WO2019159650A1 - Method for manufacturing microporous optical element and microporous optical element - Google Patents
Method for manufacturing microporous optical element and microporous optical element Download PDFInfo
- Publication number
- WO2019159650A1 WO2019159650A1 PCT/JP2019/002421 JP2019002421W WO2019159650A1 WO 2019159650 A1 WO2019159650 A1 WO 2019159650A1 JP 2019002421 W JP2019002421 W JP 2019002421W WO 2019159650 A1 WO2019159650 A1 WO 2019159650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent substrate
- optical element
- slit
- hole optical
- slits
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/09—Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/10—Mirrors with curved faces
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
Definitions
- the present invention relates to a method for manufacturing a fine hole optical element and a fine hole optical element.
- Patent Document 1 Japanese Patent No. 4025779 discloses an X-ray optical system base that uses a silicon wafer wall surface by anisotropic etching as an X-ray reflector as an X-ray optical base material that is lightweight and relatively easy to manufacture. Materials have been proposed. This is because a fine hole is made in a thin wafer, so that it becomes a mirror that is one digit or more lighter than the conventional one, and there is an advantage that a large number of mirrors can be produced by one etching.
- holes that can be formed by anisotropic etching are limited to straight slit-like holes, when creating an X-ray optical system, it is necessary to approximate the ideal curved surface as a reflecting mirror with a straight line. Light performance is limited. Further, since the X-ray optical system is made smaller and disposed along the ideal curved surface in order to approach the ideal curved surface, a large number of X-ray optical systems are required, and the labor and cost required for production are large.
- Patent Document 2 Japanese Patent No. 5540305 discloses a fine curved hole manufactured by silicon dry etching or X-ray LIGA as a new X-ray optical system base material in order to improve light collecting performance while maintaining light weight.
- An X-ray optical base material that uses the wall surface of the structure as an X-ray optical system has been proposed.
- Patent Document 2 Japanese Patent No. 5540305
- Japanese Patent No. 5540305 Japanese Patent No. 5540305
- the reflection surface is effective. If fine curved holes are formed at a high density to increase the area, the wall surface may be distorted during deformation. Such distortion causes a reduction in light collecting performance.
- one aspect of the method for manufacturing a microscopic optical element according to the present invention is a plurality of extending along the surface of a transparent substrate that is formed as a single unit or a plurality of units are integrated. Are provided, and in the middle from the front surface to the back surface of the transparent substrate, the angle of each slit with respect to the front surface changes from the first angle to the second angle.
- slits having a high aspect ratio can be formed with high density and high accuracy by a known processing method for a transparent substrate.
- a fine hole optical element that is lightweight and has a large effective area and high light collecting performance is realized.
- the slit forming step further modifies the transparent substrate with respect to a portion where the slit is formed, and removes the portion modified in the reforming step. And a removing step for forming the slit.
- the modifying step is a step of modifying the transparent substrate by irradiating a beam to cause multiphoton absorption.
- Multiphoton absorption by beam irradiation has a high position resolution in a transparent substrate, so that a fine slit shape can be easily realized.
- the transparent substrate is formed by joining a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate, You may provide the joining process which joins the end surfaces of a several small board
- the transparent substrate is formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate.
- the size of the microscopic hole optical element can be easily increased.
- the joining step is a step of joining the plurality of portions by modifying the joining surface by irradiation with ultraviolet rays.
- an adhesive or the like is not required, and the bonding surfaces are firmly adhered to each other.
- the reflective layer forming step is preferably a step of forming the reflective layer by an atomic layer deposition method.
- the reflective layer is formed to have a uniform thickness even for slits having a high aspect ratio.
- one aspect of the microscopic hole optical element according to the present invention includes a transparent substrate formed in a single unit or formed by integrating a plurality of parts, and a surface along the surface of the transparent substrate. Extending in an arc shape and being arranged concentrically with each other, and a plurality of slits whose angle with respect to the front surface changes from the first angle to the second angle on the way from the front surface to the back surface of the transparent substrate, A reflective layer provided on the inner wall of the slit.
- slits having a high aspect ratio can be formed with high density and high accuracy by a known processing method for a transparent substrate.
- a fine hole optical element that is lightweight and has a large effective area and high light collection performance is realized.
- the plurality of slits be formed at a density of 10 or more per 1 mm. By forming slits at such a density, an increase in effective area is realized while avoiding an increase in weight.
- the plurality of slits may be closer to the angle perpendicular to the surface of the transparent substrate as the slits located on the inner peripheral side arranged concentrically with each other. According to such a fine hole optical element, X-rays or vacuum ultraviolet rays reflected by the reflective layer are focused.
- the transparent substrate may be formed by bonding a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate.
- the transparent substrate may be formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate. As described above, by joining the plurality of portions in the direction along the surface or in the thickness direction, the size of the microscopic hole optical element can be easily increased.
- the transparent substrate in which such a plurality of portions are bonded is a substrate in which the plurality of portions are bonded by hydrogen bonds formed on the bonding surface.
- Such hydrogen bonds are formed on the bonding surfaces by, for example, irradiation with ultraviolet rays, and the bonding surfaces are firmly bonded to each other without using an adhesive.
- a microscopic optical element that is lightweight and has a large effective area and high light collection performance is realized.
- FIG. 1 is a diagram conceptually showing a first embodiment of the microscopic hole optical element of the present invention.
- FIG. 2 is an enlarged cross-sectional view of a portion P in FIG.
- FIG. 3 is a diagram showing the shape of the reflecting surface of the Walter optical system.
- FIG. 4 is a diagram showing a condensing state in the microscopic hole optical element.
- FIG. 5 is a diagram showing a manufacturing process of the microscopic hole optical element.
- FIG. 6 is a view showing the structure of a laser reforming apparatus that executes the reforming step (A) shown in FIG.
- FIG. 7 is a diagram showing a procedure example of the reforming step (A) executed by the laser reforming apparatus.
- FIG. 1 is a diagram conceptually showing a first embodiment of the microscopic hole optical element of the present invention.
- FIG. 2 is an enlarged cross-sectional view of a portion P in FIG.
- FIG. 3 is a diagram showing the shape of the reflecting surface of the Walter optical
- FIG. 8 is a view showing a second embodiment of the microscopic hole optical element of the present invention.
- FIG. 9 is a diagram schematically showing a cross-sectional structure of the microscopic hole optical element of the second embodiment.
- FIG. 10 is a diagram illustrating a first alignment step in the second embodiment.
- FIG. 11 is a diagram illustrating a second alignment step in the second embodiment.
- FIG. 12 is a diagram schematically showing a cross-sectional structure of the microscopic hole optical element of the third embodiment.
- FIG. 13 is a view showing the microscopic hole optical element of the fourth embodiment.
- FIG. 1 is a diagram conceptually showing a first embodiment of the microscopic hole optical element of the present invention.
- FIG. 1 shows a front view (A) and a side view (B).
- the microhole optical element 1 has a large number of arc-shaped slits 3 arranged concentrically on a transparent substrate 2 having a disk-like outer shape with a diameter of, for example, 200 mm or less and a thickness of, for example, 0.5 mm to 1 mm. It has a structure.
- the transparent substrate 2 is made of, for example, glass, transparent resin, or the like. Particularly, when the glass is fused quartz, the slit 3 in the manufacturing method described later can be easily processed.
- the density of the slits 3 is depicted to be coarser than the actual, and the actual slits 3 are formed with a slit width of, for example, 10 ⁇ m or more, and the width of the glass or resin portion located between the slits 3 is For example, it is formed to 20 ⁇ m or more.
- the density of the slits 3 is measured in the width direction of the slits. For example, when a plurality of slits are arranged concentrically, per 1 mm on a straight line passing through each slit through the center of the concentric arrangement, for example The density is as high as about 33.
- a large number of slits 3 such as 2000 are formed in the entire microscopic hole optical element 1.
- FIG. 2 is an enlarged cross-sectional view of a portion P in FIG.
- Each slit 3 of the minute hole optical element 1 is bent on the way from the front side (upper side in FIG. 1) to the back side (lower side in FIG. 1) of the minute hole optical element 1.
- Light L such as X-rays or vacuum ultraviolet rays enters from the front side.
- the ratio h1 / h2 between the length h1 of each slit 3 in the traveling direction of the light L and the slit width h2 where the light L is emitted from the slit 3 is a large value of 50 to 100, for example.
- a metal reflection layer 4 is formed on the inner wall of each slit 3.
- the reflective layer 4 is a single layer film or a multilayer film made of a heavy metal such as hafnium oxide.
- Examples of the material of the reflective layer 4 include the above-described hafnium oxide, oxides such as tantalum oxide, titanium oxide, lanthanum oxide, and zinc oxide, nitrides such as titanium nitride, tantalum nitride, and hafnium nitride, and metals. , Rubidium, copper, tungsten, molybdenum, platinum, iridium, and gold.
- the single-layer reflective layer 4 is formed with a film thickness of, for example, several hundred to several thousand ⁇ .
- the reflective layer 4 may be a multilayer film composed of a thin film made of heavy metal and a thin film made of light metal.
- the outermost layer is composed of a thin film made of heavy metal.
- aluminum oxide is used as the thin film made of light metal, but silicon oxide may also be used.
- the reflective layer 4 may be a multilayer film of a pair material such as platinum / carbon, molybdenum / silicon, tungsten / silicon and the like. In the case of a multilayer film made of these pair materials, for example, several pairs of several tens to several hundreds of layers having a film thickness of several tens of millimeters are stacked.
- the angle of the slit 3 with respect to the front and back surfaces of the microhole optical element 1 is such that the slit portion 3a on the side where the light L is incident (the upper portion in FIG. 1) is the slit portion 3b on the side where the light L is emitted (see FIG. 1).
- the light L is reflected twice by the reflective layer 4 of each slit 3.
- the shape of the reflective layer 4 in the fine hole optical element 1 is a so-called Walter optical system, and the light L can be collected at the focal point.
- FIG. 3 is a diagram showing the shape of the reflecting surface of the Walter optical system.
- the Walter optical system is an optical system that focuses light by reflecting light on two aspherical surfaces or conical approximate surfaces thereof.
- an optical system called type 1 is used among the Walter optical systems, and the paraboloid S1 and the hyperboloid S2 are combined.
- the light L reflected twice by the reflective layer 4 is collected at the focal point F.
- FIG. 4 is a diagram showing a light collection state in the microscopic hole optical element 1.
- each slit 3 (see FIG. 1) in the fine hole optical element 1 is closer to the optical axis L0 of the fine hole optical element 1 which is the center in the concentric arrangement of the slits 3, and the front and back surfaces of the fine hole optical element 1 The angle is nearly perpendicular to the angle. For this reason, the light L reflected by the reflection layer 4 of the outer slit 3 in the concentric arrangement has a larger reflection angle, and the light L reflected by the reflection layer 4 of the inner slit 3 has a smaller reflection angle. Then, all of the light L reflected by the reflective layer 4 at various locations of the microscopic hole optical element 1 is collected at the focal point F and forms an image. For example, in the case of X-rays, since the reflection angle is about 1 degree, the focal length of the fine hole optical element 1 is a value of, for example, 500 mm or more and 1000 mm or less.
- the slits 3 are formed with a high density, the effective area of the reflecting surface for the light L is large.
- the density of the slits 3 is, for example, 10 or more per 1 mm, a sufficiently large effective area is obtained, and high illuminance at the focal position is achieved.
- the number of slits 3 for example, when 100 or more slits 3 are formed, a sufficiently large effective area can be obtained.
- the microhole optical element 1 is reflective. Compared to the large effective area of the surface, the weight is light.
- a fine hole optical element 1 is used in, for example, an observation device that performs X-ray observation in outer space, an observation device that performs radiation observation on the ground, a microanalyzer, an X-ray microscope, a nondestructive inspection device, and the like. It is suitable as an element for line reflection. Further, the fine hole optical element 1 may be used as a reflection mirror for vacuum ultraviolet rays. Next, a method for manufacturing such a fine hole optical element 1 will be described.
- FIG. 5 is a diagram showing a manufacturing process of the microscopic hole optical element 1.
- the manufacturing process shown in FIG. 5 includes a modifying process (A), an etching process (B), a polishing process (C), and a reflective layer forming process (D).
- the transparent substrate 2 is irradiated with the pulse laser beam PL, and the transparent substrate 2 is modified by the pulse laser beam PL.
- the shape, position, and angle of the irradiation area of the pulse laser beam PL are determined based on CAD data.
- the modification of the transparent substrate 2 is realized by multiphoton absorption in the pulsed laser light PL.
- the portion where multiphoton absorption occurs is specifically modified.
- the transparent substrate 2 is, for example, a glass substrate
- the local structure due to the bond between silicon (Si) atoms and oxygen (O) atoms is divided by multiphoton absorption, resulting in a structural change and the like, which is easily chemically reacted It becomes.
- the energy required for the modification may be less than the energy required for laser processing that causes a destructive action such as ablation.
- the reforming step (A) will be described in detail later.
- the transparent substrate 2 is immersed in the etchant 5, and the modified region 2a is selectively removed by the etching process.
- the transparent substrate 2 is, for example, a glass substrate, a hydrofluoric acid (HF) solution or a potassium hydroxide solution is used as the etchant 5.
- wet etching that requires less labor is employed as the etching process, but dry etching using a fluorine (F 2 ) -based gas can also be employed as the etching process.
- ultrasonic cleaning that applies ultrasonic waves W to the transparent substrate 2 in the etchant 5 is also used in order to stabilize and speed up the processing.
- the etching conditions are such that the HF concentration is 2.5 to 5%, for example, and varies depending on the size of the transparent substrate 2, but the etching time is 1 hour to several hours, for example.
- the etchant 5 and the transparent substrate 2 react also in portions other than the modified region 2a, but the etching rate differs greatly between the modified region 2a and the region 2b other than the modified region 2a. For this reason, immediately after the start of the etching step (B), the modified region 2a is completely removed and the slit 3 is formed.
- the modified region 2 a is formed through the transparent substrate 2, but the bottomed slit (non-through hole) is formed in the transparent substrate 2. If so, the modified region 2 a is formed so that only one end reaches the surface of the transparent substrate 2.
- a mixed liquid 6 of magnetic fluid and abrasive is used to smooth the side walls of the slits 3.
- a magnetic fluid is a fluid whose viscosity changes when a magnetic field is applied, and has already been put into practical use for polishing optical components. Specifically, a mixed liquid 6 of a magnetic fluid having an average particle diameter of about 0.01 ⁇ m and a diamond slurry having a particle diameter of, for example, 1 ⁇ m is poured into each slit 3, and a varying magnetic field is applied perpendicularly to the transparent substrate 2.
- the mixed liquid 6 moves randomly in the slit 3 according to the fluctuation of the magnetic field. It is also possible to rotate the transparent substrate 2 around the central axis to promote the relative movement between the mixed liquid 6 and the side wall of the slit 3.
- the mixed liquid 6 polishes the side wall surface of each slit 3 to smooth the side wall surface roughness, for example, to achieve a surface roughness of 1 to 2 nm.
- the transparent substrate 2 is placed in a mixed gas 7 of metal vapor and a reactant, and the metallic reflective layer 4 is formed on the inner wall of the slit 3 by atomic layer deposition (ALD).
- ALD atomic layer deposition
- an atomic layer is formed on the entire inner wall of the slit 3, so that the reflective layer 4 is evenly formed even with the slit 3 having a high aspect ratio.
- FIG. 6 is a view showing the structure of the laser reforming apparatus 10 that executes the reforming step (A) shown in FIG.
- the laser reforming apparatus 10 includes a laser oscillator 101 that emits pulsed laser light.
- a laser oscillator 101 one having a pulse width of 200 fs or more and 500 fs or less, a pulse energy of 1 ⁇ J or less, and a repetition frequency of 5 MHz or less is used. Since such a laser oscillator 101 emits an ultrashort pulse laser beam having a high peak power, the pulsed laser beam is easily condensed on a transparent substrate 2 such as glass so that nonlinearity such as multiphoton absorption can be easily performed. Produces an effect.
- the laser reforming apparatus 10 includes an attenuator 103 for dimming pulsed laser light to energy suitable for reforming. Further, a beam expansion system 104 and a diaphragm lens (f ⁇ lens) 106 are provided so that a necessary spot size can be obtained on the transparent substrate 2 that is a workpiece (workpiece). As a result, the NA value of the condensing system becomes a large value such as 0.26.
- the laser modifying apparatus 10 includes an XYZ axis stage 108 that moves the transparent substrate 2 in a three-dimensional manner so as to form a through-hole or a non-through-hole with a designated angle at a designated location on the transparent substrate 2.
- a biaxial galvanometer mirror 105 that scans the pulse laser beam is also provided. By these XYZ axis stage 108 and galvanometer mirror 105, the pulse laser beam is condensed at a designated position in the transparent substrate 2 to form a condensed spot.
- FIG. 7 is a diagram illustrating a procedure example of the reforming step (A) executed by the laser reforming apparatus 10.
- FIG. 7 schematically shows a procedure from step (A) to step (E) as an example of a procedure for forming the modified region 2a in the transparent substrate 2 in the modification step (A). .
- a vector representing the movement of the XYZ axis stage 108 based on CAD data in the procedure from the stage (A) to the stage (E) is shown.
- stage (A) the XYZ axis stage 108 is positioned at the start position based on the CAD data, so that the focus of the pulse laser PL is focused immediately below the surface of the transparent substrate 2, and the formation of the modified region 2a is started. Is done.
- the XYZ axis stage 108 moves upward in the drawing to move the focal point of the pulse laser PL to the inside of the transparent substrate 2, and as a result, the modified region 2 a is inside the transparent substrate 2. Extend to the side.
- step (C) the XYZ axis stage 108 further moves, and the modified region 2a further extends to the inside of the transparent substrate 2.
- the boundary portion between the portions 3a and 3b of the slit 3 shown in FIG. 2 is reached.
- stage (D) the movement direction of the XYZ axis stage 108 changes as indicated by a vector in the lower right in FIG. As a result, the direction of the modified region 2a is bent and further extended.
- stage (E) the XYZ axis stage 108 moves to the end position, and the focal point of the pulse laser PL reaches just above the back surface of the transparent substrate 2. Thereby, the modified region 2a extending from the front surface to the back surface of the transparent substrate 2 is formed.
- FIG. 8 is a view showing a second embodiment of the microscopic hole optical element of the present invention.
- FIG. 8 shows a front view (A) and a side view (B).
- the fine hole optical element 21 of the second embodiment has a large number of arc-shaped slits 23 with respect to a transparent substrate 22 having a square outer shape with a side length of, for example, 100 mm and a thickness of, for example, 4.0 mm. It has a concentric arrangement.
- the material of the transparent substrate 22 is made of, for example, glass or transparent resin as in the first embodiment.
- the transparent substrate 22 in the microscopic hole optical element 21 of the second embodiment is formed by laminating so that the two sub-substrates 22a and 22b overlap in the thickness direction.
- Each of the sub-boards 22a and 22b is formed with an alignment mark 24 used at the time of stacking.
- Each slit 23 in the second embodiment has a slit width of 20 ⁇ m, for example, and a glass or resin portion located between the slits 23 has a width of 20 ⁇ m, for example. Therefore, the density of the slits 23 is as high as 25 per mm, and the aspect ratio of the slits 23 is a large value of about 200.
- FIG. 9 is a diagram schematically showing a cross-sectional structure of the microscopic hole optical element 21 according to the second embodiment.
- the surface of the micro hole optical element 21 is placed on the sub substrate 22a located on the light incident side (upper side in FIG. 9) of the two sub boards 22a and 22b.
- a slit portion 23a having a first angle ⁇ 1 with respect to the perpendicular is formed.
- the sub-substrate 22b positioned on the light emitting side has a second angle with respect to the normal to the surface of the microscopic hole optical element 21.
- slit portion 23b having a theta 2 is formed.
- the two sub-substrates 22 a and 22 b are stacked to connect the slit portions 23 a and 23 b, thereby forming a slit 23 whose angle changes in the transparent substrate 22.
- 826 slits 23 are formed as a whole of the microscopic hole optical element 21, and these slits 23 are divided into seven groups.
- the first group the radius R 1in the innermost slit 23 is 15 mm
- the radius R 1out is included the outermost periphery of the slit 23 to 114 slits 23 are 19.52Mm
- the first All the slits 23 included in one group have a first angle ⁇ 1 of 0.175 degrees and a second angle ⁇ 2 of 0.525 degrees.
- the second group includes 122 slits 23 from the innermost circumferential slit 23 having a radius R 2in of 19.56 mm to the outermost circumferential slit 23 having a radius R 2out of 24.4 mm. All the slits 23 included in the second group have a first angle ⁇ 1 of 0.225 degrees and a second angle ⁇ 2 of 0.675 degrees.
- the third group from the innermost slit 23 with radius R 3in is in 24.44Mm, radius R 3out are included for the outermost periphery of the slit 23 to 123 slits 23 are 29.32Mm, All the slits 23 included in the third group have a first angle ⁇ 1 of 0.275 degrees and a second angle ⁇ 2 of 0.825 degrees.
- the fourth group includes 122 slits 23 from the innermost slit 23 having a radius R 4in of 29.36 mm to the outermost slit 23 having a radius R 4out of 34.2 mm. all the slits 23 included in the fourth group, the first angle theta 1 is at 0.325 ° second angle theta 2 is a 0.975 degrees.
- the fifth group includes 122 slits 23 from the innermost slit 23 having a radius R 5in of 34.24 mm to the outermost slit 23 having a radius R 5out of 39.08 mm. All the slits 23 included in the fifth group have the first angle ⁇ 1 of 0.375 degrees and the second angle ⁇ 2 of 1.125 degrees.
- the sixth group includes 122 slits 23 from the innermost slit 23 having a radius R 6in of 39.12 mm to the outermost slit 23 having a radius R 6out of 43.96 mm. All the slits 23 included in the sixth group have a first angle ⁇ 1 of 0.425 degrees and a second angle ⁇ 2 of 1.275 degrees.
- the seventh group of radius R 7in from innermost slit 23 is 44 mm
- the radius R 7 out is included the 101 slits 23 to the slit 23 of the outermost periphery is 48 mm
- the seventh All the slits 23 included in the group have a first angle ⁇ 1 of 0.475 degrees and a second angle ⁇ 2 of 1.425 degrees.
- the angle of the slit 23 changes in steps as it goes to an outer peripheral side.
- the imaging performance is inferior to that of the fine hole optical element 1 of the first embodiment, sufficient condensing performance can be obtained.
- the microscopic hole optical element 21 of the second embodiment is manufactured by the same manufacturing method as the manufacturing method of the first embodiment shown in FIG. With respect to the fine hole optical element 21 of the second embodiment, each step shown in FIG. 5 is performed individually for each of the sub-boards 22a and 22b, and then the sub-boards 22a and 22b are aligned and bonded to each other. The process is executed.
- This alignment process includes a first alignment process and a second alignment process.
- FIG. 10 is a diagram illustrating a first alignment step in the second embodiment.
- FIG. 11 is a diagram illustrating a second alignment step in the second embodiment.
- the He—Ne laser beam LB is expanded by the beam expander 110 and irradiated onto the sub-substrates 22a and 22b in parallel.
- the beam LB is condensed at the focal position by the sub-boards 22a and 22b, and a condensed image is taken by the CCD camera 120 provided at the focal position.
- the captured condensed image 140 is confirmed on the monitor 130.
- One of the two sub-boards 22a and 22b is provided with a push-pull mechanism 150, and the position of the sub-boards 22a and 22b is finely adjusted by the push-pull mechanism 150, so that the diameter of the condensed image 140 is minimized. Alignment is performed so that the luminance is maximized. With such an alignment, high-accuracy alignment is achieved so that high condensing performance can be obtained with the fine hole optical element 21.
- the bonding method between the sub-boards 22a and 22b may be a bonding method using an adhesive, but in this embodiment, a bonding method using vacuum ultraviolet irradiation is used.
- the bonding surfaces are modified by irradiating the sub-substrates 22a and 22b with vacuum ultraviolet rays to form hydrogen bonds between the bonding surfaces. Be joined. It is preferable to use such a joining method by vacuum ultraviolet irradiation because there is no possibility that the slit and the reflective layer are contaminated with the adhesive.
- FIG. 12 is a diagram schematically showing a cross-sectional structure of the microscopic hole optical element 31 of the third embodiment.
- a transparent substrate 32 is used in which eight sub-substrates 32a, 32b, 32c, 32d, 32e, 32f, 32g, and 32h are laminated so as to overlap in the thickness direction.
- the aspect ratio when the slits 33 are formed in the sub-substrates 32a Become.
- FIG. 13 is a view showing the microscopic hole optical element 41 of the fourth embodiment.
- a large number of arc-shaped slits 43 are concentrically formed with respect to the transparent substrate 42 having a square-shaped outer shape with a side of, for example, 400 mm and a thickness of, for example, 2.0 mm. It has a deployed structure.
- the material of the transparent substrate 42 is made of, for example, glass or transparent resin as in the first embodiment.
- the transparent substrate 42 in the microscopic hole optical element 41 of the fourth embodiment is formed by joining four small substrates 42a, 42b, 42c, and 42d in a matrix.
- the fine hole optical element 41 of the fourth embodiment is an element having a large diameter compared to the fine hole optical element 1 of the first embodiment, the fine hole optical element 21 of the second embodiment, and the like, and further at the focal position. High illuminance is achieved.
- Such a large-diameter element is easily realized by joining a plurality of (for example, four) small substrates 42a, 42b, 42c, and 42d arranged along the surface of the transparent substrate 42 at their end faces.
- the slit forming process according to the present invention is performed on a transparent substrate. It may be a step by other means for directly forming the slit without undergoing the reforming step.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
The present invention provides a lightweight microporous optical element that has a large effective area and high light-gathering capability. One aspect of the present invention is a method for manufacturing a microporous optical element provided with a plurality of slits along the surface of a transparent substrate that is formed singly or formed by combining a plurality of parts while the angle of each slit relative to the surface of the transparent substrate changes from a first angle to a second angle at some midpoint in the series of slits from the front surface to the rear surface of the transparent substrate, the method comprising a slit formation step of forming the plurality of slits on the transparent substrate, and a reflective layer formation step of forming a reflective layer on the inner wall of each of the plurality of slits.
Description
本発明は、微細穴光学素子の製造方法、および微細穴光学素子に関する。
The present invention relates to a method for manufacturing a fine hole optical element and a fine hole optical element.
X線は、可視光とは異なり、直入射光学系の利用が困難である。このため、金属のX 線に対する屈折率が1よりも小さいことを利用した金属面の全反射による斜入射光学系が用いられている。この場合の全反射の臨界角は1度程度と小さいため、反射面の有効面積を大きくとるために、直径の異なる金属製の円筒状の反射鏡を、同軸状に多数配置する方法が知られている。しかしながら、この方法ではX線反射装置全体の重量が増大するため(1m2あたり1トン以上の重量)、宇宙空間で利用する場合に、地上からの輸送に支障を来すという問題があった。
Unlike visible light, X-rays are difficult to use with a direct incidence optical system. For this reason, an oblique incidence optical system using total reflection of a metal surface utilizing the fact that the refractive index of metal with respect to X-rays is smaller than 1 is used. In this case, since the critical angle of total reflection is as small as about 1 degree, in order to increase the effective area of the reflecting surface, a method of arranging a large number of metallic cylindrical reflecting mirrors having different diameters coaxially is known. ing. However, this method increases the weight of the entire X-ray reflection device (weight of 1 ton or more per 1 m 2 ), and thus has a problem of hindering transportation from the ground when used in outer space.
特許文献1(特許第4025779号公報)には、軽量かつ比較的容易に製造できるX線光学系基材として、異方性エッチングによるシリコンウェハ壁面をX線反射鏡として利用するX線光学系基材が提案されている。これは、薄いウェハに微細な穴を開けるため、従来よりも一桁以上軽い鏡となるうえ、一度のエッチングにより鏡を大量に生産できるという利点もある。しかし、異方性エッチングで形成できる穴は、直線的なスリット状の穴に限られるため、X線光学系を作る際には、反射鏡としての理想曲面を直線で近似する必要があり、集光性能が制限される。また、理想曲面に近づけるため、X線光学系を小さくして理想曲面に沿って配置することになるので、多数のX線光学系が必要になり、製作に要する労力・コストが大きい。
Patent Document 1 (Japanese Patent No. 4025779) discloses an X-ray optical system base that uses a silicon wafer wall surface by anisotropic etching as an X-ray reflector as an X-ray optical base material that is lightweight and relatively easy to manufacture. Materials have been proposed. This is because a fine hole is made in a thin wafer, so that it becomes a mirror that is one digit or more lighter than the conventional one, and there is an advantage that a large number of mirrors can be produced by one etching. However, since holes that can be formed by anisotropic etching are limited to straight slit-like holes, when creating an X-ray optical system, it is necessary to approximate the ideal curved surface as a reflecting mirror with a straight line. Light performance is limited. Further, since the X-ray optical system is made smaller and disposed along the ideal curved surface in order to approach the ideal curved surface, a large number of X-ray optical systems are required, and the labor and cost required for production are large.
特許文献2(特許第5540305号公報)には、軽量性を保ちつつ、集光性能を向上させるため、新たなX線光学系基材として、シリコンドライエッチング若しくはX線LIGAで製作した微細曲面穴構造体の壁面をX線光学系として用いるX線光学系基材が提案されている。
Patent Document 2 (Japanese Patent No. 5540305) discloses a fine curved hole manufactured by silicon dry etching or X-ray LIGA as a new X-ray optical system base material in order to improve light collecting performance while maintaining light weight. An X-ray optical base material that uses the wall surface of the structure as an X-ray optical system has been proposed.
しかし、特許文献2(特許第5540305号公報)で提案されているX線光学系基材は、1枚1枚の基板に対し高温塑性変形若しくは弾性変形を施す必要があるので、反射面の有効面積増大のために高密度で微細曲面穴が形成されると変形時に壁面に歪みを生じる虞がある。このような歪みは集光性能の低下の原因となる。
However, since the X-ray optical system base material proposed in Patent Document 2 (Japanese Patent No. 5540305) needs to be subjected to high-temperature plastic deformation or elastic deformation for each substrate, the reflection surface is effective. If fine curved holes are formed at a high density to increase the area, the wall surface may be distorted during deformation. Such distortion causes a reduction in light collecting performance.
すなわち、従来提案されているX線光学系基材は、軽量化は実現できるものの、反射面の有効面積と集光性能とがトレードオフの関係となっている。このため、大きな有効面積と高い集光性能とを両立可能な新たな技術が望まれている。
本発明は、軽量かつ、大きな有効面積と高い集光性能とを有する微細穴光学素子を提供することを目的とする。 That is, in the conventionally proposed X-ray optical system substrate, although the weight can be reduced, the effective area of the reflecting surface and the light collecting performance are in a trade-off relationship. For this reason, a new technology that can achieve both a large effective area and high light collection performance is desired.
It is an object of the present invention to provide a fine hole optical element that is lightweight and has a large effective area and high light collection performance.
本発明は、軽量かつ、大きな有効面積と高い集光性能とを有する微細穴光学素子を提供することを目的とする。 That is, in the conventionally proposed X-ray optical system substrate, although the weight can be reduced, the effective area of the reflecting surface and the light collecting performance are in a trade-off relationship. For this reason, a new technology that can achieve both a large effective area and high light collection performance is desired.
It is an object of the present invention to provide a fine hole optical element that is lightweight and has a large effective area and high light collection performance.
上記課題を解決するために、本発明に係る微細穴光学素子の製造方法の一態様は、単一に形成されあるいは複数部分が一体化されて形成された透明基板の表面に沿って延びた複数のスリットが配備されているとともに、当該透明基板の表面から裏面に至る途中で、当該表面に対する各スリットの角度が第1の角度から第2の角度に変化する微細穴光学素子の製造方法であって、上記透明基板に対して上記複数のスリットを形成するスリット形成工程と、上記複数のスリットそれぞれの内壁に反射層を形成する反射層形成工程と、を備える。
In order to solve the above-described problems, one aspect of the method for manufacturing a microscopic optical element according to the present invention is a plurality of extending along the surface of a transparent substrate that is formed as a single unit or a plurality of units are integrated. Are provided, and in the middle from the front surface to the back surface of the transparent substrate, the angle of each slit with respect to the front surface changes from the first angle to the second angle. A slit forming step of forming the plurality of slits on the transparent substrate, and a reflecting layer forming step of forming a reflecting layer on the inner wall of each of the plurality of slits.
このような微細穴光学素子の製造方法によれば、透明基板に対する既知の加工方法により、高いアスペクト比のスリットを高い密度で高精度に形成することが出来る。この結果、軽量かつ、大きな有効面積と高い集光性能と有する微細穴光学素子が実現される。
According to such a method for manufacturing a microscopic optical element, slits having a high aspect ratio can be formed with high density and high accuracy by a known processing method for a transparent substrate. As a result, a fine hole optical element that is lightweight and has a large effective area and high light collecting performance is realized.
上記微細穴光学素子の製造方法において、上記スリット形成工程が更に、上記スリットが形成される箇所について上記透明基板を改質する改質工程と、上記改質工程で改質された箇所を除去して上記スリットを形成する除去工程とを備えてもよい。改質工程と除去工程とを備えることにより、アスペクト比の高いスリットの形成が容易である。
In the method for manufacturing the microscopic hole optical element, the slit forming step further modifies the transparent substrate with respect to a portion where the slit is formed, and removes the portion modified in the reforming step. And a removing step for forming the slit. By providing the reforming step and the removing step, it is easy to form a slit with a high aspect ratio.
また、上記改質工程は、上記透明基板中にビームを照射して多光子吸収を生じさせることで改質する工程であることが好適である。ビーム照射による多光子吸収は透明基板中での位置分解能が高いので精細なスリット形状が容易に実現される。
In addition, it is preferable that the modifying step is a step of modifying the transparent substrate by irradiating a beam to cause multiphoton absorption. Multiphoton absorption by beam irradiation has a high position resolution in a transparent substrate, so that a fine slit shape can be easily realized.
また、上記微細穴光学素子の製造方法において、上記透明基板は、その透明基板の表面に沿って並んだ上記複数部分に相当する複数の小基板が互いに接合されて形成されたものであり、上記複数の小基板の端面同士を接合する接合工程を前記スリット形成工程よりも後に備えてもよい。
In the method of manufacturing the microscopic hole optical element, the transparent substrate is formed by joining a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate, You may provide the joining process which joins the end surfaces of a several small board | substrate after the said slit formation process.
また、上記微細穴光学素子の製造方法において、上記透明基板は、その透明基板の厚さ方向に重なった上記複数部分に相当する複数の薄基板が互いに接合されて形成されたものであり、上記複数の薄基板の表裏面同士を接合する接合工程を上記スリット形成工程よりも後に備えてもよい。
このように複数部分が表面に沿う方向や厚さ方向に接合されることにより、微細穴光学素子の大型化が容易に実現される。 Further, in the method of manufacturing the microscopic hole optical element, the transparent substrate is formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate, You may provide the joining process which joins the front and back of several thin substrates after the said slit formation process.
As described above, by joining the plurality of portions in the direction along the surface or in the thickness direction, the size of the microscopic hole optical element can be easily increased.
このように複数部分が表面に沿う方向や厚さ方向に接合されることにより、微細穴光学素子の大型化が容易に実現される。 Further, in the method of manufacturing the microscopic hole optical element, the transparent substrate is formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate, You may provide the joining process which joins the front and back of several thin substrates after the said slit formation process.
As described above, by joining the plurality of portions in the direction along the surface or in the thickness direction, the size of the microscopic hole optical element can be easily increased.
更に、上記接合工程が、紫外線の照射による接合面の改質で上記複数部分を接合させる工程であることが好適である。紫外線照射による接合では、接着剤などが不要となり、接合面同士が強固に密着する。
Furthermore, it is preferable that the joining step is a step of joining the plurality of portions by modifying the joining surface by irradiation with ultraviolet rays. In bonding by ultraviolet irradiation, an adhesive or the like is not required, and the bonding surfaces are firmly adhered to each other.
また、上記微細穴光学素子の製造方法において、上記反射層形成工程が、原子層堆積法によって上記反射層を形成する工程であることが好ましい。原子層堆積法ではアスペクト比の高いスリットに対しても均等な厚さに反射層が形成される。
In the method for manufacturing the microscopic hole optical element, the reflective layer forming step is preferably a step of forming the reflective layer by an atomic layer deposition method. In the atomic layer deposition method, the reflective layer is formed to have a uniform thickness even for slits having a high aspect ratio.
上記課題を解決するために、本発明に係る微細穴光学素子の一態様は、単一に形成されあるいは複数部分が一体化されて形成された透明基板と、上記透明基板の表面に沿って各々が円弧状に延びて互いに同心に配備されているとともに、当該透明基板の表面から裏面に至る途中で、当該表面に対する角度が第1の角度から第2の角度に変化する複数のスリットと、上記スリットの内壁に設けられた反射層と、を備える。
In order to solve the above-described problems, one aspect of the microscopic hole optical element according to the present invention includes a transparent substrate formed in a single unit or formed by integrating a plurality of parts, and a surface along the surface of the transparent substrate. Extending in an arc shape and being arranged concentrically with each other, and a plurality of slits whose angle with respect to the front surface changes from the first angle to the second angle on the way from the front surface to the back surface of the transparent substrate, A reflective layer provided on the inner wall of the slit.
このような微細穴光学素子によれば、透明基板に対する既知の加工方法により、高いアスペクト比のスリットを高い密度で高精度に形成することが出来る。この結果、軽量かつ、大きな有効面積と高い集光性能とを有する微細穴光学素子が実現される。
According to such a fine hole optical element, slits having a high aspect ratio can be formed with high density and high accuracy by a known processing method for a transparent substrate. As a result, a fine hole optical element that is lightweight and has a large effective area and high light collection performance is realized.
上記微細穴光学素子において、上記複数のスリットが1mm当たり10本以上の密度で形成されていることが望ましい。このような密度でスリットが形成されることにより、重量増加が回避されつつ有効面積の増加が実現される。
In the fine hole optical element, it is desirable that the plurality of slits be formed at a density of 10 or more per 1 mm. By forming slits at such a density, an increase in effective area is realized while avoiding an increase in weight.
また、上記微細穴光学素子において、上記複数のスリットは、互いに同心に配備された内周側に位置するスリット程、上記透明基板の表面に対して垂直に近い角度になっていてもよい。このような微細穴光学素子によれば、反射層によって反射されたX線や真空紫外線が焦点を結ぶ。
Moreover, in the microscopic hole optical element, the plurality of slits may be closer to the angle perpendicular to the surface of the transparent substrate as the slits located on the inner peripheral side arranged concentrically with each other. According to such a fine hole optical element, X-rays or vacuum ultraviolet rays reflected by the reflective layer are focused.
また、上記微細穴光学素子において、上記透明基板は、その透明基板の表面に沿って並んだ上記複数部分に相当する複数の小基板が互いに接合されて形成されたものであってもよい。
In the microhole optical element, the transparent substrate may be formed by bonding a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate.
また、上記微細穴光学素子において、上記透明基板は、その透明基板の厚さ方向に重なった上記複数部分に相当する複数の薄基板が互いに接合されて形成されたものであってもよい。
このように複数部分が表面に沿う方向や厚さ方向に接合されることにより、微細穴光学素子の大型化が容易に実現される。 In the microhole optical element, the transparent substrate may be formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate.
As described above, by joining the plurality of portions in the direction along the surface or in the thickness direction, the size of the microscopic hole optical element can be easily increased.
このように複数部分が表面に沿う方向や厚さ方向に接合されることにより、微細穴光学素子の大型化が容易に実現される。 In the microhole optical element, the transparent substrate may be formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate.
As described above, by joining the plurality of portions in the direction along the surface or in the thickness direction, the size of the microscopic hole optical element can be easily increased.
更に、このような複数部分が接合された透明基板は、接合面に形成された水素結合によって上記複数部分が接合されたものであることが好ましい。このような水素結合は、例えば紫外線の照射によって接合面に形成され、この水素結合によって接合面同士が接着剤不要で強固に密着される。
Furthermore, it is preferable that the transparent substrate in which such a plurality of portions are bonded is a substrate in which the plurality of portions are bonded by hydrogen bonds formed on the bonding surface. Such hydrogen bonds are formed on the bonding surfaces by, for example, irradiation with ultraviolet rays, and the bonding surfaces are firmly bonded to each other without using an adhesive.
本発明によれば、軽量かつ、大きな有効面積と高い集光性能とを有する微細穴光学素子が実現される。
上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。 According to the present invention, a microscopic optical element that is lightweight and has a large effective area and high light collection performance is realized.
The above-described objects, aspects, and advantages of the present invention, and objects, aspects, and effects of the present invention that have not been described above will be understood by those skilled in the art to implement the following invention by referring to the attached drawings and the claims. This will be understood from the following description (detailed description of the invention).
上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。 According to the present invention, a microscopic optical element that is lightweight and has a large effective area and high light collection performance is realized.
The above-described objects, aspects, and advantages of the present invention, and objects, aspects, and effects of the present invention that have not been described above will be understood by those skilled in the art to implement the following invention by referring to the attached drawings and the claims. This will be understood from the following description (detailed description of the invention).
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の微細穴光学素子の第1実施形態を概念的に示す図である。図1には、正面図(A)と側面図(B)が示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram conceptually showing a first embodiment of the microscopic hole optical element of the present invention. FIG. 1 shows a front view (A) and a side view (B).
図1は、本発明の微細穴光学素子の第1実施形態を概念的に示す図である。図1には、正面図(A)と側面図(B)が示されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram conceptually showing a first embodiment of the microscopic hole optical element of the present invention. FIG. 1 shows a front view (A) and a side view (B).
微細穴光学素子1は、直径が例えば200mm以下で厚さが例えば0.5mm以上1mm以下の円盤状の外形を有した透明基板2に対して多数の円弧状のスリット3が同心円状に配備された構造となっている。透明基板2は例えばガラスや透明樹脂などからなり、特に溶融石英のガラスであると、後述する製造方法におけるスリット3の加工が容易となる。
The microhole optical element 1 has a large number of arc-shaped slits 3 arranged concentrically on a transparent substrate 2 having a disk-like outer shape with a diameter of, for example, 200 mm or less and a thickness of, for example, 0.5 mm to 1 mm. It has a structure. The transparent substrate 2 is made of, for example, glass, transparent resin, or the like. Particularly, when the glass is fused quartz, the slit 3 in the manufacturing method described later can be easily processed.
図1ではスリット3の密度が実際よりも粗く描かれており、実際のスリット3は、スリット幅が例えば10μm以上に形成されるとともに、スリット3相互間に位置するガラスや樹脂の部分の幅が例えば20μm以上に形成されている。ここで、スリット3の密度は、スリットの幅方向で測るものとし、例えば複数のスリットが同心に配備されている場合は、同心配置の中心を通って各スリットを横切る直線上での1mm当たり例えば33本程度という高い密度になっている。微細穴光学素子1全体では例えば2000本というような多数のスリット3が形成されている。
図2は、図1中の部分Pにおける拡大断面図である。 In FIG. 1, the density of theslits 3 is depicted to be coarser than the actual, and the actual slits 3 are formed with a slit width of, for example, 10 μm or more, and the width of the glass or resin portion located between the slits 3 is For example, it is formed to 20 μm or more. Here, the density of the slits 3 is measured in the width direction of the slits. For example, when a plurality of slits are arranged concentrically, per 1 mm on a straight line passing through each slit through the center of the concentric arrangement, for example The density is as high as about 33. A large number of slits 3 such as 2000 are formed in the entire microscopic hole optical element 1.
FIG. 2 is an enlarged cross-sectional view of a portion P in FIG.
図2は、図1中の部分Pにおける拡大断面図である。 In FIG. 1, the density of the
FIG. 2 is an enlarged cross-sectional view of a portion P in FIG.
微細穴光学素子1の各スリット3は、微細穴光学素子1の表側(図1の上方)から裏側(図1の下方)へと向かう途中で屈曲しており、微細穴光学素子1に対して表側からX線や真空紫外線などの光Lが入射する。各スリット3における光Lの進行方向の長さh1と、光Lがスリット3から出射する箇所におけるスリット幅h2との比h1/h2は例えば50以上100以下という大きな値となっている。
各スリット3の内壁には金属の反射層4が形成されている。反射層4は例えば酸化ハフニウム等の重金属からなる単層膜や多層膜である。 Eachslit 3 of the minute hole optical element 1 is bent on the way from the front side (upper side in FIG. 1) to the back side (lower side in FIG. 1) of the minute hole optical element 1. Light L such as X-rays or vacuum ultraviolet rays enters from the front side. The ratio h1 / h2 between the length h1 of each slit 3 in the traveling direction of the light L and the slit width h2 where the light L is emitted from the slit 3 is a large value of 50 to 100, for example.
Ametal reflection layer 4 is formed on the inner wall of each slit 3. The reflective layer 4 is a single layer film or a multilayer film made of a heavy metal such as hafnium oxide.
各スリット3の内壁には金属の反射層4が形成されている。反射層4は例えば酸化ハフニウム等の重金属からなる単層膜や多層膜である。 Each
A
反射層4の材料の例としては、上記の酸化ハフニウムのほか、酸化物では、酸化タンタル、酸化チタニウム、酸化ランタン、酸化亜鉛等、窒化物では、窒化チタン、窒化タンタル、窒化ハフニウム等、金属では、ルビジウム、銅、タングステン、モリブデン、白金、イリジウム、金が挙げられる。単層膜の反射層4は、例えば数百~数千Åの膜厚で形成される。
Examples of the material of the reflective layer 4 include the above-described hafnium oxide, oxides such as tantalum oxide, titanium oxide, lanthanum oxide, and zinc oxide, nitrides such as titanium nitride, tantalum nitride, and hafnium nitride, and metals. , Rubidium, copper, tungsten, molybdenum, platinum, iridium, and gold. The single-layer reflective layer 4 is formed with a film thickness of, for example, several hundred to several thousand Å.
また、反射層4は、重金属から成る薄膜と軽金属から成る薄膜から構成される多層膜であってもよく、この場合の最外層は、重金属から成る薄膜で構成される。軽金属から成る薄膜としては例えば酸化アルミニウムが用いられるが、その他に酸化珪素が用いられてもよい。更に、反射層4は、白金/炭素、モリブデン/珪素、タングステン/珪素等と言ったペア材料の多層膜であってもよい。これらのペア材料による多層膜の場合、1ペアについて例えば数十Åの膜厚で数十~数百層が積層されて形成される。
The reflective layer 4 may be a multilayer film composed of a thin film made of heavy metal and a thin film made of light metal. In this case, the outermost layer is composed of a thin film made of heavy metal. For example, aluminum oxide is used as the thin film made of light metal, but silicon oxide may also be used. Further, the reflective layer 4 may be a multilayer film of a pair material such as platinum / carbon, molybdenum / silicon, tungsten / silicon and the like. In the case of a multilayer film made of these pair materials, for example, several pairs of several tens to several hundreds of layers having a film thickness of several tens of millimeters are stacked.
微細穴光学素子1の表裏面に対するスリット3の角度は、光Lが入射する側のスリット部分3a(図1の上側部分)の方が、光Lが出射する側のスリット部分3b(図1の下側部分)よりも垂直に近くなっていて、光Lは各スリット3の反射層4で2回反射される。
微細穴光学素子1における反射層4の形状はいわゆるウォルター光学系となっており、光Lを焦点に集めることが出来る。
図3は、ウォルター光学系の反射面形状を示す図である。 The angle of theslit 3 with respect to the front and back surfaces of the microhole optical element 1 is such that the slit portion 3a on the side where the light L is incident (the upper portion in FIG. 1) is the slit portion 3b on the side where the light L is emitted (see FIG. 1). The light L is reflected twice by the reflective layer 4 of each slit 3.
The shape of thereflective layer 4 in the fine hole optical element 1 is a so-called Walter optical system, and the light L can be collected at the focal point.
FIG. 3 is a diagram showing the shape of the reflecting surface of the Walter optical system.
微細穴光学素子1における反射層4の形状はいわゆるウォルター光学系となっており、光Lを焦点に集めることが出来る。
図3は、ウォルター光学系の反射面形状を示す図である。 The angle of the
The shape of the
FIG. 3 is a diagram showing the shape of the reflecting surface of the Walter optical system.
ウォルター光学系は、2枚の非球面もしくはそれらの円錐近似面で光を反射させて集光結像させる光学系である。本実施形態の微細穴光学素子1ではウォルター光学系のうち1型と称される光学系が用いられており、放物面S1と双曲面S2が組み合わされている。反射層4で2回反射された光Lは焦点Fに集光されることになる。
図4は、微細穴光学素子1における集光状態を示す図である。 The Walter optical system is an optical system that focuses light by reflecting light on two aspherical surfaces or conical approximate surfaces thereof. In the microscopic holeoptical element 1 of the present embodiment, an optical system called type 1 is used among the Walter optical systems, and the paraboloid S1 and the hyperboloid S2 are combined. The light L reflected twice by the reflective layer 4 is collected at the focal point F.
FIG. 4 is a diagram showing a light collection state in the microscopic holeoptical element 1.
図4は、微細穴光学素子1における集光状態を示す図である。 The Walter optical system is an optical system that focuses light by reflecting light on two aspherical surfaces or conical approximate surfaces thereof. In the microscopic hole
FIG. 4 is a diagram showing a light collection state in the microscopic hole
微細穴光学素子1おける各スリット3(図1参照)の角度は、スリット3の同心円状の配置における中心である微細穴光学素子1の光軸L0に近い程、微細穴光学素子1の表裏面に対して垂直に近い角度となっている。このため、同心円状の配置における外側のスリット3の反射層4で反射された光L程、反射角度が大きく、内側のスリット3の反射層4で反射された光L程、反射角度が小さい。そして、微細穴光学素子1の各所で反射層4に反射された光Lは、いずれも焦点Fに集まって結像する。なお、例えばX線の場合には反射角度は1度程度であるので、微細穴光学素子1の焦点距離は例えば500mm以上1000mm以下といった値になる。
The angle of each slit 3 (see FIG. 1) in the fine hole optical element 1 is closer to the optical axis L0 of the fine hole optical element 1 which is the center in the concentric arrangement of the slits 3, and the front and back surfaces of the fine hole optical element 1 The angle is nearly perpendicular to the angle. For this reason, the light L reflected by the reflection layer 4 of the outer slit 3 in the concentric arrangement has a larger reflection angle, and the light L reflected by the reflection layer 4 of the inner slit 3 has a smaller reflection angle. Then, all of the light L reflected by the reflective layer 4 at various locations of the microscopic hole optical element 1 is collected at the focal point F and forms an image. For example, in the case of X-rays, since the reflection angle is about 1 degree, the focal length of the fine hole optical element 1 is a value of, for example, 500 mm or more and 1000 mm or less.
このような微細穴光学素子1は、上記で説明したように、スリット3が高い密度で形成されているため、光Lに対する反射面の有効面積が大きい。スリット3の密度が1mm当たり例えば10本以上であると十分に大きい有効面積が得られ、焦点位置での高照度化が達成される。また、スリット3の数で考えた場合には、例えば100本以上のスリット3が形成されると十分に大きい有効面積が得られる。
In such a fine hole optical element 1, as described above, since the slits 3 are formed with a high density, the effective area of the reflecting surface for the light L is large. When the density of the slits 3 is, for example, 10 or more per 1 mm, a sufficiently large effective area is obtained, and high illuminance at the focal position is achieved. When considering the number of slits 3, for example, when 100 or more slits 3 are formed, a sufficiently large effective area can be obtained.
また、微細穴光学素子1のサイズは、上記で説明したように、直径が例えば200mm以下で光進行方向の厚さが例えば0.5mm以上1mm以下であるので、微細穴光学素子1は、反射面の有効面積が大きいのに較べ、重さは軽量となっている。このような微細穴光学素子1は、例えば宇宙空間でX線観測を行う観測機器や、地上で放射線観測を行う観測機器や、微量分析装置や、X線顕微鏡や、非破壊検査装置などにおけるX線反射用の素子として適している。また、微細穴光学素子1は真空紫外線用の反射ミラーとして利用されてもよい。
次に、このような微細穴光学素子1の製造方法について説明する。
図5は、微細穴光学素子1の製造工程を示す図である。
図5に示す製造工程は、改質工程(A)と、エッチング工程(B)と、研磨工程(C)と、反射層形成工程(D)とを備えている。 Further, as described above, since the diameter of the microholeoptical element 1 is 200 mm or less and the thickness in the light traveling direction is 0.5 mm or more and 1 mm or less, the microhole optical element 1 is reflective. Compared to the large effective area of the surface, the weight is light. Such a fine hole optical element 1 is used in, for example, an observation device that performs X-ray observation in outer space, an observation device that performs radiation observation on the ground, a microanalyzer, an X-ray microscope, a nondestructive inspection device, and the like. It is suitable as an element for line reflection. Further, the fine hole optical element 1 may be used as a reflection mirror for vacuum ultraviolet rays.
Next, a method for manufacturing such a fine holeoptical element 1 will be described.
FIG. 5 is a diagram showing a manufacturing process of the microscopic holeoptical element 1.
The manufacturing process shown in FIG. 5 includes a modifying process (A), an etching process (B), a polishing process (C), and a reflective layer forming process (D).
次に、このような微細穴光学素子1の製造方法について説明する。
図5は、微細穴光学素子1の製造工程を示す図である。
図5に示す製造工程は、改質工程(A)と、エッチング工程(B)と、研磨工程(C)と、反射層形成工程(D)とを備えている。 Further, as described above, since the diameter of the microhole
Next, a method for manufacturing such a fine hole
FIG. 5 is a diagram showing a manufacturing process of the microscopic hole
The manufacturing process shown in FIG. 5 includes a modifying process (A), an etching process (B), a polishing process (C), and a reflective layer forming process (D).
改質工程(A)では、透明基板2にパルスレーザ光PLが照射され、パルスレーザ光PLによって透明基板2が改質される。パルスレーザ光PLの照射エリアの形状・位置・角度はCADデータに基いて決定される。
In the modification step (A), the transparent substrate 2 is irradiated with the pulse laser beam PL, and the transparent substrate 2 is modified by the pulse laser beam PL. The shape, position, and angle of the irradiation area of the pulse laser beam PL are determined based on CAD data.
本実施形態では、透明基板2の改質は、パルスレーザ光PLにおける多光子吸収によって実現される。透明基板2中で多光子吸収が起きると多光子吸収を起こした部分が特異的に改質される。透明基板2が例えばガラス基板である場合は、珪素(Si)原子と酸素(O)原子との結合による局所構造が多光子吸収によって分断されて構造変化等が生じ、化学的に反応しやすい状態となる。また、改質に必要なエネルギーは、アブレーションなどといった破壊的な作用を生じるレーザ加工に必要なエネルギーよりも少なくて済む。改質工程(A)については後で詳述する。
In the present embodiment, the modification of the transparent substrate 2 is realized by multiphoton absorption in the pulsed laser light PL. When multiphoton absorption occurs in the transparent substrate 2, the portion where multiphoton absorption occurs is specifically modified. When the transparent substrate 2 is, for example, a glass substrate, the local structure due to the bond between silicon (Si) atoms and oxygen (O) atoms is divided by multiphoton absorption, resulting in a structural change and the like, which is easily chemically reacted It becomes. Further, the energy required for the modification may be less than the energy required for laser processing that causes a destructive action such as ablation. The reforming step (A) will be described in detail later.
エッチング工程(B)では、透明基板2がエッチャント5に浸され、エッチング処理によって改質領域2aが選択的に除去される。透明基板2が例えばガラス基板である場合は、エッチャント5として弗酸(HF)溶液や水酸化カリウム溶液が用いられる。
In the etching step (B), the transparent substrate 2 is immersed in the etchant 5, and the modified region 2a is selectively removed by the etching process. When the transparent substrate 2 is, for example, a glass substrate, a hydrofluoric acid (HF) solution or a potassium hydroxide solution is used as the etchant 5.
本実施形態では、エッチング処理として、処理の手間が少ないウェットエッチングが採用されているが、エッチング処理としてはフッ素(F2)系ガスを用いたドライエッチングも採用可能である。また、本実施形態では、処理の安定化や迅速化のために、エッチャント5中の透明基板2に対して超音波Wを当てる超音波洗浄も併用される。エッチングの条件は、HF濃度が例えば2.5~5%であり、透明基板2のサイズによって異なるがエッチング時間は例えば1時間~数時間である。
In this embodiment, wet etching that requires less labor is employed as the etching process, but dry etching using a fluorine (F 2 ) -based gas can also be employed as the etching process. In this embodiment, ultrasonic cleaning that applies ultrasonic waves W to the transparent substrate 2 in the etchant 5 is also used in order to stabilize and speed up the processing. The etching conditions are such that the HF concentration is 2.5 to 5%, for example, and varies depending on the size of the transparent substrate 2, but the etching time is 1 hour to several hours, for example.
エッチング工程(B)では、改質領域2a以外の部分についてもエッチャント5と透明基板2が反応するが、改質領域2aと、改質領域2a以外の領域2bとではエッチングレートが大きく異なる。このため、エッチング工程(B)の開始後速やかに改質領域2aは完全に除去されてスリット3が形成される。なお、ここに示す例では、透明基板2に貫通スリットが形成されるので改質領域2aは透明基板2を貫いて形成されるが、透明基板2に有底のスリット(非貫通穴)が形成される場合であれば、改質領域2aは透明基板2の表面に一端のみが達するように形成される。
In the etching step (B), the etchant 5 and the transparent substrate 2 react also in portions other than the modified region 2a, but the etching rate differs greatly between the modified region 2a and the region 2b other than the modified region 2a. For this reason, immediately after the start of the etching step (B), the modified region 2a is completely removed and the slit 3 is formed. In the example shown here, since the through slit is formed in the transparent substrate 2, the modified region 2 a is formed through the transparent substrate 2, but the bottomed slit (non-through hole) is formed in the transparent substrate 2. If so, the modified region 2 a is formed so that only one end reaches the surface of the transparent substrate 2.
研磨工程(C)では、各スリット3の側壁を平滑化するために、磁性流体と研磨材との混合液6が用いられる。磁性流体は、磁場が印加されることで粘性が変化する流体であり、既に光学部品の研磨などに実用化されている。具体的には、平均粒径が約0.01μmの磁性流体と、粒径が例えば1μmのダイヤモンドスラリーとの混合液6が各スリット3に流し込まれ、透明基板2と垂直に変動磁場が印加される。
In the polishing step (C), a mixed liquid 6 of magnetic fluid and abrasive is used to smooth the side walls of the slits 3. A magnetic fluid is a fluid whose viscosity changes when a magnetic field is applied, and has already been put into practical use for polishing optical components. Specifically, a mixed liquid 6 of a magnetic fluid having an average particle diameter of about 0.01 μm and a diamond slurry having a particle diameter of, for example, 1 μm is poured into each slit 3, and a varying magnetic field is applied perpendicularly to the transparent substrate 2. The
混合液6は磁場の変動に合わせてスリット3内をランダムに移動する。透明基板2を中心軸の周りに回転させて、混合液6とスリット3の側壁との相対運動を促進することも可能である。混合液6が各スリット3の側壁面を研磨することにより、側壁面の粗さが平滑化され、例えば1~2nmの面粗さが実現される。
The mixed liquid 6 moves randomly in the slit 3 according to the fluctuation of the magnetic field. It is also possible to rotate the transparent substrate 2 around the central axis to promote the relative movement between the mixed liquid 6 and the side wall of the slit 3. The mixed liquid 6 polishes the side wall surface of each slit 3 to smooth the side wall surface roughness, for example, to achieve a surface roughness of 1 to 2 nm.
反射層形成工程(D)では、透明基板2が金属蒸気と反応物質との混合気体7中に置かれ、原子層堆積(ALD)法によってスリット3の内壁に金属の反射層4が形成される。原子層堆積法では、スリット3の内壁全体に原子層が1層ずつ形成されるので、アスペクト比の高いスリット3であっても反射層4が均等に形成される。
In the reflective layer forming step (D), the transparent substrate 2 is placed in a mixed gas 7 of metal vapor and a reactant, and the metallic reflective layer 4 is formed on the inner wall of the slit 3 by atomic layer deposition (ALD). . In the atomic layer deposition method, an atomic layer is formed on the entire inner wall of the slit 3, so that the reflective layer 4 is evenly formed even with the slit 3 having a high aspect ratio.
上記改質工程(A)とエッチング工程(B)と研磨工程(C)とを併せたものが、本発明にいうスリット形成工程の一例に相当し、上記反射層形成工程(D)が、本発明にいう反射層形成工程の一例に相当する。また、上記改質工程(A)は、本発明にいう改質工程の一例に相当し、上記エッチング工程(B)は、本発明にいう除去工程の一例に相当する。
このような製造方法により、図1に示す微細穴光学素子1が実現される。
次に、上述した改質工程(A)について更に詳しく説明する。
図6は、図5に示す改質工程(A)を実行するレーザ改質装置10の構造を示す図である。 The combination of the modifying step (A), the etching step (B), and the polishing step (C) corresponds to an example of the slit forming step in the present invention, and the reflective layer forming step (D) This corresponds to an example of the reflective layer forming step in the invention. The modification step (A) corresponds to an example of the modification step according to the present invention, and the etching step (B) corresponds to an example of the removal step according to the present invention.
With such a manufacturing method, the microscopic holeoptical element 1 shown in FIG. 1 is realized.
Next, the above-described reforming step (A) will be described in more detail.
FIG. 6 is a view showing the structure of thelaser reforming apparatus 10 that executes the reforming step (A) shown in FIG.
このような製造方法により、図1に示す微細穴光学素子1が実現される。
次に、上述した改質工程(A)について更に詳しく説明する。
図6は、図5に示す改質工程(A)を実行するレーザ改質装置10の構造を示す図である。 The combination of the modifying step (A), the etching step (B), and the polishing step (C) corresponds to an example of the slit forming step in the present invention, and the reflective layer forming step (D) This corresponds to an example of the reflective layer forming step in the invention. The modification step (A) corresponds to an example of the modification step according to the present invention, and the etching step (B) corresponds to an example of the removal step according to the present invention.
With such a manufacturing method, the microscopic hole
Next, the above-described reforming step (A) will be described in more detail.
FIG. 6 is a view showing the structure of the
レーザ改質装置10は、パルスレーザ光を発するレーザ発振器101を備えている。レーザ発振器101としては、パルス幅が例えば200fs以上500fs以下で、パルスエネルギーが1μJ以下で、繰り返し周波数が5MHz以下のものが用いられる。このようなレーザ発振器101は、高ピークパワーを持った超短パルスのレーザ光を発するので、そのパルスレーザ光がガラスなどの透明基板2に集光されることで容易に多光子吸収等の非線形効果を生じる。
The laser reforming apparatus 10 includes a laser oscillator 101 that emits pulsed laser light. As the laser oscillator 101, one having a pulse width of 200 fs or more and 500 fs or less, a pulse energy of 1 μJ or less, and a repetition frequency of 5 MHz or less is used. Since such a laser oscillator 101 emits an ultrashort pulse laser beam having a high peak power, the pulsed laser beam is easily condensed on a transparent substrate 2 such as glass so that nonlinearity such as multiphoton absorption can be easily performed. Produces an effect.
レーザ改質装置10は、パルスレーザ光を改質に適したエネルギーに減光するためのアテネータ103を備えている。また、加工物(ワーク)である透明基板2上で必要なスポットサイズが得られるように、ビーム拡大系104と絞り用レンズ(fθレンズ)106が備えられている。この結果、集光系のNA値は例えば0.26などといった大きな値となる。
The laser reforming apparatus 10 includes an attenuator 103 for dimming pulsed laser light to energy suitable for reforming. Further, a beam expansion system 104 and a diaphragm lens (fθ lens) 106 are provided so that a necessary spot size can be obtained on the transparent substrate 2 that is a workpiece (workpiece). As a result, the NA value of the condensing system becomes a large value such as 0.26.
レーザ改質装置10は、透明基板2上の指定された箇所に指定された角度の貫通穴、もしくは非貫通穴を形成させるため、透明基板2を立体的に移動させるXYZ軸ステージ108を備えるとともに、パルスレーザ光をスキャンする2軸のガルバノミラー105も備えている。これらXYZ軸ステージ108およびガルバノミラー105によってパルスレーザ光は透明基板2中の指定された箇所に集光されて集光スポットを形成する。
図7は、レーザ改質装置10で実行される改質工程(A)の手順例を示す図である。 Thelaser modifying apparatus 10 includes an XYZ axis stage 108 that moves the transparent substrate 2 in a three-dimensional manner so as to form a through-hole or a non-through-hole with a designated angle at a designated location on the transparent substrate 2. A biaxial galvanometer mirror 105 that scans the pulse laser beam is also provided. By these XYZ axis stage 108 and galvanometer mirror 105, the pulse laser beam is condensed at a designated position in the transparent substrate 2 to form a condensed spot.
FIG. 7 is a diagram illustrating a procedure example of the reforming step (A) executed by thelaser reforming apparatus 10.
図7は、レーザ改質装置10で実行される改質工程(A)の手順例を示す図である。 The
FIG. 7 is a diagram illustrating a procedure example of the reforming step (A) executed by the
図7には、改質工程(A)で透明基板2中に改質領域2aが形成される手順の一例として、段階(A)から段階(E)までの手順が模式的に示されている。また、図7の右下には、段階(A)から段階(E)までの手順におけるCADデータに基づいたXYZ軸ステージ108の動きを表したベクトルが示されている。
FIG. 7 schematically shows a procedure from step (A) to step (E) as an example of a procedure for forming the modified region 2a in the transparent substrate 2 in the modification step (A). . In the lower right of FIG. 7, a vector representing the movement of the XYZ axis stage 108 based on CAD data in the procedure from the stage (A) to the stage (E) is shown.
段階(A)では、XYZ軸ステージ108が、CADデータに基づいたスタート箇所に位置決めされることで、透明基板2の表面直下にパルスレーザPLの焦点が結ばれ、改質領域2aの形成が開始される。
In stage (A), the XYZ axis stage 108 is positioned at the start position based on the CAD data, so that the focus of the pulse laser PL is focused immediately below the surface of the transparent substrate 2, and the formation of the modified region 2a is started. Is done.
段階(B)では、XYZ軸ステージ108が図の上方へと移動することでパルスレーザPLの焦点が透明基板2の内部側へと移動し、その結果、改質領域2aが透明基板2の内部側に延びる。
In the step (B), the XYZ axis stage 108 moves upward in the drawing to move the focal point of the pulse laser PL to the inside of the transparent substrate 2, and as a result, the modified region 2 a is inside the transparent substrate 2. Extend to the side.
段階(C)では、更にXYZ軸ステージ108が移動して改質領域2aが透明基板2の内部側へと更に延びる。ここで、図2に示すスリット3の各部分3a,3bの境界箇所に到達する。
In step (C), the XYZ axis stage 108 further moves, and the modified region 2a further extends to the inside of the transparent substrate 2. Here, the boundary portion between the portions 3a and 3b of the slit 3 shown in FIG. 2 is reached.
段階(D)では、図7に右下にベクトルで示されているように、XYZ軸ステージ108の移動方向が変化する。この結果、改質領域2aの方向が曲がって更に延びていく。
In stage (D), the movement direction of the XYZ axis stage 108 changes as indicated by a vector in the lower right in FIG. As a result, the direction of the modified region 2a is bent and further extended.
段階(E)では、XYZ軸ステージ108がエンド箇所まで移動し、パルスレーザPLの焦点が透明基板2の裏面直上まで達する。これにより、透明基板2の表面から裏面に至る改質領域2aが形成される。
In stage (E), the XYZ axis stage 108 moves to the end position, and the focal point of the pulse laser PL reaches just above the back surface of the transparent substrate 2. Thereby, the modified region 2a extending from the front surface to the back surface of the transparent substrate 2 is formed.
以上の手順で、図1に示すように円弧状に延びたスリット3のうち、透明基板2上の1箇所に相当する部分が改質される。従って、図7に示す手順が、透明基板2上で円弧状に連なった各箇所で繰り返されることで、図1に示すような円弧状の平面形状と図2に示すような断面形状とを有したスリット3に相当する改質領域2aが形成されることになる。
Through the above procedure, a portion corresponding to one place on the transparent substrate 2 is modified in the slit 3 extending in an arc shape as shown in FIG. Therefore, the procedure shown in FIG. 7 is repeated at each point connected in a circular arc shape on the transparent substrate 2, thereby having an arc-shaped planar shape as shown in FIG. 1 and a cross-sectional shape as shown in FIG. The modified region 2a corresponding to the slit 3 thus formed is formed.
このように、本実施形態の微細穴光学素子1では、理想的な反射面形状を有するスリット3(および反射層4)が透明基板2に高精度に形成され、スリット3(および反射層4)の形成に際して透明基板2には応力などが加えられない。このため微細穴光学素子1は、大きな有効面積を有するとともに結像性能も高い。
次に、本発明の微細穴光学素子の第2実施形態について説明する。
図8は、本発明の微細穴光学素子の第2実施形態を示す図である。図8には、正面図(A)と側面図(B)が示されている。 Thus, in the microscopic holeoptical element 1 of the present embodiment, the slit 3 (and the reflective layer 4) having an ideal reflective surface shape is formed on the transparent substrate 2 with high accuracy, and the slit 3 (and the reflective layer 4). No stress or the like is applied to the transparent substrate 2 when forming. For this reason, the fine hole optical element 1 has a large effective area and high imaging performance.
Next, a second embodiment of the microscopic hole optical element of the present invention will be described.
FIG. 8 is a view showing a second embodiment of the microscopic hole optical element of the present invention. FIG. 8 shows a front view (A) and a side view (B).
次に、本発明の微細穴光学素子の第2実施形態について説明する。
図8は、本発明の微細穴光学素子の第2実施形態を示す図である。図8には、正面図(A)と側面図(B)が示されている。 Thus, in the microscopic hole
Next, a second embodiment of the microscopic hole optical element of the present invention will be described.
FIG. 8 is a view showing a second embodiment of the microscopic hole optical element of the present invention. FIG. 8 shows a front view (A) and a side view (B).
第2実施形態の微細穴光学素子21は、1辺の長さが例えば100mmで厚さが例えば4.0mmの正方形状の外形を有した透明基板22に対して多数の円弧状のスリット23が同心円状に配備された構造となっている。透明基板22の材質は第1実施形態と同様に例えばガラスや透明樹脂などからなる。また、第2実施形態の微細穴光学素子21における透明基板22は、2枚のサブ基板22a,22bが厚さ方向に重なるように積層されて形成されている。各サブ基板22a,22bには、積層時に用いられるアライメントマーク24が形成されている。
The fine hole optical element 21 of the second embodiment has a large number of arc-shaped slits 23 with respect to a transparent substrate 22 having a square outer shape with a side length of, for example, 100 mm and a thickness of, for example, 4.0 mm. It has a concentric arrangement. The material of the transparent substrate 22 is made of, for example, glass or transparent resin as in the first embodiment. Further, the transparent substrate 22 in the microscopic hole optical element 21 of the second embodiment is formed by laminating so that the two sub-substrates 22a and 22b overlap in the thickness direction. Each of the sub-boards 22a and 22b is formed with an alignment mark 24 used at the time of stacking.
第2実施形態での各スリット23は、スリット幅が例えば20μmに形成されるとともに、スリット23相互間に位置するガラスや樹脂の部分の幅も例えば20μmに形成されている。従って、スリット23の密度は1mm当たり25本という高い密度になっていて、スリット23のアスペクト比は約200という大きな値となっている。
Each slit 23 in the second embodiment has a slit width of 20 μm, for example, and a glass or resin portion located between the slits 23 has a width of 20 μm, for example. Therefore, the density of the slits 23 is as high as 25 per mm, and the aspect ratio of the slits 23 is a large value of about 200.
第2実施形態でも、第1実施形態と同様に、各スリット23の内壁には反射層(図示省略)が形成されており、各反射層の形状(即ち各スリット23の内壁形状)は、図3で説明したウォルター光学系の1型となっている。
図9は、第2実施形態の微細穴光学素子21における断面構造を模式的に示す図である。 Also in the second embodiment, as in the first embodiment, a reflective layer (not shown) is formed on the inner wall of each slit 23, and the shape of each reflective layer (that is, the inner wall shape of each slit 23) is shown in FIG. This is a type of the Walter optical system described in FIG.
FIG. 9 is a diagram schematically showing a cross-sectional structure of the microscopic holeoptical element 21 according to the second embodiment.
図9は、第2実施形態の微細穴光学素子21における断面構造を模式的に示す図である。 Also in the second embodiment, as in the first embodiment, a reflective layer (not shown) is formed on the inner wall of each slit 23, and the shape of each reflective layer (that is, the inner wall shape of each slit 23) is shown in FIG. This is a type of the Walter optical system described in FIG.
FIG. 9 is a diagram schematically showing a cross-sectional structure of the microscopic hole
第2実施形態の微細穴光学素子21では、2枚のサブ基板22a,22bのうち、光が入射する側(図9の上側)に位置するサブ基板22aに、微細穴光学素子21の表面の垂線に対して第1の角度θ1を有するスリット部分23aが形成されている。また、2枚のサブ基板22a,22bのうち、光が出射する側(図9の下側)に位置するサブ基板22bには、微細穴光学素子21の表面の垂線に対して第2の角度θ2を有するスリット部分23bが形成されている。そして、2枚のサブ基板22a,22bが積層されることで各スリット部分23a,23bが繋がり、透明基板22中で角度が変化するスリット23となっている。
In the micro hole optical element 21 of the second embodiment, the surface of the micro hole optical element 21 is placed on the sub substrate 22a located on the light incident side (upper side in FIG. 9) of the two sub boards 22a and 22b. A slit portion 23a having a first angle θ1 with respect to the perpendicular is formed. Of the two sub-substrates 22a and 22b, the sub-substrate 22b positioned on the light emitting side (the lower side in FIG. 9) has a second angle with respect to the normal to the surface of the microscopic hole optical element 21. slit portion 23b having a theta 2 is formed. Then, the two sub-substrates 22 a and 22 b are stacked to connect the slit portions 23 a and 23 b, thereby forming a slit 23 whose angle changes in the transparent substrate 22.
また、第2実施形態では、微細穴光学素子21の全体として例えば826本のスリット23が形成されており、それらのスリット23は7つのグループに分けられている。
In the second embodiment, for example, 826 slits 23 are formed as a whole of the microscopic hole optical element 21, and these slits 23 are divided into seven groups.
第1のグループには、半径R1inが15mmである最内周のスリット23から、半径R1outが19.52mmである最外周のスリット23まで114本のスリット23が含まれており、この第1のグループに含まれる全てのスリット23は、第1の角度θ1が0.175度で第2の角度θ2が0.525度となっている。
The first group, the radius R 1in the innermost slit 23 is 15 mm, the radius R 1out is included the outermost periphery of the slit 23 to 114 slits 23 are 19.52Mm, the first All the slits 23 included in one group have a first angle θ 1 of 0.175 degrees and a second angle θ 2 of 0.525 degrees.
第2のグループには、半径R2inが19.56mmである最内周のスリット23から、半径R2outが24.4mmである最外周のスリット23まで122本のスリット23が含まれており、この第2のグループに含まれる全てのスリット23は、第1の角度θ1が0.225度で第2の角度θ2が0.675度となっている。
The second group includes 122 slits 23 from the innermost circumferential slit 23 having a radius R 2in of 19.56 mm to the outermost circumferential slit 23 having a radius R 2out of 24.4 mm. All the slits 23 included in the second group have a first angle θ 1 of 0.225 degrees and a second angle θ 2 of 0.675 degrees.
第3のグループには、半径R3inが24.44mmである最内周のスリット23から、半径R3outが29.32mmである最外周のスリット23まで123本のスリット23が含まれており、この第3のグループに含まれる全てのスリット23は、第1の角度θ1が0.275度で第2の角度θ2が0.825度となっている。
The third group, from the innermost slit 23 with radius R 3in is in 24.44Mm, radius R 3out are included for the outermost periphery of the slit 23 to 123 slits 23 are 29.32Mm, All the slits 23 included in the third group have a first angle θ 1 of 0.275 degrees and a second angle θ 2 of 0.825 degrees.
第4のグループには、半径R4inが29.36mmである最内周のスリット23から、半径R4outが34.2mmである最外周のスリット23まで122本のスリット23が含まれており、この第4のグループに含まれる全てのスリット23は、第1の角度θ1が0.325度で第2の角度θ2が0.975度となっている。
The fourth group includes 122 slits 23 from the innermost slit 23 having a radius R 4in of 29.36 mm to the outermost slit 23 having a radius R 4out of 34.2 mm. all the slits 23 included in the fourth group, the first angle theta 1 is at 0.325 ° second angle theta 2 is a 0.975 degrees.
第5のグループには、半径R5inが34.24mmである最内周のスリット23から、半径R5outが39.08mmである最外周のスリット23まで122本のスリット23が含まれており、この第5のグループに含まれる全てのスリット23は、第1の角度θ1が0.375度で第2の角度θ2が1.125度となっている。
The fifth group includes 122 slits 23 from the innermost slit 23 having a radius R 5in of 34.24 mm to the outermost slit 23 having a radius R 5out of 39.08 mm. All the slits 23 included in the fifth group have the first angle θ 1 of 0.375 degrees and the second angle θ 2 of 1.125 degrees.
第6のグループには、半径R6inが39.12mmである最内周のスリット23から、半径R6outが43.96mmである最外周のスリット23まで122本のスリット23が含まれており、この第6のグループに含まれる全てのスリット23は、第1の角度θ1が0.425度で第2の角度θ2が1.275度となっている。
The sixth group includes 122 slits 23 from the innermost slit 23 having a radius R 6in of 39.12 mm to the outermost slit 23 having a radius R 6out of 43.96 mm. All the slits 23 included in the sixth group have a first angle θ 1 of 0.425 degrees and a second angle θ 2 of 1.275 degrees.
第7のグループには、半径R7inが44mmである最内周のスリット23から、半径R7outが48mmである最外周のスリット23まで101本のスリット23が含まれており、この第7のグループに含まれる全てのスリット23は、第1の角度θ1が0.475度で第2の角度θ2が1.425度となっている。
このように第2実施形態では、スリット23の角度は、外周側へと向かうに連れて段階的に変化する。 The seventh group of radius R 7in frominnermost slit 23 is 44 mm, the radius R 7 out is included the 101 slits 23 to the slit 23 of the outermost periphery is 48 mm, the seventh All the slits 23 included in the group have a first angle θ 1 of 0.475 degrees and a second angle θ 2 of 1.425 degrees.
Thus, in 2nd Embodiment, the angle of theslit 23 changes in steps as it goes to an outer peripheral side.
このように第2実施形態では、スリット23の角度は、外周側へと向かうに連れて段階的に変化する。 The seventh group of radius R 7in from
Thus, in 2nd Embodiment, the angle of the
このようにスリット23がクループ分けされた微細穴光学素子21によれば、第1実施形態の微細穴光学素子1よりは結像性能が劣るものの、充分な集光性能が得られる。
Thus, according to the fine hole optical element 21 in which the slits 23 are divided into groups, although the imaging performance is inferior to that of the fine hole optical element 1 of the first embodiment, sufficient condensing performance can be obtained.
第2実施形態の微細穴光学素子21は、図5に示す第1実施形態の製造方法と同様の製造方法で製造される。第2実施形態の微細穴光学素子21に関しては、図5に示す各工程が、各サブ基板22a,22bについて個別に実行され、その後に、サブ基板22a,22b同士を位置合わせして接着させるアライメント工程が実行される。このアライメント工程は、第1のアライメント工程と第2のアライメント工程が含まれている。
図10は、第2実施形態における第1のアライメント工程を示す図である。 The microscopic holeoptical element 21 of the second embodiment is manufactured by the same manufacturing method as the manufacturing method of the first embodiment shown in FIG. With respect to the fine hole optical element 21 of the second embodiment, each step shown in FIG. 5 is performed individually for each of the sub-boards 22a and 22b, and then the sub-boards 22a and 22b are aligned and bonded to each other. The process is executed. This alignment process includes a first alignment process and a second alignment process.
FIG. 10 is a diagram illustrating a first alignment step in the second embodiment.
図10は、第2実施形態における第1のアライメント工程を示す図である。 The microscopic hole
FIG. 10 is a diagram illustrating a first alignment step in the second embodiment.
第1のアライメント工程では、各サブ基板22a,22bに形成されているアライメントマーク24同士の位置が一致するように、サブ基板22a,22b同士が位置合わせされる。このようなアライメントにより、本来1つのスリット23として繋がるべきスリット部分23a,23b(図9参照)同士が連通し、別のスリット23同士は連通しない程度の、比較的粗い位置合わせが実現される。
図11は、第2実施形態における第2のアライメント工程を示す図である。 In the first alignment step, the sub substrates 22a and 22b are aligned so that the positions of the alignment marks 24 formed on the sub substrates 22a and 22b coincide with each other. By such alignment, a relatively coarse alignment is realized such that slit portions 23a and 23b (see FIG. 9) that should originally be connected as one slit 23 communicate with each other and other slits 23 do not communicate with each other.
FIG. 11 is a diagram illustrating a second alignment step in the second embodiment.
図11は、第2実施形態における第2のアライメント工程を示す図である。 In the first alignment step, the
FIG. 11 is a diagram illustrating a second alignment step in the second embodiment.
第2のアライメント工程では、微細穴光学素子21で高い集光性能が得られるように、高精度な位置合わせが行われる。具体的には、He-NeレーザのビームLBがビームエキスパンダ110によって広げられてサブ基板22a,22bに並行照射される。
In the second alignment step, high-precision alignment is performed so that high condensing performance can be obtained with the fine hole optical element 21. Specifically, the He—Ne laser beam LB is expanded by the beam expander 110 and irradiated onto the sub-substrates 22a and 22b in parallel.
ビームLBはサブ基板22a,22bによって焦点位置に集光され、焦点位置に設けられたCCDカメラ120によって集光像が撮影される。撮影された集光像140はモニタ130上で確認される。
The beam LB is condensed at the focal position by the sub-boards 22a and 22b, and a condensed image is taken by the CCD camera 120 provided at the focal position. The captured condensed image 140 is confirmed on the monitor 130.
2枚のサブ基板22a,22bのうち一方にはプッシュプル機構150が付けられていて、プッシュプル機構150によってサブ基板22a,22b同士の位置が微調整され、集光像140の径が最小で輝度が最大となるように位置合わせされる。
このようなアライメントにより、微細穴光学素子21で高い集光性能が得られるような高精度な位置合わせが実現される。 One of the two sub-boards 22a and 22b is provided with a push-pull mechanism 150, and the position of the sub-boards 22a and 22b is finely adjusted by the push-pull mechanism 150, so that the diameter of the condensed image 140 is minimized. Alignment is performed so that the luminance is maximized.
With such an alignment, high-accuracy alignment is achieved so that high condensing performance can be obtained with the fine holeoptical element 21.
このようなアライメントにより、微細穴光学素子21で高い集光性能が得られるような高精度な位置合わせが実現される。 One of the two sub-boards 22a and 22b is provided with a push-
With such an alignment, high-accuracy alignment is achieved so that high condensing performance can be obtained with the fine hole
このような位置合わせの後、サブ基板22a,22b同士が接合される。サブ基板22a,22b同士の接合方式は接着剤による接合方式であってもよいが、本実施形態では、真空紫外線照射による接合方式が用いられる。真空紫外線照射による接合方式では、サブ基板22a,22bに対して真空紫外線が照射されることで接合面が改質されて接合面相互間に水素結合が形成され、その水素結合によって接合面同士が接合される。このような真空紫外線照射による接合方式が用いられることにより、スリットや反射層が接着剤で汚染される虞が無いので好ましい。
After such alignment, the sub-boards 22a and 22b are bonded to each other. The bonding method between the sub-boards 22a and 22b may be a bonding method using an adhesive, but in this embodiment, a bonding method using vacuum ultraviolet irradiation is used. In the bonding method using vacuum ultraviolet irradiation, the bonding surfaces are modified by irradiating the sub-substrates 22a and 22b with vacuum ultraviolet rays to form hydrogen bonds between the bonding surfaces. Be joined. It is preferable to use such a joining method by vacuum ultraviolet irradiation because there is no possibility that the slit and the reflective layer are contaminated with the adhesive.
次に、本発明の微細穴光学素子の第3実施形態について説明する。この第3実施形態の微細穴光学素子は、積層されているサブ基板の数が異なる点を除いて第2実施形態の微細穴光学素子と同様のものであるから重複説明は省略する。
図12は、第3実施形態の微細穴光学素子31における断面構造を模式的に示す図である。 Next, a third embodiment of the microscopic hole optical element of the present invention will be described. Since the micro hole optical element of the third embodiment is the same as the micro hole optical element of the second embodiment except that the number of laminated sub-substrates is different, the duplicate description is omitted.
FIG. 12 is a diagram schematically showing a cross-sectional structure of the microscopic holeoptical element 31 of the third embodiment.
図12は、第3実施形態の微細穴光学素子31における断面構造を模式的に示す図である。 Next, a third embodiment of the microscopic hole optical element of the present invention will be described. Since the micro hole optical element of the third embodiment is the same as the micro hole optical element of the second embodiment except that the number of laminated sub-substrates is different, the duplicate description is omitted.
FIG. 12 is a diagram schematically showing a cross-sectional structure of the microscopic hole
第3実施形態の微細穴光学素子31では、8枚のサブ基板32a,32b,32c,32d,32e,32f,32g,32hが厚さ方向に重なるように積層された透明基板32が用いられる。このように多くのサブ基板32a,…,32hが用いられることにより、各サブ基板32a,…,32hに対してスリット33が形成される際のアスペクト比が小さくなり、スリット33形成がより容易となる。
次に、本発明の微細穴光学素子の第4実施形態について説明する。
図13は、第4実施形態の微細穴光学素子41を示す図である。 In the microholeoptical element 31 of the third embodiment, a transparent substrate 32 is used in which eight sub-substrates 32a, 32b, 32c, 32d, 32e, 32f, 32g, and 32h are laminated so as to overlap in the thickness direction. By using such a large number of sub-substrates 32a,..., 32h, the aspect ratio when the slits 33 are formed in the sub-substrates 32a,. Become.
Next, a fourth embodiment of the microscopic hole optical element of the present invention will be described.
FIG. 13 is a view showing the microscopic holeoptical element 41 of the fourth embodiment.
次に、本発明の微細穴光学素子の第4実施形態について説明する。
図13は、第4実施形態の微細穴光学素子41を示す図である。 In the microhole
Next, a fourth embodiment of the microscopic hole optical element of the present invention will be described.
FIG. 13 is a view showing the microscopic hole
第4実施形態の微細穴光学素子41は、1辺が例えば400mmで厚さが例えば2.0mmの正方形状の外形を有した透明基板42に対して多数の円弧状のスリット43が同心円状に配備された構造となっている。透明基板42の材質は第1実施形態と同様に例えばガラスや透明樹脂などからなる。また、第4実施形態の微細穴光学素子41における透明基板42は、4枚の小基板42a,42b,42c,42dがマトリクス状に接合されて形成されている。
In the microhole optical element 41 of the fourth embodiment, a large number of arc-shaped slits 43 are concentrically formed with respect to the transparent substrate 42 having a square-shaped outer shape with a side of, for example, 400 mm and a thickness of, for example, 2.0 mm. It has a deployed structure. The material of the transparent substrate 42 is made of, for example, glass or transparent resin as in the first embodiment. The transparent substrate 42 in the microscopic hole optical element 41 of the fourth embodiment is formed by joining four small substrates 42a, 42b, 42c, and 42d in a matrix.
第4実施形態の微細穴光学素子41は、第1実施形態の微細穴光学素子1や第2実施形態の微細穴光学素子21などに較べて大口径の素子であり、焦点位置での更なる高照度化が達成される。透明基板42の表面に沿って並んだ複数(例えば4枚)の小基板42a,42b,42c,42dが端面同士で接合されることにより、このような大口径の素子が容易に実現される。
The fine hole optical element 41 of the fourth embodiment is an element having a large diameter compared to the fine hole optical element 1 of the first embodiment, the fine hole optical element 21 of the second embodiment, and the like, and further at the focal position. High illuminance is achieved. Such a large-diameter element is easily realized by joining a plurality of (for example, four) small substrates 42a, 42b, 42c, and 42d arranged along the surface of the transparent substrate 42 at their end faces.
なお、上記説明では、本発明にいうスリット形成工程の一例として、改質工程と除去工程とを備えるスリット形成工程が示されているが、本発明にいうスリット形成工程は、透明基板に対して改質工程を経ずにスリットを直接形成する他の手段による工程であってもよい。
In the above description, as an example of the slit forming process according to the present invention, a slit forming process including a reforming process and a removing process is shown, but the slit forming process according to the present invention is performed on a transparent substrate. It may be a step by other means for directly forming the slit without undergoing the reforming step.
なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
Although specific embodiments have been described above, the embodiments are merely examples and are not intended to limit the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. In addition, omissions, substitutions, and changes can be made as appropriate to the above-described embodiments without departing from the scope of the present invention. Such omissions, substitutions, and modifications are included in the scope of the claims and their equivalents, and belong to the technical scope of the present invention.
1,21,31,41…微細穴光学素子、2,22,32,42…透明基板、22a,22b,32a,…,32h…サブ基板3,23,33,43…スリット、4…反射層、42a,42b,42c,42d…小基板
1, 2, 31, 41 ... fine hole optical element, 2, 22, 32, 42 ... transparent substrate, 22a, 22b, 32a, ..., 32h ... sub-substrate 3, 23, 33, 43 ... slit, 4 ... reflection layer , 42a, 42b, 42c, 42d ... small substrate
Claims (13)
- 単一に形成されあるいは複数部分が一体化されて形成された透明基板の表面に沿って複数のスリットが配備されているとともに、当該透明基板の表面から裏面に至る途中で、当該表面に対する各スリットの角度が第1の角度から第2の角度に変化する微細穴光学素子の製造方法であって、
前記透明基板に対して前記複数のスリットを形成するスリット形成工程と、
前記複数のスリットそれぞれの内壁に反射層を形成する反射層形成工程と、
を備えることを特徴とする微細穴光学素子の製造方法。 A plurality of slits are provided along the surface of the transparent substrate formed as a single unit or formed by integrating a plurality of parts, and each slit with respect to the surface is performed on the way from the surface of the transparent substrate to the back surface. Is a method for manufacturing a microscopic hole optical element in which the angle from the first angle changes to the second angle,
A slit forming step of forming the plurality of slits on the transparent substrate;
A reflective layer forming step of forming a reflective layer on the inner wall of each of the plurality of slits;
A method for producing a microscopic hole optical element, comprising: - 前記スリット形成工程が更に、
前記スリットが形成される箇所について前記透明基板を改質する改質工程と、
前記改質工程で改質された箇所を除去して前記スリットを形成する除去工程と、を備えることを特徴とする請求項1に記載の微細穴光学素子の製造方法。 The slit forming step further includes
A reforming step of modifying the transparent substrate at a location where the slit is formed;
The method for manufacturing a microscopic hole optical element according to claim 1, further comprising: a removing step of forming the slit by removing the portion modified in the modifying step. - 前記改質工程が、前記透明基板中にビームを照射して多光子吸収を生じさせることで改質する工程であることを特徴とする請求項2に記載の微細穴光学素子の製造方法。 3. The method for manufacturing a microscopic hole optical element according to claim 2, wherein the modifying step is a step of modifying the transparent substrate by irradiating a beam to cause multiphoton absorption.
- 前記透明基板は、該透明基板の表面に沿って並んだ前記複数部分に相当する複数の小基板が互いに接合されて形成されたものであり、
前記複数の小基板の端面同士を接合する接合工程を前記スリット形成工程よりも後に備えることを特徴とする請求項1から3のいずれか1項に記載の微細穴光学素子の製造方法。 The transparent substrate is formed by bonding a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate,
4. The method for manufacturing a microscopic hole optical element according to claim 1, further comprising a joining step of joining end faces of the plurality of small substrates after the slit forming step. 5. - 前記透明基板は、該透明基板の厚さ方向に重なった前記複数部分に相当する複数の薄基板が互いに接合されて形成されたものであり、
前記複数の薄基板の表裏面同士を接合する接合工程を前記スリット形成工程よりも後に備えることを特徴とする請求項1から4のいずれか1項に記載の微細穴光学素子の製造方法。 The transparent substrate is formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate,
The method for manufacturing a microscopic hole optical element according to any one of claims 1 to 4, further comprising a joining step for joining the front and back surfaces of the plurality of thin substrates after the slit forming step. - 前記接合工程が、紫外線の照射による接合面の改質で前記複数部分を接合させる工程であることを特徴とする請求項4または5に記載の微細穴光学素子の製造方法。 The method for manufacturing a microscopic hole optical element according to claim 4 or 5, wherein the bonding step is a step of bonding the plurality of portions by modification of a bonding surface by irradiation with ultraviolet rays.
- 前記反射層形成工程が、原子層堆積法によって前記反射層を形成する工程であることを特徴とする請求項1から6のいずれか1項に記載の微細穴光学素子の製造方法。 The method for manufacturing a microscopic hole optical element according to any one of claims 1 to 6, wherein the reflective layer forming step is a step of forming the reflective layer by an atomic layer deposition method.
- 単一に形成されあるいは複数部分が一体化されて形成された透明基板と、
前記透明基板の表面に沿って配備されているとともに、当該透明基板の表面から裏面に至る途中で、当該表面に対する角度が第1の角度から第2の角度に変化する複数のスリットと、
前記スリットの内壁に設けられた反射層と、
を備えたことを特徴とする微細穴光学素子。 A transparent substrate formed as a single unit or formed by integrating a plurality of parts;
A plurality of slits that are arranged along the surface of the transparent substrate and that change from the first angle to the second angle on the way from the front surface to the back surface of the transparent substrate;
A reflective layer provided on the inner wall of the slit;
A fine hole optical element comprising: - 前記複数のスリットが1mm当たり10本以上の密度で形成されていることを特徴とする請求項8に記載の微細穴光学素子。 The micro-hole optical element according to claim 8, wherein the plurality of slits are formed at a density of 10 or more per 1 mm.
- 前記複数のスリットは、互いに同心に配備された内周側に位置するスリットが、外周側に位置するスリットに比べ、前記透明基板の表面に対して垂直に近い角度になっていることを特徴とする請求項8または9に記載の微細穴光学素子。 The plurality of slits are characterized in that slits located on the inner circumferential side arranged concentrically with each other are at an angle close to perpendicular to the surface of the transparent substrate, compared to slits located on the outer circumferential side. The fine hole optical element according to claim 8 or 9.
- 前記透明基板は、該透明基板の表面に沿って並んだ前記複数部分に相当する複数の小基板が互いに接合されて形成されたものであることを特徴とする請求項8から10のいずれか1項に記載の微細穴光学素子。 11. The transparent substrate is formed by bonding a plurality of small substrates corresponding to the plurality of portions arranged along the surface of the transparent substrate to each other. The fine hole optical element according to item.
- 前記透明基板は、該透明基板の厚さ方向に重なった前記複数部分に相当する複数の薄基板が互いに接合されて形成されたものであることを特徴とする請求項8から11のいずれか1項に記載の微細穴光学素子。 12. The transparent substrate according to any one of claims 8 to 11, wherein the transparent substrate is formed by bonding a plurality of thin substrates corresponding to the plurality of portions overlapping in the thickness direction of the transparent substrate. The fine hole optical element according to item.
- 前記透明基板は、接合面に形成された水素結合によって前記複数部分が接合されたものであることを特徴とする請求項11または12に記載の微細穴光学素子。 The micro-hole optical element according to claim 11 or 12, wherein the transparent substrate is formed by bonding the plurality of portions by hydrogen bonds formed on a bonding surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018025079A JP2019139190A (en) | 2018-02-15 | 2018-02-15 | Method for producing fine hole optical element, and fine hole optical element |
JP2018-025079 | 2018-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019159650A1 true WO2019159650A1 (en) | 2019-08-22 |
Family
ID=67618662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002421 WO2019159650A1 (en) | 2018-02-15 | 2019-01-25 | Method for manufacturing microporous optical element and microporous optical element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019139190A (en) |
WO (1) | WO2019159650A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020160210A (en) * | 2019-03-26 | 2020-10-01 | ウシオ電機株式会社 | Manufacturing method of fine hole optical element and reformer |
CN112576944A (en) * | 2020-11-26 | 2021-03-30 | 广州光联电子科技有限公司 | Lighting system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03274001A (en) * | 1990-03-24 | 1991-12-05 | Seiko Epson Corp | X-ray reflecting film |
JP2005234573A (en) * | 2004-02-16 | 2005-09-02 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Optical reflection element, its manufacturing method and optical apparatus equipped with the element |
JP2006194758A (en) * | 2005-01-14 | 2006-07-27 | Japan Aerospace Exploration Agency | X-ray condensing device |
JP2013220958A (en) * | 2012-04-13 | 2013-10-28 | Namiki Precision Jewel Co Ltd | Microvoid forming method |
WO2018012276A1 (en) * | 2016-07-15 | 2018-01-18 | ウシオ電機株式会社 | Substrate bonding method and microchip manufacturing method |
-
2018
- 2018-02-15 JP JP2018025079A patent/JP2019139190A/en active Pending
-
2019
- 2019-01-25 WO PCT/JP2019/002421 patent/WO2019159650A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03274001A (en) * | 1990-03-24 | 1991-12-05 | Seiko Epson Corp | X-ray reflecting film |
JP2005234573A (en) * | 2004-02-16 | 2005-09-02 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Optical reflection element, its manufacturing method and optical apparatus equipped with the element |
JP2006194758A (en) * | 2005-01-14 | 2006-07-27 | Japan Aerospace Exploration Agency | X-ray condensing device |
JP2013220958A (en) * | 2012-04-13 | 2013-10-28 | Namiki Precision Jewel Co Ltd | Microvoid forming method |
WO2018012276A1 (en) * | 2016-07-15 | 2018-01-18 | ウシオ電機株式会社 | Substrate bonding method and microchip manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020160210A (en) * | 2019-03-26 | 2020-10-01 | ウシオ電機株式会社 | Manufacturing method of fine hole optical element and reformer |
JP7196718B2 (en) | 2019-03-26 | 2022-12-27 | ウシオ電機株式会社 | Manufacturing method and modification apparatus for micro-hole optical element |
CN112576944A (en) * | 2020-11-26 | 2021-03-30 | 广州光联电子科技有限公司 | Lighting system |
Also Published As
Publication number | Publication date |
---|---|
JP2019139190A (en) | 2019-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10481498B2 (en) | Droplet generator for lithographic apparatus, EUV source and lithographic apparatus | |
TWI597568B (en) | Phase grating for mask inspection system | |
WO2019159650A1 (en) | Method for manufacturing microporous optical element and microporous optical element | |
JP2010017990A (en) | Substrate dividing method | |
CN107783206B (en) | double-layer microlens array optical element | |
JP2003245784A (en) | Laser beam machining method and device, and three- dimensional structure | |
WO2020039620A1 (en) | Method for manufacturing microhole optical element, and optical device | |
KR100630738B1 (en) | Fabricating method for reflection photomask | |
TWI685389B (en) | Method for producing an euv module, euv module and euv lithography system | |
JP2005109322A (en) | Laser beam dicing device | |
JP5540305B2 (en) | X-ray reflection device and manufacturing method thereof | |
JP2007503607A (en) | Mirror for deflecting device in laser system, method for manufacturing the same and deflecting device for laser system | |
JP2016111057A (en) | Manufacturing method for fluorescent light source light-emitting element, and fluorescent light source light-emitting element | |
TW200535924A (en) | Method for joining at least a first member and a second member, lithographic apparatus and device manufacturing method, as well as a device manufactured thereby | |
JP2003088985A (en) | Laser beam machining device and transmission type half wavelength plate | |
JP6422050B2 (en) | X-ray optical system substrate and manufacturing method thereof | |
JP3301249B2 (en) | Reflection optical element and method of manufacturing the same | |
JPH0992602A (en) | Mask structure and production thereof | |
JP6846691B2 (en) | Manufacturing method of X-ray optical system base material | |
JP7196718B2 (en) | Manufacturing method and modification apparatus for micro-hole optical element | |
US20220134475A1 (en) | Systems and methods for forming partial nano-perforations with variable bessel beam | |
JP2015007647A (en) | X-ray optical system | |
TWI273281B (en) | Fresnel lens structure | |
JP2542652B2 (en) | Method of manufacturing mask for X-ray exposure | |
CN108288512A (en) | Vertical broached-tooth design refraction of X-ray lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19753778 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19753778 Country of ref document: EP Kind code of ref document: A1 |