WO2019159729A1 - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
WO2019159729A1
WO2019159729A1 PCT/JP2019/003789 JP2019003789W WO2019159729A1 WO 2019159729 A1 WO2019159729 A1 WO 2019159729A1 JP 2019003789 W JP2019003789 W JP 2019003789W WO 2019159729 A1 WO2019159729 A1 WO 2019159729A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
solar cell
film
cell module
layer
Prior art date
Application number
PCT/JP2019/003789
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 石井
厚志 福島
辻 雅司
知宏 吉原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2020500396A priority Critical patent/JPWO2019159729A1/en
Publication of WO2019159729A1 publication Critical patent/WO2019159729A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This disclosure relates to a solar cell module.
  • Patent Document 1 discloses a solar cell module including a spherically curved base material. The curved solar cell module is installed in a portion of the mobile body that receives sunlight, such as the roof of an automobile.
  • Patent Document 2 discloses providing a buffer layer made of a gel-like resin in order to relieve thermal stress and local load of the resin substrate and suppress damage to the solar battery cell.
  • a solar cell module including a resin base material and a buffer layer is manufactured by laminating (thermocompression bonding) a resin base material, a solar battery cell, a sealing layer, a buffer film constituting the buffer layer, and the like.
  • laminating thermocompression bonding
  • An object of the present disclosure is to suppress wrinkles of the buffer layer in the solar cell module including the curved resin base material and the buffer layer.
  • a solar battery module that is one embodiment of the present disclosure is provided with a plurality of solar cells and a first surface side of the plurality of solar cells, and has a curved shape that is convex in a direction opposite to the plurality of solar cells.
  • a first base material made of resin, a second base material provided on the second surface side of the solar battery cell and having a curved shape convex toward the first base material, and the first base material,
  • the buffer layer is composed of a plurality of buffer films arranged in a single sheet.
  • wrinkles of the buffer layer can be suppressed in the solar cell module including the curved resin base material and the buffer layer. According to the solar cell module according to the present disclosure, since the wrinkles of the buffer layer are suppressed, for example, the appearance of the module is improved and the influence on the sealing performance due to the wrinkles can be suppressed.
  • FIG. 1 It is a perspective view of the solar cell module which is an example of embodiment. It is a figure which shows a part of AA line cross section in FIG. It is a figure for demonstrating the suitable length of a buffer film. It is sectional drawing of the solar cell module which is another example of embodiment. It is sectional drawing of the solar cell module which is another example of embodiment. It is sectional drawing of the solar cell module which is another example of embodiment. It is a perspective view when the solar cell module which is another example of embodiment is seen from the light-receiving side (front side). It is sectional drawing which shows a part of BB sectional drawing in FIG.
  • the solar cell module according to the present disclosure is preferably mounted on a moving body, for example, a vehicle such as an automobile, a bicycle (electrically assisted bicycle), a train, or a ship.
  • a vehicle such as an automobile, a bicycle (electrically assisted bicycle), a train, or a ship.
  • vehicles include motorcycles, automobiles, electric cars, and hybrid cars.
  • the solar cell module is mounted on a car, an electric car, or a hybrid car, it is preferably installed on a roof, and may be installed on a sunroof.
  • FIG. 1 is a perspective view of a solar cell module 10 as an example of the embodiment
  • FIG. 2 is a diagram showing a part of a cross section taken along line AA in FIG.
  • the solar cell module 10 includes a plurality of solar cells 11, a first base material 12 provided on the first surface side of each solar cell 11, and each solar cell. And a second base material 13 provided on the second surface side of the cell 11.
  • the first base material 12 is a resin base material having a convex curved shape in the opposite direction to the solar battery cell 11.
  • the second base material 13 is a base material having a convex curved shape in the direction of the first base material 12, that is, in the direction of the solar battery cell 11.
  • the first surface of each solar cell 11 is a light receiving surface on which sunlight is mainly incident
  • the second surface is a back surface (a surface opposite to the light receiving surface).
  • the terms of the light receiving surface and the back surface are also used for the solar cell module 10 and a photoelectric conversion unit described later.
  • the solar cell module 10 is provided between the first base 12 and the plurality of solar cells 11, and the sealing layer 14 filled between the first base 12 and the second base 13.
  • Buffer layer 20 The sealing layer 14 has a function of sealing the solar cell 11 so as not to be exposed to oxygen, water vapor, or the like by being in close contact with the solar cell 11 to restrain the movement of the cell.
  • the sealing layer 14 is composed of sealing layers 14A and 14B.
  • the buffer layer 20 is a layer having a shear modulus lower than that of the sealing layer 14. As will be described in detail later, the buffer layer 20 is constituted by a plurality of buffer films 21 arranged in a single sheet.
  • the solar cell module 10 illustrated in FIG. 1 has a rectangular shape in plan view that is curved so as to be convex toward the light receiving surface, but the shape can be changed as appropriate, such as a circular shape in plan view, a polygonal shape other than a quadrangle, and the like. It may be.
  • the solar cell module 10 includes, from the light receiving surface side, a first base material 12, a buffer layer 20, a sealing layer 14A, a plurality of solar cells 11 (in this specification, sometimes referred to as “cell group”), sealing
  • the layer 14B and the second base material 13 have a stacked structure in which the layers are stacked in order.
  • the solar battery cell 11 has a photoelectric conversion unit that generates carriers by receiving sunlight, and a collecting electrode that collects carriers from the photoelectric conversion units.
  • the photoelectric conversion unit illustrated in FIG. 1 has a substantially square shape in plan view.
  • a semiconductor substrate such as crystalline silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, and an amorphous semiconductor And a transparent conductive layer formed on the layer.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer are sequentially formed on one surface of an n-type single crystal silicon substrate, and an i-type amorphous material is formed on the other surface.
  • a structure in which a silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer are sequentially formed can be exemplified.
  • the collecting electrode includes a light receiving surface electrode formed on the light receiving surface of the photoelectric conversion unit and a back electrode formed on the back surface of the photoelectric conversion unit.
  • one of the light-receiving surface electrode and the back electrode is an n-side electrode, and the other is a p-side electrode.
  • the photovoltaic cell 11 may have each electrode of n side and p side only in the back surface side of a photoelectric conversion part.
  • the back electrode is formed in a larger area than the light receiving surface electrode, it can be said that the back surface of the solar battery cell 11 is a surface having a larger area of the collector electrode or a surface on which the collector electrode is formed.
  • a light receiving surface electrode and a back surface electrode are provided as collector electrodes.
  • the collector electrode preferably includes a plurality of finger electrodes formed over a wide range on the photoelectric conversion unit.
  • the back electrode may be an electrode that covers substantially the entire back surface of the photoelectric conversion unit.
  • the plurality of finger electrodes are thin wire electrodes formed substantially parallel to each other.
  • the collector electrode may include a bus bar electrode that is wider than the finger electrode and substantially orthogonal to each finger electrode.
  • the plurality of solar cells 11 are disposed between the base materials along the curved surfaces of the curved first base material 12 and second base material 13 and are sealed by the sealing layer 14. Adjacent solar cells 11 are connected in series by the wiring member 30, whereby a string 33 of the solar cells 11 is formed.
  • the wiring member 30 is generally called an interconnector or a tab, and is electrically connected to the collector electrode. It is preferable that a plurality (generally, two or three) of the wiring members 30 are attached to the light receiving surface and the back surface of the solar battery cell 11. When a bus bar electrode is provided as a collector electrode, the wiring member 30 is attached along the bus bar electrode.
  • the wiring member 30 is provided from one side end of one solar cell 11 to the other side end of the other solar cell 11 among adjacent solar cells 11.
  • the wiring member 30 bends in the thickness direction of the module between the adjacent solar cells 11, and a resin adhesive or solder is used for the light receiving surface of one solar cell 11 and the back surface of the other solar cell 11. Each is joined.
  • the solar cell module 10 preferably has a plurality of strings 33 in which a plurality of solar cells 11 are arranged in a line. On both sides of each string 33 in the longitudinal direction, wiring members 31 and 32 are provided so as not to overlap the solar battery cells 11.
  • the transition wiring member 31 is a wiring member that connects the strings 33 to each other.
  • the transition wiring member 32 is a wiring member that connects the string 33 and the output wiring.
  • a terminal box 34 incorporating a bypass diode or the like may be provided on the back side of the solar cell module 10. In this case, the output wiring member to which the crossover wiring member 32 is connected is drawn into the terminal box 34.
  • the solar cell module 10 may include a frame that is attached along the peripheral edges of the first base material 12 and the second base material 13.
  • the frame protects the peripheral edge of each substrate, and may be used when the solar cell module 10 is attached to the moving body.
  • the solar cell module 10 may be a so-called frameless module having no frame.
  • first base material 12 the second base material 13, the sealing layer 14, and the buffer layer 20 will be described in detail.
  • 1st base material 12 is a base material which covers the light-receiving surface of the cell group which consists of a plurality of photovoltaic cells 11, and protects each photovoltaic cell 11.
  • the 1st base material 12 has a curved surface, and is curving so that it may become convex in the direction opposite to a cell group.
  • a translucent resin substrate is used for the first substrate 12.
  • the first substrate 12 generally has a larger thermal expansion than the glass substrate, and is easily deformed when subjected to an impact. For this reason, it is preferable to provide the buffer layer 20 which relieve
  • Examples of the resin base material applied to the first base material 12 include acrylic resins such as polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), and polymethyl methacrylate (PMMA), and polytetrafluoroethylene (PTFE). ), Polystyrene (PS), and at least one selected from polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • An example of a suitable resin substrate is a resin substrate mainly composed of polycarbonate (PC), for example, a PC substrate having a PC content of 90% by weight or more, or 95% to 100% by weight. . Since PC is excellent in impact resistance and translucency, it is suitable as a constituent material of the first substrate 12.
  • the thickness of the resin base material constituting the first base material 12 is not particularly limited, but is preferably 0.001 mm to 15 mm in consideration of impact resistance (protection of the solar battery cell 11), lightness, light transmittance, and the like. 0.5 mm to 10 mm is more preferable.
  • the resin base material is also called a resin substrate or a resin film. In general, a thick substrate is called a resin substrate, and a thin substrate is called a resin film. However, in the solar cell module 10, it is not necessary to clearly distinguish between the two.
  • the total light transmittance of the resin substrate is preferably high, for example, 80% to 100%, or 85% to 95%. The total light transmittance is measured based on JIS K7361-1 (Plastic-Test method for total light transmittance of transparent material-Part 1: Single beam method).
  • the first base material 12 has a spherically curved shape and is curved in the X direction and the Y direction.
  • the X direction and the Y direction mean arbitrary directions orthogonal to each other in a plan view (two-dimensional plane) of the first base material 12 (the same applies to the second base material 13).
  • the Z direction means a direction orthogonal to the X direction and the Y direction (XY plane). That is, the first substrate 12 has a convex curved shape in the direction opposite to the cell group in the XZ cross section and the YZ cross section.
  • the first base material 12 has a curved surface having a three-dimensional curvature, for example, a shape obtained by cutting out a part of a spherical surface.
  • the curvature of the first base 12 is not particularly limited, and may be constant throughout the first base 12 or may be different in some areas.
  • the first substrate 12 may have a flat portion in part, but preferably has a shape that is gently curved as a whole.
  • a part of the first base 12 may have a curved portion that is convex toward the cell group.
  • the cell group, the sealing layer 14, and the buffer layer 20 sandwiched between them are also positioned on the light receiving surface side. It is curved. Note that the sealing layer 14 that is melted or softened in the laminating process easily curves following the curved surface of the substrate.
  • the 2nd base material 13 is a base material which covers the back surface of a cell group, and protects each photovoltaic cell 11.
  • FIG. The 2nd base material 13 has a curved surface, and is curving so that it may become convex in the direction of a cell group.
  • a translucent base material may be used similarly to the first base material 12, and an opaque base material is used when light reception from the back side of the solar cell module 10 is not assumed. May be.
  • the total light transmittance of the second substrate 13 is not particularly limited, and may be 0%.
  • a glass substrate or a metal substrate may be used as the second substrate 13, but in order to reduce the weight of the solar cell module 10, it is preferable to use a resin substrate.
  • the resin base material applied to the second base material 13 is, for example, an acrylic resin such as cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), polystyrene (PS), polyethylene terephthalate ( PET), polyester such as polyethylene naphthalate (PEN), phenol resin, and at least one selected from epoxy resins.
  • an acrylic resin such as cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), polystyrene (PS), polyethylene terephthalate ( PET), polyester such as polyethylene naphthalate (PEN), phenol resin, and at least one selected from epoxy resins.
  • the second base material 13 may be made of fiber reinforced plastic (FRP).
  • FRP fiber reinforced plastic
  • FRP is preferably used in applications that require impact resistance and light weight.
  • Suitable FRP includes glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), aramid fiber reinforced plastic (AFRP) and the like.
  • the thickness of the second substrate 13 is not particularly limited, but is preferably 0.05 mm or more. Moreover, when the 2nd base material 13 is comprised by FRP, the 2nd base material 13 has the thickness more than the thickness for one fiber. In consideration of protection of the solar battery cell 11, lightness, etc., 0.05 mm to 10 mm is preferable, and 0.05 mm to 5 mm is more preferable. The thickness of the second substrate 13 is preferably equal to or greater than the thickness of the first substrate 12.
  • the second base material 13 has a spherically curved shape like the first base material 12, and is curved in the X direction and the Y direction.
  • the second base material 13 has a convex curved shape in the same direction as the first base material 12 in the XZ cross section and the YZ cross section.
  • the 2nd base material 13 has a curved surface with a three-dimensional curvature like the shape which cut out a part of spherical surface, for example.
  • the curvature of the second substrate 13 may be constant over the entire region or may be different in some regions, but preferably has the same curvature as that of the first substrate 12.
  • the second base material 13 may have a flat portion in part, but preferably has a shape that is gently curved as a whole.
  • the sealing layer 14 is provided between the 1st base material 12 and the 2nd base material 13 as above-mentioned, and forms the resin layer (sealing layer) which seals each photovoltaic cell 11. As shown in FIG.
  • the sealing layer 14 includes a sealing layer 14A provided between the first base material 12 and the cell group, and a sealing layer 14B provided between the second base material 13 and the cell group.
  • the layer structure of the sealing layer 14 is preferably formed by a laminating process described later using resin films that respectively constitute the sealing layers 14A and 14B.
  • the same resin film may be used for sealing layer 14A, 14B, and a different resin film may be used.
  • the resin applied to the sealing layer 14 include polyolefin, ethylene vinyl acetate copolymer, and epoxy resin.
  • the resin may have a cross-linked structure.
  • the total light transmittance of the sealing layer 14A is preferably high, for example, 80% or more.
  • the total light transmittance of the sealing layer 14B is not particularly limited.
  • the sealing layer 14B may contain a color material such as a white pigment or a black pigment, and the total light transmittance may be 0%. .
  • the buffer layer 20 is a layer having a shear modulus lower than that of the sealing layer 14 as described above.
  • the buffer layer 20 has a function of relieving a load applied to the solar battery cell 11 due to thermal expansion of the first base material 12, deformation of the first base material 12 due to a collision of falling objects, and suppressing damage to the solar battery cell 11. Have.
  • the stress acting on the wiring material 30 can be reduced and the breakage of the wiring material 30 can be suppressed.
  • the shear elastic modulus of the buffer layer 20 is preferably 0.1 MPa or less, and more preferably 0.001 MPa to 0.1 MPa. If the shear modulus of the buffer layer 20 is within the range, the stress relaxation effect can be obtained while ensuring the mechanical strength, manufacturing characteristics, and the like required for the solar cell module 10. The shear modulus is measured using a rheometer.
  • the buffer layer 20 is provided between the first substrate 12 and the cell group so as to cover the entire cell group.
  • the size of the buffer layer 20 is, for example, the same as the size of the first substrate 12 or slightly smaller than the first substrate 12.
  • the solar cell module 10 has the structure where the 1st base material 12, the buffer layer 20, and the sealing layer 14 were laminated
  • a stacked structure in which the buffer layer 20 is sandwiched between the sealing layers 14 may be employed.
  • the buffer layer 20 is composed of a plurality of buffer films 21 arranged in a single sheet. That is, the buffer layer 20 is divided into a plurality.
  • the buffer layer 20 is formed using the buffer film of the same magnitude
  • the size per film is smaller than the size of the first base material 12, and the film is formed of the first base material 12. It becomes easy to follow the curved surface. For this reason, the wrinkle of the buffer film 21 can be suppressed and the beautiful buffer layer 20 which followed the curved surface of the 1st base material 12 is formed.
  • the buffer film 21 is preferably made of a transparent and highly flexible resin.
  • the buffer film 21 may be composed of a gel-like resin, or may be composed of a hydrogel containing water or an organogel containing an organic solvent.
  • the buffer film 21 is configured using at least one selected from, for example, an acrylic gel, a urethane gel, and a silicone gel. Among these, it is preferable to use a silicone gel excellent in durability.
  • the thickness of the buffer film 21 is not particularly limited, but is preferably 0.1 mm to 10 mm or less, more preferably 0.2 mm to 1.0 mm or less in consideration of protection of the solar battery cell 11, light transmittance, and the like.
  • the total light transmittance of the buffer film 21 is preferably high, for example, 80% to 100%, or 85% to 95%.
  • the plurality of buffer films 21 are generally made of the same material and have the same dimensions.
  • the buffer film 21 is, for example, a belt-like or strip-like film, and has a substantially constant width.
  • the buffer layer 20 is preferably composed of 2 to 10 buffer films 21, preferably 3 to 5 buffer films 21, although it varies depending on the dimensions, curvature, etc. of the first substrate 12. It is more preferable.
  • the buffer film 21 is arranged so that the longitudinal direction thereof is along the longitudinal direction of the string 33.
  • Each buffer film 21 has a size covering one or more rows of strings 33. In the example shown in FIG. 1, each buffer film 21 is formed in a size that covers the strings 33 for two rows.
  • a gap exists between the adjacent buffer films 21A and 21B, that is, the boundary portion 22 between the two buffer films 21A and 21B, and the sealing layer 14 is filled in the gap.
  • the buffer film 21 may be adjacently disposed in a state in which the end portions of the film are abutted with each other so that no gap is formed in the boundary portion 22.
  • the width of the gap is preferably 1 mm or less.
  • the said clearance gap may exist in all the boundary parts 22 of each buffer film 21, and may exist in a part.
  • the edge part of the buffer film 21 is provided in the position which overlaps the clearance gap between the photovoltaic cells 11 and the thickness direction of a module.
  • the said edge part can be made not conspicuous and a favorable external appearance is obtained.
  • it becomes easy to conceal the end portion by providing a concealing layer 23 described later.
  • the boundary portion 22 when a gap is formed at the boundary portion 22 between the two buffer films 21, it is preferable to provide the boundary portion 22 at a position overlapping the gap between the solar cells 11. For example, all the boundary portions 22 (the gaps between the two buffer films 21A and 21B) are provided at positions corresponding to the gaps.
  • FIG. 3 is a view for explaining a preferred X-direction length W 2 of the buffer film 21.
  • the buffer film 21 has, for example, a substantially rectangular shape in plan view, and is arranged in the X direction, which is one of the surface directions of the first base material 12.
  • a suitable X-direction length W 2 of the buffer film 21 is not more than the length W 1 of the first base material 12.
  • the length W 1 is Arbitrary points arranged in the Y direction of the first base material 12 orthogonal to the X direction are A1, A2, A line connecting A1 and A2 with the shortest distance along the surface of the first substrate 12 is ⁇ , and the length of the line ⁇ is L 1 ,
  • the points drawn by drawing a perpendicular ⁇ of the same length along the surface of the first base 12 from A1, A2 to the line ⁇ are B1, B2, A line connecting B1 and B2 with the shortest distance along the surface of the first substrate 12 is ⁇ , the length of the line ⁇ is L 2 ,
  • the solar cell module 10 having the above-described configuration can be manufactured by laminating a cell group using the first base material 12, the second base material 13, the sealing layer 14, and the plurality of buffer films 21.
  • the first base material 12, the plurality of buffer films 21, the sealing layer 14A, the cell group, the sealing layer 14B, and the second base material 13 arranged in a sheet on the heater are arranged in this order.
  • sealing layer 14A, 14B is supplied with the form of a film.
  • This laminated body is heated to a temperature at which the resin films constituting the sealing layers 14A and 14B are softened or melted in a vacuum state, for example. Then, heating is continued while pressing each component member on the heater side under atmospheric pressure, and each member is thermocompression-bonded (laminated). In this way, the solar cell module 10 is obtained.
  • the plurality of buffer films 21 are arranged in a single sheet shape in a state where the respective end portions are abutted with each other or with a small gap in the boundary portion 22. At this time, it is preferable to form the laminate by disposing each buffer film 21 so that the boundary portion 22 overlaps the gap between the solar cells 11.
  • the buffer layer 20 is formed using the plurality of buffer films 21, the size per film is smaller than the size of the first substrate 12, and each buffer It becomes easy to make the film 21 follow the curved surface of the first substrate 12. For this reason, the wrinkle of the buffer film 21 can be suppressed and the beautiful buffer layer 20 which followed the curved surface of the 1st base material 12 is formed.
  • the solar cell module 10 has, for example, a good appearance and an excellent sealing performance.
  • the form illustrated in FIG. 4 is common to the form illustrated in FIG. 2 in that there is a gap at the boundary portion 22 between the adjacent buffer films 21A and 21B, and the gap is filled with the sealing layer 14A.
  • the boundary part 22 is provided in the position which overlaps with the photovoltaic cell 11 and the thickness direction of a module. In this case, in order to make the boundary portion 22 inconspicuous, it may be provided at a position overlapping the wiring member 30. By disposing the buffer film 21 so that the wiring member 30 is located on the back side of the boundary portion 22, the boundary portion 22 is less noticeable.
  • FIG. 5 The form illustrated in FIG. 5 is common to the form illustrated in FIG. 2 in that the boundary portion 22 of the buffer films 21A and 21B is provided at a position overlapping the gap between the solar cells 11.
  • a concealing layer 23 that covers the end portion (boundary portion 22) of the buffer film 21 is provided between the first base material 12 and the buffer layer 20.
  • the hiding layer 23 hides the boundary portion 22 so that it cannot be seen from the first base material 12 side, and improves the appearance of the module.
  • the concealing layer 23 is formed with an area covering the entire boundary portion 22. Moreover, it is preferable to provide the concealment layer 23 only in a range that does not overlap with the solar battery cells 11, that is, in a range that overlaps the gap between the solar battery cells 11. In this case, it is possible to prevent the light incident on the solar battery cell 11 from being blocked by the masking layer 23.
  • the concealing layer 23 is formed, for example, in a planar view along the gap between the solar cells 11.
  • the masking layer 23 may be provided by arranging a film constituting the masking layer 23 between the first base material 12 and the buffer layer 20, and may be formed on the surface of the buffer layer 20 by printing or the like. Preferably, it is formed on the back surface of the first substrate 12. On the back surface of the first substrate 12, the constituent material of the concealing layer 23 may be printed, or a film constituting the concealing layer 23 may be attached. Or you may form the concealment layer 23 in the back surface of the 1st base material 12 by vapor deposition, sputtering, etc. FIG.
  • the thickness of the masking layer 23 is not particularly limited, but an example of a suitable thickness is about 0.5 to 20 ⁇ m.
  • the hiding layer 23 may have a structure in which a color material is dispersed in a resin film, or a structure in which a color material is bound with a resin binder.
  • the color (hue, color tone), visible light absorptivity, and the like of the hiding layer 23 can be adjusted by appropriately changing the type, density, layer thickness, and the like of the color material.
  • the resin which comprises the concealment layer 23 is not specifically limited, The conventionally well-known resin binder used for printing ink can be used.
  • the color of the masking layer 23 may be adjusted to the same color as that of the solar battery cell 11 or the second base material 13.
  • the masking layer 23 is black or dark blue, black pigments such as carbon black, aniline black, titanium black, and magnetite can be used as the colorant. Further, the masking layer 23 may contain a yellow pigment, a red pigment, a blue pigment, and the like.
  • the form illustrated in FIG. 6 is different from the form illustrated in FIG. 5 in that a barrier layer 15 is provided between the buffer layer 20 and the sealing layer 14A. Moreover, in the form illustrated in FIG. 6, the films are arranged adjacent to each other with the ends of the plurality of buffer films 21 overlapping in the thickness direction of the module. Since the end portions of the two buffer films 21 ⁇ / b> A and 21 ⁇ / b> B overlap each other, there is no gap at the boundary portion 22. In the form illustrated in FIG. 6, since the barrier layer 15 exists between the buffer layer 20 and the sealing layer 14 ⁇ / b> A, the end portions of the buffer films 21 are overlapped so that no gap is formed in the boundary portion 22. It is preferable to do.
  • the barrier layer 15 is a layer having an oxygen transmission rate lower than that of the first base material 12 and has a function of suppressing the oxygen passing through the first base material 12 from acting on the solar battery cell 11.
  • the oxygen permeability of the barrier layer 15 is, for example, 200 cm 3 / m 2 ⁇ 24 h ⁇ atm or less.
  • the oxygen transmission rate is measured based on JIS K7126.
  • the barrier layer 15 preferably has a lower water vapor transmission rate than the first base material 12.
  • the barrier layer 15 covers the entire cell group and is provided between the first substrate 12 and the cell group.
  • the barrier layer 15 is composed of a plurality of barrier films 16 arranged in a single sheet. That is, the barrier layer 15 is divided into a plurality of parts, like the buffer layer 20. In this case, the wrinkles of the barrier film 16 can be suppressed, and a beautiful barrier layer 15 that follows the curved surface of the first substrate 12 is formed.
  • the barrier layer 15 may have a seam 18 where the ends of the barrier film 16 are joined together. The joint 18 is formed by joining the overlapping end portions of two adjacent barrier films 16A and 16B using an adhesive that develops an adhesive force in a laminating process.
  • the barrier film 16 may be composed of only a transparent resin film having a low oxygen permeability, and is inorganic such as a resin film and silicon oxide (silica) or aluminum oxide (alumina) formed on one surface of the resin film. You may be comprised with a compound layer.
  • suitable resin films include fluororesin films such as polyvinyl fluoride (PVF) and ethylene-tetrafluoroethylene copolymer (ETFE), and polyester films such as polyethylene terephthalate (PET).
  • the barrier film 16 is a PET film in which a vapor deposition layer such as silica is formed on one surface, for example.
  • a concealing layer 23 is provided on the back surface of the first base material 12 at a position overlapping the joint 18 of the barrier layer 15 and the boundary portion 22 of the buffer layer 20 in the thickness direction of the module. For this reason, the seam 18 and the boundary part 22 are concealed, and a good module appearance is obtained.
  • the X direction is the arrangement direction of the plurality of strings 33 described below, and is the first curve direction that is the extending direction of the first curve that protrudes toward the light receiving side.
  • the Y direction is the extending direction of the string 33, and is the second curved direction that is the extending direction of the second curved line that intersects the first curved line and is convex on the light receiving side.
  • the Z direction is the thickness direction of the solar cell modules 50, 110, and 210.
  • the solar cell modules 50, 110, and 210 have a curved shape. Therefore, the X direction, the Y direction, and the Z direction are determined for each point in the three-dimensional coordinates of the solar cell modules 50, 110, and 210.
  • the X direction of each point on the surface of the solar battery cell 11 is a tangential direction parallel to the arrangement direction of the strings 33 at that point, and the Y direction is parallel to the extending direction of the string 33 at that point. It becomes the tangential direction.
  • the Z direction is the normal direction at that point.
  • the X direction, the Y direction, and the Z direction are orthogonal to each other.
  • the X direction, the Y direction, and the Z direction on the surface of the first substrate 12 and the X direction, the Y direction, and the Z direction on the back surface of the second substrate 13 are also the X direction on the surface of the solar battery cell 11, It can be determined by the same method as the determination direction of the Y direction and the Z direction.
  • the X direction, the Y direction, and the Z direction at each point of the three-dimensional coordinates of the solar cell modules 50, 110, and 210 other than those are viewed from, for example, the Z direction (the Z direction on the surface of the first base material 12)
  • the X direction, the Y direction, and the Z direction can be determined to be the same as the portion of the surface of the first base material 12 that overlaps the point.
  • the solar cell module 50 illustrated in FIG. 7 has a curved shape that is convex on the light receiving side, as in the solar cell module 10, and is curved in the X direction and curved in the Y direction.
  • the solar cell module 50 has a substantially rectangular shape in plan view.
  • the solar cell module 50 includes a terminal box 34 on one side and the back side in the Y direction.
  • the solar cell module 50 includes a plurality of solar cells 11, a first base material 12, a second base material 13, a wiring material 30, a sealing layer 14, a barrier film 6, and a low elastic resin. Layer 7 is provided. The same configuration as that of the above-described embodiment can be applied to the solar battery cell 11, the first base material 12, the second base material 13, the wiring member 30, and the sealing layer 14.
  • the barrier film 6 is disposed on the light receiving side of the sealing layer 14 and has a linear expansion coefficient smaller than that of the first substrate 12.
  • the barrier film 6 may have any thickness.
  • the barrier film 6 is preferably 110 ⁇ m or less, more preferably 30 ⁇ m or less, further preferably 25 ⁇ m or less, and most preferably 20 ⁇ m or less.
  • a substantially circular cylindrical or frustoconical protrusion 63 in a plan view is provided so that the surface density is substantially uniform, and unevenness is provided.
  • the rear surface 62 on the back side of the barrier film 6 is provided with, for example, a substantially circular cylindrical or frustoconical protrusion 64 in a plan view so as to have a substantially uniform surface density and unevenness.
  • the protrusion provided on the light-receiving side surface of the film or the back side of the back side of the film may have an elliptical shape or a polygonal shape in plan view, or any other shape in plan view. Also good.
  • the concave portion 67 of the front surface 61 of the barrier film 6 may overlap with the protruding portion 64 that is a convex portion of the rear surface 62 of the barrier film 6.
  • the concave portion 68 of 62 may overlap the protruding portion 63 that is the convex portion of the surface 61 of the barrier film 6.
  • the recesses 67 and 68 have, for example, a substantially circular bottomed cylindrical hole or truncated cone shape in plan view.
  • the concave portions provided on the light receiving side surface of the film and the back side of the back side of the film are not limited to the shape, and may have an elliptical shape or a polygonal shape in plan view. It may have any shape, and may have any shape other than a cylinder or a truncated cone.
  • small irregularities such as undulations may exist on the outer peripheral surface and the front end surface of the protrusion provided on the light receiving side surface of the film and the back side of the back side of the film. Good.
  • small irregularities such as undulations may exist on the inner peripheral surface and bottom surface of the recesses provided on the light-receiving side surface of the film and the back side of the back side of the film, and there are no small irregularities such as undulations. May be.
  • the unevenness may be provided uniformly on the surface on the light receiving side of the film, or may be provided randomly. Further, the unevenness may be provided uniformly on the back side of the back side of the film, or may be provided randomly.
  • the barrier film 6 is formed, for example, by embossing a flat film base material having a constant thickness, and is formed by partially lifting and floating the back surface of the film base material.
  • 9 is a cross-sectional view showing a part of the CC line cross-sectional view of FIG. 7, and includes a Y-direction and a Z-direction, and represents a part of the YZ cross-section that does not pass through both the solar battery 11 and the wiring member 30.
  • FIG. As shown in FIG. 9, the barrier film 6 has irregularities in a portion that does not overlap both the solar battery cell 11 and the wiring member 30 when viewed from the thickness direction of the barrier film 6.
  • the unevenness of the barrier film 6 is provided, for example, at a position corresponding to a gap between adjacent strings 33 (a portion overlapping the gap and the thickness direction of the module). It is preferable that the barrier film 6 has unevenness in a portion between two adjacent strings 33 in the first curve direction.
  • the barrier film 6 may be composed of the same film as the barrier film 16.
  • the film may include, for example, a base film and a barrier laminate formed on the base film, and is formed by alternately providing an organic layer and an inorganic barrier layer on the base film. May be. For example, you may provide an organic layer, an inorganic barrier layer, an organic layer, and an inorganic barrier layer in that order so that each surface may mutually adjoin on one side of a base film.
  • the barrier laminate may be provided only on one side of the base film, or may be provided on both sides.
  • a barriering laminated body may be comprised by laminating
  • a film may have structural components (for example, functional layers, such as an easily bonding layer) other than a barriering laminated body and a base film. The functional layer may be disposed on the barrier laminate, between the barrier laminate and the base film, or on the side where the barrier laminate on the base film is not installed.
  • the plastic film is not particularly limited in material, thickness and the like as long as it can hold a laminate such as an organic layer and an inorganic barrier layer, and can be appropriately selected according to the purpose of use.
  • Specific examples of the resin constituting the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, Polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin And thermoplastic resins such as an alicyclic modified polycarbonate resin, a fluorene ring modified polyester resin, and an acryloyrene resin, transparent fluororesin, polyimi
  • the low elastic resin layer 7 is disposed between the first base material 12 and the barrier film 6.
  • the low elastic resin layer 7 preferably has a lower tensile elastic modulus than the first base material 12, and has a lower tensile elastic modulus than any of the first base material 12, the second base material 13, and the sealing layer 14. If present, it is more preferable.
  • the low elastic resin layer 7 is most preferable if it has a lower tensile elastic modulus than any of the first base material 12, the second base material 13, the sealing layer 14, and the barrier film 6.
  • the low elastic resin layer 7 may have the same tensile elastic modulus as that of the first base 12, and may have a higher tensile elastic modulus than the first base 12.
  • the low elastic resin layer 7 is preferably made of a gel-like translucent resin material (hereinafter simply referred to as gel), and the gel may or may not contain a solvent.
  • the gel containing a solvent include a hydrogel in which the dispersion medium is a water gel and an organogel in which the dispersion medium is an organic solvent gel.
  • the gel containing the solvent include a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, or a low molecular gel having a number average molecular weight of less than 1,000.
  • the low elastic resin layer 7 may be made of the same material as that of the buffer layer 20.
  • a polymer gel containing a solvent or a gel not containing a solvent because the movement of the plurality of solar cells 11 can be suppressed, and damage to the wiring member 30 due to the movement can be suppressed.
  • the silicone gel has flexibility that can mitigate external impacts, and it is easy to improve adhesion to the resin material constituting the substrate material or the frame body, and is excellent in moisture resistance, water resistance, and the like. Therefore, the low elastic resin layer 7 is most preferably composed of silicone gel.
  • the tensile elastic modulus of the low elastic resin layer 7 is not particularly limited, but is preferably 0.1 kPa or more and less than 5 MPa, and more preferably 1 kPa or more and 1 MPa or less.
  • the solar battery cell 11 can be easily fixed, and damage to the wiring member 30 due to the movement of the solar battery cell 11 can be suppressed.
  • the thermal stress and local load of the 1st base material 12 by a temperature change can be relieve
  • the first base material 12, the low elastic resin layer 7, the barrier film 6, the sealing layer 14, the solar cell 11 and the wiring material 30, and the second base material 13 are, for example, at a temperature of about 100 to 160 ° C. under high vacuum. Bonded and integrated by vacuum laminating performed in FIG. 10 is a diagram illustrating a method for manufacturing the solar cell module 50. Hereinafter, an outline of the vacuum laminating process will be described with reference to FIG.
  • the curved front side base material 19 that is the base material of the first base material 12 and the base material of the second base material 13 that substantially correspond to the curved shape of the product.
  • a back-side base material 25 having a curved shape is prepared.
  • the rigidity of the front side base material 19 is smaller than or substantially the same as the rigidity of the back side base material 25.
  • each of the front side and back side base substrates 19 and 25 has a curved shape in which the front side is convex on the light receiving side, and the curvature radius of the back side of the front side base substrate 19 is the surface 26 of the back side base substrate 25. It is preferable that it is larger than the curvature radius.
  • each of the front-side and back-side base materials 19 and 25 may have a curved shape that is convex to the light-receiving side as a whole, a part may be a flat plate shape, and a part is a concave shape to the light-receiving side. It may be. Moreover, it is preferable that the thickness of the front side base material 19 is thinner at the center than at the periphery.
  • Each of the front side base material 19 and the back side base material 25 is formed by, for example, injection molding.
  • the back side base material 25 the back side sheet material 41 constituting the back side portion of the sealing layer 14 with respect to the solar cells 11, the solar cells 11 and the wiring material 30 (not shown in FIG. 10), sealing A front side sheet material 42 constituting a front side portion of the stop layer 14 with respect to the solar battery cell 11, a film base material 43 that is a base material of the barrier film 6, a low elastic resin base material 45 that is a base material of the low elastic resin layer 7, and A laminated structure in which the front base material 19 is laminated in this order is disposed between a pair of silicone rubbers (diaphragms) of a vacuum laminating apparatus.
  • each of the front and back surfaces of the film base material 43 has irregularities formed by embossing or the like.
  • one or both silicone rubbers are inflated with compressed air while evacuating air between the laminated structures to the outside by evacuation, and the front side base substrate 19 is moved to the back side base substrate 25 until it cannot move.
  • the laminated structure is pressed in the thickness direction. In this process, as shown by an arrow C in FIG. 10, the film base material 43 is deformed from a flat shape to a curved shape.
  • the laminated structure is heated at a temperature of about 100 to 160 ° C. with a heater of a vacuum laminating apparatus.
  • the pressure at this high temperature causes the back side of the front side base material 19, which has lower rigidity than the back side base material 25, to bend into a shape corresponding to the surface 26 of the back side base material 25. Then, the front base material 19 and the low elastic resin base material 45 are brought into contact with no gap, and the low elastic resin base material 45 and the film base material 43 are brought into contact with no gap. Further, the front sheet material 42 and the back sheet material 41 are fused so as to seal the solar cells 11 and the wiring material 30 (not shown in FIG. 10), and the front sheet material 42 and the film base material 43 are bonded together. Glue. Further, the back side sheet material 41 and the back side base material 25 are bonded.
  • the front side base substrate 19 and the back side base substrate 25 are bonded together, and the laminated structure is integrated in a shape corresponding to the product.
  • the first base material 12 is formed from the front side base material 19
  • the second base material 13 is formed from the back side base material 25.
  • a frame is attached to the periphery of the laminated structure to prevent the gel-like low-elasticity resin layer 7 from flowing to the outside, and the solar cell module 50 is formed.
  • the back surface of the front side base material 19 is deformed so as to be along the surface 26 of the back side base material 25
  • the back surface of the front side base material may be a flat surface
  • the surface of the back side base material may be a curved surface.
  • the rigidity of the front side base material is substantially the same as or larger than that of the back side base material, and the curvature radius of the back side of the front side base material is smaller than the curvature radius of the surface of the back side base material. Also good.
  • the rigidity of the front side base material is substantially the same or larger than that of the back side base material, and the back side of the front side base material is a curved surface, while the surface of the back side base material is flat. May be. And you may deform
  • the thickness of the front side base material 19 is thinner at the center than at the periphery.
  • the thickness of the front base material to be deformed may be substantially constant.
  • the case where a pair of silicone rubbers is inflated with compressed air and the laminated structure is pressurized in the thickness direction by vacuum lamination has been described.
  • the laminated structure disposed between the pair of rubber plates may be compressed by moving the pair of rubber plates so that the distance between the pair of rubber plates is reduced by pressure using hydraulic pressure or the like.
  • the solar cell module was provided with the frame (frame) was demonstrated.
  • a portion to be a side portion of the solar cell module is provided, and after the vacuum laminating process, the low-elasticity resin layer is formed on this side portion. It may be sealed to prevent the flow of the low elastic resin layer to the outside. Or you may adhere
  • the solar cell module may not have a frame.
  • the plurality of solar battery cells 11 are arranged in a matrix in the solar battery module 50.
  • Two or more solar cells 11 arranged on the same straight line along the Y direction are connected in series by the wiring member 30.
  • the two or more solar cells 11 and the wiring member 30 connecting the two or more solar cells 11 in series constitute a string 33.
  • the solar cells 11 at one end in the Y direction are connected in series by a relay wiring, and all the solar cells 11 are connected in series.
  • the solar cell 11A disposed on the most terminal side in the Y direction and on the rightmost side in the drawing is arranged on the highest potential side, and arranged on the most terminal side in the Y direction and on the leftmost side in the drawing.
  • the provided solar battery cell 11B is disposed on the lowest potential side.
  • the solar cell disposed on the most terminal box side in the Y direction and on the rightmost side on the paper surface is disposed on the lowest potential side, and the solar cell disposed on the most terminal box side on the paper surface in the Y direction.
  • the solar battery cell disposed on the left side may be disposed on the highest potential side.
  • the solar cell module 50 includes four output wirings 32A, 32B, 32C and 32D for electrically connecting to the terminals of the terminal box 34 on the terminal box 34 side in the Y direction.
  • the outer peripheral surface of each output wiring 32A, 32B, 32C, 32D is covered with an insulating member such as an insulating film.
  • the two output wirings 32B, 32C also have a function of connecting two adjacent strings 33 in series.
  • the output wiring 32A is disposed on the rightmost side in the X direction and is electrically connected to the high potential side of the string 33 on the highest potential side.
  • the output wiring 32B is arranged in the second column from the right in the X direction, and is arranged in the third column from the right in the X direction with the solar cell 11 on the lowest potential side of the second highest potential string 33.
  • the third solar cell 11 on the highest potential side of the third highest potential string 33 is electrically connected.
  • the output wiring 32C is arranged in the fourth column from the right in the X direction and is arranged in the fifth column from the right in the X direction with the solar cell 11 on the lowest potential side of the fourth highest potential string 33.
  • the solar cell 11 on the highest potential side of the fifth highest potential string 33 is electrically connected.
  • the output wiring 32D is arranged in the sixth column from the right in the X direction and is electrically connected to the lowest potential side of the string 33 having the lowest potential.
  • the second base material 13 has a plurality of through holes (not shown).
  • Each output wiring 32A, 32B, 32C, 32D is electrically connected to a predetermined terminal of the terminal box 34 after passing through one of the through holes.
  • a bypass diode for preventing backflow is provided between the terminals in the terminal box 34. If a light-shielding object such as fallen leaves covers a specific solar cell 11, the amount of power generated by the solar cell 11 may decrease and heat may be generated.
  • the two strings 33 connected in series including the solar battery cells 11 whose power generation amount is reduced by providing the bypass diode are substantially short-circuited by the bypass diode.
  • the solar cell module 50 includes the strings 33 arranged in six rows, but the solar cell module may include strings arranged in a plurality of rows other than the six rows.
  • the solar cell module 50 is a solar cell module having a convex curved shape on the light receiving side where light mainly enters.
  • the solar cell module 50 includes a plurality of strings 33 arranged at intervals in a first curve direction (X direction) that is an extending direction of the first curve that protrudes toward the light receiving side.
  • Each string 33 intersects the first curve and is arranged at intervals in the second curve direction (Y direction) that is the extending direction of the second curve that is convex on the light receiving side.
  • a plurality of wiring members 30 that electrically connect the plurality of solar cells 11.
  • the solar cell module 50 includes a first base material 12 that is provided on the light receiving side with respect to the string 33, has a convex curved shape on the light receiving side, and is made of a translucent resin material.
  • the solar cell module 50 is provided on the back side opposite to the light receiving side with respect to the string 33, and seals the second base material 13 having a convex curved shape on the light receiving side and the plurality of strings 33.
  • positioned in is provided.
  • the solar cell module 50 includes a barrier film 6 disposed on the light receiving side of the sealing layer 14 and a low-elasticity resin layer (filler layer) 7 disposed between the first substrate 12 and the barrier film 6. Is provided.
  • the barrier film 6 has a linear expansion coefficient smaller than that of the first substrate 12.
  • the barrier film 6 has irregularities in a portion that does not overlap both the solar battery cell 11 and the wiring member 30 when viewed from the thickness direction of the barrier film 6.
  • the two or more solar cells 11 arranged on the same straight line along the Y direction and the wiring member 30 connecting the two or more solar cells 11 in series constitute a string 33. Therefore, the barrier film 6 has unevenness in a portion between two strings 33 adjacent in the X direction.
  • FIG. 11 is a diagram corresponding to FIG. 10 in the solar cell module 310 of the first reference example, and is a diagram illustrating a problem when a flat film base material 343 having no irregularities is used.
  • the same components as those in FIG. 10 are denoted by the same reference numerals as those in FIG.
  • the film base material 343 when a flat film base material 343 is used as a film base material, the film base material 343 has a shape that hardly absorbs unevenness. Therefore, when the film base material 343 is bent during the lamination process indicated by the arrow D, the film base material 343 contracts the front side sheet material 42 due to the unevenness generated on the surface of the front side sheet material 42 as the front side sheet material 42 contracts. It becomes difficult to follow smoothly. Therefore, wrinkles (not so much) 380 are easily formed on the film base material 343, and the wrinkles 380 deteriorate the appearance of the solar cell module. Further, the wrinkles 380 can be a starting point of peeling, can also be a moisture intrusion path, and can be a hotbed for deterioration.
  • a thin film may be desired, and a film having a thickness of 25 ⁇ m or less or a film having a thickness of 20 ⁇ m or less may be desired.
  • a film having a thickness of 25 ⁇ m or less or a film having a thickness of 20 ⁇ m or less may be desired.
  • the rigidity of the film is small and the film becomes weak, the film is less likely to follow the shrinkage of the front side sheet material, and there is a high risk of wrinkling.
  • the barrier film 6 has irregularities, and the film base material 43 that is the base material of the barrier film 6 has irregularities. Therefore, the film base material 43 is caused by the irregularities. It has spring properties. Therefore, the unevenness of the front side sheet material 42 that occurs as the front side sheet material 42 contracts can be absorbed by its spring property, and the force applied from the front side sheet material 42 by the spring property of the film base material 43 is applied to the film base material 43. It becomes easy to disperse globally and uniformly. Therefore, the film base material 43 is easily shrunk uniformly during the laminating process, and wrinkles are hardly generated in the film base material 43. As a result, it is possible to make the solar cell module 50 look good and hardly peel and deteriorate.
  • the filler layer provided between the first base material 12 and the barrier film 6 may be the low elastic resin layer 7 having a lower tensile elastic modulus than the first base material 12.
  • the low elastic resin layer 7 having a low tensile elastic modulus is provided between the first substrate 12 and the barrier film 6. Therefore, even if the first base 12 is a resin base having a high linear expansion coefficient, the low elastic resin layer 7 can alleviate the influence of heat shrinkage of the first base 12. Therefore, the influence of the thermal contraction of the first base material 12 becomes difficult to be transmitted to the wiring member 30, and damage to the wiring member 30 can be suppressed.
  • the unevenness may be provided on both the light receiving side surface 61 of the barrier film 6 and the back surface 62 on the back side of the barrier film 6.
  • the concave portion 67 of the front surface 61 of the barrier film 6 overlaps the protruding portion (convex portion) 64 of the rear surface 62 of the barrier film 6, and the concave portion of the rear surface 62 of the barrier film 6.
  • 68 may overlap the protruding portion (convex portion) 63 of the surface 61 of the barrier film 6.
  • a portion having a large thickness and high rigidity and a portion having a small thickness and low rigidity are less likely to be unbalanced in the barrier film 6. Therefore, the spring property of the barrier film 6 can be increased, and the effect of suppressing the generation of wrinkles can be increased.
  • the thickness of the barrier film 6 may be 110 ⁇ m or less.
  • the thickness of the barrier film 6 when the thickness of the barrier film 6 is 110 ⁇ m or less, the rigidity of the barrier film 6 is reduced, and the barrier film 6 is more easily wrinkled.
  • the thickness of the barrier film 6 When the thickness of the barrier film 6 is 25 ⁇ m or less, The barrier film 6 is more easily wrinkled. Therefore, when the thickness of the barrier film 6 is 110 ⁇ m or less, the effect of suppressing generation of wrinkles in the barrier film 6 can be increased by providing the barrier film 6 with irregularities.
  • the thickness of the barrier film 6 when the thickness of the barrier film 6 is 25 ⁇ m or less, the effect of suppressing the generation of wrinkles in the barrier film 6 can be made remarkable by providing the barrier film 6 with irregularities.
  • the irregularities may be formed on the barrier film 6 by embossing.
  • the solar cell module 110 may be formed by separation molding described below.
  • the back side base material 25 which is a base material of the 2nd base material 103
  • the back side sheet material 41 which comprises the back side part with respect to the photovoltaic cell 11 in the sealing layer 105, the photovoltaic cell 11, and a wiring material (in FIG. 12).
  • the laminated structure 180 in which the front side sheet material 42 constituting the front side portion of the sealing layer 105 with respect to the solar battery cell 11 and the film base material 43 provided with the unevenness is laminated in this order is used as a pair of vacuum laminating apparatuses. After being disposed between the silicone rubbers (diaphragms), vacuum lamination may be performed at a high temperature to form an integrated laminated structure 190 that does not include the first substrate 102.
  • the solar cell module 110 is formed by pasting the first base material 102 to the film 106 side in the thickness direction of the laminated structure 190 via the gel-like low elastic resin layer 107 at room temperature. May be. Moreover, you may bond at about 130 degreeC. Thereby, the adhesive force of the 1st base material 102 and the low elastic resin layer 107 and the low elastic resin layer 107 and the film base material 43 improves.
  • the manufacturing method of the solar cell module 110 includes a plurality of solar cells 11, a first base material 102 disposed on a light receiving side on which light mainly enters the plurality of solar cells 11, a plurality of suns. Even if it is the manufacturing method of a solar cell module provided with the 2nd base material 103 provided in the back side on the opposite side to the light reception side with respect to the battery cell 11, and the sealing layer 105 which seals the several photovoltaic cell 11.
  • seat material) 42 which is the original material of the light reception side sealing layer located in the light reception side rather than the photovoltaic cell 11 in the sealing layer 105, a plurality of In the solar cell 11, the sealing layer 105, the back side sheet material 41 that is the base material of the back side sealing layer located on the back side of the solar cell 11, and the back side base material 25 that is the base material of the second base material 103. May be laminated in this order.
  • the front side sheet material 42 and the back side sheet material 41 are melted, and the front side sheet material 42 and the back side sheet material 41 are fused while sandwiching the plurality of solar cells 11, and the back side sheet material 41 and the back side
  • a laminated structure 190 in which the plurality of solar cells 11, the sealing layer 105, and the second base material 103 are integrated may be formed by bonding the original base material 25.
  • the first base material 102 may be bonded to the opposite side to the second base material 103 in the thickness direction of the laminated structure 190 via an adhesive material.
  • the solar cell module 110 may include a film 106 between the first base material 102 and the sealing layer 105.
  • the film base material 43 which is the base material of the film 106 on the opposite side to the photovoltaic cell 11 of the front side sheet material 42, you may fuse the front side sheet material 42 and the back side sheet material 41.
  • a laminated structure 190 including the film 106 on the opposite side of the sealing layer 105 from the second base material 103 may be formed.
  • the film 106 of the solar cell module 110 may have a lower tensile elastic modulus than the first base material 102.
  • the film base material 43 may have unevenness.
  • FIG. 13 is a diagram illustrating a method for manufacturing the solar cell module 410 of the second reference example.
  • the first base material is affected by the deformation of the back side layer during laminating. 402 may be deformed such that its surface 420 undulates.
  • the sealing layer is made of a resin material in which polymers are linked by crosslinking, the crosslinking temperature of the sealing resin is likely to be higher than the heat resistance temperature of the front side base material 415. Therefore, the first base material 402 is easily affected by heat at the time of laminating, and the surface 420 of the first base material 402 is easily deformed so as to wave.
  • the first base material 102 is laminated to the laminated structure 190 through the low-elasticity resin layer 107 at room temperature, so the first base material 102 is laminated. Not affected by processing. Therefore, it can suppress or prevent that the 1st base material 102 deform
  • the manufacturing method of the solar cell module 110 demonstrated using FIG. 12 can be applied to the manufacturing method of the solar cell module containing the film which does not have an unevenness
  • the manufacturing method of the solar cell module 110 demonstrated using FIG. 12 is applicable also to the manufacturing method of the solar cell module 210 which does not contain a film.
  • FIG. 14 is a diagram for explaining the application of the method for manufacturing the solar cell module 110 shown in FIG. 12 to the manufacture of the solar cell module 210 that does not include a film.
  • the back side base material 225 which is a base material of the 2nd base material 203
  • the back side sheet material 241 which comprises the back side part with respect to the photovoltaic cell 11 in the sealing layer 205
  • a solar cell Cell 11 and wiring material (not shown in FIG. 14
  • the laminated structure 280 obtained by laminating 249 in this order is disposed between a pair of silicone rubbers (diaphragms) of a vacuum laminating apparatus, and then vacuum lamination is performed at a high temperature, so that the first substrate 202 is not included.
  • a stacked structure 290 is formed.
  • the first base material 202 is placed on the side opposite to the second base material 203 side in the thickness direction of the laminated structure 290 at a normal temperature and a gel-like low elastic resin layer 207.
  • the solar cell module 210 is formed by pasting together.
  • the front side sheet material 242 and the back side sheet material 241 are placed in a state where the sheet member 249 is arranged on the opposite side of the front side sheet material (light receiving side sheet material) 242 from the solar battery cell 11 side. Melt. Therefore, the sheet member 249 can suppress or prevent the surface of the front sheet material 242 from undulating due to laminating. Therefore, similarly to the method shown in FIG. 12, the first base material 202 is not affected by the laminating process performed at high temperature and high pressure, and the deformation of the surface of the first base material 202 can be suppressed or prevented. .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar battery module according to one embodiment is provided with multiple solar battery cells, a curved first substrate made of resin, a curved second substrate, a sealing layer packed between the first substrate and the second substrate, and a buffer layer. The buffer layer is disposed between the first substrate and the multiple solar battery cells and has a shear modulus that is lower than that of the sealing layer. The buffer layer is formed from multiple buffer films disposed in the form of a single sheet.

Description

太陽電池モジュールSolar cell module
 本開示は、太陽電池モジュールに関する。 This disclosure relates to a solar cell module.
 従来、複数の太陽電池セルからなるセル群の受光面側に設けられ、セル群と反対方向に凸の湾曲形状を有する基材を備えた太陽電池モジュールが知られている。特許文献1には、球状に湾曲した基材を備える太陽電池モジュールが開示されている。湾曲した太陽電池モジュールは、例えば自動車の屋根など、移動体の太陽光があたる部分に設置される。 Conventionally, a solar cell module provided with a base material that is provided on the light receiving surface side of a cell group composed of a plurality of solar cells and has a convex curved shape in a direction opposite to the cell group is known. Patent Document 1 discloses a solar cell module including a spherically curved base material. The curved solar cell module is installed in a portion of the mobile body that receives sunlight, such as the roof of an automobile.
 また、従来の太陽電池モジュールでは、セル群の受光面側に配置される基材としてガラス基材が広く使用されているが、モジュールの軽量化を図るために、ガラス基材に代えて樹脂基材を用いたモジュールも知られている(特許文献2参照)。特許文献2には、樹脂基板の熱応力や局所的な荷重を緩和して太陽電池セルの破損を抑制するために、ゲル状の樹脂で構成される緩衝層を設けることが開示されている。 Further, in the conventional solar cell module, a glass substrate is widely used as a substrate disposed on the light receiving surface side of the cell group. However, in order to reduce the weight of the module, a resin substrate is used instead of the glass substrate. Modules using materials are also known (see Patent Document 2). Patent Document 2 discloses providing a buffer layer made of a gel-like resin in order to relieve thermal stress and local load of the resin substrate and suppress damage to the solar battery cell.
国際公開2016/031235号International Publication No. 2016/031235 特開2017-216425号公報JP 2017-216425 A
 ところで、樹脂基材及び緩衝層を備えた太陽電池モジュールは、樹脂基材、太陽電池セル、封止層、及び緩衝層を構成する緩衝フィルム等をラミネート(熱圧着)して製造される。このとき、樹脂基材が湾曲していると、緩衝フィルムを樹脂基材の湾曲面に追従させることが難しく、緩衝フィルムに多くのシワが発生する場合がある。緩衝層は、例えば封止層及び樹脂基材と密着しているが、シワが発生した部分では、温度変化等によって封止性能に影響を与える場合がある。 Incidentally, a solar cell module including a resin base material and a buffer layer is manufactured by laminating (thermocompression bonding) a resin base material, a solar battery cell, a sealing layer, a buffer film constituting the buffer layer, and the like. At this time, if the resin base material is curved, it is difficult to cause the buffer film to follow the curved surface of the resin base material, and a lot of wrinkles may occur in the buffer film. The buffer layer is in close contact with, for example, the sealing layer and the resin base material, but the wrinkled portion may affect the sealing performance due to a temperature change or the like.
 本開示の目的は、湾曲した樹脂基材及び緩衝層を備えた太陽電池モジュールにおいて、緩衝層のシワを抑制することである。 An object of the present disclosure is to suppress wrinkles of the buffer layer in the solar cell module including the curved resin base material and the buffer layer.
 本開示の一態様である太陽電池モジュールは、複数の太陽電池セルと、前記複数の太陽電池セルの第1の面側に設けられ、前記複数の太陽電池セルと反対方向に凸の湾曲形状を有する樹脂製の第1基材と、前記太陽電池セルの第2の面側に設けられ、前記第1基材の方向に凸の湾曲形状を有する第2基材と、前記第1基材と前記第2基材との間に充填された封止層と、前記第1基材と前記複数の太陽電池セルとの間に設けられ、前記封止層よりもせん断弾性率が低い緩衝層とを備え、前記緩衝層は、1枚のシート状に配置された複数の緩衝フィルムによって構成されていることを特徴とする。 A solar battery module that is one embodiment of the present disclosure is provided with a plurality of solar cells and a first surface side of the plurality of solar cells, and has a curved shape that is convex in a direction opposite to the plurality of solar cells. A first base material made of resin, a second base material provided on the second surface side of the solar battery cell and having a curved shape convex toward the first base material, and the first base material, A sealing layer filled between the second base material, a buffer layer provided between the first base material and the plurality of solar cells, and having a shear modulus lower than that of the sealing layer; The buffer layer is composed of a plurality of buffer films arranged in a single sheet.
 本開示の一態様によれば、湾曲した樹脂基材及び緩衝層を備えた太陽電池モジュールにおいて、緩衝層のシワを抑制できる。本開示に係る太陽電池モジュールによれば、緩衝層のシワが抑えられるので、例えばモジュールの外観が向上し、またシワに起因する封止性能への影響を抑制できる。 According to one aspect of the present disclosure, wrinkles of the buffer layer can be suppressed in the solar cell module including the curved resin base material and the buffer layer. According to the solar cell module according to the present disclosure, since the wrinkles of the buffer layer are suppressed, for example, the appearance of the module is improved and the influence on the sealing performance due to the wrinkles can be suppressed.
実施形態の一例である太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which is an example of embodiment. 図1中のAA線断面の一部を示す図である。It is a figure which shows a part of AA line cross section in FIG. 緩衝フィルムの好適な長さについて説明するための図である。It is a figure for demonstrating the suitable length of a buffer film. 実施形態の他の一例である太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which is another example of embodiment. 実施形態の他の一例である太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which is another example of embodiment. 実施形態の他の一例である太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which is another example of embodiment. 実施形態の他の一例である太陽電池モジュールを受光側(表側)から見たときの斜視図である。It is a perspective view when the solar cell module which is another example of embodiment is seen from the light-receiving side (front side). 図7中のBB線断面図の一部を示す断面図であり、Y方向及びZ方向を含み、太陽電池セルを通過するYZ断面の一部を表す断面図である。It is sectional drawing which shows a part of BB sectional drawing in FIG. 7, and is sectional drawing showing a part of YZ cross section containing a Y direction and a Z direction and passing a photovoltaic cell. 図7中のCC線断面図の一部を示す断面図であり、Y方向及びZ方向を含み、ストリングを通過しないYZ断面の一部を表す断面図である。It is sectional drawing which shows a part of CC sectional view taken on the line in FIG. 7, and is sectional drawing showing a part of YZ cross section which does not pass a string including a Y direction and a Z direction. 太陽電池モジュールの製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of a solar cell module. 第1参考例の太陽電池モジュールの製造方法を説明するための図であり、第1参考例の太陽電池モジュールの製造方法の問題点を説明するための図である。It is a figure for demonstrating the manufacturing method of the solar cell module of a 1st reference example, and is a figure for demonstrating the problem of the manufacturing method of the solar cell module of a 1st reference example. 太陽電池モジュールの製造方法の他の一例を説明するための図である。It is a figure for demonstrating another example of the manufacturing method of a solar cell module. 第2参考例の太陽電池モジュールの製造方法を説明するための図であり、第2参考例の太陽電池モジュールの製造方法の問題点を説明するための図である。It is a figure for demonstrating the manufacturing method of the solar cell module of a 2nd reference example, and is a figure for demonstrating the problem of the manufacturing method of the solar cell module of a 2nd reference example. フィルムを含まない太陽電池モジュールの製造への、図12に示す太陽電池モジュールの製造方法の応用を説明する図である。It is a figure explaining application of the manufacturing method of the solar cell module shown in FIG. 12 to manufacture of the solar cell module which does not contain a film.
 以下、図面を参照しながら、本開示に係る太陽電池モジュールの実施形態の一例について詳細に説明する。実施形態において参照する図面は、模式的に記載されたものであるから、図面に描画された構成要素の寸法比率などは以下の説明を参酌して判断されるべきである。なお、本明細書では説明の便宜上、「シート」及び「フィルム」の用語を使い分けているが、これらはいずれも厚みが薄い膜状の材料を意味する。 Hereinafter, an example of an embodiment of a solar cell module according to the present disclosure will be described in detail with reference to the drawings. Since the drawings referred to in the embodiments are schematically described, the dimensional ratios of components drawn in the drawings should be determined in consideration of the following description. In the present specification, for convenience of explanation, the terms “sheet” and “film” are used separately, but both mean a thin film-like material.
 本開示に係る太陽電池モジュールは、移動体、例えば、自動車等の車両、自転車(電動アシスト自転車)、電車、又は船舶等に搭載されると好ましい。車両としては、二輪車、自動車、電気自動車、ハイブリッド自動車を例示できる。太陽電池モジュールは、自動車、電気自動車、又はハイブリッド自動車に搭載される場合、屋根に設置されると好ましく、サンルーフに設置されてもよい。 The solar cell module according to the present disclosure is preferably mounted on a moving body, for example, a vehicle such as an automobile, a bicycle (electrically assisted bicycle), a train, or a ship. Examples of vehicles include motorcycles, automobiles, electric cars, and hybrid cars. When the solar cell module is mounted on a car, an electric car, or a hybrid car, it is preferably installed on a roof, and may be installed on a sunroof.
 図1は実施形態の一例である太陽電池モジュール10の斜視図、図2は図1中のAA線断面の一部を示す図である。図1及び図2に例示するように、太陽電池モジュール10は、複数の太陽電池セル11と、各太陽電池セル11の第1の面側に設けられた第1基材12と、各太陽電池セル11の第2の面側に設けられた第2基材13とを備える。第1基材12は、太陽電池セル11と反対方向に凸の湾曲形状を有する樹脂製の基材である。第2基材13は、第1基材12の方向、即ち太陽電池セル11の方向に凸の湾曲形状を有する基材である。 FIG. 1 is a perspective view of a solar cell module 10 as an example of the embodiment, and FIG. 2 is a diagram showing a part of a cross section taken along line AA in FIG. As illustrated in FIGS. 1 and 2, the solar cell module 10 includes a plurality of solar cells 11, a first base material 12 provided on the first surface side of each solar cell 11, and each solar cell. And a second base material 13 provided on the second surface side of the cell 11. The first base material 12 is a resin base material having a convex curved shape in the opposite direction to the solar battery cell 11. The second base material 13 is a base material having a convex curved shape in the direction of the first base material 12, that is, in the direction of the solar battery cell 11.
 本実施形態では、各太陽電池セル11の第1の面が、太陽光が主に入射する受光面であり、第2の面が裏面(受光面と反対側の面)である。太陽電池セル11に入射する光のうち、50%を超える光、例えば90%以上の光が受光面側から入射する。なお、受光面及び裏面の用語は、太陽電池モジュール10及び後述の光電変換部等についても使用する。 In the present embodiment, the first surface of each solar cell 11 is a light receiving surface on which sunlight is mainly incident, and the second surface is a back surface (a surface opposite to the light receiving surface). Of the light incident on the solar cell 11, more than 50%, for example, 90% or more of the light is incident from the light receiving surface side. Note that the terms of the light receiving surface and the back surface are also used for the solar cell module 10 and a photoelectric conversion unit described later.
 また、太陽電池モジュール10は、第1基材12と第2基材13との間に充填された封止層14と、第1基材12と複数の太陽電池セル11との間に設けられた緩衝層20とを備える。封止層14は、太陽電池セル11に密着してセルの移動を拘束し、太陽電池セル11が酸素、水蒸気等に曝されないように封止する機能を有する。本実施形態では、封止層14が封止層14A,14Bで構成されている。緩衝層20は、封止層14よりもせん断弾性率が低い層である。詳しくは後述するが、緩衝層20は、1枚のシート状に配置された複数の緩衝フィルム21によって構成されている。 The solar cell module 10 is provided between the first base 12 and the plurality of solar cells 11, and the sealing layer 14 filled between the first base 12 and the second base 13. Buffer layer 20. The sealing layer 14 has a function of sealing the solar cell 11 so as not to be exposed to oxygen, water vapor, or the like by being in close contact with the solar cell 11 to restrain the movement of the cell. In the present embodiment, the sealing layer 14 is composed of sealing layers 14A and 14B. The buffer layer 20 is a layer having a shear modulus lower than that of the sealing layer 14. As will be described in detail later, the buffer layer 20 is constituted by a plurality of buffer films 21 arranged in a single sheet.
 図1に例示する太陽電池モジュール10は、受光面側に凸となるように湾曲した平面視矩形形状を有するが、その形状は適宜変更可能であり、平面視円形状、四角形以外の多角形状等であってもよい。太陽電池モジュール10は、受光面側から、第1基材12、緩衝層20、封止層14A、複数の太陽電池セル11(本明細書では、「セル群」という場合がある)、封止層14B、及び第2基材13が順に積層された積層構造を有する。 The solar cell module 10 illustrated in FIG. 1 has a rectangular shape in plan view that is curved so as to be convex toward the light receiving surface, but the shape can be changed as appropriate, such as a circular shape in plan view, a polygonal shape other than a quadrangle, and the like. It may be. The solar cell module 10 includes, from the light receiving surface side, a first base material 12, a buffer layer 20, a sealing layer 14A, a plurality of solar cells 11 (in this specification, sometimes referred to as “cell group”), sealing The layer 14B and the second base material 13 have a stacked structure in which the layers are stacked in order.
 太陽電池セル11は、太陽光を受光することでキャリアを生成する光電変換部と、光電変換部からキャリアを収集する集電極とを有する。図1に例示する光電変換部は、平面視略正方形状を有する。光電変換部の一例としては、結晶系シリコン(Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体基板と、半導体基板上に形成された非晶質半導体層と、非晶質半導体層上に形成された透明導電層とを有するものが挙げられる。具体的には、n型単結晶シリコン基板の一方の面にi型非晶質シリコン層、p型非晶質シリコン層、及び透明導電層が順に形成され、他方の面にi型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層が順に形成された構造が例示できる。 The solar battery cell 11 has a photoelectric conversion unit that generates carriers by receiving sunlight, and a collecting electrode that collects carriers from the photoelectric conversion units. The photoelectric conversion unit illustrated in FIG. 1 has a substantially square shape in plan view. As an example of the photoelectric conversion portion, a semiconductor substrate such as crystalline silicon (Si), gallium arsenide (GaAs), indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, and an amorphous semiconductor And a transparent conductive layer formed on the layer. Specifically, an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer are sequentially formed on one surface of an n-type single crystal silicon substrate, and an i-type amorphous material is formed on the other surface. A structure in which a silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer are sequentially formed can be exemplified.
 集電極は、光電変換部の受光面上に形成された受光面電極と、光電変換部の裏面上に形成された裏面電極とで構成される。この場合、受光面電極及び裏面電極の一方がn側電極となり、他方がp側電極となる。なお、太陽電池セル11は、n側及びp側の各電極を光電変換部の裏面側のみに有していてもよい。一般的に、裏面電極は受光面電極よりも大面積に形成されるため、太陽電池セル11の裏面は、集電極の面積が大きい方の面、或いは集電極が形成される面といえる。本実施形態では、集電極として、受光面電極及び裏面電極を有するものとする。 The collecting electrode includes a light receiving surface electrode formed on the light receiving surface of the photoelectric conversion unit and a back electrode formed on the back surface of the photoelectric conversion unit. In this case, one of the light-receiving surface electrode and the back electrode is an n-side electrode, and the other is a p-side electrode. In addition, the photovoltaic cell 11 may have each electrode of n side and p side only in the back surface side of a photoelectric conversion part. Generally, since the back electrode is formed in a larger area than the light receiving surface electrode, it can be said that the back surface of the solar battery cell 11 is a surface having a larger area of the collector electrode or a surface on which the collector electrode is formed. In the present embodiment, it is assumed that a light receiving surface electrode and a back surface electrode are provided as collector electrodes.
 集電極は、光電変換部上の広範囲に形成された複数のフィンガー電極を含むことが好ましい。但し、裏面電極については、光電変換部の裏面の略全域を覆う電極としてもよい。複数のフィンガー電極は、互いに略平行に形成された細線状の電極である。集電極は、フィンガー電極よりも幅が太く、各フィンガー電極と略直交するバスバー電極を含んでいてもよい。 The collector electrode preferably includes a plurality of finger electrodes formed over a wide range on the photoelectric conversion unit. However, the back electrode may be an electrode that covers substantially the entire back surface of the photoelectric conversion unit. The plurality of finger electrodes are thin wire electrodes formed substantially parallel to each other. The collector electrode may include a bus bar electrode that is wider than the finger electrode and substantially orthogonal to each finger electrode.
 複数の太陽電池セル11は、湾曲した第1基材12及び第2基材13の湾曲面に沿うように各基材の間に配置され、封止層14によって封止されている。隣り合う太陽電池セル11は、配線材30によって直列に接続され、これにより太陽電池セル11のストリング33が形成される。配線材30は、一般的にインターコネクタ、或いはタブと呼ばれ、集電極と電気的に接続される。配線材30は、太陽電池セル11の受光面及び裏面に対して、複数(一般的には、2本又は3本)取り付けられることが好ましい。集電極としてバスバー電極が設けられる場合、配線材30はバスバー電極に沿って取り付けられる。 The plurality of solar cells 11 are disposed between the base materials along the curved surfaces of the curved first base material 12 and second base material 13 and are sealed by the sealing layer 14. Adjacent solar cells 11 are connected in series by the wiring member 30, whereby a string 33 of the solar cells 11 is formed. The wiring member 30 is generally called an interconnector or a tab, and is electrically connected to the collector electrode. It is preferable that a plurality (generally, two or three) of the wiring members 30 are attached to the light receiving surface and the back surface of the solar battery cell 11. When a bus bar electrode is provided as a collector electrode, the wiring member 30 is attached along the bus bar electrode.
 配線材30は、隣り合う太陽電池セル11のうち、一方の太陽電池セル11の一方側端部から、他方の太陽電池セル11の他方側端部にわたって設けられている。配線材30は、隣り合う太陽電池セル11の間でモジュールの厚み方向に曲がり、一方の太陽電池セル11の受光面と他方の太陽電池セル11の裏面とに、樹脂接着剤又は半田を用いてそれぞれ接合される。 The wiring member 30 is provided from one side end of one solar cell 11 to the other side end of the other solar cell 11 among adjacent solar cells 11. The wiring member 30 bends in the thickness direction of the module between the adjacent solar cells 11, and a resin adhesive or solder is used for the light receiving surface of one solar cell 11 and the back surface of the other solar cell 11. Each is joined.
 太陽電池モジュール10は、複数の太陽電池セル11が一列に並んだストリング33を複数有することが好ましい。各ストリング33の長手方向両側には、太陽電池セル11と重ならない位置に渡り配線材31,32が設けられている。渡り配線材31は、ストリング33同士を接続する配線材である。渡り配線材32は、ストリング33と出力用配線とを接続する配線材である。太陽電池モジュール10の裏面側には、バイパスダイオード等を内蔵する端子ボックス34が設けられていてもよい。この場合、渡り配線材32が接続される出力用配線材は端子ボックス34内に引き込まれる。 The solar cell module 10 preferably has a plurality of strings 33 in which a plurality of solar cells 11 are arranged in a line. On both sides of each string 33 in the longitudinal direction, wiring members 31 and 32 are provided so as not to overlap the solar battery cells 11. The transition wiring member 31 is a wiring member that connects the strings 33 to each other. The transition wiring member 32 is a wiring member that connects the string 33 and the output wiring. A terminal box 34 incorporating a bypass diode or the like may be provided on the back side of the solar cell module 10. In this case, the output wiring member to which the crossover wiring member 32 is connected is drawn into the terminal box 34.
 太陽電池モジュール10は、第1基材12及び第2基材13の周縁部に沿って取り付けられるフレームを備えていてもよい。フレームは、各基材の周縁部を保護し、太陽電池モジュール10を移動体に取り付ける際に利用されてもよい。図1に示すように、太陽電池モジュール10は、フレームを有さない所謂フレームレスモジュールであってもよい。 The solar cell module 10 may include a frame that is attached along the peripheral edges of the first base material 12 and the second base material 13. The frame protects the peripheral edge of each substrate, and may be used when the solar cell module 10 is attached to the moving body. As shown in FIG. 1, the solar cell module 10 may be a so-called frameless module having no frame.
 以下、第1基材12、第2基材13、封止層14、及び緩衝層20について、特に緩衝層20について詳説する。 Hereinafter, the first base material 12, the second base material 13, the sealing layer 14, and the buffer layer 20 will be described in detail.
 第1基材12は、複数の太陽電池セル11からなるセル群の受光面を覆い、各太陽電池セル11を保護する基材である。第1基材12は、湾曲面を有し、セル群と反対方向に凸となるように湾曲している。第1基材12には、透光性の樹脂基材が用いられる。第1基材12に樹脂基材を用いることで、太陽電池モジュール10の軽量化を図ることができる。一方、第1基材12は、一般的にガラス基材と比べて熱膨張が大きく、また衝撃を受けたときに変形し易い。このため、第1基材12とセル群との間には、太陽電池セル11に加わる荷重を緩和する緩衝層20を設けることが好ましい。 1st base material 12 is a base material which covers the light-receiving surface of the cell group which consists of a plurality of photovoltaic cells 11, and protects each photovoltaic cell 11. The 1st base material 12 has a curved surface, and is curving so that it may become convex in the direction opposite to a cell group. For the first substrate 12, a translucent resin substrate is used. By using a resin base material for the first base material 12, the weight of the solar cell module 10 can be reduced. On the other hand, the first substrate 12 generally has a larger thermal expansion than the glass substrate, and is easily deformed when subjected to an impact. For this reason, it is preferable to provide the buffer layer 20 which relieve | moderates the load added to the photovoltaic cell 11 between the 1st base material 12 and a cell group.
 第1基材12に適用される樹脂基材は、例えばポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリテトラフルオロエチレン(PTFE)、ポリスチレン(PS)、及びポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルから選択される少なくとも1種で構成される。好適な樹脂基材の一例は、ポリカーボネート(PC)を主成分とする樹脂基材であって、例えばPCの含有率が90重量%以上、又は95重量%~100重量%のPC基材である。PCは、耐衝撃性及び透光性に優れるため、第1基材12の構成材料として好適である。 Examples of the resin base material applied to the first base material 12 include acrylic resins such as polyethylene (PE), polypropylene (PP), cyclic polyolefin, polycarbonate (PC), and polymethyl methacrylate (PMMA), and polytetrafluoroethylene (PTFE). ), Polystyrene (PS), and at least one selected from polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). An example of a suitable resin substrate is a resin substrate mainly composed of polycarbonate (PC), for example, a PC substrate having a PC content of 90% by weight or more, or 95% to 100% by weight. . Since PC is excellent in impact resistance and translucency, it is suitable as a constituent material of the first substrate 12.
 第1基材12を構成する樹脂基材の厚みは特に限定されないが、耐衝撃性(太陽電池セル11の保護)、軽量性、光透過性等を考慮すると、0.001mm~15mmが好ましく、0.5mm~10mmがより好ましい。なお、樹脂基材は、樹脂基板又は樹脂フィルムとも呼ばれる。一般的に、厚みが厚いものは樹脂基板、厚みが薄いものは樹脂フィルムと呼ばれるが、太陽電池モジュール10において両者を明確に区別する必要はない。樹脂基材の全光線透過率は高いことが好ましく、例えば80%~100%、又は85%~95%である。全光線透過率は、JIS K7361-1(プラスチック-透明材料の全光線透過率の試験方法-第1部:シングルビーム法)に基づいて測定される。 The thickness of the resin base material constituting the first base material 12 is not particularly limited, but is preferably 0.001 mm to 15 mm in consideration of impact resistance (protection of the solar battery cell 11), lightness, light transmittance, and the like. 0.5 mm to 10 mm is more preferable. The resin base material is also called a resin substrate or a resin film. In general, a thick substrate is called a resin substrate, and a thin substrate is called a resin film. However, in the solar cell module 10, it is not necessary to clearly distinguish between the two. The total light transmittance of the resin substrate is preferably high, for example, 80% to 100%, or 85% to 95%. The total light transmittance is measured based on JIS K7361-1 (Plastic-Test method for total light transmittance of transparent material-Part 1: Single beam method).
 第1基材12は、球状に湾曲した形状を有し、X方向及びY方向に湾曲している。ここで、X方向及びY方向とは、第1基材12(第2基材13についても同様)の平面視(二次元平面)において互いに直交する任意の方向を意味する。また、Z方向とは、X方向及びY方向(XY平面)に直交する方向を意味する。つまり、第1基材12は、XZ断面及びYZ断面において、セル群と反対方向に凸の湾曲形状を有する。第1基材12は、例えば球面の一部を切り出した形状のように、3次元的な曲率を持つ曲面を有する。 The first base material 12 has a spherically curved shape and is curved in the X direction and the Y direction. Here, the X direction and the Y direction mean arbitrary directions orthogonal to each other in a plan view (two-dimensional plane) of the first base material 12 (the same applies to the second base material 13). The Z direction means a direction orthogonal to the X direction and the Y direction (XY plane). That is, the first substrate 12 has a convex curved shape in the direction opposite to the cell group in the XZ cross section and the YZ cross section. The first base material 12 has a curved surface having a three-dimensional curvature, for example, a shape obtained by cutting out a part of a spherical surface.
 第1基材12の曲率は、特に限定されず、第1基材12の全域で一定であってもよく、一部の領域で異なっていてもよい。第1基材12は、一部に平坦な部分が存在してもよいが、好ましくは全体が緩やかに湾曲した形状を有する。なお、第1基材12の一部には、セル群側に凸となった湾曲部が存在していてもよい。太陽電池モジュール10では、第1基材12及び第2基材13が受光面側に湾曲しているため、これらに挟持されるセル群、封止層14、及び緩衝層20も受光面側に湾曲している。なお、ラミネート工程で溶融又は軟化する封止層14は、基材の湾曲面に追従して容易に湾曲する。 The curvature of the first base 12 is not particularly limited, and may be constant throughout the first base 12 or may be different in some areas. The first substrate 12 may have a flat portion in part, but preferably has a shape that is gently curved as a whole. A part of the first base 12 may have a curved portion that is convex toward the cell group. In the solar cell module 10, since the first base material 12 and the second base material 13 are curved toward the light receiving surface, the cell group, the sealing layer 14, and the buffer layer 20 sandwiched between them are also positioned on the light receiving surface side. It is curved. Note that the sealing layer 14 that is melted or softened in the laminating process easily curves following the curved surface of the substrate.
 第2基材13は、セル群の裏面を覆い、各太陽電池セル11を保護する基材である。第2基材13は、湾曲面を有し、セル群の方向に凸となるように湾曲している。第2基材13には、第1基材12と同様に透光性の基材が用いられてもよく、太陽電池モジュール10の裏面側からの受光を想定しない場合は不透明な基材が用いられてもよい。第2基材13の全光線透過率は特に限定されず、0%であってもよい。第2基材13には、ガラス基材又は金属製の基材を用いてもよいが、太陽電池モジュール10の軽量化を図るためには、樹脂基材を用いることが好ましい。 2nd base material 13 is a base material which covers the back surface of a cell group, and protects each photovoltaic cell 11. FIG. The 2nd base material 13 has a curved surface, and is curving so that it may become convex in the direction of a cell group. For the second base material 13, a translucent base material may be used similarly to the first base material 12, and an opaque base material is used when light reception from the back side of the solar cell module 10 is not assumed. May be. The total light transmittance of the second substrate 13 is not particularly limited, and may be 0%. A glass substrate or a metal substrate may be used as the second substrate 13, but in order to reduce the weight of the solar cell module 10, it is preferable to use a resin substrate.
 第2基材13に適用される樹脂基材は、例えば環状ポリオレフィン、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリエーテルエーテルケトン(PEEK)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、フェノール樹脂、及びエポキシ樹脂から選択される少なくとも1種で構成される。 The resin base material applied to the second base material 13 is, for example, an acrylic resin such as cyclic polyolefin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), polystyrene (PS), polyethylene terephthalate ( PET), polyester such as polyethylene naphthalate (PEN), phenol resin, and at least one selected from epoxy resins.
 第2基材13は、繊維強化プラスチック(FRP)で構成されていてもよい。特に、耐衝撃性及び軽量性が要求される用途では、FRPを用いることが好ましい。好適なFRPとしては、ガラス繊維強化プラスチック(GFRP)、炭素繊維強化プラスチック(CFRP)、アラミド繊維強化プラスチック(AFRP)などが挙げられる。 The second base material 13 may be made of fiber reinforced plastic (FRP). In particular, FRP is preferably used in applications that require impact resistance and light weight. Suitable FRP includes glass fiber reinforced plastic (GFRP), carbon fiber reinforced plastic (CFRP), aramid fiber reinforced plastic (AFRP) and the like.
 第2基材13の厚みは特に限定されないが、0.05mm以上が好適である。また、第2基材13がFRPで構成される場合、第2基材13は、繊維1本分の厚さ以上の厚みを有する。太陽電池セル11の保護、軽量性等を考慮すると、0.05mm~10mmが好ましく、0.05mm~5mmがより好ましい。第2基材13の厚みは、第1基材12の厚みと同等か、又はそれ以上であることが好ましい。 The thickness of the second substrate 13 is not particularly limited, but is preferably 0.05 mm or more. Moreover, when the 2nd base material 13 is comprised by FRP, the 2nd base material 13 has the thickness more than the thickness for one fiber. In consideration of protection of the solar battery cell 11, lightness, etc., 0.05 mm to 10 mm is preferable, and 0.05 mm to 5 mm is more preferable. The thickness of the second substrate 13 is preferably equal to or greater than the thickness of the first substrate 12.
 第2基材13は、第1基材12と同様に、球状に湾曲した形状を有し、X方向及びY方向に湾曲している。第2基材13は、XZ断面及びYZ断面において、第1基材12と同じ方向に凸の湾曲形状を有する。第2基材13は、例えば球面の一部を切り出した形状のように、3次元的な曲率を持つ曲面を有する。第2基材13の曲率は、全域で一定であってもよく、一部の領域で異なっていてもよいが、第1基材12と同様の曲率を有することが好ましい。また、第2基材13は、一部に平坦な部分が存在してもよいが、好ましくは全体が緩やかに湾曲した形状を有する。 The second base material 13 has a spherically curved shape like the first base material 12, and is curved in the X direction and the Y direction. The second base material 13 has a convex curved shape in the same direction as the first base material 12 in the XZ cross section and the YZ cross section. The 2nd base material 13 has a curved surface with a three-dimensional curvature like the shape which cut out a part of spherical surface, for example. The curvature of the second substrate 13 may be constant over the entire region or may be different in some regions, but preferably has the same curvature as that of the first substrate 12. Further, the second base material 13 may have a flat portion in part, but preferably has a shape that is gently curved as a whole.
 封止層14は、上述の通り、第1基材12と第2基材13との間に設けられ、各太陽電池セル11を封止する樹脂層(封止層)を形成する。封止層14は、第1基材12とセル群との間に設けられる封止層14Aと、第2基材13とセル群との間に設けられる封止層14Bとで構成される。 The sealing layer 14 is provided between the 1st base material 12 and the 2nd base material 13 as above-mentioned, and forms the resin layer (sealing layer) which seals each photovoltaic cell 11. As shown in FIG. The sealing layer 14 includes a sealing layer 14A provided between the first base material 12 and the cell group, and a sealing layer 14B provided between the second base material 13 and the cell group.
 封止層14の層構造は、封止層14A,14Bをそれぞれ構成する樹脂フィルムを用いて、後述のラミネート工程により形成されることが好ましい。封止層14A,14Bには、同じ樹脂フィルムを用いてもよく、異なる樹脂フィルムを用いてもよい。封止層14に適用される樹脂としては、ポリオレフィン、エチレン酢酸ビニル共重合体、エポキシ樹脂等が例示できる。また、当該樹脂は架橋構造を有していてもよい。 The layer structure of the sealing layer 14 is preferably formed by a laminating process described later using resin films that respectively constitute the sealing layers 14A and 14B. The same resin film may be used for sealing layer 14A, 14B, and a different resin film may be used. Examples of the resin applied to the sealing layer 14 include polyolefin, ethylene vinyl acetate copolymer, and epoxy resin. The resin may have a cross-linked structure.
 封止層14Aの全光線透過率は高いことが好ましく、例えば80%以上である。他方、封止層14Bの全光線透過率は特に限定されない。太陽電池モジュール10の裏面側からの受光を想定しない場合、封止層14Bは、白色顔料、黒色顔料等の色材を含有していてもよく、全光線透過率は0%であってもよい。 The total light transmittance of the sealing layer 14A is preferably high, for example, 80% or more. On the other hand, the total light transmittance of the sealing layer 14B is not particularly limited. When light reception from the back surface side of the solar cell module 10 is not assumed, the sealing layer 14B may contain a color material such as a white pigment or a black pigment, and the total light transmittance may be 0%. .
 緩衝層20は、上述の通り、封止層14よりもせん断弾性率が低い層である。緩衝層20は、第1基材12の熱膨張、落下物の衝突による第1基材12の変形などによって太陽電池セル11に加わる荷重を緩和し、太陽電池セル11の損傷を抑制する機能を有する。また、緩衝層20を設けることで、配線材30に作用する応力を低減して配線材30の破断を抑制できる。 The buffer layer 20 is a layer having a shear modulus lower than that of the sealing layer 14 as described above. The buffer layer 20 has a function of relieving a load applied to the solar battery cell 11 due to thermal expansion of the first base material 12, deformation of the first base material 12 due to a collision of falling objects, and suppressing damage to the solar battery cell 11. Have. In addition, by providing the buffer layer 20, the stress acting on the wiring material 30 can be reduced and the breakage of the wiring material 30 can be suppressed.
 緩衝層20のせん断弾性率は、0.1MPa以下が好ましく、0.001MPa~0.1MPaがより好ましい。緩衝層20のせん断弾性率が当該範囲内であれば、太陽電池モジュール10に要求される機械的強度、製造特性等を確保しながら、上記応力緩和効果を得ることができる。せん断弾性率は、レオメータを用いて測定される。 The shear elastic modulus of the buffer layer 20 is preferably 0.1 MPa or less, and more preferably 0.001 MPa to 0.1 MPa. If the shear modulus of the buffer layer 20 is within the range, the stress relaxation effect can be obtained while ensuring the mechanical strength, manufacturing characteristics, and the like required for the solar cell module 10. The shear modulus is measured using a rheometer.
 緩衝層20は、セル群の全体を覆うように、第1基材12とセル群との間に設けられている。緩衝層20の大きさは、例えば第1基材12の大きさと同じか、第1基材12よりやや小さい。太陽電池モジュール10は、受光面側から順に、第1基材12、緩衝層20、及び封止層14が積層された構造を有するが、各層の配置はこれに限定されない。例えば、緩衝層20を封止層14で挟む積層構造としてもよい。 The buffer layer 20 is provided between the first substrate 12 and the cell group so as to cover the entire cell group. The size of the buffer layer 20 is, for example, the same as the size of the first substrate 12 or slightly smaller than the first substrate 12. Although the solar cell module 10 has the structure where the 1st base material 12, the buffer layer 20, and the sealing layer 14 were laminated | stacked in order from the light-receiving surface side, arrangement | positioning of each layer is not limited to this. For example, a stacked structure in which the buffer layer 20 is sandwiched between the sealing layers 14 may be employed.
 緩衝層20は、1枚のシート状に配置された複数の緩衝フィルム21によって構成される。つまり、緩衝層20は複数に分割されている。第1基材12と同様の大きさの緩衝フィルムを用いて緩衝層を形成する場合、フィルムを第1基材12の湾曲面に追従させることが難しく、フィルムに多くのシワが発生する。太陽電池モジュール10では、複数の緩衝フィルム21を用いて緩衝層20を形成するので、第1基材12の寸法と比較してフィルム1枚当たりの寸法が小さく、フィルムを第1基材12の湾曲面に追従させることが容易になる。このため、緩衝フィルム21のシワを抑制でき、第1基材12の湾曲面に追従した綺麗な緩衝層20が形成される。 The buffer layer 20 is composed of a plurality of buffer films 21 arranged in a single sheet. That is, the buffer layer 20 is divided into a plurality. When forming a buffer layer using the buffer film of the same magnitude | size as the 1st base material 12, it is difficult to make a film follow the curved surface of the 1st base material 12, and many wrinkles generate | occur | produce in a film. In the solar cell module 10, since the buffer layer 20 is formed using a plurality of buffer films 21, the size per film is smaller than the size of the first base material 12, and the film is formed of the first base material 12. It becomes easy to follow the curved surface. For this reason, the wrinkle of the buffer film 21 can be suppressed and the beautiful buffer layer 20 which followed the curved surface of the 1st base material 12 is formed.
 緩衝フィルム21は、透明で柔軟性の高い樹脂で構成されることが好ましい。緩衝フィルム21は、ゲル状の樹脂で構成されてもよく、水を含有するヒドロゲル、又は有機溶媒を含有するオルガノゲルで構成されてもよい。緩衝フィルム21は、例えばアクリルゲル、ウレタンゲル、及びシリコーンゲルから選択される少なくとも1種を用いて構成される。中でも、耐久性に優れるシリコーンゲルを用いることが好ましい。 The buffer film 21 is preferably made of a transparent and highly flexible resin. The buffer film 21 may be composed of a gel-like resin, or may be composed of a hydrogel containing water or an organogel containing an organic solvent. The buffer film 21 is configured using at least one selected from, for example, an acrylic gel, a urethane gel, and a silicone gel. Among these, it is preferable to use a silicone gel excellent in durability.
 緩衝フィルム21の厚みは、特に限定されないが、太陽電池セル11の保護、光透過性等を考慮すると、0.1mm~10mm以下が好ましく、0.2mm~1.0mm以下がより好ましい。緩衝フィルム21の全光線透過率は高いことが好ましく、例えば80%~100%、又は85%~95%である。複数の緩衝フィルム21は、一般的に、互いに同じ材料で構成され、同じ寸法を有する。 The thickness of the buffer film 21 is not particularly limited, but is preferably 0.1 mm to 10 mm or less, more preferably 0.2 mm to 1.0 mm or less in consideration of protection of the solar battery cell 11, light transmittance, and the like. The total light transmittance of the buffer film 21 is preferably high, for example, 80% to 100%, or 85% to 95%. The plurality of buffer films 21 are generally made of the same material and have the same dimensions.
 緩衝フィルム21は、例えば帯状ないし短冊状のフィルムであって、略一定の幅を有する。第1基材12の寸法、曲率等によっても異なるが、緩衝層20は、2枚~10枚の緩衝フィルム21で構成されることが好ましく、3枚~5枚の緩衝フィルム21で構成されることがより好ましい。緩衝フィルム21は、例えばその長手方向がストリング33の長手方向に沿うように配置される。各緩衝フィルム21は、1列又は複数列のストリング33を覆う大きさを有する。図1に示す例では、各緩衝フィルム21が、2列分のストリング33を覆う大きさで形成されている。 The buffer film 21 is, for example, a belt-like or strip-like film, and has a substantially constant width. The buffer layer 20 is preferably composed of 2 to 10 buffer films 21, preferably 3 to 5 buffer films 21, although it varies depending on the dimensions, curvature, etc. of the first substrate 12. It is more preferable. For example, the buffer film 21 is arranged so that the longitudinal direction thereof is along the longitudinal direction of the string 33. Each buffer film 21 has a size covering one or more rows of strings 33. In the example shown in FIG. 1, each buffer film 21 is formed in a size that covers the strings 33 for two rows.
 本実施形態では、隣り合う緩衝フィルム21A,21Bの間、即ち2枚の緩衝フィルム21A,21Bの境界部22に隙間が存在し、当該隙間に封止層14が充填されている。緩衝フィルム21は、境界部22に隙間が形成されないように、フィルムの端部同士を突き合わせた状態で隣接配置されてもよい。境界部22に隙間が存在する場合、隙間の幅は1mm以下が好ましい。当該隙間は、各緩衝フィルム21の全ての境界部22に存在してもよく、一部に存在してもよい。 In the present embodiment, a gap exists between the adjacent buffer films 21A and 21B, that is, the boundary portion 22 between the two buffer films 21A and 21B, and the sealing layer 14 is filled in the gap. The buffer film 21 may be adjacently disposed in a state in which the end portions of the film are abutted with each other so that no gap is formed in the boundary portion 22. When a gap exists in the boundary portion 22, the width of the gap is preferably 1 mm or less. The said clearance gap may exist in all the boundary parts 22 of each buffer film 21, and may exist in a part.
 また、緩衝フィルム21の端部は、太陽電池セル11同士の間隙とモジュールの厚み方向に重なる位置に設けられている。緩衝フィルム21の端部を太陽電池セル11と重ならない位置に設けることで、当該端部を目立たなくでき、良好な外観が得られる。また、後述の隠蔽層23を設けて端部を隠すことが容易になる。特に、2枚の緩衝フィルム21の境界部22に隙間が形成される場合は、境界部22を太陽電池セル11同士の間隙と重なる位置に設けることが好適である。例えば、全ての境界部22(2枚の緩衝フィルム21A,21Bの隙間)は当該間隙に対応する位置に設けられる。 Moreover, the edge part of the buffer film 21 is provided in the position which overlaps the clearance gap between the photovoltaic cells 11 and the thickness direction of a module. By providing the edge part of the buffer film 21 in the position which does not overlap with the photovoltaic cell 11, the said edge part can be made not conspicuous and a favorable external appearance is obtained. Moreover, it becomes easy to conceal the end portion by providing a concealing layer 23 described later. In particular, when a gap is formed at the boundary portion 22 between the two buffer films 21, it is preferable to provide the boundary portion 22 at a position overlapping the gap between the solar cells 11. For example, all the boundary portions 22 (the gaps between the two buffer films 21A and 21B) are provided at positions corresponding to the gaps.
 図3は、緩衝フィルム21の好適なX方向長さWについて説明するための図である。緩衝フィルム21は、例えば平面視略矩形形状を有し、第1基材12の面方向の1つであるX方向に並べられる。この場合、緩衝フィルム21の好適なX方向長さWは、第1基材12の長さW以下である。長さWを長さW以下に調整することで、緩衝層20のシワを抑制することが容易になる。
 ここで、長さWとは、
 X方向に直交する第1基材12のY方向に並ぶ任意の点をA1,A2、
 第1基材12の表面に沿ってA1,A2を最短距離で結ぶ線をα、線αの長さをL
 A1,A2から線αに対して、第1基材12の表面に沿った同じ長さの垂線γを引いて描かれる点をB1,B2、
 第1基材12の表面に沿ってB1,B2を最短距離で結ぶ線をβ、線βの長さをL
 としたとき、線βの長さLが線αの長さLの99.0%以上となるときの垂線γの長さである。
FIG. 3 is a view for explaining a preferred X-direction length W 2 of the buffer film 21. The buffer film 21 has, for example, a substantially rectangular shape in plan view, and is arranged in the X direction, which is one of the surface directions of the first base material 12. In this case, a suitable X-direction length W 2 of the buffer film 21 is not more than the length W 1 of the first base material 12. By adjusting the length W 2 in the following lengths W 1, it becomes easy to suppress wrinkles of the buffer layer 20.
Here, the length W 1 is
Arbitrary points arranged in the Y direction of the first base material 12 orthogonal to the X direction are A1, A2,
A line connecting A1 and A2 with the shortest distance along the surface of the first substrate 12 is α, and the length of the line α is L 1 ,
The points drawn by drawing a perpendicular γ of the same length along the surface of the first base 12 from A1, A2 to the line α are B1, B2,
A line connecting B1 and B2 with the shortest distance along the surface of the first substrate 12 is β, the length of the line β is L 2 ,
When a was a length of a perpendicular γ when the length L 2 of the line β is equal to or more than 99.0% of the length L 1 of the line alpha.
 上記構成を備えた太陽電池モジュール10は、第1基材12、第2基材13、封止層14、及び複数の緩衝フィルム21を用いてセル群をラミネートすることにより製造できる。ラミネート装置では、ヒーター上に、第1基材12、1枚のシート状に配置した複数の緩衝フィルム21、封止層14A、セル群、封止層14B、及び第2基材13がこの順に積層される。封止層14A,14Bは、フィルムの形態で供給されることが好ましい。この積層体は、例えば真空状態で封止層14A,14Bを構成する樹脂フィルムが軟化又は溶融する温度に加熱される。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続して各部材を熱圧着(ラミネート)する。こうして、太陽電池モジュール10が得られる。 The solar cell module 10 having the above-described configuration can be manufactured by laminating a cell group using the first base material 12, the second base material 13, the sealing layer 14, and the plurality of buffer films 21. In the laminating apparatus, the first base material 12, the plurality of buffer films 21, the sealing layer 14A, the cell group, the sealing layer 14B, and the second base material 13 arranged in a sheet on the heater are arranged in this order. Laminated. It is preferable that sealing layer 14A, 14B is supplied with the form of a film. This laminated body is heated to a temperature at which the resin films constituting the sealing layers 14A and 14B are softened or melted in a vacuum state, for example. Then, heating is continued while pressing each component member on the heater side under atmospheric pressure, and each member is thermocompression-bonded (laminated). In this way, the solar cell module 10 is obtained.
 複数の緩衝フィルム21は、それぞれの端部同士を突き合わせた状態として、或いは境界部22に小さな隙間をあけて1枚のシート状に配置される。このとき、境界部22が太陽電池セル11同士の間隙と重なるように、各緩衝フィルム21を配置して上記積層体を形成することが好ましい。 The plurality of buffer films 21 are arranged in a single sheet shape in a state where the respective end portions are abutted with each other or with a small gap in the boundary portion 22. At this time, it is preferable to form the laminate by disposing each buffer film 21 so that the boundary portion 22 overlaps the gap between the solar cells 11.
 以上のように、太陽電池モジュール10では、複数の緩衝フィルム21を用いて緩衝層20が形成されるので、第1基材12の寸法と比較してフィルム1枚当たりの寸法が小さく、各緩衝フィルム21を第1基材12の湾曲面に追従させることが容易になる。このため、緩衝フィルム21のシワを抑制でき、第1基材12の湾曲面に追従した綺麗な緩衝層20が形成される。太陽電池モジュール10は、例えば良好な外観と優れた封止性能を有する。 As described above, in the solar cell module 10, since the buffer layer 20 is formed using the plurality of buffer films 21, the size per film is smaller than the size of the first substrate 12, and each buffer It becomes easy to make the film 21 follow the curved surface of the first substrate 12. For this reason, the wrinkle of the buffer film 21 can be suppressed and the beautiful buffer layer 20 which followed the curved surface of the 1st base material 12 is formed. The solar cell module 10 has, for example, a good appearance and an excellent sealing performance.
 以下、図4~図6を参照しながら、実施形態の他の一例について説明する。以下では、上述の実施形態と同じ構成要素には、同じ符号を用いて重複する説明を省略する。 Hereinafter, another example of the embodiment will be described with reference to FIGS. Hereinafter, the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
 図4に例示する形態は、隣り合う緩衝フィルム21A,21Bの境界部22に隙間が存在し、当該隙間に封止層14Aが充填されている点で、図2に例示する形態と共通する。他方、図4に示す例では、境界部22が太陽電池セル11とモジュールの厚み方向に重なる位置に設けられている。この場合、境界部22を目立たなくするために、配線材30と重なる位置に設けられていてもよい。境界部22の裏側に配線材30が位置するように緩衝フィルム21を配置することで、境界部22が目立ち難くなる。 The form illustrated in FIG. 4 is common to the form illustrated in FIG. 2 in that there is a gap at the boundary portion 22 between the adjacent buffer films 21A and 21B, and the gap is filled with the sealing layer 14A. On the other hand, in the example shown in FIG. 4, the boundary part 22 is provided in the position which overlaps with the photovoltaic cell 11 and the thickness direction of a module. In this case, in order to make the boundary portion 22 inconspicuous, it may be provided at a position overlapping the wiring member 30. By disposing the buffer film 21 so that the wiring member 30 is located on the back side of the boundary portion 22, the boundary portion 22 is less noticeable.
 図5に例示する形態は、緩衝フィルム21A,21Bの境界部22が太陽電池セル11同士の間隙と重なる位置に設けられている点で、図2に例示する形態と共通する。他方、図5に示す例では、第1基材12と緩衝層20との間に、緩衝フィルム21の端部(境界部22)を覆う隠蔽層23が設けられている。隠蔽層23は、境界部22を隠して第1基材12側から見えないようにし、モジュールの外観を向上させる。 The form illustrated in FIG. 5 is common to the form illustrated in FIG. 2 in that the boundary portion 22 of the buffer films 21A and 21B is provided at a position overlapping the gap between the solar cells 11. On the other hand, in the example shown in FIG. 5, a concealing layer 23 that covers the end portion (boundary portion 22) of the buffer film 21 is provided between the first base material 12 and the buffer layer 20. The hiding layer 23 hides the boundary portion 22 so that it cannot be seen from the first base material 12 side, and improves the appearance of the module.
 隠蔽層23は、境界部22の全体を覆う面積で形成される。また、太陽電池セル11と重ならない範囲、即ち太陽電池セル11同士の間隙と重なる範囲のみに、隠蔽層23を設けることが好ましい。この場合、隠蔽層23によって太陽電池セル11に入射する光が遮断されることを防止できる。隠蔽層23は、例えば太陽電池セル11同士の間隙に沿って平面視帯状に形成される。 The concealing layer 23 is formed with an area covering the entire boundary portion 22. Moreover, it is preferable to provide the concealment layer 23 only in a range that does not overlap with the solar battery cells 11, that is, in a range that overlaps the gap between the solar battery cells 11. In this case, it is possible to prevent the light incident on the solar battery cell 11 from being blocked by the masking layer 23. The concealing layer 23 is formed, for example, in a planar view along the gap between the solar cells 11.
 隠蔽層23は、第1基材12と緩衝層20の間に隠蔽層23を構成するフィルムを配置して設けられてもよく、緩衝層20の表面に印刷等により形成されてもよいが、好ましくは第1基材12の裏面に形成される。第1基材12の裏面には、隠蔽層23の構成材料を印刷してもよく、隠蔽層23を構成するフィルムを貼着してもよい。或いは、蒸着、スパッタリング等により、第1基材12の裏面に隠蔽層23を形成してもよい。隠蔽層23の厚みは、特に限定されないが、好適な厚みの一例としては0.5~20μm程度である。 The masking layer 23 may be provided by arranging a film constituting the masking layer 23 between the first base material 12 and the buffer layer 20, and may be formed on the surface of the buffer layer 20 by printing or the like. Preferably, it is formed on the back surface of the first substrate 12. On the back surface of the first substrate 12, the constituent material of the concealing layer 23 may be printed, or a film constituting the concealing layer 23 may be attached. Or you may form the concealment layer 23 in the back surface of the 1st base material 12 by vapor deposition, sputtering, etc. FIG. The thickness of the masking layer 23 is not particularly limited, but an example of a suitable thickness is about 0.5 to 20 μm.
 隠蔽層23は、樹脂皮膜中に色材が分散した構造、或いは色材が樹脂バインダで結着された構造を有していてもよい。隠蔽層23の色(色相、色調)、可視光吸収率等は、色材の種類、濃度、層の厚み等を適宜変更することにより調整できる。隠蔽層23を構成する樹脂は特に限定されず、印刷インキに用いられる従来公知の樹脂バインダを使用できる。隠蔽層23の色は、太陽電池セル11又は第2基材13の色と同様の色に調整されてもよい。隠蔽層23を黒色又は濃紺色にする場合、色材として、カーボンブラック、アニリンブラック、チタンブラック、マグネタイト等の黒色顔料を用いることができる。また、隠蔽層23は、黄色顔料、赤色顔料、青色顔料等を含有していてもよい。 The hiding layer 23 may have a structure in which a color material is dispersed in a resin film, or a structure in which a color material is bound with a resin binder. The color (hue, color tone), visible light absorptivity, and the like of the hiding layer 23 can be adjusted by appropriately changing the type, density, layer thickness, and the like of the color material. The resin which comprises the concealment layer 23 is not specifically limited, The conventionally well-known resin binder used for printing ink can be used. The color of the masking layer 23 may be adjusted to the same color as that of the solar battery cell 11 or the second base material 13. When the masking layer 23 is black or dark blue, black pigments such as carbon black, aniline black, titanium black, and magnetite can be used as the colorant. Further, the masking layer 23 may contain a yellow pigment, a red pigment, a blue pigment, and the like.
 図6に例示する形態は、緩衝層20と封止層14Aとの間にバリア層15を備える点で、図5に例示する形態と異なる。また、図6に例示する形態では、複数の緩衝フィルム21の端部同士がモジュールの厚み方向に重なり合った状態で各フィルムが隣接配置されている。2枚の緩衝フィルム21A,21Bの端部同士がオーバーラップすることで、境界部22に隙間が存在しなくなる。図6に例示する形態では、緩衝層20と封止層14Aとの間にバリア層15が存在するので、境界部22に隙間が形成されないように各緩衝フィルム21の端部同士を重ねて配置することが好ましい。 The form illustrated in FIG. 6 is different from the form illustrated in FIG. 5 in that a barrier layer 15 is provided between the buffer layer 20 and the sealing layer 14A. Moreover, in the form illustrated in FIG. 6, the films are arranged adjacent to each other with the ends of the plurality of buffer films 21 overlapping in the thickness direction of the module. Since the end portions of the two buffer films 21 </ b> A and 21 </ b> B overlap each other, there is no gap at the boundary portion 22. In the form illustrated in FIG. 6, since the barrier layer 15 exists between the buffer layer 20 and the sealing layer 14 </ b> A, the end portions of the buffer films 21 are overlapped so that no gap is formed in the boundary portion 22. It is preferable to do.
 バリア層15は、第1基材12よりも酸素透過率が低い層であって、第1基材12を透過する酸素が太陽電池セル11に作用することを抑制する機能を有する。バリア層15の酸素透過率は、例えば200cm/m・24h・atm以下である。酸素透過率は、JIS K7126に基づいて測定される。また、バリア層15は、第1基材12よりも水蒸気透過率が低いことが好ましい。バリア層15は、セル群の全体を覆って、第1基材12とセル群との間に設けられている。 The barrier layer 15 is a layer having an oxygen transmission rate lower than that of the first base material 12 and has a function of suppressing the oxygen passing through the first base material 12 from acting on the solar battery cell 11. The oxygen permeability of the barrier layer 15 is, for example, 200 cm 3 / m 2 · 24 h · atm or less. The oxygen transmission rate is measured based on JIS K7126. The barrier layer 15 preferably has a lower water vapor transmission rate than the first base material 12. The barrier layer 15 covers the entire cell group and is provided between the first substrate 12 and the cell group.
 バリア層15は、1枚のシート状に配置された複数のバリアフィルム16によって構成されている。つまり、バリア層15は、緩衝層20と同様に複数に分割されている。この場合、バリアフィルム16のシワを抑制でき、第1基材12の湾曲面に追従した綺麗なバリア層15が形成される。バリア層15は、バリアフィルム16の端部同士が接合された継ぎ目18を有していてもよい。継ぎ目18は、隣接する2枚のバリアフィルム16A,16Bの重なり合った端部同士を、ラミネート工程で接着力を発現する接着剤を用いて接合することにより形成される。 The barrier layer 15 is composed of a plurality of barrier films 16 arranged in a single sheet. That is, the barrier layer 15 is divided into a plurality of parts, like the buffer layer 20. In this case, the wrinkles of the barrier film 16 can be suppressed, and a beautiful barrier layer 15 that follows the curved surface of the first substrate 12 is formed. The barrier layer 15 may have a seam 18 where the ends of the barrier film 16 are joined together. The joint 18 is formed by joining the overlapping end portions of two adjacent barrier films 16A and 16B using an adhesive that develops an adhesive force in a laminating process.
 バリアフィルム16は、酸素透過率の低い透明な樹脂フィルムのみで構成されてもよく、樹脂フィルムと、当該樹脂フィルムの片面に成膜された酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)等の無機化合物層とで構成されてもよい。好適な樹脂フィルムの一例としては、ポリフッ化ビニル(PVF)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素樹脂フィルム、ポリエチレンテレフタレート(PET)等のポリエステルフィルムが挙げられる。バリアフィルム16は、例えば片面にシリカ等の蒸着層が形成されたPETフィルムである。 The barrier film 16 may be composed of only a transparent resin film having a low oxygen permeability, and is inorganic such as a resin film and silicon oxide (silica) or aluminum oxide (alumina) formed on one surface of the resin film. You may be comprised with a compound layer. Examples of suitable resin films include fluororesin films such as polyvinyl fluoride (PVF) and ethylene-tetrafluoroethylene copolymer (ETFE), and polyester films such as polyethylene terephthalate (PET). The barrier film 16 is a PET film in which a vapor deposition layer such as silica is formed on one surface, for example.
 図6に例示する形態では、第1基材12の裏面において、バリア層15の継ぎ目18及び緩衝層20の境界部22と、モジュールの厚み方向に重なる位置に隠蔽層23が設けられている。このため、継ぎ目18及び境界部22が隠蔽され、良好なモジュールの外観が得られる。 In the form illustrated in FIG. 6, a concealing layer 23 is provided on the back surface of the first base material 12 at a position overlapping the joint 18 of the barrier layer 15 and the boundary portion 22 of the buffer layer 20 in the thickness direction of the module. For this reason, the seam 18 and the boundary part 22 are concealed, and a good module appearance is obtained.
 以下、図7~図14を参照しながら、本開示に係る太陽電池モジュールの他の実施形態について更に詳細に説明する。 Hereinafter, other embodiments of the solar cell module according to the present disclosure will be described in more detail with reference to FIGS. 7 to 14.
 以下の説明及び図面の記載において、X方向は、以下で説明する複数のストリング33の並び方向であり、受光側に凸の第1曲線の延在方向である第1曲線方向である。また、Y方向は、ストリング33の延在方向であり、第1曲線に交差すると共に受光側に凸の第2曲線の延在方向である第2曲線方向である。また、Z方向は、太陽電池モジュール50,110,210の厚さ方向である。太陽電池モジュール50,110,210は、湾曲形状を有する。したがって、X方向、Y方向、及びZ方向は、太陽電池モジュール50,110,210の3次元座標における各点毎に決定される。例えば、太陽電池セル11の表面における各点のX方向は、その点においてストリング33の並び方向に平行になっている接線方向となり、Y方向は、その点においてストリング33の延在方向に平行になっている接線方向となる。また、Z方向は、その点における法線方向となる。太陽電池セル11の表面における3次元座標の各点で、X方向、Y方向、及びZ方向は、互いに直交する。なお、第1基材12の表面のX方向、Y方向、及びZ方向と、第2基材13の裏面のX方向、Y方向、及びZ方向も、太陽電池セル11の表面におけるX方向、Y方向、及びZ方向の決定方向と同一の方法で決定できる。また、それら以外の太陽電池モジュール50,110,210の3次元座標の各点におけるX方向、Y方向、及びZ方向は、例えば、Z方向(第1基材12の表面のZ方向)から見たときに、その点に重なる第1基材12の表面の箇所と同一のX方向、Y方向、及びZ方向として決定できる。 In the following description and the description of the drawings, the X direction is the arrangement direction of the plurality of strings 33 described below, and is the first curve direction that is the extending direction of the first curve that protrudes toward the light receiving side. The Y direction is the extending direction of the string 33, and is the second curved direction that is the extending direction of the second curved line that intersects the first curved line and is convex on the light receiving side. The Z direction is the thickness direction of the solar cell modules 50, 110, and 210. The solar cell modules 50, 110, and 210 have a curved shape. Therefore, the X direction, the Y direction, and the Z direction are determined for each point in the three-dimensional coordinates of the solar cell modules 50, 110, and 210. For example, the X direction of each point on the surface of the solar battery cell 11 is a tangential direction parallel to the arrangement direction of the strings 33 at that point, and the Y direction is parallel to the extending direction of the string 33 at that point. It becomes the tangential direction. Also, the Z direction is the normal direction at that point. At each point of the three-dimensional coordinates on the surface of the solar battery cell 11, the X direction, the Y direction, and the Z direction are orthogonal to each other. The X direction, the Y direction, and the Z direction on the surface of the first substrate 12 and the X direction, the Y direction, and the Z direction on the back surface of the second substrate 13 are also the X direction on the surface of the solar battery cell 11, It can be determined by the same method as the determination direction of the Y direction and the Z direction. In addition, the X direction, the Y direction, and the Z direction at each point of the three-dimensional coordinates of the solar cell modules 50, 110, and 210 other than those are viewed from, for example, the Z direction (the Z direction on the surface of the first base material 12) The X direction, the Y direction, and the Z direction can be determined to be the same as the portion of the surface of the first base material 12 that overlaps the point.
 図7に例示する太陽電池モジュール50は、太陽電池モジュール10と同様に、受光側に凸の湾曲形状であって、X方向に湾曲しY方向にも湾曲する。太陽電池モジュール50は、平面視において略矩形の形状を有する。太陽電池モジュール50は、Y方向一方側かつ裏側に端子ボックス34を備える。また、図8に示すように、太陽電池モジュール50は、複数の太陽電池セル11、第1基材12、第2基材13、配線材30、封止層14、バリアフィルム6、低弾性樹脂層7を備える。太陽電池セル11、第1基材12、第2基材13、配線材30、及び封止層14には、上述の実施形態と同様の構成が適用できる。 7, the solar cell module 50 illustrated in FIG. 7 has a curved shape that is convex on the light receiving side, as in the solar cell module 10, and is curved in the X direction and curved in the Y direction. The solar cell module 50 has a substantially rectangular shape in plan view. The solar cell module 50 includes a terminal box 34 on one side and the back side in the Y direction. Moreover, as shown in FIG. 8, the solar cell module 50 includes a plurality of solar cells 11, a first base material 12, a second base material 13, a wiring material 30, a sealing layer 14, a barrier film 6, and a low elastic resin. Layer 7 is provided. The same configuration as that of the above-described embodiment can be applied to the solar battery cell 11, the first base material 12, the second base material 13, the wiring member 30, and the sealing layer 14.
 バリアフィルム6は、封止層14の受光側に配置され、線膨張係数が第1基材12よりも小さい。バリアフィルム6は、如何なる厚さを有してもよい。しかし、バリアフィルム6は、110μm以下であると好ましく、30μm以下の厚さを有するとより好ましく、25μm以下の厚さを有すると更に好ましく、20μm以下の厚さを有すると最も好ましい。バリアフィルム6の受光側の表面61には、例えば、平面視において略円形の円筒状や円錐台状の突出部63が、面密度が略均一となるように設けられ、凹凸が設けられる。また、バリアフィルム6の裏側の裏面62にも、例えば、平面視において略円形の円筒状や円錐台状の突出部64が、面密度が略均一となるように設けられ、凹凸が設けられる。しかし、フィルムの受光側の表面やフィルムの裏側の裏面に設けられる突出部は、平面視において楕円形や多角形の形状を有してもよく、平面視においてそれ以外の如何なる形状を有してもよい。また、バリアフィルム6の厚さ方向から見たとき、バリアフィルム6の表面61の凹部67は、バリアフィルム6の裏面62の凸部である突出部64に重なってもよく、バリアフィルム6の裏面62の凹部68は、バリアフィルム6の表面61の凸部である突出部63に重なってもよい。凹部67,68は、例えば、平面視において略円形の有底の円筒孔や円錐台状の孔形状を有する。しかし、フィルムの受光側の表面やフィルムの裏側の裏面に設けられる凹部は、その形状に限定されず、平面視において、楕円形や多角形の形状を有してもよく、平面視においてそれ以外の如何なる形状を有してもよく、円筒や円錐台以外の如何なる形状を有してもよい。また、フィルムの受光側の表面やフィルムの裏側の裏面に設けられる突出部の外周面や先端面に、波状等の小さな凹凸が存在してもよく、波状等の小さな凹凸が存在しなくてもよい。また、同様に、フィルムの受光側の表面やフィルムの裏側の裏面に設けられる凹部の内周面や底面に、波状等の小さな凹凸が存在してもよく、波状等の小さな凹凸が存在しなくてもよい。また、凹凸は、フィルムの受光側の表面に均一に設けられてもよく、ランダムに設けられてもよい。また、凹凸は、フィルムの裏側の裏面に均一に設けられてもよく、ランダムに設けられてもよい。バリアフィルム6は、例えば、厚さが一定で平坦なフィルム元材にエンボス加工を施すことによって形成され、フィルム元材の裏面を部分的に押し上げて浮かすことで形成される。図9は、図7のCC線断面図の一部を示す断面図であり、Y方向及びZ方向を含み、太陽電池セル11と配線材30の両方を通過しないYZ断面の一部を表す断面図である。図9に示すように、バリアフィルム6は、バリアフィルム6の厚さ方向から見たときに太陽電池セル11と配線材30の両方に重ならない部分に凹凸を有する。即ち、バリアフィルム6の凹凸は、例えば隣り合うストリング33の間隙に対応する位置(当該間隙とモジュールの厚み方向に重なる部分)に設けられる。バリアフィルム6は、上記第1曲線方向において隣り合う2つのストリング33の間にある部分に凹凸を有することが好ましい。 The barrier film 6 is disposed on the light receiving side of the sealing layer 14 and has a linear expansion coefficient smaller than that of the first substrate 12. The barrier film 6 may have any thickness. However, the barrier film 6 is preferably 110 μm or less, more preferably 30 μm or less, further preferably 25 μm or less, and most preferably 20 μm or less. On the light receiving side surface 61 of the barrier film 6, for example, a substantially circular cylindrical or frustoconical protrusion 63 in a plan view is provided so that the surface density is substantially uniform, and unevenness is provided. Also, the rear surface 62 on the back side of the barrier film 6 is provided with, for example, a substantially circular cylindrical or frustoconical protrusion 64 in a plan view so as to have a substantially uniform surface density and unevenness. However, the protrusion provided on the light-receiving side surface of the film or the back side of the back side of the film may have an elliptical shape or a polygonal shape in plan view, or any other shape in plan view. Also good. Further, when viewed from the thickness direction of the barrier film 6, the concave portion 67 of the front surface 61 of the barrier film 6 may overlap with the protruding portion 64 that is a convex portion of the rear surface 62 of the barrier film 6. The concave portion 68 of 62 may overlap the protruding portion 63 that is the convex portion of the surface 61 of the barrier film 6. The recesses 67 and 68 have, for example, a substantially circular bottomed cylindrical hole or truncated cone shape in plan view. However, the concave portions provided on the light receiving side surface of the film and the back side of the back side of the film are not limited to the shape, and may have an elliptical shape or a polygonal shape in plan view. It may have any shape, and may have any shape other than a cylinder or a truncated cone. Also, small irregularities such as undulations may exist on the outer peripheral surface and the front end surface of the protrusion provided on the light receiving side surface of the film and the back side of the back side of the film. Good. Similarly, small irregularities such as undulations may exist on the inner peripheral surface and bottom surface of the recesses provided on the light-receiving side surface of the film and the back side of the back side of the film, and there are no small irregularities such as undulations. May be. Further, the unevenness may be provided uniformly on the surface on the light receiving side of the film, or may be provided randomly. Further, the unevenness may be provided uniformly on the back side of the back side of the film, or may be provided randomly. The barrier film 6 is formed, for example, by embossing a flat film base material having a constant thickness, and is formed by partially lifting and floating the back surface of the film base material. 9 is a cross-sectional view showing a part of the CC line cross-sectional view of FIG. 7, and includes a Y-direction and a Z-direction, and represents a part of the YZ cross-section that does not pass through both the solar battery 11 and the wiring member 30. FIG. As shown in FIG. 9, the barrier film 6 has irregularities in a portion that does not overlap both the solar battery cell 11 and the wiring member 30 when viewed from the thickness direction of the barrier film 6. That is, the unevenness of the barrier film 6 is provided, for example, at a position corresponding to a gap between adjacent strings 33 (a portion overlapping the gap and the thickness direction of the module). It is preferable that the barrier film 6 has unevenness in a portion between two adjacent strings 33 in the first curve direction.
 バリアフィルム6の材料としては、例えば、酸素や水蒸気の通過を抑制する既存のガスバリアフィルムの材料と同じ材料を採用できる。バリアフィルム6は、バリアフィルム16と同様のフィルムで構成されてもよい。フィルムは、例えば、基材フィルムと、該基材フィルム上に形成されたバリア性積層体とを含んでもよく、基材フィルムの上に、有機層と無機バリア層を交互に設けることで形成してもよい。例えば、基材フィルムの一方側に、有機層、無機バリア層、有機層、及び無機バリア層を、その順に、それぞれの面が互いに隣接するように設けてもよい。フィルムにおいて、バリア性積層体は、基材フィルムの片面にのみ設けられていてもよいし、両面に設けられていてもよい。また、バリア性積層体は、基材フィルム側から無機バリア層、有機層の順に積層して構成されてもよいし、有機層、無機バリア層の順に積層して構成されてもよい。フィルムは、バリア性積層体、基材フィルム以外の構成成分(例えば、易接着層等の機能性層)を有してもよい。機能性層は、バリア性積層体の上、バリア性積層体と基材フィルムの間、基材フィルム上のバリア性積層体が設置されていない側のいずれに配置されてもよい。 As the material of the barrier film 6, for example, the same material as the material of the existing gas barrier film that suppresses the passage of oxygen and water vapor can be adopted. The barrier film 6 may be composed of the same film as the barrier film 16. The film may include, for example, a base film and a barrier laminate formed on the base film, and is formed by alternately providing an organic layer and an inorganic barrier layer on the base film. May be. For example, you may provide an organic layer, an inorganic barrier layer, an organic layer, and an inorganic barrier layer in that order so that each surface may mutually adjoin on one side of a base film. In the film, the barrier laminate may be provided only on one side of the base film, or may be provided on both sides. Moreover, a barriering laminated body may be comprised by laminating | stacking in order of an inorganic barrier layer and an organic layer from the base film side, and may be comprised by laminating | stacking in order of an organic layer and an inorganic barrier layer. A film may have structural components (for example, functional layers, such as an easily bonding layer) other than a barriering laminated body and a base film. The functional layer may be disposed on the barrier laminate, between the barrier laminate and the base film, or on the side where the barrier laminate on the base film is not installed.
 基材フィルムとしては、プラスチックフィルムを用いると好ましい。プラスチックフィルムは、有機層、無機バリア層等の積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。プラスチックフィルムを構成する樹脂としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。 It is preferable to use a plastic film as the base film. The plastic film is not particularly limited in material, thickness and the like as long as it can hold a laminate such as an organic layer and an inorganic barrier layer, and can be appropriately selected according to the purpose of use. Specific examples of the resin constituting the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, Polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin And thermoplastic resins such as an alicyclic modified polycarbonate resin, a fluorene ring modified polyester resin, and an acryloyl compound.
 低弾性樹脂層7は、第1基材12とバリアフィルム6との間に配置される。低弾性樹脂層7は、第1基材12よりも低い引張弾性率を有すれば好ましく、第1基材12、第2基材13、及び封止層14のいずれよりも低い引張弾性率を有すれば更に好ましい。また、低弾性樹脂層7は、第1基材12、第2基材13、封止層14、及びバリアフィルム6のいずれよりも低い引張弾性率を有すれば最も好ましい。しかし、低弾性樹脂層7は、第1基材12と同程度の引張弾性率を有してもよく、第1基材12よりも大きい引張弾性率を有してもよい。低弾性樹脂層7は、ゲル状の透光性樹脂材料(以下、単にゲルという)からなると好ましく、ゲルは、溶媒を含有しても溶媒を含有しなくてもよい。溶媒を含有したゲルの例としては、分散媒が水のゲルであるヒドロゲルや、分散媒が有機溶媒のゲルであるオルガノゲルが挙げられる。また、溶媒を含有したゲルの例としては、数平均分子量が10000以上の高分子ゲル、数平均分子量が1000以上10000未満のオリゴマーゲル、又は数平均分子量が1000未満の低分子ゲルが挙げられる。なお、低弾性樹脂層7は、緩衝層20と同様の材料で構成されてもよい。 The low elastic resin layer 7 is disposed between the first base material 12 and the barrier film 6. The low elastic resin layer 7 preferably has a lower tensile elastic modulus than the first base material 12, and has a lower tensile elastic modulus than any of the first base material 12, the second base material 13, and the sealing layer 14. If present, it is more preferable. The low elastic resin layer 7 is most preferable if it has a lower tensile elastic modulus than any of the first base material 12, the second base material 13, the sealing layer 14, and the barrier film 6. However, the low elastic resin layer 7 may have the same tensile elastic modulus as that of the first base 12, and may have a higher tensile elastic modulus than the first base 12. The low elastic resin layer 7 is preferably made of a gel-like translucent resin material (hereinafter simply referred to as gel), and the gel may or may not contain a solvent. Examples of the gel containing a solvent include a hydrogel in which the dispersion medium is a water gel and an organogel in which the dispersion medium is an organic solvent gel. Examples of the gel containing the solvent include a polymer gel having a number average molecular weight of 10,000 or more, an oligomer gel having a number average molecular weight of 1,000 or more and less than 10,000, or a low molecular gel having a number average molecular weight of less than 1,000. The low elastic resin layer 7 may be made of the same material as that of the buffer layer 20.
 但し、溶媒を含有した高分子ゲルや溶媒を含有しないゲルを用いると、複数の太陽電池セル11の移動を抑制でき、当該移動に起因する配線材30の損傷を抑制できて好ましい。また、溶媒を含有した高分子ゲルもしくは溶媒を含有しないゲルの中でも、シリコーンゲル、アクリルゲル、及びウレタンゲルからなる群より選択される少なくとも1つを含有すると好ましい。これらのゲルは、引張弾性率が小さく、温度変化による第1基材12の熱応力や局所的な荷重を緩和し易い。したがって、配線材30の破損を効果的に抑制できる。また、シリコーンゲルは、外部衝撃を緩和できる柔軟性を有する上、基板材や枠体を構成する樹脂材料との密着性も高くし易く、耐湿性や耐水性等にも優れる。よって、低弾性樹脂層7は、シリコーンゲルで構成されると最も好ましい。 However, it is preferable to use a polymer gel containing a solvent or a gel not containing a solvent because the movement of the plurality of solar cells 11 can be suppressed, and damage to the wiring member 30 due to the movement can be suppressed. Moreover, it is preferable to contain at least one selected from the group consisting of a silicone gel, an acrylic gel, and a urethane gel among polymer gels containing a solvent or gels containing no solvent. These gels have a small tensile elastic modulus and are easy to relieve the thermal stress and local load of the first substrate 12 due to temperature changes. Therefore, damage to the wiring member 30 can be effectively suppressed. In addition, the silicone gel has flexibility that can mitigate external impacts, and it is easy to improve adhesion to the resin material constituting the substrate material or the frame body, and is excellent in moisture resistance, water resistance, and the like. Therefore, the low elastic resin layer 7 is most preferably composed of silicone gel.
 低弾性樹脂層7の引張弾性率は特に限定されないが、0.1kPa以上5MPa未満であると好ましく、1kPa以上1MPa以下であると更に好ましい。低弾性樹脂層7の引張弾性率の下限をこのような値とすることで、太陽電池セル11を固定し易くなり、太陽電池セル11の移動による配線材30の損傷を抑制できる。また、低弾性樹脂層7の引張弾性率の上限をこのような値とすることで、温度変化による第1基材12の熱応力や局所的な荷重を効率よく緩和できる。 The tensile elastic modulus of the low elastic resin layer 7 is not particularly limited, but is preferably 0.1 kPa or more and less than 5 MPa, and more preferably 1 kPa or more and 1 MPa or less. By setting the lower limit of the tensile elastic modulus of the low elastic resin layer 7 to such a value, the solar battery cell 11 can be easily fixed, and damage to the wiring member 30 due to the movement of the solar battery cell 11 can be suppressed. Moreover, the thermal stress and local load of the 1st base material 12 by a temperature change can be relieve | moderated efficiently by making the upper limit of the tensile elasticity modulus of the low elastic resin layer 7 into such a value.
 第1基材12、低弾性樹脂層7、バリアフィルム6、封止層14、太陽電池セル11及び配線材30、第2基材13は、例えば、高真空下で100~160℃程度の温度で実行される真空ラミネート加工で貼り合わされ、一体化される。図10は、太陽電池モジュール50の製造方法を説明する図である。以下、図10を参照して、真空ラミネート加工の概要について説明する。 The first base material 12, the low elastic resin layer 7, the barrier film 6, the sealing layer 14, the solar cell 11 and the wiring material 30, and the second base material 13 are, for example, at a temperature of about 100 to 160 ° C. under high vacuum. Bonded and integrated by vacuum laminating performed in FIG. 10 is a diagram illustrating a method for manufacturing the solar cell module 50. Hereinafter, an outline of the vacuum laminating process will be described with reference to FIG.
 真空ラミネート加工を行う際には、先ず、第1基材12の元材である湾曲形状の表側元基材19と、第2基材13の元材であって、製品の湾曲形状に略対応する湾曲形状である裏側元基材25を用意する。表側元基材19の剛性は、裏側元基材25の剛性よりも小さいか略同じになっている。また、表側及び裏側元基材19,25の夫々は、表側の全てが受光側に凸の湾曲形状を有し、表側元基材19の裏面の曲率半径が、裏側元基材25の表面26の曲率半径よりも大きいと好ましい。しかし、表側及び裏側元基材19,25の夫々は、全体的に受光側に凸の湾曲形状であればよく、一部が平板形状であってもよく、一部が受光側に凹の形状であってもよい。また、表側元基材19の厚さは、中央部が周辺部よりも薄くなっていると好ましい。表側元基材19、及び裏側元基材25の夫々は、例えば、射出成形によって形成される。 When performing vacuum laminating, first, the curved front side base material 19 that is the base material of the first base material 12 and the base material of the second base material 13 that substantially correspond to the curved shape of the product. A back-side base material 25 having a curved shape is prepared. The rigidity of the front side base material 19 is smaller than or substantially the same as the rigidity of the back side base material 25. Further, each of the front side and back side base substrates 19 and 25 has a curved shape in which the front side is convex on the light receiving side, and the curvature radius of the back side of the front side base substrate 19 is the surface 26 of the back side base substrate 25. It is preferable that it is larger than the curvature radius. However, each of the front-side and back- side base materials 19 and 25 may have a curved shape that is convex to the light-receiving side as a whole, a part may be a flat plate shape, and a part is a concave shape to the light-receiving side. It may be. Moreover, it is preferable that the thickness of the front side base material 19 is thinner at the center than at the periphery. Each of the front side base material 19 and the back side base material 25 is formed by, for example, injection molding.
 次に、例えば、裏側元基材25、封止層14における太陽電池セル11に対する裏側部分を構成する裏側シート材41、太陽電池セル11及び配線材30(図10では、図示を省略)、封止層14における太陽電池セル11に対する表側部分を構成する表側シート材42、バリアフィルム6の元材であるフィルム元材43、低弾性樹脂層7の元材である低弾性樹脂元材45、及び表側元基材19を、この順に積層した積層構造を、真空ラミネート装置の一対のシリコーンゴム(ダイアフラム)間に配置する。図10の下側の図、即ちフィルム元材43の一部の拡大図に示すように、フィルム元材43の表面及び裏面の夫々は、エンボス加工等で形成された凹凸を有する。 Next, for example, the back side base material 25, the back side sheet material 41 constituting the back side portion of the sealing layer 14 with respect to the solar cells 11, the solar cells 11 and the wiring material 30 (not shown in FIG. 10), sealing A front side sheet material 42 constituting a front side portion of the stop layer 14 with respect to the solar battery cell 11, a film base material 43 that is a base material of the barrier film 6, a low elastic resin base material 45 that is a base material of the low elastic resin layer 7, and A laminated structure in which the front base material 19 is laminated in this order is disposed between a pair of silicone rubbers (diaphragms) of a vacuum laminating apparatus. As shown in the lower diagram of FIG. 10, that is, an enlarged view of a part of the film base material 43, each of the front and back surfaces of the film base material 43 has irregularities formed by embossing or the like.
 続いて、真空引きにより、積層構造間の空気を外側に排気しながら、圧縮空気により一方又は両方のシリコーンゴムを膨らませて、表側元基材19を、移動不可になるまで裏側元基材25に近づけ、積層構造をその厚さ方向に加圧する。この過程で、図10に矢印Cで示すように、フィルム元材43を、平坦な形状から湾曲形状に変形させる。また、この真空引き及び加圧に加えて、真空ラミネート装置のヒーターで積層構造を例えば100~160℃程度の温度で加熱する。 Subsequently, one or both silicone rubbers are inflated with compressed air while evacuating air between the laminated structures to the outside by evacuation, and the front side base substrate 19 is moved to the back side base substrate 25 until it cannot move. The laminated structure is pressed in the thickness direction. In this process, as shown by an arrow C in FIG. 10, the film base material 43 is deformed from a flat shape to a curved shape. In addition to the evacuation and pressurization, the laminated structure is heated at a temperature of about 100 to 160 ° C. with a heater of a vacuum laminating apparatus.
 この高温での加圧により、裏側元基材25よりも剛性が低い表側元基材19の裏面を、裏側元基材25の表面26に対応する形状に湾曲させる。そして、表側元基材19と低弾性樹脂元材45を隙間なく接触させ、低弾性樹脂元材45とフィルム元材43を隙間なく接触させる。また、表側シート材42と裏側シート材41を、太陽電池セル11及び配線材30(図10では、図示を省略)を封止するように融着し、表側シート材42とフィルム元材43を接着する。また、裏側シート材41と裏側元基材25を接着する。これらの融着等によって、表側元基材19と裏側元基材25を貼り合わせ、上記積層構造を、製品に対応する形状で一体化する。このようにして、表側元基材19から第1基材12を形成し、裏側元基材25から第2基材13を形成する。最後に、例えば、枠(フレーム)を積層構造の周辺部に取り付けて、ゲル状の低弾性樹脂層7が外部に流動することを防止し、太陽電池モジュール50を形成する。 The pressure at this high temperature causes the back side of the front side base material 19, which has lower rigidity than the back side base material 25, to bend into a shape corresponding to the surface 26 of the back side base material 25. Then, the front base material 19 and the low elastic resin base material 45 are brought into contact with no gap, and the low elastic resin base material 45 and the film base material 43 are brought into contact with no gap. Further, the front sheet material 42 and the back sheet material 41 are fused so as to seal the solar cells 11 and the wiring material 30 (not shown in FIG. 10), and the front sheet material 42 and the film base material 43 are bonded together. Glue. Further, the back side sheet material 41 and the back side base material 25 are bonded. By such fusion or the like, the front side base substrate 19 and the back side base substrate 25 are bonded together, and the laminated structure is integrated in a shape corresponding to the product. In this way, the first base material 12 is formed from the front side base material 19 and the second base material 13 is formed from the back side base material 25. Finally, for example, a frame is attached to the periphery of the laminated structure to prevent the gel-like low-elasticity resin layer 7 from flowing to the outside, and the solar cell module 50 is formed.
 なお、バリアフィルム6の元材であるフィルム元材43にエンボス加工等で予め凹凸を形成することで、バリアフィルム6に凹凸を形成する場合について説明した。しかし、フィルムの元材であるフィルム元材にラミネート時に凹凸を形成することで、フィルムに凹凸を形成してもよい。また、表側元基材19の裏面の曲率半径が裏側元基材25の表面26の曲率半径よりも大きいと共に、表側元基材19の剛性が裏側元基材25の剛性よりも小さいか略同じ場合について説明した。そして、表側元基材19の裏面を裏側元基材25の表面26に沿わすように変形させる場合について説明した。しかし、表側元基材の裏面が平面で、裏側元基材の表面が湾曲面でもよい。そして、表側元基材の裏面を裏側元基材の表面に沿うように湾曲させてもよい。また、表側元基材の剛性が裏側元基材と略同じ剛性かそれよりも大きい剛性を有し、表側元基材の裏面の曲率半径が裏側元基材の表面の曲率半径よりも小さくてもよい。又は、表側元基材の剛性が裏側元基材と略同じ剛性かそれよりも大きい剛性を有し、表側元基材の裏面が湾曲面である一方、裏側元基材の表面が平面であってもよい。そして、裏側元基材の表面を、側元基材の裏面に沿わすように変形させてもよい。 In addition, the case where an unevenness | corrugation was formed in the barrier film 6 by previously forming an unevenness | corrugation in the film base material 43 which is the original material of the barrier film 6 by embossing etc. was demonstrated. However, irregularities may be formed on the film by forming irregularities on the film base material, which is the original material of the film, at the time of lamination. Further, the curvature radius of the back surface of the front-side base material 19 is larger than the curvature radius of the surface 26 of the back-side base material 25, and the rigidity of the front-side base material 19 is smaller than or substantially the same as the rigidity of the back-side base material 25. Explained the case. The case where the back surface of the front side base material 19 is deformed so as to be along the surface 26 of the back side base material 25 has been described. However, the back surface of the front side base material may be a flat surface, and the surface of the back side base material may be a curved surface. And you may curve the back surface of a front side base material so that the surface of a back side base material may be met. Also, the rigidity of the front side base material is substantially the same as or larger than that of the back side base material, and the curvature radius of the back side of the front side base material is smaller than the curvature radius of the surface of the back side base material. Also good. Or, the rigidity of the front side base material is substantially the same or larger than that of the back side base material, and the back side of the front side base material is a curved surface, while the surface of the back side base material is flat. May be. And you may deform | transform the surface of a back side base material so that the back surface of a side base material may be followed.
 また、表側元基材19の厚さが、中央部が周辺部よりも薄い場合について説明した。しかし、変形させる表側元基材の厚さは、略一定でもよい。また、真空ラミネート加工で、一対のシリコーンゴムを、圧縮空気で膨らませて積層構造を厚さ方向に加圧する場合について説明した。しかし、一対のラバープレートを、油圧等を用いた圧力で一対のラバープレートの距離が小さくなるように移動させて、一対のラバープレート間に配置された積層構造を圧縮してもよい。また、太陽電池モジュールが、枠(フレーム)を備える場合について説明した。しかし、例えば、表側元基材及び裏側元基材のうちの一方に、太陽電池モジュールの側方部となる部分を設けて、真空ラミネート加工の後に、この側方部で、低弾性樹脂層を密封し、低弾性樹脂層の外部への流動を防止してもよい。又は、太陽電池モジュールの厚さを中央部から周辺部に行くにしたがって薄くなるようにして、太陽電池モジュールの縁部で第1基材と第2基材とを接着してもよい。これらの構造を採用することで、太陽電池モジュールが枠を備えないようにしてもよい。 Further, the case where the thickness of the front side base material 19 is thinner at the center than at the periphery has been described. However, the thickness of the front base material to be deformed may be substantially constant. Further, the case where a pair of silicone rubbers is inflated with compressed air and the laminated structure is pressurized in the thickness direction by vacuum lamination has been described. However, the laminated structure disposed between the pair of rubber plates may be compressed by moving the pair of rubber plates so that the distance between the pair of rubber plates is reduced by pressure using hydraulic pressure or the like. Moreover, the case where the solar cell module was provided with the frame (frame) was demonstrated. However, for example, in one of the front-side base substrate and the back-side base substrate, a portion to be a side portion of the solar cell module is provided, and after the vacuum laminating process, the low-elasticity resin layer is formed on this side portion. It may be sealed to prevent the flow of the low elastic resin layer to the outside. Or you may adhere | attach the 1st base material and the 2nd base material in the edge part of a solar cell module so that it may become thin as the thickness of a solar cell module goes to a peripheral part from a center part. By adopting these structures, the solar cell module may not have a frame.
 再度、図7を参照して、複数の太陽電池セル11は、太陽電池モジュール50内にマトリクス状に配置される。Y方向に沿って同一の直線上に配置された2以上の太陽電池セル11は、配線材30によって直列に接続される。当該2以上の太陽電池セル11と、その2以上の太陽電池セル11を直列に接続する配線材30とは、ストリング33を構成する。 Referring to FIG. 7 again, the plurality of solar battery cells 11 are arranged in a matrix in the solar battery module 50. Two or more solar cells 11 arranged on the same straight line along the Y direction are connected in series by the wiring member 30. The two or more solar cells 11 and the wiring member 30 connecting the two or more solar cells 11 in series constitute a string 33.
 図7に示す例では、X方向に隣り合う2つのストリング33においてY方向片側の端にある太陽電池セル11同士が中継配線で直列に接続され、全ての太陽電池セル11が直列に接続される。その結果、Y方向の最も端子ボックス34側かつ紙面における最も右側に配設される太陽電池セル11Aが最も高電位側に配設され、Y方向の最も端子ボックス34側かつ紙面における最も左側に配設される太陽電池セル11Bが最も低電位側に配設される。なお、本実施形態と異なり、Y方向の最も端子ボックス側かつ紙面における最も右側に配設される太陽電池セルが、最も低電位側に配設され、Y方向の最も端子ボックス側かつ紙面における最も左側に配設される太陽電池セルが、最も高電位側に配設されてもよい。 In the example shown in FIG. 7, in two strings 33 adjacent to each other in the X direction, the solar cells 11 at one end in the Y direction are connected in series by a relay wiring, and all the solar cells 11 are connected in series. . As a result, the solar cell 11A disposed on the most terminal side in the Y direction and on the rightmost side in the drawing is arranged on the highest potential side, and arranged on the most terminal side in the Y direction and on the leftmost side in the drawing. The provided solar battery cell 11B is disposed on the lowest potential side. Unlike the present embodiment, the solar cell disposed on the most terminal box side in the Y direction and on the rightmost side on the paper surface is disposed on the lowest potential side, and the solar cell disposed on the most terminal box side on the paper surface in the Y direction. The solar battery cell disposed on the left side may be disposed on the highest potential side.
 太陽電池モジュール50は、Y方向の端子ボックス34側に、端子ボックス34の端子に電気的に接続するための4つの出力配線32A,32B,32C,32Dを備える。各出力配線32A,32B,32C,32Dの外周面は、絶縁性フィルム等の絶縁部材によって被覆されている。4つの出力配線32A,32B,32C,32Dのうちの2つの出力配線32B,32Cは、隣り合う2つのストリング33を直列に接続する機能も有する。出力配線32Aは、X方向で最も右側に配設されて最も高電位側にあるストリング33の高電位側に電気的に接続される。また、出力配線32Bは、X方向で右から2列目に配設されて2番目に高電位のストリング33の最も低電位側の太陽電池セル11と、X方向で右から3列目に配設されて3番目に高電位のストリング33の最も高電位側の太陽電池セル11とを電気的に接続する。また、出力配線32Cは、X方向で右から4列目に配設されて4番目に高電位のストリング33の最も低電位側の太陽電池セル11と、X方向で右から5列目に配設されて5番目に高電位のストリング33の最も高電位側の太陽電池セル11とを電気的に接続する。また、出力配線32Dは、X方向で右から6列目に配設されて最も低い電位のストリング33の最も低電位側に電気的に接続される。 The solar cell module 50 includes four output wirings 32A, 32B, 32C and 32D for electrically connecting to the terminals of the terminal box 34 on the terminal box 34 side in the Y direction. The outer peripheral surface of each output wiring 32A, 32B, 32C, 32D is covered with an insulating member such as an insulating film. Of the four output wirings 32A, 32B, 32C, 32D, the two output wirings 32B, 32C also have a function of connecting two adjacent strings 33 in series. The output wiring 32A is disposed on the rightmost side in the X direction and is electrically connected to the high potential side of the string 33 on the highest potential side. The output wiring 32B is arranged in the second column from the right in the X direction, and is arranged in the third column from the right in the X direction with the solar cell 11 on the lowest potential side of the second highest potential string 33. The third solar cell 11 on the highest potential side of the third highest potential string 33 is electrically connected. The output wiring 32C is arranged in the fourth column from the right in the X direction and is arranged in the fifth column from the right in the X direction with the solar cell 11 on the lowest potential side of the fourth highest potential string 33. The solar cell 11 on the highest potential side of the fifth highest potential string 33 is electrically connected. The output wiring 32D is arranged in the sixth column from the right in the X direction and is electrically connected to the lowest potential side of the string 33 having the lowest potential.
 第2基材13は、複数の貫通孔(図示せず)を有する。各出力配線32A,32B,32C,32Dは、該貫通孔のいずれかを通過した後、端子ボックス34の所定の端子に電気的に接続される。詳述しないが、端子ボックス34内の端子間には、逆流防止用のバイパスダイオードが設けられる。落ち葉等の遮光物が特定の太陽電池セル11を覆うと、その太陽電池セル11の発電量が低下して発熱する虞がある。バイパスダイオードを設けることで発電量が低下した太陽電池セル11を含んで直列に接続された2つのストリング33が、バイパスダイオードによって略短絡される。その結果、当該2つのストリング33に電流が略流れなくなり、発熱による太陽電池セル11の損傷が抑制される。太陽電池モジュール50からの電力は、端子ボックス34の端子に電気的に接続された2つの電力供給配線(図示せず)によって外部に取り出される。なお、図7に示す例では、太陽電池モジュール50が、6列に配置されたストリング33を有するが、太陽電池モジュールは、6列以外の複数列に配置されたストリングを有してもよい。 The second base material 13 has a plurality of through holes (not shown). Each output wiring 32A, 32B, 32C, 32D is electrically connected to a predetermined terminal of the terminal box 34 after passing through one of the through holes. Although not described in detail, a bypass diode for preventing backflow is provided between the terminals in the terminal box 34. If a light-shielding object such as fallen leaves covers a specific solar cell 11, the amount of power generated by the solar cell 11 may decrease and heat may be generated. The two strings 33 connected in series including the solar battery cells 11 whose power generation amount is reduced by providing the bypass diode are substantially short-circuited by the bypass diode. As a result, no current substantially flows through the two strings 33, and damage to the solar battery cell 11 due to heat generation is suppressed. The electric power from the solar cell module 50 is taken out by two electric power supply wirings (not shown) electrically connected to the terminals of the terminal box 34. In the example illustrated in FIG. 7, the solar cell module 50 includes the strings 33 arranged in six rows, but the solar cell module may include strings arranged in a plurality of rows other than the six rows.
 以上、太陽電池モジュール50は、光が主に入射する受光側に凸の湾曲形状を有する太陽電池モジュールである。また、太陽電池モジュール50は、受光側に凸の第1曲線の延在方向である第1曲線方向(X方向)に間隔をおいて配設される複数のストリング33を備える。また、各ストリング33は、第1曲線に交差すると共に受光側に凸の第2曲線の延在方向である第2曲線方向(Y方向)に間隔をおいて配置される複数の太陽電池セル11、及び複数の太陽電池セル11を電気的に接続する複数の配線材30を含む。また、太陽電池モジュール50は、ストリング33に対して受光側に設けられて受光側に凸の湾曲形状を有し、透光性の樹脂材料で構成される第1基材12を備える。また、太陽電池モジュール50は、ストリング33に対して受光側とは反対側の裏側に設けられ、受光側に凸の湾曲形状を有する第2基材13と、複数のストリング33を封止するように配置される封止層14を備える。また、太陽電池モジュール50は、封止層14の受光側に配置されるバリアフィルム6と、第1基材12とバリアフィルム6との間に配置される低弾性樹脂層(充填材層)7を備える。バリアフィルム6は、線膨張係数が第1基材12よりも小さい。また、図9を用いて説明したように、バリアフィルム6は、バリアフィルム6の厚さ方向から見たときに太陽電池セル11と配線材30の両方に重ならない部分に凹凸を有する。ここで、Y方向に沿って同一の直線上に配置された2以上の太陽電池セル11と、その2以上の太陽電池セル11を直列に接続する配線材30とは、ストリング33を構成する。よって、バリアフィルム6は、X方向において隣り合う2つのストリング33の間にある部分に凹凸を有する。 As described above, the solar cell module 50 is a solar cell module having a convex curved shape on the light receiving side where light mainly enters. In addition, the solar cell module 50 includes a plurality of strings 33 arranged at intervals in a first curve direction (X direction) that is an extending direction of the first curve that protrudes toward the light receiving side. Each string 33 intersects the first curve and is arranged at intervals in the second curve direction (Y direction) that is the extending direction of the second curve that is convex on the light receiving side. , And a plurality of wiring members 30 that electrically connect the plurality of solar cells 11. In addition, the solar cell module 50 includes a first base material 12 that is provided on the light receiving side with respect to the string 33, has a convex curved shape on the light receiving side, and is made of a translucent resin material. The solar cell module 50 is provided on the back side opposite to the light receiving side with respect to the string 33, and seals the second base material 13 having a convex curved shape on the light receiving side and the plurality of strings 33. The sealing layer 14 arrange | positioned in is provided. The solar cell module 50 includes a barrier film 6 disposed on the light receiving side of the sealing layer 14 and a low-elasticity resin layer (filler layer) 7 disposed between the first substrate 12 and the barrier film 6. Is provided. The barrier film 6 has a linear expansion coefficient smaller than that of the first substrate 12. Further, as described with reference to FIG. 9, the barrier film 6 has irregularities in a portion that does not overlap both the solar battery cell 11 and the wiring member 30 when viewed from the thickness direction of the barrier film 6. Here, the two or more solar cells 11 arranged on the same straight line along the Y direction and the wiring member 30 connecting the two or more solar cells 11 in series constitute a string 33. Therefore, the barrier film 6 has unevenness in a portion between two strings 33 adjacent in the X direction.
 上記構成によれば、バリアフィルム6が凹凸を有し、バリアフィルム6の元材であるフィルム元材43が凹凸を有する。したがって、ラミネート加工時にフィルム元材43にシワがよりにくく、それに起因して、出来上がった製品におけるバリアフィルム6にもシワがよりにくく、その結果、見栄えが良くて、剥離が起きにくい太陽電池モジュール50を製造できる。次にこのことを、参考例の太陽電池モジュール310と比較することで説明する。図11は、第1参考例の太陽電池モジュール310における図10に対応する図であり、凹凸を有さない平坦なフィルム元材343を用いた場合の問題を説明する図である。なお、図11においては、図10と同一の構成については、図10と同一の参照番号を付して説明を省略する。 According to the above configuration, the barrier film 6 has unevenness, and the film base material 43 which is the original material of the barrier film 6 has unevenness. Therefore, the film base material 43 is less likely to be wrinkled at the time of lamination, and as a result, the barrier film 6 in the finished product is also less likely to be wrinkled. As a result, the solar cell module 50 has a good appearance and hardly peels off. Can be manufactured. Next, this will be described by comparing with the solar cell module 310 of the reference example. FIG. 11 is a diagram corresponding to FIG. 10 in the solar cell module 310 of the first reference example, and is a diagram illustrating a problem when a flat film base material 343 having no irregularities is used. In FIG. 11, the same components as those in FIG. 10 are denoted by the same reference numerals as those in FIG.
 図11を参照して、フィルムの元材として平坦なフィルム元材343を用いた場合、フィルム元材343が凹凸を吸収しにくい形状となる。したがって、矢印Dで示すラミネート加工時にフィルム元材343を湾曲させる際、フィルム元材343が、表側シート材42の収縮に伴って表側シート材42の表面に生じる凹凸により、表側シート材42の収縮に円滑に追従しにくくなる。よって、フィルム元材343にシワ(あまり)380が形成され易く、このシワ380が、太陽電池モジュールの見栄えを悪くする。また、このシワ380は、剥離の起点と成り得、また、水分の浸入経路にもなり得、劣化の温床となり得る。なお、仕様によっては、厚さが薄いフィルムが所望される場合があり、25μm以下の厚さのフィルムや、20μm以下の厚さのフィルムが所望される場合がある。しかし、このような場合、フィルムの剛性が小さくてフィルムが弱くなるので、フィルムが、表側シート材の収縮に更に追従しにくくなって、シワが生じる虞が高くなる。 Referring to FIG. 11, when a flat film base material 343 is used as a film base material, the film base material 343 has a shape that hardly absorbs unevenness. Therefore, when the film base material 343 is bent during the lamination process indicated by the arrow D, the film base material 343 contracts the front side sheet material 42 due to the unevenness generated on the surface of the front side sheet material 42 as the front side sheet material 42 contracts. It becomes difficult to follow smoothly. Therefore, wrinkles (not so much) 380 are easily formed on the film base material 343, and the wrinkles 380 deteriorate the appearance of the solar cell module. Further, the wrinkles 380 can be a starting point of peeling, can also be a moisture intrusion path, and can be a hotbed for deterioration. Depending on the specifications, a thin film may be desired, and a film having a thickness of 25 μm or less or a film having a thickness of 20 μm or less may be desired. However, in such a case, since the rigidity of the film is small and the film becomes weak, the film is less likely to follow the shrinkage of the front side sheet material, and there is a high risk of wrinkling.
 これに対し、図10に示す本実施形態の場合、バリアフィルム6が凹凸を有し、バリアフィルム6の元材であるフィルム元材43が凹凸を有するので、フィルム元材43が該凹凸に起因するバネ性を有する。したがって、表側シート材42の収縮に伴って生じる表側シート材42の凹凸をそのばね性で吸収でき、フィルム元材43のばね性で表側シート材42から付与される力を、フィルム元材43に大局的かつ均一に分散し易くなる。よって、フィルム元材43がラミネート加工時に均一に縮み易くなり、シワがフィルム元材43に生成しにくくなる。その結果、太陽電池モジュール50を、見栄えが良くて、剥離、劣化も起こりにくいものにできる。 On the other hand, in the case of this embodiment shown in FIG. 10, the barrier film 6 has irregularities, and the film base material 43 that is the base material of the barrier film 6 has irregularities. Therefore, the film base material 43 is caused by the irregularities. It has spring properties. Therefore, the unevenness of the front side sheet material 42 that occurs as the front side sheet material 42 contracts can be absorbed by its spring property, and the force applied from the front side sheet material 42 by the spring property of the film base material 43 is applied to the film base material 43. It becomes easy to disperse globally and uniformly. Therefore, the film base material 43 is easily shrunk uniformly during the laminating process, and wrinkles are hardly generated in the film base material 43. As a result, it is possible to make the solar cell module 50 look good and hardly peel and deteriorate.
 また、第1基材12とバリアフィルム6との間に設けられる充填材層は、第1基材12よりも低い引張弾性係数を有する低弾性樹脂層7であってもよい。 Further, the filler layer provided between the first base material 12 and the barrier film 6 may be the low elastic resin layer 7 having a lower tensile elastic modulus than the first base material 12.
 本構成によれば、低い引張弾性係数を有する低弾性樹脂層7が、第1基材12とバリアフィルム6との間に設けられる。したがって、第1基材12が、線膨張係数が高い樹脂製基材であっても、低弾性樹脂層7で第1基材12の熱収縮の影響を緩和できる。よって、第1基材12の熱収縮の影響が配線材30に伝わりにくくなって、配線材30の損傷を抑制できる。 According to this configuration, the low elastic resin layer 7 having a low tensile elastic modulus is provided between the first substrate 12 and the barrier film 6. Therefore, even if the first base 12 is a resin base having a high linear expansion coefficient, the low elastic resin layer 7 can alleviate the influence of heat shrinkage of the first base 12. Therefore, the influence of the thermal contraction of the first base material 12 becomes difficult to be transmitted to the wiring member 30, and damage to the wiring member 30 can be suppressed.
 また、凹凸は、バリアフィルム6の受光側の表面61及びバリアフィルム6の裏側の裏面62の両方に設けられてもよい。また、バリアフィルム6の厚さ方向から見たとき、バリアフィルム6の表面61の凹部67は、バリアフィルム6の裏面62の突出部(凸部)64に重なり、バリアフィルム6の裏面62の凹部68は、バリアフィルム6の表面61の突出部(凸部)63に重なってもよい。 Further, the unevenness may be provided on both the light receiving side surface 61 of the barrier film 6 and the back surface 62 on the back side of the barrier film 6. Further, when viewed from the thickness direction of the barrier film 6, the concave portion 67 of the front surface 61 of the barrier film 6 overlaps the protruding portion (convex portion) 64 of the rear surface 62 of the barrier film 6, and the concave portion of the rear surface 62 of the barrier film 6. 68 may overlap the protruding portion (convex portion) 63 of the surface 61 of the barrier film 6.
 本構成によれば、厚さが厚くて剛性が大きい部分と、厚さが薄くて剛性が小さい部分が、バリアフィルム6にアンバランスに生じにくくなる。よって、バリアフィルム6のバネ性を大きくでき、シワ発生の抑制効果を大きくできる。 According to this configuration, a portion having a large thickness and high rigidity and a portion having a small thickness and low rigidity are less likely to be unbalanced in the barrier film 6. Therefore, the spring property of the barrier film 6 can be increased, and the effect of suppressing the generation of wrinkles can be increased.
 また、バリアフィルム6の厚さは、110μm以下であってもよい。 Further, the thickness of the barrier film 6 may be 110 μm or less.
 上述のように、バリアフィルム6の厚さが110μm以下となると、バリアフィルム6の剛性が小さくなって、バリアフィルム6にシワがより易くなり、バリアフィルム6の厚さが25μm以下となると、更にバリアフィルム6にシワがより易くなる。したがって、バリアフィルム6の厚さが110μm以下である場合、バリアフィルム6に凹凸を設けることでバリアフィルム6にシワの生成を抑制する作用効果を大きくできる。また、バリアフィルム6の厚さが25μm以下である場合、バリアフィルム6に凹凸を設けることでバリアフィルム6にシワの生成を抑制する作用効果を顕著なものとできる。 As described above, when the thickness of the barrier film 6 is 110 μm or less, the rigidity of the barrier film 6 is reduced, and the barrier film 6 is more easily wrinkled. When the thickness of the barrier film 6 is 25 μm or less, The barrier film 6 is more easily wrinkled. Therefore, when the thickness of the barrier film 6 is 110 μm or less, the effect of suppressing generation of wrinkles in the barrier film 6 can be increased by providing the barrier film 6 with irregularities. Moreover, when the thickness of the barrier film 6 is 25 μm or less, the effect of suppressing the generation of wrinkles in the barrier film 6 can be made remarkable by providing the barrier film 6 with irregularities.
 また、凹凸は、バリアフィルム6にエンボス加工により形成されてもよい。 Further, the irregularities may be formed on the barrier film 6 by embossing.
 本構成によれば、バリアフィルム6に凹凸を簡単安価に形成できる。 According to this configuration, irregularities can be easily and inexpensively formed on the barrier film 6.
 尚、本開示は、上記実施形態及びその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項及びその均等な範囲において種々の改良や変更が可能である。 In addition, this indication is not limited to the said embodiment and its modification, A various improvement and change are possible in the matter described in the claim of this application, and its equivalent range.
 例えば、上記実施形態では、真空ラミネート加工で、第1基材12から第2基材13までを一度に一体化し、太陽電池モジュール50を一体成形で形成する場合について説明した。しかし、図12、即ち太陽電池モジュール110の製造方法を説明する図に示すように、太陽電池モジュール110を次に説明する分離成形で形成してもよい。 For example, in the above embodiment, the case where the first base material 12 to the second base material 13 are integrated at a time by the vacuum laminating process and the solar cell module 50 is formed by integral molding has been described. However, as shown in FIG. 12, that is, a diagram illustrating a method for manufacturing the solar cell module 110, the solar cell module 110 may be formed by separation molding described below.
 詳しくは、第2基材103の元材である裏側元基材25、封止層105における太陽電池セル11に対する裏側部分を構成する裏側シート材41、太陽電池セル11及び配線材(図12では図示を省略)、封止層105における太陽電池セル11に対する表側部分を構成する表側シート材42、凹凸が設けられたフィルム元材43を、この順に積層した積層構造180を、真空ラミネート装置の一対のシリコーンゴム(ダイアフラム)間に配置した上で、高温で真空ラミネートを実行して、第1基材102が含まれない一体の積層構造190を形成してもよい。そして、その後、第1基材102を、積層構造190の厚さ方向におけるフィルム106側に、常温で、ゲル状の低弾性樹脂層107を介して貼り合わせることで、太陽電池モジュール110を形成してもよい。また、130℃程度で貼り合せを行ってよい。これにより、第1基材102と低弾性樹脂層107、及び低弾性樹脂層107とフィルム元材43の密着力が向上する。 In detail, the back side base material 25 which is a base material of the 2nd base material 103, the back side sheet material 41 which comprises the back side part with respect to the photovoltaic cell 11 in the sealing layer 105, the photovoltaic cell 11, and a wiring material (in FIG. 12). The laminated structure 180 in which the front side sheet material 42 constituting the front side portion of the sealing layer 105 with respect to the solar battery cell 11 and the film base material 43 provided with the unevenness is laminated in this order is used as a pair of vacuum laminating apparatuses. After being disposed between the silicone rubbers (diaphragms), vacuum lamination may be performed at a high temperature to form an integrated laminated structure 190 that does not include the first substrate 102. Then, the solar cell module 110 is formed by pasting the first base material 102 to the film 106 side in the thickness direction of the laminated structure 190 via the gel-like low elastic resin layer 107 at room temperature. May be. Moreover, you may bond at about 130 degreeC. Thereby, the adhesive force of the 1st base material 102 and the low elastic resin layer 107 and the low elastic resin layer 107 and the film base material 43 improves.
 より詳しくは、太陽電池モジュール110の製造方法は、複数の太陽電池セル11、複数の太陽電池セル11に対して光が主に入射する受光側に配置される第1基材102、複数の太陽電池セル11に対して受光側とは反対側の裏側に設けられる第2基材103、及び複数の太陽電池セル11を封止する封止層105を備える太陽電池モジュールの製造方法であってもよい。また、太陽電池モジュール110の製造方法では、封止層105において太陽電池セル11よりも受光側に位置する受光側封止層の元材である表側シート材(受光側シート材)42、複数の太陽電池セル11、封止層105において太陽電池セル11よりも裏側に位置する裏側封止層の元材である裏側シート材41、及び第2基材103の元材である裏側元基材25を、この順に積層してもよい。そして、その後、表側シート材42及び裏側シート材41を溶融させて、表側シート材42及び裏側シート材41を複数の太陽電池セル11を挟んだ状態で融着すると共に、裏側シート材41と裏側元基材25を接着することで、複数の太陽電池セル11、封止層105、及び第2基材103が一体化された積層構造190を形成してもよい。そして、その後、積層構造190の厚さ方向の第2基材103とは反対側に接着性を有する材料を介して第1基材102を貼り合わせてもよい。また、太陽電池モジュール110は、第1基材102と封止層105との間にフィルム106を備えてもよい。そして、表側シート材42の太陽電池セル11と反対側にフィルム106の元材であるフィルム元材43を配置した後、表側シート材42及び裏側シート材41を溶融させてもよい。このようにして、封止層105の第2基材103と反対側にフィルム106を備える積層構造190を形成してもよい。また、太陽電池モジュール110のフィルム106は、第1基材102よりも低い引張弾性係数を有してもよい。また、フィルム元材43は、凹凸を有してもよい。 In more detail, the manufacturing method of the solar cell module 110 includes a plurality of solar cells 11, a first base material 102 disposed on a light receiving side on which light mainly enters the plurality of solar cells 11, a plurality of suns. Even if it is the manufacturing method of a solar cell module provided with the 2nd base material 103 provided in the back side on the opposite side to the light reception side with respect to the battery cell 11, and the sealing layer 105 which seals the several photovoltaic cell 11. FIG. Good. Moreover, in the manufacturing method of the solar cell module 110, the front side sheet | seat material (light reception side sheet | seat material) 42 which is the original material of the light reception side sealing layer located in the light reception side rather than the photovoltaic cell 11 in the sealing layer 105, a plurality of In the solar cell 11, the sealing layer 105, the back side sheet material 41 that is the base material of the back side sealing layer located on the back side of the solar cell 11, and the back side base material 25 that is the base material of the second base material 103. May be laminated in this order. Then, the front side sheet material 42 and the back side sheet material 41 are melted, and the front side sheet material 42 and the back side sheet material 41 are fused while sandwiching the plurality of solar cells 11, and the back side sheet material 41 and the back side A laminated structure 190 in which the plurality of solar cells 11, the sealing layer 105, and the second base material 103 are integrated may be formed by bonding the original base material 25. And after that, the first base material 102 may be bonded to the opposite side to the second base material 103 in the thickness direction of the laminated structure 190 via an adhesive material. Further, the solar cell module 110 may include a film 106 between the first base material 102 and the sealing layer 105. And after arrange | positioning the film base material 43 which is the base material of the film 106 on the opposite side to the photovoltaic cell 11 of the front side sheet material 42, you may fuse the front side sheet material 42 and the back side sheet material 41. FIG. In this manner, a laminated structure 190 including the film 106 on the opposite side of the sealing layer 105 from the second base material 103 may be formed. In addition, the film 106 of the solar cell module 110 may have a lower tensile elastic modulus than the first base material 102. Moreover, the film base material 43 may have unevenness.
 次に、変形例の太陽電池モジュール110の製造方法の優位性を、第2参考例の太陽電池モジュール410の製造方法と比較することで説明する。図13は、第2参考例の太陽電池モジュール410の製造方法を説明する図である。図13に示すように、表側元基材415から裏側元基材425までを高温のラミネート加工で一度に一体化する場合、ラミネート加工時における裏側層の変形の影響を受けて、第1基材402が、その表面420が波打つように変形することがある。特に、封止層が、架橋でポリマー同士が連結される樹脂材料で構成される場合、封止樹脂の架橋温度が、表側元基材415の耐熱温度よりも高くなり易い。よって、第1基材402が、ラミネート加工時の熱の影響を受け易く、第1基材402の表面420が波打つように変形し易くなる。 Next, the superiority of the manufacturing method of the solar cell module 110 of the modification will be described by comparing with the manufacturing method of the solar cell module 410 of the second reference example. FIG. 13 is a diagram illustrating a method for manufacturing the solar cell module 410 of the second reference example. As shown in FIG. 13, when the front side base substrate 415 to the back side base substrate 425 are integrated at a time by high temperature laminating, the first base material is affected by the deformation of the back side layer during laminating. 402 may be deformed such that its surface 420 undulates. In particular, when the sealing layer is made of a resin material in which polymers are linked by crosslinking, the crosslinking temperature of the sealing resin is likely to be higher than the heat resistance temperature of the front side base material 415. Therefore, the first base material 402 is easily affected by heat at the time of laminating, and the surface 420 of the first base material 402 is easily deformed so as to wave.
 これに対し、図12に示す太陽電池モジュール110の製造方法では、第1基材102が、常温で低弾性樹脂層107を介して積層構造190に貼り合わせられるので、第1基材102がラミネート加工の影響を受けることがない。よって、第1基材102が、その表面が波打つように変形することを抑制又は防止できる。 On the other hand, in the method for manufacturing the solar cell module 110 shown in FIG. 12, the first base material 102 is laminated to the laminated structure 190 through the low-elasticity resin layer 107 at room temperature, so the first base material 102 is laminated. Not affected by processing. Therefore, it can suppress or prevent that the 1st base material 102 deform | transforms so that the surface may wave.
 なお、図12を用いて説明した太陽電池モジュール110の製造方法は、凹凸を有さないフィルムを含む太陽電池モジュールの製造方法に応用できることは言うまでもない。また、図12を用いて説明した太陽電池モジュール110の製造方法は、フィルムを含まない太陽電池モジュール210の製造方法にも応用できる。 In addition, it cannot be overemphasized that the manufacturing method of the solar cell module 110 demonstrated using FIG. 12 can be applied to the manufacturing method of the solar cell module containing the film which does not have an unevenness | corrugation. Moreover, the manufacturing method of the solar cell module 110 demonstrated using FIG. 12 is applicable also to the manufacturing method of the solar cell module 210 which does not contain a film.
 図14は、フィルムを含まない太陽電池モジュール210の製造への、図12に示す太陽電池モジュール110の製造方法の応用を説明する図である。 FIG. 14 is a diagram for explaining the application of the method for manufacturing the solar cell module 110 shown in FIG. 12 to the manufacture of the solar cell module 210 that does not include a film.
 図14に示すように、この製造方法では、第2基材203の元材である裏側元基材225、封止層205における太陽電池セル11に対する裏側部分を構成する裏側シート材241、太陽電池セル11及び配線材(図14では図示を省略)、封止層205における太陽電池セル11に対する表側部分を構成する表側シート材(受光側シート材)242、接着させないコーティングを外面に施したシート部材249を、この順に積層した積層構造280を、真空ラミネート装置の一対のシリコーンゴム(ダイアフラム)間に配置した上で、高温で真空ラミネートを実行して、第1基材202が含まれない一体の積層構造290を形成する。そして、その後、シート部材249を剥がした後、第1基材202を、積層構造290の厚さ方向における第2基材203側とは反対側に、常温で、ゲル状の低弾性樹脂層207を介して貼り合わせることで、太陽電池モジュール210を形成する。 As shown in FIG. 14, in this manufacturing method, the back side base material 225 which is a base material of the 2nd base material 203, the back side sheet material 241 which comprises the back side part with respect to the photovoltaic cell 11 in the sealing layer 205, a solar cell Cell 11 and wiring material (not shown in FIG. 14), front-side sheet material (light-receiving-side sheet material) 242 constituting the front-side portion of the sealing layer 205 with respect to the solar battery cell 11, and a sheet member having a coating that does not adhere to the outer surface The laminated structure 280 obtained by laminating 249 in this order is disposed between a pair of silicone rubbers (diaphragms) of a vacuum laminating apparatus, and then vacuum lamination is performed at a high temperature, so that the first substrate 202 is not included. A stacked structure 290 is formed. Then, after the sheet member 249 is peeled off, the first base material 202 is placed on the side opposite to the second base material 203 side in the thickness direction of the laminated structure 290 at a normal temperature and a gel-like low elastic resin layer 207. The solar cell module 210 is formed by pasting together.
 この変形例の製造方法によれば、表側シート材(受光側シート材)242の太陽電池セル11側とは反対側にシート部材249を配置した状態で、表側シート材242及び裏側シート材241を溶融させる。したがって、シート部材249で、ラミネート加工によって、表側シート材242の表面が、波打つように変形することを抑制又は防止できる。よって、図12に示す方法と同様に、第1基材202が、高温高圧で実施されるラミネート加工の影響を受けることがなく、第1基材202の表面が変形することを抑制又は防止できる。 According to the manufacturing method of this modification, the front side sheet material 242 and the back side sheet material 241 are placed in a state where the sheet member 249 is arranged on the opposite side of the front side sheet material (light receiving side sheet material) 242 from the solar battery cell 11 side. Melt. Therefore, the sheet member 249 can suppress or prevent the surface of the front sheet material 242 from undulating due to laminating. Therefore, similarly to the method shown in FIG. 12, the first base material 202 is not affected by the laminating process performed at high temperature and high pressure, and the deformation of the surface of the first base material 202 can be suppressed or prevented. .
 10 太陽電池モジュール、11 太陽電池セル、12 第1基材、13 第2基材、14,14A,14B 封止層、15 バリア層、16,16A,16B バリアフィルム、18 継ぎ目、20 緩衝層、21,21A,21B 緩衝フィルム、22 境界部、23 隠蔽層、30 配線材、31,32 渡り配線材、33 ストリング、34 端子ボックス 10 solar cell module, 11 solar cell, 12 first base material, 13 second base material, 14, 14A, 14B sealing layer, 15 barrier layer, 16, 16A, 16B barrier film, 18 joint, 20 buffer layer, 21, 21A, 21B Buffer film, 22 boundary, 23 concealment layer, 30 wiring material, 31, 32 transition wiring material, 33 string, 34 terminal box

Claims (11)

  1.  複数の太陽電池セルと、
     前記複数の太陽電池セルの第1の面側に設けられ、前記複数の太陽電池セルと反対方向に凸の湾曲形状を有する樹脂製の第1基材と、
     前記太陽電池セルの第2の面側に設けられ、前記第1基材の方向に凸の湾曲形状を有する第2基材と、
     前記第1基材と前記第2基材との間に充填された封止層と、
     前記第1基材と前記複数の太陽電池セルとの間に設けられ、前記封止層よりもせん断弾性率が低い緩衝層と、
     を備え、
     前記緩衝層は、1枚のシート状に配置された複数の緩衝フィルムによって構成されている、太陽電池モジュール。
    A plurality of solar cells,
    A resin-made first base material provided on the first surface side of the plurality of solar cells and having a curved shape convex in the opposite direction to the plurality of solar cells;
    A second base material provided on the second surface side of the solar cell and having a curved shape convex in the direction of the first base material;
    A sealing layer filled between the first substrate and the second substrate;
    A buffer layer provided between the first substrate and the plurality of solar cells, and having a lower shear modulus than the sealing layer;
    With
    The said buffer layer is a solar cell module comprised by the some buffer film arrange | positioned at 1 sheet form.
  2.  隣り合う前記緩衝フィルムの間には、隙間が存在し、
     前記隙間には、前記封止層が充填されている、請求項1に記載の太陽電池モジュール。
    There is a gap between the adjacent buffer films,
    The solar cell module according to claim 1, wherein the gap is filled with the sealing layer.
  3.  前記複数の緩衝フィルムは、モジュールの厚み方向においてそれぞれの端部同士が重なり合った状態で隣接配置されている、請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the plurality of buffer films are arranged adjacent to each other in a state where respective end portions overlap each other in the thickness direction of the module.
  4.  前記緩衝フィルムの端部の少なくとも1つは、前記太陽電池セル同士の間隙とモジュールの厚み方向に重なる位置に設けられている、請求項1~3のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein at least one of the end portions of the buffer film is provided at a position overlapping a gap between the solar cells and a thickness direction of the module.
  5.  前記第1基材と前記緩衝層との間に、前記緩衝フィルムの端部を覆う隠蔽層を更に備える、請求項1~4のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 4, further comprising a concealing layer that covers an end portion of the buffer film between the first base material and the buffer layer.
  6.  前記複数の緩衝フィルムは、前記第1基材の面方向の1つであるX方向に並べられ、
     前記複数の緩衝フィルムのX方向長さWは、前記第1基材の下記長さW以下である、請求項1~5のいずれか1項に記載の太陽電池モジュール。
     ここで、長さWとは、
     X方向に直交する前記第1基材のY方向に並ぶ任意の点をA1,A2、
     前記第1基材の表面に沿ってA1,A2を最短距離で結ぶ線をα、線αの長さをL
     A1,A2から線αに対して、前記第1基材の表面に沿った同じ長さの垂線γを引いて描かれる点をB1,B2、
     前記第1基材の表面に沿ってB1,B2を最短距離で結ぶ線をβ、線βの長さをL
     としたとき、線βの長さLが線αの長さLの99.0%以上となるときの垂線γの長さである。
    The plurality of buffer films are arranged in the X direction, which is one of the surface directions of the first base material,
    Wherein X direction length W 2 of the plurality of buffer film, the first substrate is below the length W 1 of the following, a solar cell module according to any one of claims 1 to 5.
    Here, the length W 1 is
    Arbitrary points arranged in the Y direction of the first base material orthogonal to the X direction are A1, A2,
    A line connecting A1 and A2 with the shortest distance along the surface of the first substrate is α, the length of the line α is L 1 ,
    The points drawn by drawing a perpendicular γ of the same length along the surface of the first base material from A1, A2 to the line α are B1, B2,
    A line connecting B1 and B2 with the shortest distance along the surface of the first substrate is β, the length of the line β is L 2 ,
    When a was a length of a perpendicular γ when the length L 2 of the line β is equal to or more than 99.0% of the length L 1 of the line alpha.
  7.  前記複数の緩衝フィルムは、せん断弾性率が0.1MPa以下である、請求項1~6のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 6, wherein the plurality of buffer films have a shear elastic modulus of 0.1 MPa or less.
  8.  前記緩衝層と前記複数の太陽電池セルとの間に、前記第1基材よりも酸素透過率が低いバリア層を更に備える、請求項1~7のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 7, further comprising a barrier layer having a lower oxygen permeability than the first base material between the buffer layer and the plurality of solar cells.
  9.  受光側に凸の第1曲線の延在方向である第1曲線方向に間隔をおいて配設される、前記複数の太陽電池セルを含む複数のストリングと、
     前記第1基材と前記複数の太陽電池セルとの間に設けられ、前記第1基材よりも線膨張係数が小さいバリアフィルムと、
     を更に備え、
     前記バリアフィルムは、前記第1曲線方向において隣り合う2つの前記ストリングの間にある部分に凹凸を有する、請求項1~8のいずれか1項に記載の太陽電池モジュール。
    A plurality of strings including the plurality of solar cells disposed at intervals in a first curve direction which is an extending direction of the first curve convex to the light receiving side;
    A barrier film provided between the first substrate and the plurality of solar cells, having a smaller linear expansion coefficient than the first substrate;
    Further comprising
    The solar cell module according to any one of claims 1 to 8, wherein the barrier film has irregularities in a portion between two strings adjacent to each other in the first curve direction.
  10.  前記凹凸は、前記バリアフィルムの前記受光側の表面及び前記フィルムの裏側の裏面の両方に設けられ、
     前記バリアフィルムの厚さ方向から見たとき、前記バリアフィルムの前記表面の凹部は、前記バリアフィルムの前記裏面の凸部に重なり、前記バリアフィルムの前記裏面の凹部は、前記バリアフィルムの前記表面の凸部に重なる、請求項9に記載の太陽電池モジュール。
    The unevenness is provided on both the light receiving side surface of the barrier film and the back side of the film,
    When viewed from the thickness direction of the barrier film, the concave portion on the front surface of the barrier film overlaps the convex portion on the back surface of the barrier film, and the concave portion on the back surface of the barrier film is the surface of the barrier film. The solar cell module according to claim 9, wherein the solar cell module overlaps with the convex portion.
  11.  前記バリアフィルムの厚さは、110μm以下である、請求項9又は10に記載の太陽電池モジュール。 The solar cell module according to claim 9 or 10, wherein the barrier film has a thickness of 110 µm or less.
PCT/JP2019/003789 2018-02-14 2019-02-04 Solar battery module WO2019159729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500396A JPWO2019159729A1 (en) 2018-02-14 2019-02-04 Solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-023669 2018-02-14
JP2018-023673 2018-02-14
JP2018023673 2018-02-14
JP2018023669 2018-02-14

Publications (1)

Publication Number Publication Date
WO2019159729A1 true WO2019159729A1 (en) 2019-08-22

Family

ID=67620974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003789 WO2019159729A1 (en) 2018-02-14 2019-02-04 Solar battery module

Country Status (2)

Country Link
JP (1) JPWO2019159729A1 (en)
WO (1) WO2019159729A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377701B2 (en) 2019-12-24 2023-11-10 株式会社カネカ solar module
WO2023228896A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Solar cell module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171849A (en) * 1987-12-27 1989-07-06 Yoshidatsukasa Kk Planar composite material
JP2006165169A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module, manufacturing method thereof and installing method thereof
JP2010021498A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Thin film solar cell, solar cell unit, and solar cell structure
US20130118556A1 (en) * 2011-11-15 2013-05-16 Hyundai Motor Company Solar sunroof for vehicle
JP2015167214A (en) * 2014-03-04 2015-09-24 パナソニックIpマネジメント株式会社 Laminating device
JP2016157549A (en) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 Flexible battery
JP2016184682A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Solar battery module, vehicle having the same mounted thereon and manufacturing method for solar battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171849A (en) * 1987-12-27 1989-07-06 Yoshidatsukasa Kk Planar composite material
JP2006165169A (en) * 2004-12-06 2006-06-22 Canon Inc Solar cell module, manufacturing method thereof and installing method thereof
JP2010021498A (en) * 2008-07-14 2010-01-28 Mitsubishi Chemicals Corp Thin film solar cell, solar cell unit, and solar cell structure
US20130118556A1 (en) * 2011-11-15 2013-05-16 Hyundai Motor Company Solar sunroof for vehicle
JP2015167214A (en) * 2014-03-04 2015-09-24 パナソニックIpマネジメント株式会社 Laminating device
JP2016157549A (en) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 Flexible battery
JP2016184682A (en) * 2015-03-26 2016-10-20 株式会社豊田自動織機 Solar battery module, vehicle having the same mounted thereon and manufacturing method for solar battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377701B2 (en) 2019-12-24 2023-11-10 株式会社カネカ solar module
WO2023228896A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Solar cell module

Also Published As

Publication number Publication date
JPWO2019159729A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US20140106497A1 (en) Solar cell module with sealing members
US20130118556A1 (en) Solar sunroof for vehicle
KR101481260B1 (en) Roof panel having solar cell
US9564544B2 (en) Solar cell module production method
WO2016031198A1 (en) Manufacturing method for solar cell module and solar cell module manufactured by same
KR101449182B1 (en) A Structure Unit of Solar Loop Unified with Glass
EP2648229A1 (en) Solar cell module and production method therefor
CN110970522B (en) Solar cell module and method for manufacturing solar cell module
WO2019159729A1 (en) Solar battery module
US20190280136A1 (en) Solar cell module
JP2014090160A (en) Solar cell module
JP5506295B2 (en) Solar cell module and manufacturing method thereof
WO2017168474A1 (en) Solar battery cell, solar battery module, and method for manufacturing solar battery cell
JP2020088268A (en) Solar cell module
WO2018150794A1 (en) Solar cell module
JP2019140302A (en) Solar cell module
WO2012165001A1 (en) Solar cell module and method for manufacturing same
JP6735472B2 (en) Solar cell module
CN111211190A (en) Solar cell module
US20200105953A1 (en) Solar cell module, transport, and method of manufacturing solar cell module
JP2019140301A (en) Solar cell module and manufacturing method thereof
WO2019093327A1 (en) Solar battery module and moving body
WO2019031378A1 (en) Solar cell module and intermediate product of solar cell module
WO2018116553A1 (en) Solar battery module and solar battery cell
JP7330879B2 (en) solar module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754536

Country of ref document: EP

Kind code of ref document: A1