WO2019161519A1 - Switch device for electrical power distribution systems - Google Patents

Switch device for electrical power distribution systems Download PDF

Info

Publication number
WO2019161519A1
WO2019161519A1 PCT/CN2018/076925 CN2018076925W WO2019161519A1 WO 2019161519 A1 WO2019161519 A1 WO 2019161519A1 CN 2018076925 W CN2018076925 W CN 2018076925W WO 2019161519 A1 WO2019161519 A1 WO 2019161519A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch device
main shaft
drive connection
connector
coupled
Prior art date
Application number
PCT/CN2018/076925
Other languages
French (fr)
Inventor
Xuhui REN
Wei Wang
Original Assignee
Industrial Connections & Solutions LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Connections & Solutions LLC filed Critical Industrial Connections & Solutions LLC
Priority to PCT/CN2018/076925 priority Critical patent/WO2019161519A1/en
Publication of WO2019161519A1 publication Critical patent/WO2019161519A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B11/00Switchgear having carriage withdrawable for isolation
    • H02B11/28Earthing arrangements

Definitions

  • the present application relates generally to electrical power distribution systems and, more particularly, to switch devices for electrical power distribution systems.
  • At least some known electrical power distribution systems include a plurality of switchgear units including circuit breakers that are coupled to one or more loads.
  • the circuit breakers are configured to interrupt current to the loads if the current falls outside of acceptable conditions.
  • At least some known electrical power distribution systems include switch devices to protect operators from the current flowing through the electrical power distribution systems.
  • at least some known switch devices are configured to selectively isolate the circuit breakers and allow operators to safely access and/or remove circuit breakers.
  • the switch devices are positionable between an open position and a closed position.
  • At least some known switch devices are included in a cable compartment of switchgear units.
  • at least some switchgear units include conductive components that undergo an unfolding motion when transitioning between an open and closed position. These switch devices may require relatively large contact pressure to counteract opposing forces generated by electrical current when maintained in the closed position due to pivotable hinges. Additionally, these switch devices may require relatively large amounts of space in which to operate, thereby crowding cable compartments of switchgear units. Furthermore, it may be difficult for operators to visually confirm whether these switch devices are in the open or closed position.
  • an electrical power distribution system includes a switchgear unit containing a circuit protection device.
  • the system further includes a switch device coupled to the switchgear unit and selectively moveable between an open position and a closed position.
  • the switch device includes a base frame and a main shaft rotatably coupled to the base frame and rotatable between a first position corresponding to the open position and a second position corresponding to the closed position.
  • the switch device further includes at least one drive connection arm coupled to the main shaft.
  • the switch device additionally includes at least one first connector having a first end coupled to the at least one drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position.
  • the at least one first connector defines an extension axis and is moveable along the extension axis when the main shaft is rotated between the first position and the second position. Further, the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position, and the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
  • a switch device for use in an electrical power distribution system.
  • the switch device includes a base frame and a main shaft rotatably coupled to the base frame and rotatable between a first position corresponding to an open position and a second position corresponding to a closed position.
  • the switch device further includes at least one drive connection arm coupled to the main shaft.
  • the switch device additionally includes at least one first connector having a first end coupled to the at least one drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position.
  • the at least one first connector defines an extension axis and is moveable along the extension axis when the main shaft is rotated between the first position and the second position.
  • the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position, and the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
  • a method of using an electrical power distribution system includes coupling a switch device to a switchgear unit containing a circuit protection device therein, the switch device including a base frame, a main shaft rotatable relative to the base frame between a first position corresponding to an open position of the switch device and a second position corresponding to a closed position of the switch device.
  • the switch device also including at least one drive connection arm coupled to the main shaft.
  • the method further includes rotating the main shaft relative to the base frame to move at least one first connector along an extension axis, the at least one first connector including a first end coupled to the drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position.
  • the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position. Additionally, the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
  • FIG. 1 is a side view of an exemplary electrical power distribution system including a switch device in an open position;
  • FIG. 2 is a side view of the exemplary electrical power distribution system of FIG. 1 with the switch device in a closed position;
  • FIG. 3 is a perspective view of the switch device of FIG. 1 with the switch device in the open position;
  • FIG. 4 is a bottom perspective view of the switch device of FIG. 3;
  • FIG. 5 is a side view of the switch device of FIG. 3 including a receiving apparatus
  • FIG. 6A is a side view of the switch device of FIG. 4 in the open position
  • FIG. 6B is a side view of the switch device of FIG. 4 in an intermediate position between the open and closed position
  • FIG. 6C is a side view of the switch device of FIG. 4 in the closed position.
  • Approximating language may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” , “approximately” , and “substantially” , are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value.
  • range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
  • the terms “substantially perpendicular” or “substantially parallel” should be interpreted to include angles within 15 degrees of 90 degrees and 0 degrees respectively.
  • the exemplary electrical power distribution systems described herein include a switch device for use in a switchgear unit.
  • the switch device includes a main shaft rotatably coupled to a base frame.
  • the switch device further includes a biasing arm and a drive connection arm, each coupled to the main shaft.
  • the switch device also includes a dynamic connector including a first end coupled to the drive connection arm and a second end engageable with a static connector when the main shaft is rotated from a first position to a second position.
  • the dynamic connector defines an extension axis between the first and second end, and extends along the extension axis when the main shaft is rotated from the first position to the second position such that the drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position and the drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position. Accordingly, the dynamic connector of the switch device undergoes a lateral extension when transitioning between the open and closed position. As a result, the switch device may more easily be positioned in a different compartment from the static connector, because a relatively small aperture is required in a barrier wall dividing the compartments can be utilized due to the lateral extension of the dynamic connector between compartments. Additionally, the switch device occupies more space when it is in the open position, making it more difficult for operators to access the access compartment when the switch device is in the open position. As a result, the switch device increases safety to operators and increases available space within cable compartments.
  • FIG. 1 is a side view of an exemplary electrical power distribution system 100 including a switch device 102 in a first, open position.
  • a coordinate system 12 includes an X-axis, a Y-axis, and a Z-axis.
  • Electrical power distribution system 100 includes at least one source providing power to at least one load via a circuit protection device 106.
  • Electrical power sources may include, for example, one or more generators, electrical grids, or other devices that provide electrical current (and resulting electrical power) to loads.
  • the electrical current is transmitted to loads through distribution busses 108. Loads may include, but are not limited to including, machinery, motors, lighting, and/or other electrical and mechanical equipment of a manufacturing or power generation or distribution facility.
  • circuit protection device 106 is housed in a switchgear unit 110.
  • Switchgear unit 110 includes racks to which circuit protection devices 106 are mounted.
  • switchgear unit 110 comprises a front portion 112 and a rear portion 114 opposite front portion 112. Additionally, front portion 112 and rear portion 114 are physically separated by a barrier wall 116.
  • Front portion 112 includes a breaker compartment 118 and an access compartment 120. Breaker compartment 118 and access compartment 120 are separated from one another by a base plate 122.
  • access compartment 120 includes an access door 124. Access door 124 is arranged to be opened to permit access into access compartment 120.
  • Rear portion 114 of switchgear unit 110 includes a cable compartment 126.
  • electrical power distribution system 100 includes at least one switch device 102 housed within switchgear unit 110.
  • switch device 102 is an earthing switch configured to provide grounding and isolation for circuit protection devices 106.
  • Switch device 102 is positionable between an open position, broadly a first position, and a closed position (shown in FIG. 2) , broadly a second position. In the first position, switch device 102 allows current to flow through circuit protection device 106. In the second position, switch device 102 inhibits current flowing to circuit protection device 106. Accordingly, switch device 102 reduces the risk of electrical shock when operators access portions of electrical power distribution system 100.
  • switch device 102 is moveable between the first position and the second position when at least one circuit protection device 106 is removed from electrical power distribution system 100.
  • electrical power distribution system 100 includes any switch device 102 that enables electrical power distribution system 100 to operate as described herein.
  • switch device 102 includes a base frame 128 and a plurality of dynamic connectors 132, or first connectors, described in more detail with respect to FIG. 3.
  • switch device 102 includes three dynamic connectors 132 (shown in FIG. 3) .
  • switch device 102 includes any number of dynamic connectors 132 that enable switch device 102 to function as described herein.
  • base frame 128 is positioned substantially within access compartment 120 with a portion of base frame 128 extending through an opening 130 in barrier wall 116.
  • dynamic connectors 132 are substantially positioned within cable compartment 126.
  • when switch device 102 is in the open position dynamic connectors 132 are entirely positioned within access compartment 120.
  • base frame 128 when switch device 102 is in the open position, dynamic connectors 132 are positioned within any compartment that enables switch device 102 to operate as described herein. Additionally, base frame 128 includes a top surface 134 coupled to base plate 122 of breaker compartment 118.
  • dynamic connectors 132 when switch device 102 is in the open position, dynamic connectors 132 are spaced apart from a corresponding number of static connectors 136, or second connectors. When switch device 102 transitions to the closed position (shown in FIG. 2) , dynamic connectors 132 extend to contact static connectors 136. In the exemplary embodiment, switch device 102 and static connectors 136 are spaced apart from one another. In alternative embodiments, a receiving apparatus, similar to receiving apparatus 210 shown in FIG. 5, is coupled to switch device 102 and physically couples static connectors 136 to switch device 102.
  • switch device includes a biasing member 142 and a drive connection assembly 144, which will be described in greater detail with respect to FIG. 3. Specifically, in the exemplary embodiment, when switch device 102 is in the open position, biasing member 142 and drive connection assembly 144 extend a distance beyond base frame 128.
  • circuit protection device 106 includes a circuit breaker configured to trip and interrupt the flow of current through circuits coupled to circuit protection device 106.
  • electrical power distribution system 100 includes any circuit protection device 106 that enables electrical power distribution system 100 to operate as described herein.
  • circuit protection device 106 includes, for example and without limitation, one or more other circuit breaker devices and/or arc containment devices.
  • Exemplary circuit breaker devices include, for example and without limitation, circuit switches, contact arms, and/or circuit interrupters that interrupt current flowing through the circuit breaker device to a load coupled to the circuit breaker device.
  • An exemplary arc containment device includes, for example and without limitation, a containment assembly, a plurality of electrodes, a plasma gun, and a trigger circuit that causes the plasma gun to emit ablative plasma into a gap between the electrodes in order to divert energy into the containment assembly from an arc or other electrical fault that is detected on the circuit.
  • FIG. 2 is a side view of the exemplary electrical power distribution system 100 with switch device 102 in the second, closed position.
  • switch device 102 transitions from the open position to the closed position in response to rotation of a locking mechanism (not shown) positioned on the exterior of switchgear unit 110.
  • a human operator inserts a key into the locking mechanism and rotates the key to transition switch device 102 to the closed position.
  • switch device 102 is transitioned to the closed position in any manner that enables switch device 102 to function as described herein.
  • dynamic connectors 132 when locking mechanism is rotated, dynamic connectors 132 extend along an extension axis 138 towards static connectors 136.
  • static connectors 136 When dynamic connectors 132 engage with static connectors 136, a current flow to circuit protection devices 106 is interrupted because current flowing into switchgear unit 110 flows along static connectors 136 to ground via dynamic connectors 132.
  • extension axis 138 is substantially parallel to the X-axis of coordinate system 12. In alternative embodiments, extension axis 138 may have any orientation with respect to switchgear unit 110 that enables switch device 102 to operate as described herein.
  • biasing member 142 and drive connection assembly 144 are nearly entirely positioned within base frame 128.
  • switch device 102 occupies a fixed space within access compartment 120 determined by the size of base frame 128.
  • biasing member 142 and drive connection assembly 144 (shown in FIG. 1) occupy a space within access compartment 120 beyond the space occupied by base frame 128.
  • switch device 102 occupies more space in access compartment 120 when switch device 102 is in the open position as compared to when switch device 102 is in the closed position.
  • switch device 102 increases operator safety by reducing the risk that an operator will enter access compartment 120 when switch device 102 is in the open position.
  • switch device 102 transitions from the closed position back to the open position (shown in FIG. 1) by a method similar to the method of transitioning switch device 102 to the closed position described above. Specifically, an operator twists the key in the locking mechanism in an opposite direction, until switch device 102 is in the open position.
  • FIG. 3 is a perspective view of switch device 102 with switch device 102 in the open position.
  • base frame 128 is shown as partially transparent to facilitate viewing internal components of switch device 102.
  • base frame 128 includes top surface 134, a front surface 146, a rear surface 148, a left side wall 150, and a right side wall 152. Left and right sidewalls 150, 152 extend between front surface 146 and rear surface 148.
  • base frame 128 includes a lower portion 154 to permit access to switch device 102.
  • switch device 102 also includes a bottom surface (not shown) extending over a lower portion 154 of switch device 102 from front surface 146 to rear surface 148.
  • Base frame 128 of switch device 102 defines an interior of switch device 102 arranged to house switch device 102 components.
  • switch device 102 includes a main shaft 156.
  • Main shaft 156 extends across front portion 112 of switch device 102 through apertures 158.
  • apertures 158 are defined in left side wall 150 and right side wall 152 such that main shaft 156 extends through apertures 158 along the Y-axis when switch device 102 is positioned within switchgear unit 110 (shown in FIG. 1) .
  • apertures 158 have any positioning on base frame 128 that enables switch device 102 to function as described herein.
  • Main shaft 156 is rotatable relative to base frame 128 when a torque is applied to the lock mechanism of switchgear unit 110.
  • main shaft 156 may be coupled to a plurality of gears (not shown) arranged to rotate main shaft 156 in response to application of an external force applied automatically by a computer controlled motor or by a human operator.
  • main shaft 156 is coupled to at least one biasing arm 160 and at least one drive connection arm 162. Biasing arm 160 and drive connection arm 162 are fixedly coupled to main shaft 156 such that biasing arm 160 and drive connection arm 162 rotate when main shaft 156 is rotated.
  • main shaft 156 is coupled to two biasing arms 160 and two drive connection arms 162.
  • main shaft 156 is coupled to only one biasing arm 160 and one drive connection arm 162.
  • main shaft 156 is coupled to any number of biasing arms 160 and drive connection arms 162 that enable switch device 102 to function as described herein.
  • biasing arms 160 are pivotably coupled at distal ends 164 of biasing arms 160 to biasing members 142.
  • Biasing members 142 are also pivotably coupled to left side wall 150 and right side wall 152 respectively.
  • each biasing member 142 is a spring.
  • biasing members 142 include any component that enables switch device 102 to function as described herein.
  • biasing members 142 are arranged to bias corresponding biasing arms 160 into the open position when switch device 102 is in the open position, and to bias corresponding biasing arm 160 to the closed position when switch device 102 is in the closed position (shown in FIG. 6C) .
  • biasing member 142 is in a relaxed position when biasing arm 160 is in the open position or the closed position.
  • clockwise rotation of main shaft 156 from the open position to the closed position causes rotation of biasing arm 160.
  • Distal ends 164 of biasing arm 160 are thereby rotated in a clockwise orientation effecting a counterclockwise rotation of biasing member 142.
  • biasing member 142 is compressed during rotation, thereby increasing elastic potential energy in biasing member 142. The elastic potential energy of biasing member 142 increases until biasing arm 160 is oriented substantially parallel to biasing member 142 at an intermediate point (shown in FIG. 6B) .
  • biasing arm 160 After biasing arm 160 is rotated past the intermediate point, elastic potential energy of biasing member 142 is converted to kinetic energy to drive biasing arm 160 to the closed position.
  • biasing arm 160 Because biasing arm 160 is pivotably coupled to biasing member 142, rotation of biasing arm 160 from the open position compresses biasing member 142 until biasing arm 160 is rotated to the intermediate point.
  • biasing arm 160 Once biasing arm 160 is rotated past intermediate point, the pivot coupling between biasing member 142 and biasing arm 160 enables biasing member 142 to decompress, thereby driving a rotation of biasing arm 160 to the closed position.
  • drive connection arms 162 are positioned in between biasing arms 160.
  • Drive connection arms 162 are oriented substantially perpendicular to dynamic connectors 132.
  • drive connection arms 162 are oriented substantially perpendicular to extension axis 138 (shown in FIG. 2) when switch device 102 is in the closed position.
  • distal ends 166 of drive connection arms 162 are pivotably coupled to respective linkage members 168.
  • drive connection arms 162 and linkage members 168 form an acute angle at their intersection.
  • Drive connection arms 162 and linkage members 168 form drive connection assembly 144.
  • clockwise rotation of main shaft 156 from the open position to the closed position causes rotation of drive connection arms 162.
  • Distal ends 166 of drive connection arms 162 are thereby rotated clockwise.
  • Clockwise rotation of drive connection arms 162 applies a pushing force on linkage members 168 about the pivot coupling between linkage members 168 and drive connection arms 162 at distal ends 166.
  • this force applied by drive connection arms 162 on linkage members 168 is in a direction tangential to the rotation of distal ends 166.
  • the pushing force is translated through linkage members 168 to push a drive connection member 170 as drive connection arms 162 rotate from the open position to the closed position.
  • linkage members 168 are rotatably coupled to drive connection member 170.
  • drive connection member 170 extends through linkage openings 167 defined in ends 169 of linkage members 168.
  • linkage members 168 are coupled to drive connection member 170 in any manner that enables switch device 102 to function as described herein.
  • Drive connection member 170 includes ends 172, 174 each positioned within a respective guide channel 176.
  • Guide channels 176 extend along an interior surface of left side wall 150 and right side wall 152.
  • guide channels 176 guide motion of drive connection member 170 along guide channels 176.
  • Guide channels each extend from a rear end 178 positioned adjacent rear surface 148 to a front end 180 positioned opposite rear ends 178. In the exemplary embodiment, when switch device 102 is in the open position, drive connection member 170 is positioned at front ends 180 of guide channels 176.
  • drive connection member 170 is also coupled to dynamic connectors 132.
  • switch device 102 includes three dynamic connectors positioned substantially equidistant from one another.
  • dynamic connectors 132 are positioned any distance with respect to one another that enables switch device 102 to operate as described herein.
  • Dynamic connectors 132 each include a drive connection end 182 and a contact end 184.
  • Drive connection ends 182 each define dynamic connector openings 186 arranged to receive drive connection member 170 therethrough.
  • drive connection member 170 is coupled to linkage members 168 and dynamic connectors 132 in any manner that enables switch device 102 to operate as described herein.
  • jackets 190 are positioned on the interior of rear surface 148 of base frame 128.
  • jackets 190 each at least partially define base frame openings 188 therein.
  • each dynamic connector 132 extends from drive connection ends 182 through respective base frame openings 188.
  • Jackets 190 guide dynamic connectors 132 along extension axis 138 (shown in FIG. 2) when switch device 102 transitions from the open position to the closed position. Additionally, jackets 190 provide support to further stabilize dynamic connectors 132 when switch device 102 is in the closed position.
  • contact ends 184 of dynamic connectors 132 include a forked portion 192 coupled to dynamic connectors 132.
  • forked portion 192 includes two conductive extensions coupled to opposite sides of dynamic connector 132.
  • each forked portion 192 defines a gap between the two conductive extensions such that a corresponding static connector 136 (shown in FIG. 2) is received therein when switch device 102 is in the closed position.
  • switch device 102 also includes an earthing bar 194 coupled to base frame 128.
  • earthing bar 194 extends from a first end 196 to a second end 198. Earthing bar 194 will be described in more detail with respect to FIG. 4.
  • FIG. 4 is a bottom perspective view of switch device 102.
  • dynamic connectors 132 are coupled together by a short circuit connection bar 200.
  • short circuit connection bar 200 extends through connection openings 202 defined in dynamic connectors 132 and aligned with respect to the Y-axis in reference to coordinate system 12 when switch device 102 is positioned within switchgear unit 110 (shown in FIG. 1) .
  • Short circuit connection bar 200 electrically couples dynamic connectors 132 with one another when switch device 102 is in the closed position and dynamic connectors 132 are coupled to static connectors 136 (shown in FIG. 1) .
  • Short circuit connection bar 200 includes a first end 204 and a second end 206.
  • short circuit connection bar 200 is coupled to earthing bar 194 through flexible short lines 208 coupled to first and second ends 204, 206 of short circuit connection bar 200.
  • Flexible short lines 208 include a conductive material such that earthing bar 194 is electrically coupled to static connectors 136 (shown in FIG. 1) when switch device 102 is in the closed position.
  • flexible short lines 208 are long enough so that they do not inhibit extension of dynamic connectors 132 when switch device 102 transitions to the closed position.
  • switch device 102 when switch device 102 is in the open position, flexible short lines 208 are substantially slack.
  • FIG. 5 is a side view of switch device 102 including a receiving apparatus 210.
  • receiving apparatus 210 includes static connectors 136 positioned within respective bushing contactor covers 212.
  • Static connectors 136 are arranged to engage dynamic connectors 132 when switch device 102 is in the closed position.
  • switch device 102 includes three static connectors 136 arranged to respectively engage three dynamic connectors 132.
  • bushing contactor covers 212 are coupled to the static connectors 136 to provide insulation.
  • Bushing contactor covers 212 surround static connectors 136 on all faces other than the face oriented towards the corresponding dynamic connector 132.
  • each static connector 136 includes a respective bushing contactor cover 212.
  • Bushing contactor covers 212 provide independent insulation between adjacent static connectors 136.
  • switch device 102 includes three separate bushing contactor covers 212 respectively surrounding three static connectors 136 and separated from one another by an air gap.
  • bushing contactor cover 212 includes a single insulated housing positioned around all static connectors 136.
  • receiving apparatus 210 also includes a connection bushing 214 extending from switch device 102 to bushing contactor cover 212.
  • Connection bushing 214 provides a physical connection between switch device 102 and static connectors 136 when switch device 102 is in the closed position.
  • contact end 184 of dynamic connectors 132 each extend through a portion of connection bushing 214 when switch device 102 is in the open position.
  • switch device 102 and static connectors 136 are not physically connected when switch device 102 is in the open position.
  • Connection bushing 214 further includes a sealing mechanism (not shown) positioned therein and arranged to provide an airtight seal between bushing contactor covers 212 and interior of switch device 102.
  • sealing mechanism is a gasket.
  • connection bushing 214 includes any sealing mechanism that enables connection bushing 214 to operate as described herein.
  • FIG. 6A is a side view of switch device 102 in the open position.
  • FIG. 6B is a side view of switch device 102 in an intermediate position between the open and closed position.
  • FIG. 6C is a side view of switch device 102 in the closed position.
  • extension axis 138 is substantially parallel to the X axis of coordinate system 12.
  • drive connection arms 162 are oriented substantially orthogonal to extension axis 138.
  • drive connection arms 162 are oriented substantially parallel to Z-axis of coordinate system 12.
  • biasing arms 160 are coupled to main shaft 156 such that biasing arms 160 are oriented at an acute angle ⁇ relative to drive connection arms 162.
  • FIG. 1 is a side view of switch device 102 in the open position.
  • FIG. 6B is a side view of switch device 102 in an intermediate position between the open and closed position.
  • FIG. 6C is a side view of switch device 102 in the closed position.
  • extension axis 138 is substantially parallel to the X axis of
  • FIG. 6B shows switch device 102 in the intermediate position.
  • the intermediate position between the open and closed position corresponds to biasing arm 160 being substantially in-line with biasing member 142 such that biasing member 142 is substantially compressed.
  • main shaft 156 in FIG. 6B is rotated approximately 45- ⁇ degrees about Y axis of coordinate system 12 from the open position.
  • dynamic connectors 132 extend towards static connectors 136 but dynamic connectors 132 do not contact static connectors 136.
  • rotation of main shaft 156 beyond the intermediate position shown in FIG. 6B pivots biasing arm 160 such that potential elastic energy of biasing member 142 is converted to kinetic energy.
  • biasing member 142 applies a force to biasing arm 160 which results in the immediate rotation of biasing arm 160, and in turn, rotation of main shaft 156 to the closed position.
  • rotation of main shaft 156 beyond the intermediate position results in switch device 102 immediately shifting to the closed position without requiring any additional external torque applied to main shaft 156.
  • dynamic connector 132 when switch device 102 is in the closed position, dynamic connector 132 is fully extended along extension axis 138 such that dynamic connector 132 engages static connector 136.
  • dynamic connector 132, linkage members 168, and drive connection arms 162 are all substantially aligned with one another.
  • drive connection arms 162 are oriented substantially parallel to extension axis 138.
  • biasing member 142 is in a relaxed state when switch device 102 is in the closed position.
  • biasing arm 160 is oriented such that counterclockwise rotation of main shaft 156 is inhibited by a resulting opposing force applied to biasing arm 160 by biasing member 142.
  • switch device 102 transitions from the closed position to the open position in a manner substantially opposite to the process of transitioning switch device 102 from the open position to the closed position. Specifically, switch device 102 is transitioned to the open position by applying an external counter clockwise torque to main shaft 156 about the Y-axis with reference to coordinate system 12 until switch device 102 is in the intermediate position. Application of an external torque past the intermediate position pivots biasing arm 160 such that potential elastic energy of biasing member 142 is converted to kinetic energy to apply a force to biasing arm 160, resulting in the immediate rotation of biasing arm 160, and in turn main shaft 156, to the open position.
  • An exemplary technical effect of the methods, systems, and apparatus described herein includes at least one of: (a) increasing safety for operators entering switchgear units by providing a more visually identifiable open status in an earthing switch; (b) reducing space required in cable compartments of switchgear units for earthing switches; (c) increasing safety by requiring less pressure to maintain dynamic connectors in the closed position; and (d) increasing ease of access to the switch device for repairs and routine maintenance.
  • electrical distribution systems and methods of assembling electrical distribution systems are described above in detail.
  • the electrical distribution systems and methods are not limited to the specific embodiments described herein but, rather, components of the electrical distribution systems and/or operations of the methods may be utilized independently and separately from other components and/or operations described herein. Further, the described components and/or operations may also be defined in, or used in combination with, other systems, methods, and/or devices, and are not limited to practice with only the electrical distribution systems and apparatuses described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Patch Boards (AREA)

Abstract

An electrical power distribution system includes a switch device coupled to a switchgear unit and selectively moveable between an open position and a closed position. The switch device includes a base frame, a main shaft rotatably coupled to the base frame and rotatable between a first position corresponding to the open position and a second position corresponding to the closed position. The switch device further includes at least one drive connection arm coupled to the main shaft. The switch device also includes at least one first connector defining an extension axis when moved from the open to closed position. The at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position and the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is rotated to the second position.

Description

SWITCH DEVICE FOR ELECTRICAL POWER DISTRIBUTION SYSTEMS BACKGROUND
The present application relates generally to electrical power distribution systems and, more particularly, to switch devices for electrical power distribution systems.
At least some known electrical power distribution systems include a plurality of switchgear units including circuit breakers that are coupled to one or more loads. The circuit breakers are configured to interrupt current to the loads if the current falls outside of acceptable conditions.
At least some known electrical power distribution systems include switch devices to protect operators from the current flowing through the electrical power distribution systems. For example, at least some known switch devices are configured to selectively isolate the circuit breakers and allow operators to safely access and/or remove circuit breakers. The switch devices are positionable between an open position and a closed position. At least some known switch devices are included in a cable compartment of switchgear units. Further, at least some switchgear units include conductive components that undergo an unfolding motion when transitioning between an open and closed position. These switch devices may require relatively large contact pressure to counteract opposing forces generated by electrical current when maintained in the closed position due to pivotable hinges. Additionally, these switch devices may require relatively large amounts of space in which to operate, thereby crowding cable compartments of switchgear units. Furthermore, it may be difficult for operators to visually confirm whether these switch devices are in the open or closed position.
Accordingly, a need exists for a more compact switch device for electrical distribution systems that is more naturally restrained in the closed position and is more visually representative to outside observers of its open or closed status.
BRIEF DESCRIPTION
In one aspect, an electrical power distribution system is provided. The electrical distribution system includes a switchgear unit containing a circuit protection device. The system further includes a switch device coupled to the switchgear unit and selectively moveable between  an open position and a closed position. The switch device includes a base frame and a main shaft rotatably coupled to the base frame and rotatable between a first position corresponding to the open position and a second position corresponding to the closed position. The switch device further includes at least one drive connection arm coupled to the main shaft. The switch device additionally includes at least one first connector having a first end coupled to the at least one drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position. The at least one first connector defines an extension axis and is moveable along the extension axis when the main shaft is rotated between the first position and the second position. Further, the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position, and the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
In another aspect, a switch device for use in an electrical power distribution system is provided. The switch device includes a base frame and a main shaft rotatably coupled to the base frame and rotatable between a first position corresponding to an open position and a second position corresponding to a closed position. The switch device further includes at least one drive connection arm coupled to the main shaft. The switch device additionally includes at least one first connector having a first end coupled to the at least one drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position. The at least one first connector defines an extension axis and is moveable along the extension axis when the main shaft is rotated between the first position and the second position. Further, the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position, and the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
In yet another aspect, a method of using an electrical power distribution system is provided. The method includes coupling a switch device to a switchgear unit containing a circuit protection device therein, the switch device including a base frame, a main shaft rotatable relative to the base frame between a first position corresponding to an open position of the switch device and a second position corresponding to a closed position of the switch device. The switch device also including at least one drive connection arm coupled to the main shaft. The method  further includes rotating the main shaft relative to the base frame to move at least one first connector along an extension axis, the at least one first connector including a first end coupled to the drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position. The at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position. Additionally, the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of an exemplary electrical power distribution system including a switch device in an open position;
FIG. 2 is a side view of the exemplary electrical power distribution system of FIG. 1 with the switch device in a closed position;
FIG. 3 is a perspective view of the switch device of FIG. 1 with the switch device in the open position;
FIG. 4 is a bottom perspective view of the switch device of FIG. 3;
FIG. 5 is a side view of the switch device of FIG. 3 including a receiving apparatus;
FIG. 6A is a side view of the switch device of FIG. 4 in the open position;
FIG. 6B is a side view of the switch device of FIG. 4 in an intermediate position between the open and closed position; and
FIG. 6C is a side view of the switch device of FIG. 4 in the closed position.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of any drawing may be referenced and/or claimed in combination with any feature of any other drawing.
DETAILED DESCRIPTION
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
The singular forms “a” , “an” , and “the” include plural references unless the context  clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” , “approximately” , and “substantially” , are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
Specifically, as used herein, the terms “substantially perpendicular” or “substantially parallel” should be interpreted to include angles within 15 degrees of 90 degrees and 0 degrees respectively.
Exemplary embodiments of electrical power distribution systems and methods of operating electrical power distribution systems are described herein. The exemplary electrical power distribution systems described herein include a switch device for use in a switchgear unit. The switch device includes a main shaft rotatably coupled to a base frame. The switch device further includes a biasing arm and a drive connection arm, each coupled to the main shaft. The switch device also includes a dynamic connector including a first end coupled to the drive connection arm and a second end engageable with a static connector when the main shaft is rotated from a first position to a second position. The dynamic connector defines an extension axis between the first and second end, and extends along the extension axis when the main shaft is rotated from the first position to the second position such that the drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position and the drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position. Accordingly, the dynamic connector of the switch device undergoes a lateral extension when transitioning between the open and closed position.  As a result, the switch device may more easily be positioned in a different compartment from the static connector, because a relatively small aperture is required in a barrier wall dividing the compartments can be utilized due to the lateral extension of the dynamic connector between compartments. Additionally, the switch device occupies more space when it is in the open position, making it more difficult for operators to access the access compartment when the switch device is in the open position. As a result, the switch device increases safety to operators and increases available space within cable compartments.
FIG. 1 is a side view of an exemplary electrical power distribution system 100 including a switch device 102 in a first, open position. A coordinate system 12 includes an X-axis, a Y-axis, and a Z-axis. Electrical power distribution system 100 includes at least one source providing power to at least one load via a circuit protection device 106. Electrical power sources may include, for example, one or more generators, electrical grids, or other devices that provide electrical current (and resulting electrical power) to loads. The electrical current is transmitted to loads through distribution busses 108. Loads may include, but are not limited to including, machinery, motors, lighting, and/or other electrical and mechanical equipment of a manufacturing or power generation or distribution facility.
In the exemplary embodiment, circuit protection device 106 is housed in a switchgear unit 110. Switchgear unit 110 includes racks to which circuit protection devices 106 are mounted. In the exemplary embodiment, switchgear unit 110 comprises a front portion 112 and a rear portion 114 opposite front portion 112. Additionally, front portion 112 and rear portion 114 are physically separated by a barrier wall 116. Front portion 112 includes a breaker compartment 118 and an access compartment 120. Breaker compartment 118 and access compartment 120 are separated from one another by a base plate 122. Further, in the exemplary embodiment, access compartment 120 includes an access door 124. Access door 124 is arranged to be opened to permit access into access compartment 120. Rear portion 114 of switchgear unit 110 includes a cable compartment 126.
In the exemplary embodiment, electrical power distribution system 100 includes at least one switch device 102 housed within switchgear unit 110. In the exemplary embodiment, switch device 102 is an earthing switch configured to provide grounding and isolation for circuit protection devices 106. Switch device 102 is positionable between an open position, broadly a  first position, and a closed position (shown in FIG. 2) , broadly a second position. In the first position, switch device 102 allows current to flow through circuit protection device 106. In the second position, switch device 102 inhibits current flowing to circuit protection device 106. Accordingly, switch device 102 reduces the risk of electrical shock when operators access portions of electrical power distribution system 100. For example, in some embodiments, switch device 102 is moveable between the first position and the second position when at least one circuit protection device 106 is removed from electrical power distribution system 100. In alternative embodiments, electrical power distribution system 100 includes any switch device 102 that enables electrical power distribution system 100 to operate as described herein.
In the exemplary embodiment, switch device 102 includes a base frame 128 and a plurality of dynamic connectors 132, or first connectors, described in more detail with respect to FIG. 3. In the exemplary embodiment, switch device 102 includes three dynamic connectors 132 (shown in FIG. 3) . In alternative embodiments, switch device 102 includes any number of dynamic connectors 132 that enable switch device 102 to function as described herein. In the exemplary embodiment, base frame 128 is positioned substantially within access compartment 120 with a portion of base frame 128 extending through an opening 130 in barrier wall 116. In the exemplary embodiment, dynamic connectors 132 are substantially positioned within cable compartment 126. In alternative embodiments, when switch device 102 is in the open position, dynamic connectors 132 are entirely positioned within access compartment 120. In further alternative embodiments, when switch device 102 is in the open position, dynamic connectors 132 are positioned within any compartment that enables switch device 102 to operate as described herein. Additionally, base frame 128 includes a top surface 134 coupled to base plate 122 of breaker compartment 118.
In the exemplary embodiment, when switch device 102 is in the open position, dynamic connectors 132 are spaced apart from a corresponding number of static connectors 136, or second connectors. When switch device 102 transitions to the closed position (shown in FIG. 2) , dynamic connectors 132 extend to contact static connectors 136. In the exemplary embodiment, switch device 102 and static connectors 136 are spaced apart from one another. In alternative embodiments, a receiving apparatus, similar to receiving apparatus 210 shown in FIG. 5, is coupled to switch device 102 and physically couples static connectors 136 to switch device 102.
In the exemplary embodiment, switch device includes a biasing member 142 and a drive connection assembly 144, which will be described in greater detail with respect to FIG. 3. Specifically, in the exemplary embodiment, when switch device 102 is in the open position, biasing member 142 and drive connection assembly 144 extend a distance beyond base frame 128.
In the exemplary embodiment, circuit protection device 106 includes a circuit breaker configured to trip and interrupt the flow of current through circuits coupled to circuit protection device 106. In alternative embodiments, electrical power distribution system 100 includes any circuit protection device 106 that enables electrical power distribution system 100 to operate as described herein. For example, in some embodiments, circuit protection device 106 includes, for example and without limitation, one or more other circuit breaker devices and/or arc containment devices. Exemplary circuit breaker devices include, for example and without limitation, circuit switches, contact arms, and/or circuit interrupters that interrupt current flowing through the circuit breaker device to a load coupled to the circuit breaker device. An exemplary arc containment device includes, for example and without limitation, a containment assembly, a plurality of electrodes, a plasma gun, and a trigger circuit that causes the plasma gun to emit ablative plasma into a gap between the electrodes in order to divert energy into the containment assembly from an arc or other electrical fault that is detected on the circuit.
FIG. 2 is a side view of the exemplary electrical power distribution system 100 with switch device 102 in the second, closed position. In the exemplary embodiment, switch device 102 transitions from the open position to the closed position in response to rotation of a locking mechanism (not shown) positioned on the exterior of switchgear unit 110. Specifically, in the exemplary embodiment, a human operator inserts a key into the locking mechanism and rotates the key to transition switch device 102 to the closed position. In alternative embodiments, switch device 102 is transitioned to the closed position in any manner that enables switch device 102 to function as described herein.
In the exemplary embodiment, when locking mechanism is rotated, dynamic connectors 132 extend along an extension axis 138 towards static connectors 136. When dynamic connectors 132 engage with static connectors 136, a current flow to circuit protection devices  106 is interrupted because current flowing into switchgear unit 110 flows along static connectors 136 to ground via dynamic connectors 132.
In the exemplary embodiment, extension axis 138 is substantially parallel to the X-axis of coordinate system 12. In alternative embodiments, extension axis 138 may have any orientation with respect to switchgear unit 110 that enables switch device 102 to operate as described herein.
In the exemplary embodiment, when switch device 102 is in the closed position, biasing member 142 and drive connection assembly 144 (shown in FIG. 6C) are nearly entirely positioned within base frame 128. In other words, when switch device 102 is in the closed position, switch device 102 occupies a fixed space within access compartment 120 determined by the size of base frame 128. Conversely, when switch device 102 is in the open position (shown in FIG. 1) , biasing member 142 and drive connection assembly 144 (shown in FIG. 1) occupy a space within access compartment 120 beyond the space occupied by base frame 128. In other words, switch device 102 occupies more space in access compartment 120 when switch device 102 is in the open position as compared to when switch device 102 is in the closed position. As a result, it is relatively difficult for an operator to access and enter access compartment 120 when switch device 102 is in the open position. Further, the difference in space occupied by switch device 102 in the open position compared to the closed position makes it easier for an operator to identify whether switch device 102 is in the open or closed position before attempting to enter access compartment 120. Thus, switch device 102 increases operator safety by reducing the risk that an operator will enter access compartment 120 when switch device 102 is in the open position.
In the exemplary embodiment, switch device 102 transitions from the closed position back to the open position (shown in FIG. 1) by a method similar to the method of transitioning switch device 102 to the closed position described above. Specifically, an operator twists the key in the locking mechanism in an opposite direction, until switch device 102 is in the open position.
FIG. 3 is a perspective view of switch device 102 with switch device 102 in the open position. In FIG. 3, base frame 128 is shown as partially transparent to facilitate viewing internal components of switch device 102. In the exemplary embodiment, base frame 128 includes top  surface 134, a front surface 146, a rear surface 148, a left side wall 150, and a right side wall 152. Left and  right sidewalls  150, 152 extend between front surface 146 and rear surface 148. In the exemplary embodiment, base frame 128 includes a lower portion 154 to permit access to switch device 102. In alternative embodiments, switch device 102 also includes a bottom surface (not shown) extending over a lower portion 154 of switch device 102 from front surface 146 to rear surface 148. Base frame 128 of switch device 102 defines an interior of switch device 102 arranged to house switch device 102 components.
In the exemplary embodiment, switch device 102 includes a main shaft 156. Main shaft 156 extends across front portion 112 of switch device 102 through apertures 158. In the exemplary embodiment, apertures 158 are defined in left side wall 150 and right side wall 152 such that main shaft 156 extends through apertures 158 along the Y-axis when switch device 102 is positioned within switchgear unit 110 (shown in FIG. 1) . In alternative embodiments, apertures 158 have any positioning on base frame 128 that enables switch device 102 to function as described herein. Main shaft 156 is rotatable relative to base frame 128 when a torque is applied to the lock mechanism of switchgear unit 110. In alternative embodiments, main shaft 156 may be coupled to a plurality of gears (not shown) arranged to rotate main shaft 156 in response to application of an external force applied automatically by a computer controlled motor or by a human operator.
In the exemplary embodiment, main shaft 156 is coupled to at least one biasing arm 160 and at least one drive connection arm 162. Biasing arm 160 and drive connection arm 162 are fixedly coupled to main shaft 156 such that biasing arm 160 and drive connection arm 162 rotate when main shaft 156 is rotated. In the exemplary embodiment, main shaft 156 is coupled to two biasing arms 160 and two drive connection arms 162. In alternative embodiments, main shaft 156 is coupled to only one biasing arm 160 and one drive connection arm 162. In further alternative embodiments, main shaft 156 is coupled to any number of biasing arms 160 and drive connection arms 162 that enable switch device 102 to function as described herein.
In the exemplary embodiment, biasing arms 160 are pivotably coupled at distal ends 164 of biasing arms 160 to biasing members 142. Biasing members 142 are also pivotably coupled to left side wall 150 and right side wall 152 respectively. In the exemplary embodiment, each biasing member 142 is a spring. In alternative embodiments, biasing members 142 include  any component that enables switch device 102 to function as described herein. In the exemplary embodiment, biasing members 142 are arranged to bias corresponding biasing arms 160 into the open position when switch device 102 is in the open position, and to bias corresponding biasing arm 160 to the closed position when switch device 102 is in the closed position (shown in FIG. 6C) . Specifically, in the exemplary embodiment, biasing member 142 is in a relaxed position when biasing arm 160 is in the open position or the closed position. In the exemplary embodiment, clockwise rotation of main shaft 156 from the open position to the closed position causes rotation of biasing arm 160. Distal ends 164 of biasing arm 160 are thereby rotated in a clockwise orientation effecting a counterclockwise rotation of biasing member 142. Additionally, biasing member 142 is compressed during rotation, thereby increasing elastic potential energy in biasing member 142. The elastic potential energy of biasing member 142 increases until biasing arm 160 is oriented substantially parallel to biasing member 142 at an intermediate point (shown in FIG. 6B) . After biasing arm 160 is rotated past the intermediate point, elastic potential energy of biasing member 142 is converted to kinetic energy to drive biasing arm 160 to the closed position. In other words, because biasing arm 160 is pivotably coupled to biasing member 142, rotation of biasing arm 160 from the open position compresses biasing member 142 until biasing arm 160 is rotated to the intermediate point. Once biasing arm 160 is rotated past intermediate point, the pivot coupling between biasing member 142 and biasing arm 160 enables biasing member 142 to decompress, thereby driving a rotation of biasing arm 160 to the closed position.
In the exemplary embodiment, drive connection arms 162 are positioned in between biasing arms 160. Drive connection arms 162 are oriented substantially perpendicular to dynamic connectors 132. Thus, drive connection arms 162 are oriented substantially perpendicular to extension axis 138 (shown in FIG. 2) when switch device 102 is in the closed position. In the exemplary embodiment, distal ends 166 of drive connection arms 162 are pivotably coupled to respective linkage members 168. Specifically in the exemplary embodiment, when switch device 102 is in the open position, drive connection arms 162 and linkage members 168 form an acute angle at their intersection. Drive connection arms 162 and linkage members 168 form drive connection assembly 144. In the exemplary embodiment, clockwise rotation of main shaft 156 from the open position to the closed position causes rotation of drive connection arms 162. Distal ends 166 of drive connection arms 162 are thereby rotated clockwise. Clockwise rotation of drive connection arms 162 applies a pushing force on linkage  members 168 about the pivot coupling between linkage members 168 and drive connection arms 162 at distal ends 166. In the exemplary embodiment, this force applied by drive connection arms 162 on linkage members 168 is in a direction tangential to the rotation of distal ends 166. The pushing force is translated through linkage members 168 to push a drive connection member 170 as drive connection arms 162 rotate from the open position to the closed position.
In the exemplary embodiment, linkage members 168 are rotatably coupled to drive connection member 170. Specifically, drive connection member 170 extends through linkage openings 167 defined in ends 169 of linkage members 168. In alternative embodiments, linkage members 168 are coupled to drive connection member 170 in any manner that enables switch device 102 to function as described herein. Drive connection member 170 includes ends 172, 174 each positioned within a respective guide channel 176. Guide channels 176 extend along an interior surface of left side wall 150 and right side wall 152. Specifically, guide channels 176 guide motion of drive connection member 170 along guide channels 176. Guide channels each extend from a rear end 178 positioned adjacent rear surface 148 to a front end 180 positioned opposite rear ends 178. In the exemplary embodiment, when switch device 102 is in the open position, drive connection member 170 is positioned at front ends 180 of guide channels 176.
In the exemplary embodiment, drive connection member 170 is also coupled to dynamic connectors 132. In the exemplary embodiment, switch device 102 includes three dynamic connectors positioned substantially equidistant from one another. In alternative embodiments, dynamic connectors 132 are positioned any distance with respect to one another that enables switch device 102 to operate as described herein. Dynamic connectors 132 each include a drive connection end 182 and a contact end 184. Drive connection ends 182 each define dynamic connector openings 186 arranged to receive drive connection member 170 therethrough. In alternative embodiments, drive connection member 170 is coupled to linkage members 168 and dynamic connectors 132 in any manner that enables switch device 102 to operate as described herein.
In the exemplary embodiment, jackets 190 are positioned on the interior of rear surface 148 of base frame 128. In the exemplary embodiment, jackets 190 each at least partially define base frame openings 188 therein. In the exemplary embodiment, each dynamic connector 132 extends from drive connection ends 182 through respective base frame openings 188. Jackets  190 guide dynamic connectors 132 along extension axis 138 (shown in FIG. 2) when switch device 102 transitions from the open position to the closed position. Additionally, jackets 190 provide support to further stabilize dynamic connectors 132 when switch device 102 is in the closed position.
In the exemplary embodiment, contact ends 184 of dynamic connectors 132 include a forked portion 192 coupled to dynamic connectors 132. Specifically, forked portion 192 includes two conductive extensions coupled to opposite sides of dynamic connector 132. Thus, each forked portion 192 defines a gap between the two conductive extensions such that a corresponding static connector 136 (shown in FIG. 2) is received therein when switch device 102 is in the closed position.
In the exemplary embodiment, switch device 102 also includes an earthing bar 194 coupled to base frame 128. In the exemplary embodiment, earthing bar 194 extends from a first end 196 to a second end 198. Earthing bar 194 will be described in more detail with respect to FIG. 4.
FIG. 4 is a bottom perspective view of switch device 102. In the exemplary embodiment, dynamic connectors 132 are coupled together by a short circuit connection bar 200. Specifically, short circuit connection bar 200 extends through connection openings 202 defined in dynamic connectors 132 and aligned with respect to the Y-axis in reference to coordinate system 12 when switch device 102 is positioned within switchgear unit 110 (shown in FIG. 1) . Short circuit connection bar 200 electrically couples dynamic connectors 132 with one another when switch device 102 is in the closed position and dynamic connectors 132 are coupled to static connectors 136 (shown in FIG. 1) . Short circuit connection bar 200 includes a first end 204 and a second end 206. In the exemplary embodiment, short circuit connection bar 200 is coupled to earthing bar 194 through flexible short lines 208 coupled to first and second ends 204, 206 of short circuit connection bar 200. Flexible short lines 208 include a conductive material such that earthing bar 194 is electrically coupled to static connectors 136 (shown in FIG. 1) when switch device 102 is in the closed position. In the exemplary embodiment, flexible short lines 208 are long enough so that they do not inhibit extension of dynamic connectors 132 when switch device 102 transitions to the closed position. Thus, in the exemplary embodiment, when switch device 102 is in the open position, flexible short lines 208 are substantially slack.
FIG. 5 is a side view of switch device 102 including a receiving apparatus 210. In the exemplary embodiment, receiving apparatus 210 includes static connectors 136 positioned within respective bushing contactor covers 212. Static connectors 136 are arranged to engage dynamic connectors 132 when switch device 102 is in the closed position. Thus, in the exemplary embodiment, switch device 102 includes three static connectors 136 arranged to respectively engage three dynamic connectors 132.
In the exemplary embodiment, bushing contactor covers 212 are coupled to the static connectors 136 to provide insulation. Bushing contactor covers 212 surround static connectors 136 on all faces other than the face oriented towards the corresponding dynamic connector 132. In other words, each static connector 136 includes a respective bushing contactor cover 212. Bushing contactor covers 212 provide independent insulation between adjacent static connectors 136. Thus, in the exemplary embodiment, switch device 102 includes three separate bushing contactor covers 212 respectively surrounding three static connectors 136 and separated from one another by an air gap. In alternative embodiments, bushing contactor cover 212 includes a single insulated housing positioned around all static connectors 136.
In the exemplary embodiment, receiving apparatus 210 also includes a connection bushing 214 extending from switch device 102 to bushing contactor cover 212. Connection bushing 214 provides a physical connection between switch device 102 and static connectors 136 when switch device 102 is in the closed position. In the exemplary embodiment, contact end 184 of dynamic connectors 132 each extend through a portion of connection bushing 214 when switch device 102 is in the open position. In alternative embodiments, switch device 102 and static connectors 136 are not physically connected when switch device 102 is in the open position. Connection bushing 214 further includes a sealing mechanism (not shown) positioned therein and arranged to provide an airtight seal between bushing contactor covers 212 and interior of switch device 102. In the exemplary embodiment, sealing mechanism is a gasket. In alternative embodiments, connection bushing 214 includes any sealing mechanism that enables connection bushing 214 to operate as described herein.
FIG. 6A is a side view of switch device 102 in the open position. FIG. 6B is a side view of switch device 102 in an intermediate position between the open and closed position. FIG. 6C is a side view of switch device 102 in the closed position. In the exemplary  embodiment, extension axis 138 is substantially parallel to the X axis of coordinate system 12. In the exemplary embodiment, when switch device 102 is in the open position, drive connection arms 162 are oriented substantially orthogonal to extension axis 138. In other words, drive connection arms 162 are oriented substantially parallel to Z-axis of coordinate system 12. Additionally, biasing arms 160 are coupled to main shaft 156 such that biasing arms 160 are oriented at an acute angle θ relative to drive connection arms 162. FIG. 6B shows switch device 102 in the intermediate position. The intermediate position between the open and closed position corresponds to biasing arm 160 being substantially in-line with biasing member 142 such that biasing member 142 is substantially compressed. In other words, at the intermediate position, main shaft 156 in FIG. 6B is rotated approximately 45-θ degrees about Y axis of coordinate system 12 from the open position.
Additionally, referring to FIG. 6B, in the exemplary embodiment, in the intermediate position, dynamic connectors 132 extend towards static connectors 136 but dynamic connectors 132 do not contact static connectors 136. In the exemplary embodiment, rotation of main shaft 156 beyond the intermediate position shown in FIG. 6B pivots biasing arm 160 such that potential elastic energy of biasing member 142 is converted to kinetic energy. Thus, biasing member 142 applies a force to biasing arm 160 which results in the immediate rotation of biasing arm 160, and in turn, rotation of main shaft 156 to the closed position. In other words, rotation of main shaft 156 beyond the intermediate position results in switch device 102 immediately shifting to the closed position without requiring any additional external torque applied to main shaft 156.
Referring to FIG. 6C, when switch device 102 is in the closed position, dynamic connector 132 is fully extended along extension axis 138 such that dynamic connector 132 engages static connector 136. In the exemplary embodiment, dynamic connector 132, linkage members 168, and drive connection arms 162 are all substantially aligned with one another. Thus, drive connection arms 162 are oriented substantially parallel to extension axis 138. In the exemplary embodiment, biasing member 142 is in a relaxed state when switch device 102 is in the closed position. Further, biasing arm 160 is oriented such that counterclockwise rotation of main shaft 156 is inhibited by a resulting opposing force applied to biasing arm 160 by biasing member 142.
In the exemplary embodiment, switch device 102 transitions from the closed position to the open position in a manner substantially opposite to the process of transitioning switch device 102 from the open position to the closed position. Specifically, switch device 102 is transitioned to the open position by applying an external counter clockwise torque to main shaft 156 about the Y-axis with reference to coordinate system 12 until switch device 102 is in the intermediate position. Application of an external torque past the intermediate position pivots biasing arm 160 such that potential elastic energy of biasing member 142 is converted to kinetic energy to apply a force to biasing arm 160, resulting in the immediate rotation of biasing arm 160, and in turn main shaft 156, to the open position.
An exemplary technical effect of the methods, systems, and apparatus described herein includes at least one of: (a) increasing safety for operators entering switchgear units by providing a more visually identifiable open status in an earthing switch; (b) reducing space required in cable compartments of switchgear units for earthing switches; (c) increasing safety by requiring less pressure to maintain dynamic connectors in the closed position; and (d) increasing ease of access to the switch device for repairs and routine maintenance.
Exemplary embodiments of electrical distribution systems and methods of assembling electrical distribution systems are described above in detail. The electrical distribution systems and methods are not limited to the specific embodiments described herein but, rather, components of the electrical distribution systems and/or operations of the methods may be utilized independently and separately from other components and/or operations described herein. Further, the described components and/or operations may also be defined in, or used in combination with, other systems, methods, and/or devices, and are not limited to practice with only the electrical distribution systems and apparatuses described herein.
The order of execution or performance of the operations in the embodiments of the disclosure illustrated and described herein is not essential, unless otherwise specified. That is, the operations may be performed in any order, unless otherwise specified, and embodiments of the disclosure may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the disclosure.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
SWITCH DEVICE FOR ELECTRICAL POWER DISTRIBUTION SYSTEMS
PARTS LIST
12 Coordinate System
100 electrical power distribution system
102 Switch device
106 Circuit protection device
108 busses
110 Switchgear unit
112 Front portion (of switchgear unit)
114 Rear portion (of switchgear unit)
116 Barrier wall
118 Breaker compartment
120 Access compartment
122 Base plate
124 Access door
126 Cable compartment
128 Base frame
130 Opening in base frame
132 Dynamic connector
134 Top surface (of base frame)
136 Static connector
138 Extension axis
142 Biasing member
144 Drive connection assembly
146 Front surface (of base frame)
148 Rear surface (of base frame)
150 Left side wall
152 Right side wall
154 Lower portion
156 Main shaft
158 apertures
160 Biasing arms
162 Drive connection arms
164 Distal ends (of biasing arms)
166 Distal ends (of drive connection arms)
167 Aperture
168 Linkage members
169 Ends (of linkage members)
170 Drive connection member
172 Drive connection 1 st end
174 Drive connection 2 nd end
176 Guide channels
178 Guide channels rear end
180 Guide channels front end
182 Drive connection end of dynamic contactors
184 Contact end of dynamic contactors
186 Aperture (defined in first connector first end)
188 Base frame openings
190 Jackets
192 Forked portion
194 Earthing bar
196 First end of earthing bar
198 Second end of earthing bar
200 short circuit connection bar
202 connection openings
204 First end (short circuit connection bar)
206 Second end (short circuit connection bar)
208 Flexible short lines
210 Receiving apparatus
212 Bushing contactor cover (212) s
214 Connection bushing

Claims (20)

  1. An electrical power distribution system comprising:
    a switchgear unit containing a circuit protection device;
    a switch device coupled to said switchgear unit and selectively moveable between an open position and a closed position, said switch device comprising:
    a base frame;
    a main shaft rotatably coupled to said base frame and rotatable between a first position corresponding to the open position and a second position corresponding to the closed position;
    at least one drive connection arm coupled to said main shaft; and
    at least one first connector comprising a first end coupled to said at least one drive connection arm and a second end engageable with a corresponding second connector when said switch device is in the closed position, said at least one first connector defining an extension axis, said at least one first connector moveable along the extension axis when said main shaft is rotated between the first position and the second position,
    wherein said at least one drive connection arm is oriented substantially perpendicular to the extension axis when said main shaft is in the first position, and
    wherein said at least one drive connection arm is oriented substantially parallel to the extension axis when said main shaft is in the second position.
  2. The electrical power distribution system of Claim 1, wherein the switchgear unit comprises a cable compartment, an access compartment, and a barrier wall separating said cable compartment from said access compartment, and wherein said at least one first connector extends from said access compartment into said cable compartment when said switch device is in the closed position.
  3. The electrical power distribution system of Claim 1, wherein said switch device further comprises at least one biasing arm coupled to said main shaft.
  4. The electrical power distribution system of Claim 3, wherein said switch device further comprises a biasing member pivotably coupled to said biasing arm and operable to bias said main shaft towards the first position when said switch device is in the open position, and to bias said main shaft towards the second position when said switch device is in the closed position.
  5. The electrical power distribution system of Claim 1, wherein said switch device further comprises:
    a linkage member comprising a first end coupled to said at least one drive connection arm and a second end opposite said first end, said second end defining an aperture; and
    a drive connection member extending through the aperture defined in said second end.
  6. The electrical power distribution system of Claim 5, wherein said linkage member is oriented substantially parallel to the extension axis when said main shaft is in the second position.
  7. The electrical power distribution system of Claim 5, wherein said drive connection member further extends through an aperture defined in said first end of said at least one first connector.
  8. The electrical power distribution system of Claim 1, wherein said switch device further comprises a bushing contactor cover coupled to the second connector to provide insulation.
  9. A switch device for an electrical power distribution system comprising:
    a base frame;
    a main shaft rotatably coupled to said base frame and rotatable between a first position corresponding to an open position of the switch device and a second position corresponding to a closed position of the switch device;
    at least one drive connection arm coupled to said main shaft; and
    at least one first connector comprising a first end coupled to said at least one drive connection arm and a second end engageable with a corresponding second connector when said switch device is in the closed position, said at least one first connector defining an extension axis,  said at least one first connector moveable along the extension axis when said main shaft is rotated between the first position and the second position,
    wherein said at least one drive connection arm is oriented substantially perpendicular to the extension axis when said main shaft is in the first position, and
    wherein said at least one drive connection arm is oriented substantially parallel to the extension axis when said main shaft is in the second position.
  10. The switch device of Claim 9 further comprising at least one biasing arm coupled to said main shaft.
  11. The switch device of Claim 10 further comprising a biasing member pivotably coupled to said biasing arm and operable to bias said main shaft towards the first position when said switch device is in the open position, and to bias said main shaft towards the second position when said switch device is in the closed position.
  12. The switch device of Claim 9 further comprising:
    a linkage member comprising a first end coupled to said at least one drive connection arm and a second end opposite said first end, said second end defining an aperture; and
    a drive connection member extending through the aperture defined in said second end.
  13. The switch device of Claim 12, wherein said linkage member is oriented substantially parallel to the extension axis when said main shaft is in the second position.
  14. The switch device of Claim 12, wherein said drive connection member further extends through an aperture defined in said first end of said at least one first connector.
  15. The switch device of Claim 9 further comprising a bushing contactor cover coupled to the second connector to provide insulation.
  16. A method of using an electrical power distribution system, said method comprising:
    coupling a switch device to a switchgear unit containing a circuit protection device therein, the switch device including a base frame, a main shaft rotatable relative to the base frame between a first position corresponding to an open position of the switch device and a  second position corresponding to a closed position of the switch device, the switch device further including at least one drive connection arm coupled to the main shaft;
    rotating the main shaft relative to the base frame to move at least one first connector along an extension axis, the at least one first connector including a first end coupled to the drive connection arm and a second end engageable with a corresponding second connector when the switch device is in the closed position;
    wherein the at least one drive connection arm is oriented substantially perpendicular to the extension axis when the main shaft is in the first position; and
    wherein the at least one drive connection arm is oriented substantially parallel to the extension axis when the main shaft is in the second position.
  17. The method of Claim 16, wherein coupling a switch device comprises coupling the switch device in an access compartment of the switchgear unit, the access compartment separated from a cable compartment by a barrier wall, and the second connector located in the cable compartment.
  18. The method of Claim 17, wherein rotating the main shaft causes the at least one first connector to move between the access compartment and the cable compartment through an aperture defined in the barrier wall.
  19. The method of Claim 16 further comprising:
    coupling a first end of a linkage member to the at least one drive connection arm; and
    coupling a second end of the linkage member to a drive connection member, the drive connection member extending through an aperture defined in the second end of the linkage member.
  20. The method of Claim 16 further comprising:
    electrically coupling a short circuit connection bar to the at least one first connector; and
    electrically coupling an earthing bar to the short circuit connection bar.
PCT/CN2018/076925 2018-02-20 2018-02-20 Switch device for electrical power distribution systems WO2019161519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076925 WO2019161519A1 (en) 2018-02-20 2018-02-20 Switch device for electrical power distribution systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076925 WO2019161519A1 (en) 2018-02-20 2018-02-20 Switch device for electrical power distribution systems

Publications (1)

Publication Number Publication Date
WO2019161519A1 true WO2019161519A1 (en) 2019-08-29

Family

ID=67687456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076925 WO2019161519A1 (en) 2018-02-20 2018-02-20 Switch device for electrical power distribution systems

Country Status (1)

Country Link
WO (1) WO2019161519A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722331A (en) * 2004-07-12 2006-01-18 Abb技术股份公司 Earthing switch
CN101055813A (en) * 2006-04-12 2007-10-17 阿雷瓦能源技术有限责任公司 Three-position switch especially used for meddle voltage or high voltage switch device
JP2008293833A (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp Contact pressure regulation mechanism for switch
CN102484014A (en) * 2009-08-20 2012-05-30 西门子公司 Disconnector for switchgear
CN203288485U (en) * 2013-06-21 2013-11-13 许昌华元泰电气科技有限公司 Direct-acting isolating earthing switch
CN204480914U (en) * 2015-01-19 2015-07-15 西安智联电气有限公司 A kind of earthed switch drives handle slide block mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722331A (en) * 2004-07-12 2006-01-18 Abb技术股份公司 Earthing switch
CN101055813A (en) * 2006-04-12 2007-10-17 阿雷瓦能源技术有限责任公司 Three-position switch especially used for meddle voltage or high voltage switch device
JP2008293833A (en) * 2007-05-25 2008-12-04 Mitsubishi Electric Corp Contact pressure regulation mechanism for switch
CN102484014A (en) * 2009-08-20 2012-05-30 西门子公司 Disconnector for switchgear
CN203288485U (en) * 2013-06-21 2013-11-13 许昌华元泰电气科技有限公司 Direct-acting isolating earthing switch
CN204480914U (en) * 2015-01-19 2015-07-15 西安智联电气有限公司 A kind of earthed switch drives handle slide block mechanism

Similar Documents

Publication Publication Date Title
DE69738357T2 (en) switchgear
RU2615742C2 (en) Electric switching device and related electric apparatus
US10734171B2 (en) Lock assemblies for switch devices of electrical power distribution systems
US10643809B2 (en) Medium-voltage electric distribution cubicle
KR20130105350A (en) Switch gear
US20200203936A1 (en) Three phase switchgear or control gear
KR20180081379A (en) 3 Way Disconnecting Switch and Earthing Switch for Gas Insulated Switch
US10673212B2 (en) Switchgear
WO2018108990A1 (en) A gis with a disconnector-earthing switch
KR101095658B1 (en) Electro mechanical interlock system of disconnector and grounding switch for gas insulated switchgear
EP3196908B1 (en) Interlock apparatus of ring main unit
WO2019161519A1 (en) Switch device for electrical power distribution systems
JP5787275B2 (en) Switchgear
CA2898811A1 (en) Electrical system and operating handle interface assembly therefor
US10665410B2 (en) Circuit breaker including active arc control features
KR20180088222A (en) Disconnector and earthing switch for gas insulated switchear
US11670919B2 (en) Three phase switchgear or control gear
KR101390499B1 (en) Disconnecting switch and earthing switch of gas insulated switchgear
WO2019144960A1 (en) Lock assemblies for components of electrical power distribution systems
KR101060827B1 (en) Gas Insulated Switchgear
KR200486467Y1 (en) Gas insulated high voltage switchgear
CN111029959A (en) Lock assembly for components of an electrical distribution system
Serve et al. Mastering all sub-assemblies of medium-voltage circuit-breaker and racking truck system ensures reliability and robustness
JPS6249688B2 (en)
KR20180063018A (en) Remote operating structure for separating auxiliary contact from driving unit in gas insulated switchgear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907119

Country of ref document: EP

Kind code of ref document: A1