WO2019159752A1 - Waste water reutilization method - Google Patents

Waste water reutilization method Download PDF

Info

Publication number
WO2019159752A1
WO2019159752A1 PCT/JP2019/004003 JP2019004003W WO2019159752A1 WO 2019159752 A1 WO2019159752 A1 WO 2019159752A1 JP 2019004003 W JP2019004003 W JP 2019004003W WO 2019159752 A1 WO2019159752 A1 WO 2019159752A1
Authority
WO
WIPO (PCT)
Prior art keywords
precipitate
metal component
phase separation
wastewater
value
Prior art date
Application number
PCT/JP2019/004003
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 修
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2019159752A1 publication Critical patent/WO2019159752A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions

Definitions

  • the present invention performs phase separation by mixing waste water generated in the production of a polymer, specifically, a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution.
  • the present invention relates to a wastewater recycling method that can suitably reuse wastewater containing metal components.
  • polymers such as polybutadiene, polyisoprene, styrene-isoprene-styrene block copolymer (SIS), and styrene-butadiene-styrene block copolymer (SBS) are solution-polymerized using homogeneous catalysts containing metal components.
  • SIS polyisoprene
  • SBS styrene-butadiene-styrene block copolymer
  • the present invention has been made in view of such a situation, and performs phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. It is an object of the present invention to provide a method for reusing wastewater, which can suitably reuse wastewater containing metal components that is generated when the wastewater is discharged.
  • the inventors have made a phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution.
  • the pH adjustment is performed to precipitate precipitates containing the metal components contained in the wastewater, and the aqueous dispersion in which such precipitates are dispersed is centrifuged.
  • the metal component produced in the phase separation step of phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution,
  • the wastewater generated by phase separation is precipitated by dispersing the precipitate containing the metal component contained in the wastewater by adjusting the pH of the wastewater generated by phase separation.
  • a precipitation step for obtaining an aqueous dispersion a centrifugal step for separating the precipitate by performing a centrifugal operation on the aqueous dispersion in which the precipitate is dispersed, and a separation liquid obtained by the centrifugal operation
  • a wastewater recycling method comprising: a reuse step for use in the phase separation step and reused for the preparation of an alkaline aqueous solution.
  • the method further comprises a step of measuring the conductivity of the separation liquid obtained by the centrifugation operation, and according to the conductivity of the separation liquid, in the precipitation step It is preferable to change pH adjustment conditions and / or centrifugation conditions in the centrifugation step.
  • the homogeneous catalyst is preferably an organoaluminum compound.
  • the polymer solution is preferably a polybutadiene solution.
  • the centrifugation in the centrifugation step is performed using a decanter type centrifuge.
  • the alkaline aqueous solution is preferably an aqueous solution of an alkali metal hydroxide.
  • the pH value after pH adjustment in the precipitation step is preferably in the range of 6-8.
  • the wastewater containing a metal component which is generated when phase separation is performed by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component, and an alkaline aqueous solution, is preferably reused. It is possible to provide a method for recycling wastewater.
  • FIG. 1 is a diagram showing an example of a reuse system to which the wastewater reuse method of the present invention is applied.
  • FIG. 2 is a diagram showing an example of a centrifugal separator used in the wastewater recycling method of the present invention.
  • the method for recycling wastewater of the present invention is as follows: A method of reusing wastewater containing a metal component generated in a phase separation step of phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution.
  • a precipitation step of obtaining an aqueous dispersion in which the precipitate is dispersed by precipitating the precipitate containing the metal component contained in the wastewater;
  • a centrifugal separation step for separating the precipitate by performing a centrifugal separation operation;
  • a reuse step of reusing the separation liquid obtained by the centrifugation operation for the preparation of the alkaline aqueous solution used in the phase separation step.
  • the wastewater recycling method of the present invention occurs in a phase separation step in which phase separation is performed by mixing a polymer solution obtained by performing polymerization using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. This is a method of reusing wastewater containing a metal component derived from a homogeneous catalyst.
  • the homogeneous catalyst containing a metal component is not particularly limited as long as it is a catalyst that dissolves in a water-insoluble organic solvent, but is not limited to an organic alkali metal compound; an organic alkaline earth metal compound; an organoaluminum compound; And the like, and cyclopentadienyl titanium compounds.
  • “homogeneous catalyst containing a metal component” and “homogeneous catalyst” include a catalyst residue derived from the homogeneous catalyst after polymerization, and the catalyst residue usually contains a metal component. Including.
  • an organoaluminum compound is preferable as the homogeneous catalyst containing a metal component.
  • An organoaluminum compound is a compound in which at least one hydrocarbon group is bonded to an aluminum atom.
  • the hydrocarbon group is not particularly limited, but is preferably an alkyl group, more preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl group having 2 to 4 carbon atoms.
  • organoaluminum compound examples include organoaluminum halide compounds such as diethylaluminum monochloride, diethylaluminum monobromide, dibutylaluminum monochloride, dicyclohexylaluminum monochloride, diphenylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride.
  • organoaluminum halide compounds such as diethylaluminum monochloride, diethylaluminum monobromide, dibutylaluminum monochloride, dicyclohexylaluminum monochloride, diphenylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride.
  • Alkylalkyl compounds such as trimethylaluminum, triethylaluminum, triisopropylaluminum, and triiso
  • an organoaluminum halide compound and an alkylaluminum compound are preferable, diethylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and triisobutylaluminum are more preferable, and diethylaluminum monochloride is particularly preferable.
  • organoaluminum compounds can be used alone or in combination of two or more.
  • an organoaluminum compound is used as the homogeneous catalyst containing a metal component, it is preferable to use a transition metal compound in combination.
  • a transition metal compound an iron group or platinum group of Groups 8 to 10 of the periodic table is used. Compounds containing group elements are preferred, cobalt compounds and nickel compounds are more preferred, and cobalt compounds are particularly preferred.
  • transition metal compound examples include inorganic acid salts such as cobalt chloride, cobalt bromide and cobalt nitrate; cobalt hexanoate, cobalt 2-ethylhexanoate, cobalt stearate, cobalt naphthenate, cobalt acetate, cobalt oxalate
  • Organic acid salts such as cobalt versatate (a cobalt salt of an aliphatic monocarboxylic acid having 6 to 20 carbon atoms having a carboxyl group on a tertiary carbon in which three alkyl groups having 1 or more carbon atoms are bonded), cobalt malonate;
  • Organic base complexes such as cobalt bisacetylacetonate, cobalt trisacetylacetonate, ethyl acetoacetate cobalt, cobalt halide triarylphosphine complex, trialkylphosphine complex, pyridine complex and picoline complex;
  • transition metal compounds may be used alone or in combination of two or more.
  • cobalt hexanoate, cobalt 2-ethylhexanoate, cobalt stearate, cobalt naphthenate, and nickel compounds corresponding to these are preferable, and cobalt 2-ethylhexanoate is particularly preferable.
  • the polymer solution contains a water-insoluble organic solvent and a polymer in addition to the above homogeneous catalyst.
  • the polymer is dissolved in the water-insoluble organic solvent. It is contained in.
  • the polymer is not particularly limited as long as it is obtained by polymerization using a homogeneous catalyst and can be dissolved in a water-insoluble organic solvent.
  • polystyrene-isoprene-styrene block copolymer SIS
  • SBS styrene-butadiene-styrene block copolymer
  • SEBS styrene-ethylene-propylene-styrene block copolymer
  • SEPS styrene-ethylene-propylene-styrene block copolymer
  • polybutadiene is preferred from the viewpoint that it can be suitably produced by polymerization using an organoaluminum compound.
  • the weight average molecular weight (Mw) of the polymer is not particularly limited, but is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, preferably 30,000 to 300, 000, more preferably 35,000 to 250,000.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the molecular weight distribution (Mw / Mn) of the polymer is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less, and particularly preferably 1.2 or less.
  • the molecular weight distribution (Mw / Mn) of the polymer is the polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) using THF as a solvent. The divided value (Mw / Mn).
  • the water-insoluble organic solvent is not particularly limited as long as the polymer is soluble.
  • Specific examples of the water-insoluble organic solvent include butane, pentane, hexane, heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, Saturated hydrocarbons such as hexahydroindenecyclohexane and cyclooctane; unsaturated hydrocarbons such as 1-butene, 2-butene, 1-pentene and 2-pentene; aromatic hydrocarbons such as benzene, toluene and xylene; nitromethane, nitrobenzene , Nitrogen-containing hydrocarbons such as acetonit
  • any of radical polymerization, anion polymerization, cation polymerization, coordination anion polymerization, coordination cation polymerization, living polymerization and the like may be used.
  • living polymerization include living anion polymerization, living cation polymerization, and living radical polymerization. From the viewpoint of easy control of the weight average molecular weight and structure of the resulting polymer and easy polymerization operation, a polymerization reaction by living polymerization is preferable, and a polymerization reaction by living anion polymerization is more preferable.
  • FIG. 1 is a diagram showing an example of a reuse system to which the wastewater reuse method of the present invention is applied.
  • the recycling system shown in FIG. 1 includes a coagulation tank 1, a precipitation tank 2, an acid storage tank 3, and a centrifuge 4.
  • phase separation process a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component, such as a polymer solution obtained by a polymerization reaction, is mixed with an alkaline aqueous solution to cause phase separation. In this step, polymer crumb is precipitated.
  • a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component is continuously supplied to a coagulation tank 1 containing an alkaline aqueous solution.
  • Mixing causes phase separation, and polymer crumb is precipitated by coagulation.
  • a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component is continuously supplied to the coagulation tank 1, and these are removed by steam stripping using an alkaline aqueous solution in the coagulation tank 1.
  • Mixing may cause phase separation, and polymer crumb may be precipitated by coagulation.
  • polymer crumb is precipitated and serum water containing a metal component derived from the homogeneous catalyst is generated.
  • the recycling method of the present invention is at least one of such waste water. Part is reused in the phase separation process.
  • an alkaline aqueous solution is used to cause phase separation in the polymer solution and precipitate the polymer crumb.
  • serum water as waste water generated by the phase separation process is used.
  • the base used to form the alkaline aqueous solution is not particularly limited, and examples thereof include organic bases such as triethylamine and ethylenediamine, and alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; sodium carbonate, Examples include alkali metal carbonates such as potassium carbonate and sodium hydrogen carbonate; and inorganic bases such as ammonia. Of these, alkali metal hydroxides can be preferably used.
  • the pH of the alkaline aqueous solution used in the phase separation step is not particularly limited, but is preferably in the range of 9.5 to 12.5. In the phase separation step, a crumbing agent may be used in combination.
  • the pH of the waste water containing the metal component derived from the homogeneous catalyst (serum water) generated by the phase separation step is adjusted to adjust the precipitate containing the metal component derived from the homogeneous catalyst.
  • This is a step of obtaining an aqueous dispersion containing such precipitates by precipitation.
  • waste water (serum water) containing a metal component derived from the homogeneous catalyst discharged from the coagulation tank 1 is continuously supplied to the precipitation tank 2.
  • the pH is adjusted by mixing with the acid component supplied from the acid storage tank 3.
  • it can be set as the aqueous dispersion containing such a deposit by depositing the deposit containing the metal component derived from a homogeneous catalyst.
  • the deposit containing the metal component derived from the homogeneous catalyst is usually dispersed and contained in the aqueous dispersion in a floating state. Therefore, in the precipitation step, the precipitation of the precipitate containing the metal component derived from the homogeneous catalyst in the precipitation tank 2 and the discharge of the aqueous dispersion containing such a precipitate from the precipitation tank 2 are as follows: Can be done continuously.
  • the acid component used for pH adjustment is not particularly limited, and examples thereof include hydrochloric acid, nitric acid, sulfuric acid and the like, and these are preferably added in the form of an aqueous solution.
  • the pH value after pH adjustment when performing pH adjustment is not particularly limited, and may be appropriately selected according to the type of metal component derived from the homogeneous catalyst contained in the waste water.
  • the pH after pH adjustment from the viewpoint of appropriately depositing precipitates containing aluminum is preferably in the range of 6 to 8, more preferably in the range of 6.5 to 7.5, and even more preferably in the range of 6.8 to 7.2.
  • the 1 includes an inlet pH meter 5, an outlet pH meter 6, and a flow control valve 7, as shown in the figure.
  • the inlet pH meter 5 is installed on the upstream side of the precipitation tank 2 and can measure the pH value of waste water (serum water) supplied to the precipitation tank 2.
  • the outlet pH meter 6 is installed on the downstream side with respect to the precipitation tank 2 and can measure the pH value of the aqueous dispersion containing precipitates derived from the metal components discharged from the precipitation tank 2.
  • the flow rate control valve 7 is a control valve for controlling the supply amount of the acid component from the acid storage tank 3 to the precipitation tank 2.
  • the measured value of the outlet pH meter 6 is compared with the target pH value after pH adjustment, and the measured value (actual pH value) of the outlet pH meter 6 is the target value.
  • the flow rate control valve 7 is adjusted based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6 to supply the acid component to the precipitation tank 2. The amount can be adjusted, whereby the pH can be adjusted appropriately in the precipitation step.
  • the pH value adjustment by the inlet pH meter 5, the outlet pH meter 6, and the flow rate control valve 7 is automatically performed using these measured values, and feedback. It is particularly preferable to carry out by control. In this case, it is preferable that such feedback control is performed by a control device CTR (not shown).
  • the supply amount of the acid component to the precipitation tank 2 is automatically adjusted by controlling the flow rate control valve 7 based on the calculated difference ⁇ pH value and the measured value at the inlet pH meter 5. be able to.
  • the flow control valve 7 when the target pH value after pH adjustment is 7.5 and the measured value by the outlet pH meter 6 is 8, that is, when the difference ⁇ pH is +0.5, the flow control valve 7 is turned on. Control is performed to increase the supply amount of the acid component to the precipitation tank 2. In this case, the increase amount of the supply amount of the acid component to the precipitation tank 2 is calculated based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6.
  • the flow control valve 7 Is controlled to reduce the supply amount of the acid component to the precipitation tank 2. At this time, the decrease amount of the supply amount of the acid component to the precipitation tank 2 is also calculated based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6.
  • the adjustment amount when automatically adjusting the supply amount of the acid component can be automatically calculated based on the past measurement value, and in this case, a control map set for each water temperature or A control map or correction value set for each processing amount in the precipitation process, a correction map, or a control map or correction value set for each water temperature and processing amount is stored in the control device CTR. It is good also as an aspect which controls the adjustment amount in the case of referring automatically and adjusting the supply amount of an acid component. Furthermore, these control maps and correction values may be automatically calculated by the control device CTR from past measurement values.
  • centrifugation process is a process of isolate
  • an aqueous dispersion in which precipitates are continuously discharged from the precipitation tank 2 is continuously supplied to the centrifugal separator 4 and the centrifugal separator is provided.
  • the aqueous dispersion in which the precipitate is dispersed is separated into the precipitate and the separation liquid (supernatant liquid) by continuously performing the centrifugal separation operation according to 4.
  • the centrifugal separator 4 is not particularly limited as long as it is an apparatus that can continuously perform a centrifugal operation. However, the precipitate can be more appropriately separated from the aqueous dispersion in which the precipitate is dispersed. It is preferable to use a decanter type centrifuge from the point that it can be performed.
  • a decanter-type centrifuge for example, a decanter-type centrifuge having a screw conveyor, which is provided in an outer rotary cylinder and is relatively rotatable within the outer rotary cylinder, as shown in FIG. 2, is preferably used. it can.
  • the decanter type centrifuge shown in FIG. 2 includes an outer rotating cylinder 41 that can rotate in the direction of the arrow in FIG. 2, and a screw that is coaxial with the outer rotating cylinder 41 and that can rotate with a slight rotational difference.
  • a conveyor 42, a feed tube 43 for supplying an aqueous dispersion in which precipitates are dispersed, a solid material discharge port 44, and a dam plate 45 for adjusting the liquid level are provided.
  • reference numeral 46 denotes a drive motor
  • reference numeral 47 denotes a gear box.
  • an aqueous dispersion in which precipitates are dispersed is supplied through a feed tube 43 provided in the screw conveyor 42.
  • the outer rotating cylinder 41 is continuously supplied into the outer rotating cylinder 41 that rotates at a high speed, and a high centrifugal force is applied to the aqueous dispersion by the rotation of the outer rotating cylinder 41.
  • the precipitate is separated by settling.
  • the sediment separated and settled is scraped by the screw blades 48 of the screw conveyor 42 that is coaxial with the outer rotary cylinder 41 and rotates with a slight rotational difference, and sequentially reaches the solid discharge port 44.
  • the solid material is continuously discharged from the solid material outlet 44 to the outside of the decanter centrifuge.
  • the separation liquid obtained by removing the precipitate overflows and is discharged from a dam plate 45 provided on the side opposite to the solid discharge port 44 for adjusting the liquid level.
  • the centrifugal force in the centrifugal operation is generated by the rotation of the outer rotating cylinder 41, so that the centrifugal force is adjusted according to the rotational speed of the outer rotating cylinder 41. Can do. Therefore, when the decanter-type centrifuge shown in FIG. 2 is used, the centrifugal force in the centrifugal operation may be set within the above range by adjusting the rotational speed of the outer rotating cylinder 41.
  • the following formula (1) is established between the rotational speed of the outer rotating cylinder 41 and the centrifugal force.
  • RCF R ⁇ N 2/874 (1) (In the above formula (1), RCF is the centrifugal force (unit: G), R is the radius of rotation of the outer rotating cylinder 1 (unit: m), and N is the number of rotations per minute (unit: rpm).)
  • the supply speed of the aqueous dispersion in which the precipitate is dispersed to the decanter centrifuge is, for example, the water dispersion in which the precipitate is dispersed in the feed tube 43. What is necessary is just to adjust to the said range by controlling the liquid feeding pressure of the pump for sending a liquid.
  • the difference in rotational speed between the outer rotating cylinder 41 and the screw conveyor 42 may be set as appropriate, but is preferably 15 rotations or less per minute, and more preferably 12 rotations or less. By setting the difference between the rotational speeds of the outer rotating cylinder 41 and the screw conveyor 42 within such a range, it is possible to more appropriately remove the precipitate from the aqueous dispersion in which the precipitate is dispersed. Further, the temperature at the time of the centrifugation treatment is preferably 30 to 100 ° C., more preferably 70 to 90 ° C.
  • the reuse step is a step of reusing the separation liquid obtained by the centrifugation operation in the centrifugation step for the preparation of the alkaline aqueous solution used in the above-described phase separation step.
  • a phase separation step is performed after adding a base as necessary to the separation liquid separated from the precipitate continuously discharged from the centrifugal separator 4. It is reused in the phase separation process by returning to the coagulation tank 1 used for the above.
  • the water-insoluble organic solvent component is contained in the separated liquid from which the precipitate is separated, the water-insoluble organic solvent component is removed by a known method such as a distillation method and then returned to the coagulation tank 1. It is good also as an aspect.
  • the recycling method of the present invention is derived from the homogeneous catalyst from the waste water containing the metal component derived from the homogeneous catalyst, which is generated by the phase separation process, through the precipitation step and the centrifugal separation step described above.
  • a metal component can be appropriately removed. Therefore, even when such wastewater is reused in the phase separation process, the problem of clogging in piping and the like, and the content ratio of the metal component derived from the homogeneous catalyst in the obtained polymer are It is possible to effectively solve the problem that the quality of the obtained polymer is lowered due to the increase. As a result, the waste water containing the metal component derived from the homogeneous catalyst generated by the phase separation step can be effectively reused, thereby improving the productivity.
  • the reuse system shown in FIG. 1 includes an electric conductivity meter 8 on the downstream side of the centrifugal separator 4, and the precipitate is separated by the electric conductivity meter 8 and used for reuse.
  • the electrical conductivity of can be measured.
  • the measured conductivity is used to separate the separated liquid to be reused.
  • the residual amount of the metal component derived from the homogeneous catalyst can be measured.
  • the pH adjustment conditions in the precipitation step and / or the centrifugation conditions in the centrifugation step are automatically changed according to the measured residual amount of the metal component derived from the homogeneous catalyst. To control.
  • the conductivity measured by the conductivity meter 8 becomes higher than a predetermined specified value (the residual amount of the metal component derived from the homogeneous catalyst, which is obtained from the conductivity meter 8, is less than the predetermined specified value).
  • a predetermined specified value the residual amount of the metal component derived from the homogeneous catalyst, which is obtained from the conductivity meter 8 is less than the predetermined specified value.
  • the outer rotating cylinder 41 is used for the centrifuge 4 via the control device CTR described above.
  • the number of rotations can be automatically controlled.
  • the increase in the number of rotations of the centrifugation is set according to the value of the conductivity measured by the conductivity meter 8.
  • the target pH value after pH adjustment in the above-described precipitation step is performed by the control device CTR described above. Further, it is possible to adopt a mode in which control for resetting to a lower value is performed, and such control can be performed in combination with the above-described increase control of the rotation speed of the centrifuge in the centrifuge 4.
  • the rotation of the centrifuge in the centrifuge 4 described above Only the control for increasing the number is performed, and the conductivity measured by the conductivity meter 8 is larger than the first predetermined value with respect to the predetermined specified value, and the second predetermined value (second When the predetermined value> the first predetermined value) is increased, it is preferable that the control for resetting the target pH value after the pH adjustment described above is performed.
  • the rotational speed of the centrifugal separation in the centrifugal separator 4 described above is set. You may perform both the control to increase, and the control which resets the target pH value after pH adjustment mentioned above.
  • the value of the target pH value after resetting may be determined when resetting the target pH value after pH adjustment according to the value of the conductivity measured by the conductivity meter 8, For example, the higher the conductivity value measured by the conductivity meter 8, the lower the target pH value after resetting.
  • the conductivity measured by the conductivity meter 8 after the control for increasing the rotation speed of the centrifugal separation in the centrifugal separator 4 described above and the control for resetting the target pH value after the pH adjustment described above are performed.
  • the control to reduce the rotational speed of the centrifugation step by step and the control to reset the target pH value after pH adjustment to a high value step by step automatically It is desirable to make it the aspect which performs.
  • the homogeneous catalyst is used. Since the removal efficiency of the derived metal component may be lowered, it may be configured to notify an administrator or the like by issuing an alarm to that effect.
  • the metal component derived from the homogeneous catalyst is removed from the waste water containing the metal component derived from the homogeneous catalyst by performing automatic control based on such conductivity measurement. It can be performed more stably, and thus, such wastewater can be reused more appropriately. More specifically, even when such wastewater is reused in the phase separation process, problems such as clogging in piping and the like, and metal components derived from homogeneous catalysts in the obtained polymer Such a wastewater can be effectively reused while preventing the problem that the content ratio of the polymer becomes high and the quality of the resulting polymer is deteriorated more appropriately and stably. It is. In particular, by performing such automatic control based on the conductivity measurement, even when the removal efficiency of the metal component derived from the homogeneous catalyst is lowered for some reason, it is possible to appropriately cope with it.
  • the reuse method of this invention was demonstrated in detail, the reuse method of this invention is limited to the aspect which uses the reuse system shown in FIG. 1, and the aspect which uses the centrifuge apparatus shown in FIG. It is not a thing.
  • the aluminum hydroxide aqueous solution prepared above was prepared as what corresponds to the waste_water
  • An aqueous dispersion in which precipitates derived from aluminum hydroxide were suspended was obtained.
  • concentration of the precipitate in the aqueous dispersion was measured, it was 18,000 ppm by weight.
  • the aqueous dispersion in which the precipitate derived from aluminum hydroxide was suspended was subjected to a centrifugal separation operation for 180 seconds at a temperature of 80 ° C., a centrifugal force of 1,500 G, and a volume of 50 ml.
  • a centrifuge liquid having a supernatant liquid (separate liquid) volume of 33 ml and a precipitate volume of 17 ml was obtained.
  • concentration of the deposit in a supernatant liquid (separated liquid) was measured, it is 210 weight ppm, and the density
  • the collection rate of the precipitates by centrifugation was 98% or more.
  • concentration of the precipitate in each liquid is the weight before removing the water of each liquid, and the weight of the precipitate after removing water by heating at 100 degreeC for 5 minutes. I asked for it. And when the obtained supernatant liquid (separated liquid) was continuously added during the solidification process of the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component, clogging of piping, An increase in the aluminum concentration in the polymer was not observed.
  • Example 1 From the result of Example 1, it is obtained when the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component is phase-separated by mixing an aqueous sodium hydroxide solution as an alkaline aqueous solution.
  • a supernatant liquid (separated liquid) in which the content of aluminum, which is a metal component resulting from a homogeneous catalyst, is kept low is suitably obtained. It can be said that it is possible.
  • waste water waste water
  • problems such as clogging in piping and the like, and in the obtained polymer
  • the wastewater is preferably reused while effectively preventing the problem that the content ratio of the metal component derived from the homogeneous catalyst in this is high and the quality of the resulting polymer is reduced. Can be said.
  • Example 1 In the same manner as in Example 1, an aqueous dispersion having a precipitate concentration of 18,000 ppm by weight was prepared by preparing an aqueous aluminum hydroxide solution and adjusting the pH to 7.0. When the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component is continuously fed during the solidification process, the piping is clogged. As a result, the aluminum concentration inside increased.

Abstract

This method is for reutilization of waste water containing a metal component that is generated in a phase separation process of causing phase separation by mixing an alkaline aqueous solution with a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing the metal component, the method comprising: a precipitation step for precipitating a precipitate containing the metal component contained in the waste water by performing pH adjustment on the waste water generated by the phase separation, to obtain an aqueous dispersion in which the precipitate is dispersed; a centrifugation step for separating the precipitate by performing a centrifugal operation on the aqueous dispersion in which the precipitate is dispersed; and a reutilization step for reutilizing the separation liquid obtained by the centrifugal operation in order to prepare an alkaline aqueous solution that is to be used in the phase separation step.

Description

排水の再利用方法Wastewater recycling method
 本発明は、重合体の製造において生じる排水、具体的には、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離を行った際に生じる、金属成分を含む排水を好適に再利用することができる、排水の再利用方法に関する。 The present invention performs phase separation by mixing waste water generated in the production of a polymer, specifically, a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. The present invention relates to a wastewater recycling method that can suitably reuse wastewater containing metal components.
 ポリブタジエン、ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)などの種々の重合体は、金属成分を含む均一系触媒を用いた溶液重合により製造されている(たとえば、特許文献1参照)。 Various polymers such as polybutadiene, polyisoprene, styrene-isoprene-styrene block copolymer (SIS), and styrene-butadiene-styrene block copolymer (SBS) are solution-polymerized using homogeneous catalysts containing metal components. (For example, refer to Patent Document 1).
 一方で、溶液重合により得られた、これらの重合体溶液に対し、水や水溶液を添加することで相分離する相分離工程により凝固させた場合には、このような相分離工程により生じた排水中に、均一系触媒に由来の金属成分が含まれることとなる。そのため、このような排水を相分離工程などにおいて再利用に供すると、このような均一系触媒に由来の金属成分が原因となり、配管などに詰まりが発生してしまうという問題や、得られる重合体中における、均一系触媒に由来の金属成分の含有割合が高くなってしまい、得られる重合体の品質が低下してしまうという問題があった。そのため、このような相分離工程により生じた排水については、再利用が進んでいないのが現状であった。 On the other hand, when these polymer solutions obtained by solution polymerization are solidified by a phase separation step in which phase separation is performed by adding water or an aqueous solution, wastewater generated by such a phase separation step. A metal component derived from the homogeneous catalyst is contained therein. Therefore, if such wastewater is reused in a phase separation process or the like, the problem is that the metal component derived from such a homogeneous catalyst causes clogging in piping and the resulting polymer There was a problem that the content ratio of the metal component derived from the homogeneous catalyst in the inside became high, and the quality of the obtained polymer was lowered. Therefore, the current situation is that the wastewater generated by such a phase separation process is not being reused.
特開2004-83667号公報JP 2004-83667 A
 本発明は、このような実状に鑑みてなされたものであり、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離を行った際に生じる、金属成分を含む排水を好適に再利用することができる、排水の再利用方法を提供することを目的とする。 The present invention has been made in view of such a situation, and performs phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. It is an object of the present invention to provide a method for reusing wastewater, which can suitably reuse wastewater containing metal components that is generated when the wastewater is discharged.
 本発明者等は、上記目的を達成するために鋭意研究した結果、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離させる相分離工程において生じる、金属成分を含む排水について、pH調整を行うことで、排水に含まれる金属成分を含む析出物を析出させ、このような析出物が分散した水分散液について、遠心分離操作を行うことで、このような排水を、相分離工程において好適に再利用できることを見出し、本発明を完成させるに至った。 As a result of diligent research to achieve the above-mentioned object, the inventors have made a phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. For the wastewater containing metal components generated in the phase separation step, the pH adjustment is performed to precipitate precipitates containing the metal components contained in the wastewater, and the aqueous dispersion in which such precipitates are dispersed is centrifuged. As a result, it was found that such waste water can be suitably reused in the phase separation step, and the present invention has been completed.
 すなわち、本発明によれば、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離させる相分離工程において生じる、前記金属成分を含む排水の再利用方法であって、相分離により生じた前記排水について、pH調整を行うことで、前記排水に含まれる前記金属成分を含む析出物を析出させることで、前記析出物が分散した水分散液を得る析出工程と、前記析出物が分散した水分散液について、遠心分離操作を行うことで、前記析出物を分離する遠心分離工程と、前記遠心分離操作により得られた分離液を、前記相分離工程に用いる、アルカリ性水溶液の調製のために再利用する再利用工程と、を備える排水の再利用方法が提供される。 That is, according to the present invention, the metal component produced in the phase separation step of phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution, The wastewater generated by phase separation is precipitated by dispersing the precipitate containing the metal component contained in the wastewater by adjusting the pH of the wastewater generated by phase separation. A precipitation step for obtaining an aqueous dispersion, a centrifugal step for separating the precipitate by performing a centrifugal operation on the aqueous dispersion in which the precipitate is dispersed, and a separation liquid obtained by the centrifugal operation There is provided a wastewater recycling method comprising: a reuse step for use in the phase separation step and reused for the preparation of an alkaline aqueous solution.
 本発明の再利用方法において、前記遠心分離工程の後に、前記遠心分離操作により得られた分離液の電導度を測定する工程をさらに備え、前記分離液の電導度に応じて、前記析出工程におけるpH調整条件および/または前記遠心分離工程における遠心分離条件を変更することが好ましい。
 本発明の再利用方法において、前記均一系触媒が、有機アルミニウム化合物であることが好ましい。
 本発明の再利用方法において、前記重合体溶液が、ポリブタジエン溶液であることが好ましい。
 本発明の再利用方法において、前記遠心分離工程における遠心分離を、デカンタ型遠心分離装置を用いて行うことが好ましい。
 本発明の再利用方法において、前記アルカリ性水溶液が、アルカリ金属の水酸化物の水溶液であることが好ましい。
 本発明の再利用方法において、前記析出工程におけるpH調整後のpH値が、6~8の範囲であることが好ましい。
In the reuse method of the present invention, after the centrifugation step, the method further comprises a step of measuring the conductivity of the separation liquid obtained by the centrifugation operation, and according to the conductivity of the separation liquid, in the precipitation step It is preferable to change pH adjustment conditions and / or centrifugation conditions in the centrifugation step.
In the recycling method of the present invention, the homogeneous catalyst is preferably an organoaluminum compound.
In the recycling method of the present invention, the polymer solution is preferably a polybutadiene solution.
In the recycling method of the present invention, it is preferable that the centrifugation in the centrifugation step is performed using a decanter type centrifuge.
In the recycling method of the present invention, the alkaline aqueous solution is preferably an aqueous solution of an alkali metal hydroxide.
In the recycling method of the present invention, the pH value after pH adjustment in the precipitation step is preferably in the range of 6-8.
 金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離を行った際に生じる、金属成分を含む排水を好適に再利用することができる、排水の再利用方法を提供することができる。 The wastewater containing a metal component, which is generated when phase separation is performed by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component, and an alkaline aqueous solution, is preferably reused. It is possible to provide a method for recycling wastewater.
図1は、本発明の排水の再利用方法が適用される再利用システムの一例を示す図である。FIG. 1 is a diagram showing an example of a reuse system to which the wastewater reuse method of the present invention is applied. 図2は、本発明の排水の再利用方法において用いられる、遠心分離装置の一例を示す図である。FIG. 2 is a diagram showing an example of a centrifugal separator used in the wastewater recycling method of the present invention.
 本発明の排水の再利用方法は、
 金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離させる相分離工程において生じる、前記金属成分を含む排水を再利用する方法であって、
 相分離により生じた前記排水について、pH調整を行うことで、前記排水に含まれる前記金属成分を含む析出物を析出させることで、前記析出物が分散した水分散液を得る析出工程と、
 前記析出物が分散した水分散液について、遠心分離操作を行うことで、前記析出物を分離する遠心分離工程と、
 前記遠心分離操作により得られた分離液を、前記相分離工程に用いる、アルカリ性水溶液の調製のために再利用する再利用工程と、を備えるものである。
The method for recycling wastewater of the present invention is as follows:
A method of reusing wastewater containing a metal component generated in a phase separation step of phase separation by mixing a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. There,
About the wastewater generated by phase separation, by performing pH adjustment, a precipitation step of obtaining an aqueous dispersion in which the precipitate is dispersed by precipitating the precipitate containing the metal component contained in the wastewater;
For the aqueous dispersion in which the precipitate is dispersed, a centrifugal separation step for separating the precipitate by performing a centrifugal separation operation;
And a reuse step of reusing the separation liquid obtained by the centrifugation operation for the preparation of the alkaline aqueous solution used in the phase separation step.
 本発明の排水の再利用方法は、金属成分を含む均一系触媒を用いて重合を行うことで得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離させる相分離工程において生じる、均一系触媒に由来の金属成分を含む排水を再利用する方法である。 The wastewater recycling method of the present invention occurs in a phase separation step in which phase separation is performed by mixing a polymer solution obtained by performing polymerization using a homogeneous catalyst containing a metal component and an alkaline aqueous solution. This is a method of reusing wastewater containing a metal component derived from a homogeneous catalyst.
 金属成分を含む均一系触媒としては、非水溶性有機溶媒に溶解する触媒であればよく、特に限定されないが、有機アルカリ金属化合物;有機アルカリ土類金属化合物;有機アルミニウム化合物;ランタン系列金属化合物などを主触媒とする均一系触媒;シクロペンタジエニルチタン化合物;などが挙げられる。なお、本明細書において、「金属成分を含む均一系触媒」および「均一系触媒」とは、重合後の、上記均一系触媒由来の触媒残渣をも含むものとし、通常、触媒残渣は金属成分を含む。 The homogeneous catalyst containing a metal component is not particularly limited as long as it is a catalyst that dissolves in a water-insoluble organic solvent, but is not limited to an organic alkali metal compound; an organic alkaline earth metal compound; an organoaluminum compound; And the like, and cyclopentadienyl titanium compounds. In the present specification, “homogeneous catalyst containing a metal component” and “homogeneous catalyst” include a catalyst residue derived from the homogeneous catalyst after polymerization, and the catalyst residue usually contains a metal component. Including.
 これらのなかでも、本発明の排水の再利用方法における再利用効率が高いという観点より、金属成分を含む均一系触媒としては、有機アルミニウム化合物が好ましい。 Among these, from the viewpoint of high reuse efficiency in the wastewater reuse method of the present invention, an organoaluminum compound is preferable as the homogeneous catalyst containing a metal component.
 有機アルミニウム化合物は、少なくとも1つの炭化水素基がアルミニウム原子に結合している化合物である。炭化水素基は、特に限定されないが、好ましくはアルキル基であり、より好ましくは炭素数が1~10のアルキル基、特に好ましくは炭素数が2~4のアルキル基である。 An organoaluminum compound is a compound in which at least one hydrocarbon group is bonded to an aluminum atom. The hydrocarbon group is not particularly limited, but is preferably an alkyl group, more preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl group having 2 to 4 carbon atoms.
 有機アルミニウム化合物の具体例としては、たとえば、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノブロマイド、ジブチルアルミニウムモノクロライド、ジシクロヘキシルアルミニウムモノクロライド、ジフェニルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライドなどの有機アルミニウムハライド化合物;トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウムなどのアルキルアルミニウム化合物;ジエチルアルミニウムハイドライド、エチルアルミニウムセスキハイドライドなどの有機アルミニウムハイドライド化合物が挙げられる。これらの中でも、有機アルミニウムハライド化合物およびアルキルアルミニウム化合物が好ましく、ジエチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、トリイソブチルアルミニウムがより好ましく、ジエチルアルミニウムモノクロライドが特に好ましい。これらの有機アルミニウム化合物はそれぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 Specific examples of the organoaluminum compound include organoaluminum halide compounds such as diethylaluminum monochloride, diethylaluminum monobromide, dibutylaluminum monochloride, dicyclohexylaluminum monochloride, diphenylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride. Alkylalkyl compounds such as trimethylaluminum, triethylaluminum, triisopropylaluminum, and triisobutylaluminum; organic aluminum hydride compounds such as diethylaluminum hydride and ethylaluminum sesquihydride. Among these, an organoaluminum halide compound and an alkylaluminum compound are preferable, diethylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, and triisobutylaluminum are more preferable, and diethylaluminum monochloride is particularly preferable. These organoaluminum compounds can be used alone or in combination of two or more.
 また、金属成分を含む均一系触媒として、有機アルミニウム化合物を使用する場合には、遷移金属化合物を併用することが好ましく、遷移金属化合物としては、周期律表第8~10族の鉄族または白金族の元素を含有する化合物が好ましく、コバルト化合物、ニッケル化合物がより好ましく、コバルト化合物が特に好ましい。 Further, when an organoaluminum compound is used as the homogeneous catalyst containing a metal component, it is preferable to use a transition metal compound in combination. As the transition metal compound, an iron group or platinum group of Groups 8 to 10 of the periodic table is used. Compounds containing group elements are preferred, cobalt compounds and nickel compounds are more preferred, and cobalt compounds are particularly preferred.
 遷移金属化合物の具体例としては、たとえば、塩化コバルト、臭化コバルト、硝酸コバルト等の無機酸塩;ヘキサン酸コバルト、2-エチルヘキサン酸コバルト、ステアリン酸コバルト、ナフテン酸コバルト、酢酸コバルト、蓚酸コバルト、バーサチック酸コバルト(炭素数1以上のアルキル基が3つ結合した三級炭素にカルボキシル基を有する炭素数6~20の脂肪族モノカルボン酸のコバルト塩)、マロン酸コバルト等の有機酸塩;コバルトビスアセチルアセトナ-トやコバルトトリスアセチルアセトナ-ト、アセト酢酸エチルエステルコバルト、ハロゲン化コバルトのトリアリ-ルフォスフィン錯体、トリアルキルフォスフィン錯体、ピリジン錯体やピコリン錯体等の有機塩基錯体等;およびこれらに対応するニッケル化合物が挙げられる。これらの遷移金属化合物は、一種類を単独で用いても二種類以上を併用してもよい。これらのなかでも、ヘキサン酸コバルト、2-エチルヘキサン酸コバルト、ステアリン酸コバルト、ナフテン酸コバルト、これらに対応するニッケル化合物が好ましく、特に2-エチルヘキサン酸コバルトが好ましい。 Specific examples of the transition metal compound include inorganic acid salts such as cobalt chloride, cobalt bromide and cobalt nitrate; cobalt hexanoate, cobalt 2-ethylhexanoate, cobalt stearate, cobalt naphthenate, cobalt acetate, cobalt oxalate Organic acid salts such as cobalt versatate (a cobalt salt of an aliphatic monocarboxylic acid having 6 to 20 carbon atoms having a carboxyl group on a tertiary carbon in which three alkyl groups having 1 or more carbon atoms are bonded), cobalt malonate; Organic base complexes such as cobalt bisacetylacetonate, cobalt trisacetylacetonate, ethyl acetoacetate cobalt, cobalt halide triarylphosphine complex, trialkylphosphine complex, pyridine complex and picoline complex; The corresponding nickel compounds are listed It is. These transition metal compounds may be used alone or in combination of two or more. Among these, cobalt hexanoate, cobalt 2-ethylhexanoate, cobalt stearate, cobalt naphthenate, and nickel compounds corresponding to these are preferable, and cobalt 2-ethylhexanoate is particularly preferable.
 重合体溶液としては、上記した均一系触媒に加えて、非水溶性有機溶媒および重合体を含有するものであり、重合体溶液中においては、重合体は、非水溶性有機溶媒に溶解した状態で含有されている。重合体としては、均一系触媒を用いた重合により得られ、非水溶性有機溶媒に溶解するものであれば特に限定されない。重合体の具体例としては、ポリブタジエン、ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-ブタジエン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)などが挙げられる。これらの中でも、有機アルミニウム化合物を用いた重合により好適に製造できるという観点より、ポリブタジエンが好適である。 The polymer solution contains a water-insoluble organic solvent and a polymer in addition to the above homogeneous catalyst. In the polymer solution, the polymer is dissolved in the water-insoluble organic solvent. It is contained in. The polymer is not particularly limited as long as it is obtained by polymerization using a homogeneous catalyst and can be dissolved in a water-insoluble organic solvent. Specific examples of the polymer include polybutadiene, polyisoprene, styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), and styrene-ethylene-butadiene-styrene block copolymer. (SEBS), styrene-ethylene-propylene-styrene block copolymer (SEPS), and the like. Among these, polybutadiene is preferred from the viewpoint that it can be suitably produced by polymerization using an organoaluminum compound.
 重合体の重量平均分子量(Mw)は特に限定されないが、テトラヒドロフラン(THF)を溶媒とするゲルパーミエーションクロマトグラフィ(GPC)により測定されるポリスチレン換算の重量平均分子量で、好ましくは30,000~300,000、より好ましくは35,000~250,000である。 The weight average molecular weight (Mw) of the polymer is not particularly limited, but is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, preferably 30,000 to 300, 000, more preferably 35,000 to 250,000.
 また、重合体の分子量分布(Mw/Mn)は特に限定されないが、好ましくは2.0以下、より好ましくは1.5以下、特に好ましくは1.2以下である。重合体の分子量分布(Mw/Mn)は、THFを溶媒にしてゲル・パーミエーション・クロマトグラフィー(GPC)により測定されるポリスチレン換算の数平均分子量(Mn)で前記の重量平均分子量(Mw)を割った値(Mw/Mn)である。 The molecular weight distribution (Mw / Mn) of the polymer is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less, and particularly preferably 1.2 or less. The molecular weight distribution (Mw / Mn) of the polymer is the polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) using THF as a solvent. The divided value (Mw / Mn).
 非水溶性有機溶媒としては、重合体が溶解するものであれば特に限定されない。非水溶性有機溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタンなどの飽和炭化水素;1-ブテン、2-ブテン、1-ペンテン、2-ペンテンなどの不飽和炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル、ジメチルホルムアミド、N-メチルピロリドンなどの含窒素系炭化水素;ジエチルエ-テル、テトラヒドロフランなどのエ-テル類;クロロホルム、ジクロロメタン、クロロベンゼン、ジクロロベンゼンなどの含ハロゲン系炭化水素;プロピレングリコール;などを挙げることができる。これらの中でも、不飽和炭化水素、飽和炭化水素および芳香族炭化水素が好ましく、飽和炭化水素がより好ましい。上記の非水溶性有機溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The water-insoluble organic solvent is not particularly limited as long as the polymer is soluble. Specific examples of the water-insoluble organic solvent include butane, pentane, hexane, heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, Saturated hydrocarbons such as hexahydroindenecyclohexane and cyclooctane; unsaturated hydrocarbons such as 1-butene, 2-butene, 1-pentene and 2-pentene; aromatic hydrocarbons such as benzene, toluene and xylene; nitromethane, nitrobenzene , Nitrogen-containing hydrocarbons such as acetonitrile, dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether and tetrahydrofuran; chloroform and dichloromethane Chlorobenzene, halogen-containing hydrocarbons such as dichlorobenzene; propylene glycol; and the like. Among these, unsaturated hydrocarbons, saturated hydrocarbons and aromatic hydrocarbons are preferable, and saturated hydrocarbons are more preferable. Said water-insoluble organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 重合体溶液を得るための重合反応としては、ラジカル重合、アニオン重合、カチオン重合、配位アニオン重合、配位カチオン重合、リビング重合等のいずれを用いてもよい。リビング重合としては、リビングアニオン重合、リビングカチオン重合、リビングラジカル重合等が挙げられる。得られる重合体の重量平均分子量および構造の制御や重合操作が容易という観点から、リビング重合による重合反応が好ましく、リビングアニオン重合による重合反応がより好ましい。 As a polymerization reaction for obtaining a polymer solution, any of radical polymerization, anion polymerization, cation polymerization, coordination anion polymerization, coordination cation polymerization, living polymerization and the like may be used. Examples of living polymerization include living anion polymerization, living cation polymerization, and living radical polymerization. From the viewpoint of easy control of the weight average molecular weight and structure of the resulting polymer and easy polymerization operation, a polymerization reaction by living polymerization is preferable, and a polymerization reaction by living anion polymerization is more preferable.
 次いで、本発明の排水の再利用方法について、図1に示す再利用システムを使用する場合を例示しながら、説明する。図1は、本発明の排水の再利用方法が適用される再利用システムの一例を示す図である。
 図1に示す再利用システムは、凝固タンク1と、析出タンク2と、酸貯蔵タンク3と、遠心分離装置4とを備える。
Next, the wastewater recycling method of the present invention will be described with reference to the case of using the recycling system shown in FIG. FIG. 1 is a diagram showing an example of a reuse system to which the wastewater reuse method of the present invention is applied.
The recycling system shown in FIG. 1 includes a coagulation tank 1, a precipitation tank 2, an acid storage tank 3, and a centrifuge 4.
(相分離工程)
 相分離工程は、重合反応により得られた重合体溶液などの、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで、相分離させて、重合体クラムを析出させる工程である。
(Phase separation process)
In the phase separation step, a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component, such as a polymer solution obtained by a polymerization reaction, is mixed with an alkaline aqueous solution to cause phase separation. In this step, polymer crumb is precipitated.
 たとえば、図1に示す再利用システムを用いる場合には、アルカリ性水溶液の入った凝固タンク1に、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液を連続的に供給し、混合することで、相分離を生じさせ、凝固により重合体クラムを析出させる。あるいは、金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液を連続的に凝固タンク1に供給し、凝固タンク1中で、アルカリ性水溶液を用いたスチームストリッピングにより、これらを混合することで相分離を生じさせ、凝固により重合体クラムを析出させてもよい。この際には、重合体クラムが析出するとともに、均一系触媒に由来の金属成分を含有するセラム水が生成することとなるが、本発明の再利用方法は、このような排水のうち少なくとも一部を、相分離工程において再利用するものである。 For example, when the recycling system shown in FIG. 1 is used, a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component is continuously supplied to a coagulation tank 1 containing an alkaline aqueous solution. , Mixing causes phase separation, and polymer crumb is precipitated by coagulation. Alternatively, a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component is continuously supplied to the coagulation tank 1, and these are removed by steam stripping using an alkaline aqueous solution in the coagulation tank 1. Mixing may cause phase separation, and polymer crumb may be precipitated by coagulation. At this time, polymer crumb is precipitated and serum water containing a metal component derived from the homogeneous catalyst is generated. The recycling method of the present invention is at least one of such waste water. Part is reused in the phase separation process.
 そのため、相分離工程においては、重合体溶液に相分離を生じさせ、重合体クラムを析出させる際に、アルカリ性水溶液を用いるものであるが、本発明においては、後述するように、このようなアルカリ性水溶液のうち、少なくとも一部として、相分離工程により生じた排水としてのセラム水を用いるものである。 Therefore, in the phase separation step, an alkaline aqueous solution is used to cause phase separation in the polymer solution and precipitate the polymer crumb. In the present invention, as described later, Of the aqueous solution, as at least a part, serum water as waste water generated by the phase separation process is used.
 アルカリ性水溶液を形成するために用いる塩基としては、特に限定されないが、たとえば、トリエチルアミン、エチレンジアミンなどの有機塩基や水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムなどのアルカリ金属の炭酸塩;アンモニアなどの無機塩基が挙げられる。なかでも、アルカリ金属の水酸化物が好ましく使用できる。相分離工程において用いる、アルカリ性水溶液のpHは、特に限定されないが、好ましくは9.5~12.5の範囲である。なお、相分離工程においては、クラム化剤を併用してもよい。 The base used to form the alkaline aqueous solution is not particularly limited, and examples thereof include organic bases such as triethylamine and ethylenediamine, and alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; sodium carbonate, Examples include alkali metal carbonates such as potassium carbonate and sodium hydrogen carbonate; and inorganic bases such as ammonia. Of these, alkali metal hydroxides can be preferably used. The pH of the alkaline aqueous solution used in the phase separation step is not particularly limited, but is preferably in the range of 9.5 to 12.5. In the phase separation step, a crumbing agent may be used in combination.
(析出工程)
 析出工程は、上記相分離工程により生じた、均一系触媒に由来の金属成分を含有する排水(セラム水)について、pH調整を行うことで、均一系触媒に由来の金属成分を含む析出物を析出させることで、このような析出物を含む水分散液を得る工程である。
(Precipitation process)
In the precipitation step, the pH of the waste water containing the metal component derived from the homogeneous catalyst (serum water) generated by the phase separation step is adjusted to adjust the precipitate containing the metal component derived from the homogeneous catalyst. This is a step of obtaining an aqueous dispersion containing such precipitates by precipitation.
 たとえば、図1に示す再利用システムを用いる場合には、凝固タンク1から排出された、均一系触媒に由来の金属成分を含有する排水(セラム水)を、析出タンク2に連続的に供給し、析出タンク2中において、酸貯蔵タンク3から供給される酸成分と混合することで、pH調整を行う。そして、析出タンク2中において、均一系触媒に由来の金属成分を含む析出物を析出させることで、このような析出物を含む水分散液とすることができる。 For example, when the recycling system shown in FIG. 1 is used, waste water (serum water) containing a metal component derived from the homogeneous catalyst discharged from the coagulation tank 1 is continuously supplied to the precipitation tank 2. In the precipitation tank 2, the pH is adjusted by mixing with the acid component supplied from the acid storage tank 3. And in the precipitation tank 2, it can be set as the aqueous dispersion containing such a deposit by depositing the deposit containing the metal component derived from a homogeneous catalyst.
 なお、均一系触媒に由来の金属成分を含む析出物は、通常、浮遊した状態にて、水分散液中に分散して含まれることとなる。そのため、析出工程においては、析出タンク2中における、均一系触媒に由来の金属成分を含む析出物の析出、および、このような析出物を含む水分散液の、析出タンク2からの排出は、連続的に行うことができる。 In addition, the deposit containing the metal component derived from the homogeneous catalyst is usually dispersed and contained in the aqueous dispersion in a floating state. Therefore, in the precipitation step, the precipitation of the precipitate containing the metal component derived from the homogeneous catalyst in the precipitation tank 2 and the discharge of the aqueous dispersion containing such a precipitate from the precipitation tank 2 are as follows: Can be done continuously.
 pH調整に用いる酸成分としては、特に限定されないが、たとえば、塩酸、硝酸、硫酸などが挙げられ、これらは水溶液の状態で添加することが好ましい。 The acid component used for pH adjustment is not particularly limited, and examples thereof include hydrochloric acid, nitric acid, sulfuric acid and the like, and these are preferably added in the form of an aqueous solution.
 析出工程において、pH調整を行う際における、pH調整後のpH値としては特に限定されず、排水中に含まれる均一系触媒に由来の金属成分の種類に応じて適宜選択すればよいが、たとえば、均一系触媒として有機アルミニウム化合物を使用し、そのため、排水中に含まれる金属成分が、主としてアルミニウムである場合には、アルミニウムを含む析出物を適切に析出させるという観点より、pH調整後のpH値を6~8の範囲とすることが好ましく、6.5~7.5の範囲とすることがより好ましく、6.8~7.2の範囲とすることがさらに好ましい。 In the precipitation step, the pH value after pH adjustment when performing pH adjustment is not particularly limited, and may be appropriately selected according to the type of metal component derived from the homogeneous catalyst contained in the waste water. In the case where an organoaluminum compound is used as a homogeneous catalyst, and the metal component contained in the waste water is mainly aluminum, the pH after pH adjustment from the viewpoint of appropriately depositing precipitates containing aluminum The value is preferably in the range of 6 to 8, more preferably in the range of 6.5 to 7.5, and even more preferably in the range of 6.8 to 7.2.
 また、図1に示す再利用システムは、同図に示すように、入口pH計5、出口pH計6、および流量制御弁7を備える。入口pH計5は、析出タンク2に対し上流側に設置され、析出タンク2に供給される排水(セラム水)のpH値を測定可能となっている。一方、出口pH計6は、析出タンク2に対し下流側に設置され、析出タンク2から排出される、金属成分に由来の析出物を含む水分散液のpH値を測定可能となっている。さらに、流量制御弁7は、酸貯蔵タンク3から析出タンク2への酸成分の供給量を制御するための制御弁である。 1 includes an inlet pH meter 5, an outlet pH meter 6, and a flow control valve 7, as shown in the figure. The inlet pH meter 5 is installed on the upstream side of the precipitation tank 2 and can measure the pH value of waste water (serum water) supplied to the precipitation tank 2. On the other hand, the outlet pH meter 6 is installed on the downstream side with respect to the precipitation tank 2 and can measure the pH value of the aqueous dispersion containing precipitates derived from the metal components discharged from the precipitation tank 2. Further, the flow rate control valve 7 is a control valve for controlling the supply amount of the acid component from the acid storage tank 3 to the precipitation tank 2.
 そして、図1に示す再利用システムによれば、出口pH計6の測定値と、pH調整後における目標pH値とを比較し、出口pH計6の測定値(実際のpH値)が、目標pH値から外れている場合には、入口pH計5による測定値と、出口pH計6による測定値とに基づいて、流量制御弁7を調整することで、析出タンク2への酸成分の供給量を調整できるものであり、これにより、析出工程におけるpH調整を適切に行うことができるものである。 Then, according to the reuse system shown in FIG. 1, the measured value of the outlet pH meter 6 is compared with the target pH value after pH adjustment, and the measured value (actual pH value) of the outlet pH meter 6 is the target value. When the pH value deviates from the pH value, the flow rate control valve 7 is adjusted based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6 to supply the acid component to the precipitation tank 2. The amount can be adjusted, whereby the pH can be adjusted appropriately in the precipitation step.
 また、このような入口pH計5、出口pH計6、および流量制御弁7によるpH値の調整は、これらの測定値を利用し、自動的に行われるような態様とすることが好ましく、フィードバック制御により行うことが特に好ましい。この場合において、このようなフィードバック制御は、不図示の制御装置CTRにより行うような態様とすることが好ましい。 In addition, it is preferable that the pH value adjustment by the inlet pH meter 5, the outlet pH meter 6, and the flow rate control valve 7 is automatically performed using these measured values, and feedback. It is particularly preferable to carry out by control. In this case, it is preferable that such feedback control is performed by a control device CTR (not shown).
 フィードバック制御においては、たとえば、制御装置CTRにより、出口pH計6のpH値と、pH調整後における目標pH値との差ΔpH(ΔpH=出口pH計6のpH値-目標pH値)を算出し、算出した差ΔpHの値と、入口pH計5における測定値とに基づいて、流量制御弁7を制御することで、析出タンク2への酸成分の供給量を自動調整するような態様とすることができる。 In feedback control, for example, the control device CTR calculates the difference ΔpH between the pH value of the outlet pH meter 6 and the target pH value after pH adjustment (ΔpH = pH value of the outlet pH meter 6−target pH value). The supply amount of the acid component to the precipitation tank 2 is automatically adjusted by controlling the flow rate control valve 7 based on the calculated difference ΔpH value and the measured value at the inlet pH meter 5. be able to.
 たとえば、pH調整後における目標pH値が7.5である場合において、出口pH計6による測定値が8である場合、すなわち、差ΔpHが+0.5である場合には、流量制御弁7を制御し、析出タンク2への酸成分の供給量を増加させる制御が行われる。また、この際における、析出タンク2への酸成分の供給量の増加幅は、入口pH計5による測定値と、出口pH計6による測定値とに基づいて算出される。あるいは、pH調整後における目標pH値が7.5である場合において、出口pH計6による測定値が7である場合、すなわち、差ΔpHが-0.5である場合には、流量制御弁7を制御し、析出タンク2への酸成分の供給量を減少させる制御が行われる。また、この際における、析出タンク2への酸成分の供給量の減少幅も、入口pH計5による測定値と、出口pH計6による測定値とに基づいて算出される。 For example, when the target pH value after pH adjustment is 7.5 and the measured value by the outlet pH meter 6 is 8, that is, when the difference ΔpH is +0.5, the flow control valve 7 is turned on. Control is performed to increase the supply amount of the acid component to the precipitation tank 2. In this case, the increase amount of the supply amount of the acid component to the precipitation tank 2 is calculated based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6. Alternatively, when the target pH value after pH adjustment is 7.5 and the measured value by the outlet pH meter 6 is 7, that is, when the difference ΔpH is −0.5, the flow control valve 7 Is controlled to reduce the supply amount of the acid component to the precipitation tank 2. At this time, the decrease amount of the supply amount of the acid component to the precipitation tank 2 is also calculated based on the measured value by the inlet pH meter 5 and the measured value by the outlet pH meter 6.
 なお、酸成分の供給量を自動調整する際における調整量は、過去の測定値に基づいて自動算出するような態様とすることができ、この際には、水温ごとに設定された制御マップあるいは補正値や、析出工程における処理量ごとに設定された制御マップあるいは補正値、さらには、水温および処理量ごとに設定された制御マップあるいは補正値などを制御装置CTRに記憶させておき、これを参照することで、酸成分の供給量を自動調整する際における調整量を制御するような態様としてもよい。さらに、これら制御マップや補正値は、過去の測定値から、制御装置CTRにより自動算出されるような態様としてもよい。 It should be noted that the adjustment amount when automatically adjusting the supply amount of the acid component can be automatically calculated based on the past measurement value, and in this case, a control map set for each water temperature or A control map or correction value set for each processing amount in the precipitation process, a correction map, or a control map or correction value set for each water temperature and processing amount is stored in the control device CTR. It is good also as an aspect which controls the adjustment amount in the case of referring automatically and adjusting the supply amount of an acid component. Furthermore, these control maps and correction values may be automatically calculated by the control device CTR from past measurement values.
(遠心分離工程)
 遠心分離工程は、上記析出工程により得られた、析出物が分散した水分散液について、遠心分離操作を行うことで、析出物を分離する工程である。
(Centrifugation process)
A centrifugation process is a process of isolate | separating a precipitate by performing centrifugation operation about the aqueous dispersion liquid which the precipitate disperse | distributed obtained by the said precipitation process.
 たとえば、図1に示す再利用システムを用いる場合には、析出タンク2から連続的に排出される、析出物が分散した水分散液を、遠心分離装置4に連続的に供給し、遠心分離装置4により連続的に遠心分離操作を行うことで、析出物が分散した水分散液を、析出物と、分離液(上澄み液)とに分離する。 For example, when the reuse system shown in FIG. 1 is used, an aqueous dispersion in which precipitates are continuously discharged from the precipitation tank 2 is continuously supplied to the centrifugal separator 4 and the centrifugal separator is provided. The aqueous dispersion in which the precipitate is dispersed is separated into the precipitate and the separation liquid (supernatant liquid) by continuously performing the centrifugal separation operation according to 4.
 遠心分離装置4としては、連続的に遠心分離操作を行うことができる装置であればよく、特に限定されないが、析出物が分散した水分散液中から、析出物をより適切に分離することができるという点より、デカンタ型遠心分離装置を用いることが好ましい。デカンタ型遠心分離装置としては、たとえば、図2に示すような、外側回転筒と、外側回転筒内に相対回転自在に設けられた、スクリューコンベアを有するデカンタ型遠心分離装置を好適に用いることができる。 The centrifugal separator 4 is not particularly limited as long as it is an apparatus that can continuously perform a centrifugal operation. However, the precipitate can be more appropriately separated from the aqueous dispersion in which the precipitate is dispersed. It is preferable to use a decanter type centrifuge from the point that it can be performed. As the decanter-type centrifuge, for example, a decanter-type centrifuge having a screw conveyor, which is provided in an outer rotary cylinder and is relatively rotatable within the outer rotary cylinder, as shown in FIG. 2, is preferably used. it can.
 図2に示すデカンタ型遠心分離装置は、図2中における矢印の方向に回転可能な外側回転筒41と、外側回転筒41と同軸上で、かつわずかな回転差を有して回転可能なスクリューコンベア42と、析出物が分散した水分散液を供給するためのフィードチューブ43と、固形物排出口44と、液面を調整するダムプレート45と、を備える。図2中、符号46は、駆動モーター、符号47は、ギアボックスであり、駆動モーター46、ギアボックス47の作用により、外側回転筒41およびスクリューコンベア42は、図2における矢印の方向に任意の速度で回転可能となっている。また、スクリューコンベア42は、らせん状に形成されたスクリュー羽根48を備えている。 The decanter type centrifuge shown in FIG. 2 includes an outer rotating cylinder 41 that can rotate in the direction of the arrow in FIG. 2, and a screw that is coaxial with the outer rotating cylinder 41 and that can rotate with a slight rotational difference. A conveyor 42, a feed tube 43 for supplying an aqueous dispersion in which precipitates are dispersed, a solid material discharge port 44, and a dam plate 45 for adjusting the liquid level are provided. In FIG. 2, reference numeral 46 denotes a drive motor, and reference numeral 47 denotes a gear box. By the action of the drive motor 46 and the gear box 47, the outer rotary cylinder 41 and the screw conveyor 42 are arbitrarily arranged in the direction of the arrow in FIG. 2. It can rotate at speed. The screw conveyor 42 includes screw blades 48 formed in a spiral shape.
 そして、図2に示すデカンタ型遠心分離装置を用いた場合における遠心分離操作について説明すると、まず、析出物が分散した水分散液が、スクリューコンベア42内に設けられたフィードチューブ43を通って供給口49から、高速回転する外側回転筒41内に連続的に供給され、外側回転筒41の回転により、水分散液に高遠心力が与えられることにより、外側回転筒41内壁に水分散液中の析出物が、沈降分離される。そして、沈降分離された析出物は、外側回転筒41と同軸上で、かつわずかな回転差を有して回転するスクリューコンベア42のスクリュー羽根48によって掻き寄せられて順次、固形物排出口44の方向に進み、固形物排出口44から、デカンタ型遠心分離装置の外部に連続的に排出される。一方、析出物が除去されることにより得られる分離液は、固形物排出口44とは反対側に設けられた、液面を調整するためのダムプレート45からオーバーフローして排出される。 Then, the centrifugal operation in the case of using the decanter type centrifugal separator shown in FIG. 2 will be described. First, an aqueous dispersion in which precipitates are dispersed is supplied through a feed tube 43 provided in the screw conveyor 42. Through the mouth 49, the outer rotating cylinder 41 is continuously supplied into the outer rotating cylinder 41 that rotates at a high speed, and a high centrifugal force is applied to the aqueous dispersion by the rotation of the outer rotating cylinder 41. The precipitate is separated by settling. Then, the sediment separated and settled is scraped by the screw blades 48 of the screw conveyor 42 that is coaxial with the outer rotary cylinder 41 and rotates with a slight rotational difference, and sequentially reaches the solid discharge port 44. In the direction, the solid material is continuously discharged from the solid material outlet 44 to the outside of the decanter centrifuge. On the other hand, the separation liquid obtained by removing the precipitate overflows and is discharged from a dam plate 45 provided on the side opposite to the solid discharge port 44 for adjusting the liquid level.
 なお、図2に示すデカンタ型遠心分離装置においては、遠心分離操作における遠心力は、外側回転筒41の回転によって発生するため、外側回転筒41の回転数に応じて、遠心力を調整することができる。そのため、図2に示すデカンタ型遠心分離装置を使用する場合には、外側回転筒41の回転数を調整することで、遠心分離操作における遠心力を上記範囲とすればよい。なお、外側回転筒41の回転数と、遠心力との間には、下記式(1)が成り立つ。
  RCF=R×N/874  (1)
 (上記式(1)中、RCFは遠心力(単位:G)、Rは外側回転筒1の回転半径(単位:m)、Nは1分間当たりの回転数(単位:rpm)である。)
In the decanter-type centrifuge shown in FIG. 2, the centrifugal force in the centrifugal operation is generated by the rotation of the outer rotating cylinder 41, so that the centrifugal force is adjusted according to the rotational speed of the outer rotating cylinder 41. Can do. Therefore, when the decanter-type centrifuge shown in FIG. 2 is used, the centrifugal force in the centrifugal operation may be set within the above range by adjusting the rotational speed of the outer rotating cylinder 41. The following formula (1) is established between the rotational speed of the outer rotating cylinder 41 and the centrifugal force.
RCF = R × N 2/874 (1)
(In the above formula (1), RCF is the centrifugal force (unit: G), R is the radius of rotation of the outer rotating cylinder 1 (unit: m), and N is the number of rotations per minute (unit: rpm).)
 また、図2に示すデカンタ型遠心分離装置を使用する場合における、デカンタ型遠心分離装置への析出物が分散した水分散液の供給速度は、たとえば、フィードチューブ43に析出物が分散した水分散液を送るためのポンプの送液圧力を制御することで、上記範囲に調整すればよい。 In addition, when the decanter centrifuge shown in FIG. 2 is used, the supply speed of the aqueous dispersion in which the precipitate is dispersed to the decanter centrifuge is, for example, the water dispersion in which the precipitate is dispersed in the feed tube 43. What is necessary is just to adjust to the said range by controlling the liquid feeding pressure of the pump for sending a liquid.
 外側回転筒41とスクリューコンベア42の回転数の差は、適宜設定すればよいが、好ましくは、1分間当たり15回転以下であり、より好ましくは12回転以下である。外側回転筒41とスクリューコンベア42の回転数の差をこのような範囲とすることにより、析出物が分散した水分散液からの、析出物の除去をより適切に行うことができる。また、遠心分離処理を行う際における温度は、好ましくは30~100℃、より好ましくは70~90℃である。 The difference in rotational speed between the outer rotating cylinder 41 and the screw conveyor 42 may be set as appropriate, but is preferably 15 rotations or less per minute, and more preferably 12 rotations or less. By setting the difference between the rotational speeds of the outer rotating cylinder 41 and the screw conveyor 42 within such a range, it is possible to more appropriately remove the precipitate from the aqueous dispersion in which the precipitate is dispersed. Further, the temperature at the time of the centrifugation treatment is preferably 30 to 100 ° C., more preferably 70 to 90 ° C.
(再利用工程)
 再利用工程は、上記遠心分離工程における遠心分離操作により得られた分離液を、上述した相分離工程に用いる、アルカリ性水溶液の調製のために再利用する工程である。
(Reuse process)
The reuse step is a step of reusing the separation liquid obtained by the centrifugation operation in the centrifugation step for the preparation of the alkaline aqueous solution used in the above-described phase separation step.
 たとえば、図1に示す再利用システムを用いる場合には、遠心分離装置4から連続的に排出された、析出物が分離された分離液を、必要に応じて塩基を添加した後に、相分離工程に用いられる凝固タンク1に戻すことで、相分離工程において再利用する。なお、析出物が分離された分離液に、非水溶性有機溶媒成分が含まれる場合には、蒸留法など公知の方法により非水溶性有機溶媒成分を除去した後に、凝固タンク1に戻すような態様としてもよい。 For example, when the reuse system shown in FIG. 1 is used, a phase separation step is performed after adding a base as necessary to the separation liquid separated from the precipitate continuously discharged from the centrifugal separator 4. It is reused in the phase separation process by returning to the coagulation tank 1 used for the above. In addition, when the water-insoluble organic solvent component is contained in the separated liquid from which the precipitate is separated, the water-insoluble organic solvent component is removed by a known method such as a distillation method and then returned to the coagulation tank 1. It is good also as an aspect.
 本発明の再利用方法によれば、上記した析出工程および遠心分離工程を経ることにより、相分離工程により生じた、均一系触媒に由来する金属成分を含む排水中から、均一系触媒に由来する金属成分を適切に除去できるものである。そのため、このような排水を、相分離工程に再利用した場合でも、配管などに詰まりが発生してしまうという問題や、得られる重合体中における、均一系触媒に由来の金属成分の含有割合が高くなり、得られる重合体の品質が低下してしまうという問題を有効に解決できるものである。そして、その結果として、相分離工程により生じた、均一系触媒に由来する金属成分を含む排水を有効に再利用することができ、これにより生産性の向上を可能とするものである。 According to the recycling method of the present invention, it is derived from the homogeneous catalyst from the waste water containing the metal component derived from the homogeneous catalyst, which is generated by the phase separation process, through the precipitation step and the centrifugal separation step described above. A metal component can be appropriately removed. Therefore, even when such wastewater is reused in the phase separation process, the problem of clogging in piping and the like, and the content ratio of the metal component derived from the homogeneous catalyst in the obtained polymer are It is possible to effectively solve the problem that the quality of the obtained polymer is lowered due to the increase. As a result, the waste water containing the metal component derived from the homogeneous catalyst generated by the phase separation step can be effectively reused, thereby improving the productivity.
 また、図1に示す再利用システムは、遠心分離装置4の下流側に、電導度計8を備えるものであり、電導度計8により、析出物が分離され、再利用に供される分離液の電導度が測定可能となっている。 In addition, the reuse system shown in FIG. 1 includes an electric conductivity meter 8 on the downstream side of the centrifugal separator 4, and the precipitate is separated by the electric conductivity meter 8 and used for reuse. The electrical conductivity of can be measured.
 図1に示す再利用システムによれば、電導度計8により、再利用に供される分離液の電導度を測定することにより、測定された電導度から、再利用に供される分離液中における、均一系触媒に由来する金属成分の残存量を測定できるものである。そして、図1に示す再利用システムにおいては、測定された均一系触媒に由来する金属成分の残存量に応じて、析出工程におけるpH調整条件および/または遠心分離工程における遠心分離条件を、自動的に制御するものである。 According to the reuse system shown in FIG. 1, by measuring the conductivity of the separated liquid to be reused by the conductivity meter 8, the measured conductivity is used to separate the separated liquid to be reused. The residual amount of the metal component derived from the homogeneous catalyst can be measured. In the recycling system shown in FIG. 1, the pH adjustment conditions in the precipitation step and / or the centrifugation conditions in the centrifugation step are automatically changed according to the measured residual amount of the metal component derived from the homogeneous catalyst. To control.
 たとえば、電導度計8により測定された電導度が、所定の規定値より高くなった場合(電導度計8から求められる、均一系触媒に由来する金属成分の残存量が、所定の規定値より高くなった場合)には、上述した制御装置CTRを介して、遠心分離装置4に対し、遠心分離の回転数(図2に示すデカンタ型遠心分離装置を使用する場合には、外側回転筒41の回転数)を増加させる制御を自動的に行うような態様とすることができる。この際における、遠心分離の回転数の増加幅は、電導度計8により測定された電導度の値に応じて設定される。 For example, when the conductivity measured by the conductivity meter 8 becomes higher than a predetermined specified value (the residual amount of the metal component derived from the homogeneous catalyst, which is obtained from the conductivity meter 8, is less than the predetermined specified value). In the case of using a decanter type centrifuge as shown in FIG. 2, the outer rotating cylinder 41 is used for the centrifuge 4 via the control device CTR described above. The number of rotations) can be automatically controlled. In this case, the increase in the number of rotations of the centrifugation is set according to the value of the conductivity measured by the conductivity meter 8.
 あるいは、電導度計8により測定された電導度が、所定の規定値より高くなった場合における別の制御態様として、上述した制御装置CTRにより、上記した析出工程におけるpH調整後における目標pH値を、より低い値に再設定する制御を行うような態様とすることもでき、このような制御は、上述した遠心分離装置4における遠心分離の回転数の増加制御と併せて行うこともできる。なお、制御装置CTRにより、析出工程におけるpH調整後における目標pH値が、より低い値に再設定された場合には、出口pH計6による測定値と、目標pH値との差ΔpH(ΔpH=出口pH計6のpH値-目標pH値)は、通常、プラスの値をとなるため、上述したフィードバック制御などの自動制御により、析出タンク2への酸成分の供給量を増加させる制御が行われる。 Alternatively, as another control mode when the conductivity measured by the conductivity meter 8 is higher than a predetermined specified value, the target pH value after pH adjustment in the above-described precipitation step is performed by the control device CTR described above. Further, it is possible to adopt a mode in which control for resetting to a lower value is performed, and such control can be performed in combination with the above-described increase control of the rotation speed of the centrifuge in the centrifuge 4. When the target pH value after pH adjustment in the precipitation process is reset to a lower value by the controller CTR, the difference ΔpH (ΔpH = ΔpH) between the measured value by the outlet pH meter 6 and the target pH value. Since the pH value of the outlet pH meter 6 minus the target pH value is normally a positive value, control for increasing the supply amount of the acid component to the precipitation tank 2 is performed by automatic control such as the feedback control described above. Is called.
 また、たとえば、電導度計8により測定された電導度が、所定の規定値に対し、第1の所定値以下の値だけ高くなった場合には、上述した遠心分離装置4における遠心分離の回転数を増加させる制御のみを行い、電導度計8により測定された電導度が、所定の規定値に対し、第1の所定値より大きい値であり、かつ、第2の所定値(第2の所定値>第1の所定値)以下の値だけ高くなった場合には、上述したpH調整後における目標pH値を再設定する制御を行うような態様とすることが好ましい。さらには、電導度計8により測定された電導度が、所定の規定値に対し、第2の所定値を超えて高くなった場合には、上述した遠心分離装置4における遠心分離の回転数を増加させる制御、および上述したpH調整後における目標pH値を再設定する制御の両方を行ってもよい。この場合においては、電導度計8により測定された電導度の値に応じて、pH調整後における目標pH値を再設定する際の、再設定後の目標pH値の値を決定すればよく、たとえば、電導度計8により測定された電導度の値が高いほど、再設定後の目標pH値の値を低く設定することができる。 Further, for example, when the conductivity measured by the conductivity meter 8 is higher than the predetermined specified value by a value equal to or less than the first predetermined value, the rotation of the centrifuge in the centrifuge 4 described above. Only the control for increasing the number is performed, and the conductivity measured by the conductivity meter 8 is larger than the first predetermined value with respect to the predetermined specified value, and the second predetermined value (second When the predetermined value> the first predetermined value) is increased, it is preferable that the control for resetting the target pH value after the pH adjustment described above is performed. Furthermore, when the conductivity measured by the conductivity meter 8 is higher than the second predetermined value with respect to the predetermined specified value, the rotational speed of the centrifugal separation in the centrifugal separator 4 described above is set. You may perform both the control to increase, and the control which resets the target pH value after pH adjustment mentioned above. In this case, the value of the target pH value after resetting may be determined when resetting the target pH value after pH adjustment according to the value of the conductivity measured by the conductivity meter 8, For example, the higher the conductivity value measured by the conductivity meter 8, the lower the target pH value after resetting.
 また、上述した遠心分離装置4における遠心分離の回転数を増加させる制御、および上述したpH調整後における目標pH値を再設定する制御をした後において、電導度計8により測定された電導度が、所定の規定値未満となった場合には、遠心分離の回転数を段階的に低下させる制御や、pH調整後における目標pH値を、段階的に高い値に再設定する制御を自動的に行うような態様とすることが望ましい。さらに、上述した遠心分離装置4における遠心分離の回転数を増加させる制御、および上述したpH調整後における目標pH値を再設定する制御が行われた場合には、何らかの理由により、均一系触媒に由来する金属成分の除去効率が低下している場合もあるため、その旨のアラームを発出することで、管理者等に報知するような態様としてもよい。 In addition, the conductivity measured by the conductivity meter 8 after the control for increasing the rotation speed of the centrifugal separation in the centrifugal separator 4 described above and the control for resetting the target pH value after the pH adjustment described above are performed. When it becomes less than the specified value, the control to reduce the rotational speed of the centrifugation step by step and the control to reset the target pH value after pH adjustment to a high value step by step automatically It is desirable to make it the aspect which performs. Further, when the control for increasing the rotation speed of the centrifugal separation in the centrifugal separator 4 described above and the control for resetting the target pH value after the pH adjustment described above are performed, for some reason, the homogeneous catalyst is used. Since the removal efficiency of the derived metal component may be lowered, it may be configured to notify an administrator or the like by issuing an alarm to that effect.
 本発明の再利用方法においては、このような電導度測定に基づく自動制御を行うことにより、均一系触媒に由来する金属成分を含む排水中からの、均一系触媒に由来する金属成分の除去をより安定して行うことができるものであり、これにより、このような排水の再利用をより適切に行うことができるものである。より具体的には、このような排水を、相分離工程に再利用した場合でも、配管などに詰まりが発生してしまうという問題や、得られる重合体中における、均一系触媒に由来の金属成分の含有割合が高くなってしまい、得られる重合体の品質が低下してしまうという問題を、より適切かつ安定的に防止しながら、このような排水の再利用を効果的に行うことができるものである。特に、このような電導度測定に基づく自動制御を行うことにより、何らかの理由により、均一系触媒に由来する金属成分の除去効率が低下した場合でも、適切に対応することができる。 In the reuse method of the present invention, the metal component derived from the homogeneous catalyst is removed from the waste water containing the metal component derived from the homogeneous catalyst by performing automatic control based on such conductivity measurement. It can be performed more stably, and thus, such wastewater can be reused more appropriately. More specifically, even when such wastewater is reused in the phase separation process, problems such as clogging in piping and the like, and metal components derived from homogeneous catalysts in the obtained polymer Such a wastewater can be effectively reused while preventing the problem that the content ratio of the polymer becomes high and the quality of the resulting polymer is deteriorated more appropriately and stably. It is. In particular, by performing such automatic control based on the conductivity measurement, even when the removal efficiency of the metal component derived from the homogeneous catalyst is lowered for some reason, it is possible to appropriately cope with it.
 以上、本発明の再利用方法について詳細に説明したが、本発明の再利用方法は、図1に示す再利用システムを用いる態様や、図2に示す遠心分離装置を用いる態様に何ら限定されるものではない。 As mentioned above, although the reuse method of this invention was demonstrated in detail, the reuse method of this invention is limited to the aspect which uses the reuse system shown in FIG. 1, and the aspect which uses the centrifuge apparatus shown in FIG. It is not a thing.
 以下に、実施例および比較例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
<実施例1>
 塩化アルミニウムと、水酸化ナトリウム水溶液とを混合することで、Al(OH)濃度が18,000重量ppmである、pH=10.7の水酸化アルミニウム水溶液を調製した。
 なお、上記にて調製した水酸化アルミニウム水溶液は、次に説明する排水(セラム水)に相当するものとして、調製した。すなわち、上記にて調製した水酸化アルミニウム水溶液は、金属成分を含む均一系触媒としての有機アルミニウム化合物を含有するポリブタジエン重合体溶液に対し、アルカリ性水溶液としての水酸化ナトリウム水溶液を混合することで相分離させた際に得られる、排水(セラム水)に相当するものとして、調製した。
<Example 1>
By mixing aluminum chloride and an aqueous sodium hydroxide solution, an aqueous aluminum hydroxide solution having an Al (OH) 3 concentration of 18,000 ppm by weight and pH = 10.7 was prepared.
In addition, the aluminum hydroxide aqueous solution prepared above was prepared as what corresponds to the waste_water | drain (serum water) demonstrated below. That is, the aqueous aluminum hydroxide solution prepared above is phase-separated by mixing an aqueous sodium hydroxide solution as an alkaline aqueous solution with a polybutadiene polymer solution containing an organoaluminum compound as a homogeneous catalyst containing a metal component. It was prepared as one corresponding to the waste water (serum water) obtained at the time.
 次いで、上記にて調製した水酸化アルミニウム水溶液に対し、塩酸水溶液を所定量添加することで、pH=7.0に調整したところ、水溶液中に、水酸化アルミニウムに由来する析出物が析出し、水酸化アルミニウムに由来する析出物が浮遊した水分散液を得た。水分散液中の析出物の濃度を測定したところ、18,000重量ppmであった。 Next, the aqueous solution of aluminum hydroxide prepared above was adjusted to pH = 7.0 by adding a predetermined amount of aqueous hydrochloric acid solution, and precipitates derived from aluminum hydroxide were precipitated in the aqueous solution. An aqueous dispersion in which precipitates derived from aluminum hydroxide were suspended was obtained. When the concentration of the precipitate in the aqueous dispersion was measured, it was 18,000 ppm by weight.
 次いで、上記にて得られた、水酸化アルミニウムに由来する析出物が浮遊した水分散液に対し、温度80℃、遠心力1,500G、容量50mlの条件にて、180秒間の遠心分離操作を行ったところ、上澄み液(分離液)容量が33ml、沈殿物容量が17mlである遠心分離液を得た。そして、得られた遠心分離液について、上澄み液(分離液)中の析出物の濃度を測定したところ、210重量ppmであり、沈殿物中の析出物の濃度は、9.3重量%であり、遠心分離による析出物の回収率は、98%以上であった。なお、本実施例において、各液中の析出物の濃度は、各液の水を除去する前の重量と、100℃、5分間加熱することで、水を除去した後の析出物の重量とから求めた。そして、得られた上澄み液(分離液)を、金属成分を含む均一系触媒としての有機アルミニウム化合物を含有するポリブタジエン重合体溶液の凝固プロセス中に、連続的に投入したところ、配管の詰まりや、重合体中におけるアルミニウム濃度の上昇は認められなかった。 Next, the aqueous dispersion in which the precipitate derived from aluminum hydroxide was suspended was subjected to a centrifugal separation operation for 180 seconds at a temperature of 80 ° C., a centrifugal force of 1,500 G, and a volume of 50 ml. As a result, a centrifuge liquid having a supernatant liquid (separate liquid) volume of 33 ml and a precipitate volume of 17 ml was obtained. And about the obtained centrifuge liquid, when the density | concentration of the deposit in a supernatant liquid (separated liquid) was measured, it is 210 weight ppm, and the density | concentration of the deposit in a deposit is 9.3 weight%. The collection rate of the precipitates by centrifugation was 98% or more. In addition, in a present Example, the density | concentration of the precipitate in each liquid is the weight before removing the water of each liquid, and the weight of the precipitate after removing water by heating at 100 degreeC for 5 minutes. I asked for it. And when the obtained supernatant liquid (separated liquid) was continuously added during the solidification process of the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component, clogging of piping, An increase in the aluminum concentration in the polymer was not observed.
 実施例1の結果より、金属成分を含む均一系触媒としての有機アルミニウム化合物を含有するポリブタジエン重合体溶液に対し、アルカリ性水溶液としての水酸化ナトリウム水溶液を混合することで相分離させた際に得られる、排水(セラム水)に対し、本発明の再利用方法を適用することにより、均一系触媒に起因する金属成分であるアルミニウムの含有量が低く抑えられた上澄み液(分離液)を好適に得ることができるものといえる。そのため、本発明の再利用方法によれば、このような排水(セラム水)を、相分離工程に再利用した場合でも、配管などに詰まりが発生してしまうという問題や、得られる重合体中における、均一系触媒に由来の金属成分の含有割合が高くなり、得られる重合体の品質が低下してしまうという問題を有効に防止しつつ、排水(セラム水)の再利用を好適に行うことができるものといえる。 From the result of Example 1, it is obtained when the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component is phase-separated by mixing an aqueous sodium hydroxide solution as an alkaline aqueous solution. By applying the recycling method of the present invention to waste water (serum water), a supernatant liquid (separated liquid) in which the content of aluminum, which is a metal component resulting from a homogeneous catalyst, is kept low is suitably obtained. It can be said that it is possible. Therefore, according to the recycling method of the present invention, even when such waste water (serum water) is reused in the phase separation process, problems such as clogging in piping and the like, and in the obtained polymer The wastewater (serum water) is preferably reused while effectively preventing the problem that the content ratio of the metal component derived from the homogeneous catalyst in this is high and the quality of the resulting polymer is reduced. Can be said.
<比較例1>
 実施例1と同様にして、水酸化アルミニウム水溶液を調製し、pH=7.0に調整することにより得られた、析出物の濃度が18,000重量ppmである水分散液を、遠心分離操作を行わずに、金属成分を含む均一系触媒としての有機アルミニウム化合物を含有するポリブタジエン重合体溶液の凝固プロセス中に、連続的に投入したところ、配管の詰まりが発生してしまい、また、重合体中におけるアルミニウム濃度が上昇してしまう結果となった。
<Comparative Example 1>
In the same manner as in Example 1, an aqueous dispersion having a precipitate concentration of 18,000 ppm by weight was prepared by preparing an aqueous aluminum hydroxide solution and adjusting the pH to 7.0. When the polybutadiene polymer solution containing the organoaluminum compound as a homogeneous catalyst containing a metal component is continuously fed during the solidification process, the piping is clogged. As a result, the aluminum concentration inside increased.
1… 凝固タンク
2… 析出タンク
3… 酸貯蔵タンク
4… 遠心分離装置
5… 入口pH計
6… 出口pH計
7… 流量制御弁
8… 電導度計
DESCRIPTION OF SYMBOLS 1 ... Coagulation tank 2 ... Deposition tank 3 ... Acid storage tank 4 ... Centrifugal separator 5 ... Inlet pH meter 6 ... Outlet pH meter 7 ... Flow control valve 8 ... Conductivity meter

Claims (7)

  1.  金属成分を含む均一系触媒を用いた重合反応により得られた重合体溶液と、アルカリ性水溶液とを混合することで相分離させる相分離工程において生じる、前記金属成分を含む排水の再利用方法であって、
     相分離により生じた前記排水について、pH調整を行うことで、前記排水に含まれる前記金属成分を含む析出物を析出させることで、前記析出物が分散した水分散液を得る析出工程と、
     前記析出物が分散した水分散液について、遠心分離操作を行うことで、前記析出物を分離する遠心分離工程と、
     前記遠心分離操作により得られた分離液を、前記相分離工程に用いる、アルカリ性水溶液の調製のために再利用する再利用工程と、を備える排水の再利用方法。
    This is a method for recycling wastewater containing a metal component, which occurs in a phase separation step in which a polymer solution obtained by a polymerization reaction using a homogeneous catalyst containing a metal component is mixed with an alkaline aqueous solution. And
    About the wastewater generated by phase separation, by performing pH adjustment, a precipitation step of obtaining an aqueous dispersion in which the precipitate is dispersed by precipitating the precipitate containing the metal component contained in the wastewater;
    For the aqueous dispersion in which the precipitate is dispersed, a centrifugal separation step for separating the precipitate by performing a centrifugal separation operation;
    A wastewater recycling method comprising: a separation step of reusing a separation liquid obtained by the centrifugation operation for the preparation of an alkaline aqueous solution, which is used in the phase separation step.
  2.  前記遠心分離工程の後に、前記遠心分離操作により得られた分離液の電導度を測定する工程をさらに備え、
     前記分離液の電導度に応じて、前記析出工程におけるpH調整条件および/または前記遠心分離工程における遠心分離条件を変更する請求項1に記載の排水の再利用方法。
    After the centrifugation step, further comprising the step of measuring the conductivity of the separation liquid obtained by the centrifugation operation,
    The method for reusing wastewater according to claim 1, wherein the pH adjustment conditions in the precipitation step and / or the centrifugation conditions in the centrifugation step are changed according to the conductivity of the separation liquid.
  3.  前記均一系触媒が、有機アルミニウム化合物である請求項1または2に記載の排水の再利用方法。 The method for recycling wastewater according to claim 1 or 2, wherein the homogeneous catalyst is an organoaluminum compound.
  4.  前記重合体溶液が、ポリブタジエン溶液である請求項3に記載の排水の再利用方法。 The method for recycling wastewater according to claim 3, wherein the polymer solution is a polybutadiene solution.
  5.  前記遠心分離工程における遠心分離を、デカンタ型遠心分離装置を用いて行う請求項1~4のいずれかに記載の排水の再利用方法。 The method for recycling wastewater according to any one of claims 1 to 4, wherein the centrifugal separation in the centrifugal separation step is performed using a decanter type centrifugal separator.
  6.  前記アルカリ性水溶液が、アルカリ金属の水酸化物の水溶液である請求項1~5のいずれかに記載の排水の再利用方法。 The method for recycling wastewater according to any one of claims 1 to 5, wherein the alkaline aqueous solution is an aqueous solution of an alkali metal hydroxide.
  7.  前記析出工程におけるpH調整後のpH値が、6~8の範囲である請求項1~6のいずれかに記載の排水の再利用方法。 The method for recycling wastewater according to any one of claims 1 to 6, wherein the pH value after pH adjustment in the precipitation step is in the range of 6 to 8.
PCT/JP2019/004003 2018-02-14 2019-02-05 Waste water reutilization method WO2019159752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-024066 2018-02-14
JP2018024066 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159752A1 true WO2019159752A1 (en) 2019-08-22

Family

ID=67619873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004003 WO2019159752A1 (en) 2018-02-14 2019-02-05 Waste water reutilization method

Country Status (2)

Country Link
TW (1) TW201942068A (en)
WO (1) WO2019159752A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823194B1 (en) * 1969-03-05 1973-07-11
JPS5450088A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Purification of liquid polybutadiene
JPS6178451A (en) * 1984-09-25 1986-04-22 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator
JPH07292035A (en) * 1994-04-22 1995-11-07 Ube Ind Ltd Polymerizing method for conjugated diene
JPH0924372A (en) * 1995-07-13 1997-01-28 Mitsui High Tec Inc Solid-liquid separation method of waste liquid, and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823194B1 (en) * 1969-03-05 1973-07-11
JPS5450088A (en) * 1977-09-29 1979-04-19 Ube Ind Ltd Purification of liquid polybutadiene
JPS6178451A (en) * 1984-09-25 1986-04-22 Mitsubishi Kakoki Kaisha Ltd Centrifugal separator
JPH07292035A (en) * 1994-04-22 1995-11-07 Ube Ind Ltd Polymerizing method for conjugated diene
JPH0924372A (en) * 1995-07-13 1997-01-28 Mitsui High Tec Inc Solid-liquid separation method of waste liquid, and device therefor

Also Published As

Publication number Publication date
TW201942068A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP5111101B2 (en) Bulk polymerization process
CN110563870B (en) Industrial production method of synthetic rubber and industrial device for implementing method
AU2006232824B2 (en) Method and device for producing concentrated polymer solutions
JP2000514491A (en) Polymer recovery
KR101477936B1 (en) Use of a catalyst slurry preparation system
WO2019159752A1 (en) Waste water reutilization method
CA2956548A1 (en) Improved process for treating oil sands fine tailings with flocculant compositions
JP5851827B2 (en) Coagulation sedimentation equipment
Tan et al. The terpolymerization of ethylene and propylene with isoprene via THF-containing half-sandwich scandium catalysts: A new kind of ethylene–propylene–diene rubber and its functionalization
JPWO2016157646A1 (en) Rapid stirrer control method and rapid stirrer
JP2009503171A (en) Polymerization process for producing polyolefins
KR102431670B1 (en) Method for producing hydrogenated conjugated diene-based polymer latex
CN104558311B (en) Catalyst charge device and application for ultra-high molecular weight polyethylene polymerization technique
JPH02255708A (en) Production of styrene-based polymer
JPS60161408A (en) Preparation of diene polymer
JP2001179069A (en) Stirring apparatus, coagulation separation method of polymer
JP2013075969A (en) Method of producing styrenic polymer and stirring apparatus
WO2020175267A1 (en) Catalyst removal method, and method for producing polymer
JPH0147220B2 (en)
JP2019136678A (en) Wastewater recycling method
JP2010132728A (en) Method of producing polymer particle
JP2012193258A (en) METHOD FOR PRODUCING SOLID CATALYST COMPONENT FOR α-OLEFIN POLYMERIZATION AND CATALYST FOR α-OLEFIN POLYMERIZATION
PL71213B1 (en)
JPS5844683B2 (en) Fukinitsukeishiyokubaino tenkahouhou
JP2700189B2 (en) Method for producing styrenic polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP