WO2019159850A1 - Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program - Google Patents

Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program Download PDF

Info

Publication number
WO2019159850A1
WO2019159850A1 PCT/JP2019/004686 JP2019004686W WO2019159850A1 WO 2019159850 A1 WO2019159850 A1 WO 2019159850A1 JP 2019004686 W JP2019004686 W JP 2019004686W WO 2019159850 A1 WO2019159850 A1 WO 2019159850A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
video
pixel
size
signal processing
Prior art date
Application number
PCT/JP2019/004686
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 石田
謙介 霜觸
靖久 中田
直樹 黒澤
隼人 道口
健志 福原
慶一 蝶野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2019159850A1 publication Critical patent/WO2019159850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Definitions

  • the present invention relates to a signal processing device, a signal processing system, a signal processing method, and a signal processing program for transmitting and receiving video.
  • Non-Patent Document 1 is a video coding standard that divides and codes blocks called CTU (Coding Tree Unit), CU (Coding Unit), PU (Prediction Unit), and TU (Transform Unit). It describes about HEVC (High Efficiency Video Coding).
  • Non-Patent Document 2 describes the operation guidelines of the HEVC standard in digital broadcasting.
  • FIG. 13 is an explanatory diagram showing an example in which a glance of video (hereinafter referred to as a picture) is divided into CTU, CU, PU, and TU.
  • FIG. 13 shows an example of a picture in which the number of pixels in the horizontal direction is 832 and the number of pixels in the vertical direction is 480.
  • FIG. 13 shows that the picture is divided into CTUs each having 64 horizontal pixels and 64 vertical pixels. Further, FIG. 13 shows that the CTU is divided into CUs.
  • FIG. 13 shows that a CU is divided into PUs for prediction processing according to image characteristics.
  • FIG. 13 shows that a CU is divided into TUs for conversion processing according to image characteristics.
  • the CU size is larger than the TU size (feature A).
  • FIG. 14 is an explanatory diagram showing the maximum pixel size and the minimum pixel size of CTU, CU, PU, and TU that can be used in the HEVC standard.
  • the number of pixels in the horizontal direction and the number of pixels in the vertical direction are shown in the form of the number of pixels in the horizontal direction ⁇ the number of pixels in the vertical direction.
  • the maximum pixel size of CTU is 64 ⁇ 64.
  • the minimum pixel size of CTU is 16 ⁇ 16.
  • the pixel size of CTU is 32 ⁇ 32.
  • the maximum pixel size of a CU is 64 ⁇ 64. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of the CU is 8 ⁇ 8.
  • the maximum pixel size of PU is 64 ⁇ 64.
  • the minimum pixel size of PU is 8 ⁇ 4 and 4 ⁇ 8.
  • the maximum pixel size of TU is 32 ⁇ 32. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of TU is 4 ⁇ 4.
  • the CTU pixel size is 32 ⁇ 32. Therefore, in the HEVC standard, the CTU pixel sizes include 64 ⁇ 64, 32 ⁇ 32, and 16 ⁇ 16, but may not correspond to the pixel size of the picture.
  • 480 which is the number of pixels in the vertical direction of the picture is not a multiple of 64 which is the maximum pixel size (vertical direction) of the CTU. Therefore, when the picture is divided into CTUs having the maximum pixel size in order from the upper side of the picture, the pixel size of the block included in the CTU at the lower end of the picture is 64 ⁇ 32. Then, the pixel size of the CU included in the CTU must be 32 ⁇ 32 or less. In addition, the CTU is divided into a plurality of CUs.
  • the picture to be encoded (also referred to as the encoded picture size) is not a multiple of the maximum pixel size of the CTU, the picture may be divided into CTUs or CUs having a smaller pixel size at the edge of the picture. I understand (feature B).
  • 1080 / P digital content indicates a digital broadcast format in which a video having 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction is progressively displayed.
  • 2160 / P indicates a digital broadcast format in which a video having 3840 pixels in the horizontal direction and 2160 pixels in the vertical direction is progressively displayed.
  • Patent Document 1 describes a prediction block corresponding to each second block based on a first block to which the intra prediction encoding mode is applied and a plurality of second blocks that are units of orthogonal transform. The encoding of errors is described.
  • JP 2017-73602 A JP 2013-121044 A Japanese Patent Laying-Open No. 2015-076666 International Publication No. 2015/151513
  • High Efficiency Video Coding Information Technology-High Efficiency Coding and Media Delivery In Heterogeneous Environments-Part 2: High Efficiency Video Coding (Information technology-High efficiency coding and media derivative in heterogeneous biotechnology) ISO / IEC 23008-2, International Organization for Standardization, 2015/05 Video coding, audio coding and multiplexing systems for digital broadcasting Standard ARIB STD-B32 3.9, December 2016, Radio Industries Association of Japan
  • Non-Patent Documents 1 and 2 there is a problem that the compression efficiency of low-bit-rate video encoding based on the HEVC standard is restricted by the above-described feature A and feature B. This is because the HEVC standard defines a coded picture size corresponding to each digital content without considering the minimum overhead code amount in block division based on the quadtree structure.
  • DCT discrete cosine Transform
  • the encoded picture size of 2160 / P digital content is limited to 3840 ⁇ 2160. Therefore, even if the CTU is set to 64 ⁇ 64 which is the maximum pixel size, 24840 DCT coefficients must be transmitted. Note that the 24840 DCT coefficients are obtained by dividing each CTU so that the number of CUs is minimized and dividing the CU so that the number of TUs is minimized. This is the number of DCT coefficients of the (Direct Current) component.
  • Non-Patent Documents 1 and 2 considering that there is other information to be transmitted, according to Non-Patent Documents 1 and 2, for example, it is difficult to set the minimum bit rate of 2160 / P digital content to 1.5 Mbps or less. It is shown that. This indicates that the compression efficiency of low bit rate video encoding based on the HEVC standard is limited.
  • an object of the present invention is to provide a signal processing device, a signal processing system, a signal processing method, and a signal processing program for encoding video in consideration of the efficiency of encoding processing.
  • a storage unit that stores preset pixel number information indicating a predetermined number of pixels according to discrete cosine transform processing, and a set pixel number information stored in the storage unit indicate A pixel number adjusting unit that adjusts the number of pixels constituting the input video according to the number of pixels, and an encoding process including a discrete cosine transform process on the video in which the pixel number adjusting unit has adjusted the number of pixels And an encoding means.
  • the signal processing system includes any one of the signal processing apparatuses and a decoding processing apparatus that performs a decoding process according to the encoding process.
  • the signal processing method is based on the number of pixels indicated by the set pixel number information stored in the storage means in which the set pixel number information indicating the predetermined number of pixels corresponding to the discrete cosine transform processing is stored.
  • the signal processing program according to the present invention is indicated by set pixel number information stored in a storage unit in which set pixel number information indicating a predetermined number of pixels corresponding to discrete cosine transform processing is stored in a computer.
  • a pixel number adjustment process for adjusting the number of pixels constituting the input video according to the number of pixels, and an encoding process including a discrete cosine transform process for the video in which the number of pixels is adjusted by the pixel number adjustment process An encoding process is executed.
  • the minimum overhead code amount in the encoding process can be reduced.
  • FIG. 1 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 100 according to the first embodiment of this invention.
  • the video transmission system 100 according to the first embodiment of the present invention includes an encoding device 110 and a decoding device 120.
  • the encoding device 110 adjusts the number of pixels of the input video and the aspect ratio of each pixel. Then, the encoding device 110 encodes the adjusted video.
  • the video encoded by the encoding device 110 is transmitted by the transmission device 210. Also, the encoded video transmitted by the transmission device 210 is received by the reception device 220. Then, the receiving device 220 inputs the received encoded video to the decoding device 120.
  • the decoding device 120 decodes the input encoded video. Then, the decoding device 120 restores the number of pixels and the aspect ratio of the decoded video to the state before adjustment.
  • the encoding device 110 includes a setting unit 111, a size adjustment unit 112, a pixel aspect adjustment unit 113, an encoding processing unit 114, and a storage unit 115.
  • the setting unit 111, the size adjusting unit 112, the pixel aspect adjusting unit 113, and the encoding processing unit 114 are realized by, for example, a CPU (Central Processing Unit) that executes processing according to program control and a plurality of circuits.
  • the storage unit 115 is realized by a storage unit such as a memory.
  • the setting unit 111 sets the number of pixels of the image after the adjustment by the size adjustment unit 112 and the aspect ratio of the pixel after the adjustment by the pixel aspect adjustment unit 113 based on the number of pixels of the image input to the encoding device 110. To do.
  • the size adjusting unit 112 adjusts the video input to the encoding device 110 to a video having a predetermined number of pixels based on the setting result by the setting unit 111.
  • the pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels is adjusted by the size adjustment unit 112 based on the setting result by the setting unit 111.
  • the encoding processing unit 114 encodes an image of the number of pixels adjusted by the size adjusting unit 112 and a pixel whose aspect ratio is adjusted by the pixel aspect adjusting unit 113. Then, the encoding processing unit 114 inputs the encoded video to the transmission device 210.
  • Information is stored in the storage unit 115 in advance. Specifically, in the storage unit 115, for example, pixels in which set pixel number information, which is information indicating the number of pixels of an adjusted video set by the setting unit 111 according to the format of the input video, is registered A number database is stored.
  • FIG. 2 is an explanatory diagram illustrating an example of a pixel number database stored in the storage unit 115.
  • the pixel number database corresponds to each encoded video format, and has a value corresponding to the number of pixels in the horizontal direction and the number of pixels in the vertical direction according to the discrete cosine transform process in the encoding process, and the number of pixels in the dummy data. Is set.
  • an image whose encoded video format is represented as “1080 / I” has a horizontal pixel number (indicated as “pic_width_in_luma_samples” in FIG. 2) “1920. ", The number of pixels in the vertical direction (shown as” pic_height_in_luma_samples “in FIG. 2) is” 1088 ", and the value corresponding to the number of pixels of dummy data (shown as" conf_win_bottom_offset "in FIG. 2) is” 4 ". It is shown that a certain picture is included. Further, in the example shown in FIG.
  • the video represented as the encoded video format “1080 / I” has the horizontal pixel count “1920” and the vertical pixel count. The number is “544”, and it is indicated that a video whose value corresponding to the number of pixels of the dummy data is “2” is included.
  • a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1920” and a vertical pixel count of It is indicated that “1080” is included, and an image whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1920” and a vertical pixel count. The number is “1088”, and it is indicated that the video whose value corresponding to the number of pixels of the dummy data is “4” is included.
  • a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1440” and a vertical pixel count of It is indicated that “1080” is included, and an image whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is It is “2160”, and it is indicated that a video whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • the number of pixels in the horizontal direction is “2880”, and the pixels in the vertical direction The number is “2160”, and it is indicated that the video whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • the number of pixels in the horizontal direction is “2880”, and the pixels in the vertical direction
  • the number is “2160”, and it is indicated that the video whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is It is “2176”, and it is shown that a video whose value corresponding to the number of pixels of the dummy data is “8” is included.
  • the number of pixels in the horizontal direction is “2880”, and the pixels in the vertical direction It is shown that the number is “2176” and the video whose value corresponding to the number of pixels of the dummy data is “8” is included.
  • the number of pixels in the horizontal direction is “7680” and the number of pixels in the vertical direction is It is indicated that “4320” is included, and a video whose value corresponding to the number of pixels of the dummy data is “0” is included.
  • the storage unit 115 stores, for example, a pixel aspect database in which the adjusted pixel aspect ratio set by the setting unit 111 according to the format of the input video is registered.
  • FIG. 3 is an explanatory diagram showing an example of a pixel aspect database.
  • “1” that is an identifier corresponding to 1: 1 and “14” that is an identifier corresponding to 4: 3 are registered in the column “aspect_ratio_idc” indicating the aspect ratio of the pixel.
  • the pixel aspect ratio of 1: 1 means that the pixel has a square pixel having the same horizontal length and vertical length.
  • the pixel aspect ratio of 4: 3 means that the pixel is a rectangular pixel in which the horizontal length and the vertical length of the pixels are different from each other and the ratio is 4: 3.
  • the decoding device 120 includes a decoding processing unit 121, a restoration setting unit 122, a size restoration unit 123, a pixel aspect restoration unit 124, and a storage unit 125.
  • the decoding processing unit 121, the restoration setting unit 122, the size restoration unit 123, and the pixel aspect restoration unit 124 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
  • the decoding processing unit 121 decodes the encoded video input by the receiving device 220.
  • the restoration setting unit 122 sets the size of the restored video based on the number of pixels of the video decoded by the decoding processing unit 121.
  • the size restoration unit 123 adjusts the size of the video decoded by the decoding processing unit 121 based on the setting result by the restoration setting unit 122.
  • the pixel aspect restoration unit 124 adjusts the aspect ratio of the pixels of the video whose size has been adjusted by the size restoration unit 123 based on the number of pixels of the video decoded by the decoding processing unit 121.
  • the storage unit 125 stores, for example, a restoration database in which the restored video size set by the restoration setting unit 122 according to the number of decoded video pixels is registered.
  • the restoration database for example, information corresponding to information registered in the pixel aspect database is registered.
  • FIG. 4 is a flowchart showing an operation example of the encoding apparatus 110 according to the first embodiment of the present invention.
  • the setting unit 111 is a database in which information corresponding to the format of the video input to the encoding device 110 is stored in the storage unit 115.
  • the number of pixels of the image after adjustment by the size adjustment unit 112 is set (step S101).
  • a video having a format of 2160 / P for example, a video having a horizontal pixel number “3840” and a vertical pixel number “2160” is input to the encoding device 110. .
  • the setting unit 111 corresponds to the encoded video format “2160 / P” in the pixel number database of the storage unit 115 in response to the video having the format 2160 / P being input to the encoding device 110.
  • the number of attached horizontal pixels and the number of vertical pixels are read out.
  • the encoded video format “2160 / P” includes a horizontal pixel count “2880”, a vertical pixel count “2160”, a horizontal pixel count “3840”, and a vertical pixel count.
  • the number “2176” is associated with a value “8” corresponding to the number of pixels of dummy data to be added.
  • the setting unit 111 for example, in accordance with an operation performed by the administrator, the horizontal pixel number “2880” and the vertical pixel number associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 115. Assume that the number of pixels in the direction “2160” is read out. For example, it is assumed that the setting unit 111 reads the identifier “14” from the pixel aspect database of the storage unit 115 in accordance with an operation performed by the administrator.
  • the setting unit 111 sets the number of pixels of the adjusted image to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”.
  • the setting unit 111 sets the adjusted pixel aspect ratio to “4: 3”.
  • the size adjusting unit 112 adjusts the video input to the encoding device 110 to a video having a predetermined number of pixels based on the setting result by the setting unit 111 (step S102).
  • the setting unit 111 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. Therefore, the size adjustment unit 112 adjusts the video input to the encoding device 110 to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”.
  • the format of the video input to the encoding device 110 is 2160 / P
  • the number of pixels in the horizontal direction of the video is “3840”
  • the number of pixels in the vertical direction is “2160”. Therefore, the size adjustment unit 112 reduces the number of pixels in the horizontal direction from “3840” to “2880” in the video input to the encoding device 110.
  • the size adjustment unit 112 thins out 1040 pixels from 3840 pixels arranged in the horizontal direction, and sets the number of pixels in the horizontal direction to “2880”. To "".
  • a method for reducing the number of pixels for example, a known method is used. Then, the number of pixels in the horizontal direction is reduced to 3/4.
  • the pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels has been adjusted by the size adjustment unit 112 based on the setting result in the setting unit 111 (step S103).
  • the setting unit 111 sets the aspect ratio of the adjusted pixel to “4: 3”. Therefore, the pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels is adjusted by the size adjustment unit 112 to “4: 3”. Therefore, the pixels in the video whose number of pixels has been adjusted by the size adjusting unit 112 are enlarged by 4/3 times in the horizontal direction.
  • the encoding processing unit 114 encodes an image having the number of pixels set by the size adjusting unit 112 and a pixel having an aspect ratio adjusted by the pixel aspect adjusting unit 113 (step S104).
  • the video to be encoded by the encoding processing unit 114 has “2880” as the number of pixels in the horizontal direction and “2160” as the number of pixels in the vertical direction.
  • the remaining image is a CTU having a pixel size of 32 ⁇ 32 including pixels for 32 rows and a pixel size of 16 ⁇ 16 including pixels for the remaining 16 rows among 48 rows of pixels arranged in the horizontal direction.
  • a CTU having a pixel size of 32 ⁇ 32 and a CTU having a pixel size of 16 ⁇ 16 each include one TU. Therefore, in the remaining video, 90 rows of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32 and one row of 180 rows arranged in a horizontal direction with a pixel size of 16 ⁇ 16
  • the video is first divided into 33 rows of CTUs each having 60 pixels arranged in the horizontal direction with a pixel size of 64 ⁇ 64.
  • the rest of the video consists of one row of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 ⁇ 16 and 240 pixels. Divided into parts.
  • the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 18630.
  • the encoding processing unit 114 inputs the video encoded in the process of step S104 to the transmission device 210. Then, the video input to the transmission device 210 is transmitted by the transmission device 210.
  • FIG. 5 is a flowchart showing the operation of the decoding device 120 according to the first embodiment of the present invention.
  • the video encoded by the encoding device 110 and received by the reception device 220 is input to the decoding device 120.
  • the decoding processing unit 121 decodes the input encoded video (step S201).
  • the restoration setting unit 122 identifies the number of pixels of the video based on the video decoded by the decoding processing unit 121 (step S202). Then, based on the number of pixels specified by the restoration setting unit 122 in step S202, the size restoration unit 123 adjusts the size of the video decoded by the decoding processing unit 121 (step S203).
  • the pixel aspect restoration unit 124 adjusts the aspect ratio of the pixels of the video whose size has been adjusted by the size restoration unit 123 based on the number of pixels of the video decoded by the decoding processing unit 121 (step S204).
  • the video encoded by adjusting the number of pixels and the aspect ratio is decoded by the process of step S201, adjusted by the processes of steps S203 and S204, and restored.
  • the encoding processing unit 114 performs the encoding process after the size adjusting unit 112 and the pixel aspect adjusting unit 113 adjust the number of pixels and the aspect ratio in consideration of the number of DCT coefficients. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced.
  • the size adjustment unit 112 thins out some of the pixels arranged in the horizontal direction based on the setting result in the setting unit 111, and the pixel aspect adjustment unit 113 adjusts the aspect ratio of the pixel.
  • the size adjustment unit 112 may be configured to thin out some of the pixels arranged in the vertical direction, and the pixel aspect adjustment unit 113 may be configured to adjust the pixel aspect ratio.
  • the size adjusting unit 112 decreases the number of pixels in the horizontal direction from “1920” to “1440”. Then, the number of pixels in the horizontal direction is reduced to 3/4. Then, the pixel aspect adjustment unit 113 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 112 to “4: 3”.
  • the image has 16 rows of CTUs arranged in a horizontal direction with a pixel size of 64 ⁇ 64 and 22 rows of CTUs, and 32 rows of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32 respectively. 45 rows arranged in a horizontal direction with a pixel size of 32 ⁇ 32, CTUs of one row arranged in a horizontal direction with a pixel size of 16 ⁇ 16, and 8 ⁇ 8 It is divided into one row of CUs arranged in a horizontal direction with a pixel size.
  • the number of DCT coefficients when the size-adjusted image is encoded after the size is adjusted so that the number of pixels in the horizontal direction becomes “1440” and the number of pixels in the vertical direction becomes “1080”.
  • Is 4224 + 96 + 135 + 270 + 540 5265.
  • an image that is not processed by the size adjustment unit 112 and has 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction has a pixel size of 64 ⁇ 64 and 30 in the horizontal direction.
  • 16 rows of CTUs arranged in a row 60 rows of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32, and 120 pieces of CTUs arranged in a horizontal direction with a pixel size of 16 ⁇ 16 It is divided into a CTU portion for one row and a CU portion for one row arranged in the horizontal direction with 8 ⁇ 8 pixel size.
  • the processing according to the present embodiment enables encoding.
  • the effect is that the number of DCT coefficients used can be reduced from 7020 to 5265.
  • FIG. 6 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 300 according to the second embodiment of this invention.
  • the video transmission system 300 according to the second exemplary embodiment of the present invention includes an encoding device 310 and a decoding device 320.
  • the encoding device 310 adjusts the number of pixels by adding dummy pixels to the input video. Then, the encoding device 310 encodes the adjusted video.
  • the video encoded by the encoding device 310 and cutout range information described later are transmitted by the transmission device 210. Also, the encoded video and cutout range information described later transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and clipping range information described later to the decoding device 320.
  • the decoding device 320 decodes the input encoded video. Then, based on the cut-out range information, the decoding device 320 erases the added dummy pixels from the decoded video and restores the state before adjustment.
  • the encoding device 310 includes a setting unit 311, a size adjustment unit 312, a cutout range setting unit 313, an encoding processing unit 314, and a storage unit 315.
  • the setting unit 311, the size adjustment unit 312, the cutout range setting unit 313, and the encoding processing unit 314 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
  • the setting unit 311 sets the number of pixels of the video after the adjustment by the size adjustment unit 312 based on the number of pixels of the video input to the encoding device 310.
  • the size adjustment unit 312 adds a dummy pixel to the video input to the encoding device 310 based on the setting result by the setting unit 311 to adjust the video to a predetermined number of pixels.
  • the cut-out range setting unit 313 generates cut-out range information, which is information indicating the range excluding the dummy pixels added by the size adjustment unit 312 from the image after adjustment by the size adjustment unit 312.
  • the encoding processing unit 314 encodes an image having the number of pixels to which dummy pixels are added by the size adjusting unit 312. Then, the encoding processing unit 314 inputs the encoded video and the cut range information generated by the cut range setting unit 313 to the transmission device 210.
  • the storage unit 315 stores, for example, a pixel number database in which the number of pixels of the adjusted video set by the setting unit 311 according to the format of the input video is registered.
  • the pixel number database illustrated in FIG. 2 is stored in the storage unit 315.
  • the decoding device 320 includes a decoding processing unit 321 and a size restoring unit 323.
  • the decryption processing unit 321 and the size restoration unit 323 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
  • the decoding processing unit 321 decodes the encoded video input by the receiving device 220.
  • the size restoration unit 323 cuts the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 321 based on the cut range information.
  • FIG. 7 is a flowchart showing an operation example of the encoding apparatus 310 according to the second embodiment of the present invention.
  • the setting unit 311 stores information corresponding to the format of the video input to the encoding device 310 in the storage unit 315.
  • the number of pixels of the image after adjustment by the size adjustment unit 312 is set (step S301).
  • a video having a format of 2160 / P for example, a video having a horizontal pixel number “3840” and a vertical pixel number “2160” is input to the encoding device 110. .
  • the setting unit 311 corresponds to the encoded video format “2160 / P” in the pixel number database of the storage unit 315 in response to the video having the format 2160 / P being input to the encoding device 110.
  • the number of attached horizontal pixels and the number of vertical pixels are read out.
  • the encoded video format “2160 / P” includes an image having a horizontal pixel number “3840” and a vertical pixel number “2160”, a horizontal pixel number “3840”, A vertical number of pixels “2176” and an image having a value “8” corresponding to the number of pixels of dummy data to be added are included.
  • the setting unit 31 for example, in accordance with the operation performed by the administrator, the horizontal pixel number “3840” associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 115 and the vertical It is assumed that the number of pixels “2176” in the direction and the value “8” corresponding to the number of pixels of dummy data are read. The value “8” corresponds to the number of pixels “16” of the dummy data.
  • the setting unit 311 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2176”. Further, the setting unit 311 sets the number of pixels of the dummy data to “16”.
  • the size adjusting unit 312 adjusts the video input to the encoding device 310 to a video having a predetermined number of pixels based on the setting result by the setting unit 311 (step S302). Specifically, the size adjustment unit 312 receives, as an input to the encoding device 310, a video based on dummy data in which 16 pixels arranged in the vertical direction in the video are arranged across both ends in the horizontal direction of the video. To the video. Note that an image based on dummy data is also referred to as an image based on dummy pixels, and that an image based on dummy data is added is also referred to as a dummy pixel being added.
  • the number of pixels in the vertical direction is 2176, and the horizontal pixels The number is 3840.
  • the cutout range setting unit 313 cuts out a range other than the video based on the dummy data, that is, the range of the video input to the encoding device 310 among the videos that have been adjusted by the size adjustment unit 312 in the process of step S302. Range information is generated (step S303).
  • the encoding processing unit 314 encodes the video having the number of pixels to which the dummy pixels are added by the size adjusting unit 312 (step S304). Then, the encoding processing unit 314 inputs the encoded video and the cut range information generated by the cut range setting unit 313 to the transmission device 210.
  • the encoded video and cutout range information input to the transmission device 210 are transmitted by the transmission device 210. Also, the encoded video and cutout range information transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and cutout range information to the decoding device 320.
  • the video to be encoded by the encoding processing unit 314 has “3840” as the number of pixels in the horizontal direction and “2176” as the number of pixels in the vertical direction.
  • the number of DCT coefficients when the entire video is encoded is 24480.
  • the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is “2160”.
  • the video is first divided into 33 rows of CTUs each having 60 pixels arranged in the horizontal direction with a pixel size of 64 ⁇ 64.
  • the rest of the video consists of one row of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 ⁇ 16 and 240 pixels. Divided into parts.
  • the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 24480.
  • FIG. 8 is a flowchart showing an operation example of the decoding device 320 according to the second embodiment of the present invention. As shown in FIG. 8, first, the decoding processing unit 321 decodes the encoded video input by the receiving device 220 (step S401).
  • the size restoration unit 323 cuts out (extracts) the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 321 based on the cut range information (step S402).
  • the cut-out range information indicates a range other than the video based on the dummy data in the video decoded by the decoding processing unit 321, that is, the range of the video input to the encoding device 310. Therefore, in the process of step S402, the video input to the encoding device 310 is cut (extracted) by the size restoration unit 323 (step S402).
  • the encoding processing unit 314 performs the encoding process. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced.
  • the case where a video having a format of 2160 / P is input to the encoding device 310 has been described as an example.
  • this is a DCT used when a video having a format of 1080 / P and having a horizontal pixel number “1920” and a vertical pixel number “1080” is encoded without adjustment. It is clear from the fact that the number of coefficients is 7020.
  • FIG. 9 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 500 according to the third embodiment of the present invention.
  • the video transmission system 500 according to the third embodiment of the present invention includes an encoding device 510 and a decoding device 520.
  • the encoding device 110 adjusts the number of input video pixels and the aspect ratio of each pixel.
  • the encoding device 310 adjusts the number of pixels by adding dummy pixels to the input video.
  • the encoding device 510 of the present embodiment performs the encoding after adjusting the number of pixels of the input video and the aspect ratio of each pixel and adding a dummy pixel to the input video. Perform the process.
  • the video encoded by the encoding device 510 is transmitted by the transmission device 210. Also, the encoded video transmitted by the transmission device 210 is received by the reception device 220. Then, the receiving device 220 inputs the received encoded video to the decoding device 520.
  • the decoding device 520 of the present embodiment decodes the encoded video, restores the number of pixels and the aspect ratio of the decoded video to the state before adjustment, and deletes the dummy pixels.
  • the encoding device 510 includes a setting unit 511, a size adjustment unit 512, a pixel aspect adjustment unit 513, an encoding processing unit 514, a storage unit 515, and a cutout range setting unit 516.
  • the setting unit 511, the size adjustment unit 512, the pixel aspect adjustment unit 513, the encoding processing unit 514, and the cutout range setting unit 516 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
  • the setting unit 511 sets the number of pixels of the video after the adjustment by the size adjustment unit 512 based on the number of pixels of the video input to the encoding device 510.
  • the size adjusting unit 512 adjusts the video input to the encoding device 310 to a video having a predetermined number of pixels based on the setting result by the setting unit 511.
  • the cut-out range setting unit 516 includes cut-out range information that is information indicating a range excluding the dummy pixels added by the size adjusting unit 512 from the adjusted video to which the dummy pixels are added by the size adjusting unit 512. Generate.
  • the encoding processing unit 514 encodes an image having the number of pixels to which dummy pixels are added by the size adjusting unit 512. Then, the encoding processing unit 514 inputs the encoded video and the cut range information generated by the cut range setting unit 516 to the transmission device 210.
  • Information is stored in the storage unit 515 in advance. Specifically, for example, the pixel number database illustrated in FIG. 2 is stored.
  • the decoding device 520 includes a decoding processing unit 521, a restoration setting unit 522, a size restoring unit 523, a pixel aspect restoring unit 524, and a storage unit 525.
  • the decoding processing unit 521, the restoration setting unit 522, the size restoration unit 523, and the pixel aspect restoration unit 524 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
  • the decoding processing unit 521 decodes the encoded video input by the receiving device 220.
  • the restoration setting unit 522 sets the size of the restored video based on the number of pixels of the video decoded by the decoding processing unit 521.
  • the size restoration unit 523 cuts the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 521 based on the cut range information.
  • the pixel aspect restoration unit 524 adjusts the aspect ratio of the pixel of the video whose size has been adjusted by the size restoration unit 523 based on the number of pixels of the video decoded by the decoding processing unit 521.
  • the storage unit 525 stores, for example, a restoration database in which the restored video size set by the restoration setting unit 522 according to the number of decoded video pixels is registered.
  • restoration database for example, information corresponding to information registered in the pixel aspect database illustrated in FIG. 3 is registered.
  • FIG. 10 is a flowchart showing an operation example of the encoding apparatus 510 according to the third embodiment of the present invention.
  • the setting unit 511 stores a database in which information according to the format of the video input to the encoding device 510 is stored in the storage unit 515. And the number of pixels of the image after adjustment by the size adjustment unit 512 is set (step S501).
  • a video having a format of 2160 / P for example, a video having the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2160” is input to the encoding device 510. .
  • the setting unit 511 performs horizontal processing of the encoded video format “2160 / P” in the pixel number database of the storage unit 515.
  • the number of pixels in the direction and the number of pixels in the vertical direction are read.
  • the encoded video format “2160 / P” includes an image having a horizontal pixel number “3840” and a vertical pixel number “2160”, a horizontal pixel number “2880”, The number of pixels in the vertical direction “2176” and the dummy data “8” to be added are included.
  • the setting unit 511 for example, in accordance with the operation performed by the administrator, the horizontal pixel number “2880” and the vertical pixel number associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 515. Assume that the number of pixels “2176” in the direction is read out. For example, it is assumed that the setting unit 511 reads the identifier “14” from the pixel aspect database in the storage unit 515 in accordance with an operation performed by the administrator.
  • the setting unit 511 sets the number of pixels of the adjusted image to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”.
  • the setting unit 511 sets the aspect ratio of the adjusted pixel to “4: 3”. Further, the setting unit 511 sets the number of pixels of the dummy data to “16”.
  • the size adjusting unit 512 adjusts the video input to the encoding device 510 to a video having a predetermined number of pixels based on the setting result by the setting unit 511 (step S502).
  • the setting unit 511 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. Therefore, the size adjusting unit 512 thins out the video input to the encoding device 510 from the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2160” to obtain the number of pixels in the horizontal direction “2880”. ”And the number of pixels in the vertical direction“ 2160 ”. Then, the number of pixels in the horizontal direction is reduced to 3/4.
  • the setting unit 511 sets the number of pixels of the dummy data to “16”. Therefore, the size adjustment unit 512 adds 16 pixels of dummy data arranged in the vertical direction in addition to 2160 pixels in the vertical direction across the both ends of the video in the horizontal direction. To do.
  • the number of pixels in the vertical direction is 2176, and the horizontal pixels The number is 2880.
  • the pixel aspect adjustment unit 513 adjusts the pixel aspect ratio in the video in which the number of pixels is adjusted by the size adjustment unit 512 based on the setting result in the setting unit 511 (step S503).
  • the setting unit 511 sets the aspect ratio of the pixel after adjustment to “4: 3”. Therefore, the pixel aspect adjustment unit 513 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 512 to “4: 3”. Accordingly, the pixels in the video whose number of pixels has been adjusted by the size adjusting unit 512 are expanded 4/3 times in the horizontal direction.
  • the cutout range setting unit 516 includes a cutout indicating a range other than the video based on the dummy data, that is, the range of the video input to the encoding device 510 among the videos that have been adjusted by the size adjustment unit 512 in the process of step S502. Range information is generated (step S504).
  • the encoding processing unit 514 encodes the video in which the number of pixels is adjusted by the size adjusting unit 512 and the pixel aspect ratio is adjusted by the pixel aspect adjusting unit 513 (step S505). Then, the encoding processing unit 514 inputs the encoded video and the cut range information generated by the cut range setting unit 516 to the transmission device 210.
  • the encoded video and cutout range information input to the transmission device 210 are transmitted by the transmission device 210. Also, the encoded video and cutout range information transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and cutout range information to the decoding device 520.
  • the video to be encoded by the encoding processing unit 514 has a horizontal pixel count of “2880” and a vertical pixel count of “2176”.
  • the number of DCT coefficients when the entire video is encoded is 18360.
  • the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 18360.
  • FIG. 11 is a flowchart showing an operation example of the decoding device 520 according to the third embodiment of the present invention. As shown in FIG. 11, first, the decoding processing unit 521 decodes the encoded video input by the receiving device 220 (step S601).
  • the restoration setting unit 522 specifies the number of pixels of the video based on the video decoded by the decoding processing unit 521 (step S602). Then, based on the number of pixels specified by the restoration setting unit 522 in step S602, the size restoration unit 523 adjusts the size of the video decoded by the decoding processing unit 521 (step S603).
  • step S603 the size restoration unit 523 cuts out (extracts) a video in a range indicated by the cut range information from the video decoded by the decoding processing unit 521 based on the cut range information, for example. ).
  • the pixel aspect restoration unit 524 adjusts the aspect ratio of the pixels of the video decoded by the decoding processing unit 521 and extracted by the size restoration unit 523 (step S604).
  • the video encoded by adjusting the number of pixels and the aspect ratio is decoded by the process of step S601, adjusted by the processes of steps S603 and S604, and restored.
  • the encoding processing unit 514 performs the encoding process after the size adjusting unit 512 and the pixel aspect adjusting unit 513 adjust the number of pixels and the aspect ratio in consideration of the number of DCT coefficients. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced.
  • the size adjustment unit 512 decreases the number of pixels in the horizontal direction from “1920” to “1440”. Then, the number of pixels in the horizontal direction is reduced to 3/4.
  • the size adjusting unit 512 converts the video by dummy data in which eight pixels arranged in the vertical direction in the video are arranged across both ends in the horizontal direction of the video into the video input to the encoding device 510. Append. Then, in the video after the size adjustment by the size adjustment unit 512, the number of pixels in the horizontal direction becomes “1440” and the number of pixels in the vertical direction becomes “1088”. Then, the pixel aspect adjustment unit 513 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 512 to “4: 3”.
  • the video has 17 rows of CTUs arranged in a horizontal direction with a pixel size of 64 ⁇ 64 and 22 rows of CTUs, and 34 rows of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32 respectively. And divided.
  • the number of DCT coefficients when the size-adjusted image is encoded by the size adjusting unit 512 so that the number of pixels in the horizontal direction is “1440” and the number of pixels in the vertical direction is “1088”. Is 4488 + 102 4590.
  • an image that has not been processed by the size adjustment unit 512 and has 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction has a pixel size of 64 ⁇ 64 and 30 in the horizontal direction.
  • 16 rows of CTUs arranged in a row 60 rows of CTUs arranged in a horizontal direction with a pixel size of 32 ⁇ 32, and 120 pieces of CTUs arranged in a horizontal direction with a pixel size of 16 ⁇ 16 It is divided into a CTU portion for one row and a CU portion for one row arranged in the horizontal direction with 8 ⁇ 8 pixel size.
  • the processing according to the present embodiment enables encoding.
  • the effect is that the number of DCT coefficients used can be reduced from 7020 to 4590.
  • FIG. 12 is a block diagram illustrating a configuration example of the signal processing device according to the fourth embodiment of the present invention.
  • the signal processing apparatus 11 includes a storage unit (storage unit) 15, a pixel number adjustment unit (pixel number adjustment unit) 12, and an encoding unit (encoding). Means) 14.
  • the signal processing device 11 is, for example, the encoding device 110 in the first embodiment shown in FIG. 1, the encoding device 310 in the second embodiment shown in FIG. 6, or the third embodiment shown in FIG. This corresponds to the encoding device 510 in FIG.
  • the storage unit 15 corresponds to the storage unit 315 in the second embodiment shown in FIG. 6 and the storage unit 515 in the third embodiment shown in FIG.
  • the pixel number adjusting unit 12 corresponds to the size adjusting unit 312 in the second embodiment shown in FIG. 6 and the size adjusting unit 512 in the third embodiment shown in FIG.
  • the encoding unit 14 corresponds to the encoding processing unit 314 in the second embodiment shown in FIG. 6 and the encoding processing unit 514 in the third embodiment shown in FIG.
  • the storage unit 15 stores set pixel number information indicating a predetermined number of pixels according to the discrete cosine transform process.
  • the set pixel number information corresponds to, for example, information registered in the pixel number database.
  • the pixel number adjustment unit 12 adjusts the number of pixels constituting the input video according to the number of pixels indicated by the set pixel number information stored in the storage unit 15.
  • the encoding unit 14 performs an encoding process including a discrete cosine transform process on the video in which the pixel number adjusting unit 12 has adjusted the number of pixels.
  • the pixel number adjustment unit 12 executes a process of adding additional pixels to the input video according to the number of pixels indicated by the set pixel number information.
  • the pixel number adjusting unit 12 adjusts the number of pixels constituting the input video according to the number of pixels indicated by the set pixel number information stored in the storage unit 15.
  • the encoding part 14 performs the encoding process including the process of a discrete cosine transform to the image
  • the size of the video can be adjusted to reduce the number of DCT coefficients, and the video can be encoded in consideration of the minimum overhead code amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

[Problem] To provide a signal processing device which encodes an image while taking into account the efficiency of encoding processing, and a signal processing system, a signal processing method, and a signal processing program. [Solution] A storage unit 15 stores configuration pixel number information that indicates the number of pixels determined in advance in accordance with discrete cosine transformation processing. Depending on the number of pixels indicated by the configuration pixel number information stored in the storage unit 15, a pixel number adjustment unit 12 adjusts the number of pixels configuring an inputted image. An encoding unit 14 subjects the image, of which the number of pixels has been adjusted by the pixel number adjustment unit 12, to encoding processing including discrete cosine transformation processing. Also, the pixel number adjustment unit 12 performs processing involving adding additional pixels to the aforementioned inputted image depending on the number of pixels indicated by the configuration pixel number information.

Description

信号処理装置、信号処理システム、信号処理方法、および信号処理用プログラムが記憶された記憶媒体Signal processing apparatus, signal processing system, signal processing method, and storage medium storing signal processing program
 本発明は、映像を送受信するための信号処理装置、信号処理システム、信号処理方法、および信号処理用プログラムに関する。 The present invention relates to a signal processing device, a signal processing system, a signal processing method, and a signal processing program for transmitting and receiving video.
 映像の符号化には様々な方法が提案されている。非特許文献1には、CTU(Coding Tree Unit)、CU(Coding Unit)、PU(Prediction Unit)、およびTU(Transform Unit)と呼ばれるブロックに分割して符号化する映像符号化方式の規格であるHEVC(High Efficiency Video Coding)について記載されている。 Various methods have been proposed for video coding. Non-Patent Document 1 is a video coding standard that divides and codes blocks called CTU (Coding Tree Unit), CU (Coding Unit), PU (Prediction Unit), and TU (Transform Unit). It describes about HEVC (High Efficiency Video Coding).
 そして、非特許文献2には、デジタル放送におけるHEVC規格の運用ガイドラインが記載されている。 And Non-Patent Document 2 describes the operation guidelines of the HEVC standard in digital broadcasting.
 図13は、映像の一齣(以下、ピクチャという)が、CTU、CU、PU、およびTUに分割される例を示す説明図である。 FIG. 13 is an explanatory diagram showing an example in which a glance of video (hereinafter referred to as a picture) is divided into CTU, CU, PU, and TU.
 図13には、水平方向の画素数が832であり、垂直方向の画素数が480であるピクチャの例が示されている。そして、図13には、ピクチャが、水平方向の画素数および垂直方向の画素数がいずれも64であるCTUに分割されることが示されている。さらに、図13には、CTUがCUに分割されることが示されている。また、図13には、CUが、画像特性に応じて予測処理用のPUに分割されることが示されている。図13には、CUが、画像特性に応じて変換処理用のTUに分割されることが示されている。 FIG. 13 shows an example of a picture in which the number of pixels in the horizontal direction is 832 and the number of pixels in the vertical direction is 480. FIG. 13 shows that the picture is divided into CTUs each having 64 horizontal pixels and 64 vertical pixels. Further, FIG. 13 shows that the CTU is divided into CUs. FIG. 13 shows that a CU is divided into PUs for prediction processing according to image characteristics. FIG. 13 shows that a CU is divided into TUs for conversion processing according to image characteristics.
 したがって、すべてのCUについて、CUのサイズがTUのサイズ以上の大きさになることがわかる(特徴A)。 Therefore, it can be seen that for all CUs, the CU size is larger than the TU size (feature A).
 図14は、HEVC規格で利用可能なCTU、CU、PU、およびTUの最大画素サイズと最小画素サイズとを示す説明図である。なお、水平方向の画素数と垂直方向の画素数とを、水平方向の画素数×垂直方向の画素数という形式で示す。 FIG. 14 is an explanatory diagram showing the maximum pixel size and the minimum pixel size of CTU, CU, PU, and TU that can be used in the HEVC standard. The number of pixels in the horizontal direction and the number of pixels in the vertical direction are shown in the form of the number of pixels in the horizontal direction × the number of pixels in the vertical direction.
 図14に示すように、HEVC規格において、CTUの最大画素サイズは64×64である。また、図14に示すように、HEVC規格において、CTUの最小画素サイズは16×16である。他に、HEVC規格において、CTUの画素サイズには、32×32がある。 As shown in FIG. 14, in the HEVC standard, the maximum pixel size of CTU is 64 × 64. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of CTU is 16 × 16. In addition, in the HEVC standard, the pixel size of CTU is 32 × 32.
 図14に示すように、HEVC規格において、CUの最大画素サイズは64×64である。また、図14に示すように、HEVC規格において、CUの最小画素サイズは8×8である。 As shown in FIG. 14, in the HEVC standard, the maximum pixel size of a CU is 64 × 64. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of the CU is 8 × 8.
 図14に示すように、HEVC規格において、PUの最大画素サイズは64×64である。また、図14に示すように、HEVC規格において、PUの最小画素サイズは8×4および4×8である。 As shown in FIG. 14, in the HEVC standard, the maximum pixel size of PU is 64 × 64. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of PU is 8 × 4 and 4 × 8.
 図14に示すように、HEVC規格において、TUの最大画素サイズは32×32である。また、図14に示すように、HEVC規格において、TUの最小画素サイズは4×4である。 As shown in FIG. 14, in the HEVC standard, the maximum pixel size of TU is 32 × 32. Further, as shown in FIG. 14, in the HEVC standard, the minimum pixel size of TU is 4 × 4.
 なお、HEVC規格において、CTUの画素サイズには32×32がある。したがって、HEVC規格において、CTUの画素サイズには64×64と、32×32と、16×16とがあるのであるが、ピクチャの画素サイズと対応しない場合がある。 In the HEVC standard, the CTU pixel size is 32 × 32. Therefore, in the HEVC standard, the CTU pixel sizes include 64 × 64, 32 × 32, and 16 × 16, but may not correspond to the pixel size of the picture.
 具体的には、図13に示す例では、ピクチャの垂直方向の画素数である480は、CTUの最大画素サイズ(垂直方向)である64の倍数でない。したがって、ピクチャの上側から順に最大画素サイズのCTUに当該ピクチャを分割した場合に、当該ピクチャの下端のCTUに含まれるブロックの画素サイズは64×32になる。そうすると、当該CTUに含まれるCUの画素サイズは、32×32以下にしなければならない。また、当該CTUが複数のCUに分割されることになる。 Specifically, in the example shown in FIG. 13, 480 which is the number of pixels in the vertical direction of the picture is not a multiple of 64 which is the maximum pixel size (vertical direction) of the CTU. Therefore, when the picture is divided into CTUs having the maximum pixel size in order from the upper side of the picture, the pixel size of the block included in the CTU at the lower end of the picture is 64 × 32. Then, the pixel size of the CU included in the CTU must be 32 × 32 or less. In addition, the CTU is divided into a plurality of CUs.
 したがって、符号化対象のピクチャの画素サイズ(符号化ピクチャサイズともいう)がCTUの最大画素サイズの倍数でない場合に、ピクチャの縁部で、CTUやより小さい画素サイズのCUに分割されることがわかる(特徴B)。 Therefore, when the pixel size of the picture to be encoded (also referred to as the encoded picture size) is not a multiple of the maximum pixel size of the CTU, the picture may be divided into CTUs or CUs having a smaller pixel size at the edge of the picture. I understand (feature B).
 次に、非特許文献2に記載されている運用ガイドラインにおける、符号化処理を施すピクチャの画素サイズ、CTUの画素サイズ、およびTUの画素サイズの制約について述べる。なお、ここでは、フォーマットが、1080/Pである映像のデジタルコンテンツ(以下、1080/Pのデジタルコンテンツという)の場合、および2160/Pである映像のデジタルコンテンツ(以下、2160/Pのデジタルコンテンツという)の場合について述べる。1080/Pは、水平方向の画素数が1920であり、垂直方向の画素数が1080である映像をプログレッシブ表示するというデジタル放送のフォーマットであることを示している。また、2160/Pは、水平方向の画素数が3840であり、垂直方向の画素数が2160である映像をプログレッシブ表示するというデジタル放送のフォーマットであることを示している。 Next, restrictions on the pixel size of the picture to be encoded, the CTU pixel size, and the TU pixel size in the operation guidelines described in Non-Patent Document 2 will be described. Here, in the case of video digital content whose format is 1080 / P (hereinafter referred to as 1080 / P digital content), and video digital content whose format is 2160 / P (hereinafter referred to as 2160 / P digital content). )). 1080 / P indicates a digital broadcast format in which a video having 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction is progressively displayed. 2160 / P indicates a digital broadcast format in which a video having 3840 pixels in the horizontal direction and 2160 pixels in the vertical direction is progressively displayed.
 非特許文献2における「付属5 テレビジョンサービスにおけるHEVC規格の運用ガイドライン」の「表4-8 画像サイズを表すパラメータ」には、1080/Pのデジタルコンテンツについて符号化処理を施すピクチャとして、1920×1080のサイズおよび1020×1088のサイズに対応可能であることが示されている。 In “Appendix 5 Guidelines for Operation of HEVC Standard in Television Service” in “Table 4-8 Parameters for Image Size” in 1920, as a picture to be encoded for 1080 / P digital content, 1920 × It is shown that a size of 1080 and a size of 1020 × 1088 can be accommodated.
 また、非特許文献2における「付属5 テレビジョンサービスにおけるHEVC規格の運用ガイドライン」の「表4-5 シーケンス・パラメータ・セット(Sequence Parameter Set, SPS)」には、CTUについて32×32の画素サイズ、および64×64の画素サイズに対応可能であり、TUについて4×4~32×32の画素サイズに対応可能であることが示されている。 Also, in “Table 4-5 Sequence Parameter Set (Sequence Parameter Set, SPS)” in “Appendix 5 Guidelines for Operation of HEVC Standard in Television Service” in Non-Patent Document 2, the pixel size of 32 × 32 for CTU It is shown that the pixel size of 4 × 4 to 32 × 32 can be handled for TU.
 特許文献1には、イントラ予測符号化モードが適用される第1のブロックと、直交変換の単位となる複数の第2のブロックとに基づいて、各第2のブロックについて対応する予測ブロックとの誤差を符号化することが記載されている。 Patent Document 1 describes a prediction block corresponding to each second block based on a first block to which the intra prediction encoding mode is applied and a plurality of second blocks that are units of orthogonal transform. The encoding of errors is described.
特開2017-73602号公報JP 2017-73602 A 特開2013-121044号公報JP 2013-121044 A 特開2015-076666号公報Japanese Patent Laying-Open No. 2015-076666 国際公開第2015/151513号International Publication No. 2015/151513
 しかし、非特許文献1,2によれば、前述した特徴Aおよび特徴Bによって、HEVC規格に基づく低ビットレートの映像の符号化の圧縮効率が制約されるという問題がある。HEVC規格では、クアッドツリー構造に基づいたブロック分割における最小オーバヘッド符号量が考慮されずに、デジタルコンテンツごとに対応する符号化ピクチャサイズが規定されているからである。 However, according to Non-Patent Documents 1 and 2, there is a problem that the compression efficiency of low-bit-rate video encoding based on the HEVC standard is restricted by the above-described feature A and feature B. This is because the HEVC standard defines a coded picture size corresponding to each digital content without considering the minimum overhead code amount in block division based on the quadtree structure.
 ここで、最小オーバヘッド符号量には、各ピクチャに含まれる離散コサイン変換(DCT(Discrete Cosine Transform))係数の個数が影響を与える。DCT係数は、符号化された映像を映像復号装置が復号するために必要とされ、有意な値である場合に、相関が低い正負の符号も伝送される必要がある。 Here, the number of discrete cosine transform (DCT (Discrete Cosine Transform)) coefficients included in each picture affects the minimum overhead code amount. The DCT coefficient is required for the video decoding apparatus to decode the encoded video. When the DCT coefficient is a significant value, a positive / negative code having a low correlation needs to be transmitted.
 非特許文献2に記載されている運用ガイドラインによれば、例えば、2160/Pのデジタルコンテンツの符号化ピクチャサイズが、3840×2160に限定されている。したがって、CTUを最大画素サイズである64×64としても、24840個のDCT係数を伝送しなければならない。なお、24840個のDCT係数は、CUの数が最小になるように各CTUを分割し、かつ、TUの数が最小になるように各CUを分割した場合における輝度成分と色成分とのDC(Direct Current)成分のDCT係数の数である。 According to the operation guidelines described in Non-Patent Document 2, for example, the encoded picture size of 2160 / P digital content is limited to 3840 × 2160. Therefore, even if the CTU is set to 64 × 64 which is the maximum pixel size, 24840 DCT coefficients must be transmitted. Note that the 24840 DCT coefficients are obtained by dividing each CTU so that the number of CUs is minimized and dividing the CU so that the number of TUs is minimized. This is the number of DCT coefficients of the (Direct Current) component.
 そして、24840個のDCT係数がすべて有意な値である場合に、正負の符号に応じた符号量(すなわち最小オーバヘッド符号量)は、24840[bit]×59.94[Hz]=約1.5[Mbps]にもなる。 When 24840 DCT coefficients are all significant values, the code amount corresponding to the positive and negative codes (that is, the minimum overhead code amount) is 24840 [bit] × 59.94 [Hz] = about 1.5. It will also be [Mbps].
 つまり、その他に伝送すべき情報が存在することを踏まえると、非特許文献1,2によれば、例えば、2160/Pのデジタルコンテンツの最小ビットレートを1.5Mbps以下にすることが困難であることを示している。このことは、HEVC規格に基づく低ビットレートの映像の符号化の圧縮効率が制約されることを示している。 In other words, considering that there is other information to be transmitted, according to Non-Patent Documents 1 and 2, for example, it is difficult to set the minimum bit rate of 2160 / P digital content to 1.5 Mbps or less. It is shown that. This indicates that the compression efficiency of low bit rate video encoding based on the HEVC standard is limited.
 そこで、本発明は、符号化処理の効率を考慮して映像を符号化する信号処理装置、信号処理システム、信号処理方法、および信号処理用プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a signal processing device, a signal processing system, a signal processing method, and a signal processing program for encoding video in consideration of the efficiency of encoding processing.
 本発明による信号処理装置は、離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段と、記憶手段に記憶されている設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する画素数調整手段と、画素数調整手段が画素の数を調整した映像に離散コサイン変換の処理を含む符号化処理を施す符号化手段とを備えたことを特徴とする。 In the signal processing device according to the present invention, a storage unit that stores preset pixel number information indicating a predetermined number of pixels according to discrete cosine transform processing, and a set pixel number information stored in the storage unit indicate A pixel number adjusting unit that adjusts the number of pixels constituting the input video according to the number of pixels, and an encoding process including a discrete cosine transform process on the video in which the pixel number adjusting unit has adjusted the number of pixels And an encoding means.
 本発明による信号処理システムは、いずれかの態様の信号処理装置と、符号化処理に応じた復号処理を行う復号処理装置とを備えたことを特徴とする。 The signal processing system according to the present invention includes any one of the signal processing apparatuses and a decoding processing apparatus that performs a decoding process according to the encoding process.
 本発明による信号処理方法は、離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段に記憶されている設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する画素数調整ステップと、画素数調整ステップで画素の数を調整した映像に離散コサイン変換の処理を含む符号化処理を施す符号化ステップとを含むことを特徴とする。 The signal processing method according to the present invention is based on the number of pixels indicated by the set pixel number information stored in the storage means in which the set pixel number information indicating the predetermined number of pixels corresponding to the discrete cosine transform processing is stored. A pixel number adjusting step for adjusting the number of pixels constituting the inputted video, and a coding step for performing a coding process including a discrete cosine transform process on the video whose number of pixels is adjusted in the pixel number adjusting step; It is characterized by including.
 本発明による信号処理用プログラムは、コンピュータに、離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段に記憶されている設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する画素数調整処理と、画素数調整処理で画素の数を調整した映像に離散コサイン変換の処理を含む符号化処理を施す符号化処理とを実行させることを特徴とする。 The signal processing program according to the present invention is indicated by set pixel number information stored in a storage unit in which set pixel number information indicating a predetermined number of pixels corresponding to discrete cosine transform processing is stored in a computer. A pixel number adjustment process for adjusting the number of pixels constituting the input video according to the number of pixels, and an encoding process including a discrete cosine transform process for the video in which the number of pixels is adjusted by the pixel number adjustment process An encoding process is executed.
 本発明によれば、符号化処理における最小オーバヘッド符号量を低減させることができる。 According to the present invention, the minimum overhead code amount in the encoding process can be reduced.
第1の実施形態の映像伝送システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the video transmission system of 1st Embodiment. 記憶部に記憶されている画素数データベースの例を示す説明図である。It is explanatory drawing which shows the example of the pixel number database memorize | stored in the memory | storage part. 画素アスペクトデータベースの例を示す説明図である。It is explanatory drawing which shows the example of a pixel aspect database. 第1の実施形態における符号化装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the encoding apparatus in 1st Embodiment. 第1の実施形態における復号装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the decoding apparatus in 1st Embodiment. 第2の実施形態の映像伝送システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the video transmission system of 2nd Embodiment. 第2の実施形態における符号化装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the encoding apparatus in 2nd Embodiment. 第2の実施形態における復号装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the decoding apparatus in 2nd Embodiment. 第3の実施形態の映像伝送システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the video transmission system of 3rd Embodiment. 第3の実施形態における符号化装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the encoding apparatus in 3rd Embodiment. 第3の実施形態における復号装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the decoding apparatus in 3rd Embodiment. 第4の実施形態の信号処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the signal processing apparatus of 4th Embodiment. 映像の一齣が、CTU、CU、PU、およびTUに分割される例を示す説明図である。It is explanatory drawing which shows the example in which a glance of an image | video is divided | segmented into CTU, CU, PU, and TU. HEVC規格で利用可能なCTU、CU、PU、およびTUの最大画素サイズと最小画素サイズとを示す説明図である。It is explanatory drawing which shows the maximum pixel size and minimum pixel size of CTU, CU, PU, and TU which can be utilized by HEVC standard.
 実施形態1.
 本発明の第1の実施形態の映像伝送システムについて、図面を参照して説明する。図1は、本発明の第1の実施形態の映像伝送システム(信号処理システム)100の構成例を示すブロック図である。図1に示すように、本発明の第1の実施形態の映像伝送システム100は、符号化装置110と、復号装置120とを含む。
Embodiment 1. FIG.
A video transmission system according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 100 according to the first embodiment of this invention. As shown in FIG. 1, the video transmission system 100 according to the first embodiment of the present invention includes an encoding device 110 and a decoding device 120.
 符号化装置110は、入力された映像の画素数および各画素のアスペクト比を調整する。そして、符号化装置110は、調整後の映像を符号化する。 The encoding device 110 adjusts the number of pixels of the input video and the aspect ratio of each pixel. Then, the encoding device 110 encodes the adjusted video.
 符号化装置110によって符号化された映像は、送信装置210によって送信される。また、送信装置210によって送信された、符号化された映像は受信装置220によって受信される。そして、受信装置220は、受信した、符号化された映像を復号装置120に入力する。 The video encoded by the encoding device 110 is transmitted by the transmission device 210. Also, the encoded video transmitted by the transmission device 210 is received by the reception device 220. Then, the receiving device 220 inputs the received encoded video to the decoding device 120.
 復号装置120は、入力された、符号化された映像を復号する。そして、復号装置120は、復号した映像の画素数およびアスペクト比を調整前の状態に復元する。 The decoding device 120 decodes the input encoded video. Then, the decoding device 120 restores the number of pixels and the aspect ratio of the decoded video to the state before adjustment.
 図1に示すように、符号化装置110は、設定部111、サイズ調整部112、画素アスペクト調整部113、符号化処理部114、および記憶部115を含む。 As illustrated in FIG. 1, the encoding device 110 includes a setting unit 111, a size adjustment unit 112, a pixel aspect adjustment unit 113, an encoding processing unit 114, and a storage unit 115.
 設定部111、サイズ調整部112、画素アスペクト調整部113、および符号化処理部114は、例えば、プログラム制御に従って処理を実行するCPU(Central Processing Unit)や複数の回路によって実現される。また、記憶部115は、メモリ等の記憶手段によって実現される。 The setting unit 111, the size adjusting unit 112, the pixel aspect adjusting unit 113, and the encoding processing unit 114 are realized by, for example, a CPU (Central Processing Unit) that executes processing according to program control and a plurality of circuits. The storage unit 115 is realized by a storage unit such as a memory.
 設定部111は、符号化装置110に入力された映像の画素数に基づいて、サイズ調整部112による調整後の映像の画素数、および画素アスペクト調整部113による調整後の画素のアスペクト比を設定する。 The setting unit 111 sets the number of pixels of the image after the adjustment by the size adjustment unit 112 and the aspect ratio of the pixel after the adjustment by the pixel aspect adjustment unit 113 based on the number of pixels of the image input to the encoding device 110. To do.
 サイズ調整部112は、設定部111による設定結果に基づいて、符号化装置110に入力された映像を所定の画素数の映像に調整する。 The size adjusting unit 112 adjusts the video input to the encoding device 110 to a video having a predetermined number of pixels based on the setting result by the setting unit 111.
 画素アスペクト調整部113は、設定部111による設定結果に基づいて、サイズ調整部112によって画素数が調整された映像における画素のアスペクト比を調整する。 The pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels is adjusted by the size adjustment unit 112 based on the setting result by the setting unit 111.
 符号化処理部114は、サイズ調整部112によって調整された画素数の映像であって、画素アスペクト調整部113によってアスペクト比が調整された画素による映像を符号化する。そして、符号化処理部114は、符号化した映像を送信装置210に入力する。 The encoding processing unit 114 encodes an image of the number of pixels adjusted by the size adjusting unit 112 and a pixel whose aspect ratio is adjusted by the pixel aspect adjusting unit 113. Then, the encoding processing unit 114 inputs the encoded video to the transmission device 210.
 記憶部115には、予め情報が記憶されている。具体的には、記憶部115には、例えば、入力された映像のフォーマットに応じて設定部111が設定する調整後の映像の画素数を示す情報である設定画素数情報が登録されている画素数データベースが記憶されている。 Information is stored in the storage unit 115 in advance. Specifically, in the storage unit 115, for example, pixels in which set pixel number information, which is information indicating the number of pixels of an adjusted video set by the setting unit 111 according to the format of the input video, is registered A number database is stored.
 図2は、記憶部115に記憶されている画素数データベースの例を示す説明図である。画素数データベースには、各符号化映像フォーマットに対応し、符号化処理における離散コサイン変換の処理に応じた水平方向の画素数および垂直方向の画素数や、ダミーデータの画素数に応じた値が設定されている。 FIG. 2 is an explanatory diagram illustrating an example of a pixel number database stored in the storage unit 115. The pixel number database corresponds to each encoded video format, and has a value corresponding to the number of pixels in the horizontal direction and the number of pixels in the vertical direction according to the discrete cosine transform process in the encoding process, and the number of pixels in the dummy data. Is set.
 図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「1080/I」であるとして表される映像には、水平方向の画素数(図2において「pic_width_in_luma_samples」と示す)が「1920」であり、垂直方向の画素数(図2において「pic_height_in_luma_samples」と示す)が「1088」であり、ダミーデータの画素数に応じた値(図2において「conf_win_bottom_offset」と示す)が「4」である映像が含まれることが示されている。また、図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「1080/I」であるとして表される映像には、水平方向の画素数が「1920」であり、垂直方向の画素数が「544」であり、ダミーデータの画素数に応じた値が「2」である映像が含まれることが示されている。 In the example illustrated in FIG. 2, in a pixel number database, an image whose encoded video format is represented as “1080 / I” has a horizontal pixel number (indicated as “pic_width_in_luma_samples” in FIG. 2) “1920. ", The number of pixels in the vertical direction (shown as" pic_height_in_luma_samples "in FIG. 2) is" 1088 ", and the value corresponding to the number of pixels of dummy data (shown as" conf_win_bottom_offset "in FIG. 2) is" 4 ". It is shown that a certain picture is included. Further, in the example shown in FIG. 2, in the pixel number database, the video represented as the encoded video format “1080 / I” has the horizontal pixel count “1920” and the vertical pixel count. The number is “544”, and it is indicated that a video whose value corresponding to the number of pixels of the dummy data is “2” is included.
 図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「1080/P」であるとして表される映像には、水平方向の画素数が「1920」であり、垂直方向の画素数が「1080」であり、ダミーデータの画素数に応じた値が「0」である映像が含まれることが示されている。また、図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「1080/P」であるとして表される映像には、水平方向の画素数が「1920」であり、垂直方向の画素数が「1088」であり、ダミーデータの画素数に応じた値が「4」である映像が含まれることが示されている。図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「1080/P」であるとして表される映像には、水平方向の画素数が「1440」であり、垂直方向の画素数が「1080」であり、ダミーデータの画素数に応じた値が「0」である映像が含まれることが示されている。 In the example shown in FIG. 2, in a pixel number database, a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1920” and a vertical pixel count of It is indicated that “1080” is included, and an image whose value corresponding to the number of pixels of the dummy data is “0” is included. Further, in the example shown in FIG. 2, in the pixel number database, a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1920” and a vertical pixel count. The number is “1088”, and it is indicated that the video whose value corresponding to the number of pixels of the dummy data is “4” is included. In the example shown in FIG. 2, in a pixel number database, a video represented as having an encoded video format of “1080 / P” has a horizontal pixel count of “1440” and a vertical pixel count of It is indicated that “1080” is included, and an image whose value corresponding to the number of pixels of the dummy data is “0” is included.
 図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「2160/P」であるとして表される映像には、水平方向の画素数が「3840」であり、垂直方向の画素数が「2160」であり、ダミーデータの画素数に応じた値が「0」である映像が含まれることが示されている。また、図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「2160/P」であるとして表される映像には、水平方向の画素数が「2880」であり、垂直方向の画素数が「2160」であり、ダミーデータの画素数に応じた値が「0」である映像が含まれることが示されている。図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「2160/P」であるとして表される映像には、水平方向の画素数が「3840」であり、垂直方向の画素数が「2176」であり、ダミーデータの画素数に応じた値が「8」である映像が含まれることが示されている。また、図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「2160/P」であるとして表される映像には、水平方向の画素数が「2880」であり、垂直方向の画素数が「2176」であり、ダミーデータの画素数に応じた値が「8」である映像が含まれることが示されている。 In the example shown in FIG. 2, in a video represented as an encoded video format “2160 / P” in the pixel number database, the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is It is “2160”, and it is indicated that a video whose value corresponding to the number of pixels of the dummy data is “0” is included. Further, in the example shown in FIG. 2, in the image represented by the pixel number database as the encoded video format being “2160 / P”, the number of pixels in the horizontal direction is “2880”, and the pixels in the vertical direction The number is “2160”, and it is indicated that the video whose value corresponding to the number of pixels of the dummy data is “0” is included. In the example shown in FIG. 2, in a video represented as an encoded video format “2160 / P” in the pixel number database, the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is It is “2176”, and it is shown that a video whose value corresponding to the number of pixels of the dummy data is “8” is included. Further, in the example shown in FIG. 2, in the image represented by the pixel number database as the encoded video format being “2160 / P”, the number of pixels in the horizontal direction is “2880”, and the pixels in the vertical direction It is shown that the number is “2176” and the video whose value corresponding to the number of pixels of the dummy data is “8” is included.
 図2に示す例では、画素数データベースにおいて、符号化映像フォーマットが「4320/P」であるとして表される映像には、水平方向の画素数が「7680」であり、垂直方向の画素数が「4320」であり、ダミーデータの画素数に応じた値が「0」である映像が含まれることが示されている。 In the example shown in FIG. 2, in the image represented by the pixel number database as the encoded video format being “4320 / P”, the number of pixels in the horizontal direction is “7680” and the number of pixels in the vertical direction is It is indicated that “4320” is included, and a video whose value corresponding to the number of pixels of the dummy data is “0” is included.
 また、記憶部115には、例えば、入力された映像のフォーマットに応じて設定部111が設定する調整後の画素のアスペクト比が登録されている画素アスペクトデータベースが記憶されている。 Also, the storage unit 115 stores, for example, a pixel aspect database in which the adjusted pixel aspect ratio set by the setting unit 111 according to the format of the input video is registered.
 図3は、画素アスペクトデータベースの例を示す説明図である。図3に示す例では、画素のアスペクト比を示す「aspect_ratio_idc」の欄に、1:1に応じた識別子である「1」と4:3に応じた識別子である「14」とが登録されている。なお、画素アスペクト比が1:1であるとは、画素の横の長さと縦の長さとが同じ正方形の画素(square pixel)であることをいう。また、画素アスペクト比が4:3であるとは、画素の横の長さと縦の長さとが互いに異なり、それらの比が4:3である長方形の画素であることをいう。 FIG. 3 is an explanatory diagram showing an example of a pixel aspect database. In the example shown in FIG. 3, “1” that is an identifier corresponding to 1: 1 and “14” that is an identifier corresponding to 4: 3 are registered in the column “aspect_ratio_idc” indicating the aspect ratio of the pixel. Yes. The pixel aspect ratio of 1: 1 means that the pixel has a square pixel having the same horizontal length and vertical length. The pixel aspect ratio of 4: 3 means that the pixel is a rectangular pixel in which the horizontal length and the vertical length of the pixels are different from each other and the ratio is 4: 3.
 図1に示すように、復号装置120は、復号処理部121、復元設定部122、サイズ復元部123、画素アスペクト復元部124、および記憶部125を含む。 1, the decoding device 120 includes a decoding processing unit 121, a restoration setting unit 122, a size restoration unit 123, a pixel aspect restoration unit 124, and a storage unit 125.
 復号処理部121、復元設定部122、サイズ復元部123、および画素アスペクト復元部124は、例えば、プログラム制御に従って処理を実行するCPUや複数の回路によって実現される。 The decoding processing unit 121, the restoration setting unit 122, the size restoration unit 123, and the pixel aspect restoration unit 124 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
 復号処理部121は、受信装置220によって入力された、符号化された映像を復号する。 The decoding processing unit 121 decodes the encoded video input by the receiving device 220.
 復元設定部122は、復号処理部121によって復号された映像の画素数に基づいて、復元後の映像のサイズを設定する。 The restoration setting unit 122 sets the size of the restored video based on the number of pixels of the video decoded by the decoding processing unit 121.
 サイズ復元部123は、復元設定部122による設定結果に基づいて、復号処理部121が復号した映像のサイズを調整する。 The size restoration unit 123 adjusts the size of the video decoded by the decoding processing unit 121 based on the setting result by the restoration setting unit 122.
 画素アスペクト復元部124は、復号処理部121によって復号された映像の画素数に基づいて、サイズ復元部123がサイズを調整した映像の画素のアスペクト比を調整する。 The pixel aspect restoration unit 124 adjusts the aspect ratio of the pixels of the video whose size has been adjusted by the size restoration unit 123 based on the number of pixels of the video decoded by the decoding processing unit 121.
 記憶部125には、予め情報が記憶されている。具体的には、記憶部125には、例えば、復号された映像の画素数に応じて復元設定部122が設定する復元後の映像のサイズが登録されている復元用データベースが記憶されている。 Information is stored in the storage unit 125 in advance. Specifically, the storage unit 125 stores, for example, a restoration database in which the restored video size set by the restoration setting unit 122 according to the number of decoded video pixels is registered.
 復元用データベースには、例えば、画素アスペクトデータベースに登録されている情報に相当する情報が登録されている。 In the restoration database, for example, information corresponding to information registered in the pixel aspect database is registered.
 次に、本発明の第1の実施形態の映像伝送システム100の動作について説明する。図4は、本発明の第1の実施形態における符号化装置110の動作例を示すフローチャートである。 Next, the operation of the video transmission system 100 according to the first embodiment of the present invention will be described. FIG. 4 is a flowchart showing an operation example of the encoding apparatus 110 according to the first embodiment of the present invention.
 図4に示すように、符号化装置110に映像が入力された場合に、設定部111は、符号化装置110に入力された映像のフォーマットに応じた情報を記憶部115に記憶されているデータベースから読み出して、サイズ調整部112による調整後の映像の画素数を設定する(ステップS101)。なお、本例では、符号化装置110に、フォーマットが2160/Pの映像(例えば、水平方向の画素数「3840」であり、垂直方向の画素数「2160」である映像)が入力されたとする。 As illustrated in FIG. 4, when video is input to the encoding device 110, the setting unit 111 is a database in which information corresponding to the format of the video input to the encoding device 110 is stored in the storage unit 115. And the number of pixels of the image after adjustment by the size adjustment unit 112 is set (step S101). In this example, it is assumed that a video having a format of 2160 / P (for example, a video having a horizontal pixel number “3840” and a vertical pixel number “2160”) is input to the encoding device 110. .
 そして、例えば、符号化装置110にフォーマットが2160/Pである映像が入力されたことに応じて、設定部111は、記憶部115の画素数データベースにおいて符号化映像フォーマット「2160/P」に対応付けられている水平方向の画素数および垂直方向の画素数を読み出す。図2に示す例では、符号化映像フォーマット「2160/P」に、水平方向の画素数「2880」および垂直方向の画素数「2160」と、水平方向の画素数「3840」、垂直方向の画素数「2176」および付加するダミーデータの画素数に応じた値「8」とが対応付けられている。 For example, the setting unit 111 corresponds to the encoded video format “2160 / P” in the pixel number database of the storage unit 115 in response to the video having the format 2160 / P being input to the encoding device 110. The number of attached horizontal pixels and the number of vertical pixels are read out. In the example illustrated in FIG. 2, the encoded video format “2160 / P” includes a horizontal pixel count “2880”, a vertical pixel count “2160”, a horizontal pixel count “3840”, and a vertical pixel count. The number “2176” is associated with a value “8” corresponding to the number of pixels of dummy data to be added.
 そこで、設定部111は、例えば、管理者によってなされた操作に従って、記憶部115の画素数データベースにおいて符号化映像フォーマット「2160/P」に対応付けられている水平方向の画素数「2880」および垂直方向の画素数「2160」を読み出したとする。また、設定部111は、例えば、管理者によってなされた操作に従って、記憶部115の画素アスペクトデータベースから識別子「14」を読み出したとする。 Therefore, the setting unit 111, for example, in accordance with an operation performed by the administrator, the horizontal pixel number “2880” and the vertical pixel number associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 115. Assume that the number of pixels in the direction “2160” is read out. For example, it is assumed that the setting unit 111 reads the identifier “14” from the pixel aspect database of the storage unit 115 in accordance with an operation performed by the administrator.
 そして、設定部111は、調整後の映像の画素数を水平方向の画素数「2880」および垂直方向の画素数「2160」に設定する。また、設定部111は、調整後の画素のアスペクト比を「4:3」に設定する。 Then, the setting unit 111 sets the number of pixels of the adjusted image to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. The setting unit 111 sets the adjusted pixel aspect ratio to “4: 3”.
 サイズ調整部112は、設定部111による設定結果に基づいて、符号化装置110に入力された映像を所定の画素数の映像に調整する(ステップS102)。 The size adjusting unit 112 adjusts the video input to the encoding device 110 to a video having a predetermined number of pixels based on the setting result by the setting unit 111 (step S102).
 本例では、設定部111は、調整後の映像の画素数を水平方向の画素数「2880」および垂直方向の画素数「2160」に設定している。そこで、サイズ調整部112は、符号化装置110に入力された映像を水平方向の画素数「2880」および垂直方向の画素数「2160」に調整する。なお、本例では、符号化装置110に入力された映像のフォーマットが2160/Pであり、当該映像の水平方向の画素数が「3840」であり、垂直方向の画素数が「2160」である。したがって、サイズ調整部112は、符号化装置110に入力された映像において、水平方向の画素数を「3840」から「2880」に減少させる。具体的には、サイズ調整部112は、例えば、符号化装置110に入力された映像において、水平方向に並んだ3840個の画素から1040個の画素を間引いて、水平方向の画素数を「2880」に減少させる。なお、画素数を減少させる方法には、例えば、既知の方法が用いられる。すると、水平方向の画素数が3/4に減少する。 In this example, the setting unit 111 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. Therefore, the size adjustment unit 112 adjusts the video input to the encoding device 110 to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. In this example, the format of the video input to the encoding device 110 is 2160 / P, the number of pixels in the horizontal direction of the video is “3840”, and the number of pixels in the vertical direction is “2160”. . Therefore, the size adjustment unit 112 reduces the number of pixels in the horizontal direction from “3840” to “2880” in the video input to the encoding device 110. Specifically, for example, in the video input to the encoding device 110, the size adjustment unit 112 thins out 1040 pixels from 3840 pixels arranged in the horizontal direction, and sets the number of pixels in the horizontal direction to “2880”. To "". As a method for reducing the number of pixels, for example, a known method is used. Then, the number of pixels in the horizontal direction is reduced to 3/4.
 画素アスペクト調整部113は、設定部111における設定結果に基づいて、サイズ調整部112によって画素数が調整された映像における画素のアスペクト比を調整する(ステップS103)。 The pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels has been adjusted by the size adjustment unit 112 based on the setting result in the setting unit 111 (step S103).
 本例では、設定部111は、調整後の画素のアスペクト比を「4:3」に設定している。そこで、画素アスペクト調整部113は、サイズ調整部112によって画素数が調整された映像における画素のアスペクト比を「4:3」に調整する。したがって、サイズ調整部112によって画素数が調整された映像における画素は、横方向に4/3倍拡大される。 In this example, the setting unit 111 sets the aspect ratio of the adjusted pixel to “4: 3”. Therefore, the pixel aspect adjustment unit 113 adjusts the pixel aspect ratio in the video whose number of pixels is adjusted by the size adjustment unit 112 to “4: 3”. Therefore, the pixels in the video whose number of pixels has been adjusted by the size adjusting unit 112 are enlarged by 4/3 times in the horizontal direction.
 符号化処理部114は、サイズ調整部112によって設定された画素数の映像であって、画素アスペクト調整部113によってアスペクト比が調整された画素による映像を符号化する(ステップS104)。 The encoding processing unit 114 encodes an image having the number of pixels set by the size adjusting unit 112 and a pixel having an aspect ratio adjusted by the pixel aspect adjusting unit 113 (step S104).
 本例では、符号化処理部114による符号化処理の対象になる映像は、水平方向の画素数を「2880」および垂直方向の画素数が「2160」である。そして、HEVC規格において、CTUの画素サイズには、64×64、32×32、および16×16がある。そうすると、2880÷64=45であるので、映像は、まず、64×64の画素サイズで水平方向にそれぞれ45個並べられた33行分のCTUに分割される。したがって、2160個ある垂直方向の画素のうち、2160-(64×33)=2112個分まで、64×64の画素サイズのCTUに含まれる。そして、残部の画像は、水平方向に並ぶ48行分の画素のうち、32行分の画素を含む32×32の画素サイズのCTUと、残り16行分の画素を含む16×16の画素サイズのCTUとに分割される。なお、2880÷32=90であるので、残部の画像は、32×32の画素サイズで水平方向に90個並べられた1行分のCTUと、2880÷16=180であるので、16×16の画素サイズで水平方向に180個並べられた1行分のCTUとに分割される。 In this example, the video to be encoded by the encoding processing unit 114 has “2880” as the number of pixels in the horizontal direction and “2160” as the number of pixels in the vertical direction. In the HEVC standard, CTU pixel sizes include 64 × 64, 32 × 32, and 16 × 16. Then, since 2880 ÷ 64 = 45, the video is first divided into 33 rows of CTUs arranged in a horizontal direction with 45 pixels each having a pixel size of 64 × 64. Therefore, out of 2160 vertical pixels, 2160− (64 × 33) = 2112 are included in a CTU having a pixel size of 64 × 64. The remaining image is a CTU having a pixel size of 32 × 32 including pixels for 32 rows and a pixel size of 16 × 16 including pixels for the remaining 16 rows among 48 rows of pixels arranged in the horizontal direction. Divided into CTUs. Since 2880 ÷ 32 = 90, the remaining image is a CTU of one row arranged in the horizontal direction with a pixel size of 32 × 32 and 2880 ÷ 16 = 180, so that 16 × 16 Are divided into one row of CTUs arranged in a horizontal direction with a pixel size of 180 pixels.
 そして、TUの最大画素サイズは32×32であり、64×64の画素サイズのCTUには、当該TUは4個含まれる。したがって、映像において、64×64の画素サイズで水平方向に45個並べられた33行分のCTUの部分を符号化した場合のDCT係数は、45×33×4×3=17820個である。 The maximum pixel size of a TU is 32 × 32, and a CTU having a pixel size of 64 × 64 includes four TUs. Therefore, in the video, the DCT coefficient is 45 × 33 × 4 × 3 = 17820 when a portion of 33 rows of CTUs arranged in a horizontal direction with a pixel size of 64 × 64 is encoded.
 また、32×32の画素サイズのCTUと、16×16の画素サイズのCTUとには、TUがそれぞれ1つずつ含まれる。したがって、残部の映像において、32×32の画素サイズで水平方向に90個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に180個並べられた1行分のCTUの部分とを符号化した場合のDCT係数は、(90+180)×3=810個である。 Also, a CTU having a pixel size of 32 × 32 and a CTU having a pixel size of 16 × 16 each include one TU. Therefore, in the remaining video, 90 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of 180 rows arranged in a horizontal direction with a pixel size of 16 × 16 The DCT coefficient when the CTU portion is encoded is (90 + 180) × 3 = 810.
 そうすると、映像全体を符号化した場合のDCT係数の数は、17820+810=18630個になる。 Then, the number of DCT coefficients when the entire video is encoded is 17820 + 810 = 18630.
 なお、本例と同様な2160/Pのフォーマットの映像のサイズの調整が行われなかった場合に、水平方向の画素数は「3840」であり、垂直方向の画素数は「2160」である。そうすると、映像は、まず、64×64の画素サイズで水平方向にそれぞれ60個並べられた33行分のCTUに分割される。残部の映像は、32×32の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に240個並べられた1行分のCTUの部分とに分割される。 When the size of the 2160 / P format image is not adjusted as in this example, the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is “2160”. Then, the video is first divided into 33 rows of CTUs each having 60 pixels arranged in the horizontal direction with a pixel size of 64 × 64. The rest of the video consists of one row of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 and 240 pixels. Divided into parts.
 したがって、映像において、64×64の画素サイズで水平方向に60個並べられた33行分のCTUの部分を符号化した場合のDCT係数は、60×33×4×3=23760個である。また、映像において、32×32の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に240個並べられた1行分のCTUの部分を符号化した場合のDCT係数は、(120+240)×3=1080個である。 Therefore, the DCT coefficient in the case where the CTU portion for 33 rows arranged in the horizontal direction with the pixel size of 64 × 64 in the video is encoded is 60 × 33 × 4 × 3 = 23760. Also, in the video, 120 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 and 240 pixels. The DCT coefficient when the portion is encoded is (120 + 240) × 3 = 1080.
 そうすると、本例と同様な2160/Pのフォーマットの映像のサイズの調整が行われなかった場合に、映像全体を符号化した場合のDCT係数の数は、23760+1080=24840個になる。 Then, when adjustment of the size of the video in the 2160 / P format similar to this example is not performed, the number of DCT coefficients when the entire video is encoded is 23760 + 1080 = 24840.
 したがって、本例によれば、映像のサイズが調整されてDCT係数の数が、24840個から18630個に削減されていることがわかる。 Therefore, according to this example, it can be seen that the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 18630.
 符号化処理部114は、ステップS104の処理で符号化した映像を送信装置210に入力する。そして、送信装置210に入力された映像は、送信装置210によって送信される。 The encoding processing unit 114 inputs the video encoded in the process of step S104 to the transmission device 210. Then, the video input to the transmission device 210 is transmitted by the transmission device 210.
 図5は、本発明の第1の実施形態における復号装置120の動作を示すフローチャートである。復号装置120には、符号化装置110によって符号化されて、受信装置220が受信した映像が入力される。 FIG. 5 is a flowchart showing the operation of the decoding device 120 according to the first embodiment of the present invention. The video encoded by the encoding device 110 and received by the reception device 220 is input to the decoding device 120.
 まず、復号処理部121は、入力された、符号化された映像を復号する(ステップS201)。 First, the decoding processing unit 121 decodes the input encoded video (step S201).
 そして、復元設定部122は、復号処理部121によって復号された映像に基づいて、当該映像の画素数を特定する(ステップS202)。そして、復元設定部122がステップS202の処理で特定した画素数に基づいて、復号処理部121が復号した映像のサイズを、サイズ復元部123が調整する(ステップS203)。 Then, the restoration setting unit 122 identifies the number of pixels of the video based on the video decoded by the decoding processing unit 121 (step S202). Then, based on the number of pixels specified by the restoration setting unit 122 in step S202, the size restoration unit 123 adjusts the size of the video decoded by the decoding processing unit 121 (step S203).
 また、画素アスペクト復元部124は、復号処理部121によって復号された映像の画素数に基づいて、サイズ復元部123がサイズを調整した映像の画素のアスペクト比を調整する(ステップS204)。 Further, the pixel aspect restoration unit 124 adjusts the aspect ratio of the pixels of the video whose size has been adjusted by the size restoration unit 123 based on the number of pixels of the video decoded by the decoding processing unit 121 (step S204).
 すなわち、画素数やアスペクト比が調整されて符号化された映像は、ステップS201の処理で復号され、ステップS203,S204の処理で調整されて、復元される。 That is, the video encoded by adjusting the number of pixels and the aspect ratio is decoded by the process of step S201, adjusted by the processes of steps S203 and S204, and restored.
 本実施形態によれば、サイズ調整部112や画素アスペクト調整部113が、DCT係数の数を考慮して画素数やアスペクト比を調整してから、符号化処理部114が符号化処理を行う。したがって、そのような調整が行われない場合に比べて、符号化に用いられるDCT係数の数を減少させることができる。よって、符号化処理における最小オーバヘッド符号量を低減させることができる。なお、本例では、サイズ調整部112が、設定部111における設定結果に基づいて、水平方向に並ぶ画素のうち一部の画素を間引き、画素アスペクト調整部113が画素のアスペクト比を調整するように構成されているが、サイズ調整部112が垂直方向に並ぶ画素のうち一部の画素を間引き、画素アスペクト調整部113が画素のアスペクト比を調整するように構成されていてもよい。 According to this embodiment, the encoding processing unit 114 performs the encoding process after the size adjusting unit 112 and the pixel aspect adjusting unit 113 adjust the number of pixels and the aspect ratio in consideration of the number of DCT coefficients. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced. In this example, the size adjustment unit 112 thins out some of the pixels arranged in the horizontal direction based on the setting result in the setting unit 111, and the pixel aspect adjustment unit 113 adjusts the aspect ratio of the pixel. However, the size adjustment unit 112 may be configured to thin out some of the pixels arranged in the vertical direction, and the pixel aspect adjustment unit 113 may be configured to adjust the pixel aspect ratio.
 なお、本実施形態では、符号化装置110に、フォーマットが2160/Pである映像が入力された場合を例に説明したが、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像が入力された場合であっても、同様な処理によって、符号化に用いられるDCT係数の数を減少させることができるという効果が得られる。 In this embodiment, the case where a video having a format of 2160 / P is input to the encoding device 110 has been described as an example. However, the horizontal pixel count “1920” having a format of 1080 / P and Even when a video having the number of pixels “1080” in the vertical direction is input, the same process can achieve the effect of reducing the number of DCT coefficients used for encoding.
 具体的には、サイズ調整部112が、水平方向の画素数を「1920」から「1440」に減少させる。すると、水平方向の画素数が3/4に減少する。そして、画素アスペクト調整部113が、サイズ調整部112によって画素数が調整された映像における画素のアスペクト比を「4:3」に調整する。 Specifically, the size adjusting unit 112 decreases the number of pixels in the horizontal direction from “1920” to “1440”. Then, the number of pixels in the horizontal direction is reduced to 3/4. Then, the pixel aspect adjustment unit 113 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 112 to “4: 3”.
 すると、当該映像は、64×64の画素サイズで水平方向にそれぞれ22個並べられた16行分のCTUと、32×32の画素サイズで水平方向にそれぞれ1個並べられた32行分のCTUと、32×32の画素サイズで水平方向に45個並べられた1行分のCTUと、16×16の画素サイズで水平方向に90個並べられた1行分のCTUと、8×8の画素サイズで水平方向に180個並べられた1行分のCUとに分割される。 Then, the image has 16 rows of CTUs arranged in a horizontal direction with a pixel size of 64 × 64 and 22 rows of CTUs, and 32 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 respectively. 45 rows arranged in a horizontal direction with a pixel size of 32 × 32, CTUs of one row arranged in a horizontal direction with a pixel size of 16 × 16, and 8 × 8 It is divided into one row of CUs arranged in a horizontal direction with a pixel size.
 そして、映像において、64×64の画素サイズで水平方向に22個並べられた16行分のCTUの部分を符号化した場合のDCT係数は、22×16×4×3=4224個である。また、映像において、32×32の画素サイズで水平方向に1個並べられた32行分のCTUの部分を符号化した場合のDCT係数は、1×32×3=96個である。そして、映像において、32×32の画素サイズで水平方向に45個並べられた1行分のCTUの部分を符号化した場合のDCT係数は、45×1×3=135個である。 Then, in the video, the DCT coefficient in the case of encoding the CTU portion of 16 rows arranged in the horizontal direction with the pixel size of 64 × 64 is 22 × 16 × 4 × 3 = 4224. Also, in the video, the DCT coefficients when coding the 32 rows of CTUs of 32 rows arranged in the horizontal direction with a pixel size of 32 × 32 are 1 × 32 × 3 = 96. Then, in the video, the DCT coefficient in the case where the CTU portion for one row arranged in the horizontal direction with the pixel size of 32 × 32 is encoded is 45 × 1 × 3 = 135.
 映像において、16×16の画素サイズで水平方向に90個並べられた1行分のCTUの部分を符号化した場合のDCT係数は、90×1×3=270個である。また、映像において、8×8の画素サイズで水平方向に180個並べられた1行分のCUの部分を符号化した場合のDCT係数は、180×1×3=540個である。 In a video, when coding 90 rows of CTUs for one row arranged in a horizontal direction with a pixel size of 16 × 16, the DCT coefficients are 90 × 1 × 3 = 270. In addition, in the video, the DCT coefficient when encoding the CU portion of one row arranged in the horizontal direction with the pixel size of 8 × 8 is 180 × 1 × 3 = 540.
 すると、サイズ調整部512により、水平方向の画素数が「1440」になり、垂直方向の画素数が「1080」になるようにサイズ調整された後の映像を符号化した場合のDCT係数の数は、4224+96+135+270+540=5265個である。 Then, the number of DCT coefficients when the size-adjusted image is encoded after the size is adjusted so that the number of pixels in the horizontal direction becomes “1440” and the number of pixels in the vertical direction becomes “1080”. Is 4224 + 96 + 135 + 270 + 540 = 5265.
 それに対して、サイズ調整部112による処理がなされていない、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像は、64×64の画素サイズで水平方向にそれぞれ30個並べられた16行分のCTUの部分と、32×32の画素サイズで水平方向に60個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、8×8の画素サイズで水平方向に240個並べられた1行分のCUの部分とに分割される。 On the other hand, an image that is not processed by the size adjustment unit 112 and has 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction has a pixel size of 64 × 64 and 30 in the horizontal direction. 16 rows of CTUs arranged in a row, 60 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32, and 120 pieces of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 It is divided into a CTU portion for one row and a CU portion for one row arranged in the horizontal direction with 8 × 8 pixel size.
 すると、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像を符号化した場合において、64×64の画素サイズで水平方向にそれぞれ30個並べられた16行分のCTUの部分を符号化した場合のDCT係数の数は、30×16×4×3=5760個である。また、32×32の画素サイズで水平方向にそれぞれ60個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向にそれぞれ120個並べられた1行分のCTUの部分と、8×8の画素サイズで水平方向にそれぞれ240個並べられた1行分のCUの部分とを符号化した場合のDCT係数の数は、(60+120+240)×3=1260個である。 Then, when a video having 1080 vertical pixels and 1920 horizontal pixels is encoded, 30 rows of 16 pixels arranged in a horizontal direction with a 64 × 64 pixel size are provided. The number of DCT coefficients when the CTU part is encoded is 30 × 16 × 4 × 3 = 5760. Also, one row of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 and 120 rows each. The number of DCT coefficients in the case where the CU portion for one row arranged in the horizontal direction with the pixel size of 8 × 8 is encoded is (60 + 120 + 240) × 3 = 1260.
 したがって、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像を符号化した場合のDCT係数の数は、5760+1260=7020個である。 Therefore, the number of DCT coefficients when a video having 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction is encoded is 5760 + 1260 = 7020.
 よって、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像が入力された場合であっても、本実施形態の処理によって、符号化に用いられるDCT係数の数を、7020個から5265個に減少させることができるという効果が得られる。 Therefore, even when a video having a format of 1080 / P and having a horizontal pixel count of “1920” and a vertical pixel count of “1080” is input, the processing according to the present embodiment enables encoding. The effect is that the number of DCT coefficients used can be reduced from 7020 to 5265.
 実施形態2.
 次に、本発明の第2の実施形態の映像伝送システムについて、図面を参照して説明する。図6は、本発明の第2の実施形態の映像伝送システム(信号処理システム)300の構成例を示すブロック図である。図6に示すように、本発明の第2の実施形態の映像伝送システム300は、符号化装置310と、復号装置320とを含む。
Embodiment 2. FIG.
Next, a video transmission system according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 300 according to the second embodiment of this invention. As illustrated in FIG. 6, the video transmission system 300 according to the second exemplary embodiment of the present invention includes an encoding device 310 and a decoding device 320.
 符号化装置310は、入力された映像にダミーの画素を付加して画素数を調整する。そして、符号化装置310は、調整後の映像を符号化する。 The encoding device 310 adjusts the number of pixels by adding dummy pixels to the input video. Then, the encoding device 310 encodes the adjusted video.
 符号化装置310によって符号化された映像、および後述する切り取り範囲情報は、送信装置210によって送信される。また、送信装置210によって送信された、符号化された映像および後述する切り取り範囲情報は受信装置220によって受信される。そして、受信装置220は、受信した、符号化された映像および後述する切り取り範囲情報を復号装置320に入力する。 The video encoded by the encoding device 310 and cutout range information described later are transmitted by the transmission device 210. Also, the encoded video and cutout range information described later transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and clipping range information described later to the decoding device 320.
 復号装置320は、入力された、符号化された映像を復号する。そして、復号装置320は、切り取り範囲情報に基づいて、復号した映像から、付加されたダミーの画素を消去して調整前の状態に復元する。 The decoding device 320 decodes the input encoded video. Then, based on the cut-out range information, the decoding device 320 erases the added dummy pixels from the decoded video and restores the state before adjustment.
 図6に示すように、符号化装置310は、設定部311、サイズ調整部312、切り取り範囲設定部313、符号化処理部314、および記憶部315を含む。 6, the encoding device 310 includes a setting unit 311, a size adjustment unit 312, a cutout range setting unit 313, an encoding processing unit 314, and a storage unit 315.
 設定部311、サイズ調整部312、切り取り範囲設定部313、および符号化処理部314は、例えば、プログラム制御に従って処理を実行するCPUや複数の回路によって実現される。 The setting unit 311, the size adjustment unit 312, the cutout range setting unit 313, and the encoding processing unit 314 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
 設定部311は、符号化装置310に入力された映像の画素数に基づいて、サイズ調整部312による調整後の映像の画素数を設定する。 The setting unit 311 sets the number of pixels of the video after the adjustment by the size adjustment unit 312 based on the number of pixels of the video input to the encoding device 310.
 サイズ調整部312は、設定部311による設定結果に基づいて、符号化装置310に入力された映像にダミーの画素を付加して、所定の画素数の映像に調整する。 The size adjustment unit 312 adds a dummy pixel to the video input to the encoding device 310 based on the setting result by the setting unit 311 to adjust the video to a predetermined number of pixels.
 切り取り範囲設定部313は、サイズ調整部312による調整後の映像のうち、サイズ調整部312によって付加されたダミーの画素を除いた範囲を示す情報である切り取り範囲情報を生成する。 The cut-out range setting unit 313 generates cut-out range information, which is information indicating the range excluding the dummy pixels added by the size adjustment unit 312 from the image after adjustment by the size adjustment unit 312.
 符号化処理部314は、サイズ調整部312によってダミーの画素が付加された画素数の映像を符号化する。そして、符号化処理部314は、符号化した映像と切り取り範囲設定部313が生成した切り取り範囲情報とを送信装置210に入力する。 The encoding processing unit 314 encodes an image having the number of pixels to which dummy pixels are added by the size adjusting unit 312. Then, the encoding processing unit 314 inputs the encoded video and the cut range information generated by the cut range setting unit 313 to the transmission device 210.
 記憶部315には、予め情報が記憶されている。具体的には、記憶部315には、例えば、入力された映像のフォーマットに応じて設定部311が設定する調整後の映像の画素数が登録されている画素数データベースが記憶されている。具体的には、記憶部315には、例えば、図2に例示した画素数データベースが記憶されている。 Information is stored in the storage unit 315 in advance. Specifically, the storage unit 315 stores, for example, a pixel number database in which the number of pixels of the adjusted video set by the setting unit 311 according to the format of the input video is registered. Specifically, for example, the pixel number database illustrated in FIG. 2 is stored in the storage unit 315.
 図6に示すように、復号装置320は、復号処理部321、およびサイズ復元部323を含む。 As illustrated in FIG. 6, the decoding device 320 includes a decoding processing unit 321 and a size restoring unit 323.
 復号処理部321、およびサイズ復元部323は、例えば、プログラム制御に従って処理を実行するCPUや複数の回路によって実現される。 The decryption processing unit 321 and the size restoration unit 323 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
 復号処理部321は、受信装置220によって入力された、符号化された映像を復号する。 The decoding processing unit 321 decodes the encoded video input by the receiving device 220.
 サイズ復元部323は、切り取り範囲情報に基づいて、復号処理部321が復号した映像から、当該切り取り範囲情報が示す範囲の映像を切り取る。 The size restoration unit 323 cuts the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 321 based on the cut range information.
 次に、本発明の第2の実施形態の映像伝送システム300の動作について説明する。図7は、本発明の第2の実施形態における符号化装置310の動作例を示すフローチャートである。 Next, the operation of the video transmission system 300 according to the second embodiment of the present invention will be described. FIG. 7 is a flowchart showing an operation example of the encoding apparatus 310 according to the second embodiment of the present invention.
 図7に示すように、符号化装置310に映像が入力された場合に、設定部311は、符号化装置310に入力された映像のフォーマットに応じた情報を記憶部315に記憶されているデータベースから読み出して、サイズ調整部312による調整後の映像の画素数を設定する(ステップS301)。なお、本例では、符号化装置110に、フォーマットが2160/Pの映像(例えば、水平方向の画素数「3840」であり、垂直方向の画素数「2160」である映像)が入力されたとする。 As shown in FIG. 7, when video is input to the encoding device 310, the setting unit 311 stores information corresponding to the format of the video input to the encoding device 310 in the storage unit 315. And the number of pixels of the image after adjustment by the size adjustment unit 312 is set (step S301). In this example, it is assumed that a video having a format of 2160 / P (for example, a video having a horizontal pixel number “3840” and a vertical pixel number “2160”) is input to the encoding device 110. .
 そして、例えば、符号化装置110にフォーマットが2160/Pである映像が入力されたことに応じて、設定部311は、記憶部315の画素数データベースにおいて符号化映像フォーマット「2160/P」に対応付けられている水平方向の画素数および垂直方向の画素数を読み出す。図2に示す例では、符号化映像フォーマット「2160/P」には、水平方向の画素数「3840」および垂直方向の画素数「2160」である映像と、水平方向の画素数「3840」、垂直方向の画素数「2176」および付加するダミーデータの画素数に応じた値「8」である映像とが含まれている。 For example, the setting unit 311 corresponds to the encoded video format “2160 / P” in the pixel number database of the storage unit 315 in response to the video having the format 2160 / P being input to the encoding device 110. The number of attached horizontal pixels and the number of vertical pixels are read out. In the example shown in FIG. 2, the encoded video format “2160 / P” includes an image having a horizontal pixel number “3840” and a vertical pixel number “2160”, a horizontal pixel number “3840”, A vertical number of pixels “2176” and an image having a value “8” corresponding to the number of pixels of dummy data to be added are included.
 そこで、設定部311は、例えば、管理者によってなされた操作に従って、記憶部115の画素数データベースにおいて符号化映像フォーマット「2160/P」に対応付けられている水平方向の画素数「3840」、垂直方向の画素数「2176」、ダミーデータの画素数に応じた値「8」を読み出したとする。なお、当該値「8」は、ダミーデータの画素数「16」に対応しているとする。 Therefore, the setting unit 311, for example, in accordance with the operation performed by the administrator, the horizontal pixel number “3840” associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 115 and the vertical It is assumed that the number of pixels “2176” in the direction and the value “8” corresponding to the number of pixels of dummy data are read. The value “8” corresponds to the number of pixels “16” of the dummy data.
 そして、設定部311は、調整後の映像の画素数を水平方向の画素数「3840」および垂直方向の画素数「2176」に設定する。また、設定部311は、ダミーデータの画素数を「16」に設定する。 Then, the setting unit 311 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2176”. Further, the setting unit 311 sets the number of pixels of the dummy data to “16”.
 サイズ調整部312は、設定部311による設定結果に基づいて、符号化装置310に入力された映像を所定の画素数の映像に調整する(ステップS302)。具体的には、サイズ調整部312は、当該映像における垂直方向に並んだ16個の画素が当該映像の水平方向の両端に亘って並べられたダミーデータによる映像を、符号化装置310に入力された映像に付加する。なお、ダミーデータによる映像をダミーの画素による映像ともいい、ダミーデータによる映像が付加されていることをダミーの画素が付加されているともいう。 The size adjusting unit 312 adjusts the video input to the encoding device 310 to a video having a predetermined number of pixels based on the setting result by the setting unit 311 (step S302). Specifically, the size adjustment unit 312 receives, as an input to the encoding device 310, a video based on dummy data in which 16 pixels arranged in the vertical direction in the video are arranged across both ends in the horizontal direction of the video. To the video. Note that an image based on dummy data is also referred to as an image based on dummy pixels, and that an image based on dummy data is added is also referred to as a dummy pixel being added.
 本例では、当該映像の水平方向の両端に亘って、当該映像の垂直方向に、垂直方向の2160個の画素に加えて垂直方向に並んだ16個のダミーデータの画素が付加される。したがって、サイズ調整部312による調整処理後の映像、つまり符号化処理部314が後述するステップS304の処理で符号化する対象の映像では、垂直方向の画素数が2176個であり、水平方向の画素数が3840個である。 In this example, 16 pixels of dummy data arranged in the vertical direction are added to the vertical direction of the video in addition to 2160 pixels in the vertical direction across both ends of the video in the horizontal direction. Therefore, in the video after the adjustment processing by the size adjustment unit 312, that is, the video to be encoded by the encoding processing unit 314 in the process of step S 304 described later, the number of pixels in the vertical direction is 2176, and the horizontal pixels The number is 3840.
 切り取り範囲設定部313は、サイズ調整部312によってステップS302の処理で調整処理が施された映像のうち、ダミーデータによる映像以外の範囲、すなわち符号化装置310に入力された映像の範囲を示す切り取り範囲情報を生成する(ステップS303)。 The cutout range setting unit 313 cuts out a range other than the video based on the dummy data, that is, the range of the video input to the encoding device 310 among the videos that have been adjusted by the size adjustment unit 312 in the process of step S302. Range information is generated (step S303).
 符号化処理部314は、サイズ調整部312によってダミーの画素が付加された画素数の映像を符号化する(ステップS304)。そして、符号化処理部314は、符号化した映像と切り取り範囲設定部313が生成した切り取り範囲情報とを送信装置210に入力する。 The encoding processing unit 314 encodes the video having the number of pixels to which the dummy pixels are added by the size adjusting unit 312 (step S304). Then, the encoding processing unit 314 inputs the encoded video and the cut range information generated by the cut range setting unit 313 to the transmission device 210.
 送信装置210に入力された、符号化された映像と切り取り範囲情報とは、送信装置210によって送信される。また、送信装置210によって送信された、符号化された映像および切り取り範囲情報は受信装置220によって受信される。そして、受信装置220は、受信した、符号化された映像および切り取り範囲情報を復号装置320に入力する。 The encoded video and cutout range information input to the transmission device 210 are transmitted by the transmission device 210. Also, the encoded video and cutout range information transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and cutout range information to the decoding device 320.
 本例では、符号化処理部314による符号化処理の対象になる映像は、水平方向の画素数を「3840」および垂直方向の画素数が「2176」である。そして、HEVC規格において、CTUの画素サイズには、64×64、32×32、および16×16がある。そうすると、3840÷64=60である。また、2172÷64=34である。したがって、当該映像は、64×64の画素サイズで水平方向にそれぞれ60個並べられた34行分のCTUに分割される。したがって、映像において、64×64の画素サイズで水平方向に60個並べられた34行分のCTUの部分を符号化した場合のDCT係数は、60×34×4×3=24480個である。 In this example, the video to be encoded by the encoding processing unit 314 has “3840” as the number of pixels in the horizontal direction and “2176” as the number of pixels in the vertical direction. In the HEVC standard, CTU pixel sizes include 64 × 64, 32 × 32, and 16 × 16. Then, 3840 ÷ 64 = 60. Also, 2172 ÷ 64 = 34. Therefore, the video is divided into 34 rows of CTUs each having 60 pixels arranged in the horizontal direction with a pixel size of 64 × 64. Therefore, in the video, the DCT coefficient in the case where the CTU portion for 34 rows arranged in the horizontal direction with the pixel size of 64 × 64 is encoded is 60 × 34 × 4 × 3 = 24480.
 よって、映像全体を符号化した場合のDCT係数の数は、24480個になる。 Therefore, the number of DCT coefficients when the entire video is encoded is 24480.
 なお、本例と同様な2160/Pのフォーマットの映像のサイズで調整が行われなかった場合に、水平方向の画素数は「3840」であり、垂直方向の画素数は「2160」である。そうすると、映像は、まず、64×64の画素サイズで水平方向にそれぞれ60個並べられた33行分のCTUに分割される。残部の映像は、32×32の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に240個並べられた1行分のCTUの部分とに分割される。 When adjustment is not performed with the video size of the 2160 / P format similar to this example, the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is “2160”. Then, the video is first divided into 33 rows of CTUs each having 60 pixels arranged in the horizontal direction with a pixel size of 64 × 64. The rest of the video consists of one row of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 and 240 pixels. Divided into parts.
 したがって、映像において、64×64の画素サイズで水平方向に60個並べられた33行分のCTUの部分を符号化した場合のDCT係数は、60×33×4×3=23760個である。また、映像において、32×32の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に240個並べられた1行分のCTUの部分を符号化した場合のDCT係数は、(120+240)×3=1080個である。 Therefore, the DCT coefficient in the case where the CTU portion for 33 rows arranged in the horizontal direction with the pixel size of 64 × 64 in the video is encoded is 60 × 33 × 4 × 3 = 23760. Also, in the video, 120 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 and one row of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 and 240 pixels. The DCT coefficient when the portion is encoded is (120 + 240) × 3 = 1080.
 そうすると、本例と同様な2160/Pのフォーマットの映像のサイズの調整が行われなかった場合に、映像全体を符号化した場合のDCT係数の数は、23760+1080=24840個になる。 Then, when adjustment of the size of the video in the 2160 / P format similar to this example is not performed, the number of DCT coefficients when the entire video is encoded is 23760 + 1080 = 24840.
 したがって、本例によれば、映像のサイズが調整されてDCT係数の数が、24840個から24480個に削減されていることがわかる。 Therefore, according to this example, it can be seen that the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 24480.
 図8は、本発明の第2の実施形態における復号装置320の動作例を示すフローチャートである。図8に示すように、まず、復号処理部321が、受信装置220によって入力された、符号化された映像を復号する(ステップS401)。 FIG. 8 is a flowchart showing an operation example of the decoding device 320 according to the second embodiment of the present invention. As shown in FIG. 8, first, the decoding processing unit 321 decodes the encoded video input by the receiving device 220 (step S401).
 サイズ復元部323は、切り取り範囲情報に基づいて、復号処理部321が復号した映像から、当該切り取り範囲情報が示す範囲の映像を切り取る(抽出する)(ステップS402)。具体的には、切り取り範囲情報によって、復号処理部321が復号した映像におけるダミーデータによる映像以外の範囲、すなわち符号化装置310に入力された映像の範囲が示されている。よって、ステップS402の処理で、サイズ復元部323によって、符号化装置310に入力された映像が切り取られる(抽出される)(ステップS402)。 The size restoration unit 323 cuts out (extracts) the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 321 based on the cut range information (step S402). Specifically, the cut-out range information indicates a range other than the video based on the dummy data in the video decoded by the decoding processing unit 321, that is, the range of the video input to the encoding device 310. Therefore, in the process of step S402, the video input to the encoding device 310 is cut (extracted) by the size restoration unit 323 (step S402).
 本実施形態によれば、サイズ調整部312が、DCT係数の数を考慮して画素数を調整してから、符号化処理部314が符号化処理を行う。したがって、そのような調整が行われない場合に比べて、符号化に用いられるDCT係数の数を減少させることができる。よって、符号化処理における最小オーバヘッド符号量を低減させることができる。 According to the present embodiment, after the size adjustment unit 312 adjusts the number of pixels in consideration of the number of DCT coefficients, the encoding processing unit 314 performs the encoding process. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced.
 なお、本実施形態では、符号化装置310に、フォーマットが2160/Pである映像が入力された場合を例に説明したが、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像が入力された場合であっても、同様な処理によって、符号化に用いられるDCT係数の数を、6120個に減少させることができるという効果が得られる。 In this embodiment, the case where a video having a format of 2160 / P is input to the encoding device 310 has been described as an example. However, the number of horizontal pixels “1920” having a format of 1080 / P and Even when a video having the number of pixels “1080” in the vertical direction is input, the number of DCT coefficients used for encoding can be reduced to 6120 by the same processing. .
 このことは、前述したように、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像を調整せずに符号化した場合に用いられるDCT係数の数が7020個であることから明らかである。 As described above, this is a DCT used when a video having a format of 1080 / P and having a horizontal pixel number “1920” and a vertical pixel number “1080” is encoded without adjustment. It is clear from the fact that the number of coefficients is 7020.
 実施形態3.
 次に、本発明の第3の実施形態の映像伝送システムについて、図面を参照して説明する。図9は、本発明の第3の実施形態の映像伝送システム(信号処理システム)500の構成例を示すブロック図である。図9に示すように、本発明の第3の実施形態の映像伝送システム500は、符号化装置510と、復号装置520とを含む。
Embodiment 3. FIG.
Next, a video transmission system according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 9 is a block diagram illustrating a configuration example of a video transmission system (signal processing system) 500 according to the third embodiment of the present invention. As shown in FIG. 9, the video transmission system 500 according to the third embodiment of the present invention includes an encoding device 510 and a decoding device 520.
 本発明の第1の実施形態では、符号化装置110が、入力された映像の画素数および各画素のアスペクト比を調整する。また、本発明の第2の実施形態では、符号化装置310が、入力された映像にダミーの画素を付加して画素数を調整する。 In the first embodiment of the present invention, the encoding device 110 adjusts the number of input video pixels and the aspect ratio of each pixel. In the second embodiment of the present invention, the encoding device 310 adjusts the number of pixels by adding dummy pixels to the input video.
 それに対して、本実施形態の符号化装置510は、入力された映像の画素数および各画素のアスペクト比の調整と、入力された映像へのダミーの画素の付加とを行ってから、符号化の処理を行う。 On the other hand, the encoding device 510 of the present embodiment performs the encoding after adjusting the number of pixels of the input video and the aspect ratio of each pixel and adding a dummy pixel to the input video. Perform the process.
 符号化装置510によって符号化された映像は、送信装置210によって送信される。また、送信装置210によって送信された、符号化された映像は受信装置220によって受信される。そして、受信装置220は、受信した、符号化された映像を復号装置520に入力する。 The video encoded by the encoding device 510 is transmitted by the transmission device 210. Also, the encoded video transmitted by the transmission device 210 is received by the reception device 220. Then, the receiving device 220 inputs the received encoded video to the decoding device 520.
 そして、本実施形態の復号装置520は、符号化された映像を復号して、復号した映像の画素数およびアスペクト比を調整前の状態に復元し、ダミーの画素を削除する。 Then, the decoding device 520 of the present embodiment decodes the encoded video, restores the number of pixels and the aspect ratio of the decoded video to the state before adjustment, and deletes the dummy pixels.
 図9に示すように、符号化装置510は、設定部511、サイズ調整部512、画素アスペクト調整部513、符号化処理部514、記憶部515、および切り取り範囲設定部516を含む。 As shown in FIG. 9, the encoding device 510 includes a setting unit 511, a size adjustment unit 512, a pixel aspect adjustment unit 513, an encoding processing unit 514, a storage unit 515, and a cutout range setting unit 516.
 設定部511、サイズ調整部512、画素アスペクト調整部513、符号化処理部514、および切り取り範囲設定部516は、例えば、プログラム制御に従って処理を実行するCPUや複数の回路によって実現される。 The setting unit 511, the size adjustment unit 512, the pixel aspect adjustment unit 513, the encoding processing unit 514, and the cutout range setting unit 516 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
 設定部511は、符号化装置510に入力された映像の画素数に基づいて、サイズ調整部512による調整後の映像の画素数を設定する。 The setting unit 511 sets the number of pixels of the video after the adjustment by the size adjustment unit 512 based on the number of pixels of the video input to the encoding device 510.
 サイズ調整部512は、設定部511による設定結果に基づいて、符号化装置310に入力された映像を所定の画素数の映像に調整する。 The size adjusting unit 512 adjusts the video input to the encoding device 310 to a video having a predetermined number of pixels based on the setting result by the setting unit 511.
 切り取り範囲設定部516は、サイズ調整部512によってダミーの画素が付加された調整後の映像のうち、サイズ調整部512によって付加されたダミーの画素を除いた範囲を示す情報である切り取り範囲情報を生成する。 The cut-out range setting unit 516 includes cut-out range information that is information indicating a range excluding the dummy pixels added by the size adjusting unit 512 from the adjusted video to which the dummy pixels are added by the size adjusting unit 512. Generate.
 符号化処理部514は、サイズ調整部512によってダミーの画素が付加された画素数の映像を符号化する。そして、符号化処理部514は、符号化した映像と切り取り範囲設定部516が生成した切り取り範囲情報とを送信装置210に入力する。 The encoding processing unit 514 encodes an image having the number of pixels to which dummy pixels are added by the size adjusting unit 512. Then, the encoding processing unit 514 inputs the encoded video and the cut range information generated by the cut range setting unit 516 to the transmission device 210.
 記憶部515には、予め情報が記憶されている。具体的には、例えば、図2に例示した画素数データベースが記憶されている。 Information is stored in the storage unit 515 in advance. Specifically, for example, the pixel number database illustrated in FIG. 2 is stored.
 図9に示すように、復号装置520は、復号処理部521、復元設定部522、サイズ復元部523、画素アスペクト復元部524、および記憶部525を含む。 As illustrated in FIG. 9, the decoding device 520 includes a decoding processing unit 521, a restoration setting unit 522, a size restoring unit 523, a pixel aspect restoring unit 524, and a storage unit 525.
 復号処理部521、復元設定部522、サイズ復元部523、および画素アスペクト復元部524は、例えば、プログラム制御に従って処理を実行するCPUや複数の回路によって実現される。 The decoding processing unit 521, the restoration setting unit 522, the size restoration unit 523, and the pixel aspect restoration unit 524 are realized by, for example, a CPU that executes processing according to program control and a plurality of circuits.
 復号処理部521は、受信装置220によって入力された、符号化された映像を復号する。復元設定部522は、復号処理部521によって復号された映像の画素数に基づいて、復元後の映像のサイズを設定する。 The decoding processing unit 521 decodes the encoded video input by the receiving device 220. The restoration setting unit 522 sets the size of the restored video based on the number of pixels of the video decoded by the decoding processing unit 521.
 サイズ復元部523は、切り取り範囲情報に基づいて、復号処理部521が復号した映像から、当該切り取り範囲情報が示す範囲の映像を切り取る。 The size restoration unit 523 cuts the video in the range indicated by the cut range information from the video decoded by the decoding processing unit 521 based on the cut range information.
 画素アスペクト復元部524は、復号処理部521によって復号された映像の画素数に基づいて、サイズ復元部523がサイズを調整した映像の画素のアスペクト比を調整する。 The pixel aspect restoration unit 524 adjusts the aspect ratio of the pixel of the video whose size has been adjusted by the size restoration unit 523 based on the number of pixels of the video decoded by the decoding processing unit 521.
 記憶部525には、予め情報が記憶されている。具体的には、記憶部525には、例えば、復号された映像の画素数に応じて復元設定部522が設定する復元後の映像のサイズが登録されている復元用データベースが記憶されている。 Information is stored in the storage unit 525 in advance. Specifically, the storage unit 525 stores, for example, a restoration database in which the restored video size set by the restoration setting unit 522 according to the number of decoded video pixels is registered.
 復元用データベースには、例えば、図3に例示した画素アスペクトデータベースに登録されている情報に相当する情報が登録されている。 In the restoration database, for example, information corresponding to information registered in the pixel aspect database illustrated in FIG. 3 is registered.
 次に、本発明の第3の実施形態の映像伝送システム500の動作について説明する。図10は、本発明の第3の実施形態における符号化装置510の動作例を示すフローチャートである。 Next, the operation of the video transmission system 500 according to the third embodiment of the present invention will be described. FIG. 10 is a flowchart showing an operation example of the encoding apparatus 510 according to the third embodiment of the present invention.
 図10に示すように、符号化装置510に映像が入力された場合に、設定部511は、符号化装置510に入力された映像のフォーマットに応じた情報を記憶部515に記憶されているデータベースから読み出して、サイズ調整部512による調整後の映像の画素数を設定する(ステップS501)。なお、本例では、符号化装置510に、フォーマットが2160/Pの映像(例えば、水平方向の画素数「3840」であり、垂直方向の画素数「2160」である映像)が入力されたとする。 As illustrated in FIG. 10, when video is input to the encoding device 510, the setting unit 511 stores a database in which information according to the format of the video input to the encoding device 510 is stored in the storage unit 515. And the number of pixels of the image after adjustment by the size adjustment unit 512 is set (step S501). In this example, it is assumed that a video having a format of 2160 / P (for example, a video having the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2160”) is input to the encoding device 510. .
 そして、例えば、符号化装置510にフォーマットが2160/Pである映像が入力されたことに応じて、設定部511は、記憶部515の画素数データベースにおいて符号化映像フォーマット「2160/P」の水平方向の画素数および垂直方向の画素数を読み出す。図2に示す例では、符号化映像フォーマット「2160/P」には、水平方向の画素数「3840」および垂直方向の画素数「2160」である画像と、水平方向の画素数「2880」、垂直方向の画素数「2176」および付加するダミーデータ「8」である画像とが含まれている。 Then, for example, in response to the input of video having a format of 2160 / P to the encoding device 510, the setting unit 511 performs horizontal processing of the encoded video format “2160 / P” in the pixel number database of the storage unit 515. The number of pixels in the direction and the number of pixels in the vertical direction are read. In the example shown in FIG. 2, the encoded video format “2160 / P” includes an image having a horizontal pixel number “3840” and a vertical pixel number “2160”, a horizontal pixel number “2880”, The number of pixels in the vertical direction “2176” and the dummy data “8” to be added are included.
 そこで、設定部511は、例えば、管理者によってなされた操作に従って、記憶部515の画素数データベースにおいて符号化映像フォーマット「2160/P」に対応付けられている水平方向の画素数「2880」および垂直方向の画素数「2176」を読み出したとする。また、設定部511は、例えば、管理者によってなされた操作に従って、記憶部515の画素アスペクトデータベースから識別子「14」を読み出したとする。 Therefore, the setting unit 511, for example, in accordance with the operation performed by the administrator, the horizontal pixel number “2880” and the vertical pixel number associated with the encoded video format “2160 / P” in the pixel number database of the storage unit 515. Assume that the number of pixels “2176” in the direction is read out. For example, it is assumed that the setting unit 511 reads the identifier “14” from the pixel aspect database in the storage unit 515 in accordance with an operation performed by the administrator.
 そして、設定部511は、調整後の映像の画素数を水平方向の画素数「2880」および垂直方向の画素数「2160」に設定する。また、設定部511は、調整後の画素のアスペクト比を「4:3」に設定する。さらに、設定部511は、ダミーデータの画素数を「16」に設定する。 Then, the setting unit 511 sets the number of pixels of the adjusted image to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. The setting unit 511 sets the aspect ratio of the adjusted pixel to “4: 3”. Further, the setting unit 511 sets the number of pixels of the dummy data to “16”.
 サイズ調整部512は、設定部511による設定結果に基づいて、符号化装置510に入力された映像を所定の画素数の映像に調整する(ステップS502)。 The size adjusting unit 512 adjusts the video input to the encoding device 510 to a video having a predetermined number of pixels based on the setting result by the setting unit 511 (step S502).
 本例では、設定部511は、調整後の映像の画素数を水平方向の画素数「2880」および垂直方向の画素数「2160」に設定している。そこで、サイズ調整部512は、符号化装置510に入力された映像を、水平方向の画素数「3840」および垂直方向の画素数「2160」から、画素を間引いて、水平方向の画素数「2880」および垂直方向の画素数「2160」に調整する。すると、水平方向の画素数が3/4に減少する。 In this example, the setting unit 511 sets the number of pixels of the adjusted video to the number of pixels in the horizontal direction “2880” and the number of pixels in the vertical direction “2160”. Therefore, the size adjusting unit 512 thins out the video input to the encoding device 510 from the number of pixels in the horizontal direction “3840” and the number of pixels in the vertical direction “2160” to obtain the number of pixels in the horizontal direction “2880”. ”And the number of pixels in the vertical direction“ 2160 ”. Then, the number of pixels in the horizontal direction is reduced to 3/4.
 また、本例では、設定部511は、ダミーデータの画素数を「16」に設定している。そこで、サイズ調整部512は、当該映像の水平方向の両端に亘って、当該映像の垂直方向に、垂直方向の2160個の画素に加えて垂直方向に並んだ16個のダミーデータの画素を付加する。 In this example, the setting unit 511 sets the number of pixels of the dummy data to “16”. Therefore, the size adjustment unit 512 adds 16 pixels of dummy data arranged in the vertical direction in addition to 2160 pixels in the vertical direction across the both ends of the video in the horizontal direction. To do.
 したがって、サイズ調整部512による調整処理後の映像、つまり符号化処理部514が後述するステップS505の処理で符号化する対象の映像では、垂直方向の画素数が2176個であり、水平方向の画素数が2880個である。 Therefore, in the video after the adjustment processing by the size adjustment unit 512, that is, the video to be encoded by the encoding processing unit 514 in the process of step S505 described later, the number of pixels in the vertical direction is 2176, and the horizontal pixels The number is 2880.
 画素アスペクト調整部513は、設定部511における設定結果に基づいて、サイズ調整部512によって画素数が調整された映像における画素のアスペクト比を調整する(ステップS503)。 The pixel aspect adjustment unit 513 adjusts the pixel aspect ratio in the video in which the number of pixels is adjusted by the size adjustment unit 512 based on the setting result in the setting unit 511 (step S503).
 本例では、設定部511は、調整後の画素のアスペクト比を「4:3」に設定している。そこで、画素アスペクト調整部513は、サイズ調整部512によって画素数が調整された映像における画素のアスペクト比を「4:3」に調整する。したがって、サイズ調整部512によって画素数が調整された映像における画素は、横方向に4/3倍拡大される。 In this example, the setting unit 511 sets the aspect ratio of the pixel after adjustment to “4: 3”. Therefore, the pixel aspect adjustment unit 513 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 512 to “4: 3”. Accordingly, the pixels in the video whose number of pixels has been adjusted by the size adjusting unit 512 are expanded 4/3 times in the horizontal direction.
 切り取り範囲設定部516は、サイズ調整部512によってステップS502の処理で調整処理が施された映像のうち、ダミーデータによる映像以外の範囲、すなわち符号化装置510に入力された映像の範囲を示す切り取り範囲情報を生成する(ステップS504)。 The cutout range setting unit 516 includes a cutout indicating a range other than the video based on the dummy data, that is, the range of the video input to the encoding device 510 among the videos that have been adjusted by the size adjustment unit 512 in the process of step S502. Range information is generated (step S504).
 符号化処理部514は、サイズ調整部512によって画素数が調整され、画素アスペクト調整部513によって画素のアスペクト比が調整された映像を符号化する(ステップS505)。そして、符号化処理部514は、符号化した映像と切り取り範囲設定部516が生成した切り取り範囲情報とを送信装置210に入力する。 The encoding processing unit 514 encodes the video in which the number of pixels is adjusted by the size adjusting unit 512 and the pixel aspect ratio is adjusted by the pixel aspect adjusting unit 513 (step S505). Then, the encoding processing unit 514 inputs the encoded video and the cut range information generated by the cut range setting unit 516 to the transmission device 210.
 送信装置210に入力された、符号化された映像と切り取り範囲情報とは、送信装置210によって送信される。また、送信装置210によって送信された、符号化された映像および切り取り範囲情報は受信装置220によって受信される。そして、受信装置220は、受信した、符号化された映像および切り取り範囲情報を復号装置520に入力する。 The encoded video and cutout range information input to the transmission device 210 are transmitted by the transmission device 210. Also, the encoded video and cutout range information transmitted by the transmission device 210 are received by the reception device 220. Then, the receiving device 220 inputs the received encoded video and cutout range information to the decoding device 520.
 本例では、符号化処理部514による符号化処理の対象になる映像は、水平方向の画素数が「2880」であり垂直方向の画素数が「2176」である。そして、HEVC規格において、CTUの画素サイズには、64×64、32×32、および16×16がある。そうすると、2880÷64=45である。また、2172÷64=34である。したがって、当該映像は、64×64の画素サイズで水平方向にそれぞれ45個並べられた34行分のCTUに分割される。したがって、映像において、64×64の画素サイズで水平方向に45個並べられた34行分のCTUの部分を符号化した場合のDCT係数は、45×34×4×3=18360個である。 In this example, the video to be encoded by the encoding processing unit 514 has a horizontal pixel count of “2880” and a vertical pixel count of “2176”. In the HEVC standard, CTU pixel sizes include 64 × 64, 32 × 32, and 16 × 16. Then, 2880 ÷ 64 = 45. Also, 2172 ÷ 64 = 34. Therefore, the video is divided into 34 rows of CTUs each having 45 pixels arranged in a horizontal direction with a pixel size of 64 × 64. Therefore, the DCT coefficient in the case where the CTU portion for 34 rows arranged in the horizontal direction with the pixel size of 64 × 64 in the video is encoded is 45 × 34 × 4 × 3 = 18360.
 したがって、映像全体を符号化した場合のDCT係数の数は、18360個になる。 Therefore, the number of DCT coefficients when the entire video is encoded is 18360.
 なお、本例と同様な2160/Pのフォーマットの映像のサイズの調整が行われなかった場合に、水平方向の画素数は「3840」であり、垂直方向の画素数は「2160」である。そうすると、前述したように、映像全体を符号化した場合のDCT係数の数は、23760+1080=24840個になる。 When the size of the 2160 / P format image is not adjusted as in this example, the number of pixels in the horizontal direction is “3840” and the number of pixels in the vertical direction is “2160”. Then, as described above, the number of DCT coefficients when the entire video is encoded is 23760 + 1080 = 24840.
 したがって、本例によれば、映像のサイズが調整されてDCT係数の数が、24840個から18360個に削減されていることがわかる。 Therefore, according to this example, it can be seen that the size of the video is adjusted and the number of DCT coefficients is reduced from 24840 to 18360.
 図11は、本発明の第3の実施形態における復号装置520の動作例を示すフローチャートである。図11に示すように、まず、復号処理部521が、受信装置220によって入力された、符号化された映像を復号する(ステップS601)。 FIG. 11 is a flowchart showing an operation example of the decoding device 520 according to the third embodiment of the present invention. As shown in FIG. 11, first, the decoding processing unit 521 decodes the encoded video input by the receiving device 220 (step S601).
 そして、復元設定部522は、復号処理部521によって復号された映像に基づいて、当該映像の画素数を特定する(ステップS602)。そして、復元設定部522がステップS602の処理で特定した画素数に基づいて、復号処理部521が復号した映像のサイズを、サイズ復元部523が調整する(ステップS603)。 Then, the restoration setting unit 522 specifies the number of pixels of the video based on the video decoded by the decoding processing unit 521 (step S602). Then, based on the number of pixels specified by the restoration setting unit 522 in step S602, the size restoration unit 523 adjusts the size of the video decoded by the decoding processing unit 521 (step S603).
 具体的には、サイズ復元部523は、ステップS603の処理で、例えば、切り取り範囲情報に基づいて、復号処理部521が復号した映像から、当該切り取り範囲情報が示す範囲の映像を切り取る(抽出する)。 Specifically, in step S603, the size restoration unit 523 cuts out (extracts) a video in a range indicated by the cut range information from the video decoded by the decoding processing unit 521 based on the cut range information, for example. ).
 また、画素アスペクト復元部524は、復号処理部521によって復号され、サイズ復元部523によって抽出された映像の画素のアスペクト比を調整する(ステップS604)。 Also, the pixel aspect restoration unit 524 adjusts the aspect ratio of the pixels of the video decoded by the decoding processing unit 521 and extracted by the size restoration unit 523 (step S604).
 すなわち、画素数やアスペクト比が調整されて符号化された映像は、ステップS601の処理で復号され、ステップS603,S604の処理で調整されて、復元される。 That is, the video encoded by adjusting the number of pixels and the aspect ratio is decoded by the process of step S601, adjusted by the processes of steps S603 and S604, and restored.
 本実施形態によれば、サイズ調整部512や画素アスペクト調整部513が、DCT係数の数を考慮して画素数やアスペクト比を調整してから、符号化処理部514が符号化処理を行う。したがって、そのような調整が行われない場合に比べて、符号化に用いられるDCT係数の数を減少させることができる。よって、符号化処理における最小オーバヘッド符号量を低減させることができる。 According to this embodiment, the encoding processing unit 514 performs the encoding process after the size adjusting unit 512 and the pixel aspect adjusting unit 513 adjust the number of pixels and the aspect ratio in consideration of the number of DCT coefficients. Therefore, the number of DCT coefficients used for encoding can be reduced as compared with the case where such adjustment is not performed. Therefore, the minimum overhead code amount in the encoding process can be reduced.
 なお、本実施形態では、符号化装置510に、フォーマットが2160/Pである映像が入力された場合を例に説明したが、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像が入力された場合であっても、同様な処理によって、符号化に用いられるDCT係数の数を減少させることができるという効果が得られる。 In this embodiment, the case where a video having a format of 2160 / P is input to the encoding device 510 has been described as an example. However, the number of horizontal pixels “1920” having a format of 1080 / P and Even when a video having the number of pixels “1080” in the vertical direction is input, the same process can achieve the effect of reducing the number of DCT coefficients used for encoding.
 具体的には、サイズ調整部512が、水平方向の画素数を「1920」から「1440」に減少させる。すると、水平方向の画素数が3/4に減少する。また、サイズ調整部512が、当該映像における垂直方向に並んだ8個の画素が当該映像の水平方向の両端に亘って並べられたダミーデータによる映像を、符号化装置510に入力された映像に付加する。すると、サイズ調整部512によるサイズ調整後の映像は、水平方向の画素数が「1440」になり、垂直方向の画素数が「1088」になる。そして、画素アスペクト調整部513が、サイズ調整部512によって画素数が調整された映像における画素のアスペクト比を「4:3」に調整する。 Specifically, the size adjustment unit 512 decreases the number of pixels in the horizontal direction from “1920” to “1440”. Then, the number of pixels in the horizontal direction is reduced to 3/4. In addition, the size adjusting unit 512 converts the video by dummy data in which eight pixels arranged in the vertical direction in the video are arranged across both ends in the horizontal direction of the video into the video input to the encoding device 510. Append. Then, in the video after the size adjustment by the size adjustment unit 512, the number of pixels in the horizontal direction becomes “1440” and the number of pixels in the vertical direction becomes “1088”. Then, the pixel aspect adjustment unit 513 adjusts the aspect ratio of the pixels in the video whose number of pixels is adjusted by the size adjustment unit 512 to “4: 3”.
 すると、当該映像は、64×64の画素サイズで水平方向にそれぞれ22個並べられた17行分のCTUと、32×32の画素サイズで水平方向にそれぞれ1個並べられた34行分のCTUとに分割される。 Then, the video has 17 rows of CTUs arranged in a horizontal direction with a pixel size of 64 × 64 and 22 rows of CTUs, and 34 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32 respectively. And divided.
 そして、映像において、64×64の画素サイズで水平方向に22個並べられた17行分のCTUの部分を符号化した場合のDCT係数は、22×17×4×3=4488個である。また、映像において、32×32の画素サイズで水平方向に1個並べられた34行分のCTUの部分を符号化した場合のDCT係数は、1×34×3=102個である。 Then, in the video, the DCT coefficient in the case of encoding the CTU portion of 17 rows arranged in the horizontal direction with the pixel size of 64 × 64 is 22 × 17 × 4 × 3 = 4488. In addition, in the video, the DCT coefficient when coding the 34 rows of CTU portions arranged in the horizontal direction with a pixel size of 32 × 32 is 1 × 34 × 3 = 102.
 すると、サイズ調整部512により、水平方向の画素数が「1440」になり、垂直方向の画素数が「1088」になるようにサイズ調整された後の映像を符号化した場合のDCT係数の数は、4488+102=4590個である。 Then, the number of DCT coefficients when the size-adjusted image is encoded by the size adjusting unit 512 so that the number of pixels in the horizontal direction is “1440” and the number of pixels in the vertical direction is “1088”. Is 4488 + 102 = 4590.
 それに対して、サイズ調整部512による処理がなされていない、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像は、64×64の画素サイズで水平方向にそれぞれ30個並べられた16行分のCTUの部分と、32×32の画素サイズで水平方向に60個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、8×8の画素サイズで水平方向に240個並べられた1行分のCUの部分とに分割される。 On the other hand, an image that has not been processed by the size adjustment unit 512 and has 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction has a pixel size of 64 × 64 and 30 in the horizontal direction. 16 rows of CTUs arranged in a row, 60 rows of CTUs arranged in a horizontal direction with a pixel size of 32 × 32, and 120 pieces of CTUs arranged in a horizontal direction with a pixel size of 16 × 16 It is divided into a CTU portion for one row and a CU portion for one row arranged in the horizontal direction with 8 × 8 pixel size.
 すると、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像を符号化した場合において、64×64の画素サイズで水平方向にそれぞれ30個並べられた16行分のCTUの部分を符号化した場合のDCT係数の数は、30×16×4×3=5760個である。また、32×32の画素サイズで水平方向に60個並べられた1行分のCTUの部分と、16×16の画素サイズで水平方向に120個並べられた1行分のCTUの部分と、8×8の画素サイズで水平方向に240個並べられた1行分のCUの部分とを符号化した場合のDCT係数の数は、(60+120+240)×3=1260個である。 Then, when a video having 1080 vertical pixels and 1920 horizontal pixels is encoded, 30 rows of 16 pixels arranged in a horizontal direction with a 64 × 64 pixel size are provided. The number of DCT coefficients when the CTU part is encoded is 30 × 16 × 4 × 3 = 5760. In addition, 60 CTU portions arranged in a horizontal direction with a pixel size of 32 × 32, and CTU portions of one row arranged in a horizontal direction with a pixel size of 16 × 16, The number of DCT coefficients in the case of coding 240 CU portions arranged in a row in the horizontal direction with an 8 × 8 pixel size is (60 + 120 + 240) × 3 = 1260.
 したがって、垂直方向の画素数が1080個であり水平方向の画素数が1920個である映像を符号化した場合のDCT係数の数は、5760+1260=7020個である。 Therefore, the number of DCT coefficients when a video having 1080 pixels in the vertical direction and 1920 pixels in the horizontal direction is encoded is 5760 + 1260 = 7020.
 よって、フォーマットが1080/Pである、水平方向の画素数「1920」および垂直方向の画素数「1080」である映像が入力された場合であっても、本実施形態の処理によって、符号化に用いられるDCT係数の数を、7020個から4590個に減少させることができるという効果が得られる。 Therefore, even when a video having a format of 1080 / P and having a horizontal pixel count of “1920” and a vertical pixel count of “1080” is input, the processing according to the present embodiment enables encoding. The effect is that the number of DCT coefficients used can be reduced from 7020 to 4590.
 実施形態4.
 次に本発明の第4の実施形態について図面を参照して説明する。図12は、本発明の第4の実施形態の信号処理装置の構成例を示すブロック図である。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 12 is a block diagram illustrating a configuration example of the signal processing device according to the fourth embodiment of the present invention.
 図12に示すように、本発明の第4の実施形態の信号処理装置11は、記憶部(記憶手段)15と、画素数調整部(画素数調整手段)12と、符号化部(符号化手段)14とを含む。 As shown in FIG. 12, the signal processing apparatus 11 according to the fourth embodiment of the present invention includes a storage unit (storage unit) 15, a pixel number adjustment unit (pixel number adjustment unit) 12, and an encoding unit (encoding). Means) 14.
 なお、信号処理装置11は、例えば、図1に示す第1の実施形態における符号化装置110や、図6に示す第2の実施形態における符号化装置310、図9に示す第3の実施形態における符号化装置510に相当する。 Note that the signal processing device 11 is, for example, the encoding device 110 in the first embodiment shown in FIG. 1, the encoding device 310 in the second embodiment shown in FIG. 6, or the third embodiment shown in FIG. This corresponds to the encoding device 510 in FIG.
 また、記憶部15は、図6に示す第2の実施形態における記憶部315や、図9に示す第3の実施形態における記憶部515に相当する。 The storage unit 15 corresponds to the storage unit 315 in the second embodiment shown in FIG. 6 and the storage unit 515 in the third embodiment shown in FIG.
 画素数調整部12は、図6に示す第2の実施形態におけるサイズ調整部312や、図9に示す第3の実施形態におけるサイズ調整部512に相当する。 The pixel number adjusting unit 12 corresponds to the size adjusting unit 312 in the second embodiment shown in FIG. 6 and the size adjusting unit 512 in the third embodiment shown in FIG.
 符号化部14は、図6に示す第2の実施形態における符号化処理部314や、図9に示す第3の実施形態における符号化処理部514に相当する。 The encoding unit 14 corresponds to the encoding processing unit 314 in the second embodiment shown in FIG. 6 and the encoding processing unit 514 in the third embodiment shown in FIG.
 記憶部15には、離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている。なお、設定画素数情報は、例えば、画素数データベースに登録されている情報に相当する。 The storage unit 15 stores set pixel number information indicating a predetermined number of pixels according to the discrete cosine transform process. The set pixel number information corresponds to, for example, information registered in the pixel number database.
 画素数調整部12は、記憶部15に記憶されている設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する。 The pixel number adjustment unit 12 adjusts the number of pixels constituting the input video according to the number of pixels indicated by the set pixel number information stored in the storage unit 15.
 符号化部14は、画素数調整部12が画素の数を調整した映像に離散コサイン変換の処理を含む符号化処理を施す。 The encoding unit 14 performs an encoding process including a discrete cosine transform process on the video in which the pixel number adjusting unit 12 has adjusted the number of pixels.
 画素数調整部12は、設定画素数情報が示す画素数に応じて、入力された前記映像に付加用の画素を付加する処理を実行する。 The pixel number adjustment unit 12 executes a process of adding additional pixels to the input video according to the number of pixels indicated by the set pixel number information.
 本実施形態によれば、画素数調整部12が、記憶部15に記憶されている設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する。そして、符号化部14は、画素数調整部12が画素の数を調整した映像に離散コサイン変換の処理を含む符号化処理を施す。 According to the present embodiment, the pixel number adjusting unit 12 adjusts the number of pixels constituting the input video according to the number of pixels indicated by the set pixel number information stored in the storage unit 15. And the encoding part 14 performs the encoding process including the process of a discrete cosine transform to the image | video in which the pixel number adjustment part 12 adjusted the number of pixels.
 したがって、映像のサイズが調整されてDCT係数の数を削減することが可能になり、最小オーバヘッド符号量を考慮して映像を符号化することが可能になる。 Therefore, the size of the video can be adjusted to reduce the number of DCT coefficients, and the video can be encoded in consideration of the minimum overhead code amount.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2018年2月14日に出願された日本出願特願2018-023959を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-023959 filed on Feb. 14, 2018, the entire disclosure of which is incorporated herein.
 11  信号処理装置
 12  画素数調整部
 14  符号化部
 15  記憶部
 100、300、500  映像伝送システム
 110、310、510  符号化装置
 111、311、511  設定部
 112、312、512  サイズ調整部
 113、513  画素アスペクト調整部
 114、314、514  符号化処理部
 115、125、315、515、525  記憶部
 120、320、520  復号装置
 121、321、521  復号処理部
 122、522  復元設定部
 123、323、523  サイズ復元部
 124、524  画素アスペクト復元部
 210  送信装置
 220  受信装置
 313、516  切り取り範囲設定部
 524  画素アスペクト復元部
DESCRIPTION OF SYMBOLS 11 Signal processing apparatus 12 Pixel number adjustment part 14 Encoding part 15 Memory | storage part 100,300,500 Video transmission system 110,310,510 Encoding apparatus 111,311,511 Setting part 112,312,512 Size adjustment part 113,513 Pixel aspect adjustment unit 114, 314, 514 Encoding processing unit 115, 125, 315, 515, 525 Storage unit 120, 320, 520 Decoding device 121, 321, 521 Decoding processing unit 122, 522 Restoration setting unit 123, 323, 523 Size restoration unit 124, 524 Pixel aspect restoration unit 210 Transmission device 220 Reception device 313, 516 Cutout range setting unit 524 Pixel aspect restoration unit

Claims (8)

  1.  離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段と、
     前記記憶手段に記憶されている前記設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する画素数調整手段と、
     前記画素数調整手段が前記画素の数を調整した映像に前記離散コサイン変換の処理を含む符号化処理を施す符号化手段とを備え、
     前記画素数調整手段は、
     前記設定画素数情報が示す画素数に応じて、入力された前記映像に付加用の画素を付加する処理を実行する
     ことを特徴とする信号処理装置。
    Storage means for storing set pixel number information indicating a predetermined number of pixels according to discrete cosine transform processing;
    Pixel number adjusting means for adjusting the number of pixels constituting the input video according to the number of pixels indicated by the set pixel number information stored in the storage means;
    Coding means for performing coding processing including processing of the discrete cosine transform on the video in which the pixel number adjusting means has adjusted the number of pixels;
    The pixel number adjusting means includes
    A signal processing device that performs processing for adding additional pixels to the input video according to the number of pixels indicated by the set pixel number information.
  2.  前記画素数調整手段は、
     前記符号化処理に応じた復号処理が行われた映像から、前記付加する処理で付加された画素以外の画素からなる映像を抽出する抽出範囲を示す範囲情報を生成する
     請求項1に記載の信号処理装置。
    The pixel number adjusting means includes
    The signal according to claim 1, wherein range information indicating an extraction range for extracting a video including pixels other than the pixels added in the adding process is generated from the video that has been subjected to the decoding process according to the encoding process. Processing equipment.
  3.  前記画素数調整手段は、
     前記設定画素数情報が示す画素数に応じて、入力された前記映像を構成する画素のうち、一部の画素を間引く処理を実行し、
     前記間引く処理に応じて、入力された前記映像を構成する画素のうち残部の画素のアスペクト比を調整する
     請求項1または請求項2に記載の信号処理装置。
    The pixel number adjusting means includes
    In accordance with the number of pixels indicated by the set pixel number information, a process of thinning out some of the pixels constituting the input video is executed,
    The signal processing apparatus according to claim 1, wherein the aspect ratio of the remaining pixels among the pixels constituting the input video is adjusted according to the thinning process.
  4.  前記画素数調整手段は、
     前記間引く処理において、水平方向に並ぶ画素、または垂直方向に並ぶ画素のうち、一部の画素を間引く
     請求項3に記載の信号処理装置。
    The pixel number adjusting means includes
    The signal processing device according to claim 3, wherein in the thinning-out process, a part of the pixels arranged in the horizontal direction or the pixels arranged in the vertical direction is thinned out.
  5.  前記記憶手段には、前記離散コサイン変換の処理の単位に応じた画素数を示す前記設定画素数情報が記憶されている
     請求項1から請求項4のうちいずれか1項に記載の信号処理装置。
    The signal processing device according to any one of claims 1 to 4, wherein the storage unit stores the set pixel number information indicating the number of pixels corresponding to a unit of processing of the discrete cosine transform. .
  6.  請求項1から請求項5のうちいずれか1項に記載の信号処理装置と、
     前記符号化処理に応じた復号処理を行う復号処理装置とを備えた
     ことを特徴とする信号処理システム。
    A signal processing device according to any one of claims 1 to 5,
    A signal processing system comprising: a decoding processing device that performs a decoding process according to the encoding process.
  7.  離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段に記憶されている前記設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整し、
     前記画素の数を調整した映像に前記離散コサイン変換の処理を含む符号化処理を施し、
     前記画素の数を調整するときに、
     前記設定画素数情報が示す画素数に応じて、入力された前記映像に付加用の画素を付加する
     ことを特徴とする信号処理方法。
    The input image is displayed in accordance with the number of pixels indicated by the set pixel number information stored in the storage means in which the preset pixel number information indicating the predetermined number of pixels corresponding to the discrete cosine transform processing is stored. Adjust the number of pixels
    Performing an encoding process including a process of the discrete cosine transform on the video in which the number of pixels is adjusted;
    When adjusting the number of pixels,
    A signal processing method, wherein an additional pixel is added to the input video according to the number of pixels indicated by the set pixel number information.
  8.  コンピュータに、
     離散コサイン変換の処理に応じた予め決められた画素数を示す設定画素数情報が記憶されている記憶手段に記憶されている前記設定画素数情報が示す画素数に応じて、入力された映像を構成する画素の数を調整する画素数調整処理と、
     前記画素数調整処理で前記画素の数を調整した映像に前記離散コサイン変換の処理を含む符号化処理を施す符号化処理とを実行させ、
     前記画素数調整処理で、
     前記設定画素数情報が示す画素数に応じて、入力された前記映像に付加用の画素を付加させる
     ための信号処理用プログラムが記憶された記憶媒体。
    On the computer,
    The input image is displayed in accordance with the number of pixels indicated by the set pixel number information stored in the storage means in which the preset pixel number information indicating the predetermined number of pixels corresponding to the discrete cosine transform processing is stored. A pixel number adjustment process for adjusting the number of constituent pixels;
    An encoding process for performing an encoding process including a process of the discrete cosine transform on the video in which the number of pixels is adjusted in the pixel number adjustment process;
    In the pixel number adjustment process,
    A storage medium storing a signal processing program for adding additional pixels to the input video according to the number of pixels indicated by the set pixel number information.
PCT/JP2019/004686 2018-02-14 2019-02-08 Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program WO2019159850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-023959 2018-02-14
JP2018023959 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159850A1 true WO2019159850A1 (en) 2019-08-22

Family

ID=67618614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004686 WO2019159850A1 (en) 2018-02-14 2019-02-08 Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program

Country Status (1)

Country Link
WO (1) WO2019159850A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195702A (en) * 2011-03-15 2012-10-11 Fujitsu Ltd Image encoding method and image encoding device
WO2015151513A1 (en) * 2014-04-04 2015-10-08 日本電気株式会社 Video image encoding apparatus, method, and program, and image decoding apparatus, method, and program
WO2016185831A1 (en) * 2015-05-19 2016-11-24 ソニーセミコンダクタソリューションズ株式会社 Image processing device and image processing method
JP2017195429A (en) * 2016-04-18 2017-10-26 ルネサスエレクトロニクス株式会社 Image processing system, image processing method, and image transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195702A (en) * 2011-03-15 2012-10-11 Fujitsu Ltd Image encoding method and image encoding device
WO2015151513A1 (en) * 2014-04-04 2015-10-08 日本電気株式会社 Video image encoding apparatus, method, and program, and image decoding apparatus, method, and program
WO2016185831A1 (en) * 2015-05-19 2016-11-24 ソニーセミコンダクタソリューションズ株式会社 Image processing device and image processing method
JP2017195429A (en) * 2016-04-18 2017-10-26 ルネサスエレクトロニクス株式会社 Image processing system, image processing method, and image transmission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITU-T: "High efficiency video coding- ITU-T H.265 (12/2016)", SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS-INFRASTRUCTURE OF AUDIOVISUAL SERVICES-CODING OF MOVING VIDEO, 16 March 2017 (2017-03-16), pages 13, 76, 264- 266 , 373 - 374, XP055635777 *

Similar Documents

Publication Publication Date Title
US11902592B2 (en) Method and device for entropy encoding, decoding video signal
CN103535037A (en) Image processing device and image processing method
CN113302942B (en) Image coding method and device based on secondary transformation
CN112166606B (en) Method for processing image and apparatus therefor
US11909972B2 (en) Coding of information about transform kernel set
US20080219348A1 (en) Data embedding apparatus, data extracting apparatus, data embedding method, and data extracting method
US20240007635A1 (en) Video coding apparatus and video decoding apparatus
EP2713624A1 (en) Method and system for generating an instantaneous decoding refresh (IDR) picture slice in an H.264/AVC compliant video data stream
EP1371230B1 (en) Run-length coding of non-coded macroblocks
KR20230054743A (en) Image decoding method and apparatus relying on intra prediction in image coding system
US20140321528A1 (en) Video encoding and/or decoding method and video encoding and/or decoding apparatus
US20140169446A1 (en) Adaptive decoding system
CN115443660A (en) Method and apparatus for decoding imaging related to symbol data hiding
CN113302941B (en) Video coding method and device based on secondary transformation
WO2019159850A1 (en) Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program
WO2019159846A1 (en) Signal processing device, signal processing system, signal processing method, and storage medium storing signal processing program
US10547848B2 (en) Image decoding method and apparatus in image coding system
US20220279179A1 (en) Method and device for high-level image segmentation and image encoding/decoding
CN115552910A (en) Image decoding method for residual coding and apparatus thereof
CN113228669A (en) Moving image encoding device and moving image decoding device
EP3549349B1 (en) A decoder, encoder, computer program and method
CN115349258B (en) Image decoding method for residual coding in image coding system and apparatus therefor
KR20150072853A (en) Method for encoding and decoding using variable length coding and system thereof
CN109479112B (en) Decoder, encoder, computer-readable storage medium, and method
EP4156687A1 (en) Image decoding method and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP