WO2019159936A1 - Three-dimensional object manufacturing method and lamination molding system - Google Patents

Three-dimensional object manufacturing method and lamination molding system Download PDF

Info

Publication number
WO2019159936A1
WO2019159936A1 PCT/JP2019/005015 JP2019005015W WO2019159936A1 WO 2019159936 A1 WO2019159936 A1 WO 2019159936A1 JP 2019005015 W JP2019005015 W JP 2019005015W WO 2019159936 A1 WO2019159936 A1 WO 2019159936A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
dimensional object
particles
base material
producing
Prior art date
Application number
PCT/JP2019/005015
Other languages
French (fr)
Japanese (ja)
Inventor
健太 久保
谷内 洋
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019159936A1 publication Critical patent/WO2019159936A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional object and an additive manufacturing system.
  • Patent Document 1 describes a method of manufacturing an all-solid battery using a positive electrode ink containing a positive electrode active material, an electrolyte ink containing a polymer electrolyte, and a negative electrode ink containing a negative electrode active material.
  • each ink is separately applied by an inkjet method to form a layer having a desired shape. After the obtained layer is dried, a layer is formed in the same manner on the layer.
  • an all-solid battery having a structure in which the positive electrode active material, the polymer electrolyte, and the negative electrode active material are precisely arranged three-dimensionally is formed.
  • Patent Document 2 a material layer is formed on a sheet material that can be dissolved in a predetermined solvent by using a powder that can be heated and melted, and after the material layers are stacked together with the sheet material, a sheet is formed with the solvent.
  • a method for producing a three-dimensional object by dissolving and removing the material is described.
  • a material layer is not directly formed on a three-dimensional object in the middle of formation, but a material layer is formed on a sheet material and then stacked. Can be formed.
  • the sheet material is dissolved and removed with a solvent as in the method described in Patent Document 2
  • the sheet material sandwiched between the upper and lower material layers cannot be dissolved, and the finally obtained three-dimensional A large amount of sheet material remains in the object. Therefore, the method described in Patent Document 2 cannot form a three-dimensional object in which a desired material is arbitrarily arranged three-dimensionally.
  • an object of the present invention is to provide a method for manufacturing a three-dimensional object that can efficiently manufacture a three-dimensional object in which a desired material is arbitrarily arranged three-dimensionally.
  • the method for producing a three-dimensional object includes a material layer forming step of forming a material layer on a plurality of base materials, and a plurality of base materials each having the material layer formed thereon.
  • FIG. 1 is a flowchart of a method for manufacturing a three-dimensional object according to the first embodiment.
  • the method for manufacturing a three-dimensional object according to this embodiment includes the following steps (1) to (3). Details of each step will be described later.
  • Step (1) Material layer forming step (S101) for forming material layers on a plurality of substrates, respectively.
  • Step (2) Lamination step (S102) in which a plurality of base materials each having a material layer formed thereon are laminated to form a laminate.
  • Step (3) Removal step of removing a plurality of base materials from the laminate by heating (S103)
  • the material layers are stacked together with the substrate, and then the plurality of substrates are removed by heating.
  • next material layer When the next material layer is directly formed on the formed material layer as in the past, the next material layer cannot be formed on the previous material layer unless the previous material layer is completed. It was necessary to wait for completion of the material layer before forming the next material layer.
  • the formation of the previous material layer and the formation of the next material layer can be performed independently. Therefore, even when it takes a long time to form the material layer, a plurality of material layers can be formed efficiently.
  • a plurality of material layer forming means are provided, a plurality of material layers can be formed in parallel.
  • a plurality of material layers can be formed in parallel.
  • the previous material layer is formed on the substrate and then dried. While doing so, it is also possible to start forming the next layer of material on another substrate. Therefore, according to the present embodiment, a three-dimensional object can be efficiently manufactured in a shorter time.
  • the material layer is greatly affected by the surface shape of the underlying layer forming the material layer.
  • the material layer is formed of a particulate material, the influence of the surface shape of the underlying layer becomes particularly significant.
  • the surface shape of the underlying layer is not smooth, the density and pattern accuracy of the material layer are reduced. Cheap.
  • the smoothness of the surface shape of the material layer tends to be lost as the number of stacked layers increases.
  • each material layer is formed on the substrate every time, so that the surface shape of the underlying layer forming the material layer can be aligned every time, and the formation accuracy of each material layer can be improved. Can do.
  • the density and modeling accuracy of the manufactured three-dimensional object can be increased.
  • each material layer is formed on a base material each time, it is easy to increase the area of the material layer, and there is an advantage that a larger three-dimensional object can be easily manufactured.
  • the substrate is removed from the laminate by heating in the removing step.
  • the substrate is dissolved and removed with a solvent as in the past, or when the substrate is removed mechanically by wind pressure or water pressure, the substrate sandwiched between the upper and lower material layers is sufficient in the laminate. May not be removed.
  • removing the substrate mechanically it is particularly difficult to remove the material layer near the center inside the laminate.
  • a large force is applied to the upper and lower material layers during the removal, and the structure of the material layer may be destroyed.
  • the base material is removed by heating, the base material inside the laminate is easily removed, and the removal rate of the base material is easily increased.
  • the force applied to the material layer when removing the base material can be reduced, the density of the material layer can be increased without greatly breaking the structure of the material layer.
  • a removal process can also be called the heating process which heats a laminated body at the temperature more than the thermal decomposition temperature of a some base material.
  • the plurality of base materials a single type of base material may be used, or a plurality of types of base materials may be used.
  • the heating temperature in the removal step is the highest among the respective pyrolysis temperatures of the plurality of substrates. Heating may be performed at a temperature higher than the decomposition temperature.
  • the method for producing a three-dimensional object according to the present invention is not limited to one having all the above-described steps (1) to (3).
  • the manufacturing method of a three-dimensional object does not have a material layer formation step (step (1)), but a lamination step (step (2)) and a removal step (step (3)).
  • a plurality of base materials each having a material layer formed beforehand may be prepared, and the base materials may be laminated together to form a laminated body, and the base material may be removed from the laminated body by heating.
  • the method for producing a three-dimensional object may include only the removal step (step (3)) among steps (1) to (3). Also according to these embodiments, a three-dimensional object with an increased removal rate of the base material from the laminate can be obtained.
  • FIG. 2 is a diagram schematically showing the overall configuration of the additive manufacturing system according to the first embodiment.
  • the additive manufacturing system 1 includes a control unit U1, a material layer forming unit U2, a stacked unit U3, a removal unit U4, and a post-processing unit U5.
  • the control unit U1 is responsible for controlling each part of the additive manufacturing system 1.
  • the material layer forming unit U ⁇ b> 2 forms the material layer 12 on the base material 11.
  • the stacking unit U3 stacks the plurality of base materials 11 on which the material layers 12 are respectively formed by the material layer forming unit U2, and forms a stacked body 13 including the plurality of material layers 12 and the plurality of base materials 11.
  • the removal unit U4 forms the three-dimensional object 14 by removing the base material 11 by heating from the laminate 13 formed by the laminate unit U3.
  • the post-processing unit U5 performs post-processing of the three-dimensional object 14 formed by the removal unit U4. Note that the unit configuration shown in FIG. 2 is merely an example, and other configurations may be adopted. Hereinafter, the configuration and operation of each unit will be described.
  • control unit U1 is responsible for controlling each part of the additive manufacturing system 1, specifically, the material layer forming unit U2, the laminate unit U3, the removal unit U4, and the post-processing unit U5.
  • the control unit U1 accepts input of three-dimensional shape data of a three-dimensional object (hereinafter, sometimes referred to as “modeling object”) formed by the additive manufacturing system 1 from an external device (for example, a personal computer or the like).
  • An input unit may be provided.
  • the three-dimensional shape data data created and output by a three-dimensional CAD, a three-dimensional modeler, a three-dimensional scanner, or the like can be used.
  • the file format is not ask
  • the control unit U1 calculates the cross-sectional shape of each layer by slicing the three-dimensional shape data at a predetermined pitch, and based on the cross-sectional shape, image data used for image formation in the material layer forming unit U2 (referred to as “slice data”). ) May be provided. Furthermore, the slice data calculation unit analyzes the three-dimensional shape data or the slice data of the upper and lower layers, determines the presence or absence of an overhang portion (portion floating in the air), and if necessary, adds an image for the support material to the slice data. May be added.
  • the material layer forming unit U2 of the present embodiment uses a plurality of types of materials, and can form a material layer in which each material is patterned. Therefore, data corresponding to each material image may be generated as slice data.
  • data corresponding to each material image may be generated as slice data.
  • the file format of the slice data for example, multi-value image data (each value represents a material type) or multi-plane image data (each plane corresponds to a material type) can be used.
  • control unit U1 also includes an operation unit, a display unit, and a storage unit.
  • the operation unit is a function that receives an instruction from the user. For example, power on / off, various device settings, operation instructions, and the like can be input.
  • the display unit is a function for presenting information to the user. For example, various setting screens, error messages, operation statuses, and the like can be presented.
  • the storage unit is a function of storing three-dimensional shape data, slice data, various setting values, and the like.
  • the control unit U1 is configured in hardware by a computer having a CPU (Central Processing Unit), a memory, an auxiliary storage device (hard disk, flash memory, etc.), an input device, a display device, and various I / Fs. Can do.
  • CPU Central Processing Unit
  • auxiliary storage device hard disk, flash memory, etc.
  • I / Fs various I / Fs.
  • Each function described above is realized by a CPU reading and executing a program stored in an auxiliary storage device or the like, and controlling necessary devices.
  • some or all of the functions described above may be configured by a circuit such as an ASIC or FPGA, or may be executed by another computer using technology such as cloud computing or grid computing. Good.
  • the material layer forming unit U ⁇ b> 2 is a unit that forms the material layer 12 on the base material 11.
  • the method in which the material layer forming unit U2 forms the material layer 12 on the base material 11 is not particularly limited, it is preferable that a plurality of types of materials can be arranged on the base material 11 in an arbitrary pattern.
  • the material layer formation unit U2 forms the material layer 12 which is a particle layer using a particle material.
  • a method in which filling of the material into the concave portion of the concave / convex pattern and transfer of the filled material to the base material are combined, or ink containing a particulate material is ink-jetted is mentioned.
  • a method including a step of sprinkling and adhering a particulate material after applying a liquid onto a substrate by inkjet can be used.
  • the additive manufacturing system 1 may have a plurality of material layer forming units U2. Thereby, formation of the material layer 12 on the base material 11 can be performed simultaneously, and the throughput of formation of a laminated body and a three-dimensional object can further be improved.
  • the material type in the material layer forming unit U2 is provided by providing the material layer forming unit U2 for each material type or for each group of material types. And process switching can be omitted. Thereby, manufacture of a solid thing can be performed continuously.
  • the material layer forming unit U2 forms the material layer 12 on the base material 11 by a method in which the filling of the material into the concave portions of the concave / convex pattern and the transfer of the filled material to the base material are combined. Will be described.
  • FIG. 3 is a diagram schematically showing the configuration of the material layer forming unit U2 according to the first embodiment.
  • the material layer forming unit U2 includes a first storage container 21a for storing and supplying the first base material 11a, a first belt device 22a for transporting the first base material 11a, and a first And a pattern forming device 23 that forms a concavo-convex pattern on the substrate 11a.
  • the material layer forming unit U2 includes a first filling device 24a that arranges the first particles P1 in the concave portions of the concave-convex pattern formed on the first base material 11a.
  • the material layer forming unit U2 includes a second storage container 21b for storing and supplying the second base material 11b, and a second belt device 22b for transporting the second base material 11b.
  • the material layer forming unit U2 includes a transfer portion 25a facing the rollers of the first belt device 22a and the second belt device 22b.
  • the first particles P1 are transferred to the substrate 11b.
  • the material layer forming unit U2 includes a second filling device 24b that arranges the second particles P2 in the non-transfer portion on the second base material 11b.
  • a device that is not highly relevant for explaining the effect of the present case for example, a separation / recovery device for removing and collecting the first base material 11a after transfer from the first belt device 22a, each cleaning device, and the like are illustrated. Detailed description is omitted.
  • the first base material 11a is supplied from the first storage container 21a to the first belt device 22a by supply means (not shown).
  • the material of the first base material 11a is not particularly limited, but when UV curable ink is applied by a pattern forming device 23 (described later), at least the surface thereof has high wettability with the UV curable ink. It is preferable that it is made of a material. Moreover, it is preferable that the surface of the 1st base material 11a is smooth.
  • a resin sheet such as polyester that has been subjected to a hydrophilic treatment or an oleophilic treatment in accordance with the ultraviolet curable ink to be used (water-based or oil-based) is used. it can.
  • the 1st base material 11a may use the base material cut
  • the first belt device 22 a conveys the supplied first base material 11 a to the pattern forming position of the pattern forming device 23.
  • the first belt device 22a includes drive rollers 221a and 222a, a pressure roller 223a, and a belt-shaped conveying member 224a suspended on them. At this time, the pressure roller 223a rotates by being driven.
  • the conveying member 224a is preferably selected from resin or metal, and for example, a polyimide resin belt can be used.
  • the drive rollers 221a and 222a are preferably metal metal rollers.
  • stainless steel metal rollers can be used.
  • As the pressure roller 223a a soft roller having an elastic layer as a surface layer is preferably used.
  • a soft roller in which an elastic layer of silicone rubber is provided on the surface of a stainless steel core can be used.
  • the first belt device 22a is used as a transport device for transporting the first base material 11a.
  • a roller device may be used instead of the belt device. The same applies to the second belt device 21b described later.
  • the pattern forming device 23 forms a fine concavo-convex pattern on the first base material 11a conveyed to the pattern forming position.
  • the method for forming the concavo-convex pattern is not particularly limited, and a UV imprint method, a thermal imprint method, a UV inkjet method, a printing method, a laser etching method, or the like can be used.
  • the pattern forming apparatus 23 forms a concavo-convex pattern by the UV imprint method, the pattern forming apparatus 23 has an application unit that applies an ultraviolet curable composition onto the first substrate 11a.
  • the pattern forming apparatus 23 includes a stamping unit that stamps a mold having a concavo-convex pattern formed on the surface of the ultraviolet curable composition on the first substrate 11a, and a light source that irradiates the ultraviolet curable composition with ultraviolet rays.
  • a stamping unit that stamps a mold having a concavo-convex pattern formed on the surface of the ultraviolet curable composition on the first substrate 11a, and a light source that irradiates the ultraviolet curable composition with ultraviolet rays.
  • PDMS ultraviolet curable liquid silicone rubber
  • a film mold is used as the mold
  • a UV lamp is used as the light source.
  • the first filling device 24a fills the recesses with the first particles P1 using the support material S1 supporting the first particles P1, the recesses of the uneven pattern on the first substrate 11a are It is preferable that the particle P1 can be in contact with the carrier material S1.
  • the pattern forming device 23 forms a concavo-convex pattern on the first substrate 11a.
  • a substrate having a concavo-convex pattern previously formed on the surface is used as the first substrate. It may be used as the material 11a.
  • the pattern forming device 23 may form an uneven pattern directly on the surface of the conveying member 224a of the first belt device 22a, or a conveying member having an uneven pattern on the surface may be used as the conveying member 224a. In this case, in view of durability, it is preferable to form a concavo-convex pattern on the surface using a fine belt such as laser etching, wet etching, or dry etching using a metal belt such as stainless steel or aluminum.
  • the first substrate 11a having a concavo-convex pattern formed on the surface is conveyed to the filling position of the first filling device 24a by the first belt device 22a.
  • FIG. 4 is a diagram schematically showing the configuration of the filling apparatus according to the present embodiment.
  • the configuration of the first filling device 24a will be described, but the same applies to the second filling device 24b.
  • the first filling device 24a includes a filling container 242a that contains the filler 241a, a stirring screw member 243a that stirs and conveys the filler 241a, a recovery member 244a that collects the filler, and a magnetic member 247a.
  • the filler 241a includes first particles P1 and a support material S1 that supports the first particles P1.
  • the filler 241a is a mixture of a plurality of powders including a powder composed of a plurality of first particles P1 and a powder composed of a plurality of support materials S1.
  • the filler 241a accommodated in the filling container 242a is sufficiently mixed and frictionally charged when being stirred and conveyed by the stirring screw member 243a. As a result, the first particles P1 are supported on the surface of the support material S1.
  • the first particles P1 are particles filled in the concave portions of the concavo-convex pattern formed on the first base material 11a, and the material thereof is not particularly limited.
  • the first particles P1 may be particulate inorganic materials such as metal particles, ceramic particles, and glass particles, or may be particulate organic materials such as resin particles.
  • the base material 11 is removed by heating, and therefore the first particles P1 are the second base material described later.
  • a material having a thermal decomposition temperature higher than 11b is preferred. Since the inorganic material tends to have a high thermal decomposition temperature, the first particles P1 are preferably particulate inorganic materials.
  • the thermal decomposition temperature is a temperature at which weight reduction of the material starts when the temperature is gradually raised in the atmosphere when heating the removal unit U4. Therefore, by heating the laminate at a temperature equal to or higher than the thermal decomposition temperature of the substrate 11, the substrate 11 in the laminate can be decomposed to reduce its weight, and the substrate 11 is removed from the laminate. Can do.
  • the heating temperature in the removing step is preferably a temperature equal to or higher than the thermal decomposition temperature of the substrate 11, but it is preferable to heat at a temperature higher than the thermal decomposition temperature.
  • thermogravimetric analysis when the thermogravimetric analysis is performed at a rate of 5 ° C./minute from room temperature (25 ° C.) under the atmosphere (typically air) during heating of the removal unit U4, the initial weight is obtained. It is preferable to heat at a temperature equal to or higher than the temperature at which it becomes 70%. Similarly, when thermogravimetric analysis is performed, it is preferable to heat at a temperature equal to or higher than 50% of the initial weight, and to heat at a temperature equal to or higher than 20% of the initial weight. More preferably. Thereby, the time required for removing the base material 11 can be shortened, or the removal rate of the base material 11 can be increased.
  • the support material S1 is a magnetic particle.
  • the support material S1 is preferably particles in which the surfaces of resin particles in which ferrite core particles and magnetic materials are dispersed are coated with a resin composition.
  • the particle size and material of the support material S1 are appropriately selected according to the particle size and material of the first particle P1. Thereby, the 1st particle P1 can be carried stably.
  • particles other than the first particles P1 and the support material S1 are added to the filler 241a, or the surface of the first particles P1 is coated with a resin composition. It doesn't matter.
  • a conductive auxiliary agent a form containing carbon black such as acetylene black, a metal, or an alloy powder, and the conductive auxiliary agent on the surface of the first particle P1 were coated. A form is included as a modification of this embodiment.
  • the recovery member 244a includes a roller 245a that can rotate in the direction of arrow d2 in the drawing, and a magnet 246a that is disposed inside the roller 245a and fixed to the filling container 242a. Further, the magnetic member 247a is disposed to face the filling container 242a via the transport member 224a, and has a magnet 248a therein.
  • the magnet 246a has a plurality of N poles and S poles arranged alternately along the rotation direction of the recovery member 244a.
  • the magnet 248a has a plurality of N poles and S poles arranged alternately along the transport direction of the transport member 224a.
  • the magnet 246a has a magnetic pole of a different polarity (N1 pole in the present embodiment) at a position closest to the most downstream magnetic pole (S1 pole in the present embodiment) of the magnet 248a.
  • the N2 pole having the same polarity as the N1 pole is arranged at the position of.
  • Magnet 246a and magnet 248a may be composed of a plurality of magnets, and the types of magnets constituting magnet 246a and magnet 248a are not particularly limited.
  • a means for generating a magnetic field such as a rare earth magnet such as a ferrite magnet, a neodymium magnet, or a samarium cobalt magnet, a permanent magnet such as a plastic magnet, or an electromagnet can be used.
  • a rare earth magnet such as a ferrite magnet, a neodymium magnet, or a samarium cobalt magnet
  • a permanent magnet such as a plastic magnet
  • an electromagnet an electromagnet
  • a regulating member that regulates the filler 241a on the first base material 11a or a filler 241a that cannot be collected by the collecting member 244a is again provided upstream or downstream of the collecting member 244a in the conveying direction of the conveying member 224a.
  • a recovery member for recovery may be provided.
  • a collecting member to be collected again a collecting member that collects by air blow from a simple member such as a fixed magnet or a regulating member can be used in addition to a member similar to the collecting member 244a.
  • the first transport member 224a moves in the direction of the solid line arrow d1 in FIG. 4, the first base material 11a carried and transported by the first transport member 224a is transported, and the first filling device 24a It is transported to the filling position.
  • the filler 241a is conveyed by the stirring screw member 243a and supplied onto the first substrate 11a (dotted line a in FIG. 4). At this time, a magnetic field is formed by the magnetic member 248a and the recovery member 244a, and the filler 241a including the carrier material S1 that is a magnetic particle forms a plurality of magnetic spikes on the first substrate 11a by the magnetic field.
  • the filler 241a supplied onto the first base material 11a is transported on the first base material 11a in a state where magnetic spikes are formed as the first base material 11a moves (dotted line in FIG. 4). b).
  • FIG. 5 is a schematic diagram of the filler 241a conveyed on the first base material 11a.
  • the filler 241a other than the filler forming one magnetic spike is not shown.
  • the filler 241a on the first base material 11a forms a magnetic spike along the magnetic field lines of the magnetic field that is formed, and as the first base material 11a moves, FIG. 5A and FIG. 5B and conveyed while changing the shape of the magnetic spike as shown in FIG. 5C.
  • the conveying speed v2 of the filler 241a is smaller than the moving speed v1 of the first base material 11a when the filler 241a moves away from the magnetic pole. In the opposite case, it becomes larger. That is, the filler 241a on the first substrate 11a has a non-zero relative speed with respect to the first substrate 11a.
  • FIG. 6 is an enlarged view of the vicinity of the surface of the first base material 11a of FIG.
  • the uneven pattern 111a is formed on the first substrate 11a as shown in FIG.
  • the filler 241a is in contact with the concavo-convex pattern 111a and is zero with respect to the first base material 11a while receiving a magnetic force (solid line Fm in the figure) in a direction perpendicular to the surface of the first base material 11a. It is conveyed with the 1st base material 11a, having a relative speed which is not.
  • the first particles P1 supported on the support material S1 are conveyed while being rubbed against the uneven pattern 111a on the surface of the first base material 11a.
  • the concave portion of the concave / convex pattern 111a is sized so that the first particle P1 can contact but the support material S1 cannot contact, only the first particle P1 is selectively concave in the filler 241a.
  • the first particles P1 that have come into contact with the recesses are physically restrained by the structure of the concavo-convex pattern 111a, or by electrostatic adhesion and adhesive force with the structural material constituting the first substrate 11a and the concavo-convex pattern 111a. It is strongly restrained and detached from the support material S1.
  • a recovery member 244a is disposed downstream of the magnetic member 247a with a gap from the first transport member 224a. As the first base material 11a moves, the filler 241a conveyed to the vicinity of the most downstream magnetic pole (S1 pole) of the magnet 248a is affected by the magnetic field formed by the magnet 246a, and the first base 11a is moved. It moves from the material 241a to the recovery member 244a and is recovered (dotted line c in FIG. 4).
  • the concave portions of the concave / convex pattern 111a on the surface of the first base material 11a sufficiently come into contact with the plurality of fillers 241a. Therefore, the first particles P1 are selectively and densely arranged in the recesses of the uneven pattern 111a after the filler 241a is recovered by the recovery member 244a.
  • the filler 241a recovered by the recovery member 244a is conveyed by the rotating roller 244a (dotted line d in FIG. 4).
  • the filler 241a conveyed by the roller 244a falls into the filling container 242a due to the influence of the magnetic field and gravity due to two adjacent magnetic poles (N1, N2) repelling each other (dotted line e in FIG. 4). .
  • N1, N2 two adjacent magnetic poles repelling each other
  • the weight ratio between the first particles P1 in the filler 241a and the support material S1 in the filling container 242a is an inductance sensor that is measured using a magnetic permeability, which is common in electrophotographic apparatuses, or a reflection density on a substrate. Is determined by a patch density sensor or the like that predicts by measuring. Then, if necessary, at least one of the first particles P1 and the support material S1 is supplied by a supply means (not shown). This enables stable filling over a long period of time.
  • group which fills a recessed part with particle
  • the system of a filling apparatus is not limited to this.
  • Brush fibers may be used as the support material.
  • an elastic member having at least a surface made of an elastic material may be used as the support material. According to the system in which these particle materials are supported on the support material and rubbed with each other, more dispersed particles can be supplied to the recesses compared to the filling method using a regulating member such as a blade, and the stable and Filling can be performed precisely. This merit becomes more prominent because the particles are more easily aggregated as the particle size of the particles to be filled is smaller.
  • the first base material 11a in which the first particles 1 are filled in the concave portions of the uneven pattern 111a by the first filling device 24a is conveyed to the transfer unit 25a by the first belt device 22a.
  • the second belt device 22b is similar to the first belt device 22a in that the driving rollers 221b and 222b, the pressure roller 223b, and a belt-like conveying member suspended on them. 224b. At this time, the pressure roller 223b rotates following. In the transfer unit 25a, the pressure roller 223a of the first belt device 22a and the pressure roller 223b of the second belt device 22b are opposed to each other.
  • the second substrate 11b is supplied from the second storage container 21b to the second belt device 22b and is conveyed in the direction of the arrow in FIG.
  • the supplied second base material 11b is transported in accordance with the timing at which the first base material 11a is transported to the transfer unit 25a.
  • the transfer unit 25a the first particles P1 filled in the first base material 11a are transferred to the second base material 11b. This transfer process will be described with reference to FIG.
  • FIG. 7 is a diagram schematically showing the configuration of the transfer portion 25a.
  • the transfer unit 25a includes a pressure roller 223a and a conveying member 224a of the first belt device 22a, and a pressure roller 223b and a conveying member 224b of the second belt device 22b.
  • the pressure rollers 223a and 223b rotate by being driven, and the two rollers are in contact with each other via the conveying members 224a and 224b.
  • At least one of the pressure rollers 223a and 223b is a soft roller having an elastic layer as a surface layer, and a nip portion is formed at a portion where the two rollers are in contact with each other.
  • the first base material 11a and the second base material 11b filled with the first particles P1 by the first filling device 24a are transported at substantially constant speed by the respective transport members (224a, 224b) and pressurized.
  • the rollers 223a and 223b enter the nip portion formed by contact. In the nip portion, the first particles P1 on the first substrate 11a come into contact with the second substrate 11b and are transferred onto the second substrate 11b.
  • the second base material 11b is a base material whose adhesion force to the first particles P1 is larger than the adhesion force of the first base material 11a to the first particles P1.
  • the adhesion force of the first particles P1 to the second substrate 11b is larger than the adhesion force of the first particles P1 to the first substrate 11a.
  • the material of the second base material 11b is not particularly limited. However, in the present embodiment, the material layer is laminated together with the second base material 11b in a later-described laminating unit U3, and the second base material 11b is removed by heating in the removal unit U4. Therefore, the second base material 11b is preferably made of a material that can be easily removed by heating.
  • the 2nd base material 11b may be the base material cut
  • the second substrate 11b is subjected to a surface treatment for increasing the adhesive force in order to transfer the first particles P1 that have come into contact therewith.
  • the 2nd base material 11b has the adhesion layer by which the adhesive was apply
  • the pressure-sensitive adhesive may be an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or a silicone-based pressure-sensitive adhesive, or may be a thermoplastic resin or a photo-curing resin whose adhesive force changes due to disturbance such as heat or light. May be.
  • the material layer forming unit U2 may have an application means such as a dispenser or an inkjet head for applying an adhesive to the surface of the second substrate 11b being conveyed.
  • the type and application amount of the pressure-sensitive adhesive are appropriately adjusted depending on the shape and material of the uneven pattern to be used, the particle size and material of the first particles P1 and the second particles P2, and the like. It is preferable that the adhesive strength is large.
  • the comparison of the adhesive strength can be measured by a general method using a nanoindenter.
  • the first particles P1 are constrained by the adhesive force generated between the second particles 11b.
  • the conveying members 224a and 224b are separated from each other past the nip portion, the first particles P1 on the first base material 11a are transferred to the second base material 11b.
  • the second base material 11b to which the first particles P1 have been transferred is transported to the filling position of the second filling device 24b by the transport member 224b.
  • a filler 241b having the second particles P2 and the support material S2 is accommodated in the filling container 242a instead of the filler 241a having the first particles P1 and the support material S1. Except for the point, it has the same configuration and function as the first filling device 24a.
  • the second filling device 24b fills the second particles P2 on the second base material 11b where the first particles P1 are not disposed. As described above, the first particles P1 are arranged on the second base material 11b that has passed through the transfer portion 25a, but a so-called recess is formed in a portion where the first particles P1 are not arranged. Has been. The second filling device 24b fills the recesses with the second particles P2 in the same process as the first filling device 24a.
  • the filler 241b includes second particles P2 and a support material S2 that supports the second particles P2.
  • the filler 241b is a mixture of a plurality of powders including a powder composed of a plurality of second particles P2 and a powder composed of a plurality of support materials S2.
  • the material of the second particles P2 is not particularly limited, and may be a particulate inorganic material such as metal particles, ceramic particles, glass particles, or particles such as resin particles, like the first particles P1. It may be an organic material having a shape.
  • the second particles P2 are preferably particulate inorganic materials.
  • the first particles P1 and the second particles P2 may be the same material.
  • the support material S2 can be the same as the support material S1.
  • the second particles P2 are preferably made of a material having a higher thermal decomposition temperature than the second base material 11b. Note that the first particles P1 and the second particles P2 are preferably selected from a positive electrode material of a lithium ion battery or an all-solid battery, a material containing a solid electrolyte, and a negative electrode material.
  • FIG. 8 is an enlarged view of the vicinity of the surface of the second substrate 11b in the filling process by the second filling device 24b.
  • a concavo-convex pattern having a convex portion formed by arranging the first particles P1 and a concave portion in which the first particles P1 are not arranged is formed.
  • the filler 241b is in contact with the concavo-convex pattern and receives a magnetic force (solid line Fm in the figure) in a direction perpendicular to the surface of the second base material 11b, while being zero with respect to the second base material 11b. It is conveyed with the second base material 11b while having no relative speed.
  • the second particles P2 supported on the support material S2 are conveyed while being rubbed against the uneven pattern on the surface of the second base material 11b.
  • the concave portion of the concave / convex pattern has a size that allows the second particles P2 to contact but the support material S2 cannot contact, only the second particles P2 in the filler 241b selectively become concave portions. Contact.
  • the second particles P2 in contact with the recesses are strongly restrained by the physical binding force due to the structure of the concavo-convex pattern and the electrostatic adhesion force and adhesive force between the second base material 11b and the structural material constituting the concavo-convex pattern. And detached from the support material S2.
  • FIG. 9A is a diagram schematically showing the second substrate 11b after the first particles P1 are transferred by the transfer unit 25a, and the second substrate 11b is viewed from a direction perpendicular to the substrate surface. It is a figure.
  • a honeycomb pattern is formed in which arrangement regions where the first particles P1 are arranged in a regular hexagonal shape are aligned.
  • the first particles P1 are densely arranged in the regular hexagonal region, and the first particles P1 are not arranged in other portions (the white background portion in FIG. 9A).
  • the surface of the material 11b is exposed.
  • the regular hexagonal region where the first particles P1 are held is the first pattern portion, and the second particle P2 is held, and the honeycomb pattern region corresponding to the gap between the first pattern portions is the second pattern portion. In other words.
  • FIG. 9B is a diagram schematically showing the second base material 11b after the second particles P2 are filled by the second filling device 24b, and the second base material 11b is perpendicular to the base material surface. It is the figure seen from. As shown in FIG. 9B, the second particles P2 are densely arranged in the region where the first particles P1 are not arranged. Also, the first particles P1 and the second particles P2 are densely arranged at the boundary portion between the region where the first particles P1 are arranged and the region where the second particles P2 are arranged. Has been.
  • the first pattern portion and the second pattern portion have the same repetition period L / 5 in the horizontal direction (apparent horizontal direction) of the paper surface.
  • the pattern portion has a first pattern portion in which the first particle group is held and a second pattern portion in which the second particle group is held.
  • particle groups P1 and P2 having different average particle sizes are spread on the first pattern portion and the second pattern portion.
  • the pattern portion is different from the first particle group P1 and the second particle group P2 in the average particle diameter, and in the area density of the retained particle group, In other words, it is different from the second pattern portion.
  • the parts have mutually equal repetition periods L / 5.
  • the material layer in which the first particles P1 and the second particles P2 are densely arranged in a pattern is formed on the second base material 11b. can do.
  • the coverage of the base material with particles can be 80% or more.
  • the coverage of the base material by particles is measured by photographing the region where the material layer is formed with an optical microscope from the vertical direction of the base material, and calculating the area ratio of the particles in the region by image processing software. be able to.
  • the material layer forming unit U2 forms a material layer using two types of particle materials.
  • the present invention is not limited to this, and the material layer is formed using one type of particle material.
  • the material layer may be formed using three or more kinds of particulate materials.
  • both the first filling device 24a and the second filling device 24b may be filled with the same particle material. Thereby, it is possible to form a material layer in which one kind of material is arranged more densely.
  • the first material P1 in the first filling device 24a and the second particle P2 in the second filling device 24b may use the same material but different particle sizes.
  • a finer material layer can be formed by using particles having a smaller particle diameter than the first particles P1 as the second particles P2.
  • a third filling device may be added on the upstream side of the first filling device 24a or the second filling device 24b.
  • the particle diameter of the particles filled in the upstream filling apparatus is larger than the particle diameter of the particles filled in the downstream filling apparatus.
  • a plurality of first belt devices 22a may be provided, and different particles may be transferred from the respective devices onto the second base material 11b.
  • a third belt device having a third filling device is provided, and the first and second particles are arranged in the transfer portion formed by the second belt device 22b and the third belt device. The particles may be transferred from the second base material 11b onto the third base material. After that, if the third particle is filled with the third filling device in the portion where neither the first particle nor the second particle is arranged on the third substrate, the material layer is formed with three or more kinds of particle materials. Can be formed.
  • a material layer in which a single kind or plural kinds of particles are densely arranged on the base material 11b can be formed.
  • the material layer forming unit U2 forms each material layer on the base material, it is possible to align the base conditions when forming the material layer. Therefore, the material layer can be formed more stably than in the case where a material layer is further formed on the formed material layer.
  • the material layer forming unit U2 forms the material layer by a method in which filling and transfer by two filling devices are combined.
  • the present invention is not limited to this.
  • the first particle is applied by a method in which an ink containing a particulate material is applied onto a substrate by ink jet, or a method in which a liquid is applied in a pattern by ink jet on the substrate and then the particulate material is sprinkled and adhered.
  • P1 is arranged. And you may fill the 2nd particle
  • the material layer formed by the material layer forming unit U2 is an inorganic material. It is preferable to be configured. Thereby, the removal of a base material can be made easy in the removal process in the removal unit U4 mentioned later.
  • each material layer may contain an organic material in addition to the inorganic material.
  • the stacking unit U3 is a unit that stacks a plurality of base materials 11 each having the material layer 12 formed thereon by the material layer forming unit U2 and forms a stacked body 13 including the plurality of material layers 12 and the plurality of base materials 11. is there.
  • FIG. 10 is a diagram schematically showing the configuration of the laminated unit U3.
  • the stacking unit U3 includes a transport device 31 that transports the base material 11b on which the material layer 12 is formed, and a stage 32 that can be relatively moved in the vertical direction by an actuator (not shown).
  • the transfer device 31 receives the substrate 11b on which the material layer 12 is formed from the lamination unit U2 and transfers it to the stage 32.
  • the transport device 31 is not particularly limited as long as it is a device capable of transporting the base material 11b, and may be a belt conveyor, a roller, or a robot arm.
  • the stage 32 moves in the vertical direction by the thickness of the substrate 11b and the material layer 12.
  • a plurality of base materials 11b each formed with the material layer 12 are laminated, and the laminated body 13 is formed.
  • the stacking unit U3 may further include a transport device 33 that transports the formed stacked body 13 to the removal unit U4 and the like, and a pressurizing device (not shown) that pressurizes the stacked body 13 in the stacking direction.
  • the transport device 33 may have the same configuration as the transport device 31.
  • FIG. 11A is a schematic diagram of a laminate 13 in which four base materials 11b on which a material layer 12 is formed are laminated on a stage 32.
  • FIG. There are a total of three base materials 11b between each of the material layers 12 composed of the first particles P1 and the second particles P2.
  • the adhesive material for transferring and filling the first particles P1 and the second particles P2 is coated on the upper surface of the base material 11b.
  • an adhesive material may be applied. Thereby, each layer can be more firmly fixed at the time of lamination. At this time, it is preferable not to apply the adhesive material to the lower surface of the base material 11b in contact with the stage 32. Since one base material 11b is always interposed between the adjacent material layers 12, it is difficult to remove the base material in a removing unit described later, but the base material is easily stacked.
  • FIG. 11B shows a base material 11b (the uppermost base material and the lowermost base material in the figure) in which the material layer 12 is formed on one surface of the base material, and a base material 11b in which the material layer 12 is formed on both surfaces of the base material.
  • FIG. 3 is a schematic diagram of a laminate 13 in which three substrates (center base material in the figure) are laminated on a stage 32; A total of one base material 11b exists between each of the material layers 12 composed of the first particles P1 and the second particles P2.
  • the adhesive layer is applied to the back surface of the base material, and the material layer is formed on the back surface in the same manner. Can be formed.
  • the removal unit U4 is a unit that forms the three-dimensional object 14 by removing the base material 11 by heating from the laminate 13 formed by the laminate unit U3.
  • FIG. 12 is a diagram schematically showing the configuration of the removal unit U4.
  • the removal unit U ⁇ b> 4 includes a transport device 41 that transports the stacked body 13 and a heating furnace 42 that heats the stacked body 13.
  • the conveying device 41 receives the laminated body 13 from the laminated unit U3 and conveys it to the heating furnace.
  • the transport device 41 is not particularly limited as long as it is a device capable of transporting the stacked body 13, and may be a belt conveyor, a roller, or a robot arm.
  • the heating furnace 42 is a furnace for heating the laminated body 13.
  • the heating furnace 42 includes a heating unit 421, a pressurizing unit 422, and an atmosphere adjusting unit 423.
  • a firing furnace used for firing ceramics or the like can be used.
  • the pressurizing unit 422 pressurizes the stacked body 13 being heated in the heating furnace 42 or pressurizes the stacked body 13 before and after heating.
  • the pressurization means 422 it is preferable that the pressurization part which pressurizes the laminated body 13 is formed with the porous body which is easy to let gas pass.
  • the atmosphere adjustment means 423 includes an atmosphere gas supply means 423 a and a decompression means 423 b and adjusts the atmosphere gas in the processing space of the heating furnace 42.
  • the removal unit U4 is heated at a temperature equal to or higher than the thermal decomposition temperature of the base material (here, the second base material 11b) in the laminated body 13 and lower than the thermal decomposition temperature of each material layer in the laminated body 13. I do. Thereby, the base material in the laminated body 13 can be selectively decomposed and the base material can be removed.
  • the base material here, the second base material 11b
  • the removal unit U4 preferably loses 90% by weight or more of the base material in the laminate 13 by heating, more preferably 95% by weight or more, and more preferably 97% by weight or more. .
  • the base material is preferably burned or gasified and released to the outside as a gas.
  • a base material formed of an organic material such as a resin As the base material, the base material can be easily removed by heating.
  • polyesters such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyamides such as nylon, and the like can be used. Among these, it is preferable to use PET from the viewpoint of the decomposition temperature and the low hazard of gas generated at the time of thermal decomposition.
  • the removal unit U4 preferably exhausts the released gas to the outside of the heating furnace 42 by the decompression means 423b.
  • an oxidizing atmosphere that is, an atmosphere containing oxygen gas such as air by the atmosphere gas supply means 423a or the like, the substrate can be burned and removed.
  • the material layers in the laminated body 13 may be pushed up to change the shape. Therefore, when heating is performed in the heating furnace 42, it is preferable to pressurize the laminate 13 by the pressurizing unit 422 before or during heating, or during cooling or heat dissipation after heating. Moreover, when pressurizing the laminated body 13 before heating, it is preferable to pressurize in a reduced pressure atmosphere. Thereby, the shape change at the time of removing a base material by heating can be suppressed further, and pressurization during heating can also be omitted. In addition, when pressurizing the laminated body 13 before or after heating, the pressurization may be performed in a portion other than the removal unit U4.
  • the post-processing unit U5 is a unit that performs post-processing of the three-dimensional object 14 formed by the removal unit U4.
  • the type of post-processing performed by the post-processing unit U5 is not particularly limited, and examples thereof include a process in which the three-dimensional object 14 is further heated and baked.
  • the removal unit U4 may also serve as the function.
  • the post-processing unit U5 may also have a pressurizing unit that heats the three-dimensional object 14, similarly to the removal unit U4.
  • the post-processing unit U5 may pressurize the three-dimensional object 14 by a pressurizing unit before or during heating as post-processing, or during cooling or heat dissipation after heating.
  • the post-processing unit U5 may perform a process of removing at least one kind of material constituting the three-dimensional object 14 from the three-dimensional object 14.
  • the three-dimensional object 14 is formed of the first particle material P1 and the second particle material P2
  • Only the second particulate material P2 may be selectively removed by air blowing or the like.
  • the second particle material P2 functions as a so-called support material in the layered manufacturing method, and has a function of supporting the first particle material P1 during stacking. Thereby, a solid thing can be modeled using the 1st particulate material P1.
  • the first particle material P1 When only the first particle materials P1 are fixed to each other, for example, a material having a higher sintering temperature than the first particle material P1 is used as the second particle material P2, and the first particle material P1 is used. What is necessary is just to heat at the temperature more than the sintering temperature of this, and the temperature below the sintering temperature of 2nd particle material P2.
  • an electrode sheet such as a positive electrode sheet or a negative electrode sheet is formed by forming a material layer on a substrate using a positive electrode material or a negative electrode material of a lithium ion battery or an all-solid battery, or a material containing a solid electrolyte. And a solid electrolyte sheet can be produced.
  • the particulate material can be densely arranged in an arbitrary pattern, it is possible to provide an electrode sheet or a solid electrolyte sheet having high electrochemical characteristics.
  • an all-solid-state battery can also be manufactured by forming a solid thing using the positive electrode material, the negative electrode material, and the material containing a solid electrolyte.
  • a three-dimensional object was formed using the additive manufacturing system 1 described above. Specifically, a material layer is formed on a substrate using the material layer forming unit U2 shown in FIG. 3, the substrate on which the material layer is formed is laminated, and the substrate is removed from the laminate by heating. Thus, a three-dimensional electrode sheet, an electrolyte sheet, and an all-solid battery were formed.
  • a polyimide resin belt was used as the conveying member 224. Further, as the driving roller 221 and the driving roller 222, stainless steel metal rollers were used, and as the pressure roller 223, a soft roller in which a silicone rubber elastic layer was provided on a stainless steel core was used.
  • the first base material 11a a sheet made of polyester (PET) was used as the first base material 11a.
  • a concavo-convex pattern having a honeycomb pattern was formed on the first base material 11 a by the pattern forming device 23.
  • an ultraviolet curable resin (ultraviolet curable liquid silicone rubber, PDMS, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied on the first substrate 11a.
  • a film mold standard mold, manufactured by Soken Chemical Co., Ltd.
  • the ultraviolet curable resin was cured by irradiating ultraviolet rays with a UV lamp to release the film mold.
  • FIG. 13 shows the structure of the first base material 11a having the uneven pattern 111a formed on the surface.
  • 13A is a top view of the first base material 11a
  • FIG. 13B is a cross-sectional view taken along the line AA of FIG. 13A.
  • a honeycomb pattern-shaped uneven pattern having hexagonal frame-shaped protrusions is formed on the surface of the first base material 11 a.
  • the interval between adjacent convex portions that is, the width of the concave portions
  • the pitch of the adjacent convex portions is s ( ⁇ m)
  • the height of the convex portions that is, the concave portions.
  • Is d ⁇ m
  • the shape measurement of the concavo-convex pattern was performed using a non-contact surface / layer cross-sectional shape measurement system (VertScan 2.0 manufactured by Ryoka System Co., Ltd.).
  • the second substrate 11b a sheet made of polyester (PET) having an acrylic adhesive applied on the surface was used.
  • PET polyester
  • the first particle P1 and the second particle P2 are LiCoO 2 (hereinafter LCO), Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (hereinafter LAGP), Li 6.75 La 3 Zr 1.
  • LCO LiCoO 2
  • LAGP Li 1.5 Al 0.5 Ge 1.5 P 3 O 12
  • LBO Li 3.BO 3
  • graphite graphite was used.
  • lithium cobalt oxide LCO is a positive electrode material
  • lithium borate LBO are materials containing a solid electrolyte
  • graphite is a negative electrode material.
  • the lithium cobalt oxide LiCoO 2 can be manufactured by Nippon Chemical Industry Co., Ltd.
  • Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 can be manufactured by Toyoshima Seisakusho Co., Ltd., and the abbreviation may be LLZNb instead of LLZ.
  • lithium borate Li 3 BO 3 can be manufactured by Toshima Seisakusho Co., Ltd.
  • SGP-5 manufactured by SEC Carbon Co., Ltd. can be used.
  • the support material S1 and the support material S2 either a standard carrier (standard carrier P02 manufactured by the Imaging Society of Japan) or an in-house carrier (manufactured by Canon), which is a magnetic particle, was used.
  • the in-house carrier is a particle in which pores of porous ferrite particles are filled with a resin.
  • the size (interval k, pitch s, depth d) of the uneven pattern 111a formed on the first substrate 11a and the filler are changed as shown in Table 1, and the second Material layers 1 to 7 were formed on the substrate 11b.
  • a polyester sheet was used as the first substrate 11a, and OP-4003 made by DIC Corporation was used as the ultraviolet curable resin.
  • the particle diameter of each particle in the filler used when forming each material layer was as shown in Table 2.
  • the particle size (r10, r50, r90) of each particle is the particle size of the cumulative distribution in the particle size distribution on a volume basis, r10 is 10% cumulative, r50 is 50% cumulative, and r90 is 90% cumulative.
  • the particle size was measured using a laser diffraction scattering type particle size distribution measuring device (LA-960, manufactured by Horiba, Ltd.).
  • the density of the formed material layers 1 to 7 was evaluated by the following method. Specifically, the second base material 11b on which each material layer is formed is photographed from the material layer side with an optical microscope, and the coverage of particles in the observation region is determined by image processing software (Adobe Photoshop (registered trademark) manufactured by Adobe Systems). )). As a result, it was found that all the material layers 1 to 4 had a cover rate of 80% or more, and a dense material layer could be formed.
  • Examples 1 to 11 Next, a plurality of second base materials 11b each formed with each material layer were laminated to form a laminate. And the laminated body was transferred to the heating furnace and heated in the heating furnace. The weight of the laminate was measured before and after heating, and the weight ratio (wt%) of the base material before and after heating was evaluated. Further, the upper and lower surfaces of the laminated body after heating were sputtered with gold, and a tester was applied to the upper and lower surfaces to investigate whether or not to leak, and the leaked one was B and the one that did not leak was A. The results are shown in Table 3. In addition, it can be evaluated that what leaks is about 10 ⁇ or less in resistance value.
  • FIG. 14 is a diagram showing a thermogravimetric analysis result of a polyester (PET) sheet which is the second base material 11b.
  • the thermogravimetric analysis was performed by using a differential thermobalance (TG-DTA manufactured by Rigaku Corporation) and raising the temperature in the air from room temperature (25 ° C.) at a rate of 5 ° C./min. From FIG. 14, the temperature when it was 50% of the initial weight was about 400 ° C., and the temperature when it was 20% of the initial weight was about 500 ° C.
  • all of LCO, LAGP, LLZ, LBO, and graphite had a thermal decomposition temperature of 510 ° C. or higher.
  • Example 12 Next, a plurality of second base materials 11b each formed with each material layer were laminated to form a laminate. And the laminated body was transferred to the heating furnace and heated in the heating furnace. Furthermore, the laminate was transferred to a firing furnace and heated and fired in the firing furnace. This produced the all-solid-state battery.
  • Example 12 Four material layers 7 (graphite), two material layers 3 (LAGP), and two material layers 1 (LCO + LAPG) were laminated on the Si substrate with gold sputtered on the surface in order. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose
  • Example 13 On the graphite compact, two material layers 3 (LAGP) and two material layers 1 (LCO + LAPG) were laminated in order for each substrate. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose
  • Example 14 Four material layers 7 (graphite) were laminated together with the base material under the LLZ compact, and two material layers 5 (LCO + LBO) were laminated together with the base material over the LLZ compact. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose
  • the LLZ compact was formed by pressurizing LLZ powder with a hydraulic press at 250 MPa, followed by firing at 1150 ° C. for 36 hours in air (atmosphere). The formed LLZ compact was polished with sandpaper on the upper and lower surfaces.
  • Table 4 shows the evaluation results of the all solid state batteries of Examples 12 to 14.
  • Each solid state battery was evaluated by performing a charge / discharge test using an electrochemical device (1255WB type manufactured by Solartron). Specifically, A was set when the charge capacity was 10 mAh / g or more and the discharge capacity was 1/10 or more. All the all-solid-state batteries were charged and discharged, and it was confirmed that they operate as secondary batteries.
  • a battery electrode sheet As described above, according to this example, it was possible to manufacture a battery electrode sheet, an electrolyte sheet, and an all-solid battery. Since the particles constituting each of them can be patterned, a battery having a three-dimensional structure in which the particles are patterned in the plane direction and the stacking direction can be manufactured.

Abstract

Provided is a method for manufacturing a three-dimensional object by stacking material layers, the method comprising: a material layer formation step S101 for forming a material layer 12 on each of a plurality of base materials 11; a lamination step S102 for forming a laminate 13 by stacking the plurality of base materials 11 each having the material layer 12 formed thereon; and a removal step S103 for removing the base materials 11 from the laminate 13 through heating.

Description

立体物の製造方法、および、積層造形システムManufacturing method of three-dimensional object and additive manufacturing system
 本発明は、立体物の製造方法、および、積層造形システムに関する。 The present invention relates to a method for manufacturing a three-dimensional object and an additive manufacturing system.
 金属、セラミック、樹脂等の各種材料によって形成された材料層を積み上げることによって所望の形状の立体物を形成する、積層造形法が注目されている。近年、積層造形法の適用分野は広がりを見せており、単一種類の材料からなるモックアップやパーツを形成するだけでなく、複数種類の材料からなる電池や電子部品、配線基板などの各種デバイスを形成することが行われつつある。 An additive manufacturing method that forms a three-dimensional object having a desired shape by stacking material layers formed of various materials such as metal, ceramic, and resin has attracted attention. In recent years, the field of application of additive manufacturing has expanded, not only to form mockups and parts made of a single type of material, but also to various devices such as batteries, electronic components, and wiring boards made of multiple types of materials. Is being made.
 特許文献1には、正極活物質を含む正極インクと、高分子電解質を含む電解質インクと、負極活物質を含む負極インクと、を用いて全固体電池を製造する方法が記載されている。特許文献1に記載の方法では、各インクをインクジェット法で塗り分けて所望の形状の層を形成する。得られた層を乾燥させた後、その層の上にさらに同様に層を形成する。これを繰り返すことにより、正極活物質、高分子電解質、負極活物質が3次元的に精密に配置された構造を有する全固体電池が形成される。 Patent Document 1 describes a method of manufacturing an all-solid battery using a positive electrode ink containing a positive electrode active material, an electrolyte ink containing a polymer electrolyte, and a negative electrode ink containing a negative electrode active material. In the method described in Patent Document 1, each ink is separately applied by an inkjet method to form a layer having a desired shape. After the obtained layer is dried, a layer is formed in the same manner on the layer. By repeating this, an all-solid battery having a structure in which the positive electrode active material, the polymer electrolyte, and the negative electrode active material are precisely arranged three-dimensionally is formed.
 また、特許文献2には、所定の溶媒に対して溶解可能なシート材の上に加熱溶融可能な粉体を用いて材料層を形成し、材料層をシート材ごと積み重ねた後に該溶媒によってシート材を溶解して除去することで立体物を製造する方法が記載されている。 Further, in Patent Document 2, a material layer is formed on a sheet material that can be dissolved in a predetermined solvent by using a powder that can be heated and melted, and after the material layers are stacked together with the sheet material, a sheet is formed with the solvent. A method for producing a three-dimensional object by dissolving and removing the material is described.
特開2005-116248号公報Japanese Patent Laid-Open No. 2005-116248 特開2015-116710号公報JP2015-116710A
 特許文献1に記載の方法によれば、複数種類の所望の材料が3次元的に任意に配置された構造を有する立体物を形成できる。しかし、形成した材料層の上にインクを直接付与することで次の材料層を直接形成していくため、下層ができ上がらないと次の層を形成することができない。そのため、積層数が増えると1つの立体物を形成するために要する時間が増大してしまう。 According to the method described in Patent Document 1, a three-dimensional object having a structure in which a plurality of kinds of desired materials are arbitrarily arranged three-dimensionally can be formed. However, since the next material layer is directly formed by applying ink directly on the formed material layer, the next layer cannot be formed unless a lower layer is formed. Therefore, as the number of layers increases, the time required to form one solid object increases.
 特許文献2に記載の方法によれば、形成途中の立体物上で直接材料層を形成するのではなく、シート材の上に材料層を形成してからこれを積み重ねるため、効率的に立体物を形成することができる。しかし、特許文献2に記載の方法のように溶媒によってシート材を溶解して除去する場合には、上下の材料層に挟まれたシート材を溶解させることはできず、最終的に得られる立体物中にはシート材が多量に残存してしまう。そのため、特許文献2に記載の方法では所望の材料が3次元的に任意に配置された立体物を形成することができない。 According to the method described in Patent Document 2, a material layer is not directly formed on a three-dimensional object in the middle of formation, but a material layer is formed on a sheet material and then stacked. Can be formed. However, when the sheet material is dissolved and removed with a solvent as in the method described in Patent Document 2, the sheet material sandwiched between the upper and lower material layers cannot be dissolved, and the finally obtained three-dimensional A large amount of sheet material remains in the object. Therefore, the method described in Patent Document 2 cannot form a three-dimensional object in which a desired material is arbitrarily arranged three-dimensionally.
 そこで本発明では、上述の課題に鑑み、効率的に、所望の材料が3次元的に任意に配置された立体物を製造することができる立体物の製造方法を提供することを目的とする。 In view of the above-described problems, an object of the present invention is to provide a method for manufacturing a three-dimensional object that can efficiently manufacture a three-dimensional object in which a desired material is arbitrarily arranged three-dimensionally.
 本発明の一側面としての立体物の製造方法は、複数の基材上に材料層をそれぞれ形成する材料層形成工程と、前記材料層がそれぞれ形成された前記複数の基材を積層し、積層体を形成する積層工程と、前記積層体から前記複数の基材を加熱により除去する除去工程と、を有することを特徴とする。 The method for producing a three-dimensional object according to one aspect of the present invention includes a material layer forming step of forming a material layer on a plurality of base materials, and a plurality of base materials each having the material layer formed thereon. A stacking step of forming a body, and a removing step of removing the plurality of base materials from the stack by heating.
立体物の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a solid object. 積層造形システムの全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of an additive manufacturing system. 材料層形成ユニットの構成を模式的に示す図である。It is a figure which shows the structure of a material layer formation unit typically. 充填装置の構成を模式的に示す図である。It is a figure which shows the structure of a filling apparatus typically. 第1の基材上で搬送される充填剤を模式的に示す図である。It is a figure which shows typically the filler conveyed on a 1st base material. 第1の基材上で搬送される充填剤を模式的に示す図である。It is a figure which shows typically the filler conveyed on a 1st base material. 第1の基材上で搬送される充填剤を模式的に示す図である。It is a figure which shows typically the filler conveyed on a 1st base material. 第1の充填装置による充填プロセスにおける第1の基材の表面近傍の拡大図である。It is an enlarged view near the surface of the 1st substrate in the filling process by the 1st filling device. 転写部の構成を模式的に示す図である。It is a figure which shows the structure of a transcription | transfer part typically. 第2の充填装置による充填プロセスにおける第2の基材の表面近傍の拡大図である。It is an enlarged view of the surface vicinity of the 2nd base material in the filling process by a 2nd filling apparatus. 転写部によって第1の粒子が転写された後の第2の基材と、転写部によって第2の粒子が転写された後の第2の基材と、を模式的に示す図である。It is a figure which shows typically the 2nd base material after the 1st particle | grains were transferred by the transfer part, and the 2nd base material after the 2nd particle | grains were transferred by the transfer part. 転写部によって第1の粒子が転写された後の第2の基材と、転写部によって第2の粒子が転写された後の第2の基材と、を模式的に示す図である。It is a figure which shows typically the 2nd base material after the 1st particle | grains were transferred by the transfer part, and the 2nd base material after the 2nd particle | grains were transferred by the transfer part. 積層ユニットの構成を模式的に示す図である。It is a figure which shows the structure of a lamination | stacking unit typically. 積層体の構造を模式的に示す図である。It is a figure which shows the structure of a laminated body typically. 積層体の構造を模式的に示す図である。It is a figure which shows the structure of a laminated body typically. 除去ユニットの構成を模式的に示す図である。It is a figure which shows the structure of a removal unit typically. 表面に凹凸パターンを形成した第1の基材の構造を模式的に示す図である。It is a figure which shows typically the structure of the 1st base material which formed the uneven | corrugated pattern on the surface. 表面に凹凸パターンを形成した第1の基材の構造を模式的に示す図である。It is a figure which shows typically the structure of the 1st base material which formed the uneven | corrugated pattern on the surface. ポリエステル製のシートの熱重量分析結果を示す図である。It is a figure which shows the thermogravimetric analysis result of the sheet | seats made from polyester.
 以下、図面を参照して、この発明を実施するための形態を例示的に詳しく説明する。ただし、以下の実施形態に記載されている各部材の寸法、材質、形状、その相対位置などは、特に特定的な記載が無い限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions, and the like of each member described in the following embodiments are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.
 <第1の実施形態>
 本発明の第1の実施形態である立体物の製造方法および積層造形システムについて、図面を参照して説明する。
<First Embodiment>
A manufacturing method of a three-dimensional object and an additive manufacturing system according to a first embodiment of the present invention will be described with reference to the drawings.
 図1は、第1の実施形態に係る立体物の製造方法のフローチャートである。 FIG. 1 is a flowchart of a method for manufacturing a three-dimensional object according to the first embodiment.
 本実施形態に係る立体物の製造方法は、下記の工程(1)~(3)を有する。各工程の詳細については後述する。
工程(1):複数の基材上に材料層をそれぞれ形成する材料層形成工程(S101)
工程(2):材料層がそれぞれ形成された複数の基材を積層し、積層体を形成する積層工程(S102)
工程(3):積層体から複数の基材を加熱により除去する除去工程(S103)
 本実施形態に係る立体物の製造方法は、複数の材料層を基材上にそれぞれ形成した後に、基材ごと材料層を積層し、その後、複数の基材を加熱により除去する。従来のように、形成した材料層の上で次の材料層を直接形成する場合には、前の材料層が完成していないと次の材料層をその上に形成することができないため、前の材料層の完成を待ってから次の材料層を形成する必要があった。しかし、本実施形態によれば、前の材料層の形成と次の材料層の形成を独立に行うことができる。そのため、材料層の形成に時間がかかる場合であっても、複数の材料層の形成を効率的に行うことができる。
The method for manufacturing a three-dimensional object according to this embodiment includes the following steps (1) to (3). Details of each step will be described later.
Step (1): Material layer forming step (S101) for forming material layers on a plurality of substrates, respectively.
Step (2): Lamination step (S102) in which a plurality of base materials each having a material layer formed thereon are laminated to form a laminate.
Step (3): Removal step of removing a plurality of base materials from the laminate by heating (S103)
In the method for manufacturing a three-dimensional object according to this embodiment, after forming a plurality of material layers on a substrate, the material layers are stacked together with the substrate, and then the plurality of substrates are removed by heating. When the next material layer is directly formed on the formed material layer as in the past, the next material layer cannot be formed on the previous material layer unless the previous material layer is completed. It was necessary to wait for completion of the material layer before forming the next material layer. However, according to the present embodiment, the formation of the previous material layer and the formation of the next material layer can be performed independently. Therefore, even when it takes a long time to form the material layer, a plurality of material layers can be formed efficiently.
 例えば、材料層形成手段を複数設ければ、複数の材料層の形成を並行して行うことができる。あるいは、材料層形成手段を1つだけ設けた場合であっても、形成した材料層を乾燥等する必要がある場合などには、前の材料層を基材上に形成してそれを乾燥等している間に、別の基材上に次の材料層を形成し始めることもできる。そのため、本実施形態によればより短時間で、効率的に立体物を製造することができる。 For example, if a plurality of material layer forming means are provided, a plurality of material layers can be formed in parallel. Alternatively, even when only one material layer forming means is provided, when it is necessary to dry the formed material layer, etc., the previous material layer is formed on the substrate and then dried. While doing so, it is also possible to start forming the next layer of material on another substrate. Therefore, according to the present embodiment, a three-dimensional object can be efficiently manufactured in a shorter time.
 また、材料層を形成する際には、材料層は、その材料層を形成する下地の層の表面形状の影響を大きく受ける。材料層を粒子材料で形成する場合には、下地の層の表面形状の影響は特に顕著になり、下地の層の表面形状が平滑でない場合などには、材料層の緻密さやパターン精度が低下しやすい。従来のように、形成した材料層の上で次の材料層を直接形成する場合には、積層数が増えれば増えるほど、材料層の表面形状の平滑さが失われていく傾向がある。一方、本実施形態によればそれぞれの材料層を毎回基材上に形成するため、材料層を形成する下地の層の表面形状を毎回揃えることができ、それぞれの材料層の形成精度を高めることができる。その結果、製造される立体物の緻密さや造形精度を高めることができる。また、それぞれの材料層を毎回基材上に形成するため、材料層の大面積化も容易であり、より大きな立体物を製造しやすいというメリットもある。 Further, when forming the material layer, the material layer is greatly affected by the surface shape of the underlying layer forming the material layer. When the material layer is formed of a particulate material, the influence of the surface shape of the underlying layer becomes particularly significant. When the surface shape of the underlying layer is not smooth, the density and pattern accuracy of the material layer are reduced. Cheap. When the next material layer is directly formed on the formed material layer as in the prior art, the smoothness of the surface shape of the material layer tends to be lost as the number of stacked layers increases. On the other hand, according to the present embodiment, each material layer is formed on the substrate every time, so that the surface shape of the underlying layer forming the material layer can be aligned every time, and the formation accuracy of each material layer can be improved. Can do. As a result, the density and modeling accuracy of the manufactured three-dimensional object can be increased. Moreover, since each material layer is formed on a base material each time, it is easy to increase the area of the material layer, and there is an advantage that a larger three-dimensional object can be easily manufactured.
 さらに、本実施形態では、除去工程において加熱により積層体から基材を除去する。従来のように、溶剤によって基材を溶解して除去する場合や風圧や水圧等によって機械的に基材を除去する場合には、積層体中において上下の材料層に挟まれた基材を十分に除去できない可能性がある。機械的に基材を除去する場合には、特に、積層体の内部の中心付近の材料層を除去することが困難である。また、機械的に基材を除去する場合には、除去の際に上下の材料層に大きな力が加わり、材料層の構造が崩れてしまう可能性がある。しかし本実施形態によれば、基材を加熱によって除去するため、積層体の内部の基材も除去しやすく、基材の除去率を高めやすい。また、基材を除去する際に材料層にかかる力を小さくすることができるため、材料層の構造を大きく崩すことなく、材料層の緻密度を高めることができる。 Furthermore, in this embodiment, the substrate is removed from the laminate by heating in the removing step. When the substrate is dissolved and removed with a solvent as in the past, or when the substrate is removed mechanically by wind pressure or water pressure, the substrate sandwiched between the upper and lower material layers is sufficient in the laminate. May not be removed. When removing the substrate mechanically, it is particularly difficult to remove the material layer near the center inside the laminate. In addition, when the substrate is mechanically removed, a large force is applied to the upper and lower material layers during the removal, and the structure of the material layer may be destroyed. However, according to this embodiment, since the base material is removed by heating, the base material inside the laminate is easily removed, and the removal rate of the base material is easily increased. In addition, since the force applied to the material layer when removing the base material can be reduced, the density of the material layer can be increased without greatly breaking the structure of the material layer.
 なお、除去工程は、積層体を複数の基材の熱分解温度以上の温度で加熱する加熱工程ということもできる。また、複数の基材としては単一種類の基材を用いてもよいし、複数種類の基材を用いてもよい。複数の基材として熱分解温度がそれぞれ異なる複数種類の基材を用いた場合には、除去工程(加熱工程)における加熱温度は、複数の基材のそれぞれの熱分解温度のうち、最も高い熱分解温度以上の温度で加熱を行えばよい。 In addition, a removal process can also be called the heating process which heats a laminated body at the temperature more than the thermal decomposition temperature of a some base material. In addition, as the plurality of base materials, a single type of base material may be used, or a plurality of types of base materials may be used. When a plurality of types of substrates having different pyrolysis temperatures are used as the plurality of substrates, the heating temperature in the removal step (heating step) is the highest among the respective pyrolysis temperatures of the plurality of substrates. Heating may be performed at a temperature higher than the decomposition temperature.
 なお、本発明に係る立体物の製造方法は、上述の工程(1)~(3)をすべて有するものには限定はされない。例えば、本発明の別の実施形態においては、立体物の製造方法は、材料層形成工程(工程(1))を有さず、積層工程(工程(2))および除去工程(工程(3))を有してもよい。すなわち、例えば、材料層が予めそれぞれ形成された複数の基材を用意し、それを基材ごと積層して積層体を形成し、積層体から基材を加熱により除去してもよい。あるいは、本発明のさらに別の実施形態においては、立体物の製造方法は、工程(1)~(3)のうちの除去工程(工程(3))のみを有していてもよい。これらの実施形態によっても、積層体からの基材の除去率を高めた立体物を得ることができる。 It should be noted that the method for producing a three-dimensional object according to the present invention is not limited to one having all the above-described steps (1) to (3). For example, in another embodiment of the present invention, the manufacturing method of a three-dimensional object does not have a material layer formation step (step (1)), but a lamination step (step (2)) and a removal step (step (3)). ). That is, for example, a plurality of base materials each having a material layer formed beforehand may be prepared, and the base materials may be laminated together to form a laminated body, and the base material may be removed from the laminated body by heating. Alternatively, in still another embodiment of the present invention, the method for producing a three-dimensional object may include only the removal step (step (3)) among steps (1) to (3). Also according to these embodiments, a three-dimensional object with an increased removal rate of the base material from the laminate can be obtained.
 図2は、第1の実施形態に係る積層造形システムの全体構成を模式的に示す図である。 FIG. 2 is a diagram schematically showing the overall configuration of the additive manufacturing system according to the first embodiment.
 本実施形態に係る積層造形システム1は、制御ユニットU1と、材料層形成ユニットU2と、積層ユニットU3と、除去ユニットU4と、後処理ユニットU5と、を有する。制御ユニットU1は、積層造形システム1の各部の制御などを担う。材料層形成ユニットU2は、基材11上に材料層12を形成する。積層ユニットU3は、材料層形成ユニットU2でそれぞれ材料層12が形成された複数の基材11を積層し、複数の材料層12と複数の基材11とを含む積層体13を形成する。除去ユニットU4は、積層ユニットU3で形成された積層体13から、基材11を加熱により除去して立体物14を形成する。後処理ユニットU5は、除去ユニットU4で形成された立体物14の後処理を行う。なお、図2に示したユニット構成はあくまでも一例であり、他の構成を採用しても構わない。以下、各ユニットの構成と動作について説明する。 The additive manufacturing system 1 according to the present embodiment includes a control unit U1, a material layer forming unit U2, a stacked unit U3, a removal unit U4, and a post-processing unit U5. The control unit U1 is responsible for controlling each part of the additive manufacturing system 1. The material layer forming unit U <b> 2 forms the material layer 12 on the base material 11. The stacking unit U3 stacks the plurality of base materials 11 on which the material layers 12 are respectively formed by the material layer forming unit U2, and forms a stacked body 13 including the plurality of material layers 12 and the plurality of base materials 11. The removal unit U4 forms the three-dimensional object 14 by removing the base material 11 by heating from the laminate 13 formed by the laminate unit U3. The post-processing unit U5 performs post-processing of the three-dimensional object 14 formed by the removal unit U4. Note that the unit configuration shown in FIG. 2 is merely an example, and other configurations may be adopted. Hereinafter, the configuration and operation of each unit will be described.
 [制御ユニット]
 制御ユニットU1は、積層造形システム1の各部、具体的には、材料層形成ユニットU2、積層ユニットU3、除去ユニットU4、および、後処理ユニットU5の制御などを担う。
[Controller unit]
The control unit U1 is responsible for controlling each part of the additive manufacturing system 1, specifically, the material layer forming unit U2, the laminate unit U3, the removal unit U4, and the post-processing unit U5.
 制御ユニットU1は、外部装置(例えばパソコンなど)から積層造形システム1によって形成する立体物(以下、「造形対象物」と称することがある)の3次元形状データの入力を受け付ける、3次元形状データ入力部を備えていてもよい。3次元形状データとしては、3次元CAD、3次元モデラー、3次元スキャナなどで作成・出力されたデータを用いることができる。そのファイル形式は問わないが、例えば、STL(StereoLithography)ファイル形式を好ましく用いることができる。 The control unit U1 accepts input of three-dimensional shape data of a three-dimensional object (hereinafter, sometimes referred to as “modeling object”) formed by the additive manufacturing system 1 from an external device (for example, a personal computer or the like). An input unit may be provided. As the three-dimensional shape data, data created and output by a three-dimensional CAD, a three-dimensional modeler, a three-dimensional scanner, or the like can be used. Although the file format is not ask | required, for example, an STL (Stereolithography) file format can be used preferably.
 制御ユニットU1は、3次元形状データを所定のピッチでスライスして各層の断面形状を計算し、その断面形状を基に材料層形成ユニットU2で像形成に用いる画像データ(「スライスデータ」と称する)を生成する、スライスデータ計算部を備えていてもよい。さらに、スライスデータ計算部は、3次元形状データまたは上下層のスライスデータを解析して、オーバーハング部(宙に浮く部分)の有無を判断し、必要に応じてスライスデータにサポート材料用の像を追加してもよい。 The control unit U1 calculates the cross-sectional shape of each layer by slicing the three-dimensional shape data at a predetermined pitch, and based on the cross-sectional shape, image data used for image formation in the material layer forming unit U2 (referred to as “slice data”). ) May be provided. Furthermore, the slice data calculation unit analyzes the three-dimensional shape data or the slice data of the upper and lower layers, determines the presence or absence of an overhang portion (portion floating in the air), and if necessary, adds an image for the support material to the slice data. May be added.
 詳しくは後述するが、本実施形態の材料層形成ユニットU2は複数種類の材料を用い、それぞれの材料がパターニングされた材料層を形成可能である。そのため、スライスデータとしてはそれぞれの材料の像に対応するデータが生成されてもよい。スライスデータのファイル形式としては、例えば、多値の画像データ(各値が材料の種類を表す)やマルチプレーンの画像データ(各プレーンが材料の種類に対応する)を用いることができる。 As will be described in detail later, the material layer forming unit U2 of the present embodiment uses a plurality of types of materials, and can form a material layer in which each material is patterned. Therefore, data corresponding to each material image may be generated as slice data. As the file format of the slice data, for example, multi-value image data (each value represents a material type) or multi-plane image data (each plane corresponds to a material type) can be used.
 また、図示しないが、制御ユニットU1は、操作部、表示部、記憶部も備える。操作部は、ユーザからの指示を受け付ける機能である。例えば、電源のオン/オフ、装置の各種設定、動作指示などの入力が可能である。表示部は、ユーザへの情報提示を行う機能である。例えば、各種設定画面、エラーメッセージ、動作状況などの提示が可能である。記憶部は、3次元形状データ、スライスデータ、各種設定値などを記憶する機能である。 Although not shown, the control unit U1 also includes an operation unit, a display unit, and a storage unit. The operation unit is a function that receives an instruction from the user. For example, power on / off, various device settings, operation instructions, and the like can be input. The display unit is a function for presenting information to the user. For example, various setting screens, error messages, operation statuses, and the like can be presented. The storage unit is a function of storing three-dimensional shape data, slice data, various setting values, and the like.
 制御ユニットU1は、ハードウエア的には、CPU(中央演算処理装置)、メモリ、補助記憶装置(ハードディスク、フラッシュメモリなど)、入力デバイス、表示デバイス、各種I/Fを具備したコンピュータにより構成することができる。上述した各機能は、補助記憶装置などに格納されたプログラムをCPUが読み込んで実行し、必要なデバイスを制御することで実現されるものである。ただし、上述した機能のうちの一部または全部をASICやFPGAなどの回路で構成したり、あるいは、クラウドコンピューティングやグリッドコンピューティングなどの技術を利用して他のコンピュータに実行させたりしてもよい。 The control unit U1 is configured in hardware by a computer having a CPU (Central Processing Unit), a memory, an auxiliary storage device (hard disk, flash memory, etc.), an input device, a display device, and various I / Fs. Can do. Each function described above is realized by a CPU reading and executing a program stored in an auxiliary storage device or the like, and controlling necessary devices. However, some or all of the functions described above may be configured by a circuit such as an ASIC or FPGA, or may be executed by another computer using technology such as cloud computing or grid computing. Good.
 [材料層形成ユニット]
 材料層形成ユニットU2は、基材11上に材料層12を形成するユニットである。材料層形成ユニットU2が基材11上に材料層12を形成する方式は特に限定はされないが、複数種類の材料を基材11上に任意のパターンで配置できる方式であることが好ましい。また、詳しくは後述するが、材料層形成ユニットU2は、粒子材料を用いて粒子層である材料層12を形成することが好ましい。このような方式としては、具体的には、凹凸パターンの凹部への材料の充填と、充填された材料の基材への転写と、を組み合わせた方式や、粒子状の材料を含むインクをインクジェットによって基材上に塗布する工程を含む方式が挙げられる。また、インクジェットによって液体を基材上に塗布した後に粒子状の材料を振りかけて付着させる工程を含む方式を用いることもできる。
[Material layer forming unit]
The material layer forming unit U <b> 2 is a unit that forms the material layer 12 on the base material 11. Although the method in which the material layer forming unit U2 forms the material layer 12 on the base material 11 is not particularly limited, it is preferable that a plurality of types of materials can be arranged on the base material 11 in an arbitrary pattern. Moreover, although mentioned later in detail, it is preferable that the material layer formation unit U2 forms the material layer 12 which is a particle layer using a particle material. As such a method, specifically, a method in which filling of the material into the concave portion of the concave / convex pattern and transfer of the filled material to the base material are combined, or ink containing a particulate material is ink-jetted. The method including the process of apply | coating on a base material by is mentioned. In addition, a method including a step of sprinkling and adhering a particulate material after applying a liquid onto a substrate by inkjet can be used.
 積層造形システム1は、材料層形成ユニットU2を複数有していてもよい。これにより、基材11上への材料層12の形成を同時並行的に行うことができ、積層体および立体物の形成のスループットをさらに向上させることができる。また、立体物を構成する材料の種類が多数である場合などには、材料種ごと、あるいは材料種のグループごとに材料層形成ユニットU2を設けることで、材料層形成ユニットU2内での材料種やプロセスの切り替えを省略することもできる。これにより、立体物の製造を連続的に行うことができる。 The additive manufacturing system 1 may have a plurality of material layer forming units U2. Thereby, formation of the material layer 12 on the base material 11 can be performed simultaneously, and the throughput of formation of a laminated body and a three-dimensional object can further be improved. In addition, when there are a large number of types of materials constituting the three-dimensional object, the material type in the material layer forming unit U2 is provided by providing the material layer forming unit U2 for each material type or for each group of material types. And process switching can be omitted. Thereby, manufacture of a solid thing can be performed continuously.
 以下、材料層形成ユニットU2が、凹凸パターンの凹部への材料の充填と、充填された材料の基材への転写と、を組み合わせた方式によって、基材11上に材料層12を形成する場合について説明する。 Hereinafter, in the case where the material layer forming unit U2 forms the material layer 12 on the base material 11 by a method in which the filling of the material into the concave portions of the concave / convex pattern and the transfer of the filled material to the base material are combined. Will be described.
 図3は、第1の実施形態に係る材料層形成ユニットU2の構成を模式的に示す図である。 FIG. 3 is a diagram schematically showing the configuration of the material layer forming unit U2 according to the first embodiment.
 本実施形態に係る材料層形成ユニットU2は、第1の基材11aを格納供給する第1の格納容器21aと、第1の基材11aを搬送する第1のベルト装置22aと、第1の基材11a上に凹凸パターンを形成するパターン形成装置23と、を有する。材料層形成ユニットU2は、第1の基材11a上に形成された凹凸パターンの凹部に第1の粒子P1を配置する第1の充填装置24aを有する。材料層形成ユニットU2は、第2の基材11bを格納供給する第2の格納容器21bと、第2の基材11bを搬送する第2のベルト装置22bと、を有する。材料層形成ユニットU2は、第1のベルト装置22aと第2のベルト装置22bがそれぞれ有するローラが対向した転写部25aを有しており、転写部25aにおいて第1の基材11aから第2の基材11bへと第1の粒子P1が転写される。さらに、材料層形成ユニットU2は、第2の基材11b上の非転写部に第2の粒子P2を配置する第2の充填装置24bを有する。なお、本件の効果を説明する上で関連性の低い装置、例えば転写後の第1の基材11aを第1のベルト装置22aから剥離回収するための剥離回収装置や各クリーニング装置等は、図示および詳細説明を省略する。 The material layer forming unit U2 according to the present embodiment includes a first storage container 21a for storing and supplying the first base material 11a, a first belt device 22a for transporting the first base material 11a, and a first And a pattern forming device 23 that forms a concavo-convex pattern on the substrate 11a. The material layer forming unit U2 includes a first filling device 24a that arranges the first particles P1 in the concave portions of the concave-convex pattern formed on the first base material 11a. The material layer forming unit U2 includes a second storage container 21b for storing and supplying the second base material 11b, and a second belt device 22b for transporting the second base material 11b. The material layer forming unit U2 includes a transfer portion 25a facing the rollers of the first belt device 22a and the second belt device 22b. The first particles P1 are transferred to the substrate 11b. Furthermore, the material layer forming unit U2 includes a second filling device 24b that arranges the second particles P2 in the non-transfer portion on the second base material 11b. In addition, a device that is not highly relevant for explaining the effect of the present case, for example, a separation / recovery device for removing and collecting the first base material 11a after transfer from the first belt device 22a, each cleaning device, and the like are illustrated. Detailed description is omitted.
 以下、材料層形成ユニットU2による基材11上への材料層12の形成方法を、プロセスごとに流れに沿って説明する。 Hereinafter, the method of forming the material layer 12 on the base material 11 by the material layer forming unit U2 will be described along the flow for each process.
 まず、供給手段(不図示)によって第1の格納容器21aから第1のベルト装置22aに第1の基材11aが供給される。 First, the first base material 11a is supplied from the first storage container 21a to the first belt device 22a by supply means (not shown).
 第1の基材11aの材質は特に限定はされないが、パターン形成装置23(後述)によって紫外線硬化性インクが塗布される場合には、少なくともその表面は、当該紫外線硬化性インクの濡れ性が高い材料で構成されていることが好ましい。また、第1の基材11aの表面は平滑であることが好ましい。第1の基材11aとしては、典型的には、使用する紫外線硬化性インク(水系または油系)に合わせて親水処理または親油処理が施されたポリエステルなどの樹脂製のシートを用いることができる。なお、第1の基材11aは、カット紙のように個別に切り離された基材を用いてもよいし、ロール紙のようにロール状に巻かれた連続した基材や、連続用紙のように交互に折りたたまれた連続した基材を用いてもよい。 The material of the first base material 11a is not particularly limited, but when UV curable ink is applied by a pattern forming device 23 (described later), at least the surface thereof has high wettability with the UV curable ink. It is preferable that it is made of a material. Moreover, it is preferable that the surface of the 1st base material 11a is smooth. Typically, as the first base material 11a, a resin sheet such as polyester that has been subjected to a hydrophilic treatment or an oleophilic treatment in accordance with the ultraviolet curable ink to be used (water-based or oil-based) is used. it can. In addition, the 1st base material 11a may use the base material cut | disconnected separately like cut paper, the continuous base material wound by roll shape like roll paper, and continuous paper like A continuous base material that is alternately folded may be used.
 第1のベルト装置22aは、供給された第1の基材11aをパターン形成装置23のパターン形成位置へと搬送する。第1のベルト装置22aは、駆動ローラ221a,222a、加圧ローラ223aと、それらに懸架されたベルト状の搬送部材224aと、を有する。このとき、加圧ローラ223aは従動で回転している。 The first belt device 22 a conveys the supplied first base material 11 a to the pattern forming position of the pattern forming device 23. The first belt device 22a includes drive rollers 221a and 222a, a pressure roller 223a, and a belt-shaped conveying member 224a suspended on them. At this time, the pressure roller 223a rotates by being driven.
 搬送部材224aは、樹脂製や金属製などから選択されることが好ましく、例えば、ポリイミド製の樹脂ベルトを用いることができる。駆動ローラ221a,222aは、金属製の金属ローラを用いることが好ましく、例えば、ステンレス製の金属ローラを用いることができる。加圧ローラ223aは、表層に弾性層を有するソフトローラを用いることが好ましく、例えば、ステンレス製の芯金の表面にシリコーンゴムの弾性層を設けたソフトローラを用いることができる。 The conveying member 224a is preferably selected from resin or metal, and for example, a polyimide resin belt can be used. The drive rollers 221a and 222a are preferably metal metal rollers. For example, stainless steel metal rollers can be used. As the pressure roller 223a, a soft roller having an elastic layer as a surface layer is preferably used. For example, a soft roller in which an elastic layer of silicone rubber is provided on the surface of a stainless steel core can be used.
 なお、本実施形態では第1の基材11aを搬送する搬送装置として第1のベルト装置22aを用いているが、ベルト装置の代わりにローラ装置を用いることもできる。後述する第2のベルト装置21bについても同様である。 In the present embodiment, the first belt device 22a is used as a transport device for transporting the first base material 11a. However, a roller device may be used instead of the belt device. The same applies to the second belt device 21b described later.
 パターン形成装置23は、パターン形成位置へと搬送された第1の基材11aに微細な凹凸パターンを形成する。凹凸パターンを形成する方法としては、特に限定はされないが、UVインプリント方式、熱インプリント方式、UVインクジェット方式、印刷方式、レーザーエッチング方式等を用いることができる。パターン形成装置23がUVインプリント方式によって凹凸パターンを形成する場合には、パターン形成装置23は、第1の基材11a上に紫外線硬化性組成物を塗布する塗布手段を有する。また、パターン形成装置23は、表面に凹凸パターンが形成されたモールドを第1の基材11a上の紫外線硬化性組成物に押印する押印手段と、紫外線硬化性組成物に紫外線を照射する光源と、を有する。典型的には、紫外線硬化性組成物としては、紫外線硬化タイプの液状シリコーンゴム(PDMS)や樹脂を用い、モールドとしてはフィルムモールドを用い、光源としてはUVランプを用いることができる。 The pattern forming device 23 forms a fine concavo-convex pattern on the first base material 11a conveyed to the pattern forming position. The method for forming the concavo-convex pattern is not particularly limited, and a UV imprint method, a thermal imprint method, a UV inkjet method, a printing method, a laser etching method, or the like can be used. When the pattern forming apparatus 23 forms a concavo-convex pattern by the UV imprint method, the pattern forming apparatus 23 has an application unit that applies an ultraviolet curable composition onto the first substrate 11a. The pattern forming apparatus 23 includes a stamping unit that stamps a mold having a concavo-convex pattern formed on the surface of the ultraviolet curable composition on the first substrate 11a, and a light source that irradiates the ultraviolet curable composition with ultraviolet rays. Have. Typically, an ultraviolet curable liquid silicone rubber (PDMS) or resin is used as the ultraviolet curable composition, a film mold is used as the mold, and a UV lamp is used as the light source.
 第1の充填装置24aが第1の粒子P1を担持した担持材S1を用いて第1の粒子P1を凹部に充填する場合、第1の基材11a上の凹凸パターンの凹部は、第1の粒子P1が接触でき、かつ担持材S1が接触できないサイズであることが好ましい。 When the first filling device 24a fills the recesses with the first particles P1 using the support material S1 supporting the first particles P1, the recesses of the uneven pattern on the first substrate 11a are It is preferable that the particle P1 can be in contact with the carrier material S1.
 なお、本実施形態においてはパターン形成装置23によって第1の基材11a上に凹凸パターンを形成するが、これに限定はされず、表面に凹凸パターンが予め形成された基材を第1の基材11aとして用いてもよい。また、第1のベルト装置22aの搬送部材224aの表面に直接、パターン形成装置23によって凹凸パターンを形成してよいし、搬送部材224aとしてその表面に凹凸パターンを有する搬送部材を用いてもよい。この場合は、耐久性を鑑みて、ステンレスやアルミニウムなどの金属ベルトを用い、レーザーエッチングやウェットエッチング、ドライエッチングなどの微細加工技術により表面に凹凸パターンを形成することが好ましい。 In the present embodiment, the pattern forming device 23 forms a concavo-convex pattern on the first substrate 11a. However, the present invention is not limited to this, and a substrate having a concavo-convex pattern previously formed on the surface is used as the first substrate. It may be used as the material 11a. In addition, the pattern forming device 23 may form an uneven pattern directly on the surface of the conveying member 224a of the first belt device 22a, or a conveying member having an uneven pattern on the surface may be used as the conveying member 224a. In this case, in view of durability, it is preferable to form a concavo-convex pattern on the surface using a fine belt such as laser etching, wet etching, or dry etching using a metal belt such as stainless steel or aluminum.
 表面に凹凸パターンが形成された第1の基材11aは、第1のベルト装置22aによって第1の充填装置24aの充填位置へと搬送される。 The first substrate 11a having a concavo-convex pattern formed on the surface is conveyed to the filling position of the first filling device 24a by the first belt device 22a.
 図4は、本実施形態に係る充填装置の構成を模式的に示す図である。以下、第1の充填装置24aの構成について説明するが、第2の充填装置24bについても同様である。 FIG. 4 is a diagram schematically showing the configuration of the filling apparatus according to the present embodiment. Hereinafter, the configuration of the first filling device 24a will be described, but the same applies to the second filling device 24b.
 第1の充填装置24aは、充填剤241aを収容する充填容器242a、充填剤241aを撹拌搬送する撹拌スクリュー部材243a、充填剤を回収する回収部材244aと、磁性部材247aと、を有する。 The first filling device 24a includes a filling container 242a that contains the filler 241a, a stirring screw member 243a that stirs and conveys the filler 241a, a recovery member 244a that collects the filler, and a magnetic member 247a.
 充填剤241aは、第1の粒子P1と、第1の粒子P1を担持する担持材S1と、を有する。充填剤241aは、複数の第1の粒子P1によって構成される粉体と、複数の担持材S1によって構成される粉体と、を含む複数の粉体の混合物である。充填容器242aに収容された充填剤241aは、撹拌スクリュー部材243aによって撹拌、搬送される際に十分に混ざり合い、摩擦帯電する。これにより、担持材S1の表面に第1の粒子P1が担持される。 The filler 241a includes first particles P1 and a support material S1 that supports the first particles P1. The filler 241a is a mixture of a plurality of powders including a powder composed of a plurality of first particles P1 and a powder composed of a plurality of support materials S1. The filler 241a accommodated in the filling container 242a is sufficiently mixed and frictionally charged when being stirred and conveyed by the stirring screw member 243a. As a result, the first particles P1 are supported on the surface of the support material S1.
 第1の粒子P1は、第1の基材11a上に形成された凹凸パターンの凹部に充填される粒子であり、その材質は特に限定はされない。第1の粒子P1は、金属粒子、セラミック粒子、ガラス粒子などの粒子状の無機材料であってもよいし、樹脂粒子などの粒子状の有機材料であってもよい。後述するように、本実施形態では除去工程(工程(3))において基材11を除去する際に加熱して基材11を除去するため、第1の粒子P1は後述する第2の基材11bよりも高い熱分解温度を有する材質であることが好ましい。無機材料は熱分解温度が高い傾向にあるため、第1の粒子P1としては粒子状の無機材料であることが好ましい。 The first particles P1 are particles filled in the concave portions of the concavo-convex pattern formed on the first base material 11a, and the material thereof is not particularly limited. The first particles P1 may be particulate inorganic materials such as metal particles, ceramic particles, and glass particles, or may be particulate organic materials such as resin particles. As will be described later, in the present embodiment, when removing the base material 11 in the removing step (step (3)), the base material 11 is removed by heating, and therefore the first particles P1 are the second base material described later. A material having a thermal decomposition temperature higher than 11b is preferred. Since the inorganic material tends to have a high thermal decomposition temperature, the first particles P1 are preferably particulate inorganic materials.
 なお、本明細書において、熱分解温度とは、除去ユニットU4の加熱時の雰囲気下で温度を徐々に上げていった際に、その材料の重量減少が始まる温度のことである。したがって、基材11の熱分解温度以上の温度で積層体を加熱することで、積層体中の基材11を分解してその重量を減らすことができ、積層体から基材11を除去することができる。除去工程における加熱温度は基材11の熱分解温度以上の温度であることが好ましいが、熱分解温度よりもさらに高い温度で加熱することが好ましい。具体的には、除去ユニットU4の加熱時の雰囲気(典型的には空気)下で室温(25℃)から5℃/分の割合で昇温させて熱重量分析を行ったときに、初期重量の70%となるときの温度以上の温度で加熱することが好ましい。また、同様に熱重量分析を行ったときに、初期重量の50%となるときの温度以上の温度で加熱することがより好ましく、初期重量の20%となるときの温度以上の温度で加熱することがさらに好ましい。これにより、基材11の除去に要する時間を短縮したり、基材11の除去率を高めたりすることができる。 In the present specification, the thermal decomposition temperature is a temperature at which weight reduction of the material starts when the temperature is gradually raised in the atmosphere when heating the removal unit U4. Therefore, by heating the laminate at a temperature equal to or higher than the thermal decomposition temperature of the substrate 11, the substrate 11 in the laminate can be decomposed to reduce its weight, and the substrate 11 is removed from the laminate. Can do. The heating temperature in the removing step is preferably a temperature equal to or higher than the thermal decomposition temperature of the substrate 11, but it is preferable to heat at a temperature higher than the thermal decomposition temperature. Specifically, when the thermogravimetric analysis is performed at a rate of 5 ° C./minute from room temperature (25 ° C.) under the atmosphere (typically air) during heating of the removal unit U4, the initial weight is obtained. It is preferable to heat at a temperature equal to or higher than the temperature at which it becomes 70%. Similarly, when thermogravimetric analysis is performed, it is preferable to heat at a temperature equal to or higher than 50% of the initial weight, and to heat at a temperature equal to or higher than 20% of the initial weight. More preferably. Thereby, the time required for removing the base material 11 can be shortened, or the removal rate of the base material 11 can be increased.
 担持材S1は、磁性粒子である。担持材S1は、フェライトコア粒子や磁性体が分散された樹脂粒子の表面を、樹脂組成物で被覆した粒子であることが好ましい。担持材S1の粒径や材質は、第1の粒子P1の粒径や材質に合わせて適宜選択される。これにより、第1の粒子P1を安定して担持することができる。 The support material S1 is a magnetic particle. The support material S1 is preferably particles in which the surfaces of resin particles in which ferrite core particles and magnetic materials are dispersed are coated with a resin composition. The particle size and material of the support material S1 are appropriately selected according to the particle size and material of the first particle P1. Thereby, the 1st particle P1 can be carried stably.
 また、帯電性や凝集性を改善するために、充填剤241a中に第1の粒子P1および担持材S1以外の粒子を添加したり、第1の粒子P1の表面を樹脂組成物で被覆したりしても構わない。また、粒子P1の導電性の改善するために、導電助剤として、アセチレンブラック等のカーボンブラックや金属、合金粉末を含有する形態、第1の粒子P1の表面にかかる導電助剤が被覆された形態が、本実施形態の変形例として含まれる。 Further, in order to improve the chargeability and cohesiveness, particles other than the first particles P1 and the support material S1 are added to the filler 241a, or the surface of the first particles P1 is coated with a resin composition. It doesn't matter. Further, in order to improve the conductivity of the particles P1, as a conductive auxiliary agent, a form containing carbon black such as acetylene black, a metal, or an alloy powder, and the conductive auxiliary agent on the surface of the first particle P1 were coated. A form is included as a modification of this embodiment.
 回収部材244aは、図中の矢印d2方向に回転可能なローラ245aと、ローラ245aの内部に配置され、充填容器242aに対して固定された磁石246aと、を有している。また、磁性部材247aは、搬送部材224aを介して充填容器242aと対向して配置されており、その内部に磁石248aを有している。磁石246aは、回収部材244aの回転方向に沿って交互に配置された複数のN極とS極を有している。磁石248aは、搬送部材224aの搬送方向に沿って交互に配置された複数のN極とS極を有している。また、磁石246aは、磁石248aの最下流の磁極(本実施形態ではS1極)と最も近接して対向する位置に異極の磁極(本実施形態ではN1極)を有しており、最下流の位置でN1極と同極のN2極が配置されている。なお、磁石246aおよび磁石248aは複数の磁石から構成されていてもよく、磁石246aおよび磁石248aを構成する磁石の種類は特に限定はされない。例えば、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石などの希土類磁石、プラスチック磁石等の永久磁石や、電磁石などの磁界を発生する手段を用いることができる。 The recovery member 244a includes a roller 245a that can rotate in the direction of arrow d2 in the drawing, and a magnet 246a that is disposed inside the roller 245a and fixed to the filling container 242a. Further, the magnetic member 247a is disposed to face the filling container 242a via the transport member 224a, and has a magnet 248a therein. The magnet 246a has a plurality of N poles and S poles arranged alternately along the rotation direction of the recovery member 244a. The magnet 248a has a plurality of N poles and S poles arranged alternately along the transport direction of the transport member 224a. Further, the magnet 246a has a magnetic pole of a different polarity (N1 pole in the present embodiment) at a position closest to the most downstream magnetic pole (S1 pole in the present embodiment) of the magnet 248a. The N2 pole having the same polarity as the N1 pole is arranged at the position of. Magnet 246a and magnet 248a may be composed of a plurality of magnets, and the types of magnets constituting magnet 246a and magnet 248a are not particularly limited. For example, a means for generating a magnetic field such as a rare earth magnet such as a ferrite magnet, a neodymium magnet, or a samarium cobalt magnet, a permanent magnet such as a plastic magnet, or an electromagnet can be used.
 なお、回収部材244aの、搬送部材224aの搬送方向の上流または下流に、第1の基材11a上の充填剤241aを規制する規制部材や、回収部材244aによって回収しきれない充填剤241aを再度回収する回収部材を設けても構わない。再度回収する回収部材としては、回収部材244aと同様の部材のほか、固定磁石や規制部材のような簡易な部材からエアブローによる回収を行う回収部材などを用いることができる。 A regulating member that regulates the filler 241a on the first base material 11a or a filler 241a that cannot be collected by the collecting member 244a is again provided upstream or downstream of the collecting member 244a in the conveying direction of the conveying member 224a. A recovery member for recovery may be provided. As a collecting member to be collected again, a collecting member that collects by air blow from a simple member such as a fixed magnet or a regulating member can be used in addition to a member similar to the collecting member 244a.
 次に、第1の充填装置24aによって第1の基材11a上の凹部に第1の粒子P1を充填するプロセスについて、図4~6を用いて説明する。 Next, the process of filling the first particles P1 into the recesses on the first base material 11a by the first filling device 24a will be described with reference to FIGS.
 第1の搬送部材224aが図4中の実線矢印d1方向に移動することにより、第1の搬送部材224aによって担持搬送されている第1の基材11aが搬送され、第1の充填装置24aの充填位置へと搬送される。 When the first transport member 224a moves in the direction of the solid line arrow d1 in FIG. 4, the first base material 11a carried and transported by the first transport member 224a is transported, and the first filling device 24a It is transported to the filling position.
 撹拌スクリュー部材243aにより、充填剤241aが搬送され、第1の基材11a上に供給される(図4中点線a)。このとき、磁性部材248aと回収部材244aによって磁界が形成されており、磁性粒子である担持材S1を含む充填剤241aはその磁界によって第1の基材11a上で複数の磁気穂を形成する。第1の基材11a上に供給された充填剤241aは、第1の基材11aの移動に伴い、磁気穂を形成した状態で第1の基材11a上で搬送される(図4中点線b)。 The filler 241a is conveyed by the stirring screw member 243a and supplied onto the first substrate 11a (dotted line a in FIG. 4). At this time, a magnetic field is formed by the magnetic member 248a and the recovery member 244a, and the filler 241a including the carrier material S1 that is a magnetic particle forms a plurality of magnetic spikes on the first substrate 11a by the magnetic field. The filler 241a supplied onto the first base material 11a is transported on the first base material 11a in a state where magnetic spikes are formed as the first base material 11a moves (dotted line in FIG. 4). b).
 図5は、第1の基材11a上で搬送される充填剤241aの模式図である。説明上、一本の磁気穂を形成している充填剤以外の充填剤241aは、図示を省略している。第1の基材11a上の充填剤241aは、上述のとおり、形成されている磁界の磁力線に沿って磁気穂を形成しており、第1の基材11aの移動に伴って図5A、図5B、図5Cのように磁気穂の形状を変えながら搬送される。このとき、磁石248aの近傍では特に強い磁気力が作用するため、充填剤241aの搬送速度v2は、充填剤241aが磁極から遠ざかる場合には第1の基材11aの移動速度v1よりも小さく、その逆の場合は大きくなる。すなわち、第1の基材11a上の充填剤241aは第1の基材11aに対して0ではない相対速度を有する。 FIG. 5 is a schematic diagram of the filler 241a conveyed on the first base material 11a. For the sake of explanation, the filler 241a other than the filler forming one magnetic spike is not shown. As described above, the filler 241a on the first base material 11a forms a magnetic spike along the magnetic field lines of the magnetic field that is formed, and as the first base material 11a moves, FIG. 5A and FIG. 5B and conveyed while changing the shape of the magnetic spike as shown in FIG. 5C. At this time, since a particularly strong magnetic force acts in the vicinity of the magnet 248a, the conveying speed v2 of the filler 241a is smaller than the moving speed v1 of the first base material 11a when the filler 241a moves away from the magnetic pole. In the opposite case, it becomes larger. That is, the filler 241a on the first substrate 11a has a non-zero relative speed with respect to the first substrate 11a.
 図6は、図5の第1の基材11aの表面近傍の拡大図である。図5では図示を省略したが、図6に示すように第1の基材11a上には凹凸パターン111aが形成されている。充填剤241aは、この凹凸パターン111aに接触し、第1の基材11aの表面に対して垂直な方向への磁力(図中実線Fm)を受けながら、第1の基材11aに対して0ではない相対速度を有しつつ、第1の基材11aと共に搬送される。これにより、担持材S1に担持された第1の粒子P1は第1の基材11aの表面の凹凸パターン111aに摺擦されながら搬送される。このとき、凹凸パターン111aの凹部は、第1の粒子P1は接触できるが、担持材S1は接触できないサイズとなっているため、充填剤241aの中で第1の粒子P1のみが選択的に凹部に接触する。凹部に接触した第1の粒子P1は、凹凸パターン111aの構造による物理的な拘束力や、第1の基材11aおよび凹凸パターン111aを構成する構造材料との静電的付着力や粘着力により強く拘束され、担持材S1から脱離する。 FIG. 6 is an enlarged view of the vicinity of the surface of the first base material 11a of FIG. Although not shown in FIG. 5, the uneven pattern 111a is formed on the first substrate 11a as shown in FIG. The filler 241a is in contact with the concavo-convex pattern 111a and is zero with respect to the first base material 11a while receiving a magnetic force (solid line Fm in the figure) in a direction perpendicular to the surface of the first base material 11a. It is conveyed with the 1st base material 11a, having a relative speed which is not. Thus, the first particles P1 supported on the support material S1 are conveyed while being rubbed against the uneven pattern 111a on the surface of the first base material 11a. At this time, since the concave portion of the concave / convex pattern 111a is sized so that the first particle P1 can contact but the support material S1 cannot contact, only the first particle P1 is selectively concave in the filler 241a. To touch. The first particles P1 that have come into contact with the recesses are physically restrained by the structure of the concavo-convex pattern 111a, or by electrostatic adhesion and adhesive force with the structural material constituting the first substrate 11a and the concavo-convex pattern 111a. It is strongly restrained and detached from the support material S1.
 磁性部材247aの下流には、図4に示すように、回収部材244aが第1の搬送部材224aと間隙を有して配置されている。第1の基材11aの移動に伴い、磁石248aの最下流の磁極(S1極)の近傍に搬送された充填剤241aは、磁石246aによって形成される磁界の影響を受けて、第1の基材241aから回収部材244aへと移動し、回収される(図4中点線c)。 As shown in FIG. 4, a recovery member 244a is disposed downstream of the magnetic member 247a with a gap from the first transport member 224a. As the first base material 11a moves, the filler 241a conveyed to the vicinity of the most downstream magnetic pole (S1 pole) of the magnet 248a is affected by the magnetic field formed by the magnet 246a, and the first base 11a is moved. It moves from the material 241a to the recovery member 244a and is recovered (dotted line c in FIG. 4).
 以上のように搬送過程(図4中点線a,b,c)において、第1の基材11aの表面の凹凸パターン111aの凹部は、複数の充填剤241aと十分に接触する。そのため、回収部材244aによって充填剤241aが回収された後の凹凸パターン111aの凹部には第1の粒子P1が選択的に緻密に配置される。 As described above, in the transport process (dotted lines a, b, and c in FIG. 4), the concave portions of the concave / convex pattern 111a on the surface of the first base material 11a sufficiently come into contact with the plurality of fillers 241a. Therefore, the first particles P1 are selectively and densely arranged in the recesses of the uneven pattern 111a after the filler 241a is recovered by the recovery member 244a.
 なお、図5および図6では第1の粒子P1をすべて同一の粒径で図示しているが、実際には粒度分布があり、さらに、材料によっては凝集した二次粒子を形成している場合もある。このような場合でも、凹凸パターン111aの凹部に接触できる粒子のみが選択的に緻密に充填されるため、材料層形成に悪影響を及ぼし得る粗粉や二次粒子等は除外される。 In FIGS. 5 and 6, all the first particles P1 are illustrated with the same particle size, but there is actually a particle size distribution, and depending on the material, aggregated secondary particles are formed. There is also. Even in such a case, only particles that can contact the concave portions of the concave / convex pattern 111a are selectively densely packed, so that coarse powder, secondary particles, and the like that can adversely affect the formation of the material layer are excluded.
 回収部材244aによって回収された充填剤241aは、回転するローラ244aにより搬送される(図4中点線d)。ローラ244aによって搬送された充填剤241aは、隣接し、反発しあう2つの同極の磁極(N1、N2)による磁界、および重力の影響によって充填容器242a中に落下する(図4中点線e)。その後、再び撹拌スクリュー部材243aにより撹拌搬送されて、以後これを繰り返す。 The filler 241a recovered by the recovery member 244a is conveyed by the rotating roller 244a (dotted line d in FIG. 4). The filler 241a conveyed by the roller 244a falls into the filling container 242a due to the influence of the magnetic field and gravity due to two adjacent magnetic poles (N1, N2) repelling each other (dotted line e in FIG. 4). . Thereafter, the mixture is again stirred and conveyed by the stirring screw member 243a, and this is repeated thereafter.
 充填容器242a内における充填剤241a中の第1の粒子P1と担持材S1の重量比は、電子写真装置で一般的な、透磁率を用いて測定するインダクタンスセンサや、基材上等の反射濃度を測定して予測するパッチ濃度センサ等により決定される。そして、必要に応じて補給手段(不図示)によって第1の粒子P1および担持材S1の少なくとも一方が補給される。これにより、長期にわたり安定した充填が可能となる。 The weight ratio between the first particles P1 in the filler 241a and the support material S1 in the filling container 242a is an inductance sensor that is measured using a magnetic permeability, which is common in electrophotographic apparatuses, or a reflection density on a substrate. Is determined by a patch density sensor or the like that predicts by measuring. Then, if necessary, at least one of the first particles P1 and the support material S1 is supplied by a supply means (not shown). This enables stable filling over a long period of time.
 なお、ここでは磁性粒子を担持材として用いていわゆる磁気ブラシを形成することで粒子材料を凹部に充填する方式の充填装置について説明したが、充填装置の方式はこれに限定はされない。担持材として、ブラシ繊維を用いてもよい。あるいは、担持材として、少なくとも表面が弾性材料で構成された弾性部材を用いてもよい。これらの粒子材料を担持材に担持させてそれを摺擦する方式によれば、ブレード等の規制部材による充填方法に比べて、分散させた粒子を凹部により多く供給することができ、安定的かつ緻密に充填を行うことができる。このメリットは、充填する粒子の粒径が小さいほど、粒子が凝集しやすくなるために顕著になる。 In addition, although the filling apparatus of the type | system | group which fills a recessed part with particle | grain material by forming what is called a magnetic brush using a magnetic particle as a support material was demonstrated here, the system of a filling apparatus is not limited to this. Brush fibers may be used as the support material. Alternatively, an elastic member having at least a surface made of an elastic material may be used as the support material. According to the system in which these particle materials are supported on the support material and rubbed with each other, more dispersed particles can be supplied to the recesses compared to the filling method using a regulating member such as a blade, and the stable and Filling can be performed precisely. This merit becomes more prominent because the particles are more easily aggregated as the particle size of the particles to be filled is smaller.
 第1の充填装置24aによって凹凸パターン111aの凹部に第1の粒子1が充填された第1の基材11aは、第1のベルト装置22aによって、転写部25aへと搬送される。 The first base material 11a in which the first particles 1 are filled in the concave portions of the uneven pattern 111a by the first filling device 24a is conveyed to the transfer unit 25a by the first belt device 22a.
 ここで、第2のベルト装置22bは図3に示すように、第1のベルト装置22aと同様に、駆動ローラ221b,222bと、加圧ローラ223bと、それらに懸架されたベルト状の搬送部材224bと、を有する。このとき、加圧ローラ223bは従動で回転している。転写部25aでは、第1のベルト装置22aの加圧ローラ223aと第2のベルト装置22bの加圧ローラ223bとが対向している。 Here, as shown in FIG. 3, the second belt device 22b is similar to the first belt device 22a in that the driving rollers 221b and 222b, the pressure roller 223b, and a belt-like conveying member suspended on them. 224b. At this time, the pressure roller 223b rotates following. In the transfer unit 25a, the pressure roller 223a of the first belt device 22a and the pressure roller 223b of the second belt device 22b are opposed to each other.
 第2のベルト装置22bには、第2の格納容器21bより第2の基材11bが供給され、図3中の矢印方向に搬送される。供給された第2の基材11bは、第1の基材11aが転写部25aに搬送されるタイミングに合わせて搬送される。転写部25aでは、第1の基材11aに充填された第1の粒子P1が第2の基材11bへと転写される。この転写プロセスについて、図7を参照して説明する。 The second substrate 11b is supplied from the second storage container 21b to the second belt device 22b and is conveyed in the direction of the arrow in FIG. The supplied second base material 11b is transported in accordance with the timing at which the first base material 11a is transported to the transfer unit 25a. In the transfer unit 25a, the first particles P1 filled in the first base material 11a are transferred to the second base material 11b. This transfer process will be described with reference to FIG.
 図7は、転写部25aの構成を模式的に示す図である。転写部25aは、第1のベルト装置22aの加圧ローラ223aおよび搬送部材224aと、第2のベルト装置22bの加圧ローラ223bおよび搬送部材224bと、で構成されている。上述のように、加圧ローラ223a,223bは従動で回転し、2つのローラは搬送部材224a,224bを介して接触している。加圧ローラ223a,223bの少なくとも一方は、表層に弾性層を有するソフトローラであり、2つのローラが接触した部分にはニップ部が形成されている。 FIG. 7 is a diagram schematically showing the configuration of the transfer portion 25a. The transfer unit 25a includes a pressure roller 223a and a conveying member 224a of the first belt device 22a, and a pressure roller 223b and a conveying member 224b of the second belt device 22b. As described above, the pressure rollers 223a and 223b rotate by being driven, and the two rollers are in contact with each other via the conveying members 224a and 224b. At least one of the pressure rollers 223a and 223b is a soft roller having an elastic layer as a surface layer, and a nip portion is formed at a portion where the two rollers are in contact with each other.
 第1の充填装置24aにより第1の粒子P1が充填された第1の基材11aと第2の基材11bは、それぞれの搬送部材(224a,224b)によって略等速で搬送され、加圧ローラ223a,223bが接触して形成されるニップ部に侵入する。ニップ部において、第1の基材11a上の第1の粒子P1は第2の基材11bと接触し、第2の基材11b上に転写される。 The first base material 11a and the second base material 11b filled with the first particles P1 by the first filling device 24a are transported at substantially constant speed by the respective transport members (224a, 224b) and pressurized. The rollers 223a and 223b enter the nip portion formed by contact. In the nip portion, the first particles P1 on the first substrate 11a come into contact with the second substrate 11b and are transferred onto the second substrate 11b.
 第2の基材11bは、第1の粒子P1に対する付着力が、第1の基材11aの第1の粒子P1に対する付着力よりも大きな基材である。換言すれば、第1の粒子P1の第2の基材11bに対する付着力は、第1の粒子P1の第1の基材11aに対する付着力よりも大きい。これにより、ニップ部において、第1の基材11a上の第1の粒子P1は、第2の基材11b上へと転写される。 The second base material 11b is a base material whose adhesion force to the first particles P1 is larger than the adhesion force of the first base material 11a to the first particles P1. In other words, the adhesion force of the first particles P1 to the second substrate 11b is larger than the adhesion force of the first particles P1 to the first substrate 11a. Thereby, in the nip portion, the first particles P1 on the first base material 11a are transferred onto the second base material 11b.
 第2の基材11bの材質は特に限定はされない。ただし、本実施形態においては後述する積層ユニットU3において第2の基材11bごと材料層の積層が行われ、除去ユニットU4において第2の基材11bは加熱により除去される。そのため、第2の基材11bは加熱によって除去しやすい材質であることが好ましい。なお、第2の基材11bも第1の基材11aと同様に、カット紙のように個別に切り離された基材であってもよいし、ロール紙のようにロール状に巻かれた連続した基材や、連続用紙のように交互に折りたたまれた連続した基材であってもよい。 The material of the second base material 11b is not particularly limited. However, in the present embodiment, the material layer is laminated together with the second base material 11b in a later-described laminating unit U3, and the second base material 11b is removed by heating in the removal unit U4. Therefore, the second base material 11b is preferably made of a material that can be easily removed by heating. In addition, the 2nd base material 11b may be the base material cut | disconnected separately like a cut paper similarly to the 1st base material 11a, or the continuous wound by roll shape like roll paper Or a continuous base material folded alternately like a continuous paper.
 第2の基材11bは、接触した第1の粒子P1を転写するために、付着力を高めるための表面処理が施されていることが好ましい。例えば、第2の基材11bは、その表面に粘着剤が塗布された粘着層を有していることが好ましい。粘着剤としては、アクリル系粘着剤や、ゴム系粘着剤、シリコーン系粘着剤であってもよいし、熱や光等の外乱により粘着力が変化する熱可塑性樹脂や光硬化性樹脂等であってもよい。なお、第2の基材11bの両面に粘着剤を塗布しても構わない。 It is preferable that the second substrate 11b is subjected to a surface treatment for increasing the adhesive force in order to transfer the first particles P1 that have come into contact therewith. For example, it is preferable that the 2nd base material 11b has the adhesion layer by which the adhesive was apply | coated to the surface. The pressure-sensitive adhesive may be an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, or a silicone-based pressure-sensitive adhesive, or may be a thermoplastic resin or a photo-curing resin whose adhesive force changes due to disturbance such as heat or light. May be. In addition, you may apply | coat an adhesive to both surfaces of the 2nd base material 11b.
 また、材料層形成ユニットU2は、搬送中の第2の基材11bの表面に粘着剤を塗布するディスペンサーやインクジェットヘッドなどの塗布手段を有していてもよい。 Further, the material layer forming unit U2 may have an application means such as a dispenser or an inkjet head for applying an adhesive to the surface of the second substrate 11b being conveyed.
 粘着剤の種類や塗布量は使用する凹凸パターンの形状や材質、第1の粒子P1および第2の粒子P2の粒径や材質などによって適宜調整されるが、凹凸パターン111aに比べて粘着剤の粘着力が大きいことが好ましい。粘着力の比較は、ナノインデンターを用いる一般的な手法により測定可能である。 The type and application amount of the pressure-sensitive adhesive are appropriately adjusted depending on the shape and material of the uneven pattern to be used, the particle size and material of the first particles P1 and the second particles P2, and the like. It is preferable that the adhesive strength is large. The comparison of the adhesive strength can be measured by a general method using a nanoindenter.
 ニップ部において、第1の粒子P1は第2の基材11bとの間に生じる付着力によって拘束される。ニップ部を過ぎて両搬送部材224a,224bが離間すると、第1の基材11a上にあった第1の粒子P1は、第2の基材11bへと転写される。 In the nip portion, the first particles P1 are constrained by the adhesive force generated between the second particles 11b. When the conveying members 224a and 224b are separated from each other past the nip portion, the first particles P1 on the first base material 11a are transferred to the second base material 11b.
 第1の粒子P1が転写された第2の基材11bは、搬送部材224bによって第2の充填装置24bの充填位置へと搬送される。 The second base material 11b to which the first particles P1 have been transferred is transported to the filling position of the second filling device 24b by the transport member 224b.
 第2の充填装置24bは、充填容器242a中に、第1の粒子P1と担持材S1を有する充填剤241aの代わりに第2の粒子P2と担持材S2を有する充填剤241bが収容されている点以外は、第1の充填装置24aと同様の構成および機能を有する。 In the second filling device 24b, a filler 241b having the second particles P2 and the support material S2 is accommodated in the filling container 242a instead of the filler 241a having the first particles P1 and the support material S1. Except for the point, it has the same configuration and function as the first filling device 24a.
 第2の充填装置24bは、第2の基材11b上の、第1の粒子P1が配置されていない部分に、第2の粒子P2を充填する。上述のように、転写部25aを通過した第2の基材11b上には第1の粒子P1が配置されているが、第1の粒子P1が配置されていない部分には、いわば凹部が形成されている。第2の充填装置24bは、この凹部に、第1の充填装置24aと同様のプロセスで、第2の粒子P2を充填する。 The second filling device 24b fills the second particles P2 on the second base material 11b where the first particles P1 are not disposed. As described above, the first particles P1 are arranged on the second base material 11b that has passed through the transfer portion 25a, but a so-called recess is formed in a portion where the first particles P1 are not arranged. Has been. The second filling device 24b fills the recesses with the second particles P2 in the same process as the first filling device 24a.
 充填剤241bは、第2の粒子P2と、第2の粒子P2を担持する担持材S2と、を有する。充填剤241bは、複数の第2の粒子P2によって構成される粉体と、複数の担持材S2によって構成される粉体と、を含む複数の粉体の混合物である。第2の粒子P2の材質は特に限定はされず、第1の粒子P1と同様に、金属粒子、セラミックス粒子、ガラス粒子などの粒子状の無機材料であってもよいし、樹脂粒子などの粒子状の有機材料であってもよい。後述するように、除去工程(工程(3))において基材11を除去する際に加熱して基材11を除去するため、第2の粒子P2は粒子状の無機材料であることが好ましい。また、第1の粒子P1と第2の粒子P2とは同じ材質であってもよい。また、担持材S2についても、担持材S1と同様のものを用いることができる。第2の粒子P2も、第1の粒子P1と同様に、第2の基材11bよりも高い熱分解温度を有する材質であることが好ましい。なお、第1の粒子P1および第2の粒子P2は、リチウムイオン電池や全固体電池の正極材料、固体電解質を含む材料、負極材料から選択されることが好ましい。 The filler 241b includes second particles P2 and a support material S2 that supports the second particles P2. The filler 241b is a mixture of a plurality of powders including a powder composed of a plurality of second particles P2 and a powder composed of a plurality of support materials S2. The material of the second particles P2 is not particularly limited, and may be a particulate inorganic material such as metal particles, ceramic particles, glass particles, or particles such as resin particles, like the first particles P1. It may be an organic material having a shape. As will be described later, since the base material 11 is removed by heating when removing the base material 11 in the removing step (step (3)), the second particles P2 are preferably particulate inorganic materials. The first particles P1 and the second particles P2 may be the same material. Also, the support material S2 can be the same as the support material S1. Similarly to the first particles P1, the second particles P2 are preferably made of a material having a higher thermal decomposition temperature than the second base material 11b. Note that the first particles P1 and the second particles P2 are preferably selected from a positive electrode material of a lithium ion battery or an all-solid battery, a material containing a solid electrolyte, and a negative electrode material.
 図8は、第2の充填装置24bによる充填プロセスにおける第2の基材11bの表面近傍の拡大図である。第2の基材11b上には、第1の粒子P1が配置されて形成された凸部と、第1の粒子P1が配置されていない凹部と、を有する凹凸パターンが形成されている。充填剤241bは、この凹凸パターンに接触し、第2の基材11bの表面に対して垂直な方向への磁力(図中実線Fm)を受けながら、第2の基材11bに対して0ではない相対速度を有しつつ、第2の基材11bと共に搬送される。これにより、担持材S2に担持された第2の粒子P2は第2の基材11bの表面の凹凸パターンに摺擦されながら搬送される。このとき、凹凸パターンの凹部は、第2の粒子P2は接触できるが、担持材S2は接触できないサイズとなっているため、充填剤241bの中で第2の粒子P2のみが選択的に凹部に接触する。凹部に接触した第2の粒子P2は、凹凸パターンの構造による物理的な拘束力や、第2の基材11bおよび凹凸パターンを構成する構造材料との静電的付着力や粘着力により強く拘束され、担持材S2から脱離する。 FIG. 8 is an enlarged view of the vicinity of the surface of the second substrate 11b in the filling process by the second filling device 24b. On the second base material 11b, a concavo-convex pattern having a convex portion formed by arranging the first particles P1 and a concave portion in which the first particles P1 are not arranged is formed. The filler 241b is in contact with the concavo-convex pattern and receives a magnetic force (solid line Fm in the figure) in a direction perpendicular to the surface of the second base material 11b, while being zero with respect to the second base material 11b. It is conveyed with the second base material 11b while having no relative speed. Thus, the second particles P2 supported on the support material S2 are conveyed while being rubbed against the uneven pattern on the surface of the second base material 11b. At this time, since the concave portion of the concave / convex pattern has a size that allows the second particles P2 to contact but the support material S2 cannot contact, only the second particles P2 in the filler 241b selectively become concave portions. Contact. The second particles P2 in contact with the recesses are strongly restrained by the physical binding force due to the structure of the concavo-convex pattern and the electrostatic adhesion force and adhesive force between the second base material 11b and the structural material constituting the concavo-convex pattern. And detached from the support material S2.
 図9Aは、転写部25aによって第1の粒子P1が転写された後の第2の基材11bを模式的に示す図であり、第2の基材11bを基材面に垂直な方向から見た図である。図9Aに示すように、第2の基材11b上には、正六角形状に第1の粒子P1が配置された配置領域が整列したハニカムパターンが形成されている。この正六角形の領域内には第1の粒子P1が緻密に配置されており、それ以外の部分(図9Aの白地部分)には第1の粒子P1は配置されておらず、第2の基材11bの表面が露出している。かかる第1の粒子P1が保持される正六角形の領域は第一のパターン部、第2の粒子P2が保持され、第一のパターン部の間隙に相当するハニカムパターンの領域は第二のパターン部であると換言される。 FIG. 9A is a diagram schematically showing the second substrate 11b after the first particles P1 are transferred by the transfer unit 25a, and the second substrate 11b is viewed from a direction perpendicular to the substrate surface. It is a figure. As shown in FIG. 9A, on the second substrate 11b, a honeycomb pattern is formed in which arrangement regions where the first particles P1 are arranged in a regular hexagonal shape are aligned. The first particles P1 are densely arranged in the regular hexagonal region, and the first particles P1 are not arranged in other portions (the white background portion in FIG. 9A). The surface of the material 11b is exposed. The regular hexagonal region where the first particles P1 are held is the first pattern portion, and the second particle P2 is held, and the honeycomb pattern region corresponding to the gap between the first pattern portions is the second pattern portion. In other words.
 図9Bは、第2の充填装置24bによって第2の粒子P2を充填した後の第2の基材11bを模式的に示す図であり、第2の基材11bを基材面に垂直な方向から見た図である。図9Bに示すように、第1の粒子P1が配置されていなかった領域には第2の粒子P2が緻密に配置されている。また、第1の粒子P1が配置されている領域と第2の粒子P2が配置されている領域との間の境界部においても、第1の粒子P1と第2の粒子P2とが緻密に配置されている。 FIG. 9B is a diagram schematically showing the second base material 11b after the second particles P2 are filled by the second filling device 24b, and the second base material 11b is perpendicular to the base material surface. It is the figure seen from. As shown in FIG. 9B, the second particles P2 are densely arranged in the region where the first particles P1 are not arranged. Also, the first particles P1 and the second particles P2 are densely arranged at the boundary portion between the region where the first particles P1 are arranged and the region where the second particles P2 are arranged. Has been.
 本実施形態において、L×Lの正方な領域において、第一のパターン部と第二のパターン部は、紙面の横方向(みかけの水平方向)において、互いに等しい繰り返し周期L/5を有している。また、本実施形態において、パターン部は、第一の粒子群が保持される第一のパターン部と、第二の粒子群が保持される第二のパターン部と、を有していると、換言される。また、本実施形態において、第一パターン部と第二パターン部には異なる平均粒径の粒子群P1、P2が敷き詰められる。このため、本実施形態において、パターン部は、平均粒径において、第一の粒子群P1と第二の粒子群P2は異なり、保持される粒子群の面密度において、第一のパターン部と第二のパターン部とは異なると換言される。 In the present embodiment, in the L × L square region, the first pattern portion and the second pattern portion have the same repetition period L / 5 in the horizontal direction (apparent horizontal direction) of the paper surface. Yes. In the present embodiment, the pattern portion has a first pattern portion in which the first particle group is held and a second pattern portion in which the second particle group is held. In other words. In the present embodiment, particle groups P1 and P2 having different average particle sizes are spread on the first pattern portion and the second pattern portion. For this reason, in the present embodiment, the pattern portion is different from the first particle group P1 and the second particle group P2 in the average particle diameter, and in the area density of the retained particle group, In other words, it is different from the second pattern portion.
 なお、図9Bにおいて、みかけ水平方向に対して+1/3πラジアン(+60度)、-1/3πラジアン(―60度)だけ、それぞれ回転した方向においても、第一のパターン部と第二のパターン部は、互いに等しい繰り返し周期L/5を有している。 In FIG. 9B, the first pattern portion and the second pattern in the directions rotated by + 1 / 3π radians (+60 degrees) and −1 / 3π radians (−60 degrees) with respect to the apparent horizontal direction, respectively. The parts have mutually equal repetition periods L / 5.
 このように、本実施形態の材料層形成ユニットU2によれば、第2の基材11b上に、第1の粒子P1および第2の粒子P2がパターン状に緻密に配置された材料層を形成することができる。具体的には、本実施形態によれば、各材料層のそれぞれにおいて、粒子による基材のカバー率を80%以上とすることができる。なお、粒子による基材のカバー率は、材料層が形成されている領域を基材鉛直方向から光学顕微鏡により撮影し、当該領域内における粒子の面積率を画像処理ソフトによって算出することで測定することができる。 Thus, according to the material layer forming unit U2 of the present embodiment, the material layer in which the first particles P1 and the second particles P2 are densely arranged in a pattern is formed on the second base material 11b. can do. Specifically, according to this embodiment, in each of the material layers, the coverage of the base material with particles can be 80% or more. In addition, the coverage of the base material by particles is measured by photographing the region where the material layer is formed with an optical microscope from the vertical direction of the base material, and calculating the area ratio of the particles in the region by image processing software. be able to.
 本実施形態では材料層形成ユニットU2が2種類の粒子材料を用いて材料層を形成する場合について説明したが、これに限定はされず、1種類の粒子材料を用いて材料層を形成してもよいし、3種類以上の粒子材料を用いて材料層を形成してもよい。 In the present embodiment, the case where the material layer forming unit U2 forms a material layer using two types of particle materials has been described. However, the present invention is not limited to this, and the material layer is formed using one type of particle material. Alternatively, the material layer may be formed using three or more kinds of particulate materials.
 1種類の粒子材料で材料層を形成する場合、第1の充填装置24aおよび第2の充填装置24bの両方で、同じ材質の粒子材料を充填するようにすればよい。これにより、これにより、1種類の材料がより緻密に配置された材料層を形成することができる。このとき、第1の充填装置24aにおける第1の粒子P1と、第2の充填装置24bにおける第2の粒子P2とで、同じ材質だが粒径を異なる粒子を用いてもよい。例えば、第2の粒子P2として、第1の粒子P1よりも粒径の小さな粒子を用いることで、より一層緻密な材料層を形成することができる。 When the material layer is formed with one kind of particle material, both the first filling device 24a and the second filling device 24b may be filled with the same particle material. Thereby, it is possible to form a material layer in which one kind of material is arranged more densely. At this time, the first material P1 in the first filling device 24a and the second particle P2 in the second filling device 24b may use the same material but different particle sizes. For example, a finer material layer can be formed by using particles having a smaller particle diameter than the first particles P1 as the second particles P2.
 一方、3種類以上の粒子材料で材料層を形成する場合は、第1の充填装置24aまたは第2の充填装置24bの下流側は上流側に、第3の充填装置を追加すればよい。このとき、上流側の充填装置において充填する粒子の粒子径は、下流側の充填装置において充填する粒子の粒子径より大きくしておくことが好ましい。また、基材上にサイズの異なる凹部を複数設け、上流側の充填装置において充填する粒子はそのうちの一部の凹部にのみ接触するようにしておくことが好ましい。これにより、3種類以上の粒子材料を用いて、それぞれの粒子がパターン状に緻密に配置された材料層を形成することができる。 On the other hand, when the material layer is formed of three or more kinds of particle materials, a third filling device may be added on the upstream side of the first filling device 24a or the second filling device 24b. At this time, it is preferable that the particle diameter of the particles filled in the upstream filling apparatus is larger than the particle diameter of the particles filled in the downstream filling apparatus. Moreover, it is preferable to provide a plurality of recesses of different sizes on the base material so that the particles to be filled in the upstream filling device are in contact with only a part of the recesses. Thereby, a material layer in which each particle is densely arranged in a pattern can be formed using three or more kinds of particle materials.
 また、構成上複雑になるが、第1のベルト装置22aを複数設け、それぞれの装置から第2の基材11b上にそれぞれ異なる粒子を転写する構成としてもよい。あるいは、第3の充填装置を有する第3のベルト装置を設け、第2のベルト装置22bと第3のベルト装置とで形成される転写部において、第1および第2の粒子が配置された第2の基材11bから第3の基材上へとそれらの粒子を転写する構成としてもよい。その後、第3の基材上の第1および第2の粒子がいずれも配置されていない部分に第3の充填装置によって第3の粒子を充填すれば、3種類以上の粒子材料で材料層を形成することができる。 Although complicated in configuration, a plurality of first belt devices 22a may be provided, and different particles may be transferred from the respective devices onto the second base material 11b. Alternatively, a third belt device having a third filling device is provided, and the first and second particles are arranged in the transfer portion formed by the second belt device 22b and the third belt device. The particles may be transferred from the second base material 11b onto the third base material. After that, if the third particle is filled with the third filling device in the portion where neither the first particle nor the second particle is arranged on the third substrate, the material layer is formed with three or more kinds of particle materials. Can be formed.
 このように、本実施形態の材料層形成ユニットU2によれば、基材11b上に単数種あるいは複数種の粒子を緻密に配置した材料層を形成することができる。 Thus, according to the material layer forming unit U2 of the present embodiment, a material layer in which a single kind or plural kinds of particles are densely arranged on the base material 11b can be formed.
 本実施形態では、材料層形成ユニットU2が各材料層を基材上にそれぞれ形成するため、材料層を形成する際の下地の条件を揃えることができる。そのため、形成した材料層の上にさらに材料層を形成する場合に比べて、材料層をより安定的に形成することができる。 In the present embodiment, since the material layer forming unit U2 forms each material layer on the base material, it is possible to align the base conditions when forming the material layer. Therefore, the material layer can be formed more stably than in the case where a material layer is further formed on the formed material layer.
 なお、本実施形態では材料層形成ユニットU2が2つの充填装置による充填と転写とを組み合わせた方法で材料層を形成したが、これに限定はされない。例えば、粒子状の材料を含むインクをインクジェットによって基材上に塗布する方式や、基材上にインクジェットによってパターン状に液体を付与した後に粒子状の材料を振りかけて付着させる方式によって第1の粒子P1を配置する。そして、第1の粒子P1が配置されていない箇所に、上述の充填装置によって第2の粒子P2を充填してもよい。 In this embodiment, the material layer forming unit U2 forms the material layer by a method in which filling and transfer by two filling devices are combined. However, the present invention is not limited to this. For example, the first particle is applied by a method in which an ink containing a particulate material is applied onto a substrate by ink jet, or a method in which a liquid is applied in a pattern by ink jet on the substrate and then the particulate material is sprinkled and adhered. P1 is arranged. And you may fill the 2nd particle | grains P2 with the above-mentioned filling apparatus in the location where the 1st particle | grains P1 are not arrange | positioned.
 それぞれの材料層を構成し、最終的に立体物を構成する材料である粒子材料は上述のとおり無機材料であることが好ましいため、材料層形成ユニットU2によって形成される材料層は、無機材料で構成されていることが好ましい。これにより、後述する除去ユニットU4における除去工程において、基材の除去を容易にすることができる。しかしながら、それぞれの材料層は無機材料以外に有機材料を含んでいてもよい。 Since the particle material that constitutes each material layer and finally constitutes the three-dimensional object is preferably an inorganic material as described above, the material layer formed by the material layer forming unit U2 is an inorganic material. It is preferable to be configured. Thereby, the removal of a base material can be made easy in the removal process in the removal unit U4 mentioned later. However, each material layer may contain an organic material in addition to the inorganic material.
 [積層ユニット]
 積層ユニットU3は、材料層形成ユニットU2でそれぞれ材料層12が形成された複数の基材11を積層し、複数の材料層12と複数の基材11とを含む積層体13を形成するユニットである。
[Laminated unit]
The stacking unit U3 is a unit that stacks a plurality of base materials 11 each having the material layer 12 formed thereon by the material layer forming unit U2 and forms a stacked body 13 including the plurality of material layers 12 and the plurality of base materials 11. is there.
 図10は、積層ユニットU3の構成を模式的に示す図である。積層ユニットU3は、材料層12が形成された基材11bを搬送する搬送装置31と、不図示のアクチュエータによって垂直方向に相対移動可能なステージ32と、を有する。 FIG. 10 is a diagram schematically showing the configuration of the laminated unit U3. The stacking unit U3 includes a transport device 31 that transports the base material 11b on which the material layer 12 is formed, and a stage 32 that can be relatively moved in the vertical direction by an actuator (not shown).
 搬送装置31は積層ユニットU2から材料層12が形成された基材11bを受け取ってステージ32へと搬送する。搬送装置31は、基材11bを搬送可能な装置であれば特に限定はされず、ベルトコンベアやローラであってもよいし、ロボットアームであってもよい。 The transfer device 31 receives the substrate 11b on which the material layer 12 is formed from the lamination unit U2 and transfers it to the stage 32. The transport device 31 is not particularly limited as long as it is a device capable of transporting the base material 11b, and may be a belt conveyor, a roller, or a robot arm.
 搬送装置31によって基材11bがステージ32に搬送されると、ステージ32は基材11bおよび材料層12の厚さ分、垂直方向に移動する。搬送装置31による搬送とステージ32の移動とを繰り返すことで、材料層12がそれぞれ形成された複数の基材11bが積層され、積層体13が形成される。 When the substrate 11b is conveyed to the stage 32 by the conveying device 31, the stage 32 moves in the vertical direction by the thickness of the substrate 11b and the material layer 12. By repeating the conveyance by the conveyance device 31 and the movement of the stage 32, a plurality of base materials 11b each formed with the material layer 12 are laminated, and the laminated body 13 is formed.
 積層ユニットU3は、形成された積層体13を除去ユニットU4等へと搬送する搬送装置33や、積層体13を積層方向に加圧する加圧装置(不図示)をさらに有していてもよい。搬送装置33は、搬送装置31と同様の構成であってもよい。 The stacking unit U3 may further include a transport device 33 that transports the formed stacked body 13 to the removal unit U4 and the like, and a pressurizing device (not shown) that pressurizes the stacked body 13 in the stacking direction. The transport device 33 may have the same configuration as the transport device 31.
 図11Aは、材料層12が形成された基材11bをステージ32上で4枚積層した積層体13の模式図である。第1の粒子P1および第2の粒子P2からなる材料層12のそれぞれの間には、計3枚の基材11bが存在する。上述のように、基材11bの上面には、第1の粒子P1および第2の粒子P2を転写、充填するための粘着材が塗工されていることが好ましいが、上面だけでなく仮面にも粘着材が塗工されていてもよい。これにより、積層の際に各層をより強固に固定することができる。なおこのとき、ステージ32と接触する基材11bの下面には、粘着材は塗工しないほうが好ましい。近接する材料層12同士の間には必ず基材11bが一枚介在するために後述する除去ユニットにおける基材の除去はしにくくなるが、一方、基材の積層は容易になる。 FIG. 11A is a schematic diagram of a laminate 13 in which four base materials 11b on which a material layer 12 is formed are laminated on a stage 32. FIG. There are a total of three base materials 11b between each of the material layers 12 composed of the first particles P1 and the second particles P2. As described above, it is preferable that the adhesive material for transferring and filling the first particles P1 and the second particles P2 is coated on the upper surface of the base material 11b. Also, an adhesive material may be applied. Thereby, each layer can be more firmly fixed at the time of lamination. At this time, it is preferable not to apply the adhesive material to the lower surface of the base material 11b in contact with the stage 32. Since one base material 11b is always interposed between the adjacent material layers 12, it is difficult to remove the base material in a removing unit described later, but the base material is easily stacked.
 図11Bは、基材片面に材料層12が形成された基材11b(図中の最上段の基材および最下段の基材)と、基材両面に材料層12が形成された基材11b(図中の中央の基材)をステージ32上で3枚積層した積層体13の模式図である。第1の粒子P1および第2の粒子P2からなる材料層12のそれぞれの間には、計1枚の基材11bが存在する。材料層形成ユニットU2により基材片面に材料層を形成した後に、基材裏面に粘着材を塗工し、同様にして裏面に対して材料層を形成することで、基材両面に材料層を形成することができる。なお、あらかじめ両面に粘着材が塗工された両面粘着基材を用いても構わない。この形態によれば、積層体13中の基材の割合が図11Aの場合よりも少ないために基材の消失はしやすくなるが、一方、基材の積層がやや難しくなる。 FIG. 11B shows a base material 11b (the uppermost base material and the lowermost base material in the figure) in which the material layer 12 is formed on one surface of the base material, and a base material 11b in which the material layer 12 is formed on both surfaces of the base material. FIG. 3 is a schematic diagram of a laminate 13 in which three substrates (center base material in the figure) are laminated on a stage 32; A total of one base material 11b exists between each of the material layers 12 composed of the first particles P1 and the second particles P2. After the material layer is formed on one side of the base material by the material layer forming unit U2, the adhesive layer is applied to the back surface of the base material, and the material layer is formed on the back surface in the same manner. Can be formed. In addition, you may use the double-sided adhesive base material by which the adhesive material was beforehand coated on both surfaces. According to this form, since the ratio of the base material in the laminated body 13 is smaller than in the case of FIG. 11A, the base material is easily lost, but on the other hand, the base material is somewhat difficult to stack.
 [除去ユニット]
 除去ユニットU4は、積層ユニットU3で形成された積層体13から、基材11を加熱により除去して立体物14を形成するユニットである。
[Removal unit]
The removal unit U4 is a unit that forms the three-dimensional object 14 by removing the base material 11 by heating from the laminate 13 formed by the laminate unit U3.
 図12は、除去ユニットU4の構成を模式的に示す図である。除去ユニットU4は、積層体13を搬送する搬送装置41と、積層体13を加熱する加熱炉42と、を有する。 FIG. 12 is a diagram schematically showing the configuration of the removal unit U4. The removal unit U <b> 4 includes a transport device 41 that transports the stacked body 13 and a heating furnace 42 that heats the stacked body 13.
 搬送装置41は積層ユニットU3から積層体13を受け取って加熱炉42へと搬送する。搬送装置41は、搬送装置31と同様に、積層体13を搬送可能な装置であれば特に限定はされず、ベルトコンベアやローラであってもよいし、ロボットアームであってもよい。 The conveying device 41 receives the laminated body 13 from the laminated unit U3 and conveys it to the heating furnace. Similarly to the transport device 31, the transport device 41 is not particularly limited as long as it is a device capable of transporting the stacked body 13, and may be a belt conveyor, a roller, or a robot arm.
 加熱炉42は、積層体13を加熱する炉である。加熱炉42は、加熱手段421と、加圧手段422と、雰囲気調整手段423と、を有する。加熱炉42としては、セラミック等の焼成に用いられる焼成炉を用いることができる。加圧手段422は、加熱炉42において加熱されている積層体13を加圧したり、加熱前後の積層体13を加圧したりする。なお、加圧手段422は、積層体13を加圧する加圧部が気体を通過させやすい多孔質体で形成されていることが好ましい。雰囲気調整手段423は、雰囲気ガス供給手段423aおよび減圧手段423bを有し、加熱炉42の処理空間内の雰囲気ガスの調整を行う。 The heating furnace 42 is a furnace for heating the laminated body 13. The heating furnace 42 includes a heating unit 421, a pressurizing unit 422, and an atmosphere adjusting unit 423. As the heating furnace 42, a firing furnace used for firing ceramics or the like can be used. The pressurizing unit 422 pressurizes the stacked body 13 being heated in the heating furnace 42 or pressurizes the stacked body 13 before and after heating. In addition, as for the pressurization means 422, it is preferable that the pressurization part which pressurizes the laminated body 13 is formed with the porous body which is easy to let gas pass. The atmosphere adjustment means 423 includes an atmosphere gas supply means 423 a and a decompression means 423 b and adjusts the atmosphere gas in the processing space of the heating furnace 42.
 除去ユニットU4は、積層体13中の基材(ここでは第2の基材11b)の熱分解温度以上の温度であって、積層体13中の各材料層の熱分解温度未満の温度で加熱を行う。これにより、積層体13中の基材を選択的に分解して、基材を除去することができる。 The removal unit U4 is heated at a temperature equal to or higher than the thermal decomposition temperature of the base material (here, the second base material 11b) in the laminated body 13 and lower than the thermal decomposition temperature of each material layer in the laminated body 13. I do. Thereby, the base material in the laminated body 13 can be selectively decomposed and the base material can be removed.
 除去ユニットU4は、加熱により、積層体13中の基材の90重量%以上を消失させることが好ましく、95重量%以上を消失させることがより好ましく、97重量%以上を消失させることがさらに好ましい。このとき基材は燃焼またはガス化して気体として外部に放出されることが好ましい。なお、基材として樹脂などの有機材料で形成された基材を用いることで、加熱による基材の除去を容易にすることができる。基材を構成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)等のポリエステル、ナイロン等のポリアミド等を用いることができる。中でも、分解温度や熱分解時に発生する気体の低有害性の観点から、PETを用いることが好ましい。 The removal unit U4 preferably loses 90% by weight or more of the base material in the laminate 13 by heating, more preferably 95% by weight or more, and more preferably 97% by weight or more. . At this time, the base material is preferably burned or gasified and released to the outside as a gas. Note that by using a base material formed of an organic material such as a resin as the base material, the base material can be easily removed by heating. As a material constituting the substrate, polyesters such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyamides such as nylon, and the like can be used. Among these, it is preferable to use PET from the viewpoint of the decomposition temperature and the low hazard of gas generated at the time of thermal decomposition.
 除去ユニットU4は、減圧手段423bによって、放出された気体を加熱炉42の外部に排気することが好ましい。雰囲気ガス供給手段423a等によって加熱炉42の内部を酸化雰囲気、すなわち、空気などの酸素ガスを含む雰囲気としておくことで、基材を燃焼させて除去することができる。 The removal unit U4 preferably exhausts the released gas to the outside of the heating furnace 42 by the decompression means 423b. By setting the inside of the heating furnace 42 to be an oxidizing atmosphere, that is, an atmosphere containing oxygen gas such as air by the atmosphere gas supply means 423a or the like, the substrate can be burned and removed.
 積層体13から基材が熱分解によってガス化して気体として放出されると、積層体13中の各材料層が押し上げられて形状が変化してしまうことがある。そのため、加熱炉42において加熱を行う際には、加熱の前または加熱中、あるいは加熱後の冷却または放熱中に、加圧手段422によって積層体13を加圧しておくことが好ましい。また、加熱前に積層体13を加圧する場合には、減圧雰囲気下で加圧を行うことが好ましい。これにより、加熱により基材を除去する際の形状変化をより一層抑制することができ、加熱中の加圧を省略することもできる。なお、加熱の前または後に積層体13を加圧する際には、除去ユニットU4以外の部分で加圧を行ってもよい。 When the base material is gasified by thermal decomposition from the laminated body 13 and released as a gas, the material layers in the laminated body 13 may be pushed up to change the shape. Therefore, when heating is performed in the heating furnace 42, it is preferable to pressurize the laminate 13 by the pressurizing unit 422 before or during heating, or during cooling or heat dissipation after heating. Moreover, when pressurizing the laminated body 13 before heating, it is preferable to pressurize in a reduced pressure atmosphere. Thereby, the shape change at the time of removing a base material by heating can be suppressed further, and pressurization during heating can also be omitted. In addition, when pressurizing the laminated body 13 before or after heating, the pressurization may be performed in a portion other than the removal unit U4.
 [後処理ユニット]
 後処理ユニットU5は、除去ユニットU4で形成された立体物14の後処理を行うユニットである。
[Post-processing unit]
The post-processing unit U5 is a unit that performs post-processing of the three-dimensional object 14 formed by the removal unit U4.
 後処理ユニットU5が行う後処理の種類は特に限定されないが、例えば、立体物14をさらに加熱して焼成を行う処理が挙げられる。なお、後処理ユニットU5が後処理として加熱処理を行う場合には、除去ユニットU4がその機能を兼ねていてもよい。立体物14を焼成することにより、各材料層中の粒子材料等の材料同士を焼結することができる。 The type of post-processing performed by the post-processing unit U5 is not particularly limited, and examples thereof include a process in which the three-dimensional object 14 is further heated and baked. In addition, when the post-processing unit U5 performs heat treatment as the post-processing, the removal unit U4 may also serve as the function. By firing the three-dimensional object 14, materials such as the particulate material in each material layer can be sintered together.
 なお、後処理ユニットU5も、除去ユニットU4と同様に、立体物14を加熱する加圧手段を有していてもよい。後処理ユニットU5は、後処理としての加熱の前または加熱中、あるいは加熱後の冷却または放熱中に、加圧手段によって立体物14を加圧してもよい。 In addition, the post-processing unit U5 may also have a pressurizing unit that heats the three-dimensional object 14, similarly to the removal unit U4. The post-processing unit U5 may pressurize the three-dimensional object 14 by a pressurizing unit before or during heating as post-processing, or during cooling or heat dissipation after heating.
 また、後処理ユニットU5は、立体物14から立体物14を構成する少なくとも一種類の材料を除去する処理を行ってもよい。例えば、第1の粒子材料P1と、第2の粒子材料P2とで立体物14を形成した場合に、第1の粒子材料P1同士のみを焼結させるなどして固着または一体化させた後に、エアブロー等によって第2の粒子材料P2のみを選択的に除去してもよい。このとき、第2の粒子材料P2は、積層造形法におけるいわゆるサポート材料として機能し、積層時に第1の粒子材料P1をサポートする機能を有する。これにより、第1の粒子材料P1を用いて立体物を造形することができる。なお、第1の粒子材料P1同士のみを固着させる場合には、例えば、第2の粒子材料P2として第1の粒子材料P1よりも焼結温度の高い材料を用いて、第1の粒子材料P1の焼結温度以上、第2の粒子材料P2の焼結温度未満の温度で加熱すればよい。 Further, the post-processing unit U5 may perform a process of removing at least one kind of material constituting the three-dimensional object 14 from the three-dimensional object 14. For example, when the three-dimensional object 14 is formed of the first particle material P1 and the second particle material P2, after fixing or integrating only the first particle material P1 with each other, Only the second particulate material P2 may be selectively removed by air blowing or the like. At this time, the second particle material P2 functions as a so-called support material in the layered manufacturing method, and has a function of supporting the first particle material P1 during stacking. Thereby, a solid thing can be modeled using the 1st particulate material P1. When only the first particle materials P1 are fixed to each other, for example, a material having a higher sintering temperature than the first particle material P1 is used as the second particle material P2, and the first particle material P1 is used. What is necessary is just to heat at the temperature more than the sintering temperature of this, and the temperature below the sintering temperature of 2nd particle material P2.
 以上のように、本実施形態によれば、効率的に、所望の材料が3次元的に任意に配置された立体物を製造することができる。 As described above, according to this embodiment, it is possible to efficiently manufacture a three-dimensional object in which a desired material is arbitrarily arranged three-dimensionally.
 本実施形態によれば、リチウムイオン電池や全固体電池の正極材料または負極材料または固体電解質を含む材料を用いて基材上に材料層を形成することで、正極シートや負極シートなどの電極シートや固体電解質シートを製造することができる。本実施形態によれば粒子状の材料を任意のパターンで緻密に配置することができるので、電気化学特性の高い電極シートや固体電解質シートを提供することが可能となる。また、電極シートを製造する際に、正極材料または負極材料に加えて固体電解質を含む材料をパターニングすることで、正極材料または負極材料と固体電解質を含む材料との間に良好な界面を形成することができる。また、正極材料、負極材料、固体電解質を含む材料を用いて立体物を形成することで、全固体電池を製造することもできる。 According to the present embodiment, an electrode sheet such as a positive electrode sheet or a negative electrode sheet is formed by forming a material layer on a substrate using a positive electrode material or a negative electrode material of a lithium ion battery or an all-solid battery, or a material containing a solid electrolyte. And a solid electrolyte sheet can be produced. According to the present embodiment, since the particulate material can be densely arranged in an arbitrary pattern, it is possible to provide an electrode sheet or a solid electrolyte sheet having high electrochemical characteristics. In addition, when an electrode sheet is manufactured, a good interface is formed between the positive electrode material or the negative electrode material and the material containing the solid electrolyte by patterning a material containing the solid electrolyte in addition to the positive electrode material or the negative electrode material. be able to. Moreover, an all-solid-state battery can also be manufactured by forming a solid thing using the positive electrode material, the negative electrode material, and the material containing a solid electrolyte.
 上述の積層造形システム1を用いて立体物を形成した。具体的には、図3に示す材料層形成ユニットU2を用いて基材上に材料層を形成し、材料層が形成された基材を積層し、積層体から基材を加熱により除去することで、立体物である電極シート、電解質シート、および全固体電池を形成した。 A three-dimensional object was formed using the additive manufacturing system 1 described above. Specifically, a material layer is formed on a substrate using the material layer forming unit U2 shown in FIG. 3, the substrate on which the material layer is formed is laminated, and the substrate is removed from the laminate by heating. Thus, a three-dimensional electrode sheet, an electrolyte sheet, and an all-solid battery were formed.
 第1のベルト装置22aおよび第2のベルト装置22bにおいて、搬送部材224としてはポリイミド製の樹脂ベルトを用いた。また、駆動ローラ221および駆動ローラ222としてはステンレス製の金属ローラを用い、加圧ローラ223としてはステンレス製の芯金にシリコーンゴムの弾性層を設けたソフトローラを用いた。 In the first belt device 22a and the second belt device 22b, a polyimide resin belt was used as the conveying member 224. Further, as the driving roller 221 and the driving roller 222, stainless steel metal rollers were used, and as the pressure roller 223, a soft roller in which a silicone rubber elastic layer was provided on a stainless steel core was used.
 第1の基材11aとしては、ポリエステル(PET)製のシートを用いた。第1の基材11a上には、パターン形成装置23によってハニカムパターン状の凹凸パターンを形成した。まず、第1の基材11a上に紫外線硬化性樹脂(紫外線硬化性液状シリコーンゴム、PDMS、信越化学工業株式会社製)を塗工した。その後、第1の基材11a上の紫外線硬化性樹脂に、形成したい凹凸パターンに対応した、ハニカムパターン状の凹凸パターンを表面に有するフィルムモールド(標準モールド、綜研化学株式会社製)を押し当てた。フィルムモールドを押し当てた状態で、UVランプによって紫外線を照射して紫外線硬化性樹脂を硬化させて、フィルムモールドを離型した。 As the first base material 11a, a sheet made of polyester (PET) was used. A concavo-convex pattern having a honeycomb pattern was formed on the first base material 11 a by the pattern forming device 23. First, an ultraviolet curable resin (ultraviolet curable liquid silicone rubber, PDMS, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied on the first substrate 11a. Thereafter, a film mold (standard mold, manufactured by Soken Chemical Co., Ltd.) having a concavo-convex pattern of a honeycomb pattern corresponding to the concavo-convex pattern to be formed was pressed against the ultraviolet curable resin on the first substrate 11a. . With the film mold pressed, the ultraviolet curable resin was cured by irradiating ultraviolet rays with a UV lamp to release the film mold.
 表面に凹凸パターン111aを形成した第1の基材11aの構造を図13に示す。図13Aは第1の基材11aの上面図であり、図13Bは図13AのA-A断面図である。図13に示すように、第1の基材11aの表面には、六角形の枠状の凸部を有する、ハニカムパターン状の凹凸パターンが形成されている。ここで、図13Bに示すように、隣接する凸部の間隔(すなわち、凹部の幅)をk(μm)、隣接する凸部のピッチをs(μm)、凸部の高さ(すなわち、凹部の深さ)をd(μm)とする。なお、以下の実施例において、凹凸パターンの形状測定は、非接触表面・層断面形状計測システム(菱化システム社製 VertScan2.0)を用いて行った。 FIG. 13 shows the structure of the first base material 11a having the uneven pattern 111a formed on the surface. 13A is a top view of the first base material 11a, and FIG. 13B is a cross-sectional view taken along the line AA of FIG. 13A. As shown in FIG. 13, a honeycomb pattern-shaped uneven pattern having hexagonal frame-shaped protrusions is formed on the surface of the first base material 11 a. Here, as shown in FIG. 13B, the interval between adjacent convex portions (that is, the width of the concave portions) is k (μm), the pitch of the adjacent convex portions is s (μm), and the height of the convex portions (that is, the concave portions). Is d (μm). In the following examples, the shape measurement of the concavo-convex pattern was performed using a non-contact surface / layer cross-sectional shape measurement system (VertScan 2.0 manufactured by Ryoka System Co., Ltd.).
 第2の基材11bとしては、表面にアクリル系粘着剤を塗布したポリエステル(PET)製のシートを用いた。 As the second substrate 11b, a sheet made of polyester (PET) having an acrylic adhesive applied on the surface was used.
 第1の粒子P1及び第2の粒子P2は、LiCoO(以下LCO)、Li1.5Al0.5Ge1.512(以下LAGP)、Li6.75LaZr1.75Nb0.2512(以下LLZ)、LiBO(以下LBO)、黒鉛のいずれかを用いた。なお、コバルト酸リチウムLCOは正極材料、アルミニウム置換リン酸ゲルマニウムリチウムLAGP、LLZ、およびホウ酸リチウムLBOは固体電解質を含む材料、黒鉛は負極材料である。なお、コバルト酸リチウムLiCoOは、日本化学工業株式会社製のものを用いることが可能である。同様にして、Li1.5Al0.5Ge1.512を用いることができる。また、Li6.75LaZr1.75Nb0.2512は、株式会社豊島製作所製を用いることが可能である、また、略称をLLZのかわりにLLZNbとする場合がある。また、ホウ酸リチウムLiBOは、株式会社豊島製作所製を用いることが可能である。黒鉛は、SECカーボン株式会社製SGP-5を用いることが可能である。 The first particle P1 and the second particle P2 are LiCoO 2 (hereinafter LCO), Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 (hereinafter LAGP), Li 6.75 La 3 Zr 1. One of 75 Nb 0.25 O 12 (hereinafter referred to as LLZ), Li 3 BO 3 (hereinafter referred to as LBO), and graphite was used. Note that lithium cobalt oxide LCO is a positive electrode material, aluminum-substituted germanium lithium lithium LAGP and LLZ, and lithium borate LBO are materials containing a solid electrolyte, and graphite is a negative electrode material. The lithium cobalt oxide LiCoO 2 can be manufactured by Nippon Chemical Industry Co., Ltd. Similarly, it is possible to use Li 1.5 Al 0.5 Ge 1.5 P 3 O 12. Further, Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 can be manufactured by Toyoshima Seisakusho Co., Ltd., and the abbreviation may be LLZNb instead of LLZ. In addition, lithium borate Li 3 BO 3 can be manufactured by Toshima Seisakusho Co., Ltd. As graphite, SGP-5 manufactured by SEC Carbon Co., Ltd. can be used.
 また、担持材S1および担持材S2としては、磁性粒子である標準キャリア(日本画像学会製 標準キャリアP02)または自社キャリア(キヤノン製)のいずれかを用いた。なお、自社キャリアは、多孔質のフェライト粒子の孔に樹脂を充填した粒子である。材料層1の形成の際には、充填剤241aにおける第1の粒子P1の割合は17重量%とし、充填剤241bにおける第2の粒子P2の割合は45重量%とした。 In addition, as the support material S1 and the support material S2, either a standard carrier (standard carrier P02 manufactured by the Imaging Society of Japan) or an in-house carrier (manufactured by Canon), which is a magnetic particle, was used. The in-house carrier is a particle in which pores of porous ferrite particles are filled with a resin. When forming the material layer 1, the ratio of the first particles P1 in the filler 241a was 17% by weight, and the ratio of the second particles P2 in the filler 241b was 45% by weight.
 第1の基材11a上に形成する凹凸パターン111aのサイズ(間隔k、ピッチs、深さd)と充填剤を表1に示すように変えて、第1の実施形態に基づいて、第2の基材11b上に材料層1~7を形成した。なお、材料層6の形成の際には、第1の基材11aとしてポリエステル製のシートを用い、紫外線硬化性樹脂としてDIC株式会社製のOP-4003を用いた。 Based on the first embodiment, the size (interval k, pitch s, depth d) of the uneven pattern 111a formed on the first substrate 11a and the filler are changed as shown in Table 1, and the second Material layers 1 to 7 were formed on the substrate 11b. In forming the material layer 6, a polyester sheet was used as the first substrate 11a, and OP-4003 made by DIC Corporation was used as the ultraviolet curable resin.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、各材料層を形成する際に用いた充填剤中の各粒子の粒径は、表2のとおりであった。表2において、各粒子の粒径(r10,r50,r90)は、体積基準における粒径分布における累積分布の粒径であり、r10は累積10%、r50は累積50%、r90は累積90%の粒径である。なお、粒径の測定は、レーザ回析散乱式粒子径分布測定装置(株式会社堀場製作所製 LA-960)を用いて行った。 The particle diameter of each particle in the filler used when forming each material layer was as shown in Table 2. In Table 2, the particle size (r10, r50, r90) of each particle is the particle size of the cumulative distribution in the particle size distribution on a volume basis, r10 is 10% cumulative, r50 is 50% cumulative, and r90 is 90% cumulative. The particle size. The particle size was measured using a laser diffraction scattering type particle size distribution measuring device (LA-960, manufactured by Horiba, Ltd.).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 形成した材料層1~7の緻密さを下記の方法で評価した。具体的には、各材料層を形成した第2の基材11b上を材料層側から光学顕微鏡により撮影し、観察領域に占める粒子のカバー率を画像処理ソフト(アドビシステムズ製フォトショップ(登録商標))により計測した。その結果、材料層1~4のいずれも、カバー率は80%以上となり、緻密な材料層を形成できていることがわかった。 The density of the formed material layers 1 to 7 was evaluated by the following method. Specifically, the second base material 11b on which each material layer is formed is photographed from the material layer side with an optical microscope, and the coverage of particles in the observation region is determined by image processing software (Adobe Photoshop (registered trademark) manufactured by Adobe Systems). )). As a result, it was found that all the material layers 1 to 4 had a cover rate of 80% or more, and a dense material layer could be formed.
 (実施例1~11)
 次に、各材料層をそれぞれ形成した第2の基材11bを複数枚積層して積層体を形成した。そして、積層体を加熱炉に移送し、加熱炉中で加熱した。加熱前後で積層体の重量をそれぞれ測定し、加熱前後での基材の重量比(wt%)を評価した。また、加熱後の積層体の上下面を金でスパッタし、上下面にテスターを当ててリークするか否かを調査し、リークしたものをB、リークしなかったものをAとした。結果を表3に示す。なお、リークするものは抵抗値でおよそ10Ω以下であると評価できる。
(Examples 1 to 11)
Next, a plurality of second base materials 11b each formed with each material layer were laminated to form a laminate. And the laminated body was transferred to the heating furnace and heated in the heating furnace. The weight of the laminate was measured before and after heating, and the weight ratio (wt%) of the base material before and after heating was evaluated. Further, the upper and lower surfaces of the laminated body after heating were sputtered with gold, and a tester was applied to the upper and lower surfaces to investigate whether or not to leak, and the leaked one was B and the one that did not leak was A. The results are shown in Table 3. In addition, it can be evaluated that what leaks is about 10Ω or less in resistance value.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図14は、第2の基材11bであるポリエステル(PET)製のシートの熱重量分析結果を示す図である。熱重量分析は、示差熱天秤(株式会社リガク製 TG-DTA)を用い、空気中で室温(25℃)から5℃/分の割合で昇温させて行った。図14から、初期重量の50%となるときの温度は約400℃であり、初期重量の20%となるときの温度は約500℃であった。また、LCO、LAGP、LLZ、LBO、黒鉛のいずれも、熱分解温度は510℃以上であった。 FIG. 14 is a diagram showing a thermogravimetric analysis result of a polyester (PET) sheet which is the second base material 11b. The thermogravimetric analysis was performed by using a differential thermobalance (TG-DTA manufactured by Rigaku Corporation) and raising the temperature in the air from room temperature (25 ° C.) at a rate of 5 ° C./min. From FIG. 14, the temperature when it was 50% of the initial weight was about 400 ° C., and the temperature when it was 20% of the initial weight was about 500 ° C. In addition, all of LCO, LAGP, LLZ, LBO, and graphite had a thermal decomposition temperature of 510 ° C. or higher.
 表3に示すように材料層と積層枚数、加熱条件を変えて積層体を形成したところ、いずれの実施例においても、立体物を形成することができた。また、加熱処理の温度を高くしたり、加熱時間を長くしたりした場合には、基材の除去率をより高めることができた(実施例3~11)。 As shown in Table 3, when the laminated body was formed by changing the material layer, the number of laminated layers, and the heating conditions, a three-dimensional object could be formed in any of the examples. Further, when the temperature of the heat treatment was increased or the heating time was lengthened, the substrate removal rate could be further increased (Examples 3 to 11).
 (実施例12~14)
 次に、各材料層をそれぞれ形成した第2の基材11bを複数枚積層して積層体を形成した。そして、積層体を加熱炉に移送し、加熱炉中で加熱した。さらに、積層体を焼成炉に移送し、焼成炉中で加熱して焼成した。これにより、全固体電池を作製した。
(Examples 12 to 14)
Next, a plurality of second base materials 11b each formed with each material layer were laminated to form a laminate. And the laminated body was transferred to the heating furnace and heated in the heating furnace. Furthermore, the laminate was transferred to a firing furnace and heated and fired in the firing furnace. This produced the all-solid-state battery.
 (実施例12)
 表面に金をスパッタしたSi基板上に、材料層7(黒鉛)を4枚、材料層3(LAGP)を2枚、材料層1(LCO+LAPG)2枚、基材ごと順に積層した。そして、形成した積層体を加熱炉に入れ、加熱炉中で、空気(大気)下、500℃で30分間加熱し、基材を消失させた。その後、焼結炉中で、真空下、700℃で1時間加熱した。これにより、全固体電池1を作製した。
(Example 12)
Four material layers 7 (graphite), two material layers 3 (LAGP), and two material layers 1 (LCO + LAPG) were laminated on the Si substrate with gold sputtered on the surface in order. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose | disappeared. Then, it heated at 700 degreeC under vacuum in the sintering furnace for 1 hour. Thereby, the all-solid-state battery 1 was produced.
 (実施例13)
 黒鉛の成形体上に、材料層3(LAGP)を2枚、材料層1(LCO+LAPG)を2枚、基材ごと順に積層した。そして、形成した積層体を加熱炉に入れ、加熱炉中で、空気(大気)下、500℃で30分間加熱し、基材を消失させた。その後、焼結炉中で、真空下、700℃で1時間加熱した。これにより、全固体電池2を作製した。なお、黒鉛の成形体は、黒鉛の粉末を油圧プレス機により250MPaで加圧して成形することで形成した。
(Example 13)
On the graphite compact, two material layers 3 (LAGP) and two material layers 1 (LCO + LAPG) were laminated in order for each substrate. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose | disappeared. Then, it heated at 700 degreeC under vacuum in the sintering furnace for 1 hour. Thereby, the all-solid-state battery 2 was produced. The graphite compact was formed by pressing graphite powder at 250 MPa with a hydraulic press.
 (実施例14)
 LLZの成形体の下に、材料層7(黒鉛)を4枚、基材ごと積層し、LLZの成形体の上に、材料層5(LCO+LBO)を2枚、基材ごと積層した。そして、形成した積層体を加熱炉に入れ、加熱炉中で、空気(大気)下、500℃で30分間加熱し、基材を消失させた。基材を消失させた後に積層体を加圧した後、焼結炉中で、真空下、700℃で1時間加熱した。これにより、全固体電池3を作製した。なお、LLZの成形体は、LLZの粉末を油圧プレス機により250MPaで加圧して成形した後に、空気(大気)下、1150℃で36時間焼成を行うことで形成した。また、形成したLLZの成形体は上面と下面をサンドペーパーで研磨した。
(Example 14)
Four material layers 7 (graphite) were laminated together with the base material under the LLZ compact, and two material layers 5 (LCO + LBO) were laminated together with the base material over the LLZ compact. And the formed laminated body was put into the heating furnace, and it heated for 30 minutes at 500 degreeC under air (atmosphere) in the heating furnace, and the base material was lose | disappeared. After the base material had disappeared, the laminate was pressurized, and then heated in a sintering furnace at 700 ° C. for 1 hour in a vacuum. Thereby, the all-solid-state battery 3 was produced. The LLZ compact was formed by pressurizing LLZ powder with a hydraulic press at 250 MPa, followed by firing at 1150 ° C. for 36 hours in air (atmosphere). The formed LLZ compact was polished with sandpaper on the upper and lower surfaces.
 表4は実施例12~14の全固体電池の評価結果である。 Table 4 shows the evaluation results of the all solid state batteries of Examples 12 to 14.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各全固体電池の評価は、電気化学装置(ソーラトロン社製1255WB型)により充放電試験を行って評価した。具体的には、充電容量が10mAh/g以上であり、放電容量がその1/10以上であった場合にAとした。いずれの全固体電池も、充放電が行われ、二次電池として動作することが確認された。 Each solid state battery was evaluated by performing a charge / discharge test using an electrochemical device (1255WB type manufactured by Solartron). Specifically, A was set when the charge capacity was 10 mAh / g or more and the discharge capacity was 1/10 or more. All the all-solid-state batteries were charged and discharged, and it was confirmed that they operate as secondary batteries.
 以上、本実施例によれば、電池の電極シート、電解質シートの製造や、全固体電池の製造が可能であった。それぞれを構成する粒子のパターニングが可能なため、面方向および積層方向に粒子がパターニングされた3次元構造を有する電池が製造できた。 As described above, according to this example, it was possible to manufacture a battery electrode sheet, an electrolyte sheet, and an all-solid battery. Since the particles constituting each of them can be patterned, a battery having a three-dimensional structure in which the particles are patterned in the plane direction and the stacking direction can be manufactured.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2018年2月14日提出の日本国特許出願特願2018-024116を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 
This application claims priority on the basis of Japanese Patent Application No. 2018-024116 filed on Feb. 14, 2018, the entire contents of which are incorporated herein by reference.

Claims (18)

  1.  複数の基材上に材料層をそれぞれ形成する材料層形成工程と、
     前記材料層がそれぞれ形成された前記複数の基材を積層し、積層体を形成する積層工程と、
     前記積層体から前記複数の基材を加熱により除去する除去工程と、を有することを特徴とする立体物の製造方法。
    A material layer forming step of forming a material layer on each of a plurality of substrates,
    A stacking step of stacking the plurality of base materials each having the material layer formed thereon to form a stack;
    And a removing step of removing the plurality of base materials from the laminate by heating.
  2.  前記除去工程は、前記基材の90重量%以上を消失させる工程であることを特徴とする請求項1に記載の立体物の製造方法。 The method for producing a three-dimensional object according to claim 1, wherein the removing step is a step of eliminating 90% by weight or more of the base material.
  3.  前記複数の材料層のそれぞれは、同一種類の材料または互いに異なる複数種類の材料からなり、
     前記複数の基材のそれぞれの熱分解温度は、前記複数の材料層を構成する材料の熱分解温度のいずれよりも低いことを特徴とする請求項1または2に記載の立体物の製造方法。
    Each of the plurality of material layers is made of the same type of material or a plurality of different types of materials.
    The method for producing a three-dimensional object according to claim 1 or 2, wherein the thermal decomposition temperatures of the plurality of base materials are lower than any of the thermal decomposition temperatures of the materials constituting the plurality of material layers.
  4.  前記複数の基材のぞれぞれは、有機材料からなることを特徴とする請求項1から3のいずれか一項に記載の立体物の製造方法。 The method for producing a three-dimensional object according to any one of claims 1 to 3, wherein each of the plurality of base materials is made of an organic material.
  5.  前記複数の材料層のそれぞれは、無機材料で構成されていることを特徴とする請求項4に記載の立体物の製造方法。 The method for producing a three-dimensional object according to claim 4, wherein each of the plurality of material layers is made of an inorganic material.
  6.  前記複数の材料層のそれぞれは、少なくとも1種類の粒子が配置された粒子層であることを特徴とする請求項1から5のいずれか一項に記載の立体物の製造方法。 The method for producing a three-dimensional object according to any one of claims 1 to 5, wherein each of the plurality of material layers is a particle layer in which at least one kind of particles is arranged.
  7.  前記積層体を構成する前記複数の材料層のうちの少なくとも1つは、複数種類の粒子がパターン状に配置された粒子層であることを特徴とする請求項6に記載の立体物の製造方法。 The method for producing a three-dimensional object according to claim 6, wherein at least one of the plurality of material layers constituting the laminate is a particle layer in which a plurality of types of particles are arranged in a pattern. .
  8.  前記複数の材料層のそれぞれにおける前記粒子による前記基材のカバー率は、80%以上であることを特徴とする請求項6または7に記載の立体物の製造方法。 The method for producing a three-dimensional object according to claim 6 or 7, wherein a coverage rate of the base material by the particles in each of the plurality of material layers is 80% or more.
  9.  前記複数の基材のそれぞれは、表面に粘着層を有することを特徴とする請求項1から8のいずれか一項に記載の立体物の製造方法。 The method for producing a three-dimensional object according to any one of claims 1 to 8, wherein each of the plurality of base materials has an adhesive layer on a surface thereof.
  10.  前記除去工程の後に、前記積層体を加圧する加圧工程を有することを特徴とする請求項1から9のいずれか一項に記載の立体物の製造方法。 The method for producing a three-dimensional object according to any one of claims 1 to 9, further comprising a pressurizing step of pressurizing the laminate after the removing step.
  11.  複数の基材上に材料層をそれぞれ形成する材料層形成工程と、
     前記材料層がそれぞれ形成された前記複数の基材を積層し、積層体を形成する積層工程と、
     前記積層体を、前記複数の基材の熱分解温度以上の温度で加熱する加熱工程と、を有することを特徴とする立体物の製造方法。
    A material layer forming step of forming a material layer on each of a plurality of substrates,
    A stacking step of stacking the plurality of base materials each having the material layer formed thereon to form a stack;
    And a heating step of heating the laminated body at a temperature equal to or higher than a thermal decomposition temperature of the plurality of base materials.
  12.  前記複数の基材は、単一種類の基材または互いに異なる複数種類の基材であり、
     前記加熱工程は、前記複数の基材のそれぞれの熱分解温度のうち最も高い熱分解温度以上の温度で加熱する工程であることを特徴とする請求項11に記載の立体物の製造方法。
    The plurality of substrates are a single type of substrate or a plurality of types of substrates different from each other,
    The method for producing a three-dimensional object according to claim 11, wherein the heating step is a step of heating at a temperature equal to or higher than a highest thermal decomposition temperature among the thermal decomposition temperatures of the plurality of base materials.
  13.  前記材料層形成工程は、固体電解質を含む材料を含む材料層を形成する工程を有し、
     前記立体物は固体電解質シートであることを特徴とする請求項1から12のいずれか一項に記載の立体物の製造方法。
    The material layer forming step has a step of forming a material layer containing a material containing a solid electrolyte,
    The method for producing a three-dimensional object according to any one of claims 1 to 12, wherein the three-dimensional object is a solid electrolyte sheet.
  14.  前記材料層形成工程は、電極を形成するための材料を含む材料層を形成する工程を有し、
     前記立体物は電極シートであることを特徴とする請求項1から12のいずれか一項に記載の立体物の製造方法。
    The material layer forming step includes a step of forming a material layer containing a material for forming an electrode,
    The method for producing a three-dimensional object according to any one of claims 1 to 12, wherein the three-dimensional object is an electrode sheet.
  15.  前記材料層形成工程は、固体電解質を含む材料を含む材料層を形成する工程と、正極材料または負極材料を含む材料層を形成する工程と、を有し、
     前記立体物は全固体電池であることを特徴とする請求項1から12のいずれか一項に記載の立体物の製造方法。
    The material layer forming step includes a step of forming a material layer containing a material containing a solid electrolyte, and a step of forming a material layer containing a positive electrode material or a negative electrode material,
    The method for producing a three-dimensional object according to any one of claims 1 to 12, wherein the three-dimensional object is an all-solid battery.
  16.  材料層がそれぞれ形成された複数の基材を積層し、積層体を形成する積層工程と、
     前記積層体から前記複数の基材を加熱により除去する除去工程と、を有することを特徴とする立体物の製造方法。
    A stacking step of stacking a plurality of base materials each having a material layer formed thereon to form a stack;
    And a removing step of removing the plurality of base materials from the laminate by heating.
  17.  それぞれが材料層を担持する複数の基材が積層された積層体から、前記複数の基材を加熱により除去する除去工程を有する立体物の製造方法。 A method for producing a three-dimensional object having a removing step of removing the plurality of substrates by heating from a laminate in which a plurality of substrates each carrying a material layer is laminated.
  18.  複数の基材上に材料層をそれぞれ形成する材料層形成ユニットと、
     前記材料層がそれぞれ形成された複数の前記基材を積層し、積層体を形成する積層ユニットと、
     前記積層体から前記基材を加熱により除去する除去ユニットと、を有することを特徴とする積層造形システム。
     
    A material layer forming unit that respectively forms material layers on a plurality of substrates;
    A plurality of the base materials each having the material layer formed thereon, and a laminate unit for forming a laminate;
    And a removal unit that removes the base material from the laminate by heating.
PCT/JP2019/005015 2018-02-14 2019-02-13 Three-dimensional object manufacturing method and lamination molding system WO2019159936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024116 2018-02-14
JP2018-024116 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159936A1 true WO2019159936A1 (en) 2019-08-22

Family

ID=67619929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005015 WO2019159936A1 (en) 2018-02-14 2019-02-13 Three-dimensional object manufacturing method and lamination molding system

Country Status (2)

Country Link
JP (1) JP7301548B2 (en)
WO (1) WO2019159936A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477967A (en) * 2022-01-12 2022-05-13 西安理工大学 Method for printing oriented flake crystalline alumina reinforced ceramic by surface exposure based on micro-channel
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868607A (en) * 1971-12-21 1973-09-19
JPS59172711A (en) * 1983-03-22 1984-09-29 株式会社村田製作所 Method of producing ceramic laminated capacitor
JP2008126561A (en) * 2006-11-22 2008-06-05 Ngk Insulators Ltd Method for production of ceramic structure, and ceramic structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562409B2 (en) 2003-12-24 2010-10-13 京セラ株式会社 Manufacturing method of electronic parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868607A (en) * 1971-12-21 1973-09-19
JPS59172711A (en) * 1983-03-22 1984-09-29 株式会社村田製作所 Method of producing ceramic laminated capacitor
JP2008126561A (en) * 2006-11-22 2008-06-05 Ngk Insulators Ltd Method for production of ceramic structure, and ceramic structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing
CN114477967A (en) * 2022-01-12 2022-05-13 西安理工大学 Method for printing oriented flake crystalline alumina reinforced ceramic by surface exposure based on micro-channel

Also Published As

Publication number Publication date
JP2019137061A (en) 2019-08-22
JP7301548B2 (en) 2023-07-03

Similar Documents

Publication Publication Date Title
WO2019159936A1 (en) Three-dimensional object manufacturing method and lamination molding system
JP7418135B2 (en) Electrode precursor, method for manufacturing electrode precursor
John et al. Large-area, continuous roll-to-roll nanoimprinting with PFPE composite molds
Luo et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp
Linghu et al. Transfer printing techniques for flexible and stretchable inorganic electronics
Kim et al. Ultrathin high-resolution flexographic printing using nanoporous stamps
KR102316641B1 (en) Electrophotographic multi-material 3D printer
Kim et al. Flexible and Transferrable Self‐Assembled Nanopatterning on Chemically Modified Graphene
Park et al. Thermally assisted nanotransfer printing with sub–20-nm resolution and 8-inch wafer scalability
JP6171412B2 (en) Imprint method, imprint mold and imprint apparatus
JP6123396B2 (en) Imprint method and imprint apparatus
JP2016515954A (en) Laminated transfer film for forming embedded nanostructures
US9323144B2 (en) Method for microcontact printing
Han et al. Fabrication of 3D nano-structures using reverse imprint lithography
CN107073518B (en) Scalable, printable, patterned sheet of high mobility graphene on flexible substrates
WO2011094317A2 (en) Micro-conformal templates for nanoimprint lithography
WO2011025522A1 (en) Functional nanoparticles
Akama et al. Fabrication of a micropatterned composite electrode for solid oxide fuel cells via ultraviolet nanoimprint lithography
Tsumori et al. Development of improved solid oxide fuel cell electrolyte sheet by microimprinting for layered material
WO2020241821A1 (en) Active material, method for producing active material, electrode and battery
Han et al. Fabrication of complex nanoscale structures on various substrates
JP2020198301A (en) Active material, manufacturing method of the same, electrode, and battery
JP2010510092A (en) Solvent removal assist material transfer for flexographic printing
US20120070621A1 (en) Conductive film forming method, conductive film forming apparatus and conductive film
JP6361726B2 (en) Imprint device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753809

Country of ref document: EP

Kind code of ref document: A1