WO2019159819A1 - Work tool - Google Patents

Work tool Download PDF

Info

Publication number
WO2019159819A1
WO2019159819A1 PCT/JP2019/004494 JP2019004494W WO2019159819A1 WO 2019159819 A1 WO2019159819 A1 WO 2019159819A1 JP 2019004494 W JP2019004494 W JP 2019004494W WO 2019159819 A1 WO2019159819 A1 WO 2019159819A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
sleeve
gear sleeve
work tool
roller
Prior art date
Application number
PCT/JP2019/004494
Other languages
French (fr)
Japanese (ja)
Inventor
洋規 生田
祥吾 冨永
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018027415A external-priority patent/JP7231329B2/en
Priority claimed from JP2019001286A external-priority patent/JP7136705B2/en
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Priority to CN201980014004.6A priority Critical patent/CN111757793B/en
Priority to DE112019000419.0T priority patent/DE112019000419T5/en
Priority to US16/966,795 priority patent/US11607780B2/en
Publication of WO2019159819A1 publication Critical patent/WO2019159819A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/141Mechanical overload release couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Definitions

  • the present invention relates to a work tool configured to rotationally drive a tip tool.
  • a work tool is known that is configured to rotationally drive a tip tool attached to a front end portion of a spindle and includes a power transmission mechanism (clutch) that transmits motor power to the spindle in response to the pushing of the spindle.
  • a power transmission mechanism (clutch) that transmits motor power to the spindle in response to the pushing of the spindle.
  • JP 2012-135842 A discloses a planetary power transmission mechanism including a fixed hub, a drive gear, a planetary roller, and a planetary roller holding member.
  • the fixed hub has a tapered surface on the outer periphery and is fixed to the housing.
  • the cup-shaped drive gear has a tapered surface on the inner periphery and is rotatably held by the spindle.
  • the planetary roller is disposed between the fixed hub and the tapered surface of the drive gear.
  • the holding member of the planetary roller is fixed to the spindle.
  • the planetary roller frictionally contacts the fixed hub and the taper surface of the drive gear and revolves around the spindle axis while rotating.
  • the holding member of the planetary roller rotates around the axis integrally with the spindle.
  • the drive gear held by the spindle and the holding member of the planetary roller move in a direction toward or away from the fixed hub fixed to the housing.
  • the planetary roller is arranged loosely in a groove formed in the holding member. For this reason, the planetary roller may move in the axial direction, and the frictional contact with the tapered surface as the drive surface may become unstable.
  • the present invention establishes stable frictional contact between a planetary roller and a drive surface in a work tool having a planetary roller type power transmission mechanism that transmits power in accordance with the backward movement of the spindle.
  • the purpose is to provide an improvement to do this.
  • a work tool configured to rotationally drive a tip tool.
  • This work tool includes a housing, a spindle, a motor, and a power transmission mechanism.
  • the spindle is supported by the housing so as to be movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction of the work tool and rotatable about the drive shaft. Further, the spindle has a front end portion configured to be detachable from the tip tool.
  • the motor and the power transmission mechanism are accommodated in the housing.
  • the power transmission mechanism includes a sun member, a ring member, a carrier member, and a planetary roller.
  • the sun member, the ring member, and the carrier member are arranged coaxially with the drive shaft.
  • the planetary roller is held by the carrier member so as to be able to rotate.
  • the sun member and the ring member each have a first tapered surface and a second tapered surface that are inclined with respect to the drive shaft.
  • One of the sun member and the ring member is configured to be movable in the front-rear direction integrally with the spindle with respect to the other.
  • At least a part of the planetary roller is disposed between the first tapered surface and the second tapered surface in the radial direction with respect to the drive shaft.
  • the power transmission mechanism moves relative to the sun member and the ring member in a direction close to each other in accordance with the backward movement of the spindle, and the planetary roller is brought into a frictional contact state with the sun member and the ring member. It is comprised so that the motive power of a motor may be transmitted. Further, in the power transmission mechanism, the sun member and the ring member move relative to each other in a direction away from each other in accordance with the forward movement of the spindle, and the planetary roller is brought into a non-friction contact state with the sun member and the ring member. Therefore, the transmission of power is cut off. Furthermore, the work tool includes a restricting member configured to restrict the planetary roller from moving in the front-rear direction with respect to the housing.
  • the “movement restriction” here is not limited to completely prohibiting movement, but includes a case where slight movement is allowed.
  • the work tool of this aspect includes a so-called planetary roller type power transmission mechanism.
  • this power transmission mechanism at least a part of the planetary roller is disposed between the first taper surface of the sun member and the second taper surface of the ring member in the radial direction with respect to the drive shaft of the spindle (a direction orthogonal to the drive shaft).
  • One of the sun member and the ring member is movable in the front-rear direction integrally with the spindle with respect to the other.
  • the planetary roller is restricted from moving in the front-rear direction by a restriction member. Therefore, it is possible to reduce the possibility that the planetary roller moves in the front-rear direction with the relative movement of the sun member and the ring member, and the frictional contact with the first and second tapered surfaces becomes unstable.
  • the carrier member may be held by the spindle so as to be movable in the front-rear direction with respect to the spindle.
  • the carrier member may be independent of the spindle with respect to the longitudinal movement.
  • the carrier member needs to be arranged at a position where the planetary roller can be held so that the planetary roller does not come off between the first tapered surface of the sun member and the second tapered surface of the ring member.
  • the carrier member can be maintained at an appropriate position regardless of the movement of the spindle.
  • distance of the front-back direction of a spindle can be reduced.
  • the spindle needs to be pushed to a position where the sun member and the ring member are closer to each other. That is, it is necessary to increase the amount of movement of the spindle in the front-rear direction, but according to this aspect, it is possible to appropriately meet such needs.
  • the carrier member may be held non-rotatable around the drive shaft with respect to the spindle.
  • the carrier member may be configured to rotate integrally with the spindle by the power transmitted via the planetary roller. According to this aspect, it is possible to realize a rational planetary roller type power transmission mechanism using the carrier member as an output member.
  • the restricting member may be configured to restrict the carrier member from moving in the front-rear direction with respect to the housing. According to this aspect, since the movement of the planetary roller and the carrier member in the front-rear direction is restricted by the restriction member, an appropriate positional relationship between the planetary roller and the carrier member can be more reliably maintained.
  • the restricting member may include a spring member that biases the spindle and the carrier member so as to be separated from each other in the front-rear direction.
  • the spindle may be held at the foremost position by the biasing force of the spring member at all times. According to this aspect, when the pushing of the spindle is released while restricting the movement of the carrier member by the biasing force of the spring member, the spindle can be returned to the foremost position (that is, the initial position).
  • the ring member may be supported by the spindle so as to be movable in the front-rear direction integrally with the spindle and to be rotatable around the drive shaft.
  • the spring member may be interposed between the carrier member and the ring member in the front-rear direction.
  • the work tool may further include a receiving member that receives one end of the spring member on the ring member side in a state where the spring member is blocked from rotation of the ring member. According to this aspect, it is possible to prevent the spring member from rotating together with the ring member (so-called co-rotation) and the sliding portion between the spring member and the ring member from generating heat.
  • the ring member may be configured to be rotated by the power of the motor.
  • the spring member may be configured to bias the ring member and the carrier member forward and backward so as to be separated from each other.
  • the spring member also has a function of urging the ring member as the driving side member and the carrier member as the driven side member in the power transmission mechanism in the direction of interrupting transmission. According to this aspect, it is possible to realize a plurality of functions of restricting movement of the carrier member in the front-rear direction and blocking power transmission without increasing the number of components.
  • the ring member may have at least one communication hole that communicates the inside and the outside of the ring member.
  • the flow of air through the communication hole can be generated by the centrifugal force accompanying the drive of the power transmission mechanism (typically, the rotation of the ring member).
  • arranged in the housing are realizable.
  • the communication hole may be formed in a region of the ring member that is different from the region corresponding to the second tapered surface. According to this aspect, the communication hole can be easily formed in the ring member.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3.
  • FIG. 4 is a partially enlarged view of FIG. 3. It is the elements on larger scale of FIG.
  • FIG. 5 corresponds to a cross-sectional view taken along line VIII-VIII in FIG.
  • It is a longitudinal cross-sectional view of the screw driver in a state where the spindle is moved rearward from the initial position and the power transmission mechanism is in a transmittable state.
  • FIG. 10 corresponds to a cross-sectional view taken along line XX in FIG. 9 and is an explanatory view showing a frictional contact state between a roller, a taper sleeve, and a gear sleeve.
  • FIG. 4 is a cross-sectional view taken along line XI-XI in FIG. 3 and is an explanatory view showing a state of the one-way clutch when the gear sleeve is driven to rotate in the forward direction.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 11, illustrating the state of the one-way clutch when the gear sleeve is driven to rotate in the reverse direction.
  • FIG. 5 is a cross-sectional view corresponding to FIG.
  • FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15. It is a disassembled perspective view of a spindle, a power transmission mechanism, and a position switching mechanism.
  • FIG. 16 is a cross-sectional view corresponding to FIG. 15, illustrating the state where the gear sleeve is moved rearward. It is sectional drawing corresponding to FIG.
  • FIG. 16 Comprising: It is explanatory drawing which shows the state by which the gear sleeve was moved back. It is a longitudinal cross-sectional view of the screw driver which concerns on 3rd Embodiment.
  • FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG. 20. It is a disassembled perspective view of a spindle, a power transmission mechanism, and a position switching mechanism. It is the elements on larger scale of FIG.
  • the screw driver 1 is an example of a work tool that rotationally drives a tip tool. More specifically, the screw driver 1 is an example of a screw tightening tool capable of performing a screw tightening operation or a screw loosening operation by rotationally driving a driver bit 9 mounted on the spindle 3.
  • the screw driver 1 includes a main body portion 10 including a motor 2, a spindle 3, and the like, and a handle portion 17 including a grip portion 171.
  • the main body 10 is formed in an elongated shape extending along a predetermined drive axis A1 as a whole.
  • a driver bit 9 is detachably attached to one end of the main body 10 in the long axis direction (the extending direction of the drive shaft A1).
  • the handle portion 17 is formed in a C shape as a whole, and is connected to the other end portion of the main body portion 10 in the long axis direction in a loop shape.
  • a portion of the handle portion 17 that is separated from the main body portion 10 and linearly extends in a direction substantially orthogonal to the drive shaft A1 constitutes a grip portion 171 that is gripped by the user. Note that one end portion of the grip portion 171 in the major axis direction is disposed on the drive shaft A1.
  • a trigger 173 that can be pulled by the user is provided at one end.
  • a power cable 179 that can be connected to an external AC power supply is connected to the other end of the gripping portion 171.
  • the motor 2 when the trigger 173 is pulled by the user, the motor 2 is driven.
  • the spindle 3 When the spindle 3 is pushed backward, the power of the motor 2 is transmitted to the spindle 3 and the driver bit 9 is rotationally driven. Thereby, a screw tightening operation and a screw loosening operation are performed.
  • the extending direction (axial direction) of the drive shaft A1 is defined as the front-rear direction of the screw driver 1.
  • the side on which the driver bit 9 is attached / detached is defined as the front side
  • the side on which the grip portion 171 is disposed is defined as the rear side.
  • the direction perpendicular to the drive axis A1 and corresponding to the extending direction of the gripping portion 171 is defined as the vertical direction.
  • the side on which the trigger 173 is disposed is defined as the upper side
  • the side to which the power cable 179 is connected is defined as the lower side.
  • the direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction.
  • the main body housing 11 includes a cylindrical rear housing 12 that houses the motor 2, a cylindrical front housing 13 that houses the spindle 3, and a central housing 14 disposed between the rear housing 12 and the front housing 13. Including.
  • the front end portion of the central housing 14 has a partition wall 141 disposed so as to be substantially orthogonal to the drive shaft A1.
  • the central housing 14 and the front housing 13 are fixed to the rear housing 12 with screws, so that the three housings are integrated as the main body housing 11. Details including the internal structure of the main body 10 will be described later.
  • a cylindrical locator 15 is detachably connected to the front end of the front housing 13 so as to cover the front end.
  • the locator 15 is movable relative to the front housing 13 in the front-rear direction, and is fixed at an arbitrary position by the user. Thereby, the protrusion amount of the driver bit 9 from the locator 15, that is, the depth of screw tightening is set.
  • the outline of the handle portion 17 is mainly formed by a handle housing 18.
  • the handle housing 18 is composed of left and right halves. The left half is integrally formed with the rear housing 12.
  • the handle housing 18 accommodates a main switch 174, a rotation direction switch 176, and a controller 178.
  • the main switch 174 is a switch for starting the motor 2, and is disposed in the grip 171 on the rear side of the trigger 173.
  • the main switch 174 is normally maintained in an off state and is switched to an on state in accordance with a pulling operation of the trigger 173.
  • the main switch 174 outputs a signal indicating an on state or an off state to the controller 178 via a wiring (not shown).
  • a portion of the handle housing 18 connected to the lower end portion of the grip portion 171 and the lower rear end portion of the main body portion 10 (rear housing 12) has a rotation direction of the driver bit 9 (specifically, a rotation direction of the motor shaft 23). ) Is provided for switching.
  • the user operates the switching lever 175 to change the direction of rotation of the motor shaft 23 in the direction in which the driver bit 9 tightens the screw 90 (also referred to as positive direction or screw tightening direction) or the direction in which the driver bit 9 loosens the screw 90. It can be set to one of (reverse direction, also referred to as screw loosening direction).
  • the rotation direction switch 176 outputs a signal corresponding to the rotation direction set via the switching lever 175 to the controller 178 via a wiring (not shown).
  • the controller 178 including the control circuit is disposed below the main switch 174.
  • the controller 178 is configured to drive the motor 2 in accordance with the rotation direction indicated by the signal from the rotation direction switch 176 when the signal from the main switch 174 indicates an ON state.
  • the motor 2 is accommodated in the rear housing 12.
  • an AC motor is employed as the motor 2.
  • a motor shaft 23 extending from the rotor 21 of the motor 2 extends below (in the front-rear direction) the drive shaft A1 below the drive shaft A1.
  • the motor shaft 23 is rotatably supported by bearings 231 and 233 at the front end portion and the rear end portion.
  • the front bearing 231 is supported by the partition wall 141 of the central housing 14, and the rear bearing 233 is supported by the rear end portion of the rear housing 12.
  • a fan 25 for cooling the motor 2 is fixed to a portion of the motor shaft 23 on the front side of the rotor 21 and is accommodated in the central housing 14.
  • the front end portion of the motor shaft 23 projects into the front housing 13 through a through hole provided in the partition wall 141.
  • a pinion gear 24 is formed at the front end of the motor shaft 23.
  • the front housing 13 accommodates the spindle 3, the power transmission mechanism 4, and the position switching mechanism 5.
  • the spindle 3 is a substantially cylindrical long member, and extends in the front-rear direction along the drive shaft A1.
  • the spindle 3 is configured by integrally connecting a front shaft 31 and a rear shaft 32 that are separately formed and integrated.
  • the spindle 3 may be constituted by only a single shaft.
  • the spindle 3 has a flange 34 projecting radially outward at a central portion (specifically, a rear end portion of the front shaft 31) in the front-rear direction.
  • the spindle 3 can be rotated around the drive axis A1 by a bearing (specifically, an oilless bearing) 301 and a bearing (specifically, a ball bearing) 302, and can be moved back and forth along the drive axis A1. Supported as possible.
  • the bearing 301 is supported by the partition wall 141 of the central housing 14.
  • the bearing 302 is supported on the front end portion of the front housing 13.
  • the spindle 3 is normally urged forward by an urging force of an urging spring 49 described later, and is held at a position where the front end surface of the flange 34 comes into contact with a stopper portion 135 provided in the front housing 13. .
  • the position of the spindle 3 at this time is the foremost position (also referred to as the initial position) in the movable range of the spindle 3. Further, the front end portion of the spindle 3 (front shaft 31) protrudes from the front housing 13 into the locator 15. At the front end of the spindle 3 (front shaft 31), a bit insertion hole 311 is provided along the drive axis A1. When the steel ball urged by the leaf spring is engaged with the small diameter portion of the driver bit 9 inserted into the bit insertion hole 311, the driver bit 9 is detachably held.
  • the power transmission mechanism 4 of the present embodiment is mainly configured by a planetary mechanism including a tapered sleeve 41, a retainer 43, a plurality of rollers 45, and a gear sleeve 47.
  • the taper sleeve 41, the retainer 43, and the gear sleeve 47 are arranged coaxially with the spindle 3 (drive shaft A1).
  • the taper sleeve 41, the retainer 43, the roller 45, and the gear sleeve 47 correspond to a sun member, a carrier member, a planetary member, and a ring member in the planetary mechanism, respectively.
  • the power transmission mechanism 4 is a so-called solar in which a taper sleeve 41 as a sun member is fixed, a gear sleeve 47 as a ring member operates as an input member, and a retainer 43 as a carrier member operates as an output member. It is configured as a type planetary speed reduction mechanism. Therefore, the gear sleeve 47 and the retainer 43 (spindle 3) rotate in the same direction.
  • the power transmission mechanism 4 is configured to transmit the power of the motor 2 to the spindle 3 or to block the power transmission. Specifically, in the power transmission mechanism 4, in the front-rear direction, as the gear sleeve 47 moves relative to or away from the taper sleeve 41, the retainer 43, and the roller 45, the roller 45 The taper sleeve 41 and the gear sleeve 47 are configured to be in a frictional contact state or a non-frictional contact state. As a result, the power transmission mechanism 4 is switched between a transmittable state in which the power of the motor 2 can be transmitted to the spindle 3 and a blocked state in which the power of the motor 2 cannot be transmitted to the spindle 3. That is, it can be said that the power transmission mechanism 4 of this embodiment is configured as a planetary roller friction clutch mechanism.
  • the taper sleeve 41 will be described. As shown in FIGS. 5 to 7, the taper sleeve 41 corresponding to the sun member is configured as a cylindrical member.
  • the taper sleeve 41 is fixed to the main body housing 11 (specifically, the partition wall 141) through the base 143 so as not to rotate around the drive shaft A1.
  • the base 143 is fixed to the partition wall 141 on the front side of the bearing 301 that supports the rear end portion of the spindle 3 (rear shaft 32), and is integrated with the main body housing 11.
  • the spindle 3 (specifically, the rear shaft 32) is inserted into the taper sleeve 41 so as to be loosely fitted, and is movable in the front-rear direction with respect to the taper sleeve 41 and is rotatable.
  • the outer peripheral surface of the taper sleeve 41 is configured as a taper surface 411 inclined at a predetermined angle with respect to the drive shaft A1. More specifically, the outer shape of the taper sleeve 41 is a truncated cone shape that narrows toward the front (the diameter decreases).
  • the taper surface 411 is configured as a conical surface that inclines in a direction approaching the drive axis A1 toward the front. In the present embodiment, the inclination angle of the tapered surface 411 with respect to the drive shaft A1 is set to approximately 4 degrees (approximately 8 degrees when viewed from a conical section).
  • the retainer 43 as a carrier member is a member that holds a roller 45 as a planetary member in a rotatable manner.
  • the retainer 43 includes a substantially circular bottom wall 431 having a through hole and a plurality of holding arms 434 protruding from the outer edge of the bottom wall 431.
  • the holding arms 434 are spaced apart from each other in the circumferential direction.
  • the retainer 43 has ten holding arms 434.
  • the number of holding arms 434 (and the number of rollers 45) can be changed as appropriate.
  • the retainer 43 is arranged in such a direction that the bottom wall 431 is positioned on the front side (so that the holding arm 434 protrudes rearward).
  • the retainer 43 is supported by the spindle 3 so as not to rotate with respect to the spindle 3 and to be movable in the front-rear direction in a state where a part of the holding arm 434 overlaps the taper sleeve 41 in the radial direction.
  • Each holding arm 434 protrudes rearward from the outer edge of the bottom wall 431 so as to form the same inclination angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 (that is, parallel to the tapered surface 411).
  • a pair of grooves 321 are formed in the front portion of the rear end portion of the rear shaft 32 of the spindle 3 with the drive shaft A1 interposed therebetween.
  • Each groove 321 has a U-shaped cross section and extends linearly in the front-rear direction.
  • a steel ball 36 is arranged in each groove 321 so as to be able to roll.
  • a pair of recesses 432 are formed on the rear surface (the surface on the holding arm 434 side) of the bottom wall 431 of the retainer 43 with the drive shaft A1 interposed therebetween. A part of the ball 36 disposed in the groove 321 is engaged with the recess 432.
  • annular recess 414 is formed at the center of the front end surface of the taper sleeve 41.
  • the retainer 43 is biased rearward by a biasing spring 49, the ball 36 is disposed in a space defined by the recesses 414, 432, and the rear surface of the bottom wall 431 is the taper sleeve 41. It is held in contact with the front end surface.
  • the rear end of the holding arm 434 is disposed at a position spaced forward from the base 143.
  • the retainer 43 is engaged with the spindle 3 via the ball 36 in the radial direction and the circumferential direction of the spindle 3 and can rotate integrally with the spindle 3.
  • the ball 36 can roll in the annular recess 414 of the taper sleeve 41, and the retainer 43 can rotate around the drive axis A 1 with respect to the taper sleeve 41 together with the spindle 3.
  • the spindle 3 is movable in the front-rear direction with respect to the retainer 43 within a range in which the ball 36 can roll in the groove 321.
  • the roller 45 corresponding to the planetary member is a cylindrical member.
  • each roller 45 has a constant diameter and is held between adjacent holding arms 434 so as to be capable of rotating about a rotation axis substantially parallel to the tapered surface 411.
  • the length of the roller 45 is set longer than that of the holding arm 434.
  • a part of the outer peripheral surface of the roller 45 slightly protrudes from the inner and outer surfaces of the holding arm 434 in the radial direction of the retainer 43. .
  • the gear sleeve 47 As shown in FIGS. 5 to 7, the gear sleeve 47 corresponding to the ring member is configured as a substantially cup-shaped member having an inner diameter larger than the outer diameters of the taper sleeve 41 and the retainer 43.
  • the gear sleeve 47 has a bottom wall 471 having a through hole and a cylindrical peripheral wall 474 connected to the bottom wall 471.
  • An outer ring 481 of a bearing (specifically, a ball bearing) 48 is fixed to a portion of the inner peripheral surface of the peripheral wall 474 in the vicinity of the bottom wall 471.
  • the gear sleeve 47 is arranged in such a direction that the bottom wall 471 is positioned on the front side (so as to open rearward).
  • the gear sleeve 47 is supported by the spindle 3 so as to be rotatable with respect to the spindle 3 and movable in the front-rear direction on the front side of the retainer 43.
  • the rear shaft 32 of the spindle 3 is inserted into the through hole of the bottom wall 471 so as to be loosely fitted, and is inserted into the inner ring 483 of the bearing 48 so as to be slidable in the front-rear direction.
  • a cylindrical internal space is formed between the spindle 3 and the peripheral wall 474.
  • gear teeth 470 that always mesh with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 47 (specifically, the peripheral wall 474). Therefore, the gear sleeve 47 is driven to rotate as the motor shaft 23 rotates.
  • the inner peripheral surface of the rear portion (portion on the opening end side) of the bearing 48 is inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 ( That is, it includes a tapered surface 475 (parallel to the tapered surface 411). That is, the taper surface 475 is formed as a conical surface that is inclined in the direction away from the drive shaft A1 toward the rear (the opening end of the gear sleeve 47).
  • the roller 45 held by the retainer 43 has at least a portion (specifically, a front portion) positioned between the tapered surface 411 and the tapered surface 475 in the radial direction of the spindle 3 (direction orthogonal to the drive shaft A1). So that it is held.
  • the power transmission mechanism 4 includes a biasing spring 49 interposed between the gear sleeve 47, the retainer 43, and the roller 45 in the front-rear direction.
  • the urging spring 49 is configured as a conical coil spring, and is arranged so that the end on the large diameter side is the rear side and the end on the small diameter side is the front side. More specifically, the end on the large diameter side is in contact with the large diameter washer 491, and the end on the small diameter side is in contact with the small diameter washer 493.
  • the washer 491 is disposed so as to contact the front end surface of the holding arm 434 of the retainer 43.
  • the washer 493 is disposed so as to contact the inner ring 483 of the bearing 48 attached in the gear sleeve 47 but not to the outer ring 481. That is, the urging spring 49 can rotate together with the retainer 43, but is blocked from the rotation of the gear sleeve 47.
  • the urging spring 49 always urges the retainer 43 and the gear sleeve 47 in directions away from each other via the washers 491 and 493, that is, rearward and forward, respectively. Accordingly, the retainer 43 is held at a position where the rear surface of the bottom wall 431 comes into contact with the front end surface of the taper sleeve 41 by the biasing force of the biasing spring 49, and movement in the front-rear direction is restricted. Further, the roller 45 is held between the washer 491 and the front end surface of the base 143 fixed to the main body housing 11, and its movement in the front-rear direction is restricted.
  • “movement is restricted” does not mean that movement is completely prohibited, and slight movement may be allowed.
  • the distance between the washer 491 and the front end surface of the base 143 is set slightly longer than the roller 45 (that is, play is provided), and the movement of the roller 45 corresponding to this play is Is allowed.
  • the biasing spring 49 may be in direct contact with the retainer 43 and the inner ring 483 without using the washers 491 and 493.
  • the gear sleeve 47 is urged forward by the urging force of the urging spring 49, whereby the spindle 3 is also urged forward via a thrust bearing 53, a lead sleeve 500 and a ball 508, which will be described later, and the flange 34 is It is held at the initial position where it abuts against the stopper portion 135.
  • the gear sleeve 47 moves rearward with respect to the main body housing 11 (close to the taper sleeve 41, the retainer 43 and the roller 45), and the taper surface 411 of the taper sleeve 41 and the gear sleeve 47
  • the roller 45 is sandwiched between the taper surface 411 and the taper surface 475 as shown in FIG. 10 and is brought into frictional contact with the taper sleeve 41 and the gear sleeve 47.
  • the power transmission mechanism 4 shifts to a transmittable state. The operation of the power transmission mechanism 4 will be described in detail later.
  • the position switching mechanism 5 is a mechanism that relatively moves the gear sleeve 47 and the front end portion of the spindle 3 away from each other in the front-rear direction when the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction). It is. With this configuration, the position switching mechanism 5 allows the gear sleeve 47 to move rearward with respect to the spindle 3 when the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction) with the spindle 3 placed in the initial position. It is moved and brought close to the retainer 43 and the roller 45.
  • details of the position switching mechanism 5 will be described.
  • the position switching mechanism 5 is mainly composed of a one-way clutch 50, a lead sleeve 500 having a lead groove 507, and a ball 508.
  • the one-way clutch 50 includes a cam groove 501 formed at the front end portion of the gear sleeve 47 and a ball 502.
  • the one-way clutch 50 is configured to rotate the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction.
  • the cam groove 501 is a groove that is recessed radially inward of the gear sleeve 47 from the outer peripheral surface of the peripheral wall 474 at the front end portion of the gear sleeve 47.
  • the depth in the radial direction from the outer peripheral surface of the cam groove 501 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 47 indicated by the arrow A in the figure (indicated by the arrow B in the figure).
  • the reverse direction (screw loosening direction) of the gear sleeve 47 shown it increases from the upstream side toward the downstream side).
  • cam grooves 501 are provided at equal intervals in the circumferential direction around the drive shaft A1.
  • a steel ball 502 is disposed in each cam groove 501.
  • the diameter of the ball 502 is set to be slightly larger than the depth of the deepest portion (that is, the upstream end portion in the positive direction) of the cam groove 501.
  • the lead sleeve 500 is formed as a substantially cup-shaped member, and includes a bottom wall 505 having a through hole and a cylindrical peripheral wall 504 protruding from the outer edge of the bottom wall 505.
  • the lead sleeve 500 is arranged between the gear sleeve 47 and the flange 34 of the spindle 3 in a state where the bottom wall 505 is disposed on the front side and the rear shaft 32 of the spindle 3 is inserted into the through hole of the bottom wall 505 in a loose fit. Is arranged.
  • a thrust bearing (specifically, a thrust ball bearing) 53 is disposed between the rear surface of the bottom wall 505 and the front end surface of the bottom wall 471 of the gear sleeve 47.
  • the thrust bearing 53 receives a thrust load while allowing the lead sleeve 500 to rotate with respect to the gear sleeve 47.
  • annular recesses having a U-shaped cross section are formed on the rear surface of the bottom wall 505 and the front end surface of the bottom wall 471, respectively.
  • a ball as a rolling element of the thrust bearing 53 can roll in an annular track defined by these recesses.
  • the inner diameter of the peripheral wall 504 is set to be slightly larger than the outer diameter of the front end portion of the gear sleeve 47 in which the cam groove 501 is formed, and the peripheral wall 504 is disposed so as to surround the outer peripheral surface of the front end portion of the gear sleeve 47.
  • the radial distance between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504 is set slightly larger than the diameter of the ball 502. Has been.
  • the one-way clutch 50 rotates the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction.
  • the ball 502 when the gear sleeve 47 is rotationally driven in the forward direction (arrow A direction in the figure), the ball 502 is the deepest part of the cam groove 501 (forward direction (arrow A direction)). Relative to the upstream end).
  • the ball 502 rotates around the drive shaft A ⁇ b> 1 together with the gear sleeve 47 in a state of being freely fitted between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504. That is, the one-way clutch 50 is in a disconnected state, and the rotational force of the gear sleeve 47 is not transmitted to the lead sleeve 500.
  • the lead groove 507 and the ball 508 move the lead sleeve 500 relative to the spindle 3 in the front-rear direction with the rotation of the lead sleeve 500 around the drive axis A1, thereby causing the gear sleeve 47 and the retainer 43 and The roller 45 is configured to move relative to the front-rear direction.
  • the lead groove 507 corresponds to a spiral groove (strictly speaking, a part of the spiral formed in the front end surface of the bottom wall 505 of the lead sleeve 500. Shaped groove).
  • Three lead grooves 507 are provided at regular intervals in the circumferential direction so as to be separated from each other.
  • the depth in the front-rear direction from the front end surface of the lead groove 507 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 47 indicated by arrow A in FIG. (In the reverse direction (screw loosening direction) of the gear sleeve 47 indicated by the arrow B in FIG. 7, it increases from the upstream side toward the downstream side).
  • a steel ball 508 is disposed in each lead groove 507.
  • the gear sleeve 47 is always urged forward by the urging spring 49 disposed between the retainer 43 and the gear sleeve 47 (specifically, the bearing 48).
  • the thrust bearing 53, the lead sleeve 500, and the ball 508 are also urged forward, and the ball 508 is in contact with the rear surface of the flange 34.
  • the spindle 3 is also urged forward through the flange 34 and is always held at the initial position.
  • the relative positional relationship between the spindle 3 and the lead sleeve 500 in the front-rear direction changes according to the position of the ball 508 in the lead groove 507. More specifically, as shown in FIG. 4, when the ball 508 is disposed at the deepest portion of the lead groove 507 (that is, the upstream end portion in the forward direction), the flange 34 and the lead sleeve 500 in the front-rear direction are arranged. The distance is minimal. That is, the lead sleeve 500 is disposed at the foremost position within the movable range with respect to the spindle 3. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 47 is disposed at the most separated position farthest from the retainer 43 and the roller 45 in the front-rear direction.
  • the lead sleeve 500 moves the gear sleeve 47 backward against the spindle 3 against the urging force of the urging spring 49, that is, in a direction close to the retainer 43 and the roller 45.
  • the gear sleeve 47 is disposed at an intermediate position closer to the retainer 43 and the roller 45 than when disposed at the most separated position. That is, the relative positions of the gear sleeve 47, the retainer 43, and the roller 45 are switched from the most separated position to the intermediate position.
  • the spindle 3 is disposed at the initial position by the biasing force of the biasing spring 49.
  • the roller 45 is in a non-frictional contact state with the taper sleeve 41 and the gear sleeve 47. That is, the power transmission mechanism 4 is in a shut-off state.
  • the screw driver 1 When the forward direction (screw tightening direction) is set as the rotation direction of the motor shaft 23 via the switching lever 175, the screw driver 1 operates as follows to perform the screw tightening operation.
  • the controller 178 starts driving the motor 2.
  • the gear sleeve 47 is driven to rotate in the forward direction (screw tightening direction).
  • the gear sleeve 47, the retainer 43, and the roller 45 are maintained at the most separated position.
  • the power transmission mechanism 4 is in the shut-off state, the rotational force of the gear sleeve 47 is not transmitted to the spindle 3 and the gear sleeve 47 is idled in the forward direction.
  • the ball 502 is sandwiched between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504 (that is, the gear sleeve 47, the retainer 43, and the roller 45 are disposed at intermediate positions).
  • the screw loosening operation described later may end.
  • the pinching of the ball 502 is released according to the rotation of the gear sleeve 47 in the forward direction, and the lead sleeve 500 is moved to the foremost position by the biasing force of the biasing spring 49 and the action of the lead groove 507 and the ball 508.
  • the gear sleeve 47, the retainer 43, and the roller 45 are returned from the intermediate position to the most separated position.
  • the taper sleeve 41 is fixed to the main body housing 11, and the retainer 43 and the roller 45 are held in a state where movement in the front-rear direction with respect to the main body housing 11 is restricted. Therefore, the gear sleeve 47 approaches the taper sleeve 41, the retainer 43, and the roller 45 as it moves rearward, and the radial distance between the taper surface 411 of the taper sleeve 41 and the taper surface 475 of the gear sleeve 47 gradually increases. It narrows to.
  • the roller 45 held by the retainer 43 is sandwiched between the tapered surface 411 and the tapered surface 475 to be in a frictional contact state (the roller 45 and the tapered surface 411).
  • the frictional force due to the wedge action is generated at the contact portion with 475). That is, the gear sleeve 47, the retainer 43, and the roller 45 are disposed at a transmission position where the rotational force from the gear sleeve 47 to the retainer 43 can be transmitted via the roller 45.
  • the roller 45 receives the rotation of the gear sleeve 47 and revolves while rotating on the taper surface 411 of the taper sleeve 41 to rotate the retainer 43 around the drive shaft A1.
  • the spindle 3 Since the retainer 43 is integrated with the spindle 3 in the circumferential direction around the drive shaft A1, the spindle 3 is also rotated together with the retainer 43. In this way, as the spindle 3 moves rearward from the initial position, the power transmission mechanism 4 shifts from the shut-off state to the transmittable state, and tightening of the screw 90 with respect to the workpiece 900 is started.
  • the spindle 3 rotates in the same direction as the gear sleeve 47 at a speed slower than the rotation speed of the gear sleeve 47.
  • the screw driver 1 when the reverse direction (screw loosening direction) is set as the rotation direction of the motor shaft 23 via the switching lever 175, the screw driver 1 operates as follows to perform the screw loosening operation.
  • the controller 178 starts driving the motor 2.
  • the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction).
  • the one-way clutch 50 operates as described above to rotate the lead sleeve 500 in the reverse direction.
  • the gear sleeve 47 is moved rearward with respect to the spindle 3 against the urging force of the urging spring 49 and close to the retainer 43 and the roller 45. Moved to.
  • the gear sleeve 47 is driven in accordance with the rotational drive of the gear sleeve 47 in the reverse direction. 47, the relative position of the retainer 43 and the roller 45 is switched from the most distant position to the intermediate position.
  • the roller 45 is sandwiched between the taper surface 411 and the taper surface 475 to be in a frictional contact state, the power transmission mechanism 4 is shifted from the shut-off state to the transmittable state, the screw 90 is loosened, and is removed from the workpiece 900.
  • the position switching mechanism 5 moves the gear sleeve 47 rearward relative to the spindle 3 than during the screw tightening operation, and the distance between the gear sleeve 47, the retainer 43, and the roller 45 in the front-rear direction. Has been made smaller. Therefore, the movement distance in the front-rear direction of the spindle 3 until the gear sleeve 47, the retainer 43, and the roller 45 are relatively moved from the intermediate position to the transmission position (in other words, the state where the power transmission mechanism 4 can transmit from the shut-off state during the screw loosening operation).
  • the amount of movement of the spindle 3 or the amount of push-in until it shifts to is the distance that the gear sleeve 47, the retainer 43 and the roller 45 move relative to the transmission position from the most distant position (the power transmission mechanism 4 is This is smaller than the movement amount or push-in amount of the spindle 3 until the transition from the shut-off state to the transmittable state.
  • the moving distance during the screw loosening operation is set to be shorter by about 1 millimeter than the moving distance of the spindle 3 during the screw tightening operation. Thereby, the user can loosen the screw 90 fastened to the workpiece 900 without removing the locator 15 from the front housing 13.
  • the gear sleeve 47 when the gear sleeve 47 is driven to rotate in the forward direction corresponding to the screw tightening operation, the reverse direction corresponds to the screw loosening operation.
  • the rotational force is transmitted from the gear sleeve 47 to the retainer 43 via the roller 45. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation.
  • the position switching mechanism 5 causes the gear sleeve 47 to move relative to the retainer 43 and the roller 45. Move in the direction of approaching (backward).
  • the position switching mechanism 5 converts the rotational movement around the drive axis A1 into the linear movement in the front-rear direction in accordance with the rotational drive of the gear sleeve 47 in the reverse direction. 3 is configured to move backward. That is, the position switching mechanism 5 is configured as a motion conversion mechanism.
  • the lead sleeve 500 is moved by the action of the spiral lead groove 507 formed in the lead sleeve 500 and the ball 508 that rolls in the lead groove 507, and the gear sleeve 47 is moved relative to the spindle 3.
  • the configuration to move backward is adopted. Thereby, the position switching mechanism 5 that operates smoothly is realized.
  • the position switching mechanism 5 allows the one-way clutch 50 to rotate the lead sleeve 500 around the drive shaft A1 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction.
  • the lead sleeve 500 is moved backward with respect to the spindle 3, thereby moving the gear sleeve 47 backward.
  • a rational configuration is realized in which the lead sleeve 500 is quickly rotated and the gear sleeve 47 is moved in accordance with the rotational drive of the gear sleeve 47 in the reverse direction.
  • the power transmission mechanism 4 is configured as a friction clutch mechanism (specifically, a planetary roller friction clutch mechanism). Therefore, compared to the case where a meshing engagement type clutch mechanism is employed, noise generated when the gear sleeve 47 and the roller 45 are engaged (at the time of frictional contact) and wear of the roller 45 and the tapered surfaces 411 and 475 are reduced. Can do. Furthermore, since the power transmission mechanism 4 is configured as a planetary speed reduction mechanism, both functions of power transmission and transmission interruption and speed reduction are realized by a single mechanism.
  • the gear sleeve 47 has gear teeth 470 that mesh with the pinion gear 24 provided on the motor shaft 23. Thereby, the rational structure which transmits the motive power from the motor 2 to the power transmission mechanism 4 efficiently is implement
  • the screw driver 100 according to the second embodiment includes a power transmission mechanism 6 and a position switching mechanism 7 different from the power transmission mechanism 4 and the position switching mechanism 5 (see FIGS. 5 to 7) of the first embodiment.
  • the other configuration is substantially the same as that of the screw driver 1. Therefore, in the following description, substantially the same configurations as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different configurations are mainly described.
  • the power transmission mechanism 6 of this embodiment includes a planetary mechanism including a tapered sleeve 41, a retainer 43, a plurality of rollers 45, and a gear sleeve 67 that are arranged coaxially. It is configured as a subject.
  • the configuration of the power transmission mechanism 6 other than the gear sleeve 67 is substantially the same as the configuration of the power transmission mechanism 4 of the first embodiment.
  • the gear sleeve 67 of this embodiment is configured as a substantially cup-shaped member having an inner diameter larger than the outer diameters of the taper sleeve 41 and the retainer 43, and the gear sleeve 47 of the first embodiment except for the configuration of the front end portion. It has the same configuration. More specifically, the gear sleeve 67 has a bottom wall 671 having a through hole and a cylindrical peripheral wall 674 connected to the bottom wall 671. The gear sleeve 67 is supported by the spindle 3 so as to be rotatable relative to the spindle 3 and movable in the front-rear direction on the front side of the retainer 43.
  • gear teeth 670 that are always meshed with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 67 (specifically, the peripheral wall 674). Similar to the peripheral wall 474 of the first embodiment, the inner peripheral surface of the peripheral wall 674 is inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 (that is, parallel to the tapered surface 411). including.
  • the gear sleeve 67 of the present embodiment has a lead groove 707 formed in the front end portion (specifically, the front end surface of the bottom wall 671).
  • the lead groove 707 has the same configuration as the lead groove 507 of the lead sleeve 500 of the first embodiment. That is, the lead groove 707 is formed as a spiral groove (strictly, a groove having a shape corresponding to a part of the spiral). Three lead grooves 707 are provided at regular intervals in the circumferential direction so as to be separated from each other.
  • the depth in the front-rear direction from the front end surface of the lead groove 707 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 67 indicated by arrow A in FIG. 17 (arrow in FIG. 17). (In the reverse direction (screw loosening direction) of the gear sleeve 67 shown by B, it increases from the upstream side toward the downstream side).
  • the position switching mechanism 7 of the present embodiment when the gear sleeve 67 is rotationally driven in the reverse direction (screw loosening direction), the position switching mechanism 7 of the present embodiment also includes the gear sleeve 67 and the front end portion of the spindle 3. Are relatively moved in the direction away from each other in the front-rear direction. With this configuration, the position switching mechanism 7 allows the gear sleeve 67 to move rearward with respect to the spindle 3 when the gear sleeve 67 is rotationally driven in the reverse direction (screw loosening direction) with the spindle 3 in the initial position. It is moved and brought close to the retainer 43 and the roller 45.
  • the position switching mechanism 7 is composed mainly of a one-way clutch 70, a flange sleeve 700, a lead groove 707 formed in the gear sleeve 67, and a ball 708. Has been.
  • a known general-purpose one-way clutch is employed as the one-way clutch 70.
  • the one-way clutch 70 is formed in a cylindrical shape, and is externally mounted on the rear shaft 32 on the rear side of the flange 34 of the spindle 3.
  • the one-way clutch 70 is configured to be rotatable in the forward direction with respect to the spindle 3 but not rotatable in the reverse direction.
  • the flange sleeve 700 includes a cylindrical peripheral wall 701 and a flange 703 that protrudes radially outward from the front end of the peripheral wall 701.
  • An annular concave portion with which the ball 708 abuts is formed on the outer edge portion of the rear surface of the flange 703.
  • the peripheral wall 701 is fixed to the outer periphery of the one-way clutch 70.
  • a thrust bearing (specifically, a thrust ball bearing) 53 is disposed between the rear surface of the flange 34 of the spindle 3 and the front surface of the flange 703 of the flange sleeve 700 in the front-rear direction.
  • the thrust bearing 53 receives a thrust load while allowing the flange sleeve 700 to rotate with respect to the spindle 3.
  • An annular recess having a U-shaped cross section is formed on the rear surface of the flange 34 and the front surface of the flange 703, respectively.
  • a ball as a rolling element of the thrust bearing 53 can roll in an annular track defined by these recesses.
  • the lead groove 707 and the ball 708 move the gear sleeve 67 relative to the spindle 3 in the front-rear direction as the gear sleeve 67 rotates around the drive axis A1 with respect to the flange sleeve 700.
  • the gear sleeve 67 is configured to move relative to the retainer 43 and the roller 45 in the front-rear direction.
  • the lead groove 707 is formed on the front end surface of the bottom wall 671 of the gear sleeve 67.
  • a steel ball 708 is disposed in each lead groove 707.
  • the gear sleeve 67 is always urged forward by the urging spring 49 disposed between the retainer 43 and the gear sleeve 67 (specifically, the bearing 48). Therefore, as shown in FIGS. 15 and 16, the spindle 3 is also urged forward through the ball 708, the flange sleeve 700, and the thrust bearing 53, and is always held at the initial position.
  • the relative positional relationship between the spindle 3 and the flange sleeve 700 and the gear sleeve 67 in the front-rear direction changes according to the position of the ball 708 in the lead groove 707. More specifically, as shown in FIGS. 15 and 16, when the ball 708 is disposed at the deepest portion (that is, the upstream end portion in the positive direction) of the lead groove 707, the flange 703 and the gear in the front-rear direction are arranged. The distance of the sleeve 67 is minimized. That is, the gear sleeve 67 is disposed at the foremost position within the movable range with respect to the spindle 3. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 67 is disposed at the most separated position farthest from the retainer 43 and the roller 45 in the front-rear direction.
  • the ball 708 disposed in the lead groove 707 is pressed against and engaged with an annular recess formed on the outer edge portion of the rear surface of the flange 703 by the biasing force of the biasing spring 49.
  • the one-way clutch 70 and the flange sleeve 700 are rotatable in the forward direction with respect to the spindle 3. For this reason, when the gear sleeve 67 is driven to rotate in the forward direction, the flange sleeve 700 rotates in the forward direction together with the gear sleeve 67 by the frictional force between the flange 703 and the ball 708 held at the deepest portion of the lead groove 707. Is done. That is, when the gear sleeve 67 is rotationally driven in the forward direction, the one-way clutch 70 allows the flange sleeve 700 to rotate integrally with the gear sleeve 67.
  • the one-way clutch 70 cannot rotate in the reverse direction with respect to the spindle 3. Therefore, when the gear sleeve 67 is driven to rotate in the reverse direction, the one-way clutch 70 prohibits the flange sleeve 700 from rotating in the reverse direction with respect to the spindle 3. That is, the flange sleeve 700 is integrated with the spindle 3. For this reason, the gear sleeve 67 rotates relative to the flange sleeve 700 in the opposite direction. Accordingly, the ball 708 relatively moves from the deepest portion of the lead groove 707 to the shallowest portion (upstream side in the reverse direction).
  • the gear sleeve 67 is disposed at an intermediate position closer to the retainer 43 and the roller 45 than when disposed at the most separated position. That is, the relative positions of the gear sleeve 67, the retainer 43, and the roller 45 are switched from the most separated position to the intermediate position.
  • the position switching mechanism 7 moves the gear sleeve 67 in a direction (rearward) close to the retainer 43 and the roller 45. That is, during the screw loosening operation, even if the spindle 3 is not pushed backward, the gear sleeve 67 and the retainer 43 and the gear sleeve 67 and the roller 45 are moved in the front-rear direction according to the rotational drive of the gear sleeve 67 in the reverse direction. The distance is shortened. As a result, the amount of backward movement (pushing amount) of the spindle 3 required to shift the power transmission mechanism 6 to the transmittable state can be made smaller than that during the screw tightening operation.
  • the position switching mechanism 7 converts the rotational movement around the drive axis A1 into the linear motion in the front-rear direction in accordance with the rotational drive of the gear sleeve 67 in the reverse direction, so that the gear sleeve 67 is moved to the spindle.
  • 3 is configured as a motion conversion mechanism that moves backward with respect to 3.
  • the gear sleeve 67 is moved backward with respect to the spindle 3 by the action of the spiral lead groove 707 formed in the gear sleeve 67 and the ball 708 rolling in the lead groove 707. Is adopted. Thereby, the position switching mechanism 7 that operates smoothly is realized.
  • the position switching mechanism 7 prohibits the one-way clutch 70 from rotating in the reverse direction relative to the spindle 3 of the flange sleeve 700 (flange).
  • the gear sleeve 67 is rotated relative to the flange sleeve 700, thereby moving the gear sleeve 67 backward with respect to the spindle 3.
  • a rational configuration is realized in which the gear sleeve 67 is quickly moved in the front-rear direction in accordance with the rotational drive of the gear sleeve 67 in the reverse direction.
  • the screw driver 110 according to the third embodiment will be described below with reference to FIGS.
  • the screw driver 110 of this embodiment includes a power transmission mechanism 8 different from the screw driver 100 (see FIGS. 15 to 17) of the second embodiment, but the configuration other than the power transmission mechanism 8 is a screw driver. 100 is substantially the same. Therefore, below, about the structure substantially the same as the screw driver 100, the same code
  • the power transmission mechanism 8 of the present embodiment includes a planetary mechanism including a tapered sleeve 41, a retainer 83, a plurality of rollers 45, and a gear sleeve 87 arranged coaxially. It is configured as a subject.
  • the configuration of the power transmission mechanism 8 other than the retainer 83 and the gear sleeve 87 is substantially the same as the configuration of the power transmission mechanism 6 (see FIGS. 15 to 17).
  • the retainer 83 of this embodiment is equivalent to the carrier member in the planetary mechanism, and is configured to hold the roller 45 so as to be able to rotate, like the retainer 43 (see FIGS. 15 to 17) of the second embodiment.
  • the retainer 83 has the same configuration as the retainer 43 except for the configuration of the front end. More specifically, the retainer 83 includes a substantially cylindrical bottom wall 831 having a through hole in the center, an annular flange portion 832 that protrudes radially outward from the front end portion of the bottom wall 831, and a peripheral edge of the flange portion 832. And a plurality of holding arms 834 protruding rearward from the rear surface of the portion.
  • the bottom wall 831 and the holding arm 834 have substantially the same configuration as the bottom wall 431 and the holding arm 434 of the retainer 43. With such a configuration, the front end of the holding space of the roller 45 formed between the holding arms 45 adjacent in the circumferential direction is closed by the flange portion 832.
  • the front surface of the flange portion 832 instead of omitting the washer 491 (see FIGS. 15 to 17), the front surface of the flange portion 832 functions as a spring receiving portion that receives a biasing force to the rear of the biasing spring 49. Further, the rear surface of the flange portion 832 contacts the front end of the roller 45 and functions as a restricting surface that restricts the forward movement of the roller 45.
  • the retainer 83 is arranged in the direction in which the bottom wall 831 is located on the front side (so that the holding arm 834 protrudes rearward), like the retainer 43.
  • the retainer 83 is supported by the spindle 3 so that it cannot rotate with respect to the spindle 3 and is movable in the front-rear direction in a state where a part of the holding arm 834 overlaps the tapered sleeve 41 in the radial direction.
  • each holding arm 834 protrudes rearward from the rear surface of the peripheral edge portion of the flange portion 832 so as to form the same inclination angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1.
  • the gear sleeve 87 of the present embodiment is configured as a substantially cup-shaped member having substantially the same configuration as the gear sleeve 67 (see FIGS. 15 to 17) of the second embodiment. More specifically, the gear sleeve 87 has a substantially circular bottom wall 871 having a through-hole in the center and a cylindrical peripheral wall 874 connected to the bottom wall 871.
  • the bottom wall 871 has substantially the same configuration as the bottom wall 671 of the gear sleeve 67.
  • the basic configuration of the peripheral wall 874 is the same as that of the peripheral wall 674 of the gear sleeve 67 except that a communication hole 878 described later is provided.
  • an outer ring 481 of the bearing 48 is fixed in the front end portion of the peripheral wall 874.
  • gear teeth 870 that always mesh with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 87 (specifically, the peripheral wall 874).
  • the rear portion of the bearing 48 from the rear end includes a tapered surface 875 and a cylindrical surface 876.
  • the tapered surface 875 is a conical surface inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1.
  • the tapered surface 875 occupies the latter half of the inner peripheral surface of the peripheral wall 874.
  • the cylindrical surface 876 is connected to the front end of the tapered surface 875, and extends in a generally cylindrical shape along the drive axis A1.
  • the communication hole 878 is a through hole that penetrates the peripheral wall 874 in the radial direction, and communicates the inside (internal space) and the outside of the gear sleeve 87.
  • the communication hole 878 is formed on the tapered surface 875 in the region R1 between the rear end of the peripheral wall 874 and the rear end of the bearing 48 (that is, the region defining the internal space of the gear sleeve 87). It is provided in a region different from the corresponding region R2, that is, a region R3 corresponding to the cylindrical surface 876.
  • the communication hole 878 is normally disposed in a region that does not overlap the roller 45 in the radial direction.
  • four communication holes 878 are provided at equal intervals in the circumferential direction.
  • the gear sleeve 87 is supported by the spindle 3 so as to be rotatable relative to the spindle 3 and movable in the front-rear direction on the front side of the retainer 83. Yes. Further, in the internal space of the gear sleeve 87, a part of the taper sleeve 41, the retainer 83 and the roller 45, and a biasing spring 49 are disposed.
  • the end portion (front end portion) on the small diameter side of the biasing spring 49 contacts the washer 493 that contacts the inner ring 483 of the bearing 48, while the end portion (rear end portion) on the large diameter side is the retainer.
  • 83 is in contact with the front surface of the flange portion 832.
  • the urging spring 49 always urges the retainer 83 and the gear sleeve 87 in directions away from each other, that is, rearward and forward. Accordingly, the retainer 83 is held at a position where the rear surface of the bottom wall 831 comes into contact with the front end surface of the taper sleeve 41 by the biasing force of the biasing spring 49, and its movement in the front-rear direction is restricted.
  • the roller 45 is held between the rear surface of the flange portion 832 of the retainer 83 and the front end surface of the base 143, and movement in the front-rear direction is restricted. Note that, as described in the first embodiment, “movement is restricted” here does not mean that movement is completely prohibited, and slight movement may be allowed. Further, when the gear sleeve 87 is urged forward by the urging force of the urging spring 49, the spindle 3 is also urged forward and held at the initial position.
  • the operation of the power transmission mechanism 8 configured as described above is substantially the same as that of the power transmission mechanisms 4 and 6 of the first and second embodiments.
  • the spindle 3 in the initial state, the spindle 3 is disposed at the initial position by the biasing force of the biasing spring 49, and the roller 45 is in non-friction contact with the taper surface 411 of the taper sleeve 41 and the taper surface 875 of the gear sleeve 87. Is in a state. That is, the power transmission mechanism 8 is in a cut-off state.
  • the screw drivers 1, 100, and 110 of the first to third embodiments are provided with so-called planetary roller type power transmission mechanisms 4, 6, and 8, respectively.
  • the roller 45 as the planetary member has a taper surface 411 of the taper sleeve 41 as the sun member in the radial direction with respect to the drive shaft A ⁇ b> 1 of the spindle 3 (direction orthogonal to the drive shaft A ⁇ b> 1). At least a part is disposed between the tapered surfaces 475, 675, and 875 of the gear sleeves 47, 67, and 87 as ring members.
  • the gear sleeves 47, 67, 87 move in the front-rear direction integrally with the spindle 3 with respect to the taper sleeve 41.
  • the roller 45 is restricted from moving in the front-rear direction with respect to the main body housing 11 by the biasing spring 49 (and the washer 491 or the retainer 83). Accordingly, the roller 45 moves in the front-rear direction in accordance with the relative movement of the gear sleeves 47, 67, 87 and the taper sleeve 41, and frictional contact between the roller 45 and the taper surface 411 and the taper surfaces 475, 675, 875 is not achieved. The possibility of becoming stable can be reduced.
  • the movement of the roller 45 in the front-rear direction is restricted not via the washer 491 but via the retainer 83. Thereby, the number of parts can be reduced and assemblability can be improved.
  • the retainers 43 and 83 as carrier members are held on the spindle 3 so as to be movable in the front-rear direction with respect to the spindle 3.
  • the retainers 43 and 83 are independent from the spindle 3 with respect to the movement in the front-rear direction.
  • the retainers 43 and 83 need to be disposed at positions where the rollers 45 can be held so that the rollers 45 do not come off between the tapered surface 411 and the tapered surfaces 475 675 875.
  • the retainers 43 and 83 can be maintained at appropriate positions regardless of the movement of the spindle 3.
  • the retainers 43 and 83 are held so as not to rotate around the drive axis A 1 with respect to the spindle 3 and are integrated with the spindle 3 by the power transmitted via the roller 45. It is comprised so that it may rotate. That is, in the said embodiment, the rational planetary-roller type power transmission mechanism 4,6,8 which uses the retainers 43 and 83 as an output member is implement
  • the urging spring 49 also restricts the retainers 43 and 83 from moving in the front-rear direction with respect to the main body housing 11 in addition to the roller 45. Thereby, the appropriate positional relationship between the roller 45 and the retainers 43 and 83 can be more reliably maintained.
  • the biasing spring 49 biases the spindle 3 and the retainers 43 and 83 forward and backward so as to be separated from each other.
  • the spindle 3 is normally held at the foremost position (that is, the initial position) by the biasing force of the biasing spring 49. With such a configuration, when the push-in of the spindle 3 is released while restricting the movement of the retainers 43 and 83, the spindle 3 can be returned to the initial position.
  • the gear sleeves 47, 67, 87 are supported by the spindle 3 so as to be movable in the front-rear direction integrally with the spindle 3 and rotatable about the drive shaft A1.
  • the biasing spring 49 is disposed between the retainers 43 and 83 and the gear sleeves 47, 67, and 87 (more specifically, the bearing 48 disposed in the gear sleeves 47, 67, and 87) in the front-rear direction.
  • the end portions of the gear sleeves 47, 67, and 87 are received by washers 493 that are blocked from the rotation of the gear sleeves 47, 67, and 87. Therefore, the biasing spring 49 rotates together with the gear sleeves 47, 67, 87 (so-called co-rotation), and the sliding portion between the biasing spring 49 and the gear sleeves 47, 67, 87 generates heat. It becomes possible to prevent.
  • the biasing springs 49 bias the gear sleeves 47, 67, 87 and the retainers 43, 83 backward and forward so as to be separated from each other.
  • the urging spring 49 is configured to interrupt transmission of the gear sleeves 47, 67, 87 as drive side members and the retainers 43, 83 as driven side members in the power transmission mechanisms 4, 6, and 8. It also has the function of energizing. As described above, by using the biasing spring 49, it is possible to realize a plurality of functions of restricting movement of the retainers 43 and 83 in the front-rear direction and blocking power transmission without increasing the number of parts.
  • the peripheral wall 874 of the gear sleeve 87 is provided with a communication hole 878 that allows communication between the inside and the outside of the gear sleeve 87. For this reason, the flow of air through the communication hole 878 can be generated by the centrifugal force accompanying the rotation of the gear sleeve 87. Thereby, suppression of a local temperature rise and smoother circulation of the lubricant (for example, grease) arranged in the front housing 13 can be realized. As a result, it is possible to effectively reduce wear of the roller 45 and the tapered surfaces 411, 475, 675, and 875 and improve durability. Further, even when wear powder is generated, it can be effectively discharged to the outside of the gear sleeve 87 through the communication hole 878 together with the air flow, which leads to protection of the bearing 48.
  • the lubricant for example, grease
  • the work tool according to the present invention is not limited to the configuration of the illustrated screwdrivers 1, 100, and 110.
  • the changes exemplified below can be added. These changes may be made by any one of them or a plurality of them independently or in combination with the screw driver 1, 100, 110 shown in the embodiment or the invention described in each claim. It can be adopted.
  • the screw drivers 1, 100, and 110 are illustrated as the screw tightening tools, but the present invention is also applicable to other work tools configured to rotationally drive the tip tools.
  • a drilling tool for example, an electric drill
  • a polishing tool for example, an electric sander
  • polishing by example, an electric sander that performs polishing by rotating an abrasive material (sandpaper or the like).
  • the configuration and arrangement of the sun member, ring member, carrier member, and planetary roller may be changed as appropriate.
  • the power transmission mechanisms 4, 6, and 8 do not need to have a so-called solar-type configuration in which the solar member is fixed to the main body housing 11 so as not to rotate as in the above embodiment, and the ring member is fixed. It may have a so-called planetary type or a so-called star type structure in which a carrier member is fixed.
  • the said embodiment is a structural example to which the gear sleeves 47, 67, 87 as a ring member move to the front-back direction with respect to the taper sleeve 41 as a sun member, a sun member and a ring member are drive shafts. Any one of them may move integrally with the spindle 3 as long as it has tapered surfaces parallel to each other inclined with respect to A1 and can move relative to each other in the front-rear direction.
  • One of the sun member and the ring member that moves integrally with the spindle 3 may be integrally formed with the spindle 3 as an output member.
  • the biasing spring 49 has the function of regulating the longitudinal movement of the retainer 43 as the carrier member, in addition to the function of regulating the movement of the roller 45 as the planetary member in the longitudinal direction.
  • the function of urging toward the initial position and the direction in which power transmission is interrupted between the gear sleeves 47, 67, 87 as drive side members and the retainers 43, 83 as driven side members in the power transmission mechanisms 4, 6, 8 It has a function to energize. That is, the single biasing spring 49 performs a plurality of functions. However, these functions may be realized by separate members (for example, spring members).
  • the number, the arrangement position, the shape, the size, and the like are not limited to the example of the third embodiment, and may be changed as appropriate.
  • at least one communication hole 878 may be provided at any position in the region R1 (see FIG. 23) between the rear end of the peripheral wall 874 and the rear end of the bearing 48.
  • the communication hole 878 may extend obliquely with respect to the radial direction, or may extend in a curved shape instead of a linear shape.
  • the configurations of the main body housing 11, the motor 2, the spindle 3, and the position switching mechanisms 5 and 7 can be changed as appropriate.
  • a DC brushless motor using a rechargeable battery as a power source may be employed as the motor 2.
  • the position switching mechanisms 5 and 7 may be omitted.
  • the screw drivers 1, 100, and 110 are examples of the “work tool” in the present invention.
  • the driver bit 9 is an example of the “tip tool” in the present invention.
  • the main body housing 11 is an example of the “housing” in the present invention.
  • the spindle 3 is an example of the “spindle” in the present invention.
  • the drive shaft A1 is an example of the “drive shaft” in the present invention.
  • the motor 2 is an example of the “motor” in the present invention.
  • the power transmission mechanisms 4, 6, and 8 are examples of the “power transmission mechanism” of the present invention.
  • the taper sleeve 41 is an example of the “solar member” in the present invention.
  • the gear sleeves 47, 67, 87 are examples of the “ring member” of the present invention.
  • the retainers 43 and 83 are an example of the “carrier member” in the present invention.
  • the roller 45 is an example of the “planetary roller” in the present invention.
  • the tapered surface 411 is an example of the “first tapered surface” in the present invention.
  • the tapered surfaces 475, 675, and 875 are examples of the “second tapered surface” in the present invention.
  • the biasing spring 49 is an example of the “regulating member” and “spring member” in the present invention.
  • the washer 493 is an example of the “receiving member” in the present invention.
  • the communication hole 878 is an example of the “communication hole” in the present invention.
  • the region R2 is an example of the “region corresponding to the second tapered surface” in the present invention.
  • the region R3 is an example of the “region different from the region corresponding to the second tapered surface” in the present invention.
  • the ring member includes a cylindrical peripheral wall that surrounds the spindle in a circumferential direction around the drive shaft and has an inner peripheral surface including the second tapered surface, At least a part of the carrier member is disposed in an internal space of the ring member defined by the spindle and the inner peripheral surface, The spring member may be disposed in the internal space on the front side of the carrier member.
  • the spring member can be arranged by effectively utilizing the internal space of the ring member, and the power transmission mechanism can be kept compact.
  • the ring member has a stopper portion disposed on the front side of the spring member, The spring member may be interposed between the carrier member and the stopper portion in the front-rear direction.
  • the stopper portion may be a bearing having an inner ring rotatably supported by the spindle and an outer ring fixed to the inner peripheral surface.
  • the spring member can be rationally interposed between the carrier member and the ring member in the front-rear direction.
  • the bearing 48 is an example of the “stopper portion” and “bearing” in the first and second aspects.
  • the ring member has a cylindrical peripheral wall portion around the drive shaft,
  • the communication hole may be a through-hole penetrating the peripheral wall portion.
  • the inner peripheral surface of the ring member includes the second tapered surface and a cylindrical surface along the drive shaft,
  • the communication hole may be provided in a region of the ring member corresponding to the cylindrical surface.
  • the following modes 6 to 19 are constructed for the purpose of providing a screw tightening tool including a power transmission mechanism having a more rational configuration. Any one or more of the aspects 6 to 19 may be employed independently of the invention described in each claim, or the screwdrivers 1, 100, 110 of the embodiment and their modifications, or You may employ
  • a screw tightening tool has a front end portion that is movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction, is rotatably supported around the drive shaft, and is configured to be detachable from the tip tool.
  • a spindle A motor, A first direction corresponding to a direction in which the tip tool tightens the screw or a direction opposite to the first direction by the power transmitted from the motor, or a direction corresponding to a direction in which the tip tool loosens the screw.
  • a drive member that is rotationally driven in two directions, and the power transmitted from the drive member that rotates in the first direction or the second direction is configured to rotate about the drive shaft integrally with the spindle.
  • a power transmission mechanism including a driven member,
  • the driving member and the driven member are disposed so as to be relatively movable in the front-rear direction, move in a direction close to each other in the front-rear direction in accordance with the backward movement of the spindle, and are moved from the driving member to the driven member. It is configured to shift from a cut-off state in which power transmission to the member is impossible to a transmittable state in which power transmission from the driving member to the driven member is possible,
  • the screw tightening tool moves one of the drive member and the driven member in the front-rear direction.
  • a screw tightening tool comprising a position switching mechanism configured to move in a direction approaching the other of the driven members.
  • the drive member when the drive member is rotationally driven in the first direction corresponding to the screw tightening operation, the drive member is rotated in the second direction corresponding to the screw loosening operation.
  • the rotational force is transmitted from the driving member to the driven member. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation.
  • the position switching mechanism moves one of the drive member and the driven member in the front-rear direction. It moves in the direction approaching the other of the driving member and the driven member.
  • the distance in the front-rear direction between the driving member and the driven member is shortened according to the rotational driving of the driving member in the second direction.
  • the rearward movement amount (pushing amount) of the spindle required to shift the power transmission mechanism to the transmittable state can be made smaller than that during the screw tightening operation.
  • each of the screw drivers 1, 100, and 110 of the above embodiment is an example of the “screw tightening tool” of this aspect.
  • the spindle 3 is an example of the “spindle” in this aspect.
  • the drive shaft A1 is an example of the “drive shaft” in this aspect.
  • the motor 2 is an example of the “motor” in this aspect.
  • Each of the power transmission mechanisms 4, 6, and 8 is an example of the “power transmission mechanism” in this aspect.
  • Each of the gear sleeves 47, 67, 87 is an example of the “drive member” in this aspect.
  • the retainers 43 and 83 and the entire roller 45 are examples of the “driven member” in this aspect, and each of the retainers 43 and 83 and the roller 45 is also an example of the “driven member” in this aspect.
  • Each of the position switching mechanisms 5 and 7 is an example of the “position switching mechanism” in this aspect.
  • a meshing clutch mechanism or other types of friction clutch mechanisms may be employed instead of the planetary roller friction clutch mechanism.
  • a single-plate or multi-plate disk clutch mechanism or a conical clutch mechanism may be employed.
  • the configurations and arrangements of the sun member, ring member, carrier member, and planetary roller may be changed as appropriate.
  • the power transmission mechanisms 4, 6, and 8 do not need to have a so-called solar-type configuration in which the solar member is fixed to the main body housing 11 so as not to rotate as in the above embodiment, and the ring member is fixed.
  • the gear sleeve 47 is rotationally driven in the reverse direction with the spindle 3 in the initial position, the position switching mechanisms 5 and 7 bring one of the driving member and the driven member close to the other in the front-rear direction. Any member may be used as long as it can be moved in the direction of movement, and either member may be moved with respect to the spindle 3.
  • the screw tightening tool according to aspect 6 The position switching mechanism converts a rotational motion around the drive shaft into a linear motion in the front-rear direction according to a rotational drive of the drive member in the second direction, and thus among the drive member and the driven member.
  • a screw tightening tool configured to move the one side.
  • the position switching mechanism is configured as a motion conversion mechanism. According to this aspect, one of the driving member and the driven member can be moved with a simple configuration.
  • the screw tightening tool according to aspect 7 is configured to move one of the drive member and the driven member by the action of a lead groove that spirally extends around the drive shaft and a ball disposed in the lead groove. Screw tightening tool characterized by being made. According to this aspect, it is possible to realize a position switching mechanism that operates smoothly by a rolling ball.
  • Each of the lead grooves 507 and 707 is an example of the “lead groove” in this embodiment
  • each of the balls 508 and 708 is an example of the “ball” in this embodiment.
  • the structure which converts rotational motion into linear motion according to the rotational motion of the reverse direction of a drive member is the lead grooves 507 and 707 and the ball 508 of the said embodiment, It is not limited to 708.
  • a configuration may be employed in which the drive member is moved by the action of a lead surface configured as a spiral curved surface around the drive shaft A1 or a screw groove and a screw thread that is screwed into the screw groove.
  • at least one of the front end surface of the lead sleeve 500 and the rear end surface of the flange 34 of the spindle 3 may be provided with a spiral curved lead surface around the drive axis A1.
  • the number and configuration of the lead grooves 507 and 707 and the balls 508 and 708 may be changed as appropriate.
  • the one-way clutch 50 of the first embodiment only needs to rotate the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction, and the configuration thereof is changed as appropriate. It's okay.
  • the one-way clutch 70 of the second embodiment only needs to prohibit the flange sleeve 700 from co-rotating with the gear sleeve 67 only when the gear sleeve 67 is driven to rotate in the reverse direction, and the configuration is changed as appropriate. May be.
  • the screw tightening tool according to aspect 7 or 8,
  • the position switching mechanism is A moving member configured to move around the drive shaft to move the drive member in a direction approaching the driven member in the front-rear direction; And a one-way clutch configured to rotate the moving member integrally with the drive member around the drive shaft only when the drive member is rotationally driven in the second direction. Screw tightening tool.
  • the lead sleeve 500 and the one-way clutch 50 are examples of the “moving member” and the “one-way clutch” of the present embodiment, respectively.
  • the screw tightening tool according to aspect 7 or 8,
  • the position switching mechanism is A rotatable member rotatably arranged around the drive shaft; When the drive member is rotationally driven in the first direction, the rotatable member is allowed to rotate relative to the spindle around the drive shaft integrally with the drive member, while the drive A one-way clutch configured to inhibit the rotatable member from rotating relative to the spindle about the drive shaft when the member is rotationally driven in the second direction;
  • the position switching mechanism is configured so that the driving member that rotates relative to the rotatable member, which is prohibited from rotating relative to the spindle by the one-way clutch, moves closer to the driven member.
  • a screw tightening tool configured to be moved to a screw.
  • the flange sleeve 700 and the one-way clutch 70 are examples of the “rotary member” and the “one-way clutch” of the present embodiment, respectively.
  • a screw tightening tool has a front end portion that is movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction, is rotatably supported around the drive shaft, and is configured to be detachable from the tip tool.
  • a spindle A motor, A first direction corresponding to a direction in which the tip tool tightens the screw or a direction opposite to the first direction by the power transmitted from the motor, or a direction corresponding to a direction in which the tip tool loosens the screw.
  • a drive member that is rotationally driven in two directions, and the power transmitted from the drive member that rotates in the first direction or the second direction is configured to rotate about the drive shaft integrally with the spindle.
  • a power transmission mechanism including a driven member,
  • the driving member and the driven member are disposed so as to be relatively movable in the front-rear direction, move in a direction close to each other in the front-rear direction in accordance with the backward movement of the spindle, and are moved from the driving member to the driven member. It is configured to shift from a cut-off state in which power transmission to the member is impossible to a transmittable state in which power transmission from the driving member to the driven member is possible,
  • the power transmission mechanism is configured such that the drive member is more than the amount of movement of the spindle rearward from the shut-off state to the transmittable state when the drive member is rotationally driven in the first direction.
  • a screw tightening tool characterized in that the amount of movement when rotated in two directions is smaller.
  • the power transmission mechanism for the screw tightening tool when the drive member is rotationally driven in the first direction corresponding to the screw tightening operation, the drive member is rotated in the second direction corresponding to the screw loosening operation. In this case, the rotational force is transmitted from the driving member to the driven member. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation. Further, the power transmission mechanism is configured such that the amount of movement (pushing amount) of the spindle necessary for shifting the power transmission mechanism to the transmittable state is smaller during screw loosening work than during screw tightening work. Yes. Thus, according to this aspect, it is possible to transmit power through the same path during screw tightening work and screw loosening work, and it is possible to perform screw loosening work with a smaller push amount than during screw tightening work. A power transmission mechanism can be realized.
  • a screw tightening tool according to any one of aspects 6 to 11, The screw transmission tool, wherein the power transmission mechanism is configured as a friction clutch mechanism. According to this aspect, compared to the meshing engagement type clutch mechanism, it is possible to reduce noise and wear of the engaging portion when the driving member and the driven member are engaged.
  • a screw tightening tool according to any one of aspects 6 to 12, The screw transmission tool, wherein the power transmission mechanism is configured as a planetary speed reduction mechanism. According to this aspect, both functions of power transmission and transmission interruption and deceleration can be realized by a single power transmission mechanism.
  • a screw tightening tool according to any one of aspects 6 to 13, The screw tightening tool, wherein the driving member has a second gear tooth meshing with a first gear tooth provided on an output shaft of a motor. According to this aspect, it is possible to realize a rational configuration that efficiently transmits the power from the motor to the power transmission mechanism.
  • the pinion gear 24 and the gear teeth 470 are examples of “first gear teeth” and “second gear teeth”, respectively.
  • the spindle has a protruding portion protruding in a radial direction with respect to the drive shaft
  • the position switching mechanism includes a moving member supported by the spindle so as to be rotatable around the driving shaft and movable in the front-rear direction on the rear side of the projecting portion and the front side of the driving member
  • the screw tightening tool further includes a biasing member that biases the moving member and the spindle forward via the drive member, The moving member rotates in response to rotational driving of the driving member in the second direction, and moves backward with respect to the spindle against the urging force of the urging member, thereby moving the driving member.
  • the spindle may be moved backward with respect to the spindle.
  • a position switching mechanism having a simple configuration can be realized using the moving member and the biasing member.
  • the flange 34 is an example of the “projection” in this aspect.
  • the lead sleeve 500 is an example of the “moving member” in this aspect.
  • the biasing spring 49 is an example of the “biasing member” in this aspect.
  • the position switching mechanism is A lead groove formed in a front end surface of the moving member and extending spirally around the drive shaft; A ball disposed in the lead groove, The moving member may be configured to rotate in response to rotational driving of the driving member in the second direction and to move backward with respect to the spindle by the action of the lead groove and the ball.
  • the position switching mechanism includes a one-way clutch configured to rotate the moving member integrally with the drive member around the drive shaft only when the drive member is rotationally driven in the second direction. But you can.
  • the rotatable member protrudes in the radial direction with respect to the drive shaft, and has a protrusion disposed on the front side of the drive member
  • the screw tightening tool further includes a biasing member that biases the rotatable member and the spindle forward via the drive member
  • the drive member may be configured to move backward with respect to the rotatable member against the biasing force of the biasing member while rotating in the second direction.
  • a position switching mechanism with a simple configuration can be realized using the rotatable member and the biasing member.
  • the flange 34 is an example of the “projection” in this aspect.
  • the lead sleeve 500 is an example of the “moving member” in this aspect.
  • the biasing spring 49 is an example of the “biasing member” in this aspect.
  • the position switching mechanism is A lead groove formed on a front end surface of the drive member and extending spirally around the drive shaft; Including a ball disposed in the lead groove in a state of being in contact with the rear surface of the protrusion,
  • the drive member may be configured to move backward with respect to the spindle by the action of the lead groove and the ball while rotating in the second direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

This work tool comprises a planetary roller-type power transmission mechanism which transmits power in accordance with the backward movement of a spindle, wherein an improvement has been made for establishing stable frictional contact between a planetary roller and a drive surface. A power transmission mechanism 4 of a screwdriver 1 comprises a tapered sleeve 41, a gear sleeve 47, a retainer 43, and a roller 45. The tapered sleeve 41 and the gear sleeve 47 have tapered surfaces 411,475 respectively. The gear sleeve 47 is movable in an integral manner with a spindle 3 in the front-back direction relative to the tapered sleeve 41. The roller 45 is at least partially disposed between the tapered surfaces 411,475 in the radial direction relative to a drive axis A1. The screwdriver 1 includes a biasing spring 49 that restricts the roller 45 from moving in the front-back direction relative to a main housing 11.

Description

作業工具Work tools
 本発明は、先端工具を回転駆動するように構成された作業工具に関する。 The present invention relates to a work tool configured to rotationally drive a tip tool.
 スピンドルの前端部に装着された先端工具を回転駆動するように構成され、スピンドルの押込みに応じて、モータの動力をスピンドルへ伝達する動力伝達機構(クラッチ)を備えた作業工具が知られている。例えば、特開2012―135842号公報には、固定ハブと、駆動ギアと、遊星ローラと、遊星ローラの保持部材とを備えた遊星式の動力伝達機構が開示されている。固定ハブは、外周にテーパ面を有し、ハウジングに固定されている。カップ状の駆動ギアは、内周にテーパ面を有し、スピンドルに回転可能に保持されている。遊星ローラは、固定ハブおよび駆動ギアのテーパ面の間に配置されている。遊星ローラの保持部材は、スピンドルに固定されている。駆動ギアがモータの動力によって回転され、スピンドルが後方に押し込まれると、遊星ローラは固定ハブおよび駆動ギアのテーパ面に摩擦接触し、自転しつつスピンドルの軸周りを公転する。これにより、遊星ローラの保持部材がスピンドルと一体的に軸周りに回転する。 2. Description of the Related Art A work tool is known that is configured to rotationally drive a tip tool attached to a front end portion of a spindle and includes a power transmission mechanism (clutch) that transmits motor power to the spindle in response to the pushing of the spindle. . For example, JP 2012-135842 A discloses a planetary power transmission mechanism including a fixed hub, a drive gear, a planetary roller, and a planetary roller holding member. The fixed hub has a tapered surface on the outer periphery and is fixed to the housing. The cup-shaped drive gear has a tapered surface on the inner periphery and is rotatably held by the spindle. The planetary roller is disposed between the fixed hub and the tapered surface of the drive gear. The holding member of the planetary roller is fixed to the spindle. When the drive gear is rotated by the power of the motor and the spindle is pushed rearward, the planetary roller frictionally contacts the fixed hub and the taper surface of the drive gear and revolves around the spindle axis while rotating. Thereby, the holding member of the planetary roller rotates around the axis integrally with the spindle.
 上述の動力伝達機構では、スピンドルが軸方向に移動されると、スピンドルに保持された駆動ギアおよび遊星ローラの保持部材は、ハウジングに固定された固定ハブに対して近接または離間する方向に移動する。一方、遊星ローラは、保持部材に形成された溝内に、遊嵌状に配置されている。このため、遊星ローラが軸方向に移動して、駆動面としてのテーパ面との摩擦接触が不安定になる可能性がある。 In the power transmission mechanism described above, when the spindle is moved in the axial direction, the drive gear held by the spindle and the holding member of the planetary roller move in a direction toward or away from the fixed hub fixed to the housing. . On the other hand, the planetary roller is arranged loosely in a groove formed in the holding member. For this reason, the planetary roller may move in the axial direction, and the frictional contact with the tapered surface as the drive surface may become unstable.
 本発明は、かかる状況に鑑み、スピンドルの後方への移動に応じて動力の伝達を行う遊星ローラ式の動力伝達機構を備えた作業工具において、遊星ローラと駆動面との安定した摩擦接触を確立するための改良を提供することを目的とする。 In view of such circumstances, the present invention establishes stable frictional contact between a planetary roller and a drive surface in a work tool having a planetary roller type power transmission mechanism that transmits power in accordance with the backward movement of the spindle. The purpose is to provide an improvement to do this.
 本発明の一態様によれば、先端工具を回転駆動するように構成された作業工具が提供される。この作業工具は、ハウジングと、スピンドルと、モータと、動力伝達機構とを備えている。 According to an aspect of the present invention, a work tool configured to rotationally drive a tip tool is provided. This work tool includes a housing, a spindle, a motor, and a power transmission mechanism.
 スピンドルは、作業工具の前後方向に延在する所定の駆動軸に沿って前後方向に移動可能、且つ、駆動軸周りに回転可能に前記ハウジングに支持されている。また、スピンドルは、先端工具を着脱可能に構成された前端部を有する。モータおよび動力伝達機構は、ハウジングに収容されている。動力伝達機構は、太陽部材と、リング部材と、キャリア部材と、遊星ローラとを含む。太陽部材、リング部材、およびキャリア部材は、駆動軸と同軸状に配置されている。遊星ローラは、キャリア部材に自転可能に保持されている。太陽部材およびリング部材は、夫々、駆動軸に対して傾斜した第1テーパ面および第2テーパ面を有する。太陽部材およびリング部材のうち一方は、他方に対し、スピンドルと一体的に前後方向に移動可能に構成されている。遊星ローラの少なくとも一部は、駆動軸に対する径方向において、第1テーパ面と第2テーパ面の間に配置されている。 The spindle is supported by the housing so as to be movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction of the work tool and rotatable about the drive shaft. Further, the spindle has a front end portion configured to be detachable from the tip tool. The motor and the power transmission mechanism are accommodated in the housing. The power transmission mechanism includes a sun member, a ring member, a carrier member, and a planetary roller. The sun member, the ring member, and the carrier member are arranged coaxially with the drive shaft. The planetary roller is held by the carrier member so as to be able to rotate. The sun member and the ring member each have a first tapered surface and a second tapered surface that are inclined with respect to the drive shaft. One of the sun member and the ring member is configured to be movable in the front-rear direction integrally with the spindle with respect to the other. At least a part of the planetary roller is disposed between the first tapered surface and the second tapered surface in the radial direction with respect to the drive shaft.
 動力伝達機構は、スピンドルの後方への移動に応じて、太陽部材およびリング部材が互いに近接する方向に相対移動し、遊星ローラが太陽部材およびリング部材と摩擦接触状態とされることで、スピンドルへモータの動力を伝達するように構成されている。また、動力伝達機構は、スピンドルの前方への移動に応じて、太陽部材およびリング部材が互いから離間する方向に相対移動し、遊星ローラが太陽部材およびリング部材に非摩擦接触状態とされることで、動力の伝達を遮断するように構成されている。更に、作業工具は、遊星ローラがハウジングに対して前後方向に移動することを規制するように構成された規制部材を備えている。なお、ここでいう「移動の規制」とは、移動を完全に禁止することに限定されるものではなく、僅かな移動を許容する場合を含む意である。 The power transmission mechanism moves relative to the sun member and the ring member in a direction close to each other in accordance with the backward movement of the spindle, and the planetary roller is brought into a frictional contact state with the sun member and the ring member. It is comprised so that the motive power of a motor may be transmitted. Further, in the power transmission mechanism, the sun member and the ring member move relative to each other in a direction away from each other in accordance with the forward movement of the spindle, and the planetary roller is brought into a non-friction contact state with the sun member and the ring member. Therefore, the transmission of power is cut off. Furthermore, the work tool includes a restricting member configured to restrict the planetary roller from moving in the front-rear direction with respect to the housing. The “movement restriction” here is not limited to completely prohibiting movement, but includes a case where slight movement is allowed.
 本態様の作業工具は、いわゆる遊星ローラ式の動力伝達機構を備えている。この動力伝達機構では、遊星ローラの少なくとも一部は、スピンドルの駆動軸に対する径方向(駆動軸に直交する方向)において、太陽部材の第1テーパ面とリング部材の第2テーパ面の間に配置されている。太陽部材とリング部材の一方は、他方に対し、スピンドルと一体的に前後方向に移動可能である。これに対し、遊星ローラは、規制部材によって、前後方向に移動することが規制されている。よって、太陽部材とリング部材の相対移動に伴って遊星ローラが前後方向に移動してしまい、第1および第2テーパ面との摩擦接触が不安定になる可能性を低減することができる。 The work tool of this aspect includes a so-called planetary roller type power transmission mechanism. In this power transmission mechanism, at least a part of the planetary roller is disposed between the first taper surface of the sun member and the second taper surface of the ring member in the radial direction with respect to the drive shaft of the spindle (a direction orthogonal to the drive shaft). Has been. One of the sun member and the ring member is movable in the front-rear direction integrally with the spindle with respect to the other. On the other hand, the planetary roller is restricted from moving in the front-rear direction by a restriction member. Therefore, it is possible to reduce the possibility that the planetary roller moves in the front-rear direction with the relative movement of the sun member and the ring member, and the frictional contact with the first and second tapered surfaces becomes unstable.
 本発明の一態様において、キャリア部材は、スピンドルに対して前後方向に移動可能にスピンドルに保持されていてもよい。言い換えると、前後方向の移動に関して、キャリア部材はスピンドルと独立していてもよい。キャリア部材は、太陽部材の第1テーパ面とリング部材の第2テーパ面の間から遊星ローラが外れないように遊星ローラを保持可能な位置に配置される必要がある。これに対し、本態様によれば、スピンドルの移動にかかわらず、キャリア部材を適切な位置に維持することが可能となる。これにより、キャリア部材がスピンドルと一体的に移動する場合に比べて、スピンドルの前後方向の移動量に関する制約を減らすことができる。特に、遊星ローラや第1、第2テーパ面が摩耗すると、安定した摩擦接触を確立するためには、太陽部材とリング部材が互いにより近接する位置までスピンドルが押し込まれる必要が生じる。つまり、スピンドルの前後方向の移動量を増加させる必要があるが、本態様によれば、かかるニーズにも適切に対応することができる。 In one embodiment of the present invention, the carrier member may be held by the spindle so as to be movable in the front-rear direction with respect to the spindle. In other words, the carrier member may be independent of the spindle with respect to the longitudinal movement. The carrier member needs to be arranged at a position where the planetary roller can be held so that the planetary roller does not come off between the first tapered surface of the sun member and the second tapered surface of the ring member. On the other hand, according to this aspect, the carrier member can be maintained at an appropriate position regardless of the movement of the spindle. Thereby, compared with the case where a carrier member moves integrally with a spindle, the restriction | limiting regarding the moving amount | distance of the front-back direction of a spindle can be reduced. In particular, when the planetary roller and the first and second tapered surfaces are worn, in order to establish stable frictional contact, the spindle needs to be pushed to a position where the sun member and the ring member are closer to each other. That is, it is necessary to increase the amount of movement of the spindle in the front-rear direction, but according to this aspect, it is possible to appropriately meet such needs.
 本発明の一態様において、キャリア部材は、スピンドルに対して駆動軸周りに回転不能に保持されていてもよい。そして、キャリア部材は、遊星ローラを介して伝達された動力によって、スピンドルと一体的に回転するように構成されていてもよい。本態様によれば、キャリア部材を出力部材とする合理的な遊星ローラ式の動力伝達機構を実現することができる。 In one aspect of the present invention, the carrier member may be held non-rotatable around the drive shaft with respect to the spindle. The carrier member may be configured to rotate integrally with the spindle by the power transmitted via the planetary roller. According to this aspect, it is possible to realize a rational planetary roller type power transmission mechanism using the carrier member as an output member.
 本発明の一態様において、規制部材は、キャリア部材がハウジングに対して前後方向に移動することを規制するように構成されていてもよい。本態様によれば、規制部材によって、遊星ローラとキャリア部材の前後方向の移動が規制されるため、遊星ローラとキャリア部材との適切な位置関係をより確実に維持することができる。 In one aspect of the present invention, the restricting member may be configured to restrict the carrier member from moving in the front-rear direction with respect to the housing. According to this aspect, since the movement of the planetary roller and the carrier member in the front-rear direction is restricted by the restriction member, an appropriate positional relationship between the planetary roller and the carrier member can be more reliably maintained.
 本発明の一態様において、規制部材は、スピンドルとキャリア部材とを、前後方向において互いから離間するように付勢するバネ部材を含んでもよい。そして、スピンドルは、常時には、バネ部材の付勢力によって、最前方位置に保持されていてもよい。本態様によれば、バネ部材の付勢力によって、キャリア部材の移動を規制しつつ、スピンドルの押込みが解除された場合、スピンドルを最前方位置(つまり、初期位置)に復帰させることができる。 In one aspect of the present invention, the restricting member may include a spring member that biases the spindle and the carrier member so as to be separated from each other in the front-rear direction. The spindle may be held at the foremost position by the biasing force of the spring member at all times. According to this aspect, when the pushing of the spindle is released while restricting the movement of the carrier member by the biasing force of the spring member, the spindle can be returned to the foremost position (that is, the initial position).
 本発明の一態様において、リング部材は、スピンドルと一体的に前後方向に移動可能、且つ、駆動軸周りに回転可能にスピンドルに支持されていてもよい。バネ部材は、前後方向においてキャリア部材とリング部材の間に介在していてもよい。そして、作業工具は、バネ部材のリング部材側の一端を、リング部材の回転から遮断された状態で受ける受け部材を更に備えていてもよい。本態様によれば、バネ部材がリング部材と共に回転してしまうこと(いわゆる共回り)や、バネ部材とリング部材の摺動部分が発熱したりすることを防止することができる。 In one aspect of the present invention, the ring member may be supported by the spindle so as to be movable in the front-rear direction integrally with the spindle and to be rotatable around the drive shaft. The spring member may be interposed between the carrier member and the ring member in the front-rear direction. The work tool may further include a receiving member that receives one end of the spring member on the ring member side in a state where the spring member is blocked from rotation of the ring member. According to this aspect, it is possible to prevent the spring member from rotating together with the ring member (so-called co-rotation) and the sliding portion between the spring member and the ring member from generating heat.
 本発明の一態様において、リング部材は、モータの動力で回転されるように構成されていてもよい。そして、バネ部材は、リング部材とキャリア部材とを、互いから離間するように前方および後方へ夫々付勢するように構成されていてもよい。言い換えると、バネ部材は、動力伝達機構における駆動側部材としてのリング部材と、被動側部材としてのキャリア部材とを、伝達を遮断する方向に付勢する機能も有する。本態様によれば、部品点数を増やすことなく、バネ部材によって、キャリア部材の前後方向の移動規制と、動力伝達の遮断という複数の機能を実現することができる。 In one aspect of the present invention, the ring member may be configured to be rotated by the power of the motor. The spring member may be configured to bias the ring member and the carrier member forward and backward so as to be separated from each other. In other words, the spring member also has a function of urging the ring member as the driving side member and the carrier member as the driven side member in the power transmission mechanism in the direction of interrupting transmission. According to this aspect, it is possible to realize a plurality of functions of restricting movement of the carrier member in the front-rear direction and blocking power transmission without increasing the number of components.
 本発明の一態様において、リング部材は、リング部材の内側と外側とを連通させる連通孔を少なくとも1つ有してもよい。本態様によれば、動力伝達機構の駆動(典型的には、リング部材の回転)に伴う遠心力により、連通孔を介した空気の流れを生じさせることができる。これにより、動力伝達機構における局所的な温度上昇の抑制や、ハウジング内に配された潤滑剤のより円滑な循環を実現することができる。その結果、遊星ローラや第1、第2テーパ面の摩耗を効果的に低減し、耐久性を向上することができる。 In one aspect of the present invention, the ring member may have at least one communication hole that communicates the inside and the outside of the ring member. According to this aspect, the flow of air through the communication hole can be generated by the centrifugal force accompanying the drive of the power transmission mechanism (typically, the rotation of the ring member). Thereby, suppression of the local temperature rise in a power transmission mechanism and the smoother circulation of the lubricant distribute | arranged in the housing are realizable. As a result, it is possible to effectively reduce wear of the planetary roller and the first and second tapered surfaces and improve durability.
 本発明の一態様において、連通孔は、リング部材のうち、第2テーパ面に対応する領域とは異なる領域に形成されていてもよい。本態様によれば、リング部材に連通孔を容易に形成することができる。 In one aspect of the present invention, the communication hole may be formed in a region of the ring member that is different from the region corresponding to the second tapered surface. According to this aspect, the communication hole can be easily formed in the ring member.
第1実施形態に係るスクリュードライバの側面図である。It is a side view of the screwdriver concerning a 1st embodiment. スクリュードライバの縦断面図である。It is a longitudinal cross-sectional view of a screw driver. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図3のIV-IV線における断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 図4の部分拡大図である。It is the elements on larger scale of FIG. スピンドル、動力伝達機構、位置切替機構の分解斜視図である。It is a disassembled perspective view of a spindle, a power transmission mechanism, and a position switching mechanism. 図3のVIII-VIII線における断面図に相当し、ローラとテーパスリーブおよびギアスリーブとの非摩擦接触状態を示す説明図である。FIG. 5 corresponds to a cross-sectional view taken along line VIII-VIII in FIG. スピンドルが初期位置から後方へ移動され、動力伝達機構が伝達可能状態とされた状態のスクリュードライバの縦断面図である。It is a longitudinal cross-sectional view of the screw driver in a state where the spindle is moved rearward from the initial position and the power transmission mechanism is in a transmittable state. 図9のX-X線における断面図に相当し、ローラとテーパスリーブおよびギアスリーブとの摩擦接触状態を示す説明図である。FIG. 10 corresponds to a cross-sectional view taken along line XX in FIG. 9 and is an explanatory view showing a frictional contact state between a roller, a taper sleeve, and a gear sleeve. 図3のXI-XI線における断面図であって、ギアスリーブが正方向に回転駆動された場合のワンウェイクラッチの状態を示す説明図である。FIG. 4 is a cross-sectional view taken along line XI-XI in FIG. 3 and is an explanatory view showing a state of the one-way clutch when the gear sleeve is driven to rotate in the forward direction. 図11に対応する断面図であって、ギアスリーブが逆方向に回転駆動された場合のワンウェイクラッチの状態を示す説明図である。FIG. 12 is a cross-sectional view corresponding to FIG. 11, illustrating the state of the one-way clutch when the gear sleeve is driven to rotate in the reverse direction. 図4に対応する断面図であって、リードスリーブおよびギアスリーブが後方へ移動された状態を示す説明図である。FIG. 5 is a cross-sectional view corresponding to FIG. 4, illustrating the state where the lead sleeve and the gear sleeve are moved rearward. ロケータが被加工物に当接し、ネジ締め作業が完了した状態のスクリュードライバの縦断面図である。It is a longitudinal cross-sectional view of the screw driver in a state where the locator is in contact with the workpiece and the screw tightening operation is completed. 第2実施形態に係るスクリュードライバの縦断面図である。It is a longitudinal cross-sectional view of the screw driver which concerns on 2nd Embodiment. 図15のXVI-XVI線における断面図である。FIG. 16 is a cross-sectional view taken along line XVI-XVI in FIG. 15. スピンドル、動力伝達機構、位置切替機構の分解斜視図である。It is a disassembled perspective view of a spindle, a power transmission mechanism, and a position switching mechanism. 図15に対応する断面図であって、ギアスリーブが後方へ移動された状態を示す説明図である。FIG. 16 is a cross-sectional view corresponding to FIG. 15, illustrating the state where the gear sleeve is moved rearward. 図16に対応する断面図であって、ギアスリーブが後方へ移動された状態を示す説明図である。It is sectional drawing corresponding to FIG. 16, Comprising: It is explanatory drawing which shows the state by which the gear sleeve was moved back. 第3実施形態に係るスクリュードライバの縦断面図である。It is a longitudinal cross-sectional view of the screw driver which concerns on 3rd Embodiment. 図20のXXI-XXI線における断面図である。FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG. 20. スピンドル、動力伝達機構、位置切替機構の分解斜視図である。It is a disassembled perspective view of a spindle, a power transmission mechanism, and a position switching mechanism. 図21の部分拡大図である。It is the elements on larger scale of FIG.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1~図14を参照して、第1実施形態に係るスクリュードライバ1について説明する。スクリュードライバ1は、先端工具を回転駆動する作業工具の一例である。より詳細には、スクリュードライバ1は、スピンドル3に装着されたドライバビット9を回転駆動することで、ネジ締め作業やネジ緩め作業を遂行可能なネジ締め工具の一例である。
[First Embodiment]
A screw driver 1 according to a first embodiment will be described with reference to FIGS. The screw driver 1 is an example of a work tool that rotationally drives a tip tool. More specifically, the screw driver 1 is an example of a screw tightening tool capable of performing a screw tightening operation or a screw loosening operation by rotationally driving a driver bit 9 mounted on the spindle 3.
 まず、スクリュードライバ1の概略構成について説明する。図1および図2に示すように、スクリュードライバ1は、モータ2、スピンドル3等を含む本体部10と、把持部171を含むハンドル部17とを備えている。本体部10は、全体としては、所定の駆動軸A1に沿って延在する長尺状に形成されている。本体部10の長軸方向(駆動軸A1の延在方向)の一端部に、ドライバビット9が取り外し可能に装着される。ハンドル部17は、全体としてはC字状に形成されており、本体部10の長軸方向における他端部にループ状に連結されている。ハンドル部17のうち、本体部10から離間して、駆動軸A1に概ね直交する方向に直線状に延在する部分が、使用者によって把持される把持部171を構成する。なお、把持部171の長軸方向における一端部は駆動軸A1上に配置されている。この一端部には、使用者による引き操作が可能なトリガ173が設けられている。また、把持部171の他端部には、外部の交流電源に接続可能な電源ケーブル179が接続されている。 First, a schematic configuration of the screw driver 1 will be described. As shown in FIGS. 1 and 2, the screw driver 1 includes a main body portion 10 including a motor 2, a spindle 3, and the like, and a handle portion 17 including a grip portion 171. The main body 10 is formed in an elongated shape extending along a predetermined drive axis A1 as a whole. A driver bit 9 is detachably attached to one end of the main body 10 in the long axis direction (the extending direction of the drive shaft A1). The handle portion 17 is formed in a C shape as a whole, and is connected to the other end portion of the main body portion 10 in the long axis direction in a loop shape. A portion of the handle portion 17 that is separated from the main body portion 10 and linearly extends in a direction substantially orthogonal to the drive shaft A1 constitutes a grip portion 171 that is gripped by the user. Note that one end portion of the grip portion 171 in the major axis direction is disposed on the drive shaft A1. A trigger 173 that can be pulled by the user is provided at one end. A power cable 179 that can be connected to an external AC power supply is connected to the other end of the gripping portion 171.
 本実施形態のスクリュードライバ1では、使用者によってトリガ173が引き操作されると、モータ2が駆動される。また、スピンドル3が後方へ押し込まれると、モータ2の動力がスピンドル3に伝達され、ドライバビット9が回転駆動される。これにより、ネジ締め作業やネジ緩め作業が遂行される。 In the screw driver 1 of the present embodiment, when the trigger 173 is pulled by the user, the motor 2 is driven. When the spindle 3 is pushed backward, the power of the motor 2 is transmitted to the spindle 3 and the driver bit 9 is rotationally driven. Thereby, a screw tightening operation and a screw loosening operation are performed.
 以下、スクリュードライバ1の詳細構成について説明する。なお、以下の説明では、便宜上、駆動軸A1の延在方向(軸方向)を、スクリュードライバ1の前後方向と規定する。前後方向において、ドライバビット9が着脱される側を前側、把持部171が配置されている側を後側と規定する。駆動軸A1に直交する方向であって、把持部171の延在方向に対応する方向を上下方向と規定する。上下方向において、トリガ173が配置されている側を上側、電源ケーブル179が接続されている側を下側と規定する。前後方向および上下方向に直交する方向を左右方向と規定する。 Hereinafter, the detailed configuration of the screw driver 1 will be described. In the following description, for the sake of convenience, the extending direction (axial direction) of the drive shaft A1 is defined as the front-rear direction of the screw driver 1. In the front-rear direction, the side on which the driver bit 9 is attached / detached is defined as the front side, and the side on which the grip portion 171 is disposed is defined as the rear side. The direction perpendicular to the drive axis A1 and corresponding to the extending direction of the gripping portion 171 is defined as the vertical direction. In the vertical direction, the side on which the trigger 173 is disposed is defined as the upper side, and the side to which the power cable 179 is connected is defined as the lower side. The direction orthogonal to the front-rear direction and the up-down direction is defined as the left-right direction.
 まず、本体部10およびハンドル部17について簡単に説明する。図2に示すように、本体部10の外郭は、主として本体ハウジング11によって形成されている。本体ハウジング11は、モータ2を収容する筒状の後部ハウジング12と、スピンドル3を収容する筒状の前部ハウジング13と、後部ハウジング12および前部ハウジング13の間に配置された中央ハウジング14を含む。中央ハウジング14の前端部は、駆動軸A1に概ね直交するように配置された区画壁141を有する。中央ハウジング14および前部ハウジング13がネジによって後部ハウジング12に固定されることで、3つのハウジングが本体ハウジング11として一体化されている。なお、本体部10の内部構造を含む詳細については後述する。 First, the main body 10 and the handle 17 will be briefly described. As shown in FIG. 2, the outline of the main body 10 is mainly formed by the main body housing 11. The main body housing 11 includes a cylindrical rear housing 12 that houses the motor 2, a cylindrical front housing 13 that houses the spindle 3, and a central housing 14 disposed between the rear housing 12 and the front housing 13. Including. The front end portion of the central housing 14 has a partition wall 141 disposed so as to be substantially orthogonal to the drive shaft A1. The central housing 14 and the front housing 13 are fixed to the rear housing 12 with screws, so that the three housings are integrated as the main body housing 11. Details including the internal structure of the main body 10 will be described later.
 前部ハウジング13の前端部には、前端部を覆うように、筒状のロケータ15が取り外し可能に連結されている。ロケータ15は、前部ハウジング13に対して前後方向に相対移動可能であり、使用者によって任意の位置に固定される。これにより、ロケータ15からのドライバビット9の突出量、つまり、ネジ締めの深さが設定される。 A cylindrical locator 15 is detachably connected to the front end of the front housing 13 so as to cover the front end. The locator 15 is movable relative to the front housing 13 in the front-rear direction, and is fixed at an arbitrary position by the user. Thereby, the protrusion amount of the driver bit 9 from the locator 15, that is, the depth of screw tightening is set.
 図2に示すように、ハンドル部17の外郭は、主としてハンドルハウジング18によって形成されている。ハンドルハウジング18は、左右の半割体によって構成されている。なお、左側の半割体は、後部ハウジング12と一体形成されている。ハンドルハウジング18には、メインスイッチ174と、回転方向スイッチ176と、コントローラ178とが収容されている。 As shown in FIG. 2, the outline of the handle portion 17 is mainly formed by a handle housing 18. The handle housing 18 is composed of left and right halves. The left half is integrally formed with the rear housing 12. The handle housing 18 accommodates a main switch 174, a rotation direction switch 176, and a controller 178.
 メインスイッチ174は、モータ2の起動用のスイッチであって、トリガ173の後側で把持部171内に配置されている。メインスイッチ174は、常時にはオフ状態で維持され、トリガ173の引き操作に応じてオン状態に切り替えられる。メインスイッチ174は、図示しない配線を介して、オン状態またはオフ状態を示す信号をコントローラ178に出力する。 The main switch 174 is a switch for starting the motor 2, and is disposed in the grip 171 on the rear side of the trigger 173. The main switch 174 is normally maintained in an off state and is switched to an on state in accordance with a pulling operation of the trigger 173. The main switch 174 outputs a signal indicating an on state or an off state to the controller 178 via a wiring (not shown).
 ハンドルハウジング18のうち、把持部171の下端部と本体部10(後部ハウジング12)の下後端部に接続する部分には、ドライバビット9の回転方向(詳細には、モータシャフト23の回転方向)を切り替えるための切替レバー175が設けられている。使用者は、切替レバー175の操作により、モータシャフト23の回転方向を、ドライバビット9がネジ90を締める方向(正方向、ネジ締め方向ともいう)、または、ドライバビット9がネジ90を緩める方向(逆方向、ネジ緩め方向ともいう)のうち一方に設定することができる。回転方向スイッチ176は、図示しない配線を介して、切替レバー175を介して設定された回転方向に応じた信号をコントローラ178に出力する。 A portion of the handle housing 18 connected to the lower end portion of the grip portion 171 and the lower rear end portion of the main body portion 10 (rear housing 12) has a rotation direction of the driver bit 9 (specifically, a rotation direction of the motor shaft 23). ) Is provided for switching. The user operates the switching lever 175 to change the direction of rotation of the motor shaft 23 in the direction in which the driver bit 9 tightens the screw 90 (also referred to as positive direction or screw tightening direction) or the direction in which the driver bit 9 loosens the screw 90. It can be set to one of (reverse direction, also referred to as screw loosening direction). The rotation direction switch 176 outputs a signal corresponding to the rotation direction set via the switching lever 175 to the controller 178 via a wiring (not shown).
 制御回路を含むコントローラ178は、メインスイッチ174の下方に配置されている。コントローラ178は、メインスイッチ174からの信号がオン状態を示す場合、回転方向スイッチ176からの信号が示す回転方向に従って、モータ2を駆動するように構成されている。 The controller 178 including the control circuit is disposed below the main switch 174. The controller 178 is configured to drive the motor 2 in accordance with the rotation direction indicated by the signal from the rotation direction switch 176 when the signal from the main switch 174 indicates an ON state.
 以下、本体部10の内部構造を含む詳細構成について説明する。 Hereinafter, a detailed configuration including the internal structure of the main body 10 will be described.
 図2に示すように、後部ハウジング12には、モータ2が収容されている。本実施形態では、モータ2として、交流モータが採用されている。モータ2のロータ21から延設されたモータシャフト23は、駆動軸A1の下側で、駆動軸A1と平行に(前後方向に)延在している。モータシャフト23は、前端部と後端部において、ベアリング231、233によって回転可能に支持されている。なお、前側のベアリング231は、中央ハウジング14の区画壁141に支持され、後側のベアリング233は後部ハウジング12の後端部に支持されている。また、モータシャフト23のロータ21よりも前側の部分には、モータ2の冷却用のファン25が固定され、中央ハウジング14内に収容されている。モータシャフト23の前端部は、区画壁141に設けられた貫通孔を通して前部ハウジング13内に突出している。モータシャフト23の前端部には、ピニオンギア24が形成されている。 As shown in FIG. 2, the motor 2 is accommodated in the rear housing 12. In the present embodiment, an AC motor is employed as the motor 2. A motor shaft 23 extending from the rotor 21 of the motor 2 extends below (in the front-rear direction) the drive shaft A1 below the drive shaft A1. The motor shaft 23 is rotatably supported by bearings 231 and 233 at the front end portion and the rear end portion. The front bearing 231 is supported by the partition wall 141 of the central housing 14, and the rear bearing 233 is supported by the rear end portion of the rear housing 12. Further, a fan 25 for cooling the motor 2 is fixed to a portion of the motor shaft 23 on the front side of the rotor 21 and is accommodated in the central housing 14. The front end portion of the motor shaft 23 projects into the front housing 13 through a through hole provided in the partition wall 141. A pinion gear 24 is formed at the front end of the motor shaft 23.
 図3および図4に示すように、前部ハウジング13には、スピンドル3と、動力伝達機構4と、位置切替機構5とが収容されている。以下、これらの詳細構成について順に説明する。 3 and 4, the front housing 13 accommodates the spindle 3, the power transmission mechanism 4, and the position switching mechanism 5. Hereinafter, these detailed configurations will be described in order.
 図3および図4に示すように、スピンドル3は、略円柱状の長尺部材であって、駆動軸A1に沿って、前後方向に延在している。本実施形態では、スピンドル3は、別個に形成された前側シャフト31と後側シャフト32とが固定状に連結され、一体化されることで構成されている。しかしながら、スピンドル3は、単一のシャフトのみによって構成されていてもよい。スピンドル3は、前後方向における中央部(詳細には、前側シャフト31の後端部)に、径方向外側に突出するフランジ34を有する。 As shown in FIGS. 3 and 4, the spindle 3 is a substantially cylindrical long member, and extends in the front-rear direction along the drive shaft A1. In the present embodiment, the spindle 3 is configured by integrally connecting a front shaft 31 and a rear shaft 32 that are separately formed and integrated. However, the spindle 3 may be constituted by only a single shaft. The spindle 3 has a flange 34 projecting radially outward at a central portion (specifically, a rear end portion of the front shaft 31) in the front-rear direction.
 スピンドル3は、ベアリング(詳細には、オイルレスベアリング)301と、たベアリング(詳細には、ボールベアリング)302によって、駆動軸A1周りに回転可能、且つ、駆動軸A1に沿って前後方向に移動可能に支持されている。ベアリング301は、中央ハウジング14の区画壁141に支持されている。ベアリング302は、前部ハウジング13の前端部に支持されている。スピンドル3は、常時には、後述する付勢バネ49の付勢力によって前方へ付勢され、フランジ34の前端面が前部ハウジング13内に設けられたストッパ部135に当接する位置で保持されている。このときのスピンドル3の位置が、スピンドル3の移動可能範囲における最前方位置(初期位置ともいう)である。また、スピンドル3(前側シャフト31)の前端部は、前部ハウジング13からロケータ15内に突出している。スピンドル3(前側シャフト31)の前端部には、駆動軸A1に沿ってビット挿入孔311が設けられている。ビット挿入孔311に挿入されたドライバビット9の小径部に対し、リーフスプリングで付勢されたスチール製のボールが係合することによって、ドライバビット9が取り外し可能に保持される。 The spindle 3 can be rotated around the drive axis A1 by a bearing (specifically, an oilless bearing) 301 and a bearing (specifically, a ball bearing) 302, and can be moved back and forth along the drive axis A1. Supported as possible. The bearing 301 is supported by the partition wall 141 of the central housing 14. The bearing 302 is supported on the front end portion of the front housing 13. The spindle 3 is normally urged forward by an urging force of an urging spring 49 described later, and is held at a position where the front end surface of the flange 34 comes into contact with a stopper portion 135 provided in the front housing 13. . The position of the spindle 3 at this time is the foremost position (also referred to as the initial position) in the movable range of the spindle 3. Further, the front end portion of the spindle 3 (front shaft 31) protrudes from the front housing 13 into the locator 15. At the front end of the spindle 3 (front shaft 31), a bit insertion hole 311 is provided along the drive axis A1. When the steel ball urged by the leaf spring is engaged with the small diameter portion of the driver bit 9 inserted into the bit insertion hole 311, the driver bit 9 is detachably held.
 以下、動力伝達機構4について説明する。図3および図4に示すように、本実施形態の動力伝達機構4は、テーパスリーブ41と、リテーナ43と、複数のローラ45と、ギアスリーブ47とを含む遊星機構を主体として構成されている。テーパスリーブ41、リテーナ43、およびギアスリーブ47は、スピンドル3(駆動軸A1)と同軸状に配置されている。テーパスリーブ41、リテーナ43、ローラ45、およびギアスリーブ47は、夫々、遊星機構における太陽部材、キャリア部材、遊星部材、およびリング部材に相当する。なお、本実施形態では、動力伝達機構4は、太陽部材としてのテーパスリーブ41が固定され、リング部材としてのギアスリーブ47が入力部材、キャリア部材としてのリテーナ43が出力部材として動作する、いわゆるソーラ型の遊星減速機構として構成されている。よって、ギアスリーブ47とリテーナ43(スピンドル3)は同一方向に回転する。 Hereinafter, the power transmission mechanism 4 will be described. As shown in FIGS. 3 and 4, the power transmission mechanism 4 of the present embodiment is mainly configured by a planetary mechanism including a tapered sleeve 41, a retainer 43, a plurality of rollers 45, and a gear sleeve 47. . The taper sleeve 41, the retainer 43, and the gear sleeve 47 are arranged coaxially with the spindle 3 (drive shaft A1). The taper sleeve 41, the retainer 43, the roller 45, and the gear sleeve 47 correspond to a sun member, a carrier member, a planetary member, and a ring member in the planetary mechanism, respectively. In this embodiment, the power transmission mechanism 4 is a so-called solar in which a taper sleeve 41 as a sun member is fixed, a gear sleeve 47 as a ring member operates as an input member, and a retainer 43 as a carrier member operates as an output member. It is configured as a type planetary speed reduction mechanism. Therefore, the gear sleeve 47 and the retainer 43 (spindle 3) rotate in the same direction.
 また、動力伝達機構4は、モータ2の動力をスピンドル3に伝達する、または、動力の伝達を遮断するように構成されている。具体的には、動力伝達機構4は、前後方向において、ギアスリーブ47が、テーパスリーブ41、リテーナ43およびローラ45に対して近接あるいは離間する方向に相対移動するのに伴って、ローラ45が、テーパスリーブ41およびギアスリーブ47と摩擦接触状態あるいは非摩擦接触状態とされるように構成されている。これにより、動力伝達機構4は、モータ2の動力をスピンドル3に伝達可能な伝達可能状態と、モータ2の動力をスピンドル3に伝達不能な遮断状態との間で切り替えられる。つまり、本実施形態の動力伝達機構4は、遊星ローラ式の摩擦クラッチ機構として構成されているということができる。 The power transmission mechanism 4 is configured to transmit the power of the motor 2 to the spindle 3 or to block the power transmission. Specifically, in the power transmission mechanism 4, in the front-rear direction, as the gear sleeve 47 moves relative to or away from the taper sleeve 41, the retainer 43, and the roller 45, the roller 45 The taper sleeve 41 and the gear sleeve 47 are configured to be in a frictional contact state or a non-frictional contact state. As a result, the power transmission mechanism 4 is switched between a transmittable state in which the power of the motor 2 can be transmitted to the spindle 3 and a blocked state in which the power of the motor 2 cannot be transmitted to the spindle 3. That is, it can be said that the power transmission mechanism 4 of this embodiment is configured as a planetary roller friction clutch mechanism.
 以下に、動力伝達機構4の各部材の詳細構成および配置について説明する。 Hereinafter, the detailed configuration and arrangement of each member of the power transmission mechanism 4 will be described.
 まず、テーパスリーブ41について説明する。図5~図7に示すように、太陽部材に相当するテーパスリーブ41は、筒状部材として構成されている。テーパスリーブ41は、ベース143を介して、駆動軸A1周りに回転不能に本体ハウジング11(詳細には区画壁141)に固定されている。なお、ベース143は、スピンドル3(後側シャフト32)の後端部を支持するベアリング301の前側で、区画壁141に固定され、本体ハウジング11に一体化されている。スピンドル3(詳細には、後側シャフト32)は、テーパスリーブ41に遊嵌状に挿通されており、テーパスリーブ41に対して前後方向に移動可能、且つ、回転可能である。 First, the taper sleeve 41 will be described. As shown in FIGS. 5 to 7, the taper sleeve 41 corresponding to the sun member is configured as a cylindrical member. The taper sleeve 41 is fixed to the main body housing 11 (specifically, the partition wall 141) through the base 143 so as not to rotate around the drive shaft A1. The base 143 is fixed to the partition wall 141 on the front side of the bearing 301 that supports the rear end portion of the spindle 3 (rear shaft 32), and is integrated with the main body housing 11. The spindle 3 (specifically, the rear shaft 32) is inserted into the taper sleeve 41 so as to be loosely fitted, and is movable in the front-rear direction with respect to the taper sleeve 41 and is rotatable.
 テーパスリーブ41の外周面は、駆動軸A1に対して所定角度で傾斜するテーパ面411として構成されている。より詳細には、テーパスリーブ41の外形は、前方へ向かって細くなる(直径が小さくなる)円錐台状である。テーパ面411は、前方へ向かって駆動軸A1に近づく方向に傾斜する円錐面として構成されている。なお、本実施形態では、駆動軸A1に対するテーパ面411の傾斜角は概ね4度(円錐の断面でみた場合、概ね8度)に設定されている。 The outer peripheral surface of the taper sleeve 41 is configured as a taper surface 411 inclined at a predetermined angle with respect to the drive shaft A1. More specifically, the outer shape of the taper sleeve 41 is a truncated cone shape that narrows toward the front (the diameter decreases). The taper surface 411 is configured as a conical surface that inclines in a direction approaching the drive axis A1 toward the front. In the present embodiment, the inclination angle of the tapered surface 411 with respect to the drive shaft A1 is set to approximately 4 degrees (approximately 8 degrees when viewed from a conical section).
 次に、リテーナ43について説明する。キャリア部材としてのリテーナ43は、遊星部材としてのローラ45を自転可能に保持する部材である。図5~図7に示すように、リテーナ43は、貫通孔を有する略円形の底壁431と、底壁431の外縁から突出する複数の保持アーム434とを有する。保持アーム434は、周方向に互いから離間して配置されている。なお、本実施形態では、リテーナ43は10本の保持アーム434を有するが、保持アーム434の数(およびローラ45の数)は、適宜変更が可能である。リテーナ43は、底壁431が前側に位置する向きに(後方に保持アーム434が突出するように)配置されている。リテーナ43は、径方向においてテーパスリーブ41に保持アーム434の一部が重なった状態で、スピンドル3に対して回転不能、且つ、前後方向に移動可能にスピンドル3に支持されている。各保持アーム434は、駆動軸A1に対してテーパスリーブ41のテーパ面411と同じ傾斜角をなすように(つまり、テーパ面411に平行に)、底壁431の外縁から後方へ突出している。 Next, the retainer 43 will be described. The retainer 43 as a carrier member is a member that holds a roller 45 as a planetary member in a rotatable manner. As shown in FIGS. 5 to 7, the retainer 43 includes a substantially circular bottom wall 431 having a through hole and a plurality of holding arms 434 protruding from the outer edge of the bottom wall 431. The holding arms 434 are spaced apart from each other in the circumferential direction. In this embodiment, the retainer 43 has ten holding arms 434. However, the number of holding arms 434 (and the number of rollers 45) can be changed as appropriate. The retainer 43 is arranged in such a direction that the bottom wall 431 is positioned on the front side (so that the holding arm 434 protrudes rearward). The retainer 43 is supported by the spindle 3 so as not to rotate with respect to the spindle 3 and to be movable in the front-rear direction in a state where a part of the holding arm 434 overlaps the taper sleeve 41 in the radial direction. Each holding arm 434 protrudes rearward from the outer edge of the bottom wall 431 so as to form the same inclination angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 (that is, parallel to the tapered surface 411).
 図6および図7に示すように、スピンドル3の後側シャフト32の後端部の前側部分には、駆動軸A1を挟んで一対の溝321が形成されている。各溝321は、断面U字状であって、前後方向に直線状に延在している。各溝321には、スチール製のボール36が転動可能に配置されている。また、リテーナ43の底壁431の後面(保持アーム434側の面)には、駆動軸A1を挟んで一対の凹部432が形成されている。溝321内に配置されたボール36の一部は、凹部432に係合している。更に、テーパスリーブ41の前端面の中央部には、環状の凹部414が形成されている。詳細は後述するが、リテーナ43は、付勢バネ49によって後方に付勢されており、ボール36が凹部414、432で規定される空間内に配置され、底壁431の後面がテーパスリーブ41の前端面に当接した状態で保持されている。なお、保持アーム434の後端は、ベース143から前側に離間した位置に配置されている。 As shown in FIGS. 6 and 7, a pair of grooves 321 are formed in the front portion of the rear end portion of the rear shaft 32 of the spindle 3 with the drive shaft A1 interposed therebetween. Each groove 321 has a U-shaped cross section and extends linearly in the front-rear direction. A steel ball 36 is arranged in each groove 321 so as to be able to roll. A pair of recesses 432 are formed on the rear surface (the surface on the holding arm 434 side) of the bottom wall 431 of the retainer 43 with the drive shaft A1 interposed therebetween. A part of the ball 36 disposed in the groove 321 is engaged with the recess 432. Furthermore, an annular recess 414 is formed at the center of the front end surface of the taper sleeve 41. Although details will be described later, the retainer 43 is biased rearward by a biasing spring 49, the ball 36 is disposed in a space defined by the recesses 414, 432, and the rear surface of the bottom wall 431 is the taper sleeve 41. It is held in contact with the front end surface. Note that the rear end of the holding arm 434 is disposed at a position spaced forward from the base 143.
 このような構成により、リテーナ43は、スピンドル3の径方向および周方向において、ボール36を介してスピンドル3と係合しており、スピンドル3と一体的に回転可能とされている。なお、ボール36はテーパスリーブ41の環状の凹部414内を転動可能であり、リテーナ43はスピンドル3と共にテーパスリーブ41に対して駆動軸A1周りに回転可能である。一方、スピンドル3は、ボール36が溝321内を転動可能な範囲で、リテーナ43に対して前後方向に移動可能である。 With such a configuration, the retainer 43 is engaged with the spindle 3 via the ball 36 in the radial direction and the circumferential direction of the spindle 3 and can rotate integrally with the spindle 3. The ball 36 can roll in the annular recess 414 of the taper sleeve 41, and the retainer 43 can rotate around the drive axis A 1 with respect to the taper sleeve 41 together with the spindle 3. On the other hand, the spindle 3 is movable in the front-rear direction with respect to the retainer 43 within a range in which the ball 36 can roll in the groove 321.
 図5~図7に示すように、遊星部材に相当するローラ45は、円柱状の部材である。本実施形態では、各ローラ45は、一定の径を有し、隣接する保持アーム434の間に、テーパ面411に概ね平行な回転軸周りに自転可能に保持されている。なお、ローラ45の長さは、保持アーム434よりも長く設定されている。また、図8に示すように、保持アーム434に保持された状態において、ローラ45の外周面の一部は、リテーナ43の径方向において、保持アーム434の内面および外面よりも僅かに突出している。 As shown in FIGS. 5 to 7, the roller 45 corresponding to the planetary member is a cylindrical member. In the present embodiment, each roller 45 has a constant diameter and is held between adjacent holding arms 434 so as to be capable of rotating about a rotation axis substantially parallel to the tapered surface 411. The length of the roller 45 is set longer than that of the holding arm 434. Further, as shown in FIG. 8, in a state where the roller 45 is held by the holding arm 434, a part of the outer peripheral surface of the roller 45 slightly protrudes from the inner and outer surfaces of the holding arm 434 in the radial direction of the retainer 43. .
 次に、ギアスリーブ47について説明する。図5~図7に示すように、リング部材に相当するギアスリーブ47は、テーパスリーブ41およびリテーナ43の外径よりも大きい内径を有する略カップ状の部材として構成されている。 Next, the gear sleeve 47 will be described. As shown in FIGS. 5 to 7, the gear sleeve 47 corresponding to the ring member is configured as a substantially cup-shaped member having an inner diameter larger than the outer diameters of the taper sleeve 41 and the retainer 43.
 ギアスリーブ47は、貫通孔を有する底壁471と、底壁471に接続する筒状の周壁474とを有する。周壁474の内周面のうち、底壁471の近傍の部分には、ベアリング(詳細には、ボールベアリング)48の外輪481が固定されている。ギアスリーブ47は、底壁471が前側に位置する向きに(後方に開口するように)配置されている。ギアスリーブ47は、リテーナ43よりも前側で、スピンドル3に対して回転可能、且つ、前後方向に移動可能にスピンドル3に支持されている。より詳細には、スピンドル3の後側シャフト32が、底壁471の貫通孔に遊嵌状に挿通されるとともに、前後方向に摺動可能にベアリング48の内輪483に挿通されている。これにより、ベアリング48の後側では、スピンドル3と周壁474との間に筒状の内部空間が形成されている。この内部空間には、テーパスリーブ41、リテーナ43およびローラ45の一部と、後述の付勢バネ49とが配置されている。また、ギアスリーブ47(詳細には周壁474)の外周には、ピニオンギア24に常に噛合するギア歯470が一体的に形成されている。よって、ギアスリーブ47は、モータシャフト23の回転に伴って回転駆動される。 The gear sleeve 47 has a bottom wall 471 having a through hole and a cylindrical peripheral wall 474 connected to the bottom wall 471. An outer ring 481 of a bearing (specifically, a ball bearing) 48 is fixed to a portion of the inner peripheral surface of the peripheral wall 474 in the vicinity of the bottom wall 471. The gear sleeve 47 is arranged in such a direction that the bottom wall 471 is positioned on the front side (so as to open rearward). The gear sleeve 47 is supported by the spindle 3 so as to be rotatable with respect to the spindle 3 and movable in the front-rear direction on the front side of the retainer 43. More specifically, the rear shaft 32 of the spindle 3 is inserted into the through hole of the bottom wall 471 so as to be loosely fitted, and is inserted into the inner ring 483 of the bearing 48 so as to be slidable in the front-rear direction. Thereby, on the rear side of the bearing 48, a cylindrical internal space is formed between the spindle 3 and the peripheral wall 474. In this internal space, a part of the taper sleeve 41, the retainer 43 and the roller 45 and a biasing spring 49 described later are arranged. Further, gear teeth 470 that always mesh with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 47 (specifically, the peripheral wall 474). Therefore, the gear sleeve 47 is driven to rotate as the motor shaft 23 rotates.
 ギアスリーブ47の周壁474のうち、ベアリング48よりも後側の部分(開口端側の部分)の内周面は、駆動軸A1に対してテーパスリーブ41のテーパ面411と同じ角度で傾斜する(つまり、テーパ面411に平行な)テーパ面475を含む。つまり、テーパ面475は、後方(ギアスリーブ47の開口端)へ向かって駆動軸A1から離れる方向に傾斜する円錐面として形成されている。リテーナ43に保持されたローラ45は、スピンドル3の径方向(駆動軸A1に直交する方向)において、その少なくとも一部(詳細には前部)がテーパ面411とテーパ面475の間に位置するように保持されている。 Of the peripheral wall 474 of the gear sleeve 47, the inner peripheral surface of the rear portion (portion on the opening end side) of the bearing 48 is inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 ( That is, it includes a tapered surface 475 (parallel to the tapered surface 411). That is, the taper surface 475 is formed as a conical surface that is inclined in the direction away from the drive shaft A1 toward the rear (the opening end of the gear sleeve 47). The roller 45 held by the retainer 43 has at least a portion (specifically, a front portion) positioned between the tapered surface 411 and the tapered surface 475 in the radial direction of the spindle 3 (direction orthogonal to the drive shaft A1). So that it is held.
 また、本実施形態では、動力伝達機構4は、前後方向において、ギアスリーブ47と、リテーナ43およびローラ45との間に介在する付勢バネ49を含む。本実施形態では、付勢バネ49は、円錐コイルバネとして構成されており、大径側の端部が後側、小径側の端部が前側となるように配置されている。より詳細には、大径側の端部は大径のワッシャ491に当接し、小径側の端部は小径のワッシャ493に当接している。ワッシャ491は、リテーナ43の保持アーム434の前端面に当接するように配置されている。ワッシャ493は、ギアスリーブ47内に取り付けられたベアリング48の内輪483に当接するが、外輪481には当接しないように配置されている。つまり、付勢バネ49は、リテーナ43と共に回転可能であるが、ギアスリーブ47の回転からは遮断されている。 Further, in the present embodiment, the power transmission mechanism 4 includes a biasing spring 49 interposed between the gear sleeve 47, the retainer 43, and the roller 45 in the front-rear direction. In this embodiment, the urging spring 49 is configured as a conical coil spring, and is arranged so that the end on the large diameter side is the rear side and the end on the small diameter side is the front side. More specifically, the end on the large diameter side is in contact with the large diameter washer 491, and the end on the small diameter side is in contact with the small diameter washer 493. The washer 491 is disposed so as to contact the front end surface of the holding arm 434 of the retainer 43. The washer 493 is disposed so as to contact the inner ring 483 of the bearing 48 attached in the gear sleeve 47 but not to the outer ring 481. That is, the urging spring 49 can rotate together with the retainer 43, but is blocked from the rotation of the gear sleeve 47.
 付勢バネ49は、ワッシャ491、493を介して、常に、リテーナ43とギアスリーブ47とを互いに離れる方向、つまり、後方および前方に夫々付勢している。これにより、リテーナ43は、付勢バネ49の付勢力で、底壁431の後面がテーパスリーブ41の前端面に当接する位置で保持され、その前後方向の移動が規制されている。また、ローラ45は、ワッシャ491と本体ハウジング11に固定されたベース143の前端面の間で保持され、その前後方向の移動が規制されている。なお、ここでいう「移動が規制されている」とは、移動が完全に禁止されていることを意味するものではなく、僅かな移動は許容されてよい。本実施形態では、ワッシャ491とベース143の前端面の間の距離は、ローラ45よりも僅かに長く設定されており(つまり、遊びが設けられており)、この遊び分のローラ45の移動は許容されている。なお、付勢バネ49は、ワッシャ491、493を介さずに、リテーナ43および内輪483に直接当接していてもよい。 The urging spring 49 always urges the retainer 43 and the gear sleeve 47 in directions away from each other via the washers 491 and 493, that is, rearward and forward, respectively. Accordingly, the retainer 43 is held at a position where the rear surface of the bottom wall 431 comes into contact with the front end surface of the taper sleeve 41 by the biasing force of the biasing spring 49, and movement in the front-rear direction is restricted. Further, the roller 45 is held between the washer 491 and the front end surface of the base 143 fixed to the main body housing 11, and its movement in the front-rear direction is restricted. Here, “movement is restricted” does not mean that movement is completely prohibited, and slight movement may be allowed. In this embodiment, the distance between the washer 491 and the front end surface of the base 143 is set slightly longer than the roller 45 (that is, play is provided), and the movement of the roller 45 corresponding to this play is Is allowed. The biasing spring 49 may be in direct contact with the retainer 43 and the inner ring 483 without using the washers 491 and 493.
 また、付勢バネ49の付勢力でギアスリーブ47が前方へ付勢されることで、後述のスラストベアリング53、リードスリーブ500およびボール508を介してスピンドル3も前方へ付勢され、フランジ34がストッパ部135に当接する初期位置に保持される。 Further, the gear sleeve 47 is urged forward by the urging force of the urging spring 49, whereby the spindle 3 is also urged forward via a thrust bearing 53, a lead sleeve 500 and a ball 508, which will be described later, and the flange 34 is It is held at the initial position where it abuts against the stopper portion 135.
 なお、スピンドル3が初期位置に配置されているときには、図5および図8に示すように、ローラ45は、テーパスリーブ41のテーパ面411と、ギアスリーブ47のテーパ面475の間に遊嵌状に配置されており(より詳細には、テーパ面475から離間しており)、テーパスリーブ41およびギアスリーブ47と非摩擦接触状態にある。つまり、動力伝達機構4は遮断状態にある。一方、図9に示すように、ギアスリーブ47が本体ハウジング11に対して後方へ移動し(テーパスリーブ41、リテーナ43およびローラ45に近接し)、テーパスリーブ41のテーパ面411とギアスリーブ47のテーパ面475との間隔が狭められると、ローラ45は、図10に示すように、テーパ面411とテーパ面475の間に挟まれ、テーパスリーブ41およびギアスリーブ47と摩擦接触状態とされる。これにより、動力伝達機構4は伝達可能状態に移行する。なお、動力伝達機構4の動作については後で詳述する。 When the spindle 3 is disposed at the initial position, the roller 45 is loosely fitted between the tapered surface 411 of the tapered sleeve 41 and the tapered surface 475 of the gear sleeve 47 as shown in FIGS. (More specifically, spaced from the tapered surface 475) and in non-frictional contact with the tapered sleeve 41 and the gear sleeve 47. That is, the power transmission mechanism 4 is in a shut-off state. On the other hand, as shown in FIG. 9, the gear sleeve 47 moves rearward with respect to the main body housing 11 (close to the taper sleeve 41, the retainer 43 and the roller 45), and the taper surface 411 of the taper sleeve 41 and the gear sleeve 47 When the interval with the taper surface 475 is narrowed, the roller 45 is sandwiched between the taper surface 411 and the taper surface 475 as shown in FIG. 10 and is brought into frictional contact with the taper sleeve 41 and the gear sleeve 47. Thereby, the power transmission mechanism 4 shifts to a transmittable state. The operation of the power transmission mechanism 4 will be described in detail later.
 以下、位置切替機構5について説明する。位置切替機構5は、ギアスリーブ47が逆方向(ネジ緩め方向)に回転駆動された場合、ギアスリーブ47とスピンドル3の前端部とを、前後方向に互いから離れる方向に相対的に移動させる機構である。かかる構成により、位置切替機構5は、スピンドル3が初期位置に配置された状態でギアスリーブ47が逆方向(ネジ緩め方向)に回転駆動された場合、ギアスリーブ47をスピンドル3に対して後方に移動させ、リテーナ43およびローラ45に近接させる。以下、位置切替機構5の詳細について説明する。 Hereinafter, the position switching mechanism 5 will be described. The position switching mechanism 5 is a mechanism that relatively moves the gear sleeve 47 and the front end portion of the spindle 3 away from each other in the front-rear direction when the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction). It is. With this configuration, the position switching mechanism 5 allows the gear sleeve 47 to move rearward with respect to the spindle 3 when the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction) with the spindle 3 placed in the initial position. It is moved and brought close to the retainer 43 and the roller 45. Hereinafter, details of the position switching mechanism 5 will be described.
 図5~図7に示すように、本実施形態では、位置切替機構5は、ワンウェイクラッチ50と、リード溝507を有するリードスリーブ500と、ボール508とを主体として構成されている。 As shown in FIGS. 5 to 7, in the present embodiment, the position switching mechanism 5 is mainly composed of a one-way clutch 50, a lead sleeve 500 having a lead groove 507, and a ball 508.
 本実施形態では、ワンウェイクラッチ50は、ギアスリーブ47の前端部に形成されたカム溝501と、ボール502とを含む。ワンウェイクラッチ50は、ギアスリーブ47が逆方向に回転駆動された場合にのみ、リードスリーブ500をギアスリーブ47と一体的に回転させるように構成されている。 In the present embodiment, the one-way clutch 50 includes a cam groove 501 formed at the front end portion of the gear sleeve 47 and a ball 502. The one-way clutch 50 is configured to rotate the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction.
 図7および図11に示すように、カム溝501は、ギアスリーブ47の前端部の周壁474の外周面からギアスリーブ47の径方向内側に窪む溝である。カム溝501の外周面からの径方向の深さは、図に矢印Aで示すギアスリーブ47の正方向(ネジ締め方向)において、上流側から下流側に向かって小さくなる(図に矢印Bで示すギアスリーブ47の逆方向(ネジ緩め方向)において、上流側から下流側に向かって大きくなる)。本実施形態では、4つのカム溝501が、駆動軸A1周りの周方向に等間隔で設けられている。各カム溝501内には、スチール製のボール502が配置されている。なお、図11に示すように、ボール502の径は、カム溝501のうち最深部(つまり、正方向における上流側端部)の深さよりも僅かに大きく設定されている。 7 and 11, the cam groove 501 is a groove that is recessed radially inward of the gear sleeve 47 from the outer peripheral surface of the peripheral wall 474 at the front end portion of the gear sleeve 47. The depth in the radial direction from the outer peripheral surface of the cam groove 501 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 47 indicated by the arrow A in the figure (indicated by the arrow B in the figure). In the reverse direction (screw loosening direction) of the gear sleeve 47 shown, it increases from the upstream side toward the downstream side). In the present embodiment, four cam grooves 501 are provided at equal intervals in the circumferential direction around the drive shaft A1. A steel ball 502 is disposed in each cam groove 501. As shown in FIG. 11, the diameter of the ball 502 is set to be slightly larger than the depth of the deepest portion (that is, the upstream end portion in the positive direction) of the cam groove 501.
 図5~図7に示すように、リードスリーブ500は、略カップ状の部材として形成されており、貫通孔を有する底壁505と、底壁505の外縁から突出する筒状の周壁504とを有する。リードスリーブ500は、底壁505が前側に配置され、底壁505の貫通孔にスピンドル3の後側シャフト32が遊嵌状に挿通された状態で、ギアスリーブ47とスピンドル3のフランジ34の間に配置されている。底壁505の後面と、ギアスリーブ47の底壁471の前端面の間には、スラストベアリング(詳細には、スラストボールベアリング)53が配置されている。スラストベアリング53は、ギアスリーブ47に対するリードスリーブ500の回転を許容しつつスラスト荷重を受ける。なお、底壁505の後面および底壁471の前端面には、夫々、断面U字状の環状の凹部が形成されている。スラストベアリング53の転動体としてのボールは、これらの凹部によって規定される環状の軌道内を転動可能である。 As shown in FIGS. 5 to 7, the lead sleeve 500 is formed as a substantially cup-shaped member, and includes a bottom wall 505 having a through hole and a cylindrical peripheral wall 504 protruding from the outer edge of the bottom wall 505. Have. The lead sleeve 500 is arranged between the gear sleeve 47 and the flange 34 of the spindle 3 in a state where the bottom wall 505 is disposed on the front side and the rear shaft 32 of the spindle 3 is inserted into the through hole of the bottom wall 505 in a loose fit. Is arranged. A thrust bearing (specifically, a thrust ball bearing) 53 is disposed between the rear surface of the bottom wall 505 and the front end surface of the bottom wall 471 of the gear sleeve 47. The thrust bearing 53 receives a thrust load while allowing the lead sleeve 500 to rotate with respect to the gear sleeve 47. Note that annular recesses having a U-shaped cross section are formed on the rear surface of the bottom wall 505 and the front end surface of the bottom wall 471, respectively. A ball as a rolling element of the thrust bearing 53 can roll in an annular track defined by these recesses.
 周壁504の内径は、カム溝501が形成されたギアスリーブ47の前端部の外径よりも僅かに大きく設定されており、周壁504は、ギアスリーブ47の前端部の外周面を取り巻くように配置されている。なお、図11に示すように、カム溝501のうち最深部では、カム溝501の壁面と周壁504の内周面との間の径方向の距離は、ボール502の径よりも僅かに大きく設定されている。 The inner diameter of the peripheral wall 504 is set to be slightly larger than the outer diameter of the front end portion of the gear sleeve 47 in which the cam groove 501 is formed, and the peripheral wall 504 is disposed so as to surround the outer peripheral surface of the front end portion of the gear sleeve 47. Has been. As shown in FIG. 11, in the deepest portion of the cam groove 501, the radial distance between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504 is set slightly larger than the diameter of the ball 502. Has been.
 このような構成により、ワンウェイクラッチ50は、ギアスリーブ47が逆方向に回転駆動された場合にのみ、リードスリーブ500をギアスリーブ47と一体的に回転させる。具体的には、図11に示すように、ギアスリーブ47が正方向(図の矢印A方向)に回転駆動された場合、ボール502は、カム溝501の最深部(正方向(矢印A方向)における上流側端部)へ相対的に移動する。ボール502は、カム溝501の壁面と周壁504の内周面の間に遊嵌状に配置された状態で、ギアスリーブ47と共に駆動軸A1を中心として回転する。つまり、ワンウェイクラッチ50は遮断状態にあり、ギアスリーブ47の回転力はリードスリーブ500に伝達されない。 With this configuration, the one-way clutch 50 rotates the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction. Specifically, as shown in FIG. 11, when the gear sleeve 47 is rotationally driven in the forward direction (arrow A direction in the figure), the ball 502 is the deepest part of the cam groove 501 (forward direction (arrow A direction)). Relative to the upstream end). The ball 502 rotates around the drive shaft A <b> 1 together with the gear sleeve 47 in a state of being freely fitted between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504. That is, the one-way clutch 50 is in a disconnected state, and the rotational force of the gear sleeve 47 is not transmitted to the lead sleeve 500.
 一方、図12に示すように、ギアスリーブ47が逆方向(図の矢印B方向)に回転駆動された場合、ボール502は、カム溝501の最深部から、より浅い部分(逆方向(矢印B方向)における上流側)へ相対的に移動する。これにより、ボール502はカム溝501の壁面と周壁504の内周面の間で挟まれ、楔作用による摩擦力で、ギアスリーブ47とリードスリーブ500とがボール502を介して一体化される。つまり、ワンウェイクラッチ50は伝達可能状態に移行し、ギアスリーブ47と共にリードスリーブ500が逆方向に回転される。 On the other hand, as shown in FIG. 12, when the gear sleeve 47 is rotationally driven in the reverse direction (the direction of arrow B in the figure), the ball 502 moves from the deepest portion of the cam groove 501 to the shallower portion (in the reverse direction (arrow B). Move relative to the upstream side). As a result, the ball 502 is sandwiched between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504, and the gear sleeve 47 and the lead sleeve 500 are integrated via the ball 502 by the frictional force due to the wedge action. That is, the one-way clutch 50 shifts to a transmittable state, and the lead sleeve 500 is rotated in the reverse direction together with the gear sleeve 47.
 リード溝507およびボール508は、リードスリーブ500の駆動軸A1周りの回転に伴って、リードスリーブ500をスピンドル3に対して前後方向に相対的に移動させ、これによって、ギアスリーブ47もリテーナ43およびローラ45に対して前後方向に相対移動させるように構成されている。図5~図7に示すように、本実施形態では、リード溝507は、リードスリーブ500の底壁505の前端面に形成された螺旋状の溝(厳密には、螺旋の一部に対応する形状の溝)として形成されている。リード溝507は、互いに離間して周方向に等間隔で3本設けられている。より詳細には、リード溝507の前端面からの前後方向の深さは、図7に矢印Aで示すギアスリーブ47の正方向(ネジ締め方向)において、上流側から下流側に向かって小さくなる(図7に矢印Bで示すギアスリーブ47の逆方向(ネジ緩め方向)において、上流側から下流側に向かって大きくなる)。各リード溝507内には、スチール製のボール508が配置されている。 The lead groove 507 and the ball 508 move the lead sleeve 500 relative to the spindle 3 in the front-rear direction with the rotation of the lead sleeve 500 around the drive axis A1, thereby causing the gear sleeve 47 and the retainer 43 and The roller 45 is configured to move relative to the front-rear direction. As shown in FIGS. 5 to 7, in this embodiment, the lead groove 507 corresponds to a spiral groove (strictly speaking, a part of the spiral formed in the front end surface of the bottom wall 505 of the lead sleeve 500. Shaped groove). Three lead grooves 507 are provided at regular intervals in the circumferential direction so as to be separated from each other. More specifically, the depth in the front-rear direction from the front end surface of the lead groove 507 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 47 indicated by arrow A in FIG. (In the reverse direction (screw loosening direction) of the gear sleeve 47 indicated by the arrow B in FIG. 7, it increases from the upstream side toward the downstream side). A steel ball 508 is disposed in each lead groove 507.
 上述のように、リテーナ43とギアスリーブ47(詳細にはベアリング48)の間に配置された付勢バネ49によって、ギアスリーブ47は常に前方に付勢されている。このため、図5および図6に示すように、スラストベアリング53、リードスリーブ500、およびボール508も前方へ付勢され、ボール508はフランジ34の後面に当接している。フランジ34を介してスピンドル3も前方へ付勢され、常時には初期位置に保持されている。 As described above, the gear sleeve 47 is always urged forward by the urging spring 49 disposed between the retainer 43 and the gear sleeve 47 (specifically, the bearing 48). For this reason, as shown in FIGS. 5 and 6, the thrust bearing 53, the lead sleeve 500, and the ball 508 are also urged forward, and the ball 508 is in contact with the rear surface of the flange 34. The spindle 3 is also urged forward through the flange 34 and is always held at the initial position.
 このような構成により、スピンドル3と、リードスリーブ500との前後方向における相対的な位置関係は、リード溝507内のボール508の位置に応じて変化する。より詳細には、図4に示すように、ボール508がリード溝507のうち最深部(つまり、正方向における上流側端部)に配置されている場合、前後方向におけるフランジ34とリードスリーブ500の距離は最小となる。つまり、リードスリーブ500はスピンドル3に対して移動可能範囲内の最前方位置に配置される。スピンドル3が初期位置に配置された状態では、ギアスリーブ47は、前後方向においてリテーナ43およびローラ45から最も離間した最離間位置に配置される。 With such a configuration, the relative positional relationship between the spindle 3 and the lead sleeve 500 in the front-rear direction changes according to the position of the ball 508 in the lead groove 507. More specifically, as shown in FIG. 4, when the ball 508 is disposed at the deepest portion of the lead groove 507 (that is, the upstream end portion in the forward direction), the flange 34 and the lead sleeve 500 in the front-rear direction are arranged. The distance is minimal. That is, the lead sleeve 500 is disposed at the foremost position within the movable range with respect to the spindle 3. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 47 is disposed at the most separated position farthest from the retainer 43 and the roller 45 in the front-rear direction.
 これに対し、上述のようにワンウェイクラッチ50が作動し、ギアスリーブ47と共にリードスリーブ500が逆方向に回転されると、ボール508は、リード溝507の最深部から、最浅部(逆方向における上流側)へ相対的に移動する。ボール508はフランジ34の後面に当接しているため、リードスリーブ500は、図13に示すように、ボール508の相対的な移動に応じて、付勢力に抗してフランジ34から離間する方向に(スピンドル3に対して後方へ)移動する。これにより、リードスリーブ500は、ギアスリーブ47を、付勢バネ49の付勢力に抗してスピンドル3に対して後方、つまり、リテーナ43およびローラ45に近接する方向に移動させる。ボール508が最浅部に配置されると、前後方向におけるフランジ34とリードスリーブ500の距離は最大となる。スピンドル3が初期位置に配置された状態では、ギアスリーブ47は、最離間位置に配置された場合よりもリテーナ43およびローラ45に近接した中間位置に配置される。つまり、ギアスリーブ47、リテーナ43、ローラ45の相対位置が、最離間位置から中間位置に切り替えられる。 On the other hand, when the one-way clutch 50 is operated as described above and the lead sleeve 500 is rotated in the reverse direction together with the gear sleeve 47, the ball 508 moves from the deepest portion of the lead groove 507 to the shallowest portion (in the reverse direction). Move relatively upstream). Since the ball 508 is in contact with the rear surface of the flange 34, the lead sleeve 500 moves away from the flange 34 against the urging force according to the relative movement of the ball 508 as shown in FIG. Move backward (with respect to spindle 3). As a result, the lead sleeve 500 moves the gear sleeve 47 backward against the spindle 3 against the urging force of the urging spring 49, that is, in a direction close to the retainer 43 and the roller 45. When the ball 508 is disposed at the shallowest portion, the distance between the flange 34 and the lead sleeve 500 in the front-rear direction is maximized. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 47 is disposed at an intermediate position closer to the retainer 43 and the roller 45 than when disposed at the most separated position. That is, the relative positions of the gear sleeve 47, the retainer 43, and the roller 45 are switched from the most separated position to the intermediate position.
 以下に、モータ2の駆動およびスピンドル3の移動に伴う動力伝達機構4および位置切替機構5の動作について説明する。 Hereinafter, operations of the power transmission mechanism 4 and the position switching mechanism 5 accompanying the driving of the motor 2 and the movement of the spindle 3 will be described.
 まず、モータ2が駆動されておらず、スピンドル3に対して後方へ向かう外力が作用していない初期状態では、付勢バネ49の付勢力によって、スピンドル3は初期位置に配置されている。上述した通り、このときには、図5および図8に示すように、ローラ45はテーパスリーブ41およびギアスリーブ47とは非摩擦接触状態にある。つまり、動力伝達機構4は遮断状態にある。 First, in an initial state where the motor 2 is not driven and no external force is applied to the spindle 3 in the rearward direction, the spindle 3 is disposed at the initial position by the biasing force of the biasing spring 49. As described above, at this time, as shown in FIGS. 5 and 8, the roller 45 is in a non-frictional contact state with the taper sleeve 41 and the gear sleeve 47. That is, the power transmission mechanism 4 is in a shut-off state.
 切替レバー175を介してモータシャフト23の回転方向として正方向(ネジ締め方向)が設定されている場合には、スクリュードライバ1は次のように動作し、ネジ締め作業を遂行する。 When the forward direction (screw tightening direction) is set as the rotation direction of the motor shaft 23 via the switching lever 175, the screw driver 1 operates as follows to perform the screw tightening operation.
 スピンドル3が初期位置に配置された状態で、使用者によってトリガ173が引き操作され、メインスイッチ174がオン状態とされると、コントローラ178はモータ2の駆動を開始する。図11に矢印Aで示すように、ギアスリーブ47は、正方向(ネジ締め方向)に回転駆動される。上述のように、このときにはワンウェイクラッチ50は作動しないため、ギアスリーブ47の回転力はリードスリーブ500に伝達されない。よって、ギアスリーブ47、リテーナ43、ローラ45は、最離間位置に維持される。また、動力伝達機構4は遮断状態にあるため、ギアスリーブ47の回転力はスピンドル3にも伝達されず、ギアスリーブ47は正方向に空転する。 When the trigger 173 is pulled by the user and the main switch 174 is turned on with the spindle 3 placed at the initial position, the controller 178 starts driving the motor 2. As shown by an arrow A in FIG. 11, the gear sleeve 47 is driven to rotate in the forward direction (screw tightening direction). As described above, since the one-way clutch 50 does not operate at this time, the rotational force of the gear sleeve 47 is not transmitted to the lead sleeve 500. Therefore, the gear sleeve 47, the retainer 43, and the roller 45 are maintained at the most separated position. Further, since the power transmission mechanism 4 is in the shut-off state, the rotational force of the gear sleeve 47 is not transmitted to the spindle 3 and the gear sleeve 47 is idled in the forward direction.
 なお、図12に示すように、ボール502がカム溝501の壁面と周壁504の内周面の間で挟持された状態(つまり、ギアスリーブ47、リテーナ43、ローラ45が中間位置に配置された状態)で、後述のネジ緩め作業が終了する場合がありうる。この場合は、ギアスリーブ47の正方向への回転に応じてボール502の挟持が解除され、付勢バネ49の付勢力とリード溝507およびボール508の作用で、リードスリーブ500は最前方位置に復帰する。これにより、ギアスリーブ47、リテーナ43、ローラ45は中間位置から最離間位置に復帰する。 As shown in FIG. 12, the ball 502 is sandwiched between the wall surface of the cam groove 501 and the inner peripheral surface of the peripheral wall 504 (that is, the gear sleeve 47, the retainer 43, and the roller 45 are disposed at intermediate positions). In the state), the screw loosening operation described later may end. In this case, the pinching of the ball 502 is released according to the rotation of the gear sleeve 47 in the forward direction, and the lead sleeve 500 is moved to the foremost position by the biasing force of the biasing spring 49 and the action of the lead groove 507 and the ball 508. Return. Thereby, the gear sleeve 47, the retainer 43, and the roller 45 are returned from the intermediate position to the most separated position.
 ギアスリーブ47の空転状態において、使用者がスクリュードライバ1を前方(被加工物900の方)へ移動させ、ドライバビット9に係合したネジ90を被加工物900に押し付けると、スピンドル3は、付勢バネ49の付勢力に抗して本体ハウジング11に対して相対的に後方へ押し込まれる。フランジ34に押され、ボール508、リードスリーブ500、スラストベアリング53、およびギアスリーブ47も、スピンドル3と一体的に本体ハウジング11に対して後方へ移動する。これに対し、テーパスリーブ41は本体ハウジング11に固定されており、リテーナ43およびローラ45は本体ハウジング11に対する前後方向の移動が規制された状態で保持されている。よって、ギアスリーブ47は、後方への移動に伴ってテーパスリーブ41、リテーナ43およびローラ45に近接し、テーパスリーブ41のテーパ面411とギアスリーブ47のテーパ面475との径方向の間隔は徐々に狭まっていく。 When the user moves the screw driver 1 forward (toward the workpiece 900) in the idling state of the gear sleeve 47 and presses the screw 90 engaged with the driver bit 9 against the workpiece 900, the spindle 3 The main body housing 11 is pushed rearward against the biasing force of the biasing spring 49. Pushed by the flange 34, the ball 508, the lead sleeve 500, the thrust bearing 53, and the gear sleeve 47 also move backward with respect to the main body housing 11 integrally with the spindle 3. On the other hand, the taper sleeve 41 is fixed to the main body housing 11, and the retainer 43 and the roller 45 are held in a state where movement in the front-rear direction with respect to the main body housing 11 is restricted. Therefore, the gear sleeve 47 approaches the taper sleeve 41, the retainer 43, and the roller 45 as it moves rearward, and the radial distance between the taper surface 411 of the taper sleeve 41 and the taper surface 475 of the gear sleeve 47 gradually increases. It narrows to.
 これに伴い、図9および図10に示すように、リテーナ43に保持されたローラ45が、テーパ面411とテーパ面475の間に挟まれて摩擦接触状態とされる(ローラ45とテーパ面411、475との接触部分に楔作用による摩擦力が発生する)。つまり、ギアスリーブ47、リテーナ43、ローラ45は、ローラ45を介してギアスリーブ47からリテーナ43への回転力が伝達可能な伝達位置に配置される。ローラ45は、ギアスリーブ47の回転を受けてテーパスリーブ41のテーパ面411上を自転しつつ公転し、リテーナ43を駆動軸A1周りに回転させる。リテーナ43は駆動軸A1周りの周方向においてスピンドル3と一体化されているため、リテーナ43と共にスピンドル3も回転される。このようにして、スピンドル3が初期位置から後方に移動するのに応じて動力伝達機構4が遮断状態から伝達可能状態に移行し、被加工物900に対するネジ90の締め込みが開始される。なお、スピンドル3は、ギアスリーブ47の回転速度よりも遅い速度で、ギアスリーブ47と同一方向に回転する。 Accordingly, as shown in FIGS. 9 and 10, the roller 45 held by the retainer 43 is sandwiched between the tapered surface 411 and the tapered surface 475 to be in a frictional contact state (the roller 45 and the tapered surface 411). The frictional force due to the wedge action is generated at the contact portion with 475). That is, the gear sleeve 47, the retainer 43, and the roller 45 are disposed at a transmission position where the rotational force from the gear sleeve 47 to the retainer 43 can be transmitted via the roller 45. The roller 45 receives the rotation of the gear sleeve 47 and revolves while rotating on the taper surface 411 of the taper sleeve 41 to rotate the retainer 43 around the drive shaft A1. Since the retainer 43 is integrated with the spindle 3 in the circumferential direction around the drive shaft A1, the spindle 3 is also rotated together with the retainer 43. In this way, as the spindle 3 moves rearward from the initial position, the power transmission mechanism 4 shifts from the shut-off state to the transmittable state, and tightening of the screw 90 with respect to the workpiece 900 is started. The spindle 3 rotates in the same direction as the gear sleeve 47 at a speed slower than the rotation speed of the gear sleeve 47.
 ネジ90の被加工物900への締め込みが進行し、図14に示すようにロケータ15の先端部が被加工物900に当接すると、押圧力を受ける部位は、スピンドル3からロケータ15へ移行していくため、スピンドル3に対する押圧力は徐々に低下する。このため、テーパスリーブ41のテーパ面411とギアスリーブ47のテーパ面475によるローラ45を挟む力(スピンドル3の押圧力と、付勢バネ49によるスピンドル3を前方へ付勢する力の和に対応する)、ひいてはギアスリーブ47からスピンドル3へ伝達される回転力も徐々に低下する。そして、ギアスリーブ47からスピンドル3へ伝達される回転力がネジ90の締め付けに必要な回転力を下回ると、ネジ90の回転が停止され、ネジ締め作業が終了する。 When the tightening of the screw 90 to the workpiece 900 proceeds and the tip of the locator 15 comes into contact with the workpiece 900 as shown in FIG. 14, the portion that receives the pressing force shifts from the spindle 3 to the locator 15. Therefore, the pressing force on the spindle 3 gradually decreases. For this reason, it corresponds to the sum of the force by which the roller 45 is sandwiched between the taper surface 411 of the taper sleeve 41 and the taper surface 475 of the gear sleeve 47 (the pressing force of the spindle 3 and the force of urging the spindle 3 forward by the urging spring 49. As a result, the rotational force transmitted from the gear sleeve 47 to the spindle 3 also gradually decreases. When the rotational force transmitted from the gear sleeve 47 to the spindle 3 falls below the rotational force necessary for tightening the screw 90, the rotation of the screw 90 is stopped and the screw tightening operation is completed.
 一方、切替レバー175を介してモータシャフト23の回転方向として逆方向(ネジ緩め方向)が設定されている場合には、スクリュードライバ1は、次のように動作し、ネジ緩め作業を遂行する。 On the other hand, when the reverse direction (screw loosening direction) is set as the rotation direction of the motor shaft 23 via the switching lever 175, the screw driver 1 operates as follows to perform the screw loosening operation.
 スピンドル3が初期位置に配置された状態で、使用者によってトリガ173が引き操作され、メインスイッチ174がオン状態とされると、コントローラ178はモータ2の駆動を開始する。図12に矢印Bで示すように、ギアスリーブ47が逆方向(ネジ緩め方向)に回転駆動される。これにより、上述のようにワンウェイクラッチ50が作動してリードスリーブ500を逆方向に回転させる。図13に示すように、リード溝507およびボール508の作用によって、ギアスリーブ47は、付勢バネ49の付勢力に抗してスピンドル3に対して後方に、リテーナ43およびローラ45に近接する方向に移動される。つまり、ネジ緩め作業においては、スピンドル3の後方への移動の有無にかかわりなく(スピンドル3が初期位置に配置された状態で)、ギアスリーブ47の逆方向への回転駆動に応じて、ギアスリーブ47、リテーナ43およびローラ45の相対位置が最離間位置から中間位置へ切り替えられる。 When the trigger 173 is pulled by the user and the main switch 174 is turned on with the spindle 3 placed at the initial position, the controller 178 starts driving the motor 2. As shown by an arrow B in FIG. 12, the gear sleeve 47 is rotationally driven in the reverse direction (screw loosening direction). As a result, the one-way clutch 50 operates as described above to rotate the lead sleeve 500 in the reverse direction. As shown in FIG. 13, due to the action of the lead groove 507 and the ball 508, the gear sleeve 47 is moved rearward with respect to the spindle 3 against the urging force of the urging spring 49 and close to the retainer 43 and the roller 45. Moved to. In other words, in the screw loosening operation, regardless of whether or not the spindle 3 is moved rearward (with the spindle 3 disposed at the initial position), the gear sleeve 47 is driven in accordance with the rotational drive of the gear sleeve 47 in the reverse direction. 47, the relative position of the retainer 43 and the roller 45 is switched from the most distant position to the intermediate position.
 なお、図13に示すように、ギアスリーブ47、リテーナ43、ローラ45が中間位置に配置された場合も、最離間位置に配置された場合と同様、ローラ45は、テーパ面475から離間しており、テーパスリーブ41およびギアスリーブ47と非摩擦接触状態にある。よって、ギアスリーブ47の回転力はスピンドル3には伝達されない。つまり、動力伝達機構4は遮断状態にあり、ギアスリーブ47は逆方向に空転する。 As shown in FIG. 13, when the gear sleeve 47, the retainer 43, and the roller 45 are disposed at the intermediate position, the roller 45 is separated from the tapered surface 475 as in the case of being disposed at the most distant position. The taper sleeve 41 and the gear sleeve 47 are in a non-frictional contact state. Therefore, the rotational force of the gear sleeve 47 is not transmitted to the spindle 3. That is, the power transmission mechanism 4 is in a shut-off state, and the gear sleeve 47 is idled in the reverse direction.
 ギアスリーブ47の空転状態において、使用者がスクリュードライバ1を前方へ移動させ、ドライバビット9を被加工物900に締め込まれたネジ90に押し付けて係合させると、スピンドル3は、付勢バネ49の付勢力に抗して本体ハウジング11に対して相対的に後方へ押し込まれる。ギアスリーブ47は、テーパスリーブ41、リテーナ43およびローラ45に対して近接し、ギアスリーブ47、リテーナ43およびローラ45が伝達位置に配置される。ローラ45はテーパ面411とテーパ面475の間に挟まれて摩擦接触状態とされ、動力伝達機構4が遮断状態から伝達可能状態に移行し、ネジ90が緩められ、被加工物900から外される。 When the user moves the screw driver 1 forward and presses the driver bit 9 against the screw 90 fastened to the work piece 900 in the idling state of the gear sleeve 47, the spindle 3 is urged. The main body housing 11 is pushed rearward against the urging force of 49. The gear sleeve 47 is close to the taper sleeve 41, the retainer 43, and the roller 45, and the gear sleeve 47, the retainer 43, and the roller 45 are disposed at the transmission position. The roller 45 is sandwiched between the taper surface 411 and the taper surface 475 to be in a frictional contact state, the power transmission mechanism 4 is shifted from the shut-off state to the transmittable state, the screw 90 is loosened, and is removed from the workpiece 900. The
 上述のように、ネジ緩め作業時には、位置切替機構5によってギアスリーブ47がネジ締め作業時よりもスピンドル3に対して後方へ移動され、ギアスリーブ47とリテーナ43およびローラ45との前後方向の距離が小さくされている。よって、ギアスリーブ47、リテーナ43およびローラ45が中間位置から伝達位置へ相対移動するまでのスピンドル3の前後方向の移動距離(言い換えると、ネジ緩め作業時に動力伝達機構4が遮断状態から伝達可能状態に移行するまでのスピンドル3の移動量あるいは押し込み量)は、ギアスリーブ47、リテーナ43およびローラ45が最離間位置から伝達位置へ相対移動するまでの移動距離(ネジ締め作業時に動力伝達機構4が遮断状態から伝達可能状態に移行するまでのスピンドル3の移動量あるいは押し込み量)よりも小さい。なお、本実施形態では、ネジ緩め作業時の移動距離は、ネジ締め作業時のスピンドル3の移動距離よりも約1ミリメートル短くなるように設定されている。これにより、使用者は、ロケータ15を前部ハウジング13から取り外すことなく被加工物900に締め込まれたネジ90を緩めることができる。 As described above, during the screw loosening operation, the position switching mechanism 5 moves the gear sleeve 47 rearward relative to the spindle 3 than during the screw tightening operation, and the distance between the gear sleeve 47, the retainer 43, and the roller 45 in the front-rear direction. Has been made smaller. Therefore, the movement distance in the front-rear direction of the spindle 3 until the gear sleeve 47, the retainer 43, and the roller 45 are relatively moved from the intermediate position to the transmission position (in other words, the state where the power transmission mechanism 4 can transmit from the shut-off state during the screw loosening operation). The amount of movement of the spindle 3 or the amount of push-in until it shifts to is the distance that the gear sleeve 47, the retainer 43 and the roller 45 move relative to the transmission position from the most distant position (the power transmission mechanism 4 is This is smaller than the movement amount or push-in amount of the spindle 3 until the transition from the shut-off state to the transmittable state. In this embodiment, the moving distance during the screw loosening operation is set to be shorter by about 1 millimeter than the moving distance of the spindle 3 during the screw tightening operation. Thereby, the user can loosen the screw 90 fastened to the workpiece 900 without removing the locator 15 from the front housing 13.
 なお、以上の説明では、モータ2の駆動開始後にスピンドル3が後方に押し込まれた場合の動作を例示したが、スピンドル3が後方に押し込まれ、動力伝達機構4が伝達可能状態に移行する前にモータ2の駆動が開始された場合の動作も基本的に同様である。なお、ネジ緩め作業の場合には、スピンドル3の位置によっては、モータ2の駆動開始に応じて位置切替機構5によってギアスリーブ47後方へ移動されることで、動力伝達機構4が伝達状態に移行する場合がある。また、スピンドル3が後方に押し込まれ、動力伝達機構4が伝達可能状態に移行した後にモータ2の駆動が開始された場合には、モータ2の駆動開始に応じてスピンドル3の回転駆動が開始されることになる。 In the above description, the operation in the case where the spindle 3 is pushed rearward after the start of driving of the motor 2 is illustrated, but before the spindle 3 is pushed rearward and the power transmission mechanism 4 shifts to the transmittable state. The operation when the driving of the motor 2 is started is basically the same. In the case of the screw loosening operation, depending on the position of the spindle 3, the power transmission mechanism 4 shifts to the transmission state by being moved to the rear of the gear sleeve 47 by the position switching mechanism 5 in response to the start of driving of the motor 2. There is a case. Further, when the driving of the motor 2 is started after the spindle 3 is pushed rearward and the power transmission mechanism 4 shifts to the transmittable state, the rotation driving of the spindle 3 is started in response to the driving start of the motor 2. Will be.
 以上に説明したように、本実施形態のスクリュードライバ1の動力伝達機構4では、ギアスリーブ47がネジ締め作業に対応して正方向に回転駆動される場合、ネジ緩め作業に対応して逆方向に回転駆動される場合の何れにおいても、ギアスリーブ47からローラ45を介してリテーナ43へと回転力が伝達される。つまり、ネジ締め作業時とネジ緩め作業時で、同一経路を介して動力の伝達が行われる。そして、ネジ緩め作業に対応して、スピンドル3が初期位置にある状態でギアスリーブ47が逆方向へ回転駆動された場合、位置切替機構5が、ギアスリーブ47を、リテーナ43およびローラ45に対して近接する方向(後方)に移動させる。つまり、ネジ緩め作業時には、スピンドル3が後方へ押し込まれていなくても、ギアスリーブ47の逆方向への回転駆動に応じてギアスリーブ47とリテーナ43、およびギアスリーブ47とローラ45の前後方向の距離が短縮される。これにより、動力伝達機構4を伝達可能状態に移行させるために必要なスピンドル3の後方への移動量(押し込み量)を、ネジ締め作業時よりも小さくすることができる。このように、本実施形態によれば、ネジ締め作業時とネジ緩め作業時で同一経路による動力伝達が可能、且つ、ネジ締め作業時よりも小さい押し込み量でネジ緩め作業を遂行可能な合理的な動力伝達機構4が実現されている。 As described above, in the power transmission mechanism 4 of the screw driver 1 according to the present embodiment, when the gear sleeve 47 is driven to rotate in the forward direction corresponding to the screw tightening operation, the reverse direction corresponds to the screw loosening operation. In any case, the rotational force is transmitted from the gear sleeve 47 to the retainer 43 via the roller 45. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation. In response to the screw loosening operation, when the gear sleeve 47 is driven to rotate in the reverse direction while the spindle 3 is in the initial position, the position switching mechanism 5 causes the gear sleeve 47 to move relative to the retainer 43 and the roller 45. Move in the direction of approaching (backward). That is, during the screw loosening operation, even if the spindle 3 is not pushed backward, the gear sleeve 47 and the retainer 43 and the gear sleeve 47 and the roller 45 are moved in the front-rear direction according to the rotational drive of the gear sleeve 47 in the reverse direction. The distance is shortened. Thereby, the movement amount (push-in amount) of the spindle 3 required to shift the power transmission mechanism 4 to the transmittable state can be made smaller than that during the screw tightening operation. As described above, according to the present embodiment, it is possible to transmit power by the same path during the screw tightening operation and the screw loosening operation, and it is possible to perform the screw loosening operation with a smaller pushing amount than during the screw tightening operation. A simple power transmission mechanism 4 is realized.
 また、本実施形態では、位置切替機構5は、ギアスリーブ47の逆方向への回転駆動に応じて駆動軸A1周りの回転運動を前後方向の直線運動に変換することで、ギアスリーブ47をスピンドル3に対して後方へ移動させるように構成されている。つまり、位置切替機構5は、運動変換機構として構成されている。特に、本実施形態では、リードスリーブ500に形成された螺旋状のリード溝507と、リード溝507内を転動するボール508の作用によってリードスリーブ500を移動させ、ギアスリーブ47をスピンドル3に対して後方へ移動させる構成が採用されている。これにより、スムーズに動作する位置切替機構5が実現されている。 Further, in the present embodiment, the position switching mechanism 5 converts the rotational movement around the drive axis A1 into the linear movement in the front-rear direction in accordance with the rotational drive of the gear sleeve 47 in the reverse direction. 3 is configured to move backward. That is, the position switching mechanism 5 is configured as a motion conversion mechanism. In particular, in this embodiment, the lead sleeve 500 is moved by the action of the spiral lead groove 507 formed in the lead sleeve 500 and the ball 508 that rolls in the lead groove 507, and the gear sleeve 47 is moved relative to the spindle 3. The configuration to move backward is adopted. Thereby, the position switching mechanism 5 that operates smoothly is realized.
 更に、本実施形態では、位置切替機構5は、ギアスリーブ47が逆方向へ回転駆動された場合にのみ、ワンウェイクラッチ50がリードスリーブ500をギアスリーブ47と一体的に駆動軸A1周りに回転させることで、リードスリーブ500をスピンドル3に対して後方へ移動させ、これによりギアスリーブ47を後方へ移動させる。このように、本実施形態では、ギアスリーブ47の逆方向への回転駆動に応じて速やかにリードスリーブ500を回転させ、ギアスリーブ47を移動させる合理的な構成が実現されている。 Furthermore, in the present embodiment, the position switching mechanism 5 allows the one-way clutch 50 to rotate the lead sleeve 500 around the drive shaft A1 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction. As a result, the lead sleeve 500 is moved backward with respect to the spindle 3, thereby moving the gear sleeve 47 backward. As described above, in this embodiment, a rational configuration is realized in which the lead sleeve 500 is quickly rotated and the gear sleeve 47 is moved in accordance with the rotational drive of the gear sleeve 47 in the reverse direction.
 また、本実施形態では、動力伝達機構4は、摩擦式のクラッチ機構(詳細には、遊星ローラ式の摩擦クラッチ機構)として構成されている。よって、噛合い係合式のクラッチ機構が採用されたに比べ、ギアスリーブ47とローラ45の係合時(摩擦接触時)の異音や、ローラ45やテーパ面411、475の摩耗を低減することができる。更に、動力伝達機構4は、遊星減速機構として構成されているため、動力の伝達および伝達遮断と、減速の両機能を単一の機構で実現している。また、ギアスリーブ47は、モータシャフト23に設けられたピニオンギア24に噛合するギア歯470を有する。これにより、動力伝達機構4にモータ2からの動力を効率的に伝達する合理的な構成が実現されている。 In this embodiment, the power transmission mechanism 4 is configured as a friction clutch mechanism (specifically, a planetary roller friction clutch mechanism). Therefore, compared to the case where a meshing engagement type clutch mechanism is employed, noise generated when the gear sleeve 47 and the roller 45 are engaged (at the time of frictional contact) and wear of the roller 45 and the tapered surfaces 411 and 475 are reduced. Can do. Furthermore, since the power transmission mechanism 4 is configured as a planetary speed reduction mechanism, both functions of power transmission and transmission interruption and speed reduction are realized by a single mechanism. The gear sleeve 47 has gear teeth 470 that mesh with the pinion gear 24 provided on the motor shaft 23. Thereby, the rational structure which transmits the motive power from the motor 2 to the power transmission mechanism 4 efficiently is implement | achieved.
 [第2実施形態]
 以下、図15~図19を参照して、第2実施形態に係るスクリュードライバ100について説明する。なお、本実施形態のスクリュードライバ100は、第1実施形態の動力伝達機構4および位置切替機構5(図5~図7参照)とは異なる動力伝達機構6および位置切替機構7を備えているが、その他の構成はスクリュードライバ1と実質的に同一である。よって、以下では、第1実施形態と実質的に同一の構成については、同じ符号を付して説明を省略または簡略化し、主に異なる構成について説明する。
[Second Embodiment]
Hereinafter, the screw driver 100 according to the second embodiment will be described with reference to FIGS. The screw driver 100 of this embodiment includes a power transmission mechanism 6 and a position switching mechanism 7 different from the power transmission mechanism 4 and the position switching mechanism 5 (see FIGS. 5 to 7) of the first embodiment. The other configuration is substantially the same as that of the screw driver 1. Therefore, in the following description, substantially the same configurations as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different configurations are mainly described.
 図15~図17に示すように、本実施形態の動力伝達機構6は、同軸状に配置されたテーパスリーブ41と、リテーナ43と、複数のローラ45と、ギアスリーブ67とを含む遊星機構を主体として構成されている。ギアスリーブ67以外の動力伝達機構6の構成は、第1実施形態の動力伝達機構4の構成と実質的に同一である。 As shown in FIGS. 15 to 17, the power transmission mechanism 6 of this embodiment includes a planetary mechanism including a tapered sleeve 41, a retainer 43, a plurality of rollers 45, and a gear sleeve 67 that are arranged coaxially. It is configured as a subject. The configuration of the power transmission mechanism 6 other than the gear sleeve 67 is substantially the same as the configuration of the power transmission mechanism 4 of the first embodiment.
 本実施形態のギアスリーブ67は、テーパスリーブ41およびリテーナ43の外径よりも大きい内径を有する略カップ状の部材として構成されており、前端部の構成以外は第1実施形態のギアスリーブ47と同様の構成を有する。より詳細には、ギアスリーブ67は、貫通孔を有する底壁671と、底壁671に接続する筒状の周壁674とを有する。ギアスリーブ67は、リテーナ43よりも前側で、スピンドル3に対して回転可能、且つ、前後方向に移動可能にスピンドル3に支持されている。ギアスリーブ67の内部空間には、テーパスリーブ41、リテーナ43およびローラ45の一部と、付勢バネ49とが配置されている。また、ギアスリーブ67(詳細には周壁674)の外周には、ピニオンギア24に常に噛合するギア歯670が一体的に形成されている。第1実施形態の周壁474と同様、周壁674の内周面は、駆動軸A1に対してテーパスリーブ41のテーパ面411と同じ角度で傾斜する(つまり、テーパ面411に平行な)テーパ面675を含む。 The gear sleeve 67 of this embodiment is configured as a substantially cup-shaped member having an inner diameter larger than the outer diameters of the taper sleeve 41 and the retainer 43, and the gear sleeve 47 of the first embodiment except for the configuration of the front end portion. It has the same configuration. More specifically, the gear sleeve 67 has a bottom wall 671 having a through hole and a cylindrical peripheral wall 674 connected to the bottom wall 671. The gear sleeve 67 is supported by the spindle 3 so as to be rotatable relative to the spindle 3 and movable in the front-rear direction on the front side of the retainer 43. In the internal space of the gear sleeve 67, a part of the taper sleeve 41, the retainer 43 and the roller 45 and an urging spring 49 are arranged. Further, gear teeth 670 that are always meshed with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 67 (specifically, the peripheral wall 674). Similar to the peripheral wall 474 of the first embodiment, the inner peripheral surface of the peripheral wall 674 is inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1 (that is, parallel to the tapered surface 411). including.
 また、本実施形態のギアスリーブ67は、第1実施形態のギアスリーブ47とは異なり、前端部(詳細には底壁671の前端面)に形成されたリード溝707を有する。リード溝707は、第1実施形態のリードスリーブ500のリード溝507と同様の構成を有する。つまり、リード溝707は、螺旋状の溝(厳密には、螺旋の一部に対応する形状の溝)として形成されている。リード溝707は、互いに離間して周方向に等間隔で3本設けられている。リード溝707の前端面からの前後方向の深さは、図17に矢印Aで示すギアスリーブ67の正方向(ネジ締め方向)において、上流側から下流側に向かって小さくなる(図17に矢印Bで示すギアスリーブ67の逆方向(ネジ緩め方向)において、上流側から下流側に向かって大きくなる)。 Further, unlike the gear sleeve 47 of the first embodiment, the gear sleeve 67 of the present embodiment has a lead groove 707 formed in the front end portion (specifically, the front end surface of the bottom wall 671). The lead groove 707 has the same configuration as the lead groove 507 of the lead sleeve 500 of the first embodiment. That is, the lead groove 707 is formed as a spiral groove (strictly, a groove having a shape corresponding to a part of the spiral). Three lead grooves 707 are provided at regular intervals in the circumferential direction so as to be separated from each other. The depth in the front-rear direction from the front end surface of the lead groove 707 decreases from the upstream side to the downstream side in the positive direction (screw tightening direction) of the gear sleeve 67 indicated by arrow A in FIG. 17 (arrow in FIG. 17). (In the reverse direction (screw loosening direction) of the gear sleeve 67 shown by B, it increases from the upstream side toward the downstream side).
 本実施形態の位置切替機構7も、第1実施形態の位置切替機構5と同様、ギアスリーブ67が逆方向(ネジ緩め方向)に回転駆動された場合、ギアスリーブ67とスピンドル3の前端部とを、前後方向に互いから離れる方向に相対的に移動させる機構である。かかる構成により、位置切替機構7は、スピンドル3が初期位置に配置された状態でギアスリーブ67が逆方向(ネジ緩め方向)に回転駆動された場合、ギアスリーブ67をスピンドル3に対して後方に移動させ、リテーナ43およびローラ45に近接させる。 Similarly to the position switching mechanism 5 of the first embodiment, when the gear sleeve 67 is rotationally driven in the reverse direction (screw loosening direction), the position switching mechanism 7 of the present embodiment also includes the gear sleeve 67 and the front end portion of the spindle 3. Are relatively moved in the direction away from each other in the front-rear direction. With this configuration, the position switching mechanism 7 allows the gear sleeve 67 to move rearward with respect to the spindle 3 when the gear sleeve 67 is rotationally driven in the reverse direction (screw loosening direction) with the spindle 3 in the initial position. It is moved and brought close to the retainer 43 and the roller 45.
 図15~図17に示すように、本実施形態では、位置切替機構7は、ワンウェイクラッチ70と、フランジスリーブ700と、ギアスリーブ67に形成されたリード溝707と、ボール708とを主体として構成されている。 As shown in FIGS. 15 to 17, in this embodiment, the position switching mechanism 7 is composed mainly of a one-way clutch 70, a flange sleeve 700, a lead groove 707 formed in the gear sleeve 67, and a ball 708. Has been.
 本実施形態では、ワンウェイクラッチ70として、周知の汎用のワンウェイクラッチが採用されている。ワンウェイクラッチ70は、円筒状に形成されており、スピンドル3のフランジ34の後側で、後側シャフト32に外装されている。ワンウェイクラッチ70は、スピンドル3に対して正方向には回転可能である一方、逆方向には回転不能に構成されている。フランジスリーブ700は、円筒状の周壁701と、周壁701の前端部から径方向外側に突出するフランジ703を有する。フランジ703の後面の外縁部には、ボール708が当接する環状の凹部が形成されている。周壁701は、ワンウェイクラッチ70の外周に固定されている。前後方向において、スピンドル3のフランジ34の後面と、フランジスリーブ700のフランジ703の前面の間には、スラストベアリング(詳細には、スラストボールベアリング)53が配置されている。スラストベアリング53は、スピンドル3に対するフランジスリーブ700の回転を許容しつつスラスト荷重を受ける。なお、フランジ34の後面およびフランジ703の前面には、夫々、断面U字状の環状の凹部が形成されている。スラストベアリング53の転動体としてのボールは、これらの凹部によって規定される環状の軌道内を転動可能である。 In the present embodiment, a known general-purpose one-way clutch is employed as the one-way clutch 70. The one-way clutch 70 is formed in a cylindrical shape, and is externally mounted on the rear shaft 32 on the rear side of the flange 34 of the spindle 3. The one-way clutch 70 is configured to be rotatable in the forward direction with respect to the spindle 3 but not rotatable in the reverse direction. The flange sleeve 700 includes a cylindrical peripheral wall 701 and a flange 703 that protrudes radially outward from the front end of the peripheral wall 701. An annular concave portion with which the ball 708 abuts is formed on the outer edge portion of the rear surface of the flange 703. The peripheral wall 701 is fixed to the outer periphery of the one-way clutch 70. A thrust bearing (specifically, a thrust ball bearing) 53 is disposed between the rear surface of the flange 34 of the spindle 3 and the front surface of the flange 703 of the flange sleeve 700 in the front-rear direction. The thrust bearing 53 receives a thrust load while allowing the flange sleeve 700 to rotate with respect to the spindle 3. An annular recess having a U-shaped cross section is formed on the rear surface of the flange 34 and the front surface of the flange 703, respectively. A ball as a rolling element of the thrust bearing 53 can roll in an annular track defined by these recesses.
 リード溝707およびボール708は、フランジスリーブ700に対してギアスリーブ67が駆動軸A1周りに回転するのに伴って、ギアスリーブ67をスピンドル3に対して前後方向に相対的に移動させることで、ギアスリーブ67をリテーナ43およびローラ45に対して前後方向に相対移動させるように構成されている。上述のように、本実施形態では、リード溝707は、ギアスリーブ67の底壁671の前端面に形成されている。各リード溝707内には、スチール製のボール708が配置されている。 The lead groove 707 and the ball 708 move the gear sleeve 67 relative to the spindle 3 in the front-rear direction as the gear sleeve 67 rotates around the drive axis A1 with respect to the flange sleeve 700. The gear sleeve 67 is configured to move relative to the retainer 43 and the roller 45 in the front-rear direction. As described above, in the present embodiment, the lead groove 707 is formed on the front end surface of the bottom wall 671 of the gear sleeve 67. A steel ball 708 is disposed in each lead groove 707.
 また、上述のように、リテーナ43とギアスリーブ67(詳細にはベアリング48)の間に配置された付勢バネ49によって、ギアスリーブ67は常に前方に付勢されている。このため、図15および図16に示すように、ボール708、フランジスリーブ700、スラストベアリング53を介してスピンドル3も前方へ付勢され、常時には初期位置に保持されている。 Also, as described above, the gear sleeve 67 is always urged forward by the urging spring 49 disposed between the retainer 43 and the gear sleeve 67 (specifically, the bearing 48). Therefore, as shown in FIGS. 15 and 16, the spindle 3 is also urged forward through the ball 708, the flange sleeve 700, and the thrust bearing 53, and is always held at the initial position.
 このような構成により、スピンドル3およびフランジスリーブ700と、ギアスリーブ67との前後方向における相対的な位置関係は、リード溝707内のボール708の位置に応じて変化する。より詳細には、図15および図16に示すように、ボール708がリード溝707のうち最深部(つまり、正方向における上流側端部)に配置されている場合、前後方向におけるフランジ703とギアスリーブ67の距離は最小となる。つまり、ギアスリーブ67はスピンドル3に対して移動可能範囲内の最前方位置に配置される。スピンドル3が初期位置に配置された状態では、ギアスリーブ67は、前後方向においてリテーナ43およびローラ45から最も離間した最離間位置に配置される。 With such a configuration, the relative positional relationship between the spindle 3 and the flange sleeve 700 and the gear sleeve 67 in the front-rear direction changes according to the position of the ball 708 in the lead groove 707. More specifically, as shown in FIGS. 15 and 16, when the ball 708 is disposed at the deepest portion (that is, the upstream end portion in the positive direction) of the lead groove 707, the flange 703 and the gear in the front-rear direction are arranged. The distance of the sleeve 67 is minimized. That is, the gear sleeve 67 is disposed at the foremost position within the movable range with respect to the spindle 3. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 67 is disposed at the most separated position farthest from the retainer 43 and the roller 45 in the front-rear direction.
 このとき、付勢バネ49の付勢力によって、リード溝707内に配置されたボール708は、フランジ703の後面の外縁部に形成された環状の凹部に押し付けられて係合している。上述のように、ワンウェイクラッチ70およびフランジスリーブ700は、スピンドル3に対して正方向には回転可能である。このため、ギアスリーブ67が正方向に回転駆動された場合、フランジ703とリード溝707の最深部に保持されたボール708の間の摩擦力によって、フランジスリーブ700はギアスリーブ67と共に正方向に回転される。つまり、ギアスリーブ67が正方向に回転駆動された場合、ワンウェイクラッチ70は、フランジスリーブ700がギアスリーブ67と一体的に回転することを許容する。 At this time, the ball 708 disposed in the lead groove 707 is pressed against and engaged with an annular recess formed on the outer edge portion of the rear surface of the flange 703 by the biasing force of the biasing spring 49. As described above, the one-way clutch 70 and the flange sleeve 700 are rotatable in the forward direction with respect to the spindle 3. For this reason, when the gear sleeve 67 is driven to rotate in the forward direction, the flange sleeve 700 rotates in the forward direction together with the gear sleeve 67 by the frictional force between the flange 703 and the ball 708 held at the deepest portion of the lead groove 707. Is done. That is, when the gear sleeve 67 is rotationally driven in the forward direction, the one-way clutch 70 allows the flange sleeve 700 to rotate integrally with the gear sleeve 67.
 一方、上述のように、ワンウェイクラッチ70はスピンドル3に対して逆方向には回転不能である。このため、ギアスリーブ67が逆方向に回転駆動された場合、ワンウェイクラッチ70によって、フランジスリーブ700がスピンドル3に対して逆方向に回転することが禁止される。つまり、フランジスリーブ700がスピンドル3と一体化される。このため、ギアスリーブ67がフランジスリーブ700に対して逆方向に相対的に回転することになる。これに伴い、ボール708は、リード溝707の最深部から、最浅部(逆方向における上流側)へ相対的に移動する。ボール708はフランジ703の後面に当接しているため、ギアスリーブ67は、図18および図19に示すように、ボール708の相対的な移動に応じて、逆方向に回転しつつ、付勢バネ49の付勢力に抗してフランジ703から離間する方向に(スピンドル3に対して後方へ)、つまり、リテーナ43およびローラ45に近接する方向に移動することになる。ボール708が最浅部に配置されると、前後方向におけるフランジ703とギアスリーブ67の距離は最大となる。スピンドル3が初期位置に配置された状態では、ギアスリーブ67は、最離間位置に配置された場合よりもリテーナ43およびローラ45に近接した中間位置に配置される。つまり、ギアスリーブ67、リテーナ43、ローラ45の相対位置が、最離間位置から中間位置に切り替えられる。 On the other hand, as described above, the one-way clutch 70 cannot rotate in the reverse direction with respect to the spindle 3. Therefore, when the gear sleeve 67 is driven to rotate in the reverse direction, the one-way clutch 70 prohibits the flange sleeve 700 from rotating in the reverse direction with respect to the spindle 3. That is, the flange sleeve 700 is integrated with the spindle 3. For this reason, the gear sleeve 67 rotates relative to the flange sleeve 700 in the opposite direction. Accordingly, the ball 708 relatively moves from the deepest portion of the lead groove 707 to the shallowest portion (upstream side in the reverse direction). Since the ball 708 is in contact with the rear surface of the flange 703, the gear sleeve 67 rotates in the opposite direction in accordance with the relative movement of the ball 708 as shown in FIGS. In the direction away from the flange 703 against the urging force of 49 (rearward with respect to the spindle 3), that is, in the direction approaching the retainer 43 and the roller 45. When the ball 708 is disposed at the shallowest portion, the distance between the flange 703 and the gear sleeve 67 in the front-rear direction is maximized. In a state where the spindle 3 is disposed at the initial position, the gear sleeve 67 is disposed at an intermediate position closer to the retainer 43 and the roller 45 than when disposed at the most separated position. That is, the relative positions of the gear sleeve 67, the retainer 43, and the roller 45 are switched from the most separated position to the intermediate position.
 以上に説明したように、本実施形態のスクリュードライバ100においても、ネジ緩め作業に対応して、スピンドル3が初期位置にある状態でギアスリーブ67が逆方向へ回転駆動された場合、位置切替機構7が、ギアスリーブ67を、リテーナ43およびローラ45に対して近接する方向(後方)に移動させる。つまり、ネジ緩め作業時には、スピンドル3が後方へ押し込まれていなくても、ギアスリーブ67の逆方向への回転駆動に応じてギアスリーブ67とリテーナ43、およびギアスリーブ67とローラ45の前後方向の距離が短縮される。これにより、動力伝達機構6を伝達可能状態に移行させるために必要なスピンドル3の後方への移動量(押し込み量)を、ネジ締め作業時よりも小さくすることができる。 As described above, also in the screw driver 100 of this embodiment, when the gear sleeve 67 is driven to rotate in the reverse direction while the spindle 3 is in the initial position in response to the screw loosening operation, the position switching mechanism 7 moves the gear sleeve 67 in a direction (rearward) close to the retainer 43 and the roller 45. That is, during the screw loosening operation, even if the spindle 3 is not pushed backward, the gear sleeve 67 and the retainer 43 and the gear sleeve 67 and the roller 45 are moved in the front-rear direction according to the rotational drive of the gear sleeve 67 in the reverse direction. The distance is shortened. As a result, the amount of backward movement (pushing amount) of the spindle 3 required to shift the power transmission mechanism 6 to the transmittable state can be made smaller than that during the screw tightening operation.
 また、本実施形態でも、位置切替機構7は、ギアスリーブ67の逆方向への回転駆動に応じて駆動軸A1周りの回転運動を前後方向の直線運動に変換することで、ギアスリーブ67をスピンドル3に対して後方へ移動させる運動変換機構として構成されている。特に、本実施形態では、ギアスリーブ67に形成された螺旋状のリード溝707と、リード溝707内を転動するボール708の作用によって、ギアスリーブ67をスピンドル3に対して後方へ移動させる構成が採用されている。これにより、スムーズに動作する位置切替機構7が実現されている。更に、本実施形態では、位置切替機構7は、ギアスリーブ67が逆方向へ回転駆動された場合、ワンウェイクラッチ70が、フランジスリーブ700のスピンドル3に対する逆方向の相対的な回転を禁止する(フランジスリーブ700をスピンドル3と一体化させる)ことで、ギアスリーブ67をフランジスリーブ700に対して相対的に回転させ、これにより、ギアスリーブ67をスピンドル3に対して後方へ移動させる。このように、本実施形態では、ギアスリーブ67の逆方向への回転駆動に応じて速やかにギアスリーブ67を前後方向に移動させる合理的な構成が実現されている。 Also in the present embodiment, the position switching mechanism 7 converts the rotational movement around the drive axis A1 into the linear motion in the front-rear direction in accordance with the rotational drive of the gear sleeve 67 in the reverse direction, so that the gear sleeve 67 is moved to the spindle. 3 is configured as a motion conversion mechanism that moves backward with respect to 3. In particular, in this embodiment, the gear sleeve 67 is moved backward with respect to the spindle 3 by the action of the spiral lead groove 707 formed in the gear sleeve 67 and the ball 708 rolling in the lead groove 707. Is adopted. Thereby, the position switching mechanism 7 that operates smoothly is realized. Furthermore, in this embodiment, when the gear sleeve 67 is driven to rotate in the reverse direction, the position switching mechanism 7 prohibits the one-way clutch 70 from rotating in the reverse direction relative to the spindle 3 of the flange sleeve 700 (flange). By integrating the sleeve 700 with the spindle 3), the gear sleeve 67 is rotated relative to the flange sleeve 700, thereby moving the gear sleeve 67 backward with respect to the spindle 3. Thus, in the present embodiment, a rational configuration is realized in which the gear sleeve 67 is quickly moved in the front-rear direction in accordance with the rotational drive of the gear sleeve 67 in the reverse direction.
 [第3実施形態]
 以下、図20~図23を参照して、第3実施形態に係るスクリュードライバ110について説明する。なお、本実施形態のスクリュードライバ110は、第2実施形態のスクリュードライバ100(図15~図17参照)とは異なる動力伝達機構8を備えているが、動力伝達機構8以外の構成はスクリュードライバ100と実質的に同一である。よって、以下では、スクリュードライバ100と実質的に同一の構成については、同じ符号を付して説明を省略または簡略化し、主に異なる構成について説明する。
[Third Embodiment]
The screw driver 110 according to the third embodiment will be described below with reference to FIGS. The screw driver 110 of this embodiment includes a power transmission mechanism 8 different from the screw driver 100 (see FIGS. 15 to 17) of the second embodiment, but the configuration other than the power transmission mechanism 8 is a screw driver. 100 is substantially the same. Therefore, below, about the structure substantially the same as the screw driver 100, the same code | symbol is attached | subjected, description is abbreviate | omitted or simplified, and a mainly different structure is demonstrated.
 図20~図22に示すように、本実施形態の動力伝達機構8は、同軸状に配置されたテーパスリーブ41と、リテーナ83と、複数のローラ45と、ギアスリーブ87とを含む遊星機構を主体として構成されている。リテーナ83およびギアスリーブ87以外の動力伝達機構8の構成は、動力伝達機構6(図15~図17参照)の構成と実質的に同一である。 As shown in FIGS. 20 to 22, the power transmission mechanism 8 of the present embodiment includes a planetary mechanism including a tapered sleeve 41, a retainer 83, a plurality of rollers 45, and a gear sleeve 87 arranged coaxially. It is configured as a subject. The configuration of the power transmission mechanism 8 other than the retainer 83 and the gear sleeve 87 is substantially the same as the configuration of the power transmission mechanism 6 (see FIGS. 15 to 17).
 本実施形態のリテーナ83は、第2実施形態のリテーナ43(図15~図17参照)と同じく、遊星機構におけるキャリア部材に相当し、ローラ45を自転可能に保持するように構成されている。リテーナ83は、前端部の構成以外はリテーナ43と同様の構成を有する。より詳細には、リテーナ83は、中央部に貫通孔を有する略円筒状の底壁831と、底壁831の前端部から径方向外側に突出する環状のフランジ部832と、フランジ部832の周縁部の後面から後方へ突出する複数の保持アーム834とを有する。なお、底壁831および保持アーム834は、リテーナ43の底壁431および保持アーム434と実質的に同一の構成を有する。このような構成により、周方向に隣接する保持アーム45間に形成されるローラ45の保持空間の前端は、フランジ部832によって閉塞されている。本実施形態では、ワッシャ491(図15~図17参照)が省略される代わりに、フランジ部832の前面が、付勢バネ49の後方への付勢力を受けるバネ受け部として機能する。また、フランジ部832の後面がローラ45の前端に当接し、ローラ45の前方への移動を規制する規制面として機能する。 The retainer 83 of this embodiment is equivalent to the carrier member in the planetary mechanism, and is configured to hold the roller 45 so as to be able to rotate, like the retainer 43 (see FIGS. 15 to 17) of the second embodiment. The retainer 83 has the same configuration as the retainer 43 except for the configuration of the front end. More specifically, the retainer 83 includes a substantially cylindrical bottom wall 831 having a through hole in the center, an annular flange portion 832 that protrudes radially outward from the front end portion of the bottom wall 831, and a peripheral edge of the flange portion 832. And a plurality of holding arms 834 protruding rearward from the rear surface of the portion. The bottom wall 831 and the holding arm 834 have substantially the same configuration as the bottom wall 431 and the holding arm 434 of the retainer 43. With such a configuration, the front end of the holding space of the roller 45 formed between the holding arms 45 adjacent in the circumferential direction is closed by the flange portion 832. In this embodiment, instead of omitting the washer 491 (see FIGS. 15 to 17), the front surface of the flange portion 832 functions as a spring receiving portion that receives a biasing force to the rear of the biasing spring 49. Further, the rear surface of the flange portion 832 contacts the front end of the roller 45 and functions as a restricting surface that restricts the forward movement of the roller 45.
 リテーナ83は、リテーナ43と同じく、底壁831が前側に位置する向きで(後方に保持アーム834が突出するように)配置されている。また、リテーナ83は、径方向においてテーパスリーブ41に保持アーム834の一部が重なった状態で、スピンドル3に対して回転不能、且つ、前後方向に移動可能にスピンドル3に支持されている。また、各保持アーム834は、駆動軸A1に対してテーパスリーブ41のテーパ面411と同じ傾斜角をなすように、フランジ部832の周縁部の後面から後方へ突出している。 The retainer 83 is arranged in the direction in which the bottom wall 831 is located on the front side (so that the holding arm 834 protrudes rearward), like the retainer 43. The retainer 83 is supported by the spindle 3 so that it cannot rotate with respect to the spindle 3 and is movable in the front-rear direction in a state where a part of the holding arm 834 overlaps the tapered sleeve 41 in the radial direction. Further, each holding arm 834 protrudes rearward from the rear surface of the peripheral edge portion of the flange portion 832 so as to form the same inclination angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1.
 本実施形態のギアスリーブ87は、第2実施形態のギアスリーブ67(図15~図17参照)と概ね同一の構成を有する略カップ状の部材として構成されている。より詳細には、ギアスリーブ87は、中央部に貫通孔を有する略円形の底壁871と、底壁871に接続する筒状の周壁874とを有する。なお、底壁871は、ギアスリーブ67の底壁671と実質的に同一の構成を有する。周壁874の基本的な構成は、後述する連通孔878を有する点以外、ギアスリーブ67の周壁674と同一である。具体的には、周壁874の前端部内には、ベアリング48の外輪481が固定されている。また、ギアスリーブ87(詳細には周壁874)の外周には、ピニオンギア24に常に噛合するギア歯870が一体的に形成されている。 The gear sleeve 87 of the present embodiment is configured as a substantially cup-shaped member having substantially the same configuration as the gear sleeve 67 (see FIGS. 15 to 17) of the second embodiment. More specifically, the gear sleeve 87 has a substantially circular bottom wall 871 having a through-hole in the center and a cylindrical peripheral wall 874 connected to the bottom wall 871. The bottom wall 871 has substantially the same configuration as the bottom wall 671 of the gear sleeve 67. The basic configuration of the peripheral wall 874 is the same as that of the peripheral wall 674 of the gear sleeve 67 except that a communication hole 878 described later is provided. Specifically, an outer ring 481 of the bearing 48 is fixed in the front end portion of the peripheral wall 874. Further, gear teeth 870 that always mesh with the pinion gear 24 are integrally formed on the outer periphery of the gear sleeve 87 (specifically, the peripheral wall 874).
 図23に示すように、周壁874の内周面のうち、ベアリング48の後端よりも後側部分は、テーパ面875と、円柱面876とを含む。テーパ面875は、駆動軸A1に対してテーパスリーブ41のテーパ面411と同じ角度で傾斜する円錐面である。テーパ面875は、周壁874の内周面の後半部分を占めている。円柱面876は、テーパ面875の前端に接続し、駆動軸A1に沿って、概ね円柱状に延在する。 23, of the inner peripheral surface of the peripheral wall 874, the rear portion of the bearing 48 from the rear end includes a tapered surface 875 and a cylindrical surface 876. The tapered surface 875 is a conical surface inclined at the same angle as the tapered surface 411 of the tapered sleeve 41 with respect to the drive shaft A1. The tapered surface 875 occupies the latter half of the inner peripheral surface of the peripheral wall 874. The cylindrical surface 876 is connected to the front end of the tapered surface 875, and extends in a generally cylindrical shape along the drive axis A1.
 連通孔878は、径方向に周壁874を貫通する貫通孔であって、ギアスリーブ87の内側(内部空間)と外側とを連通させている。なお、本実施形態では、連通孔878は、周壁874の後端からベアリング48の後端までの間の領域R1(つまり、ギアスリーブ87の内部空間を規定する領域)のうち、テーパ面875に対応する領域R2とは異なる領域、つまり、円柱面876に対応する領域R3に設けられている。言い換えると、連通孔878は、径方向において通常はローラ45とは重ならない領域に配置されている。また、本実施形態では、4つの連通孔878が、周方向において等間隔で設けられている。 The communication hole 878 is a through hole that penetrates the peripheral wall 874 in the radial direction, and communicates the inside (internal space) and the outside of the gear sleeve 87. In the present embodiment, the communication hole 878 is formed on the tapered surface 875 in the region R1 between the rear end of the peripheral wall 874 and the rear end of the bearing 48 (that is, the region defining the internal space of the gear sleeve 87). It is provided in a region different from the corresponding region R2, that is, a region R3 corresponding to the cylindrical surface 876. In other words, the communication hole 878 is normally disposed in a region that does not overlap the roller 45 in the radial direction. In the present embodiment, four communication holes 878 are provided at equal intervals in the circumferential direction.
 図21および図22に示すように、本実施形態においても、ギアスリーブ87は、リテーナ83よりも前側で、スピンドル3に対して回転可能、且つ、前後方向に移動可能にスピンドル3に支持されている。また、ギアスリーブ87の内部空間には、テーパスリーブ41、リテーナ83およびローラ45の一部と、付勢バネ49とが配置されている。 As shown in FIGS. 21 and 22, also in this embodiment, the gear sleeve 87 is supported by the spindle 3 so as to be rotatable relative to the spindle 3 and movable in the front-rear direction on the front side of the retainer 83. Yes. Further, in the internal space of the gear sleeve 87, a part of the taper sleeve 41, the retainer 83 and the roller 45, and a biasing spring 49 are disposed.
 本実施形態では、付勢バネ49の小径側の端部(前端部)は、ベアリング48の内輪483に当接するワッシャ493に当接する一方、大径側の端部(後端部)は、リテーナ83のフランジ部832の前面に当接している。付勢バネ49は、常に、リテーナ83とギアスリーブ87とを互いに離れる方向、つまり、後方および前方に夫々付勢している。これにより、リテーナ83は、付勢バネ49の付勢力で、底壁831の後面がテーパスリーブ41の前端面に当接する位置で保持され、その前後方向への移動が規制される。また、ローラ45は、リテーナ83のフランジ部832の後面とベース143の前端面の間で保持され、その前後方向への移動が規制される。なお、第1実施形態で説明した通り、ここでいう「移動が規制されている」とは、移動が完全に禁止されていることを意味するものではなく、僅かな移動は許容されてよい。また、付勢バネ49の付勢力でギアスリーブ87が前方へ付勢されることで、スピンドル3も前方へ付勢され、初期位置に保持される。 In this embodiment, the end portion (front end portion) on the small diameter side of the biasing spring 49 contacts the washer 493 that contacts the inner ring 483 of the bearing 48, while the end portion (rear end portion) on the large diameter side is the retainer. 83 is in contact with the front surface of the flange portion 832. The urging spring 49 always urges the retainer 83 and the gear sleeve 87 in directions away from each other, that is, rearward and forward. Accordingly, the retainer 83 is held at a position where the rear surface of the bottom wall 831 comes into contact with the front end surface of the taper sleeve 41 by the biasing force of the biasing spring 49, and its movement in the front-rear direction is restricted. The roller 45 is held between the rear surface of the flange portion 832 of the retainer 83 and the front end surface of the base 143, and movement in the front-rear direction is restricted. Note that, as described in the first embodiment, “movement is restricted” here does not mean that movement is completely prohibited, and slight movement may be allowed. Further, when the gear sleeve 87 is urged forward by the urging force of the urging spring 49, the spindle 3 is also urged forward and held at the initial position.
 以上のように構成された動力伝達機構8の動作は、第1、第2実施形態の動力伝達機構4、6と実質的に同一である。具体的には、初期状態では、付勢バネ49の付勢力によって、スピンドル3は初期位置に配置され、ローラ45はテーパスリーブ41のテーパ面411およびギアスリーブ87のテーパ面875とは非摩擦接触状態にある。つまり、動力伝達機構8は遮断状態にある。その後、スピンドル3が付勢バネ49の付勢力に抗して後方へ押し込まれるのに伴って、ギアスリーブ87がテーパスリーブ41、リテーナ83およびローラ45に近接する。そして、リテーナ83に保持されたローラ45が、テーパ面411とテーパ面875の間に挟まれて摩擦接触状態とされる。これにより、動力伝達機構8が遮断状態から伝達可能状態に移行する。 The operation of the power transmission mechanism 8 configured as described above is substantially the same as that of the power transmission mechanisms 4 and 6 of the first and second embodiments. Specifically, in the initial state, the spindle 3 is disposed at the initial position by the biasing force of the biasing spring 49, and the roller 45 is in non-friction contact with the taper surface 411 of the taper sleeve 41 and the taper surface 875 of the gear sleeve 87. Is in a state. That is, the power transmission mechanism 8 is in a cut-off state. Thereafter, as the spindle 3 is pushed backward against the biasing force of the biasing spring 49, the gear sleeve 87 approaches the taper sleeve 41, the retainer 83 and the roller 45. Then, the roller 45 held by the retainer 83 is sandwiched between the taper surface 411 and the taper surface 875 and is brought into a frictional contact state. Thereby, the power transmission mechanism 8 shifts from the shut-off state to the transmittable state.
 以上に説明したように、上記第1~第3実施形態のスクリュードライバ1、100、110は、夫々、いわゆる遊星ローラ式の動力伝達機構4、6、8を備えている。動力伝達機構4、6、8では、遊星部材としてのローラ45は、スピンドル3の駆動軸A1に対する径方向(駆動軸A1に直交する方向)において、太陽部材としてのテーパスリーブ41のテーパ面411と、リング部材としてのギアスリーブ47、67、87のテーパ面475、675、875の間に少なくとも一部が配置されている。ギアスリーブ47、67、87は、テーパスリーブ41に対し、スピンドル3と一体的に前後方向に移動する。これに対し、ローラ45は、付勢バネ49(およびワッシャ491またはリテーナ83)によって、本体ハウジング11に対して前後方向に移動することが規制されている。よって、ギアスリーブ47、67、87とテーパスリーブ41の相対移動に伴ってローラ45が前後方向に移動してしまい、ローラ45とテーパ面411およびテーパ面475、675、875との摩擦接触が不安定になる可能性を低減することができる。なお、第3実施形態では、ワッシャ491ではなくリテーナ83を介してローラ45の前後方向の移動が規制されている。これにより、部品数を低減し、組立性を向上することができる。 As described above, the screw drivers 1, 100, and 110 of the first to third embodiments are provided with so-called planetary roller type power transmission mechanisms 4, 6, and 8, respectively. In the power transmission mechanisms 4, 6, and 8, the roller 45 as the planetary member has a taper surface 411 of the taper sleeve 41 as the sun member in the radial direction with respect to the drive shaft A <b> 1 of the spindle 3 (direction orthogonal to the drive shaft A <b> 1). At least a part is disposed between the tapered surfaces 475, 675, and 875 of the gear sleeves 47, 67, and 87 as ring members. The gear sleeves 47, 67, 87 move in the front-rear direction integrally with the spindle 3 with respect to the taper sleeve 41. On the other hand, the roller 45 is restricted from moving in the front-rear direction with respect to the main body housing 11 by the biasing spring 49 (and the washer 491 or the retainer 83). Accordingly, the roller 45 moves in the front-rear direction in accordance with the relative movement of the gear sleeves 47, 67, 87 and the taper sleeve 41, and frictional contact between the roller 45 and the taper surface 411 and the taper surfaces 475, 675, 875 is not achieved. The possibility of becoming stable can be reduced. In the third embodiment, the movement of the roller 45 in the front-rear direction is restricted not via the washer 491 but via the retainer 83. Thereby, the number of parts can be reduced and assemblability can be improved.
 また、上記第1~第3実施形態では、キャリア部材としてのリテーナ43、83は、スピンドル3に対して前後方向に移動可能にスピンドル3に保持されている。言い換えると、前後方向の移動に関して、リテーナ43、83はスピンドル3から独立している。リテーナ43、83は、テーパ面411とテーパ面475、675、875の間からローラ45が外れないように保持可能な位置に配置される必要がある。これに対し、上記実施形態では、スピンドル3の移動にかかわらず、リテーナ43、83を適切な位置に維持することが可能となる。これにより、リテーナ43、83がスピンドル3と一体的に前後方向に移動する構成に比べて、スピンドル3の前後方向の移動量に関する制約を減らすことができる。特に、ローラ45やテーパ面411、475、675、875が摩耗すると、安定した摩擦接触を確立するためには、テーパスリーブ41とギアスリーブ47、67、87が互いにより近接する位置まで(つまり、より後方へ)スピンドル3が押し込まれる必要が生じる。つまり、スピンドル3の前後方向の移動量を増加させる必要があるが、上記実施形態の動力伝達機構4、6、8によれば、かかるニーズにも適切に対応することができる。 In the first to third embodiments, the retainers 43 and 83 as carrier members are held on the spindle 3 so as to be movable in the front-rear direction with respect to the spindle 3. In other words, the retainers 43 and 83 are independent from the spindle 3 with respect to the movement in the front-rear direction. The retainers 43 and 83 need to be disposed at positions where the rollers 45 can be held so that the rollers 45 do not come off between the tapered surface 411 and the tapered surfaces 475 675 875. On the other hand, in the above embodiment, the retainers 43 and 83 can be maintained at appropriate positions regardless of the movement of the spindle 3. Thereby, compared with the configuration in which the retainers 43 and 83 move integrally with the spindle 3 in the front-rear direction, it is possible to reduce restrictions on the amount of movement of the spindle 3 in the front-rear direction. In particular, when the roller 45 and the tapered surfaces 411, 475, 675, and 875 are worn, in order to establish stable frictional contact, the taper sleeve 41 and the gear sleeves 47, 67, and 87 are moved closer to each other (that is, It is necessary to push in the spindle 3 (to the rear). That is, it is necessary to increase the amount of movement of the spindle 3 in the front-rear direction. However, according to the power transmission mechanisms 4, 6, and 8 of the above-described embodiment, it is possible to appropriately meet such needs.
 更に、上記第1~第3実施形態では、リテーナ43、83は、スピンドル3に対して駆動軸A1周りに回転不能に保持され、ローラ45を介して伝達された動力によって、スピンドル3と一体的に回転するように構成されている。つまり、上記実施形態では、リテーナ43、83を出力部材とする合理的な遊星ローラ式の動力伝達機構4、6、8が実現されている。 Further, in the first to third embodiments, the retainers 43 and 83 are held so as not to rotate around the drive axis A 1 with respect to the spindle 3 and are integrated with the spindle 3 by the power transmitted via the roller 45. It is comprised so that it may rotate. That is, in the said embodiment, the rational planetary-roller type power transmission mechanism 4,6,8 which uses the retainers 43 and 83 as an output member is implement | achieved.
 また、上記第1~第3実施形態では、付勢バネ49は、ローラ45に加え、リテーナ43、83が本体ハウジング11に対して前後方向に移動することも規制している。これにより、ローラ45とリテーナ43、83との適切な位置関係をより確実に維持することができる。更に、上記実施形態では、付勢バネ49は、スピンドル3とリテーナ43、83とを、互いから離間するように前方および後方へ夫々付勢している。そして、スピンドル3は、常時には、付勢バネ49の付勢力によって、最前方位置(つまり、初期位置)に保持される。このような構成により、リテーナ43、83の移動を規制しつつ、スピンドル3の押込みが解除された場合、スピンドル3を初期位置に復帰させることができる。 In the first to third embodiments, the urging spring 49 also restricts the retainers 43 and 83 from moving in the front-rear direction with respect to the main body housing 11 in addition to the roller 45. Thereby, the appropriate positional relationship between the roller 45 and the retainers 43 and 83 can be more reliably maintained. Further, in the above-described embodiment, the biasing spring 49 biases the spindle 3 and the retainers 43 and 83 forward and backward so as to be separated from each other. The spindle 3 is normally held at the foremost position (that is, the initial position) by the biasing force of the biasing spring 49. With such a configuration, when the push-in of the spindle 3 is released while restricting the movement of the retainers 43 and 83, the spindle 3 can be returned to the initial position.
 また、上記第1~第3実施形態では、ギアスリーブ47、67、87は、スピンドル3と一体的に前後方向に移動可能、且つ、駆動軸A1周りに回転可能にスピンドル3に支持されている。付勢バネ49は、前後方向においてリテーナ43、83とギアスリーブ47、67、87(より詳細には、ギアスリーブ47、67、87内に配置されたベアリング48)の間に配置されているが、ギアスリーブ47、67、87側の端部は、ギアスリーブ47、67、87の回転から遮断されたワッシャ493によって受けられている。よって、付勢バネ49がギアスリーブ47、67、87と共に回転してしまうこと(いわゆる共回り)や、付勢バネ49とギアスリーブ47、67、87の摺動部分が発熱したりすることを防止可能となる。 In the first to third embodiments, the gear sleeves 47, 67, 87 are supported by the spindle 3 so as to be movable in the front-rear direction integrally with the spindle 3 and rotatable about the drive shaft A1. . The biasing spring 49 is disposed between the retainers 43 and 83 and the gear sleeves 47, 67, and 87 (more specifically, the bearing 48 disposed in the gear sleeves 47, 67, and 87) in the front-rear direction. The end portions of the gear sleeves 47, 67, and 87 are received by washers 493 that are blocked from the rotation of the gear sleeves 47, 67, and 87. Therefore, the biasing spring 49 rotates together with the gear sleeves 47, 67, 87 (so-called co-rotation), and the sliding portion between the biasing spring 49 and the gear sleeves 47, 67, 87 generates heat. It becomes possible to prevent.
 また、上記第1~第3実施形態では、付勢バネ49は、ギアスリーブ47、67、87とリテーナ43、83とを、互いから離間するように後方および前方へ付勢している。言い換えると、付勢バネ49は、動力伝達機構4、6、8における駆動側部材としてのギアスリーブ47、67、87と、被動側部材としてのリテーナ43、83とを、伝達を遮断する方向に付勢する機能も有する。このように、付勢バネ49を利用することで、部品点数を増やすことなく、リテーナ43、83の前後方向の移動規制と、動力伝達の遮断という複数の機能を実現することができる。 In the first to third embodiments, the biasing springs 49 bias the gear sleeves 47, 67, 87 and the retainers 43, 83 backward and forward so as to be separated from each other. In other words, the urging spring 49 is configured to interrupt transmission of the gear sleeves 47, 67, 87 as drive side members and the retainers 43, 83 as driven side members in the power transmission mechanisms 4, 6, and 8. It also has the function of energizing. As described above, by using the biasing spring 49, it is possible to realize a plurality of functions of restricting movement of the retainers 43 and 83 in the front-rear direction and blocking power transmission without increasing the number of parts.
 また、上記第3実施形態では、ギアスリーブ87の周壁874には、ギアスリーブ87の内側と外側を連通させる連通孔878が設けられている。このため、ギアスリーブ87の回転に伴う遠心力により、連通孔878を介した空気の流れを生じさせることができる。これにより、局所的な温度上昇の抑制や、前部ハウジング13内に配された潤滑剤(例えばグリス)のより円滑な循環を実現することができる。その結果、ローラ45やテーパ面411、475、675、875の摩耗を効果的に低減し、耐久性を向上することができる。また、摩耗粉が生じた場合であっても、空気の流れとともに連通孔878を通じてギアスリーブ87の外部に効果的に排出することができるため、ベアリング48の保護にもつながる。 In the third embodiment, the peripheral wall 874 of the gear sleeve 87 is provided with a communication hole 878 that allows communication between the inside and the outside of the gear sleeve 87. For this reason, the flow of air through the communication hole 878 can be generated by the centrifugal force accompanying the rotation of the gear sleeve 87. Thereby, suppression of a local temperature rise and smoother circulation of the lubricant (for example, grease) arranged in the front housing 13 can be realized. As a result, it is possible to effectively reduce wear of the roller 45 and the tapered surfaces 411, 475, 675, and 875 and improve durability. Further, even when wear powder is generated, it can be effectively discharged to the outside of the gear sleeve 87 through the communication hole 878 together with the air flow, which leads to protection of the bearing 48.
 上記実施形態は単なる例示であり、本発明に係る作業工具は、例示されたスクリュードライバ1、100、110の構成に限定されるものではない。例えば、下記に例示される変更を加えることができる。なお、これらの変更は、これらのうちいずれか1つのみ、あるいは複数が、独立して、または実施形態に示すスクリュードライバ1、100、110、あるいは各請求項に記載された発明と組み合わされて採用されうる。 The above embodiment is merely an example, and the work tool according to the present invention is not limited to the configuration of the illustrated screwdrivers 1, 100, and 110. For example, the changes exemplified below can be added. These changes may be made by any one of them or a plurality of them independently or in combination with the screw driver 1, 100, 110 shown in the embodiment or the invention described in each claim. It can be adopted.
 上記実施形態では、ネジ締め工具としてのスクリュードライバ1、100、110を例示したが、本発明は、先端工具を回転駆動するように構成されたその他の作業工具にも適用可能である。例えば、ドリルビットを回転駆動することで穿孔作業を行う穿孔工具(例えば、電動ドリル)や、研摩材(サンドペーパ等)を回転駆動することで研磨作業を行う研磨工具(例えば、電動サンダ)等にも適用可能である。 In the above embodiment, the screw drivers 1, 100, and 110 are illustrated as the screw tightening tools, but the present invention is also applicable to other work tools configured to rotationally drive the tip tools. For example, a drilling tool (for example, an electric drill) that performs a drilling operation by rotating a drill bit, or a polishing tool (for example, an electric sander) that performs polishing by rotating an abrasive material (sandpaper or the like). Is also applicable.
 遊星ローラ式の摩擦クラッチ機構としての動力伝達機構4、6、8において、太陽部材、リング部材、キャリア部材、および遊星ローラの構成および配置は、適宜変更されてよい。例えば、動力伝達機構4、6、8は、上記実施形態のように、太陽部材が本体ハウジング11に対して回転不能に固定された、いわゆるソーラ型の構成を有する必要はなく、リング部材が固定されたいわゆるプラネタリ型、あるいはキャリア部材が固定されたいわゆるスター型の構成を有していてもよい。また、上記実施形態は、太陽部材としてのテーパスリーブ41に対して、リング部材としてのギアスリーブ47、67、87が前後方向に移動する構成例であるが、太陽部材およびリング部材が、駆動軸A1に対して傾斜した互いに平行なテーパ面を有し、前後方向に相対移動可能であれば、どちらがスピンドル3と一体的に移動してもよい。また、太陽部材およびリング部材のうち、スピンドル3と一体的に移動する一方は、出力部材としてスピンドル3と一体的に形成されていてもよい。 In the power transmission mechanisms 4, 6, and 8 as planetary roller friction clutch mechanisms, the configuration and arrangement of the sun member, ring member, carrier member, and planetary roller may be changed as appropriate. For example, the power transmission mechanisms 4, 6, and 8 do not need to have a so-called solar-type configuration in which the solar member is fixed to the main body housing 11 so as not to rotate as in the above embodiment, and the ring member is fixed. It may have a so-called planetary type or a so-called star type structure in which a carrier member is fixed. Moreover, although the said embodiment is a structural example to which the gear sleeves 47, 67, 87 as a ring member move to the front-back direction with respect to the taper sleeve 41 as a sun member, a sun member and a ring member are drive shafts. Any one of them may move integrally with the spindle 3 as long as it has tapered surfaces parallel to each other inclined with respect to A1 and can move relative to each other in the front-rear direction. One of the sun member and the ring member that moves integrally with the spindle 3 may be integrally formed with the spindle 3 as an output member.
 また、上記実施形態では、付勢バネ49は、遊星部材としてのローラ45の前後方向の移動を規制する機能に加え、キャリア部材としてのリテーナ43の前後方向の移動を規制する機能、スピンドル3を初期位置に向けて付勢する機能、および動力伝達機構4、6、8における駆動側部材としてのギアスリーブ47、67、87と被動側部材としてのリテーナ43、83を、動力伝達を遮断する方向に付勢する機能を有する。つまり、単一の付勢バネ49が、複数の機能を発揮している。しかしながら、これらの機能は、夫々に別個の部材(例えば、バネ部材)によって実現されてもよい。 Further, in the above embodiment, the biasing spring 49 has the function of regulating the longitudinal movement of the retainer 43 as the carrier member, in addition to the function of regulating the movement of the roller 45 as the planetary member in the longitudinal direction. The function of urging toward the initial position and the direction in which power transmission is interrupted between the gear sleeves 47, 67, 87 as drive side members and the retainers 43, 83 as driven side members in the power transmission mechanisms 4, 6, 8 It has a function to energize. That is, the single biasing spring 49 performs a plurality of functions. However, these functions may be realized by separate members (for example, spring members).
 連通孔878が設けられる場合には、その数、配置位置、形状、大きさ等は、第3実施形態の例示に限られるものではなく、適宜変更されてよい。例えば、連通孔878は、周壁874の後端からベアリング48の後端までの間の領域R1(図23参照)の何れかの位置に、少なくとも1つが設けられればよい。また、連通孔878は、径方向に対して斜めに延在してもよいし、直線状ではなく湾曲状に延在してもよい。 When the communication holes 878 are provided, the number, the arrangement position, the shape, the size, and the like are not limited to the example of the third embodiment, and may be changed as appropriate. For example, at least one communication hole 878 may be provided at any position in the region R1 (see FIG. 23) between the rear end of the peripheral wall 874 and the rear end of the bearing 48. Further, the communication hole 878 may extend obliquely with respect to the radial direction, or may extend in a curved shape instead of a linear shape.
 動力伝達機構4、6、8のほか、本体ハウジング11、モータ2、スピンドル3、および位置切替機構5、7の構成も適宜変更されうる。例えば、モータ2として、充電式のバッテリを電源とする直流ブラシレスモータが採用されてもよい。位置切替機構5、7は省略されてもよい。 In addition to the power transmission mechanisms 4, 6, and 8, the configurations of the main body housing 11, the motor 2, the spindle 3, and the position switching mechanisms 5 and 7 can be changed as appropriate. For example, a DC brushless motor using a rechargeable battery as a power source may be employed as the motor 2. The position switching mechanisms 5 and 7 may be omitted.
 上記実施形態および変形例の各構成要素と本発明の各構成要素の対応関係を以下に示す。スクリュードライバ1、100、110は、本発明の「作業工具」の一例である。ドライバビット9は、本発明の「先端工具」の一例である。本体ハウジング11は、本発明の「ハウジング」の一例である。スピンドル3は、本発明の「スピンドル」の一例である。駆動軸A1は、本発明の「駆動軸」の一例である。モータ2は、本発明の「モータ」の一例である。動力伝達機構4、6、8は、本発明の「動力伝達機構」の一例である。テーパスリーブ41は、本発明の「太陽部材」の一例である。ギアスリーブ47、67、87は、本発明の「リング部材」の一例である。リテーナ43、83は、本発明の「キャリア部材」の一例である。ローラ45は本発明の「遊星ローラ」の一例である。テーパ面411は、本発明の「第1テーパ面」の一例である。テーパ面475、675、875は本発明の「第2テーパ面」の一例である。付勢バネ49は、本発明の「規制部材」および「バネ部材」の一例である。ワッシャ493は、本発明の「受け部材」の一例である。連通孔878は、本発明の「連通孔」の一例である。領域R2は、本発明の「第2テーパ面に対応する領域」の一例である。領域R3は、本発明の「第2テーパ面に対応する領域とは異なる領域」の一例である。 Correspondence between each component of the above embodiment and the modification and each component of the present invention is shown below. The screw drivers 1, 100, and 110 are examples of the “work tool” in the present invention. The driver bit 9 is an example of the “tip tool” in the present invention. The main body housing 11 is an example of the “housing” in the present invention. The spindle 3 is an example of the “spindle” in the present invention. The drive shaft A1 is an example of the “drive shaft” in the present invention. The motor 2 is an example of the “motor” in the present invention. The power transmission mechanisms 4, 6, and 8 are examples of the “power transmission mechanism” of the present invention. The taper sleeve 41 is an example of the “solar member” in the present invention. The gear sleeves 47, 67, 87 are examples of the “ring member” of the present invention. The retainers 43 and 83 are an example of the “carrier member” in the present invention. The roller 45 is an example of the “planetary roller” in the present invention. The tapered surface 411 is an example of the “first tapered surface” in the present invention. The tapered surfaces 475, 675, and 875 are examples of the “second tapered surface” in the present invention. The biasing spring 49 is an example of the “regulating member” and “spring member” in the present invention. The washer 493 is an example of the “receiving member” in the present invention. The communication hole 878 is an example of the “communication hole” in the present invention. The region R2 is an example of the “region corresponding to the second tapered surface” in the present invention. The region R3 is an example of the “region different from the region corresponding to the second tapered surface” in the present invention.
 更に、本発明および上記実施形態の趣旨に鑑み、以下の構成(態様)が構築される。以下の構成のうちいずれか1つのみ、あるいは複数が、実施形態のスクリュードライバ1、100、110およびその変形例、あるいは各請求項に記載された発明と組み合わされて採用されうる。
[態様1]
 前記リング部材は、前記スピンドルを前記駆動軸周りの周方向に取り巻くとともに、前記第2テーパ面を含む内周面を有する筒状の周壁を備え、
 前記キャリア部材の少なくとも一部は、前記スピンドルと前記内周面によって規定される前記リング部材の内部空間に配置されており、
 前記バネ部材は、前記キャリア部材の前側で前記内部空間に配置されていてもよい。
 本態様によれば、リング部材の内部空間を有効活用してバネ部材を配置することができ、動力伝達機構をコンパクトに保つことができる。
[態様2]
 態様1において、
 前記リング部材は、前記バネ部材の前側に配置されたストッパ部を有し、
 前記バネ部材は、前記前後方向において前記キャリア部材と前記ストッパ部との間に介在していてもよい。
[態様3]
 態様2において、
 前記ストッパ部は、前記スピンドルに回転可能に支持された内輪と、前記内周面に固定された外輪とを有するベアリングであってもよい。
 態様2および3によれば、バネ部材を前後方向においてキャリア部材とリング部材の間に合理的に介在させることができる。なお、ベアリング48は、態様1および2における「ストッパ部」および「ベアリング」の一例である。
[態様4]
 前記リング部材は、前記駆動軸を中心とする筒状の周壁部を有し、
 前記連通孔は、前記周壁部を貫通する貫通孔であってもよい。
[態様5]
 前記リング部材の内周面は、前記第2テーパ面と、前記駆動軸に沿った円柱面とを含み、
 前記連通孔は、前記リング部材のうち、前記円柱面に対応する領域に設けられていてもよい。
Furthermore, in view of the gist of the present invention and the above embodiment, the following configuration (mode) is constructed. Only one or a plurality of the following configurations may be employed in combination with the screwdrivers 1, 100, 110 according to the embodiments and modifications thereof, or the invention described in each claim.
[Aspect 1]
The ring member includes a cylindrical peripheral wall that surrounds the spindle in a circumferential direction around the drive shaft and has an inner peripheral surface including the second tapered surface,
At least a part of the carrier member is disposed in an internal space of the ring member defined by the spindle and the inner peripheral surface,
The spring member may be disposed in the internal space on the front side of the carrier member.
According to this aspect, the spring member can be arranged by effectively utilizing the internal space of the ring member, and the power transmission mechanism can be kept compact.
[Aspect 2]
In aspect 1,
The ring member has a stopper portion disposed on the front side of the spring member,
The spring member may be interposed between the carrier member and the stopper portion in the front-rear direction.
[Aspect 3]
In aspect 2,
The stopper portion may be a bearing having an inner ring rotatably supported by the spindle and an outer ring fixed to the inner peripheral surface.
According to the aspects 2 and 3, the spring member can be rationally interposed between the carrier member and the ring member in the front-rear direction. The bearing 48 is an example of the “stopper portion” and “bearing” in the first and second aspects.
[Aspect 4]
The ring member has a cylindrical peripheral wall portion around the drive shaft,
The communication hole may be a through-hole penetrating the peripheral wall portion.
[Aspect 5]
The inner peripheral surface of the ring member includes the second tapered surface and a cylindrical surface along the drive shaft,
The communication hole may be provided in a region of the ring member corresponding to the cylindrical surface.
 更に、上記実施形態の趣旨に鑑み、より合理的な構成の動力伝達機構を備えたネジ締め工具を提供することを目的として、以下の態様6~19が構築される。態様6~19のうちいずれか1つあるいは複数が、各請求項に記載された発明とは独立して採用されてもよいし、実施形態のスクリュードライバ1、100、110およびその変形例、あるいは各請求項に記載された発明と組み合わされて採用されてもよい。 Furthermore, in view of the gist of the above embodiment, the following modes 6 to 19 are constructed for the purpose of providing a screw tightening tool including a power transmission mechanism having a more rational configuration. Any one or more of the aspects 6 to 19 may be employed independently of the invention described in each claim, or the screwdrivers 1, 100, 110 of the embodiment and their modifications, or You may employ | adopt in combination with the invention described in each claim.
[態様6]
 ネジ締め工具であって、
 前記ネジ締め工具の前後方向に延在する所定の駆動軸に沿って前後方向に移動可能、且つ、前記駆動軸周りに回転可能に支持され、先端工具を着脱可能に構成された前端部を有するスピンドルと、
 モータと、
 前記モータから伝達された動力によって、前記先端工具がネジを締める方向に対応する第1方向、または、前記第1方向とは逆方向であって前記先端工具が前記ネジを緩める方向に対応する第2方向に回転駆動される駆動部材と、前記第1方向または前記第2方向に回転する前記駆動部材から伝達された前記動力によって、前記スピンドルと一体的に前記駆動軸周りに回転するように構成された被動部材とを含む動力伝達機構とを備え、
 前記駆動部材および前記被動部材は、前記前後方向に相対移動可能に配置されており、前記スピンドルの後方への移動に応じて前記前後方向に互いに近接する方向に移動し、前記駆動部材から前記被動部材への動力伝達が不能な遮断状態から、前記駆動部材から前記被動部材への動力伝達が可能な伝達可能状態へと移行するように構成されており、
 前記ネジ締め工具は、前記スピンドルが最前方位置にある状態で前記駆動部材が前記第2方向へ回転駆動された場合、前記駆動部材および前記被動部材のうち一方を、前記前後方向において前記駆動部材および前記被動部材の他方に対して近接する方向に移動させるように構成された位置切替機構を備えたことを特徴とするネジ締め工具。
[Aspect 6]
A screw tightening tool,
The screw tightening tool has a front end portion that is movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction, is rotatably supported around the drive shaft, and is configured to be detachable from the tip tool. A spindle,
A motor,
A first direction corresponding to a direction in which the tip tool tightens the screw or a direction opposite to the first direction by the power transmitted from the motor, or a direction corresponding to a direction in which the tip tool loosens the screw. A drive member that is rotationally driven in two directions, and the power transmitted from the drive member that rotates in the first direction or the second direction is configured to rotate about the drive shaft integrally with the spindle. A power transmission mechanism including a driven member,
The driving member and the driven member are disposed so as to be relatively movable in the front-rear direction, move in a direction close to each other in the front-rear direction in accordance with the backward movement of the spindle, and are moved from the driving member to the driven member. It is configured to shift from a cut-off state in which power transmission to the member is impossible to a transmittable state in which power transmission from the driving member to the driven member is possible,
When the drive member is rotationally driven in the second direction with the spindle in the foremost position, the screw tightening tool moves one of the drive member and the driven member in the front-rear direction. And a screw tightening tool comprising a position switching mechanism configured to move in a direction approaching the other of the driven members.
 本態様のネジ締め工具の動力伝達機構では、駆動部材がネジ締め作業に対応して第1方向に回転駆動される場合、ネジ緩め作業に対応して第2方向に回転駆動される場合の何れにおいても、駆動部材から被動部材へと回転力が伝達される。つまり、ネジ締め作業時とネジ緩め作業時で、同一経路を介して動力の伝達が行われる。そして、スピンドルが最前方位置にある状態でネジ緩め作業に対応して駆動部材が第2方向へ回転駆動された場合、位置切替機構が、駆動部材および被動部材のうち一方を、前後方向において、駆動部材および被動部材の他方に対して近接する方向に移動させる。つまり、ネジ緩め作業時には、スピンドルが後方へ押し込まれていなくても、駆動部材の第2方向への回転駆動に応じて駆動部材と被動部材の前後方向の距離が短縮される。これにより、動力伝達機構を伝達可能状態に移行させるために必要なスピンドルの後方への移動量(押し込み量)を、ネジ締め作業時よりも小さくすることができる。このように、本態様によれば、ネジ締め作業時とネジ緩め作業時で同一経路による動力伝達が可能、且つ、ネジ締め作業時よりも小さい押し込み量でネジ緩め作業を遂行可能な合理的な動力伝達機構を実現することができる。 In the power transmission mechanism for the screw tightening tool according to this aspect, when the drive member is rotationally driven in the first direction corresponding to the screw tightening operation, the drive member is rotated in the second direction corresponding to the screw loosening operation. In this case, the rotational force is transmitted from the driving member to the driven member. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation. When the drive member is driven to rotate in the second direction in response to the screw loosening operation with the spindle at the foremost position, the position switching mechanism moves one of the drive member and the driven member in the front-rear direction. It moves in the direction approaching the other of the driving member and the driven member. That is, during the screw loosening operation, even if the spindle is not pushed backward, the distance in the front-rear direction between the driving member and the driven member is shortened according to the rotational driving of the driving member in the second direction. As a result, the rearward movement amount (pushing amount) of the spindle required to shift the power transmission mechanism to the transmittable state can be made smaller than that during the screw tightening operation. Thus, according to this aspect, it is possible to transmit power through the same path during screw tightening work and screw loosening work, and it is possible to perform screw loosening work with a smaller push amount than during screw tightening work. A power transmission mechanism can be realized.
 なお、上記実施形態のスクリュードライバ1、100、110の各々は、本態様の「ネジ締め工具」の一例である。スピンドル3は、本態様の「スピンドル」の一例である。駆動軸A1は、本態様の「駆動軸」の一例である。モータ2は、本態様の「モータ」の一例である。動力伝達機構4、6、8の各々は、本態様の「動力伝達機構」の一例である。ギアスリーブ47、67、87の各々は、本態様の「駆動部材」の一例である。リテーナ43、83およびローラ45全体は、本態様の「被動部材」の一例であり、リテーナ43、83およびローラ45の各々も、本態様の「被動部材」の一例である。位置切替機構5、7の各々は、本態様の「位置切替機構」の一例である。 Note that each of the screw drivers 1, 100, and 110 of the above embodiment is an example of the “screw tightening tool” of this aspect. The spindle 3 is an example of the “spindle” in this aspect. The drive shaft A1 is an example of the “drive shaft” in this aspect. The motor 2 is an example of the “motor” in this aspect. Each of the power transmission mechanisms 4, 6, and 8 is an example of the “power transmission mechanism” in this aspect. Each of the gear sleeves 47, 67, 87 is an example of the “drive member” in this aspect. The retainers 43 and 83 and the entire roller 45 are examples of the “driven member” in this aspect, and each of the retainers 43 and 83 and the roller 45 is also an example of the “driven member” in this aspect. Each of the position switching mechanisms 5 and 7 is an example of the “position switching mechanism” in this aspect.
 なお、動力伝達機構4、6、8として、遊星ローラ式の摩擦クラッチ機構に代えて、噛合い式のクラッチ機構や、その他の形式の摩擦クラッチ機構が採用されてもよい。例えば、単板式または多板式のディスククラッチ機構、または円錐クラッチ機構が採用されてもよい。また、遊星ローラ式の摩擦クラッチ機構としての動力伝達機構4、6、8において、太陽部材、リング部材、キャリア部材、および遊星ローラの構成および配置は、適宜変更されてよい。例えば、動力伝達機構4、6、8は、上記実施形態のように、太陽部材が本体ハウジング11に対して回転不能に固定された、いわゆるソーラ型の構成を有する必要はなく、リング部材が固定されたいわゆるプラネタリ型、あるいはキャリア部材が固定されたいわゆるスター型の構成を有していてもよい。動力伝達機構4、6の変更に応じて、モータ2の動力で駆動される駆動部材(入力部材)と、駆動部材から伝達された動力によってスピンドル3と一体的に回転する被動部材(出力部材)も変更されうる。更に、位置切替機構5、7は、スピンドル3が初期位置にある状態でギアスリーブ47が逆方向に回転駆動された場合、駆動部材および被動部材のうち一方を、前後方向において他方に対して近接する方向に移動させることが可能であればよく、どちらの部材をスピンドル3に対して移動させてもよい。 As the power transmission mechanisms 4, 6, and 8, a meshing clutch mechanism or other types of friction clutch mechanisms may be employed instead of the planetary roller friction clutch mechanism. For example, a single-plate or multi-plate disk clutch mechanism or a conical clutch mechanism may be employed. Further, in the power transmission mechanisms 4, 6, and 8 as planetary roller type friction clutch mechanisms, the configurations and arrangements of the sun member, ring member, carrier member, and planetary roller may be changed as appropriate. For example, the power transmission mechanisms 4, 6, and 8 do not need to have a so-called solar-type configuration in which the solar member is fixed to the main body housing 11 so as not to rotate as in the above embodiment, and the ring member is fixed. It may have a so-called planetary type or a so-called star type structure in which a carrier member is fixed. A drive member (input member) driven by the power of the motor 2 according to the change of the power transmission mechanisms 4 and 6 and a driven member (output member) that rotates integrally with the spindle 3 by the power transmitted from the drive member. Can also be changed. Further, when the gear sleeve 47 is rotationally driven in the reverse direction with the spindle 3 in the initial position, the position switching mechanisms 5 and 7 bring one of the driving member and the driven member close to the other in the front-rear direction. Any member may be used as long as it can be moved in the direction of movement, and either member may be moved with respect to the spindle 3.
[態様7]
 態様6に記載のネジ締め工具であって、
 前記位置切替機構は、前記駆動部材の前記第2方向への回転駆動に応じて前記駆動軸周りの回転運動を前記前後方向の直線運動に変換することで、前記駆動部材および前記被動部材のうち前記一方を移動させるように構成されていることを特徴とするネジ締め工具。
 本態様によれば、位置切替機構は、運動変換機構として構成される。本態様によれば、簡易な構成で駆動部材および被動部材のうち一方を移動させることが可能となる。
[Aspect 7]
The screw tightening tool according to aspect 6,
The position switching mechanism converts a rotational motion around the drive shaft into a linear motion in the front-rear direction according to a rotational drive of the drive member in the second direction, and thus among the drive member and the driven member. A screw tightening tool configured to move the one side.
According to this aspect, the position switching mechanism is configured as a motion conversion mechanism. According to this aspect, one of the driving member and the driven member can be moved with a simple configuration.
[態様8]
 態様7に記載のネジ締め工具であって、
 前記位置切替機構は、前記駆動軸周りに螺旋状に延在するリード溝と、前記リード溝に配置されたボールの作用によって、前記駆動部材および前記被動部材のうち前記一方を移動させるように構成されていることを特徴とするネジ締め工具。
 本態様によれば、転動するボールによってスムーズに動作する位置切替機構を実現することができる。リード溝507、707の各々は、本態様の「リード溝」の一例であり、ボール508、708の各々は、本態様の「ボール」の一例である。
[Aspect 8]
The screw tightening tool according to aspect 7,
The position switching mechanism is configured to move one of the drive member and the driven member by the action of a lead groove that spirally extends around the drive shaft and a ball disposed in the lead groove. Screw tightening tool characterized by being made.
According to this aspect, it is possible to realize a position switching mechanism that operates smoothly by a rolling ball. Each of the lead grooves 507 and 707 is an example of the “lead groove” in this embodiment, and each of the balls 508 and 708 is an example of the “ball” in this embodiment.
 なお、駆動部材(上記実施形態のギアスリーブ47、67、87)の逆方向の回転運動に応じて回転運動を直線運動に変換する構成は、上記実施形態のリード溝507、707およびボール508、708に限られない。例えば、駆動軸A1周りの螺旋状の曲面として構成されたリード面や、ネジ溝およびネジ溝に螺合するネジ山の作用によって、駆動部材を移動させる構成が採用されてもよい。例えば、第1実施形態において、リードスリーブ500の前端面とスピンドル3のフランジ34の後端面のうち少なくとも一方に、駆動軸A1周りの螺旋状の曲面状のリード面が設けられていてもよい。第2実施形態においても同様の変更が可能である。リード溝507、707およびボール508、708の数や構成は、適宜変更されてもよい。また、第1実施形態のワンウェイクラッチ50は、ギアスリーブ47が逆方向に回転駆動された場合にのみ、リードスリーブ500をギアスリーブ47と一体的に回転させられればよく、その構成は適宜変更されてよい。同様に、第2実施形態のワンウェイクラッチ70は、ギアスリーブ67が逆方向に回転駆動された場合にのみ、フランジスリーブ700がギアスリーブ67と共回りするのを禁止できればよく、その構成は適宜変更されてよい。 In addition, the structure which converts rotational motion into linear motion according to the rotational motion of the reverse direction of a drive member (the gear sleeves 47, 67, 87 of the said embodiment) is the lead grooves 507 and 707 and the ball 508 of the said embodiment, It is not limited to 708. For example, a configuration may be employed in which the drive member is moved by the action of a lead surface configured as a spiral curved surface around the drive shaft A1 or a screw groove and a screw thread that is screwed into the screw groove. For example, in the first embodiment, at least one of the front end surface of the lead sleeve 500 and the rear end surface of the flange 34 of the spindle 3 may be provided with a spiral curved lead surface around the drive axis A1. Similar changes can be made in the second embodiment. The number and configuration of the lead grooves 507 and 707 and the balls 508 and 708 may be changed as appropriate. Further, the one-way clutch 50 of the first embodiment only needs to rotate the lead sleeve 500 integrally with the gear sleeve 47 only when the gear sleeve 47 is driven to rotate in the reverse direction, and the configuration thereof is changed as appropriate. It's okay. Similarly, the one-way clutch 70 of the second embodiment only needs to prohibit the flange sleeve 700 from co-rotating with the gear sleeve 67 only when the gear sleeve 67 is driven to rotate in the reverse direction, and the configuration is changed as appropriate. May be.
[態様9]
 態様7または8に記載のネジ締め工具であって、
 前記位置切替機構は、
  前記駆動軸周りに回転することで、前記駆動部材を、前記前後方向において前記被動部材に近接する方向に移動させるように構成された移動部材と、
  前記駆動部材が前記第2方向に回転駆動された場合にのみ、前記移動部材を前記駆動部材と一体的に前記駆動軸周りに回転させるように構成されたワンウェイクラッチとを含むことを特徴とするネジ締め工具。
 本態様によれば、駆動部材の第2方向への回転駆動に応じて速やかに移動部材を回転させ、駆動部材を移動させる合理的な構成を実現することができる。リードスリーブ500およびワンウェイクラッチ50は、夫々、本態様の「移動部材」および「ワンウェイクラッチ」の一例である。
[Aspect 9]
The screw tightening tool according to aspect 7 or 8,
The position switching mechanism is
A moving member configured to move around the drive shaft to move the drive member in a direction approaching the driven member in the front-rear direction;
And a one-way clutch configured to rotate the moving member integrally with the drive member around the drive shaft only when the drive member is rotationally driven in the second direction. Screw tightening tool.
According to this aspect, it is possible to realize a rational configuration in which the moving member is quickly rotated in accordance with the rotational driving of the driving member in the second direction, and the driving member is moved. The lead sleeve 500 and the one-way clutch 50 are examples of the “moving member” and the “one-way clutch” of the present embodiment, respectively.
 [態様10]
 態様7または8に記載のネジ締め工具であって、
 前記位置切替機構は、
  前記駆動軸周りに回転可能に配置された回転可能部材と、
  前記駆動部材が前記第1方向に回転駆動された場合、前記回転可能部材が前記駆動部材と一体的に前記駆動軸周りに前記スピンドルに対して相対的に回転するのを許容する一方、前記駆動部材が前記第2方向に回転駆動された場合、前記回転可能部材が前記駆動軸周りに前記スピンドルに対して相対的に回転するのを禁止するように構成されたワンウェイクラッチとを含み、
 前記位置切替機構は、前記ワンウェイクラッチによって前記スピンドルに対する相対的な回転が禁止された前記回転可能部材に対して前記第2方向に相対的に回転する前記駆動部材を、前記被動部材に近接する方向に移動させるように構成されていることを特徴とするネジ締め工具。
 本態様によれば、駆動部材の第2方向への回転駆動に応じて速やかに駆動部材を前後方向に直線運動させる合理的な構成を実現することができる。フランジスリーブ700およびワンウェイクラッチ70は、夫々、本態様の「回転可能部材」および「ワンウェイクラッチ」の一例である。
[Aspect 10]
The screw tightening tool according to aspect 7 or 8,
The position switching mechanism is
A rotatable member rotatably arranged around the drive shaft;
When the drive member is rotationally driven in the first direction, the rotatable member is allowed to rotate relative to the spindle around the drive shaft integrally with the drive member, while the drive A one-way clutch configured to inhibit the rotatable member from rotating relative to the spindle about the drive shaft when the member is rotationally driven in the second direction;
The position switching mechanism is configured so that the driving member that rotates relative to the rotatable member, which is prohibited from rotating relative to the spindle by the one-way clutch, moves closer to the driven member. A screw tightening tool configured to be moved to a screw.
According to this aspect, it is possible to realize a rational configuration in which the drive member is quickly linearly moved in the front-rear direction according to the rotational drive of the drive member in the second direction. The flange sleeve 700 and the one-way clutch 70 are examples of the “rotary member” and the “one-way clutch” of the present embodiment, respectively.
[態様11]
 ネジ締め工具であって、
 前記ネジ締め工具の前後方向に延在する所定の駆動軸に沿って前後方向に移動可能、且つ、前記駆動軸周りに回転可能に支持され、先端工具を着脱可能に構成された前端部を有するスピンドルと、
 モータと、
 前記モータから伝達された動力によって、前記先端工具がネジを締める方向に対応する第1方向、または、前記第1方向とは逆方向であって前記先端工具が前記ネジを緩める方向に対応する第2方向に回転駆動される駆動部材と、前記第1方向または前記第2方向に回転する前記駆動部材から伝達された前記動力によって、前記スピンドルと一体的に前記駆動軸周りに回転するように構成された被動部材とを含む動力伝達機構とを備え、
 前記駆動部材および前記被動部材は、前記前後方向に相対移動可能に配置されており、前記スピンドルの後方への移動に応じて前記前後方向に互いに近接する方向に移動し、前記駆動部材から前記被動部材への動力伝達が不能な遮断状態から、前記駆動部材から前記被動部材への動力伝達が可能な伝達可能状態へと移行するように構成されており、
 前記動力伝達機構は、前記駆動部材が前記第1方向に回転駆動された場合の前記遮断状態から前記伝達可能状態へ至るまでの前記スピンドルの後方への移動量よりも、前記駆動部材が前記第2方向に回転駆動された場合の前記移動量の方が小さくなるように構成されていることを特徴とするネジ締め工具。
[Aspect 11]
A screw tightening tool,
The screw tightening tool has a front end portion that is movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction, is rotatably supported around the drive shaft, and is configured to be detachable from the tip tool. A spindle,
A motor,
A first direction corresponding to a direction in which the tip tool tightens the screw or a direction opposite to the first direction by the power transmitted from the motor, or a direction corresponding to a direction in which the tip tool loosens the screw. A drive member that is rotationally driven in two directions, and the power transmitted from the drive member that rotates in the first direction or the second direction is configured to rotate about the drive shaft integrally with the spindle. A power transmission mechanism including a driven member,
The driving member and the driven member are disposed so as to be relatively movable in the front-rear direction, move in a direction close to each other in the front-rear direction in accordance with the backward movement of the spindle, and are moved from the driving member to the driven member. It is configured to shift from a cut-off state in which power transmission to the member is impossible to a transmittable state in which power transmission from the driving member to the driven member is possible,
The power transmission mechanism is configured such that the drive member is more than the amount of movement of the spindle rearward from the shut-off state to the transmittable state when the drive member is rotationally driven in the first direction. A screw tightening tool characterized in that the amount of movement when rotated in two directions is smaller.
 本態様のネジ締め工具の動力伝達機構では、駆動部材がネジ締め作業に対応して第1方向に回転駆動される場合、ネジ緩め作業に対応して第2方向に回転駆動される場合の何れにおいても、駆動部材から被動部材へと回転力が伝達される。つまり、ネジ締め作業時とネジ緩め作業時で、同一経路を介して動力の伝達が行われる。また、動力伝達機構は、動力伝達機構を伝達可能状態に移行させるために必要なスピンドルの後方への移動量(押し込み量)がネジ締め作業時よりもネジ緩め作業時に小さくなるように構成されている。このように、本態様によれば、ネジ締め作業時とネジ緩め作業時で同一経路による動力伝達が可能、且つ、ネジ締め作業時よりも小さい押し込み量でネジ緩め作業を遂行可能な合理的な動力伝達機構を実現することができる。 In the power transmission mechanism for the screw tightening tool according to this aspect, when the drive member is rotationally driven in the first direction corresponding to the screw tightening operation, the drive member is rotated in the second direction corresponding to the screw loosening operation. In this case, the rotational force is transmitted from the driving member to the driven member. That is, power is transmitted through the same path during the screw tightening operation and the screw loosening operation. Further, the power transmission mechanism is configured such that the amount of movement (pushing amount) of the spindle necessary for shifting the power transmission mechanism to the transmittable state is smaller during screw loosening work than during screw tightening work. Yes. Thus, according to this aspect, it is possible to transmit power through the same path during screw tightening work and screw loosening work, and it is possible to perform screw loosening work with a smaller push amount than during screw tightening work. A power transmission mechanism can be realized.
 [態様12]
 態様6~11の何れか1つに記載のネジ締め工具であって、
 前記動力伝達機構は、摩擦式のクラッチ機構として構成されていることを特徴とするネジ締め工具。
 本態様によれば、噛合い係合式のクラッチ機構に比べ、駆動部材と被動部材の係合時の異音や係合部の摩耗を低減することができる。
[Aspect 12]
A screw tightening tool according to any one of aspects 6 to 11,
The screw transmission tool, wherein the power transmission mechanism is configured as a friction clutch mechanism.
According to this aspect, compared to the meshing engagement type clutch mechanism, it is possible to reduce noise and wear of the engaging portion when the driving member and the driven member are engaged.
 [態様13]
 態様6~12の何れか1つに記載のネジ締め工具であって、
 前記動力伝達機構は、遊星減速機構として構成されていることを特徴とするネジ締め工具。
 本態様によれば、動力の伝達および伝達遮断と、減速の両機能を単一の動力伝達機構で実現することができる。
[Aspect 13]
A screw tightening tool according to any one of aspects 6 to 12,
The screw transmission tool, wherein the power transmission mechanism is configured as a planetary speed reduction mechanism.
According to this aspect, both functions of power transmission and transmission interruption and deceleration can be realized by a single power transmission mechanism.
 [態様14]
 態様6~13の何れか1つに記載のネジ締め工具であって、
 前記駆動部材は、モータの出力シャフトに設けられた第1のギア歯に噛合する第2のギア歯を有することを特徴とするネジ締め工具。
 本態様によれば、動力伝達機構にモータからの動力を効率的に伝達する合理的な構成を実現することができる。ピニオンギア24およびギア歯470は、夫々、「第1のギア歯」、「第2のギア歯」の一例である。
[Aspect 14]
A screw tightening tool according to any one of aspects 6 to 13,
The screw tightening tool, wherein the driving member has a second gear tooth meshing with a first gear tooth provided on an output shaft of a motor.
According to this aspect, it is possible to realize a rational configuration that efficiently transmits the power from the motor to the power transmission mechanism. The pinion gear 24 and the gear teeth 470 are examples of “first gear teeth” and “second gear teeth”, respectively.
 [態様15]
 前記スピンドルは、前記駆動軸に対する径方向に突出する突出部を有し、
 前記位置切替機構は、前記突出部の後側、且つ、前記駆動部材の前側で、前記駆動軸周りに回転可能、且つ、前記前後方向に移動可能に前記スピンドルに支持された移動部材を含み、
 前記ネジ締め工具は、前記駆動部材を介して前記移動部材および前記スピンドルを前方へ付勢する付勢部材を更に備え、
 前記移動部材は、前記駆動部材の前記第2方向への回転駆動に応じて回転し、前記付勢部材の付勢力に抗して前記スピンドルに対して後方へ移動することで、前記駆動部材を前記スピンドルに対して後方へ移動させてもよい。
 本態様によれば、移動部材と付勢部材を用いて簡易な構成の位置切替機構を実現することができる。なお、フランジ34は、本態様における「突出部」の一例である。リードスリーブ500は、本態様における「移動部材」の一例である。付勢バネ49は、本態様における「付勢部材」の一例である。
[Aspect 15]
The spindle has a protruding portion protruding in a radial direction with respect to the drive shaft,
The position switching mechanism includes a moving member supported by the spindle so as to be rotatable around the driving shaft and movable in the front-rear direction on the rear side of the projecting portion and the front side of the driving member,
The screw tightening tool further includes a biasing member that biases the moving member and the spindle forward via the drive member,
The moving member rotates in response to rotational driving of the driving member in the second direction, and moves backward with respect to the spindle against the urging force of the urging member, thereby moving the driving member. The spindle may be moved backward with respect to the spindle.
According to this aspect, a position switching mechanism having a simple configuration can be realized using the moving member and the biasing member. The flange 34 is an example of the “projection” in this aspect. The lead sleeve 500 is an example of the “moving member” in this aspect. The biasing spring 49 is an example of the “biasing member” in this aspect.
 [態様16]
 態様15において、
 前記位置切替機構は、
  前記移動部材の前端面に形成され、前記駆動軸周りに螺旋状に延在するリード溝と、
  前記リード溝に配置されたボールとを含み、
 前記移動部材は、前記駆動部材の前記第2方向への回転駆動に応じて回転し、前記リード溝と前記ボールの作用で前記スピンドルに対して後方へ移動するように構成されていてもよい。
[Aspect 16]
In aspect 15,
The position switching mechanism is
A lead groove formed in a front end surface of the moving member and extending spirally around the drive shaft;
A ball disposed in the lead groove,
The moving member may be configured to rotate in response to rotational driving of the driving member in the second direction and to move backward with respect to the spindle by the action of the lead groove and the ball.
 [態様17]
 態様15または16において、
 前記位置切替機構は、前記駆動部材が前記第2方向に回転駆動された場合にのみ、前記移動部材を前記駆動部材と一体的に前記駆動軸周りに回転させるように構成されたワンウェイクラッチを含んでもよい。
[Aspect 17]
In aspect 15 or 16,
The position switching mechanism includes a one-way clutch configured to rotate the moving member integrally with the drive member around the drive shaft only when the drive member is rotationally driven in the second direction. But you can.
 [態様18]
 前記回転可能部材は、前記駆動軸に対する径方向に突出するとともに、前記駆動部材の前側に配置された突出部を有し、
 前記ネジ締め工具は、前記駆動部材を介して前記回転可能部材および前記スピンドルを前方へ付勢する付勢部材を更に備え、
 前記駆動部材は、前記第2方向へ回転しつつ、前記付勢部材の付勢力に抗して前記回転可能部材に対して後方へ移動するように構成されていてもよい。
 本態様によれば、回転可能部材と付勢部材を用いて簡易な構成の位置切替機構を実現することができる。なお、フランジ34は、本態様における「突出部」の一例である。リードスリーブ500は、本態様における「移動部材」の一例である。付勢バネ49は、本態様における「付勢部材」の一例である。
[Aspect 18]
The rotatable member protrudes in the radial direction with respect to the drive shaft, and has a protrusion disposed on the front side of the drive member,
The screw tightening tool further includes a biasing member that biases the rotatable member and the spindle forward via the drive member,
The drive member may be configured to move backward with respect to the rotatable member against the biasing force of the biasing member while rotating in the second direction.
According to this aspect, a position switching mechanism with a simple configuration can be realized using the rotatable member and the biasing member. The flange 34 is an example of the “projection” in this aspect. The lead sleeve 500 is an example of the “moving member” in this aspect. The biasing spring 49 is an example of the “biasing member” in this aspect.
[態様19]
 態様18において、
 前記位置切替機構は、
  前記駆動部材の前端面に形成され、前記駆動軸周りに螺旋状に延在するリード溝と、
  前記突出部の後面に当接した状態で前記リード溝に配置されたボールとを含み、
 前記駆動部材は、前記第2方向への回転しつつ、前記リード溝と前記ボールの作用で前記スピンドルに対して後方へ移動するように構成されていてもよい。
[Aspect 19]
In aspect 18,
The position switching mechanism is
A lead groove formed on a front end surface of the drive member and extending spirally around the drive shaft;
Including a ball disposed in the lead groove in a state of being in contact with the rear surface of the protrusion,
The drive member may be configured to move backward with respect to the spindle by the action of the lead groove and the ball while rotating in the second direction.
1、100:スクリュードライバ、10:本体部、11:本体ハウジング、12:後部ハウジング、13:前部ハウジング、135:ストッパ部、14:中央ハウジング、141:区画壁、143:ベース、15:ロケータ、17:ハンドル部、171:把持部、173:トリガ、174:メインスイッチ、175:切替レバー、176:回転方向スイッチ、178:コントローラ、179:電源ケーブル、18:ハンドルハウジング、2:モータ、21:ロータ、23:モータシャフト、231:ベアリング、233:ベアリング、24:ピニオンギア、25:ファン、3:スピンドル、301:ベアリング、31:前側シャフト、311:ビット挿入孔、32:後側シャフト、321:溝、34:フランジ、36:ボール、4、6:動力伝達機構、41:テーパスリーブ、411:テーパ面、414:凹部、43:リテーナ、431:底壁、432:凹部、434:保持アーム、45:ローラ、47、67:ギアスリーブ、470、670:ギア歯、471、671:底壁、474、674:周壁、475、675:テーパ面、48:ベアリング、481:外輪、483:内輪、49:付勢バネ、491:ワッシャ、493:ワッシャ、5、7:位置切替機構、50、70:ワンウェイクラッチ、500:リードスリーブ、501:カム溝、502:ボール、504:周壁、505:底壁、507、707:リード溝、508、708:ボール、53:スラストベアリング、700:フランジスリーブ、701:周壁、703:フランジ、9:ドライバビット、90:ネジ、900:被加工物、A1:駆動軸 DESCRIPTION OF SYMBOLS 1,100: Screw driver, 10: Main part, 11: Main body housing, 12: Rear housing, 13: Front housing, 135: Stopper part, 14: Central housing, 141: Partition wall, 143: Base, 15: Locator , 17: handle portion, 171: gripping portion, 173: trigger, 174: main switch, 175: switching lever, 176: rotation direction switch, 178: controller, 179: power cable, 18: handle housing, 2: motor, 21 : Rotor, 23: motor shaft, 231: bearing, 233: bearing, 24: pinion gear, 25: fan, 3: spindle, 301: bearing, 31: front shaft, 311: bit insertion hole, 32: rear shaft, 321: Groove, 34: Flange, 36: Ball, 4, 6: Power 41: taper sleeve, 411: taper surface, 414: recess, 43: retainer, 431: bottom wall, 432: recess, 434: holding arm, 45: roller, 47, 67: gear sleeve, 470, 670: Gear teeth, 471, 671: bottom wall, 474, 674: peripheral wall, 475, 675: tapered surface, 48: bearing, 481: outer ring, 483: inner ring, 49: biasing spring, 491: washer, 493: washer, 5 7: Position switching mechanism, 50, 70: One-way clutch, 500: Lead sleeve, 501: Cam groove, 502: Ball, 504: Perimeter wall, 505: Bottom wall, 507, 707: Lead groove, 508, 708: Ball, 53: Thrust bearing, 700: Flange sleeve, 701: Peripheral wall, 703: Flange, 9: Driver bit, 90: Screw, 9 0: workpiece, A1: drive shaft

Claims (9)

  1.  先端工具を回転駆動するように構成された作業工具であって、
     ハウジングと、
     前記作業工具の前後方向に延在する所定の駆動軸に沿って前後方向に移動可能、且つ、前記駆動軸周りに回転可能に前記ハウジングに支持され、前記先端工具を着脱可能に構成された前端部を有するスピンドルと、
     前記ハウジングに収容されたモータと、
     前記駆動軸と同軸状に配置された太陽部材、リング部材、およびキャリア部材と、前記キャリア部材に自転可能に保持された遊星ローラとを含み、前記ハウジングに収容された動力伝達機構とを備え、
     前記太陽部材および前記リング部材は、夫々、前記駆動軸に対して傾斜した第1テーパ面および第2テーパ面を有し、
     前記太陽部材および前記リング部材のうち一方は、他方に対し、前記スピンドルと一体的に前記前後方向に移動可能に構成されており、
     前記遊星ローラの少なくとも一部は、前記駆動軸に対する径方向において、前記第1テーパ面と前記第2テーパ面の間に配置されており、
     前記動力伝達機構は、
      前記スピンドルの後方への移動に応じて、前記太陽部材および前記リング部材が互いに近接する方向に相対移動し、前記遊星ローラが前記太陽部材および前記リング部材と摩擦接触状態とされることで、前記スピンドルへ前記モータの動力を伝達するように構成され、且つ、
      前記スピンドルの前方への移動に応じて、前記太陽部材および前記リング部材が互いから離間する方向に相対移動し、前記遊星ローラが前記太陽部材および前記リング部材に非摩擦接触状態とされることで、前記動力の伝達を遮断するように構成されており、
     前記作業工具は、前記遊星ローラが前記ハウジングに対して前記前後方向に移動することを規制するように構成された規制部材を備えたことを特徴とする作業工具。
    A work tool configured to rotationally drive a tip tool,
    A housing;
    A front end configured to be movable in the front-rear direction along a predetermined drive shaft extending in the front-rear direction of the work tool and supported by the housing so as to be rotatable around the drive shaft, so that the tip tool can be attached and detached. A spindle having a portion;
    A motor housed in the housing;
    A solar member, a ring member, and a carrier member that are arranged coaxially with the drive shaft, and a planetary roller that is rotatably held by the carrier member, and a power transmission mechanism housed in the housing,
    The sun member and the ring member each have a first tapered surface and a second tapered surface inclined with respect to the drive shaft,
    One of the sun member and the ring member is configured to be movable in the front-rear direction integrally with the spindle with respect to the other,
    At least a part of the planetary roller is disposed between the first tapered surface and the second tapered surface in a radial direction with respect to the drive shaft,
    The power transmission mechanism is
    The sun member and the ring member move relative to each other in accordance with the backward movement of the spindle, and the planetary roller is brought into frictional contact with the sun member and the ring member. Configured to transmit the power of the motor to the spindle; and
    As the spindle moves forward, the sun member and the ring member move relative to each other in a direction away from each other, and the planetary roller is brought into a non-friction contact state with the sun member and the ring member. , Configured to cut off transmission of the power,
    The work tool includes a restricting member configured to restrict the planetary roller from moving in the front-rear direction with respect to the housing.
  2.  請求項1に記載の作業工具であって、
     前記キャリア部材は、前記スピンドルに対して前記前後方向に移動可能に前記スピンドルに保持されていることを特徴とする作業工具。
    The work tool according to claim 1,
    The work tool, wherein the carrier member is held by the spindle so as to be movable in the front-rear direction with respect to the spindle.
  3.  請求項2に記載の作業工具であって、
     前記キャリア部材は、前記スピンドルに対して前記駆動軸周りに回転不能に保持されており、前記遊星ローラを介して伝達された前記動力によって、前記スピンドルと一体的に回転するように構成されていることを特徴とする作業工具。
    The work tool according to claim 2,
    The carrier member is held so as not to rotate around the drive shaft with respect to the spindle, and is configured to rotate integrally with the spindle by the power transmitted via the planetary roller. A work tool characterized by that.
  4.  請求項1~3の何れか1つに記載の作業工具であって、
     前記規制部材は、前記キャリア部材が前記ハウジングに対して前記前後方向に移動することを規制するように構成されていることを特徴とする作業工具。
    The work tool according to any one of claims 1 to 3,
    The work tool is configured to restrict the carrier member from moving in the front-rear direction with respect to the housing.
  5.  請求項4に記載の作業工具であって、
     前記規制部材は、前記スピンドルと前記キャリア部材とを、互いから離間するように前方および後方へ夫々付勢するバネ部材を含み、
     前記スピンドルは、常時には、前記バネ部材の付勢力によって、最前方位置に保持されていることを特徴とする作業工具。
    The work tool according to claim 4,
    The restricting member includes a spring member that urges the spindle and the carrier member forward and backward so as to be separated from each other,
    The work tool characterized in that the spindle is always held at the foremost position by the biasing force of the spring member.
  6.  請求項5に記載の作業工具であって、
     前記リング部材は、前記スピンドルと一体的に前記前後方向に移動可能、且つ、前記駆動軸周りに回転可能に前記スピンドルに支持されており、
     前記バネ部材は、前記前後方向において前記キャリア部材と前記リング部材の間に介在しており、
     前記作業工具は、前記バネ部材の前記リング部材側の一端を、前記リング部材の回転から遮断された状態で受ける受け部材を更に備えていることを特徴とする作業工具。
    The work tool according to claim 5,
    The ring member is supported by the spindle so as to be movable in the front-rear direction integrally with the spindle and to be rotatable around the drive shaft.
    The spring member is interposed between the carrier member and the ring member in the front-rear direction,
    The work tool further includes a receiving member that receives one end of the spring member on the ring member side in a state of being blocked from rotation of the ring member.
  7.  請求項6に記載の作業工具であって、
     前記リング部材は、前記モータの前記動力で回転されるように構成されており、
     前記バネ部材は、前記リング部材と前記キャリア部材とを、前記前後方向において互いから離間するように付勢するように構成されていることを特徴とする作業工具。
    The work tool according to claim 6,
    The ring member is configured to be rotated by the power of the motor,
    The work tool, wherein the spring member is configured to urge the ring member and the carrier member so as to be separated from each other in the front-rear direction.
  8.  請求項1~7の何れか1つに記載の作業工具であって、
     前記リング部材は、前記リング部材の内側と外側とを連通させる連通孔を少なくとも1つ有することを特徴とする作業工具。
    The work tool according to any one of claims 1 to 7,
    The ring tool has at least one communication hole for communicating the inside and the outside of the ring member.
  9.  請求項8に記載の作業工具であって、
     前記連通孔は、前記リング部材のうち、前記第2テーパ面に対応する領域とは異なる領域に形成されていることを特徴とする作業工具。
    The work tool according to claim 8,
    The communication hole is formed in a region different from a region corresponding to the second tapered surface in the ring member.
PCT/JP2019/004494 2018-02-19 2019-02-07 Work tool WO2019159819A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980014004.6A CN111757793B (en) 2018-02-19 2019-02-07 Working tool
DE112019000419.0T DE112019000419T5 (en) 2018-02-19 2019-02-07 Work tool
US16/966,795 US11607780B2 (en) 2018-02-19 2019-02-07 Work tool

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-027415 2018-02-19
JP2018-027413 2018-02-19
JP2018027413 2018-02-19
JP2018027415A JP7231329B2 (en) 2018-02-19 2018-02-19 screw tightening tool
JP2019-001286 2019-01-08
JP2019001286A JP7136705B2 (en) 2018-02-19 2019-01-08 Work tools

Publications (1)

Publication Number Publication Date
WO2019159819A1 true WO2019159819A1 (en) 2019-08-22

Family

ID=67619980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004494 WO2019159819A1 (en) 2018-02-19 2019-02-07 Work tool

Country Status (2)

Country Link
CN (1) CN111757793B (en)
WO (1) WO2019159819A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014145A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Power tool
JP2012135843A (en) * 2010-12-27 2012-07-19 Makita Corp Power tool
JP2017087362A (en) * 2015-11-11 2017-05-25 株式会社マキタ Work tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2747008Y (en) * 2004-06-01 2005-12-21 南京德朔实业有限公司 Turning saw
JP2012135842A (en) * 2010-12-27 2012-07-19 Makita Corp Power tool
CN104440739B (en) * 2013-09-19 2016-06-29 株式会社牧田 Power tool
JP6410347B2 (en) * 2014-08-27 2018-10-24 株式会社マキタ Work tools

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014145A (en) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd Power tool
JP2012135843A (en) * 2010-12-27 2012-07-19 Makita Corp Power tool
JP2017087362A (en) * 2015-11-11 2017-05-25 株式会社マキタ Work tool

Also Published As

Publication number Publication date
CN111757793A (en) 2020-10-09
CN111757793B (en) 2022-05-10

Similar Documents

Publication Publication Date Title
EP2106884B1 (en) Automatic gear shifting power tool
JP3677190B2 (en) Clutch mechanism of driver drill
JP5122400B2 (en) Electric tool
JP5030601B2 (en) Electric tool
JP5275117B2 (en) Electric tool
JP5562540B2 (en) Electric tool
CA2864726A1 (en) Multi-speed cycloidal transmission
US7721867B2 (en) Rotation output device
JP5341429B2 (en) Electric tool
JP7136705B2 (en) Work tools
WO2019159819A1 (en) Work tool
CN113692333B (en) Screw fastening tool
US20230124236A1 (en) Screw-tightening tool
US20160279783A1 (en) Spindle lock assembly for power tool
JP7231329B2 (en) screw tightening tool
US11607780B2 (en) Work tool
WO2020162268A1 (en) Screw fastening tool
US11981011B2 (en) Hand-held power tool comprising a catch mechanism
JP4448049B2 (en) Electric screwdriver
JP2013043262A (en) Grinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754757

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19754757

Country of ref document: EP

Kind code of ref document: A1