均值P
dE(t),计算结果如图2所示。
计算地音能量加权平均值P
dE(t)的偏差值D
dE(t),D
dE(t)的取值由下式计算:
其中
T
t表示时间间隔,是t时刻之前24小时到t时刻之间的时间间隔,n为T
t时间间隔内的地音能量加权平均值的个数,根据图2的结果计算D
dE(t),得到计算结果如图3所示。
根据监测预警指标ε
dE和冲击危险判定依据来确定冲击危险等级,危险等级的确定方法和依据为:ε
dE<0.5时为无危险;0.5≤ε
dE<0.65时为弱危险;0.65≤ε
dE<0.8时为中等危险;ε
dE≥0.8时为强危险,2016年11月24日至2017年1月25日的工作面冲击危险等级如图5所示。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (9)
- 一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:该方法是在煤体和岩体上分别布置电磁辐射和地音传感器,实时采集电磁辐射的能量和脉冲数以及地音信号的能量和频次作为原始数据,其具体包括如下步骤:步骤(1)根据电磁辐射和地音监测系统实时采集到的监测数据计算研究参量在一段时间内的加权平均值P(t);步骤(2)计算研究参量加权平均值P(t)的偏差值D(t);步骤(5)对D S进行归一化处理得到监测预警指标ε;步骤(6)根据监测预警指标和预警方法对工作面的动力灾害危险状态实时预警,确定动力灾害的危险等级。
- 根据权利要求1所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:在所述步骤(1)中,所述的研究参量为电磁辐射能量、电磁辐射脉冲数、地音能量或地音频次中的一种或者几种,研究参量加权平均值P(t)为一段时间内研究参量的累积和除以这段时间的时间窗长度。
- 根据权利要求2所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:所述一段时间取10分钟。
- 根据权利要求4所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:t时刻之前一段时间取为24小时。
- 根据权利要求1所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:在所述步骤(3)中,所述的正常回采期间是指工作面不受断层、褶曲等地质构造影响且回采期间未出现顶板来压、动力显现等异常情况的一段时间,这段时间可以是一个月或者数月。
- 根据权利要求7所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:该一段时间取当前时刻至前一次动力显现时刻之间的时间段。
- 根据权利要求1所述的一种煤岩动力灾害危险的电磁辐射和地音监测预警方法,其特征在于:在所述步骤(6)中,所述的动力灾害的危险等级分为无危险、弱危险、中等危险和强危险四级,危险等级的确定方法和依据为:ε<0.5时为无危险;0.5≤ε<0.65时为弱危险;0.65≤ε<0.8时为中等危险;0.8≤ε时为强危险。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/343,407 US10884154B2 (en) | 2018-02-26 | 2018-03-30 | Monitoring and forewarning method for coal-rock dynamic disasters based on electromagnetic radiation and earth sound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810162579.X | 2018-02-26 | ||
CN201810162579 | 2018-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019161593A1 true WO2019161593A1 (zh) | 2019-08-29 |
Family
ID=65872476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/081210 WO2019161593A1 (zh) | 2018-02-26 | 2018-03-30 | 一种煤岩动力灾害危险的电磁辐射和地音监测预警方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10884154B2 (zh) |
CN (1) | CN109555563B (zh) |
WO (1) | WO2019161593A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111476420A (zh) * | 2020-04-08 | 2020-07-31 | 中煤能源研究院有限责任公司 | 一种微震监测冲击地压预警指标优化方法 |
CN113176609A (zh) * | 2021-04-29 | 2021-07-27 | 中北大学 | 一种基于地声场的地下浅层目标定位方法 |
CN114707803A (zh) * | 2022-03-08 | 2022-07-05 | 洛阳师范学院 | 一种物联网数据融合方法及其在智能电力上的应用 |
CN115110998A (zh) * | 2022-07-25 | 2022-09-27 | 北京科技大学 | 基于声电同时响应信号融合的煤岩动力灾害局部预警方法 |
CN116596323A (zh) * | 2023-07-18 | 2023-08-15 | 深圳市富思源科技有限公司 | 一种基于大数据的磁性材料生产安全监测系统及方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110043317B (zh) * | 2019-04-15 | 2020-07-21 | 兖州煤业股份有限公司 | 一种矿山灾害多参量局部危险区判识预警方法 |
CN110779574B (zh) * | 2019-10-30 | 2020-11-13 | 北京科技大学 | 一种煤岩动力灾害多系统多参量集成综合预警方法及系统 |
CN111257953B (zh) * | 2020-03-27 | 2022-08-30 | 天地科技股份有限公司 | 巷道冲击危险区域大直径钻孔卸压效果检验方法 |
CN112417374B (zh) * | 2020-10-19 | 2024-04-12 | 天地科技股份有限公司 | 大采高综采工作面煤壁片帮的预测方法和装置 |
CN112560135B (zh) * | 2020-11-30 | 2021-10-01 | 北京中关村智连安全科学研究院有限公司 | 一种基于冲击能量指标的岩体崩塌早期预警方法 |
CN112731525B (zh) * | 2020-12-28 | 2022-04-29 | 湖南科技大学 | 微震与电磁辐射同步监测的巷道围岩稳定性智能预测方法 |
CN113466948B (zh) * | 2021-09-03 | 2021-12-03 | 北京科技大学 | 一种煤岩破坏电磁辐射测向定位系统 |
CN113686471B (zh) * | 2021-09-13 | 2022-05-20 | 中国科学院武汉岩土力学研究所 | 一种顶板断裂型冲击地压分级预警方法 |
CN114233386B (zh) * | 2021-12-09 | 2024-01-16 | 北京安科兴业矿山安全技术研究院有限公司 | 一种基于多参量风险判识数据库的煤矿灾害预警方法 |
CN114924311B (zh) * | 2022-05-17 | 2023-06-02 | 中国矿业大学 | 一种基于顶板爆破诱发震动能量的释能效果定量评估方法 |
CN115434754B (zh) * | 2022-10-17 | 2023-05-12 | 北京科技大学 | 一种基于煤岩有效电磁辐射密集度的动力灾害预警方法 |
CN116187831B (zh) * | 2023-01-30 | 2024-04-02 | 山西潞安环保能源开发股份有限公司 | 一种基于大数据的掘进机智能管控系统及方法 |
CN115955270B (zh) * | 2023-03-14 | 2023-05-16 | 仁通融合(南京)信息技术有限公司 | 一种数据采集监控及数据分析系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2402745A (en) * | 2003-06-10 | 2004-12-15 | Activeem Ltd | Electromagnetic surveying for hydrocarbon reservoirs |
AU2006309259A1 (en) * | 2005-11-01 | 2007-05-10 | Exxonmobil Upstream Research Company | Method for phase and amplitude correction in controlled source electromagnetic survey data |
CN101021570A (zh) * | 2007-03-12 | 2007-08-22 | 中国矿业大学 | 一种非接触式矿山压力观测及评价方法 |
CN105257339A (zh) * | 2015-11-16 | 2016-01-20 | 北京安科兴业科技股份有限公司 | 掘进工作面多参量综合监测预警方法 |
CN105484802A (zh) * | 2016-01-15 | 2016-04-13 | 西安科技大学 | 一种煤矿冲击地压联合监测预警系统及其监测预警方法 |
CN106437854A (zh) * | 2016-10-08 | 2017-02-22 | 中国矿业大学 | 分布式煤岩动力灾害声电同步监测系统及方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1016506A1 (ru) * | 1981-01-04 | 1983-05-07 | Научно-производственное объединение "Рудгеофизика" | Устройство дл декрепитационного анализа горных пород |
JP2001241045A (ja) * | 2000-03-01 | 2001-09-04 | Natl Inst Of Advanced Industrial Science & Technology Meti | 岩盤崩壊の検知方法及び岩盤内亀裂の安定性評価方法 |
US8447575B2 (en) * | 2008-08-21 | 2013-05-21 | Swiss Reinsurance Company Ltd. | Computer system method for determining an earthquake impact |
CN102102533B (zh) * | 2010-12-31 | 2013-07-03 | 中国矿业大学 | 煤岩动力灾害空间几何信息实时测量的预测方法 |
CN102644482B (zh) * | 2012-05-18 | 2014-04-02 | 河南大有能源股份有限公司 | 冲击地压预测预警方法 |
CN202788942U (zh) * | 2012-07-21 | 2013-03-13 | 尤洛卡矿业安全工程股份有限公司 | 利用地音技术监测冲击地压及煤与瓦斯突出的装置 |
EP2895876B1 (en) * | 2012-10-19 | 2019-07-10 | Orica International Pte Ltd | Locating underground markers |
CN103306722B (zh) * | 2013-06-21 | 2015-08-05 | 中国矿业大学 | 一种冲击危险区的微震多维信息综合区域探测评价方法 |
CN104018790A (zh) * | 2014-06-04 | 2014-09-03 | 天地科技股份有限公司 | 基于地音监测的巷道冲击地压预警方法 |
CN104295316A (zh) * | 2014-08-17 | 2015-01-21 | 南京欣网视讯通信科技有限公司 | 一种地音监测方法与预警系统 |
US20190257972A1 (en) * | 2018-02-17 | 2019-08-22 | Datacloud International, Inc. | Vibration while drilling data processing methods |
-
2018
- 2018-03-30 WO PCT/CN2018/081210 patent/WO2019161593A1/zh active Application Filing
- 2018-03-30 US US16/343,407 patent/US10884154B2/en active Active
-
2019
- 2019-01-07 CN CN201910013958.7A patent/CN109555563B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2402745A (en) * | 2003-06-10 | 2004-12-15 | Activeem Ltd | Electromagnetic surveying for hydrocarbon reservoirs |
AU2006309259A1 (en) * | 2005-11-01 | 2007-05-10 | Exxonmobil Upstream Research Company | Method for phase and amplitude correction in controlled source electromagnetic survey data |
CN101021570A (zh) * | 2007-03-12 | 2007-08-22 | 中国矿业大学 | 一种非接触式矿山压力观测及评价方法 |
CN105257339A (zh) * | 2015-11-16 | 2016-01-20 | 北京安科兴业科技股份有限公司 | 掘进工作面多参量综合监测预警方法 |
CN105484802A (zh) * | 2016-01-15 | 2016-04-13 | 西安科技大学 | 一种煤矿冲击地压联合监测预警系统及其监测预警方法 |
CN106437854A (zh) * | 2016-10-08 | 2017-02-22 | 中国矿业大学 | 分布式煤岩动力灾害声电同步监测系统及方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111476420A (zh) * | 2020-04-08 | 2020-07-31 | 中煤能源研究院有限责任公司 | 一种微震监测冲击地压预警指标优化方法 |
CN113176609A (zh) * | 2021-04-29 | 2021-07-27 | 中北大学 | 一种基于地声场的地下浅层目标定位方法 |
CN113176609B (zh) * | 2021-04-29 | 2023-10-10 | 中北大学 | 一种基于地声场的地下浅层目标定位方法 |
CN114707803A (zh) * | 2022-03-08 | 2022-07-05 | 洛阳师范学院 | 一种物联网数据融合方法及其在智能电力上的应用 |
CN114707803B (zh) * | 2022-03-08 | 2024-05-31 | 洛阳师范学院 | 一种物联网数据融合方法及其在智能电力上的应用 |
CN115110998A (zh) * | 2022-07-25 | 2022-09-27 | 北京科技大学 | 基于声电同时响应信号融合的煤岩动力灾害局部预警方法 |
CN116596323A (zh) * | 2023-07-18 | 2023-08-15 | 深圳市富思源科技有限公司 | 一种基于大数据的磁性材料生产安全监测系统及方法 |
CN116596323B (zh) * | 2023-07-18 | 2024-04-09 | 深圳市富思源科技有限公司 | 一种基于大数据的磁性材料生产安全监测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109555563B (zh) | 2019-09-24 |
CN109555563A (zh) | 2019-04-02 |
US20200033496A1 (en) | 2020-01-30 |
US10884154B2 (en) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019161593A1 (zh) | 一种煤岩动力灾害危险的电磁辐射和地音监测预警方法 | |
Liu et al. | Characterizing rockbursts along a structural plane in a tunnel of the Hanjiang-to-Weihe river diversion project by microseismic monitoring | |
CN113050159B (zh) | 一种煤岩水力压裂裂缝微震定位及扩展机理监测方法 | |
Dai et al. | Microseismic early warning of surrounding rock mass deformation in the underground powerhouse of the Houziyan hydropower station, China | |
WO2016090883A1 (zh) | 一种基于多源信息融合的采场顶板离层水害超前预报方法 | |
CN103728655B (zh) | 一种回采工作面冲击危险性采前预评价方法 | |
Zhu et al. | Interpretation of the extent of hydraulic fracturing for rockburst prevention using microseismic monitoring data | |
CN109356602B (zh) | 一种盾构机掘进状态的判断方法及系统 | |
Zeng et al. | Surface microseismic monitoring of hydraulic fracturing of a shale‐gas reservoir using short‐period and broadband seismic sensors | |
CN103410568A (zh) | 矿山动力灾害一体化预警方法及装置 | |
CN105781620A (zh) | 基于巷道围岩破裂辅助孔监测的动力灾害预警方法 | |
CN104239691A (zh) | 一种冲击危险性实测综合评价方法 | |
CN111025392B (zh) | 一种利用微震信号的煤岩体压裂裂缝实时快速监测评价方法 | |
CN114412573B (zh) | 一种矿井井壁破裂监测预警系统及方法 | |
Li et al. | Automatic recognition of effective and interference signals based on machine learning: A case study of acoustic emission and electromagnetic radiation | |
CN111042866A (zh) | 一种多物理场协同的突水监测方法 | |
CN103277137A (zh) | 掘进煤巷瓦斯突出预测方法 | |
CN109578075A (zh) | 冲击地压危险的微震监测预警方法、装置和系统 | |
CN111350545A (zh) | 一种基于多维监测的矿山动力灾害系统及方法 | |
CN108442925A (zh) | 一种适用于矿山超前地质预报的水压水温智能测量装置 | |
CN204312054U (zh) | 一种套管磨洗开窗侧钻实时监测系统 | |
CN115759351A (zh) | 泥水盾构掘进综合预警方法、系统及存储介质 | |
CN114418227A (zh) | 一种煤矿瓦斯灾害预测方法 | |
CN113466951B (zh) | 矿井电法监测电阻率异常响应快速判识方法 | |
CN113586157B (zh) | 基于克里金插值的回采工作面突出危险区快速划分方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18907274 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18907274 Country of ref document: EP Kind code of ref document: A1 |