WO2019159639A1 - Electronic valve, sphygmomanometer, blood pressure measuring method, and apparatus - Google Patents

Electronic valve, sphygmomanometer, blood pressure measuring method, and apparatus Download PDF

Info

Publication number
WO2019159639A1
WO2019159639A1 PCT/JP2019/002302 JP2019002302W WO2019159639A1 WO 2019159639 A1 WO2019159639 A1 WO 2019159639A1 JP 2019002302 W JP2019002302 W JP 2019002302W WO 2019159639 A1 WO2019159639 A1 WO 2019159639A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
fluid
pole piece
yoke
solenoid valve
Prior art date
Application number
PCT/JP2019/002302
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 佳彦
西岡 孝哲
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2019159639A1 publication Critical patent/WO2019159639A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0235Valves specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures

Definitions

  • the present invention relates to a solenoid valve, and more particularly to a solenoid valve that opens and closes by the magnetic force of a solenoid coil.
  • the present invention also relates to a sphygmomanometer including such an electromagnetic valve, and a blood pressure measurement method for measuring blood pressure by adjusting the cuff pressure by opening and closing such an electromagnetic valve.
  • this invention relates to the apparatus provided with such an electromagnetic valve.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-203730
  • the electromagnetic valve includes a U-shaped frame and a yoke attached so as to close the open end of the frame.
  • a substantially cylindrical coil bobbin (coil frame) and a solenoid coil wound around the coil bobbin are accommodated therein.
  • a rod-shaped movable iron core is slidably inserted in the coil bobbin.
  • a fixed iron core provided with a flow port through which fluid flows is disposed.
  • One end of the movable iron core is opposed to the distribution port of the fixed iron core.
  • the solenoid coil When the solenoid coil is in a non-energized state, one end of the movable iron core is separated from the flow port of the fixed iron core by the biasing force of the spring.
  • the solenoid coil When the solenoid coil is energized, the movable iron core is moved in the coil bobbin against the urging force of the spring by the magnetic force generated by the solenoid coil, and one end of the movable iron core is connected to the fixed iron core. Close the distribution port. Thereby, the solenoid valve is opened and closed.
  • an object of the present invention is to provide a solenoid valve that can be configured in a small size and can save power.
  • Another object of the present invention is to provide a sphygmomanometer equipped with such an electromagnetic valve, and a blood pressure measuring method for measuring blood pressure by opening and closing such an electromagnetic valve.
  • the subject of this invention is providing the apparatus provided with such an electromagnetic valve.
  • the electromagnetic valve of this disclosure is: A solenoid valve that allows or blocks fluid flow, A yoke including an end plate portion having an annular periphery, and a side plate portion connected to the periphery of the end plate portion and surrounding the space adjacent to one side of the end plate portion in an annular shape; A pole piece extending in one direction from one end existing in the space on one side to the other end on the opposite side, perpendicular to the end plate portion of the yoke, and the pole piece is open to the one end A first fluid inlet / outlet communicating with the opening through the pole piece at the other end, A solenoid coil housed in an annular space between the pole piece and the side plate of the yoke; A diaphragm made of a plate-like magnetic material facing the end plate portion of the yoke through the space and having a dimension extending over the annular edge of the side plate portion of the yoke; A biasing portion that biases the diaphragm in a
  • the diaphragm During operation in which the solenoid coil is energized, the diaphragm approaches the one end of the pole piece against the urging force of the urging portion by the magnetic force generated by the solenoid coil, and the opening is closed. Closed state, The diaphragm covers the entire circumference of the peripheral end surface around the opening or the entire circumference of the annular edge of the side plate portion of the yoke from the center toward the peripheral edge. In the closed state, the inner surface on the side facing the end plate portion of the diaphragm is the peripheral end surface around the opening of the one end of the pole piece, or in the closed state, or The yoke is configured to be in close contact with the annular edge of the side plate portion.
  • “yoke” and “pole piece” are elements that serve to guide lines of magnetic force well known in the field of electromagnets, and are each made of a magnetic material (in particular, a ferromagnetic material such as iron is preferable).
  • the shape of the periphery of the end plate portion of the yoke widely includes an annular shape such as a circle and a rounded square (a square with rounded corners). The same applies to the annular shape of the side plate.
  • the “annular edge” of the side plate portion of the yoke refers to the edge opposite to the end plate portion.
  • the “other end portion” of the pole piece may protrude from the end plate portion of the yoke, or the outer surface of the end plate portion (the space on one side of the two surfaces of the end plate portion is It may stop on the surface facing the other side.
  • “In close contact” means that the fluid is in close contact with the fluid.
  • the fluid is a gas, it means that it is in airtight contact.
  • the fluid is a liquid, it means that it is in liquid-tight contact.
  • the solenoid coil when the solenoid coil is in a non-energized state, the diaphragm is separated from the one end portion of the pole piece by the biasing force of the biasing portion, and the opening is opened. It becomes a state. When in this open state, fluid flow through the pole piece is allowed.
  • This solenoid valve is a normally open valve.
  • the diaphragm approaches the one end of the pole piece against the urging force of the urging portion by the magnetic force generated by the solenoid coil, and the opening is closed. Can be closed.
  • the lines of magnetic force generated by the solenoid coil reach, for example, the peripheral edge of the end plate portion through the side plate portion of the yoke, and the end plate portion From the peripheral edge of the pole piece through the end plate portion to the orthogonal part of the pole piece, from the orthogonal part through the pole piece to the one end of the pole piece, from the one end to the one end and the It circulates in a path (magnetic circuit) that reaches an approaching point with the diaphragm and further reaches the annular edge of the side plate portion of the yoke through the diaphragm.
  • the solenoid coil If the direction of energization to the solenoid coil is reversed, the lines of magnetic force generated by the solenoid coil circulate in this direction in the reverse direction. As a result, the solenoid coil generates a magnetic force against the urging force of the urging unit with respect to the diaphragm. Due to this magnetic force, the diaphragm can approach the one end of the pole piece, and the opening can be closed. When in the closed state, the fluid flow through the pole piece is blocked. Thus, in this solenoid valve, the solenoid coil is in an open state or a closed state depending on whether the solenoid coil is in a non-energized state (when not operating) or the solenoid coil is in a conductive state (when operating). Can do. Thereby, the flow of the fluid through the pole piece (that is, the electromagnetic valve) can be allowed or blocked.
  • the plate-like diaphragm in order to allow or block the flow of fluid, the plate-like diaphragm approaches or separates from the one end of the pole piece in a posture facing the end plate of the yoke. It is configured to move in parallel in one direction. That is, unlike the conventional example (the movable iron core is rod-shaped and moves along its longitudinal direction), in this solenoid valve, the plate-shaped diaphragm moves in one direction perpendicular to the plate surface of the diaphragm. To do. Therefore, the size of the solenoid valve can be reduced with respect to the one direction in which the diaphragm moves. As a result, the electromagnetic valve can be made compact.
  • the diaphragm is configured such that the diaphragm is formed from the center toward the peripheral edge, the entire circumference of the peripheral end surface around the opening among the one end portions of the pole piece, or the annular edge of the side plate portion of the yoke. It extends continuously spatially so as to cover the entire circumference of the.
  • the inner surface of the diaphragm (the surface on the side facing the end plate portion of the yoke) is the peripheral end surface around the opening of the one end portion of the pole piece, or the yoke. Close to the annular edge of the side plate portion.
  • the area (referred to as Sb) of the region surrounded by the annular edge of the side plate portion is large. That is, S0 ⁇ Sa ⁇ Sb. Therefore, for example, the pressure of the fluid applied to the opening from the first fluid inlet / outlet side (this is referred to as an opening side pressure P1) and the rear surface of the diaphragm (the side opposite to the end plate portion of the yoke) are directed.
  • the solenoid valve according to one embodiment is characterized in that the pole piece and the yoke are integrally formed.
  • the pole piece and the yoke are integrally formed. Therefore, the magnetic resistance between the pole piece and the yoke is small, and the efficiency of the magnetic circuit using them as a path is increased. . In addition, the airtightness between the pole piece and the yoke can be improved to prevent air leakage.
  • the magnetic material forming the diaphragm is permalloy.
  • permalloy refers to an Ni—Fe alloy.
  • the diaphragm is plate-shaped and made of permalloy, and thus can be configured to be lighter than, for example, a rod-shaped movable iron core.
  • the characteristic for example, the current-flow-current characteristic
  • the element driven to open and close the valve is a rod-shaped movable iron core, it has a relatively large weight, so when the posture (orientation) of the solenoid valve changes with respect to the vertical direction, Along with this, the gravitational component that the movable iron core receives along the sliding direction changes greatly, and the characteristics of the solenoid valve are greatly affected.
  • an elastic body for closing the opening is integrally attached to a portion of the diaphragm facing the opening at the one end of the pole piece.
  • elastic body refers to an object made of an elastic material (flexible material) such as silicone rubber, nitrile rubber (NBR), ethylene propylene diene rubber (EPDM).
  • flexible material such as silicone rubber, nitrile rubber (NBR), ethylene propylene diene rubber (EPDM).
  • the elastic body of the diaphragm when the transition from the open state to the closed state is performed, the elastic body of the diaphragm approaches the opening at the one end of the pole piece. Thereby, a stable energization current (or drive voltage) versus flow rate characteristic can be obtained. In the closed state, the elastic body of the diaphragm reliably blocks the opening at the one end of the pole piece.
  • the elastic body is preferably attached to the diaphragm by press-fitting, bonding, or insert molding. Thereby, the elastic body can be easily and integrally attached to the diaphragm.
  • the pole piece has a recess opened toward the elastic body attached to the diaphragm at the one end, and the opening is opened at the bottom of the recess.
  • the elastic body attached to the diaphragm closes the opening while being accommodated in the recess at the one end of the pole piece. Therefore, the elastic body can block the opening stably.
  • the solenoid valve of one embodiment With the other end of the pole piece exposed to the outside, the yoke, a portion of the pole piece that extends into the space on the one side, the solenoid coil, the diaphragm, and the biasing portion, With a hermetically sealed case that fluidly and collectively covers A second fluid inlet / outlet is provided through the outer wall of the sealed case.
  • the solenoid valve of this embodiment is suitable for being inserted into a flow path and allowing or blocking the flow of fluid through the flow path. If the electromagnetic valve is in an open state, for example, the first fluid is passed through the opening at the one end of the pole piece from the second fluid inlet / outlet (the diaphragm is open from the one end). The fluid can flow through the solenoid valve toward or away from the fluid inlet / outlet. If the solenoid valve is in a closed state, the opening (the diaphragm is close to the one end portion and is in a closed state) is blocked, so that the second fluid inlet / outlet and the first fluid passage through the solenoid valve are blocked. There is no fluid flow between the fluid ports.
  • the sealing case is along a first end wall along the outer surface of the end plate portion of the yoke and a back surface facing the opposite side of the end plate portion of the diaphragm. It includes a second end wall, and an annular outer peripheral wall connecting the peripheral edge of the first end wall and the peripheral edge of the second end wall.
  • the “outer surface” of the end plate portion refers to a surface facing the opposite side to the space on one side of the two spreading surfaces of the end plate portion.
  • the “rear surface” of the diaphragm refers to a surface of the two surfaces of the diaphragm that faces away from the end plate portion of the yoke.
  • the size of the sealed case from the first end wall to the second end wall is set small, so that the flatness along the first and second end walls is flat.
  • Can have an outer shape. Such an outer shape is suitable for mounting the electromagnetic valve (sealing case) along, for example, a wiring board and forming the electromagnetic valve (sealing case) and the wiring board together in a flat shape as a whole.
  • the other end portion of the pole piece provided with the first fluid inlet / outlet is disposed to protrude outward from the first end wall of the sealed case.
  • the flow path is easily connected to the first fluid inlet / outlet so that fluid can flow therethrough.
  • the second fluid inlet / outlet port is disposed to protrude outward from the first end wall, the second end wall, or the outer peripheral wall of the sealed case.
  • the flow path is easily connected to the second fluid inlet / outlet so that fluid can flow therethrough.
  • the second fluid inlet / outlet when the second fluid inlet / outlet is arranged to protrude outward from the outer peripheral wall of the sealed case, the second fluid inlet / outlet protrudes from the second end wall of the sealed case to the outside.
  • the electromagnetic valve can be made thinner.
  • the second fluid inlet / outlet when the second fluid inlet / outlet is disposed to protrude outward from the first end wall of the sealed case, the second fluid inlet / outlet is protruded in the same direction as the first fluid inlet / outlet. You can. Therefore, for example, a mounting structure in which the sealed case is mounted on the upper surface of the wiring board and both the second fluid inlet / outlet and the first fluid inlet / outlet extend downward through the wiring board is possible. Become.
  • the biasing portion includes a coil spring disposed along an annular space between the side plate portion of the yoke and the outer peripheral wall of the sealing case. .
  • the solenoid valve according to this embodiment can be easily configured with parts having a small number of biasing portions (that is, coil springs).
  • the diaphragm extends spatially continuously from the center toward the peripheral edge until it covers the annular edge of the side plate portion of the yoke,
  • the diaphragm is provided with a notch that stops at a position corresponding to the annular edge of the side plate portion of the yoke toward the center.
  • the diaphragm in the open state, the diaphragm is traversed in the one direction through the notch from the back side of the diaphragm, and the opening (the diaphragm is spaced apart from the one end) is open. ) Through the electromagnetic valve toward the first fluid inlet / outlet or vice versa.
  • the peripheral edge of the inner surface of the diaphragm comes into close contact with the annular edge of the side plate portion of the yoke.
  • the notch provided in the peripheral edge portion of the diaphragm stops at a position corresponding to the annular edge of the side plate portion of the yoke toward the center. Therefore, regardless of the notch, the peripheral edge portion of the inner surface of the diaphragm closes the annular edge of the side plate portion of the yoke. Therefore, as described above, in order to maintain the closed state, the magnetic force to be generated by the solenoid coil can be reduced against the biasing force by the biasing portion.
  • the diaphragm extends spatially continuously from the center toward the peripheral edge until it covers the annular edge of the side plate portion of the yoke. Therefore, the pressing force by the back side pressure is further increased. Therefore, this solenoid valve can further save power.
  • the inner surface of the diaphragm and a peripheral end surface around the opening of the one end portion of the pole piece, or an annular edge of the side plate portion of the yoke in the closed state, the inner surface of the diaphragm and a peripheral end surface around the opening of the one end portion of the pole piece, or an annular edge of the side plate portion of the yoke.
  • An elastic coating is provided on the inner surface of the diaphragm, the peripheral end surface around the opening, or the annular edge of the side plate portion of the yoke so as to be in close contact with each other. It is characterized by being.
  • the electromagnetic valve of this embodiment thanks to the elastic coating, in the closed state, the inner surface of the diaphragm and the peripheral end surface around the opening of the one end of the pole piece, or the above The annular edge of the side plate portion of the yoke is securely in contact with each other. Therefore, in order to maintain the closed state, the magnetic force that should be generated by the solenoid coil is surely small against the urging force of the urging portion. Therefore, with this solenoid valve, power saving can be achieved reliably.
  • the blood pressure monitor of this disclosure is A sphygmomanometer that measures the blood pressure of a measurement site, The body, A cuff attached to the measurement site; A pump mounted on the body for supplying fluid to the cuff through a flow path; The electromagnetic valve mounted on the main body and interposed between the pump or the flow path and the atmosphere; A pressure controller for controlling the pressure of the cuff by supplying fluid to the cuff through the flow path by the pump and / or discharging the fluid from the cuff through the electromagnetic valve; A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the cuff, The solenoid valve is characterized in that the rear surface of the diaphragm is inserted with the side communicating with the pump or the flow path, and the first fluid inlet / outlet facing the atmosphere side.
  • the main body and the cuff are integrally attached to the measurement site.
  • the pressure control unit supplies the fluid to the cuff through the flow path by the pump and / or discharges the fluid from the cuff through the electromagnetic valve to control the pressure of the cuff.
  • the blood pressure calculator calculates blood pressure based on the pressure of the fluid contained in the cuff.
  • the electromagnetic valve is composed of an electromagnetic valve that can be configured in a small size according to the present disclosure. Accordingly, the main body, and thus the entire blood pressure monitor, can be configured in a small size.
  • the solenoid valve is inserted such that the back surface of the diaphragm communicates with the pump or the flow path, and the first fluid inlet / outlet faces the atmosphere side. Therefore, once the solenoid valve is changed from the open state to the closed state during the pressurization control of the cuff by the pressure control unit, the solenoid is resisted against the biasing force by the biasing unit in order to maintain the closed state.
  • the magnetic force to be generated by the coil is small. Therefore, in this sphygmomanometer, the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
  • the blood pressure monitor of this disclosure is A sphygmomanometer that measures the blood pressure of a measurement site, The body, With a cuff attached to the measurement site, The cuff includes a measurement fluid bag disposed in contact with the measurement site, and a pressing fluid bag disposed on the outer peripheral side of the measurement fluid bag, A pump mounted on the main body for supplying fluid to the pressing fluid bag and the measuring fluid bag; A first flow path connecting the pump and the pressing fluid bag so as to allow fluid flow; A second flow path in which the pump or the first flow path and the measurement fluid bag are connected so as to allow fluid flow, and an on-off valve is inserted; A pressure control unit that performs control for supplying the fluid to the pressing fluid bag from the pump through the first flow path and compressing the measurement site; A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the fluid bag for measurement, The on-off valve consists of the solenoid valve, In the second flow path, the on-off valve is inserted with the rear surface of the
  • the measurement fluid bag contained in the cuff when the cuff is attached to the measurement site, the measurement fluid bag contained in the cuff is disposed in contact with the measurement site. Further, the pressing fluid bag enclosed in the cuff is disposed so as to overlap the outer peripheral side of the measuring fluid bag.
  • the solenoid coil is turned off and the on-off valve is kept open, and the fluid is supplied from the pump to the pressing fluid bag through the first flow path.
  • the fluid is supplied from the pump or the first channel through the second channel by a predetermined amount.
  • the solenoid coil is energized, and the on-off valve is switched from the open state to the closed state.
  • the pressure control unit keeps the on-off valve in a closed state, supplies the fluid from the pump to the pressing fluid bag through the first flow path, and passes the measured fluid bag through the measuring fluid bag. Squeeze the area.
  • the blood pressure calculating unit calculates the blood pressure based on the pressure of the fluid contained in the measuring fluid bag (oscillometric method).
  • the measurement fluid bag detects the pressure itself applied to the artery passage portion of the measurement site. Therefore, for example, as a result of setting the width direction dimension of the cuff to be small (for example, about 25 mm), the pressing fluid bag expands greatly in the thickness direction during pressurization, and a compression loss occurs in the pressing fluid bag itself. Even in this case, the blood pressure can be accurately measured based on the pressure in the measurement fluid bag.
  • the opening / closing valve in the second flow path, includes an upstream side where the back surface of the diaphragm communicates with the pump, and a downstream side where the first fluid inlet / outlet communicates with the measurement fluid bag. Is inserted and pointed to. Therefore, the on-off valve is switched from the open state to the closed state, and in order to maintain the closed state while the closed state is maintained by the pressure control unit, the biasing force by the biasing unit is resisted.
  • the magnetic force to be generated by the solenoid coil is small. Therefore, in this sphygmomanometer, the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
  • the blood pressure measurement method of this disclosure includes: A blood pressure measurement method for measuring blood pressure at a measurement site using the sphygmomanometer, With the cuff attached to the part to be measured, the solenoid coil is de-energized, the open / close valve is kept open, and the fluid is transferred from the pump to the pressing fluid bag through the first flow path.
  • a preliminary supply step of supplying a predetermined amount of the fluid from the pump or the first flow path through the second flow path A switching step of switching the solenoid valve from an open state to a closed state by energizing the solenoid coil; While maintaining the on-off valve in a closed state, the pressure control unit supplies the fluid to the pressing fluid bag from the pump through the first flow path and compresses the measurement site, while the blood pressure calculation unit A blood pressure calculation step for calculating a blood pressure based on the pressure of the fluid contained in the measurement fluid bag,
  • the energization amount of the solenoid coil is set to be smaller than the energization amount of the solenoid coil immediately after being switched to the closed state during the period of being kept in the closed state.
  • the solenoid coil is not energized and the on-off valve is kept open.
  • the fluid is supplied from the pump to the pressing fluid bag through the first flow path, and the fluid is supplied in a predetermined amount from the pump or the first flow path through the second flow path. (Preliminary supply step).
  • the solenoid coil is energized to switch the on-off valve from the open state to the closed state (switching step).
  • the blood pressure is maintained while the on-off valve is kept closed and the pressure control unit supplies the fluid to the pressing fluid bag from the pump through the first flow path to compress the measurement site.
  • the blood pressure is calculated based on the pressure of the fluid contained in the fluid bag for measurement by the calculation unit (blood pressure calculation third step).
  • the open / close valve in the second flow path, is configured such that the rear surface of the diaphragm communicates with the pump upstream, and the first fluid inlet / outlet communicates with the measurement fluid bag. It is directed to the side. Therefore, the on / off valve is switched from the open state to the closed state (switching step), and during the period in which the closed state is maintained by the pressure control unit, the biasing unit applies the bias to maintain the closed state.
  • the magnetic force to be generated by the solenoid coil against the force is small.
  • the energization amount of the solenoid coil is set to be smaller than the energization amount of the solenoid coil immediately after switching to the closed state during the period in which the closed state is maintained. .
  • the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
  • the device of this disclosure is A device capable of measuring the blood pressure of a measurement site, The body, A cuff that extends from the main body and is attached to the measurement site; A pump mounted on the body for supplying fluid to the cuff; The solenoid valve mounted on the body; A pressure controller that controls the pressure of the cuff by supplying fluid to the cuff by the pump and / or discharging the fluid from the cuff through the solenoid valve; And a blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the cuff.
  • the main body and the cuff are integrally attached to the measurement site.
  • the pressure control unit supplies the fluid to the cuff by the pump and / or discharges the fluid from the cuff through the electromagnetic valve to control the pressure of the cuff.
  • the blood pressure calculation unit calculates blood pressure based on the pressure of the fluid contained in the cuff (oscillometric method).
  • the solenoid valve is composed of a solenoid valve that can be configured in a small size according to the present disclosure. Therefore, the main body, and thus the entire device, can be configured in a small size, and power can be saved.
  • the solenoid valve, blood pressure monitor, and device of the present invention can be configured in a small size and can save power. Further, according to the blood pressure measurement method of the present invention, power saving of the sphygmomanometer can be achieved.
  • FIG. 1 It is a perspective view which shows the external appearance of the solenoid valve of one Embodiment of this invention. It is a figure which shows the place which looked at the said solenoid valve from the diagonal in the decomposition
  • FIG. 4 is a diagram showing another example (Example 2) of a cross-sectional structure when the electromagnetic valve shown in FIGS. 1 to 3 is cut along a plane including a fluid inlet / outlet. It is a figure which shows the planar shape of the diaphragm provided in the case of the solenoid valve of the said Example 2.
  • FIG. 5 is a view showing a cross-sectional structure when the electromagnetic valve of the comparative example is cut along a plane including a fluid inlet / outlet corresponding to FIG. It is a figure which shows the planar shape of the diaphragm provided in the case of the solenoid valve of the said comparative example.
  • FIG. 17A It is a figure which shows the flow of the fluid which passes along this solenoid valve, when the solenoid valve of the said comparative example is in an open state. It is a figure which shows the force added to each part of this solenoid valve, when the solenoid valve of the said comparative example is in a closed state. It is a figure which shows the block configuration of the sphygmomanometer of one Embodiment of this invention provided with each said solenoid valve as an on-off valve. It is a figure which shows the operation
  • FIGS. 19A and 19B are diagrams showing an example of an electromagnetic valve obtained by modifying the case of the electromagnetic valve shown in FIGS. 20 (A) and 20 (B) are diagrams showing another example of the solenoid valve obtained by modifying the case of the solenoid valve shown in FIGS. 1 to 3.
  • FIG. 1 shows a perspective view of an external appearance of a solenoid valve (the whole is denoted by reference numeral 2) according to an embodiment of the present invention.
  • FIG. 2 shows the electromagnetic valve 2 in an exploded state.
  • FIG. 3 shows that FIG. 2 is viewed from another direction.
  • XYZ orthogonal coordinates are also shown in FIGS. 1 to 3 and FIGS. 4 to 15 and 19 to 20 described later.
  • the Z direction may be referred to as a thickness direction
  • the XY direction may be referred to as a plane direction.
  • the electromagnetic valve 2 includes a case 10 as a housing.
  • the case 10 includes a lid case 10A disposed on one side in the thickness direction (+ Z side) and a main case 10B disposed on the opposite side in the thickness direction ( ⁇ Z side).
  • the lid case 10A includes a disk-shaped second end wall 10-2 forming an outer wall, and a cylindrical portion 10a (fluid) protruding from the center of the second end wall 10-2 to the outside (+ Z side). And a second fluid inlet / outlet port 12 for passing the fluid.
  • the main case 10B has a rectangular (in this example, square) plate-shaped first end wall 10-1 and a substantially cylindrical outer peripheral wall 10-3 connected to the first end wall 10-1. ing. As shown in FIG. 3, a through hole 10w into which a pole piece 4 described later is fitted is provided in the center of the first end wall 10-1. In addition, a through hole 10u through which a wiring (a lead wire (not shown)) passes is provided on one side (in this example, the side on the -Y side) of the first end wall 10-1. Connection terminals 71, 72, 73, and 74 (reference) made of metal (such as copper) are integrally provided at the four corners of the outer surface of the first end wall 10-1.
  • the lid case 10A is formed by integrally molding a nonmagnetic plastic material.
  • the main case 10B is formed by integrally molding (insert molding) a nonmagnetic plastic material together with the connection terminals 71, 72, 73, and 74.
  • the second end wall 10-2 of the lid case 10A is welded to the outer peripheral wall 10-3 of the main case 10B.
  • the present invention is not limited to this, and the second end wall 10-2 may be screwed to the outer peripheral wall 10-3.
  • a solenoid coil 7, a coil spring 5 as an urging portion, a diaphragm 6, and an elastic body 8 formed integrally with the diaphragm 6 are provided inside the case 10 of the electromagnetic valve 2, a yoke 3 and a pole piece 4 integrally attached perpendicularly to the yoke 3 (end plate portion 3 b).
  • a solenoid coil 7, a coil spring 5 as an urging portion, a diaphragm 6, and an elastic body 8 formed integrally with the diaphragm 6 are provided inside the case 10 of the electromagnetic valve 2, a yoke 3 and a pole piece 4 integrally attached perpendicularly to the yoke 3 (end plate portion 3 b).
  • the yoke 3 is connected to the end plate portion 3b having an annular (circular in this example) peripheral edge, and the peripheral edge of the end plate portion 3b, and on one side (+ Z side) of the end plate portion 3b. And a side plate portion 3c surrounding the adjacent space SP1 in a ring shape.
  • a through hole 3w is provided in the center of the end plate portion 3b, and a pole piece 4 is fitted in the through hole 3w.
  • a portion of the peripheral edge of the end plate portion 3b corresponding to the through hole 10u of the first end wall 10-1 of the main case 10B is provided with a through hole 3u through which wiring (lead wire not shown) is passed. ing.
  • the shape of the peripheral edge of the end plate portion 3b of the yoke 3 is not limited to a circle, and may be a rounded square (a square with rounded corners). The same applies to the annular shape of the side wall portion of the side plate portion 3c.
  • the outer diameter of the side plate portion 3c of the yoke 3 is set smaller than the inner diameter of the outer peripheral wall 10-3 of the main case 10B.
  • the pole piece 4 has a substantially cylindrical shape as a whole.
  • the pole piece 4 has a projection 4a that fits into the through-hole 3w of the yoke 3 and protrudes outside in the axial direction (Z direction), and a main portion having an outer diameter larger than the outer diameter of the projection 4a. 4b. That is, this pole piece 4 is orthogonal to the end plate portion 3b of the yoke 3 in one direction (from one end portion 4e existing in the space SP1 on one side (+ Z side) to the other end portion 4f on the opposite side ( ⁇ Z side) ( Z direction).
  • the pole piece 4 has a recess 4d having a circular planar shape that opens toward the elastic body 8 of the diaphragm 6 at one end 4e.
  • a circular opening 4o is opened at the bottom of the recess 4d.
  • a circular first fluid inlet / outlet port 11 communicating with the opening 4 o through the pole piece 4 is provided at the other end portion 4 f of the pole piece 4.
  • the yoke 3 and the pole piece 4 are each made of SUM24L (sulfur composite free cutting steel) which is a magnetic material.
  • the protrusion 4a of the pole piece 4 is press-fitted into the through hole 3w of the yoke 3, so that the yoke 3 and the pole piece 4 are integrally formed.
  • the magnetic resistance between the pole piece 4 and the yoke 3 is small, and the efficiency of the magnetic circuit using them as a path is increased.
  • the airtightness between the pole piece 4 and the yoke 3 can be improved, and air leakage can be prevented.
  • the yoke 3 and the pole piece 4 may be configured as a spatially continuous unit.
  • a coating 9 ⁇ / b> A having elasticity is provided on the entire periphery of the peripheral end surface 4 e 1 around the opening 4 o in the one end portion 4 e of the pole piece 4. Called Example 1).
  • the solenoid coil 7 has a compact cylindrical outer shape.
  • the dimensions of the solenoid coil 7 are set such that the solenoid coil 7 can be accommodated in an annular space SP1 between the pole piece 4 and the side plate portion 3c of the yoke 3.
  • a pair of lead wires extend from the solenoid coil 7.
  • the coil spring 5 has a substantially cylindrical outline.
  • the coil spring 5 is disposed along the annular space SP2 between the side plate portion 3c of the yoke 3 and the outer peripheral wall 10-3 of the main case 10B in the assembled state shown in FIG.
  • the pole piece 4 is biased in a direction away from the one end 4e (that is, + Z direction).
  • a biasing force f ⁇ b> 2 in which the coil spring 5 biases the diaphragm 6 is schematically indicated by an arrow.
  • it can be simply comprised with components (namely, coil spring 5) with few energizing parts.
  • the diaphragm 6 has a substantially disk-shaped outer shape.
  • Embodiment 1 as can be seen from FIG. 5 (showing the planar shape of the diaphragm 6), an equiangular pitch between the center 6c and the peripheral edge 6e with respect to the radial direction of the diaphragm 6 and with respect to the circumferential direction.
  • four circular through holes 6s, 6t, 6u, 6v are provided.
  • fluid can flow through the through holes 6s, 6t, 6u, and 6v between the rear surface (surface facing the + Z side) 6a side and the inner surface (surface facing the -Z side) 6b side of the diaphragm 6. ing.
  • the diaphragm 6 is spatially partially interrupted in the direction in which the through holes 6s, 6t, 6u, and 6v exist from the center 6c toward the peripheral edge 6e.
  • the diaphragm 6 corresponds to a peripheral end surface 4e1 (a portion provided with the coating 9A) around the opening 4o in at least one end portion 4e of the pole piece 4 from the center 6c toward the peripheral edge portion 6e. )
  • a peripheral end surface 4e1 a portion provided with the coating 9A
  • the inner surface 6b of the diaphragm 6 is in close contact with the peripheral end surface 4e1 of the one end portion 4e of the pole piece 4 through the coating 9A.
  • the diaphragm 6 has a dimension extending over the annular edge 3 e of the side plate portion 3 c of the yoke 3.
  • the outer diameter of the diaphragm 6 substantially matches the outer diameter of the coil spring 5.
  • the diaphragm 6 is substantially disc-shaped as described above, and is made of permalloy (Ni—Fe alloy) as a magnetic material.
  • the diaphragm 6 can be comprised lightly compared with a rod-shaped movable iron core, for example. In that case, when the posture (orientation) of the electromagnetic valve 2 changes in various directions with respect to the vertical direction, the characteristics (for example, the current-flow-current characteristic) are hardly affected by the posture of the electromagnetic valve 2.
  • the diaphragm 6 has a substantially cylindrical elastic member for closing the opening 4 o opposite to the opening 4 o formed in the recess 4 d of the one end 4 e of the pole piece 4.
  • the body 8 is attached integrally.
  • the elastic body 8 is made of silicone rubber.
  • the elastic body 8 may consist of other elastic materials (flexible material), such as nitrile rubber (NBR) and ethylene propylene diene rubber (EPDM).
  • the outer diameter of the elastic body 8 is set larger than the diameter of the opening 4o and smaller than the inner diameter of the recess 4d. Thereby, the elastic body 8 can block
  • the elastic body 8 is integrally attached to the diaphragm 6 by insert molding. Thereby, the diaphragm 6 and the elastic body 8 can be easily attached integrally.
  • the invention is not limited to this, and the elastic body 8 may be attached to the diaphragm 6 by press-fitting, bonding, or the like.
  • the solenoid coil 7 is accommodated in the annular space SP1 between the pole piece 4 and the side plate portion 3c of the yoke 3.
  • a pair of lead wires (not shown) extending from the solenoid coil 7 are connected to the through hole 3u of the end plate portion 3b of the yoke 3 and the through hole 10u of the first end wall 10-1 of the main case 10B. And is pulled out of the main case 10B.
  • a pair of lead wires drawn out are soldered one by one to any two of the four connection terminals 71, 72, 73, 74 provided on the outer surface of the first end wall 10-1. Attach.
  • connection terminals 71, 72, 73, 74 are left as dummy terminals.
  • the yoke 3 is bonded to the main case 10B, and the solenoid coil 7 is bonded to the yoke 3 in an airtight manner with an adhesive.
  • the through hole 3u of the end plate portion 3b of the yoke 3 through which the pair of lead wires pass and / or the through hole 10u of the first end wall 10-1 of the main case 10B are filled with an adhesive. And get airtight.
  • the coil spring 5 is accommodated in the annular space SP2 (see FIG.
  • the diaphragm 6 is arranged from one side (+ Z side) of the coil spring 5 so as to face the end plate portion 3b of the yoke 3 through the space SP1. Further, while pushing the diaphragm 6 against the urging force f2 of the coil spring 5 with the lid case 10A, the second end wall 10-2 of the lid case 10A exceeds the outer peripheral wall 10-3 of the main case 10B. It is welded airtight by sonic welding. In this way, the electromagnetic valve 2 is assembled as shown in FIG.
  • the case 10 is a sealed case, and the yoke 3 and the main part of the pole piece 4 with the protrusion 4 a (including the other end 4 f) of the pole piece 4 exposed to the outside. 4b, the solenoid coil 7, the diaphragm 6 (and the elastic body 8), and the coil spring 5 are collectively and airtightly covered.
  • the first end wall 10-1 of the main case 10B is along the outer surface (the surface facing the -Z side) of the end plate portion 3b of the yoke 3, while the second end wall 10-2 of the lid case 10A is the diaphragm 6 It is in a state along the rear surface (surface facing the + Z side) 6a.
  • the protrusion 4a of the pole piece 4 that forms the first fluid inlet / outlet 11 protrudes from the first end wall 10-1 to the outside, and the cylindrical portion 10a that forms the second fluid inlet / outlet 12 2 projecting outward from the end wall 10-2. Accordingly, the first fluid inlet / outlet port 11 and the second fluid inlet / outlet port 12 can be easily connected to, for example, the downstream side and the upstream side of the flow path so as to allow fluid flow. Thereby, this electromagnetic valve 2 can be easily inserted in the flow path.
  • the biasing force of the coil spring 5 is generated by the magnetic force F0 generated by the solenoid coil 7 (the resultant force of the magnetic forces f0, f0,... Applied to each part of the diaphragm 6).
  • the diaphragm 6 is formed on the pole piece 4 against the repulsive force f2 ′ (the resultant force of these f2 and f2 ′ is expressed as a drag force F2) received by the elastic body 8 from f2 and the recess 4d of the end 4e of the pole piece 4.
  • the elastic body 8 can close the opening 4o of the one end portion 4e of the pole piece 4.
  • the lines of magnetic force generated by the solenoid coil 7 are mainly the side plates of the yoke 3 as indicated by a two-dot chain line M in FIG. 3c reaches the periphery of the end plate portion 3b, reaches from the periphery of the end plate portion 3b through the end plate portion 3b to an orthogonal position between the end plate portion 3b and the pole piece 4, and passes through the pole piece 4 from this orthogonal position.
  • the diaphragm 6 approaches the one end 4e of the pole piece 4, and the opening 4o can be closed by the elastic body 8.
  • the solenoid valve 2 is in an open state or a closed state depending on whether the solenoid coil 7 is in a non-energized state (during operation) or whether the solenoid coil 7 is in a conduction state (during operation). be able to. Thereby, the flow of the fluid through the pole piece 4, that is, through the electromagnetic valve 2 can be allowed or blocked.
  • the open / close state of the solenoid valve 2 there is an intermediate state in which the flow rate is controlled according to the energization amount of the solenoid between the closed state and the open state.
  • the elastic body 8 of the diaphragm 6 approaches the opening 4 o of the one end 4 e of the pole piece 4. Thereby, a stable energization current (or drive voltage) versus flow rate characteristic can be obtained.
  • the plate-like diaphragm 6 approaches the one end 4 e of the pole piece 4 in a posture facing the end plate 3 b of the yoke 3 in order to allow or block the fluid flow.
  • it is configured to move in parallel in one direction (Z direction) in the direction of separation. That is, unlike the conventional example (in which the movable iron core is rod-shaped and moves along its longitudinal direction), in this solenoid valve 2, the plate-like diaphragm 6 is perpendicular to the plate surface of the diaphragm 6. Move in the direction (Z direction). Therefore, the size of the solenoid valve 2 can be reduced in one direction (Z direction) in which the diaphragm 6 moves. As a result, the electromagnetic valve 2 can be configured in a small size.
  • the first and second end walls 10-1, 10-1, 10-2 are set by reducing the size of the case 10 from the first end wall 10-1 to the second end wall 10-2. It can have a flat outline along 10-2.
  • Such an outer shape is suitable for mounting the electromagnetic valve 2 (case 10) along, for example, a wiring board and forming the electromagnetic valve 2 (case 10) and the wiring board together in a flat shape as a whole.
  • the thickness (Z-direction dimension) H of the case 10 is set to about 2.5 mm.
  • the planar dimension (XY dimension) W1, W2 of the case 10 is set to about 5.5 mm.
  • the case 10 has a flat outer shape.
  • the dimension in which the cylindrical portion 10a of the lid case 10A protrudes from the second end wall 10-2 to the + Z side is set to about 1.6 mm.
  • the outer diameter and inner diameter of the cylindrical portion 10a are set to about 1.3 mm and about 0.8 mm, respectively.
  • the dimension in which the protrusion 4a of the pole piece 4 protrudes from the first end wall 10-1 of the main case 10B to the -Z side is set to about 1.6 mm.
  • the outer diameter and inner diameter of the protrusion 4a of the pole piece 4 are set to about 1.3 mm and about 0.5 mm, respectively.
  • the solenoid valve 2 can be configured in a small size.
  • the electromagnetic valve 2 can be reduced in weight.
  • the solenoid valve 2 instead of the rod-like movable iron core of the conventional solenoid valve, the solenoid valve 2 includes a plate-like diaphragm 6 made of permalloy, so that the solenoid valve 2 can be reduced in weight. Even if the posture of the solenoid valve 2 changes variously with respect to the vertical direction, there is little change in characteristics (for example, current-flow characteristic versus flow characteristic). Therefore, the electromagnetic valve 2 can be opened and closed stably and reliably.
  • FIG. 16 shows a schematic block configuration of a sphygmomanometer 100 according to an embodiment provided with the above-described electromagnetic valve 2 as the on-off valve 33.
  • the sphygmomanometer 100 roughly includes a cuff 20 attached to a measurement site 90 such as a wrist or an upper arm, and a main body 100M. An artery 91 passes through the measurement site 90.
  • the cuff 20 includes a sensing cuff 21 as a measurement fluid bag disposed in contact with the measurement site 90, and a press cuff 23 as a pressing fluid bag disposed on the outer periphery side of the sensing cuff 21. It is out.
  • a reinforcing plate for effectively transmitting the pressure of the pressing cuff 23 to the measurement site 90 via the sensing cuff 21 may be disposed between the pressing cuff 23 and the sensing cuff 21.
  • the main body 100M includes an opening / closing unit including a control unit 110, a display 50, a memory 51 as a storage unit, an operation unit 52, a power supply unit 53, a pump 30, an exhaust valve 34, and the electromagnetic valve 2 described above.
  • a valve 33, a first pressure sensor 31 for detecting the pressure of the pressing cuff 23, and a second pressure sensor 32 for detecting the pressure of the sensing cuff 21 are mounted.
  • the display device 50 includes a display, an indicator, and the like, and displays predetermined information (for example, blood pressure measurement result) according to a control signal from the control unit 110.
  • the operation unit 52 includes a switch that receives an input of an instruction for turning the power supply unit 53 on (on) or off (off).
  • the operation unit 52 inputs an operation signal according to an instruction from the user to the control unit 110.
  • the memory 51 is data of a program for controlling the sphygmomanometer 100, data used for controlling the sphygmomanometer 100, setting data for setting various functions of the sphygmomanometer 100, and data of blood pressure value measurement results Memorize etc.
  • the memory 51 is used as a work memory when the program is executed.
  • the control unit 110 includes a CPU (Central Processing Unit) and controls the overall operation of the sphygmomanometer 100. Specifically, the control unit 110 works as a pressure control unit according to a program for controlling the sphygmomanometer 100 stored in the memory 51, and in response to an operation signal from the operation unit 52, the pump 30 and the on-off valve 33. Etc. are controlled. The control unit 110 also functions as a blood pressure calculation unit, calculates a blood pressure value, and controls the display 50 and the memory 51. A specific method for measuring blood pressure will be described later.
  • a CPU Central Processing Unit
  • the power supply unit 53 is composed of a rechargeable secondary battery.
  • the power supply unit 53 supplies power to each unit in the main body 100M, such as the control unit 110 and the pump 30.
  • the pump 30 is a piezoelectric pump in this example, and is driven based on a control signal supplied from the control unit 110.
  • This pump 30 is connected to the press cuff 23 through a first flow path 390 (including partial flow paths 390a, 390b, and 390c in series) provided in the main body 100M so that fluid can flow. Yes.
  • the exhaust valve 34 is a known passive valve connected to the pump 30 via a flow path 391, and is opened and closed as the pump 30 is turned on (started) / off (stopped). That is, this exhaust valve closes when the pump 30 is turned on and helps to enclose air in the pressure cuff 23, while it opens when the pump 30 is turned off to allow the air in the pressure cuff 23 to enter the atmosphere 900.
  • the exhaust valve 34 has a check valve function, and the discharged air does not flow backward.
  • the on-off valve 33 is inserted into a second flow path 380 (including partial flow paths 380a, 380b, and 380c in series) that connects the first flow path 390 and the sensing cuff 21. ing.
  • the on-off valve 33 is connected to the upstream side where the second fluid inlet / outlet 12 (on the rear face 6a side of the diaphragm 6) communicates with the pump 30 so that fluid can flow therethrough.
  • the inlet / outlet port 11 (pole piece 4 side) is connected to the downstream side communicating with the sensing cuff 21 so that fluid can flow.
  • the second flow path 380 may be connected between the pump 30 and the sensing cuff 21.
  • the first pressure sensor 31 and the second pressure sensor 32 are each composed of a piezoresistive pressure sensor.
  • the first pressure sensor 31 detects the pressure in the pressing cuff 23 via a flow path 392 connected to the first flow path 390.
  • the second pressure sensor 32 detects the pressure in the sensing cuff 21 via the flow path 381 connected to the second flow path 380.
  • FIG. 17A shows an operation flow when the user performs blood pressure measurement with the sphygmomanometer 100 as the blood pressure measurement method according to one embodiment of the present invention.
  • the control unit 110 When the user instructs the start of measurement with the operation unit 52 provided in the main body 100M with the cuff 20 attached to the measurement site 90, the control unit 110 initializes the processing memory area (FIG. 17A). Step S1). In addition, the control unit 110 turns off the pump 30 and opens the exhaust valve 34 and maintains the on-off valve 33 in an open state to exhaust the air in the pressing cuff 23 and the sensing cuff 21. Subsequently, 0 mmHg adjustment (the atmospheric pressure is set to 0 mmHg) of the first pressure sensor 31 and the second pressure sensor 32 is performed.
  • control unit 110 operates as a pressure control unit, turns on the pump 30 (step S2), maintains the on-off valve 33 in an open state, and preliminarily supplies air to the pressing cuff 23 and the sensing cuff 21. (Step S3; preliminary supply step).
  • the pump 30 is driven while monitoring the pressure of the pressure cuff 23 and the sensing cuff 21 by the first pressure sensor 31 and the second pressure sensor 32, respectively.
  • a predetermined amount of air as a fluid is preliminarily supplied to the pressing cuff 23 through the first channel 390 and to the sensing cuff 21 through the second channel 380.
  • the preliminary supply is performed when the pressure of the sensing cuff 21 reaches a predetermined pressure (15 mmHg in this example) or the driving time of the pump 30 is a predetermined time (in this example, 3 seconds). ) Until it passes.
  • the control unit 110 switches the on-off valve 33 from the open state to the closed state (step S4; switching step). Subsequently, the control unit 110 temporarily turns off the pump 30 and opens the exhaust valve 34 (step S5). Thereby, the air in the press cuff 23 is exhausted through the first flow path 390 and the exhaust valve 34. At this time, the preliminarily supplied air remains in the sensing cuff 21. Therefore, when the pressing cuff 23 is pressurized in the subsequent steps, the second pressure sensor 32 can reliably detect the pressure in the sensing cuff 21.
  • the pressure in the sensing cuff 21 detected by the second pressure sensor 32 includes a fluctuation component due to a pulse wave passing through the artery 91 of the measurement site 90 (this is referred to as a pulse wave signal).
  • the control unit 110 operates as a pressure control unit, turns on the pump 30, closes the exhaust valve 34, and starts pressurization of the pressure cuff 23 (that is, compression of the measured portion 90) (step S6).
  • the pressing cuff 23 presses the measurement site 90 via the sensing cuff 21.
  • the pressure of the pressing cuff 23 is P0
  • the pressure of the sensing cuff 21 is P1.
  • the control unit 110 supplies air to the pressing cuff 23 from the pump 30 through the first flow path 390, and based on the output of the first pressure sensor 31 (that is, the pressure P0 of the pressing cuff 23), The pressurization speed is controlled (step S7).
  • the control unit 110 determines whether or not the pressurization speed matches the target speed (step S81 in FIG. 17B).
  • the process directly returns to the flow of FIG. 17A.
  • the process proceeds to step S82 in FIG. 17B to determine whether the pressurization speed is greater than the target speed.
  • step S82 If the pressurization speed is higher than the target speed (YES in step S82), the drive voltage of the pump 30 is decreased from the current control voltage by a constant value [beta] [V] (step S83). On the other hand, if the pressurization speed is lower than the target speed (NO in step S82), the drive voltage of the pump 30 is increased from the current control voltage by a fixed value ⁇ [V] (step S84). Thereafter, the process returns to the flow of FIG. 17A.
  • the pressurization speed may be controlled based on the output of the second pressure sensor 32 (that is, the pressure of the sensing cuff 21 is P1) instead of the output of the first pressure sensor 31.
  • step S8 of FIG. 17A the control unit 110 operates as a blood pressure calculation unit, and converts the pulse wave signal acquired at this time (the fluctuation component due to the pulse wave included in the output of the second pressure sensor 32). Based on this, an attempt is made to calculate blood pressure values (systolic blood pressure SBP (Systolic Blood Pressure) and diastolic blood pressure DBP (Diastolic Blood Pressure)) by a known oscillometric method.
  • SBP Systolic Blood Pressure
  • DBP Diastolic Blood Pressure
  • the cuff pressure has reached the upper limit pressure (for example, 300 mmHg is determined in advance for safety). Unless otherwise specified, the processes in steps S7 to S9 are repeated.
  • the control unit 110 displays the measurement result of the blood pressure value on the display 50. Further, the control unit 110 turns off the pump 30, opens the exhaust valve 34 (step S10), and opens the on-off valve 33 (step S11), and exhausts the air in the pressing cuff 23 and the sensing cuff 21. Take control.
  • the blood pressure calculation may be performed not in the pressurizing process of the pressing cuff 23 but in the depressurizing process.
  • the sensing cuff 21 detects the pressure itself applied to the arterial passage portion of the measurement site 90. Therefore, for example, as a result of setting the width direction dimension of the cuff 20 to be small (for example, about 25 mm), the pressure cuff 23 is greatly expanded in the thickness direction at the time of pressurization, and a compression loss occurs in the pressure cuff 23 itself. In addition, the blood pressure can be accurately measured based on the pressure of the sensing cuff 21.
  • the on-off valve 33 includes the first fluid inlet / outlet 11 on the upstream side where the second fluid inlet / outlet 12 (on the back surface 6 a side of the diaphragm 6) communicates with the pump 30.
  • the (pole piece 4 side) is inserted toward the downstream side communicating with the sensing cuff 21. Therefore, during the period when the on-off valve 33 is switched from the open state to the closed state and the closed state is maintained by the control unit 110 (particularly during the processing of steps S7 to S9 in FIG. 17A), a detailed description will be given below.
  • the magnetic force that the solenoid coil 7 should generate can be reduced against the biasing force f2 and the like by the coil spring 5. Therefore, in the sphygmomanometer 100, the energization amount to the solenoid coil 7 of the electromagnetic valve 2 is small, and power saving can be achieved.
  • the on-off valve 33 is composed of the electromagnetic valve 2 that is small and lightweight. Therefore, the main body 100M, and thus the entire blood pressure monitor 100, can be configured to be small and lightweight. Even if the posture of the on-off valve 33 (solenoid valve 2) changes variously with respect to the vertical direction, there is little change in characteristics (for example, energization current versus flow rate characteristics). Therefore, the on-off valve 33 can be opened and closed stably and reliably, and thus the operation of the sphygmomanometer 100 can be stabilized.
  • FIG. 8 shows a cross-sectional structure of the electromagnetic valve 2B of Example 2 corresponding to FIG.
  • the coating 9A is provided on the peripheral end surface 4e1 around the opening 4o in the one end 4e of the pole piece 4.
  • the side plate of the yoke 3 is provided in this electromagnetic valve 2B.
  • a coating 9B having elasticity is provided on the entire circumference of the annular edge 3e of the portion 3c.
  • FIG. 9 shows the planar shape of the diaphragm of the electromagnetic valve 2B of the second embodiment (this is represented by reference numeral 6B) in correspondence with FIG.
  • a substantially arc shape that stops at a position corresponding to the annular edge 3e of the side plate portion 3c of the yoke 3 (corresponding to a portion provided with the coating 9B) toward the center 6c toward the peripheral edge 6e of the diaphragm 6B.
  • notches 6i, 6j, 6k are provided with notches 6i, 6j, 6k.
  • the diaphragm 6B extends spatially and continuously so as to cover the entire circumference of the annular edge 3e of the side plate 3c of the yoke 3 from the center 6c toward the peripheral edge 6e.
  • the electromagnetic valve 2B according to the second embodiment is configured in the same manner as the electromagnetic valve 2 according to the first embodiment in other respects.
  • the electromagnetic valve 2B in the open state shown in FIG. 10, for example, fluid enters from the second fluid inlet / outlet 12 (on the back surface 6a side of the diaphragm 6B) as indicated by an arrow LB1.
  • This fluid passes through the notches 6i, 6j, 6k of the diaphragm 6 as shown by arrows LB2i, LB2k, and then passes through the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8.
  • the fluid flows out from the first fluid inlet / outlet port 11 as indicated by an arrow LB3. In this way, fluid can flow through the electromagnetic valve 2B from the second fluid inlet / outlet 12 toward the first fluid inlet / outlet 11 or vice versa.
  • the diaphragm 6 in the closed state shown in FIG. 11, the diaphragm 6 is moved against the one end 4e of the pole piece 4 by the magnetic force F0 generated by the solenoid coil 7, as in the electromagnetic valve 2 of the first embodiment.
  • the opening 4o is closed by the elastic body 8. Therefore, the fluid flow through the electromagnetic valve 2 can be blocked.
  • the peripheral edge portion 6e of the inner surface 6b of the diaphragm 6B is in close contact with the annular edge 3e of the side plate portion 3c of the yoke 3 through the coating 9B.
  • the notches 6i, 6j, 6k provided in the peripheral edge 6e of the diaphragm 6B are stopped at a position corresponding to the annular edge 3e of the side plate 3c of the yoke 3 toward the center 6c. Therefore, regardless of the notches 6i, 6j, 6k, the peripheral edge 6e of the inner surface 6b of the diaphragm 6B closes the annular edge 3e of the side plate 3c of the yoke 3. Therefore, the closed state can be assisted.
  • FIG. 12 shows a cross-sectional structure of a comparative electromagnetic valve 2X corresponding to FIG.
  • a part corresponding to the coating 9B of the annular edge 3e of 3c is omitted.
  • the electromagnetic valve 2X of this comparative example is configured in the same manner as the electromagnetic valve 2 of Example 1 in other respects.
  • the planar shape of the diaphragm 6 of the electromagnetic valve 2X is set to be the same as that of the electromagnetic valve 2 of the first embodiment.
  • the first fluid inlet / outlet 12 is used to The fluid can flow through the electromagnetic valve 2X toward the fluid inlet / outlet port 11 or vice versa.
  • the diaphragm 6 in the closed state shown in FIG. 15, the diaphragm 6 is moved against the one end 4e of the pole piece 4 by the magnetic force F0 generated by the solenoid coil 7 as in the electromagnetic valve 2 of the first embodiment.
  • the opening 4o is closed by the elastic body 8. Therefore, the fluid flow through the electromagnetic valve 2 can be blocked.
  • the inner surface 6 b of the diaphragm 6 contacts the peripheral end surface 4 e 1 of the one end portion 4 e of the pole piece 4.
  • the fluid passes through the through holes 6s, 6t, 6u, and 6v of the diaphragm 6 and passes between the inner surface 6b of the diaphragm 6 and the peripheral end surface 4e1, and thus one end of the pole piece 4. It can enter the gap between the recess 4d of 4e and the elastic body 8. For this reason, in this solenoid valve 2X, the ability to assist a closed state is not expected.
  • the diaphragm 6 has a peripheral end surface 4e1 around the opening 4o in one end portion 4e of the pole piece 4 from the center 6c toward the peripheral portion 6e. It extends spatially and continuously so as to cover the entire circumference (corresponding to the portion where the coating 9A is provided).
  • the inner surface 6b of the diaphragm 6 is in close contact with the peripheral end surface 4e1 of the one end 4e of the pole piece 4 through the coating 9A.
  • the area of the region (including the opening 4o) surrounded by the peripheral end surface 4e1 of the one end portion 4e of the pole piece 4 (referred to as Sa) is the diameter of the recess 4d of the one end portion 4e of the pole piece 4 (
  • the Sa ⁇ a 2/4.
  • the diaphragm 6B is formed from the center 6c toward the peripheral edge 6e, and the annular edge 3e of the side plate portion 3c of the yoke 3 (the portion provided with the coating 9B). Until it covers the entire circumference. Accordingly, as shown in FIG. 11, in the closed state, the peripheral edge portion 6e of the inner surface 6b of the diaphragm 6B is in close contact with the annular edge 3e of the side plate portion 3c of the yoke 3 through the coating 9B.
  • the pressure of the fluid applied to the opening 4o from the first fluid inlet / outlet 11 side (substantially equal to the pressure P1 of the sensing cuff 21, this is referred to as the opening side pressure P1), and the back surface 6a of the diaphragm 6
  • the pressure of the fluid applied to the pressure (substantially equal to the pressure P0 of the pressing cuff 23, which is referred to as the back side pressure P0) is the same positive pressure (exceeds atmospheric pressure).
  • the former relationship between the pressing force by the opening side pressure P1 (referred to as F1) and the pressing force by the back side pressure P0 (referred to as Fa for the area Sa and Fb for the area Sb) is as follows.
  • the magnetic force F0 to be generated by the solenoid coil 7 can be reduced by the amount of Fa and Fb larger than F1. Thereby, the closed state is assisted. Therefore, in the solenoid valve 2 of the first embodiment and the solenoid valve 2B of the second embodiment, the energization amount to the solenoid coil 7 is small, and power saving can be achieved.
  • the electromagnetic valve 2X of the comparative example in the closed state, the fluid can enter the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8.
  • the back pressure P0 does not work as a substantial pressing force against the diaphragm 6.
  • the magnetic force to be generated by the solenoid coil 7 is F0 ⁇ F1 + F2, and is not substantially reduced. That is, in the electromagnetic valve 2X of the comparative example, the closed state is not assisted.
  • FIG. 18A, FIG. 18B, and FIG. 18C show the solenoid coil 7 for the solenoid valve 2 of Example 1, the solenoid valve 2B of Example 2, and the solenoid valve 2X of Comparative Example, respectively.
  • produces and the opening degree of those valves is shown.
  • the opening degree of the valve is expressed as 100% when the valve is fully opened and 0% when the valve is fully closed. For simplicity, an intermediate state between the open state and the closed state of each valve will be ignored and described.
  • the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line AQ1, in this example, the state shifts from the open state to the closed state when the magnetic force F0a1.
  • the magnetic force F0 is temporarily stopped at a point ST2 where the magnetic force F0 slightly exceeds F0a1.
  • the magnetic force F0 to be generated by the solenoid coil 7 is small.
  • the magnetic F0a1 when the energization amount of the solenoid coil 7 is reduced and the magnetic force F0 is reduced as shown by the broken line AQ2, the magnetic F0a1 does not return to the open state yet, and the magnetic force F0a2 (shown by the broken line AQ3). It returns to the open state when> 0). And it has returned to the first point ST1.
  • the pressure cuff 23 Even when the energization amount of the solenoid coil 7 is set to be smaller than the energization amount of the solenoid coil 7 immediately after step S4 during the period of calculating blood pressure while pressurizing (steps S7 to S9 in FIG. 17A).
  • the closed state can be maintained. For example, the closed state can be maintained even if the energization amount of the solenoid coil 7 is set so as to be the magnetic force at the point ST3 between the magnetic force F0a1 and the magnetic force F0a2 in FIG. Thereby, power saving can be achieved.
  • the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line BQ1, in this example, the state shifts from the open state to the closed state when the magnetic force F0b1.
  • the magnetic force F0 is temporarily stopped at a point ST12 where the magnetic force F0 slightly exceeds F0b1.
  • the magnetic force F0 to be generated by the solenoid coil 7 is small.
  • the magnetic flux F0b1 to the zero magnetic force is not yet returned to the open state, as shown by the broken line BQ3. It returns to the open state when the magnetic force is F0b2 ( ⁇ 0). Thereafter, the magnetic force F0 is returned to zero and returned to the first point ST11.
  • the pressure cuff 23 is particularly good. Even when the energization amount of the solenoid coil 7 is set to be smaller than the energization amount of the solenoid coil 7 immediately after step S4 during the period of calculating blood pressure while pressurizing (steps S7 to S9 in FIG. 17A).
  • the closed state can be maintained. For example, the closed state can be maintained even if the energization amount of the solenoid coil 7 is set to zero (point ST13 of zero magnetic force in FIG. 18A). Thereby, power saving can be achieved.
  • the energization amount (magnetic force) of the solenoid coil 7 for maintaining the closed state depends on the back side pressure P0 and the opening side pressure P1, Actually, it is desirable to set the energization amount (magnetic force) of the solenoid coil 7 continuously or stepwise in accordance with changes in the values P0 and P1.
  • the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line XQ1, in this example, the state shifts from the open state to the closed state at the magnetic force F01. In this example, the magnetic force F0 is temporarily stopped at a point ST22 where it slightly exceeds F01.
  • the closed state is not assisted under the same conditions of the back side pressure P0 and the opening side pressure P1.
  • the energization amount of the solenoid coil 7 is decreased and the magnetic force F0 is reduced
  • the magnetic force F01 is reversed and the magnetic force F01 is substantially reduced.
  • the process returns to the first point ST21.
  • the energization amount (the magnetic force) of the solenoid coil 7 is maintained at that point ST22.
  • the electromagnetic valve 2 (or electromagnetic valve 2B) has been used as the on-off valve 33 in FIG. 16, but the present invention is not limited to this.
  • the electromagnetic valve 2 (or electromagnetic valve 2B) may be used as the exhaust valve 34 in FIG.
  • the second fluid inlet / outlet 12 is connected in communication with the flow path 391, and the first fluid inlet / outlet 11 is opened toward the atmosphere 900.
  • the exhaust valve 34 includes the electromagnetic valve 2 that can be configured to be small and lightweight. Therefore, the main body 100M, and thus the entire blood pressure monitor 100, can be configured to be small and lightweight. Further, even if the posture of the exhaust valve 34 (solenoid valve 2) changes variously with respect to the vertical direction, since the change in characteristics (for example, current-carrying current versus flow characteristic) is small, the opening and closing of the exhaust valve 34 can be stably performed. Therefore, the operation of the sphygmomanometer 100 can be stabilized.
  • the pressure P0 of the pressing cuff 23 is applied to the second fluid inlet / outlet 12 of the exhaust valve 34 as the back side pressure.
  • Atmospheric pressure (0 mmHg) is applied to the first fluid inlet / outlet port 11 of the exhaust valve 34 as the opening side pressure.
  • the solenoid of the exhaust valve 34 is compared with the energization amount of the solenoid coil 7 of the exhaust valve 34 immediately after step S5. Even if the energization amount of the coil 7 is set to be small, the closed state can be maintained. Thereby, power saving can be achieved.
  • the sphygmomanometer 100 is not the cuff 20 (including the sensing cuff 21 and the press cuff 23) as shown in FIG.
  • a cuff including only one general fluid bag may be provided.
  • the coating 9A having elasticity is provided on the peripheral end surface 4e1 around the opening 4o of the one end portion 4e of the pole piece 4.
  • the coating 9B having elasticity is provided on the annular edge 3e of the side plate portion 3c of the yoke 3.
  • the present invention is not limited to this.
  • an elastic coating may be provided on the entire area of the inner surface 6b of 6 (or 6B).
  • the closed state the inner surface 6b of the diaphragm 6 (or 6B) and the peripheral end surface 4e1 around the opening 4o of the one end portion 4e of the pole piece 4 or the annular edge 3e of the side plate portion 3c of the yoke 3 are connected. Can be close to each other. Accordingly, the closed state can be assisted in the same manner as in the electromagnetic valve 2 of the first embodiment and the electromagnetic valve 2B of the second embodiment.
  • the coating provided on the inner surface 6b of the diaphragm 6 (or 6B) may be integrally and continuously formed of the same material as the elastic body 8 by integral molding. Thereby, the manufacturing process of the components of a solenoid valve can be simplified.
  • the second fluid inlet / outlet 12 of the solenoid valves 2 and 2B is configured by the cylindrical portion 10a protruding outward (+ Z side) from the second end wall 10-2 of the lid case 10A. In that case, it becomes easy to insert the solenoid valves 2 and 2B in the straight flow path.
  • the present invention is not limited to this.
  • FIGS. 19A and 19B show an example of an electromagnetic valve 2D obtained by modifying the case 10 of the electromagnetic valve 2 of the first embodiment.
  • FIG. 19A shows the electromagnetic valve 2D viewed from the + Z side.
  • FIG. 19B shows a cross-sectional structure viewed from the lower side ( ⁇ Y side) in FIG.
  • the cylindrical portion 10b forming the second fluid inlet / outlet 12 is disposed so as to protrude from the outer peripheral wall 10-3 of the main case 10B to the outside (+ X side).
  • the other points are configured in the same manner as the electromagnetic valve 2 of the first embodiment (in FIG. 19B, for the sake of simplicity, the structure of the diaphragm 6 is larger than that of FIGS. 4, 6, and 7.
  • the illustration is simplified, and the illustration of the coating 9A is saved, and this is the same in FIG.
  • the diaphragm 6 approaches the one end 4e of the pole piece 4 as in the electromagnetic valve 2 of the first embodiment, and the opening 4o is closed by the elastic body 8. Can be removed. Further, the back side pressure P0 is applied to the back surface 6a of the diaphragm 6 from the second fluid inlet / outlet 12 through a gap between the outer peripheral wall 10-3 of the main case 10B and the peripheral edge portion 6e of the diaphragm 6. Accordingly, the closed state is assisted in the same manner as in the solenoid valve 2 of the first embodiment.
  • the cylindrical portion 10b forming the second fluid inlet / outlet 12 is prevented from projecting to the outside (+ Z side) from the second end wall 10-2 of the lid case 10A.
  • a solenoid valve can be reduced in thickness.
  • the main case 10B is attached along the upper surface of the wiring board (not shown), and the protrusion 4a that forms the first fluid inlet / outlet 11 extends downward through the wiring board, so that the electromagnetic valve 2D
  • the wiring board and the wiring board can be configured flat as a whole.
  • FIG. 20A and 20B show another example electromagnetic valve 2E obtained by modifying the case 10 of the electromagnetic valve 2 of the first embodiment.
  • FIG. 20A shows the electromagnetic valve 2E viewed from the + Z side.
  • FIG. 20B shows a cross-sectional structure viewed from the lower side ( ⁇ Y side) in FIG.
  • the cylindrical portion 10c forming the second fluid inlet / outlet 12 is disposed so as to protrude from the first end wall 10-1 of the main case 10B to the outside ( ⁇ Z side).
  • Other points are the same as those of the solenoid valve 2 of the first embodiment.
  • the diaphragm 6 approaches the one end 4e of the pole piece 4 and the opening 4o is closed by the elastic body 8 as in the electromagnetic valve 2 of the first embodiment. Can be removed. Further, from the second fluid inlet / outlet 12, a gap between the outer peripheral wall 10-3 of the main case 10B and the side plate portion 3c of the yoke 3, and between the outer peripheral wall 10-3 of the main case 10B and the peripheral portion 6e of the diaphragm 6 are provided. The back side pressure P0 is applied to the back surface 6a of the diaphragm 6 through the gaps in order. Accordingly, the closed state is assisted in the same manner as in the solenoid valve 2 of the first embodiment.
  • the cylindrical portion 10c forming the second fluid inlet / outlet 12 protrudes from the second end wall 10-2 of the lid case 10A to the outside (+ Z side). Can be avoided. Thereby, a solenoid valve can be reduced in thickness. Further, in the electromagnetic valve 2E, the cylindrical portion 10c forming the second fluid inlet / outlet 12 can be protruded in the same direction (the ⁇ Z direction) as the protruding portion 4a forming the first fluid inlet / outlet 11.
  • the main case 10B is attached along the upper surface of a wiring board (not shown), and both the cylindrical portion 10c and the protruding portion 4a extend downward through the wiring board, so that the electromagnetic valve 2E and the wiring Together with the substrate, it can be configured flat as a whole.
  • the flow path connected to the electromagnetic valve 2E can be disposed only below the wiring board.
  • the electromagnetic valve of the present invention is applied to a sphygmomanometer.
  • the present invention is not limited to this.
  • the electromagnetic valve of the present invention can be applied to various devices other than a blood pressure monitor.
  • the solenoid valve of this invention can be applied also to the apparatus containing the function part which performs a blood pressure measurement function and other various functions.
  • the device can be configured to be small and lightweight.
  • the solenoid valve can be opened and closed stably and reliably. Therefore, the operation of the device can be stabilized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)
  • Lift Valve (AREA)

Abstract

This electronic valve is provided with a yoke (3), a pole piece (4), a solenoid coil (7), and a diaphragm (6). The pole piece (4) has a first fluid input/output port (11) communicating with an opening (4o). A biasing part (5) biases the diaphragm (6) away from one end section (4e) of the pole piece (4). When not in operation, the electronic valve becomes an open state in which an opening (4o) is open. During operation, the electronic valve can become a closed state in which the diaphragm (6) approaches the one end section (4e) of the pole piece (4) due to the magnetic force of the solenoid coil (7) such that the opening (4o) is blocked. The diaphragm (6) extends in a spatially continuous manner from the center toward the edge so as to cover the entire periphery of the peripheral end surface (4e1) of the pole piece (4), or the entire periphery of an annular edge (3e) of the yoke (3). In the closed state, the inner surface (6b) of the diaphragm (6) is in close contact with the peripheral end surface (4e1) of the pole piece (4) or with the annular edge (3e) of the yoke (3).

Description

電磁弁、血圧計、血圧測定方法、および機器Electromagnetic valve, sphygmomanometer, blood pressure measurement method, and device
 この発明は電磁弁に関し、より詳しくは、ソレノイドコイルの磁力によって開閉する電磁弁に関する。また、この発明は、そのような電磁弁を備えた血圧計、および、そのような電磁弁を開閉することでカフ圧を調節して血圧を測定する血圧測定方法に関する。また、この発明は、そのような電磁弁を備えた機器に関する。 The present invention relates to a solenoid valve, and more particularly to a solenoid valve that opens and closes by the magnetic force of a solenoid coil. The present invention also relates to a sphygmomanometer including such an electromagnetic valve, and a blood pressure measurement method for measuring blood pressure by adjusting the cuff pressure by opening and closing such an electromagnetic valve. Moreover, this invention relates to the apparatus provided with such an electromagnetic valve.
 従来、血圧計に用いられる電磁弁としては、例えば特許文献1(特開平08-203730号公報)に開示されたようなものが知られている。その電磁弁は、コの字状のフレームと、このフレームの開放端を塞ぐように取り付けられたヨークとを備えている。その中に、略筒状のコイルボビン(コイル枠)と、このコイルボビンに巻回されたソレノイドコイルとが収容されている。さらに、そのコイルボビンには、棒状の可動鉄心が摺動可能に内挿されている。上記ヨークと対向する上記フレームの底板には、流体が流通する流通口が設けられた固定鉄心が配置されている。可動鉄心の一端が、固定鉄心の流通口と対向している。上記ソレノイドコイルが無通電状態にある非作動時には、スプリングによる付勢力によって、上記可動鉄心の一端が上記固定鉄心の流通口から離れている。上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記スプリングによる付勢力に抗して上記可動鉄心が上記コイルボビン内で移動されて、上記可動鉄心の一端が上記固定鉄心の流通口を塞ぐ。これにより、上記電磁弁が開閉される。 Conventionally, as an electromagnetic valve used in a sphygmomanometer, for example, one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 08-203730) is known. The electromagnetic valve includes a U-shaped frame and a yoke attached so as to close the open end of the frame. A substantially cylindrical coil bobbin (coil frame) and a solenoid coil wound around the coil bobbin are accommodated therein. Further, a rod-shaped movable iron core is slidably inserted in the coil bobbin. On the bottom plate of the frame facing the yoke, a fixed iron core provided with a flow port through which fluid flows is disposed. One end of the movable iron core is opposed to the distribution port of the fixed iron core. When the solenoid coil is in a non-energized state, one end of the movable iron core is separated from the flow port of the fixed iron core by the biasing force of the spring. During operation in which the solenoid coil is energized, the movable iron core is moved in the coil bobbin against the urging force of the spring by the magnetic force generated by the solenoid coil, and one end of the movable iron core is connected to the fixed iron core. Close the distribution port. Thereby, the solenoid valve is opened and closed.
特開平08-203730号公報Japanese Patent Application Laid-Open No. 08-203730
 ところで、最近の健康志向ブームから、腕時計のように血圧計を手首に常時装着した状態で、血圧測定を行いたいとのニーズが高まっている。その場合、電磁弁のような構成部品をできるだけ小型化することが望まれる。 By the way, from the recent health-oriented boom, there is an increasing need to perform blood pressure measurement with a blood pressure monitor always worn on the wrist like a wristwatch. In that case, it is desired to reduce the size of a component such as a solenoid valve as much as possible.
 しかしながら、特許文献1に開示されているような一般的な電磁弁では、可動鉄心が棒状で、かつその長手方向に沿って移動するため、電磁弁のサイズが大きくなるという問題がある。また、そのような手首に装着されるタイプの血圧計は電池で駆動されることが多いため、電磁弁の省電力化を図る必要もある。 However, in a general electromagnetic valve as disclosed in Patent Document 1, there is a problem that the size of the electromagnetic valve is increased because the movable iron core is rod-shaped and moves along its longitudinal direction. In addition, since the blood pressure monitor of the type attached to such a wrist is often driven by a battery, it is necessary to save power of the electromagnetic valve.
 そこで、この発明の課題は、小型に構成可能で省電力化を図ることが可能な電磁弁を提供することにある。また、この発明の課題は、そのような電磁弁を備えた血圧計、および、そのような電磁弁を開閉することによって血圧を測定する血圧測定方法を提供することにある。また、この発明の課題は、そのような電磁弁を備えた機器を提供することにある。 Therefore, an object of the present invention is to provide a solenoid valve that can be configured in a small size and can save power. Another object of the present invention is to provide a sphygmomanometer equipped with such an electromagnetic valve, and a blood pressure measuring method for measuring blood pressure by opening and closing such an electromagnetic valve. Moreover, the subject of this invention is providing the apparatus provided with such an electromagnetic valve.
 上記課題を解決するため、この開示の電磁弁は、
 流体の流通を許容または遮断する電磁弁であって、
 環状の周縁をもつ端板部と、この端板部の周縁に連なり、上記端板部の片側に隣り合う空間を環状に取り囲む側板部とを含むヨークと、
 上記ヨークの上記端板部に直交して、上記片側の空間に存する一端部から反対側の他端部まで一方向に延在するポールピースとを備え、このポールピースは、上記一端部に開口を有し、上記他端部に、上記ポールピース内を通して上記開口と連通した第1の流体出入口を有し、
 上記ポールピースと上記ヨークの上記側板部との間の環状の空間に収容されたソレノイドコイルと、
 上記ヨークの上記端板部に上記空間を介して対向するとともに上記ヨークの上記側板部の環状縁にまたがる寸法をもつ板状の磁性材料からなるダイアフラムと、
 上記ダイアフラムを、上記一方向に並行移動させる態様で、上記ポールピースの上記一端部から離間する向きに付勢する付勢部とを備え、
 上記ソレノイドコイルが無通電状態にある非作動時には、上記付勢部による付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間して上記開口が開放された開状態になり、
 上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記付勢部による付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して上記開口が塞がれた閉状態になり得、
 上記ダイアフラムは、中心から周縁部へ向かって、上記ポールピースの上記一端部のうち上記開口の周りの周端面の全周、または、上記ヨークの上記側板部の環状縁の全周を覆うように空間的に連続的に延在し、上記閉状態では、上記ダイアフラムの上記端板部に対向する側の内面が、上記ポールピースの上記一端部のうち上記開口の周りの上記周端面、または、上記ヨークの上記側板部の上記環状縁に密接する構成になっていることを特徴とする。
In order to solve the above problem, the electromagnetic valve of this disclosure is:
A solenoid valve that allows or blocks fluid flow,
A yoke including an end plate portion having an annular periphery, and a side plate portion connected to the periphery of the end plate portion and surrounding the space adjacent to one side of the end plate portion in an annular shape;
A pole piece extending in one direction from one end existing in the space on one side to the other end on the opposite side, perpendicular to the end plate portion of the yoke, and the pole piece is open to the one end A first fluid inlet / outlet communicating with the opening through the pole piece at the other end,
A solenoid coil housed in an annular space between the pole piece and the side plate of the yoke;
A diaphragm made of a plate-like magnetic material facing the end plate portion of the yoke through the space and having a dimension extending over the annular edge of the side plate portion of the yoke;
A biasing portion that biases the diaphragm in a direction to move away from the one end of the pole piece in a manner to move the diaphragm in parallel in the one direction,
During non-operation when the solenoid coil is in a non-energized state, the diaphragm is separated from the one end of the pole piece by the urging force of the urging unit, and the opening is opened.
During operation in which the solenoid coil is energized, the diaphragm approaches the one end of the pole piece against the urging force of the urging portion by the magnetic force generated by the solenoid coil, and the opening is closed. Closed state,
The diaphragm covers the entire circumference of the peripheral end surface around the opening or the entire circumference of the annular edge of the side plate portion of the yoke from the center toward the peripheral edge. In the closed state, the inner surface on the side facing the end plate portion of the diaphragm is the peripheral end surface around the opening of the one end of the pole piece, or in the closed state, or The yoke is configured to be in close contact with the annular edge of the side plate portion.
 本明細書で、「ヨーク」、「ポールピース」は、電磁石の分野で周知な磁力線を導く働きをする要素であり、それぞれ磁性材料(特に、鉄などの強磁性材料が好ましい。)からなる。 In the present specification, “yoke” and “pole piece” are elements that serve to guide lines of magnetic force well known in the field of electromagnets, and are each made of a magnetic material (in particular, a ferromagnetic material such as iron is preferable).
 上記ヨークの端板部の周縁の形状は、円形、丸角四角形(角が丸くされた四角形)など、環状の形状を広く含む。上記側板部の環状の形状も同様である。 The shape of the periphery of the end plate portion of the yoke widely includes an annular shape such as a circle and a rounded square (a square with rounded corners). The same applies to the annular shape of the side plate.
 上記ヨークの上記側板部の「環状縁」とは、上記端板部とは反対側の縁を指す。 The “annular edge” of the side plate portion of the yoke refers to the edge opposite to the end plate portion.
 上記ポールピースの上記「他端部」は、上記ヨークの上記端板部から突出していてもよいし、上記端板部の外面(この端板部の2つの面のうち上記片側の空間とは反対側を向いた面)で止まっていてもよい。 The “other end portion” of the pole piece may protrude from the end plate portion of the yoke, or the outer surface of the end plate portion (the space on one side of the two surfaces of the end plate portion is It may stop on the surface facing the other side.
 弁の開閉状態としては、上記閉状態と上記開状態との間に、上記ソレノイドの通電量に応じて流量が制御される中間状態が存在する。 As the open / close state of the valve, there is an intermediate state in which the flow rate is controlled according to the energization amount of the solenoid between the closed state and the open state.
 「密接する」とは、上記流体に関して流体密に接することを意味する。例えば、上記流体が気体であれば気密に接することを意味する。また、上記流体が液体であれば液密に接することを意味する。 “In close contact” means that the fluid is in close contact with the fluid. For example, if the fluid is a gas, it means that it is in airtight contact. In addition, if the fluid is a liquid, it means that it is in liquid-tight contact.
 この開示の電磁弁では、上記ソレノイドコイルが無通電状態にある非作動時には、上記付勢部による付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間して上記開口が開放された開状態になる。この開状態にある場合は、上記ポールピース内を通した流体の流通が許容される。この電磁弁は常開弁となる。 In the electromagnetic valve according to the present disclosure, when the solenoid coil is in a non-energized state, the diaphragm is separated from the one end portion of the pole piece by the biasing force of the biasing portion, and the opening is opened. It becomes a state. When in this open state, fluid flow through the pole piece is allowed. This solenoid valve is a normally open valve.
 上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記付勢部による付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して上記開口が塞がれた閉状態になり得る。具体的には、上記ソレノイドコイルが通電状態(作動時)にあるとき、上記ソレノイドコイルが発生する磁力線は、例えば、上記ヨークの上記側板部を通して上記端板部の周縁に達し、上記端板部の周縁から上記端板部を通して上記端板部と上記ポールピースとの直交箇所に達し、この直交箇所から上記ポールピースを通して上記ポールピースの上記一端部に達し、上記一端部からこの一端部と上記ダイアフラムとの接近箇所に達し、さらに、上記ダイアフラムを通して上記ヨークの上記側板部の環状縁に達する経路(磁気回路)を循環する。上記ソレノイドコイルに対する通電の向きが逆になれば、上記ソレノイドコイルが発生する磁力線は、この経路を逆向きに循環する。これにより、上記ソレノイドコイルは、上記ダイアフラムに対して上記付勢部による付勢力に抗した磁力を発生する。この磁力によって上記ダイアフラムが上記ポールピースの上記一端部に対して接近して、上記開口が塞がれた閉状態になり得る。閉状態にある場合は、上記ポールピース内を通した流体の流通は遮断される。このように、この電磁弁では、上記ソレノイドコイルが無通電状態(非作動時)であるか、上記ソレノイドコイルが通電状態(作動時)であるかに応じて、開状態または閉状態になることができる。これにより、上記ポールピース内(つまり、この電磁弁)を通した流体の流通を許容または遮断することができる。 During operation in which the solenoid coil is energized, the diaphragm approaches the one end of the pole piece against the urging force of the urging portion by the magnetic force generated by the solenoid coil, and the opening is closed. Can be closed. Specifically, when the solenoid coil is in an energized state (during operation), the lines of magnetic force generated by the solenoid coil reach, for example, the peripheral edge of the end plate portion through the side plate portion of the yoke, and the end plate portion From the peripheral edge of the pole piece through the end plate portion to the orthogonal part of the pole piece, from the orthogonal part through the pole piece to the one end of the pole piece, from the one end to the one end and the It circulates in a path (magnetic circuit) that reaches an approaching point with the diaphragm and further reaches the annular edge of the side plate portion of the yoke through the diaphragm. If the direction of energization to the solenoid coil is reversed, the lines of magnetic force generated by the solenoid coil circulate in this direction in the reverse direction. As a result, the solenoid coil generates a magnetic force against the urging force of the urging unit with respect to the diaphragm. Due to this magnetic force, the diaphragm can approach the one end of the pole piece, and the opening can be closed. When in the closed state, the fluid flow through the pole piece is blocked. Thus, in this solenoid valve, the solenoid coil is in an open state or a closed state depending on whether the solenoid coil is in a non-energized state (when not operating) or the solenoid coil is in a conductive state (when operating). Can do. Thereby, the flow of the fluid through the pole piece (that is, the electromagnetic valve) can be allowed or blocked.
 ここで、この電磁弁では、流体の流通を許容または遮断するために、板状のダイアフラムが、上記ヨークの上記端板部に対向した姿勢で上記ポールピースの上記一端部に対して接近または離間する向きに一方向に並行移動する構成になっている。すなわち、従来例(可動鉄心が棒状で、かつその長手方向に沿って移動する)とは異なり、この電磁弁では、板状のダイアフラムが、このダイアフラムの板面に対して垂直な一方向に移動する。したがって、上記ダイアフラムが移動する上記一方向に関して電磁弁のサイズを小さくできる。この結果、電磁弁を小型に構成できる。 Here, in this solenoid valve, in order to allow or block the flow of fluid, the plate-like diaphragm approaches or separates from the one end of the pole piece in a posture facing the end plate of the yoke. It is configured to move in parallel in one direction. That is, unlike the conventional example (the movable iron core is rod-shaped and moves along its longitudinal direction), in this solenoid valve, the plate-shaped diaphragm moves in one direction perpendicular to the plate surface of the diaphragm. To do. Therefore, the size of the solenoid valve can be reduced with respect to the one direction in which the diaphragm moves. As a result, the electromagnetic valve can be made compact.
 さらに、この電磁弁では、上記ダイアフラムは、中心から周縁部へ向かって、上記ポールピースの上記一端部のうち上記開口の周りの周端面の全周、または、上記ヨークの上記側板部の環状縁の全周を覆うように空間的に連続的に延在している。さらに、上記閉状態では、上記ダイアフラムの内面(上記ヨークの上記端板部に対向する側の面)が、上記ポールピースの上記一端部のうち上記開口の周りの上記周端面、または、上記ヨークの上記側板部の上記環状縁に密接する。ここで、上記開口の面積(これをS0とする。)に比して、上記ポールピースの上記一端部の上記周端面で囲まれた領域の面積(これをSaとする。)または上記ヨークの上記側板部の環状縁で囲まれた領域の面積(これをSbとする。)が大きい。つまり、S0<Sa<Sbである。したがって、例えば、上記第1の流体出入口側から上記開口に加わる流体の圧力(これを開口側圧力P1とする。)と、上記ダイアフラムの背面(上記ヨークの上記端板部とは反対側を向いた面)に加わる流体の圧力(これを背面側圧力P0とする。)とが同じ陽圧(大気圧を超える)であるものとする。その場合、開口側圧力P1による押圧力(これをF1とする。)と背面側圧力P0による押圧力(面積SaのときFaとし、面積SbのときFbとする。)との大小関係として、前者のF1に比して後者のFa、Fbの方が大きくなる。つまり、F1=P1×S0であり、Fa=P0×Saであり、Fb=P0×Sbであるから、例えば0<P1≒P0であれば、F1<Fa<Fbとなる。開口側圧力P1よりも背面側圧力P0が大きければ(つまり、0<P1<P0であれば)、さらにF1≪Fa≪Fbとなる。 Further, in this electromagnetic valve, the diaphragm is configured such that the diaphragm is formed from the center toward the peripheral edge, the entire circumference of the peripheral end surface around the opening among the one end portions of the pole piece, or the annular edge of the side plate portion of the yoke. It extends continuously spatially so as to cover the entire circumference of the. Further, in the closed state, the inner surface of the diaphragm (the surface on the side facing the end plate portion of the yoke) is the peripheral end surface around the opening of the one end portion of the pole piece, or the yoke. Close to the annular edge of the side plate portion. Here, the area of the region surrounded by the peripheral end face of the one end of the pole piece (referred to as Sa) or the area of the yoke as compared to the area of the opening (referred to as S0). The area (referred to as Sb) of the region surrounded by the annular edge of the side plate portion is large. That is, S0 <Sa <Sb. Therefore, for example, the pressure of the fluid applied to the opening from the first fluid inlet / outlet side (this is referred to as an opening side pressure P1) and the rear surface of the diaphragm (the side opposite to the end plate portion of the yoke) are directed. It is assumed that the pressure of the fluid applied to the surface (this is the back side pressure P0) is the same positive pressure (exceeds atmospheric pressure). In this case, the former relationship between the pressing force by the opening side pressure P1 (referred to as F1) and the pressing force by the back side pressure P0 (referred to as Fa for the area Sa and Fb for the area Sb) is as follows. The latter Fa and Fb are larger than F1. That is, since F1 = P1 × S0, Fa = P0 × Sa, and Fb = P0 × Sb, for example, if 0 <P1≈P0, F1 <Fa <Fb. If the back side pressure P0 is larger than the opening side pressure P1 (that is, if 0 <P1 <P0), then F1 << Fa << Fb.
 この結果、この電磁弁では、一旦開状態から閉状態になると、背面側圧力P0が開口側圧力P1以上(ただし、いずれも陽圧とする。)であれば、上記閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が少なくて済む。つまり、上記閉状態がアシストされる。したがって、この電磁弁では、上記ソレノイドコイルに対する通電量が少なくて済み、省電力化を図ることができる。 As a result, in this solenoid valve, once the open state is changed to the closed state, if the back side pressure P0 is equal to or higher than the opening side pressure P1 (both are positive pressures), the closed state is maintained. The magnetic force that should be generated by the solenoid coil can be reduced against the urging force of the urging unit. That is, the closed state is assisted. Therefore, in this solenoid valve, a small amount of current is supplied to the solenoid coil, and power saving can be achieved.
 一実施形態の電磁弁では、上記ポールピースと上記ヨークは一体に構成されていることを特徴とする。 The solenoid valve according to one embodiment is characterized in that the pole piece and the yoke are integrally formed.
 この一実施形態の電磁弁では、上記ポールピースと上記ヨークは一体に構成されているので、上記ポールピースと上記ヨークとの間の磁気抵抗が小さく、それらを経路とする磁気回路の効率が高まる。また、上記ポールピースと上記ヨークとの間の気密性を高めて、漏気を防ぐことができる。 In the solenoid valve according to this embodiment, the pole piece and the yoke are integrally formed. Therefore, the magnetic resistance between the pole piece and the yoke is small, and the efficiency of the magnetic circuit using them as a path is increased. . In addition, the airtightness between the pole piece and the yoke can be improved to prevent air leakage.
 一実施形態の電磁弁では、上記ダイアフラムをなす磁性材料はパーマロイであることを特徴とする。 In one embodiment of the electromagnetic valve, the magnetic material forming the diaphragm is permalloy.
 ここで、「パーマロイ」とは、Ni-Feの合金を指す。 Here, “permalloy” refers to an Ni—Fe alloy.
 この一実施形態の電磁弁では、上記ダイアフラムは、板状で、パーマロイからなるので、例えば棒状の可動鉄心に比して、軽く構成され得る。その場合、鉛直方向に対して電磁弁の姿勢(向き)が様々に変化したとき、電磁弁の姿勢によって特性(例えば、通電電流対流量特性)が影響を受け難くなる。 In the electromagnetic valve according to this embodiment, the diaphragm is plate-shaped and made of permalloy, and thus can be configured to be lighter than, for example, a rod-shaped movable iron core. In that case, when the posture (orientation) of the electromagnetic valve changes variously with respect to the vertical direction, the characteristic (for example, the current-flow-current characteristic) is hardly affected by the posture of the electromagnetic valve.
 なお、仮に弁の開閉のために駆動される要素が棒状の可動鉄心であれば、比較的大きな重量をもつため、鉛直方向に対して電磁弁の姿勢(向き)が様々に変化したとき、それに伴って可動鉄心が摺動方向に沿って受ける重力成分が大きく変化して、電磁弁の特性が大きく影響を受ける。 If the element driven to open and close the valve is a rod-shaped movable iron core, it has a relatively large weight, so when the posture (orientation) of the solenoid valve changes with respect to the vertical direction, Along with this, the gravitational component that the movable iron core receives along the sliding direction changes greatly, and the characteristics of the solenoid valve are greatly affected.
 一実施形態の電磁弁では、上記ダイアフラムのうち上記ポールピースの上記一端部の上記開口に対向する部分に、上記開口を塞ぐための弾性体が一体に取り付けられていることを特徴とする。 In one embodiment of the electromagnetic valve, an elastic body for closing the opening is integrally attached to a portion of the diaphragm facing the opening at the one end of the pole piece.
 本明細書で、「弾性体」とは、シリコーンゴム、ニトリルゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)などの弾性材料(可撓性材料)からなる物体を指す。 In this specification, “elastic body” refers to an object made of an elastic material (flexible material) such as silicone rubber, nitrile rubber (NBR), ethylene propylene diene rubber (EPDM).
 この一実施形態の電磁弁では、上記開状態から上記閉状態へ遷移するとき、上記ダイアフラムの上記弾性体が、上記ポールピースの上記一端部の上記開口に接近する。これにより、安定した通電電流(または駆動電圧)対流量特性が得られる。また、上記閉状態のとき、上記ダイアフラムの上記弾性体が上記ポールピースの上記一端部の上記開口を確実に塞ぐ。 In the electromagnetic valve according to this embodiment, when the transition from the open state to the closed state is performed, the elastic body of the diaphragm approaches the opening at the one end of the pole piece. Thereby, a stable energization current (or drive voltage) versus flow rate characteristic can be obtained. In the closed state, the elastic body of the diaphragm reliably blocks the opening at the one end of the pole piece.
 なお、上記ダイアフラムへの上記弾性体の取り付けは、圧入、接着、またはインサート成形によるのが望ましい。これにより、上記ダイアフラムに上記弾性体を簡単に一体に取り付けることができる。 Note that the elastic body is preferably attached to the diaphragm by press-fitting, bonding, or insert molding. Thereby, the elastic body can be easily and integrally attached to the diaphragm.
 一実施形態の電磁弁では、上記ポールピースは、上記一端部に、上記ダイアフラムに取り付けられた上記弾性体に向かって開いた窪みを有し、この窪みの底に上記開口が開いていることを特徴とする。 In one embodiment of the electromagnetic valve, the pole piece has a recess opened toward the elastic body attached to the diaphragm at the one end, and the opening is opened at the bottom of the recess. Features.
 この一実施形態の電磁弁では、上記閉状態のとき、上記ダイアフラムに取り付けられた上記弾性体が、上記ポールピースの上記一端部の上記窪みに収容された状態で上記開口を塞ぐ。したがって、上記弾性体が上記開口を安定して塞ぐことができる。 In the electromagnetic valve according to this embodiment, when in the closed state, the elastic body attached to the diaphragm closes the opening while being accommodated in the recess at the one end of the pole piece. Therefore, the elastic body can block the opening stably.
 一実施形態の電磁弁では、
 上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記付勢部とを、一括して流体密に覆う密閉ケースを備え、
 上記密閉ケースの外壁を貫通して第2の流体出入口が設けられていることを特徴とする。
In the solenoid valve of one embodiment,
With the other end of the pole piece exposed to the outside, the yoke, a portion of the pole piece that extends into the space on the one side, the solenoid coil, the diaphragm, and the biasing portion, With a hermetically sealed case that fluidly and collectively covers
A second fluid inlet / outlet is provided through the outer wall of the sealed case.
 この一実施形態の電磁弁は、流路に介挿されて、その流路を通る流体の流通を許容または遮断するのに適する。この電磁弁が開状態であれば、例えば、上記第2の流体出入口から上記ポールピースの上記一端部の上記開口(上記一端部から上記ダイアフラムが離間して開状態にある)を経て上記第1の流体出入口へ向かって、または、その逆向きに、この電磁弁を通して流体が流通し得る。この電磁弁が閉状態であれば、上記開口(上記一端部に上記ダイアフラムが接近して閉状態にある)が遮断されているので、この電磁弁を通して上記第2の流体出入口と上記第1の流体出入口の間で流体が流通することはない。 The solenoid valve of this embodiment is suitable for being inserted into a flow path and allowing or blocking the flow of fluid through the flow path. If the electromagnetic valve is in an open state, for example, the first fluid is passed through the opening at the one end of the pole piece from the second fluid inlet / outlet (the diaphragm is open from the one end). The fluid can flow through the solenoid valve toward or away from the fluid inlet / outlet. If the solenoid valve is in a closed state, the opening (the diaphragm is close to the one end portion and is in a closed state) is blocked, so that the second fluid inlet / outlet and the first fluid passage through the solenoid valve are blocked. There is no fluid flow between the fluid ports.
 一実施形態の電磁弁では、上記密閉ケースは、上記ヨークの上記端板部の外面に沿った第1の端壁と、上記ダイアフラムの上記端板部とは反対側を向いた背面に沿った第2の端壁と、上記第1の端壁の周縁部と上記第2の端壁の周縁部とをつなぐ環状の外周壁とを含むことを特徴とする。 In one embodiment of the electromagnetic valve, the sealing case is along a first end wall along the outer surface of the end plate portion of the yoke and a back surface facing the opposite side of the end plate portion of the diaphragm. It includes a second end wall, and an annular outer peripheral wall connecting the peripheral edge of the first end wall and the peripheral edge of the second end wall.
 上記端板部の「外面」とは、この端板部の2つの広がる面のうち上記片側の空間とは反対側を向いた面を指す。また、上記ダイアフラムの「背面」とは、このダイアフラムの2つの面のうち上記ヨークの上記端板部とは反対側を向いた面を指す。 The “outer surface” of the end plate portion refers to a surface facing the opposite side to the space on one side of the two spreading surfaces of the end plate portion. The “rear surface” of the diaphragm refers to a surface of the two surfaces of the diaphragm that faces away from the end plate portion of the yoke.
 この一実施形態の電磁弁では、上記密閉ケースの上記第1の端壁から上記第2の端壁までのサイズを小さく設定することによって、上記第1及び第2の端壁に沿った偏平な外形をもつことができる。そのような外形は、この電磁弁(密閉ケース)を例えば配線基板に沿って取り付けて、上記電磁弁(密閉ケース)と上記配線基板とを併せて全体として偏平に構成するのに適する。 In the solenoid valve according to this embodiment, the size of the sealed case from the first end wall to the second end wall is set small, so that the flatness along the first and second end walls is flat. Can have an outer shape. Such an outer shape is suitable for mounting the electromagnetic valve (sealing case) along, for example, a wiring board and forming the electromagnetic valve (sealing case) and the wiring board together in a flat shape as a whole.
 一実施形態の電磁弁では、上記第1の流体出入口が設けられた上記ポールピースの上記他端部は、上記密閉ケースの上記第1の端壁から外部へ突出して配置されていることを特徴とする。 In the electromagnetic valve according to one embodiment, the other end portion of the pole piece provided with the first fluid inlet / outlet is disposed to protrude outward from the first end wall of the sealed case. And
 この一実施形態の電磁弁では、上記第1の流体出入口に、流路が流体流通可能に容易に接続される。 In the electromagnetic valve according to this embodiment, the flow path is easily connected to the first fluid inlet / outlet so that fluid can flow therethrough.
 一実施形態の電磁弁では、上記第2の流体出入口は、上記密閉ケースの上記第1の端壁、上記第2の端壁、または上記外周壁から、外部へ突出して配置されていることを特徴とする。 In the solenoid valve according to one embodiment, the second fluid inlet / outlet port is disposed to protrude outward from the first end wall, the second end wall, or the outer peripheral wall of the sealed case. Features.
 この一実施形態の電磁弁では、上記第2の流体出入口に、流路が流体流通可能に容易に接続される。特に、上記第2の流体出入口が上記密閉ケースの上記外周壁から外部へ突出して配置されている場合、上記第2の流体出入口が上記密閉ケースの上記第2の端壁から外部へ突出するのを避けることができ、電磁弁を薄型化できる。また、上記第2の流体出入口が上記密閉ケースの上記第1の端壁から外部へ突出して配置されている場合、上記第2の流体出入口を上記第1の流体出入口と同じ向きに突出させることとができる。したがって、例えば、上記密閉ケースを配線基板の上面に搭載し、上記第2の流体出入口と上記第1の流体出入口を両方とも上記配線基板を貫通して下方へ延在させた実装構造が可能となる。 In the solenoid valve according to this embodiment, the flow path is easily connected to the second fluid inlet / outlet so that fluid can flow therethrough. In particular, when the second fluid inlet / outlet is arranged to protrude outward from the outer peripheral wall of the sealed case, the second fluid inlet / outlet protrudes from the second end wall of the sealed case to the outside. The electromagnetic valve can be made thinner. Further, when the second fluid inlet / outlet is disposed to protrude outward from the first end wall of the sealed case, the second fluid inlet / outlet is protruded in the same direction as the first fluid inlet / outlet. You can. Therefore, for example, a mounting structure in which the sealed case is mounted on the upper surface of the wiring board and both the second fluid inlet / outlet and the first fluid inlet / outlet extend downward through the wiring board is possible. Become.
 一実施形態の電磁弁では、上記付勢部は、上記ヨークの上記側板部と上記密閉ケースの上記外周壁との間の環状の空間に沿って配置されたコイルばねを含むことを特徴とする。 In one embodiment of the electromagnetic valve, the biasing portion includes a coil spring disposed along an annular space between the side plate portion of the yoke and the outer peripheral wall of the sealing case. .
 この一実施形態の電磁弁では、上記付勢部が少ない部品(すなわち、コイルばね)で簡単に構成され得る。 The solenoid valve according to this embodiment can be easily configured with parts having a small number of biasing portions (that is, coil springs).
 一実施形態の電磁弁では、
 上記ダイアフラムは、中心から周縁部へ向かって、上記ヨークの上記側板部の環状縁を覆うまで空間的に連続的に延在し、
 上記ダイアフラムの上記周縁部に、上記中心へ向かって、上記ヨークの上記側板部の上記環状縁に対応する位置で止まる切り欠きが設けられていることを特徴とする。
In the solenoid valve of one embodiment,
The diaphragm extends spatially continuously from the center toward the peripheral edge until it covers the annular edge of the side plate portion of the yoke,
The diaphragm is provided with a notch that stops at a position corresponding to the annular edge of the side plate portion of the yoke toward the center.
 この一実施形態の電磁弁では、上記開状態では、上記ダイアフラムの背面側から上記切り欠きを通して上記ダイアフラムを上記一方向に横切り、上記開口(上記一端部から上記ダイアフラムが離間して開状態にある)を経て上記第1の流体出入口へ向かって、または、その逆向きに、この電磁弁を通して流体が流通し得る。 In the solenoid valve of this embodiment, in the open state, the diaphragm is traversed in the one direction through the notch from the back side of the diaphragm, and the opening (the diaphragm is spaced apart from the one end) is open. ) Through the electromagnetic valve toward the first fluid inlet / outlet or vice versa.
 一旦開状態から閉状態になると、上記ダイアフラムの内面の周縁部が上記ヨークの上記側板部の上記環状縁に密接する。ここで、上記ダイアフラムの上記周縁部に設けられている上記切り欠きは、上記中心へ向かって、上記ヨークの上記側板部の上記環状縁に対応する位置で止まっている。したがって、上記切り欠きにかかわらず、上記ダイアフラムの内面の周縁部が上記ヨークの上記側板部の上記環状縁を塞ぐ。したがって、既述のように、上記閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が少なくて済む。したがって、この電磁弁では、上記ソレノイドコイルに対する通電量が少なくて済み、省電力化を図ることができる。特に、この一実施形態の電磁弁では、上記ダイアフラムは、中心から周縁部へ向かって、上記ヨークの上記側板部の環状縁を覆うまで空間的に連続的に延在している。したがって、上記背面側圧力による押圧力がさらに大きくなる。したがって、この電磁弁では、省電力化を一層図ることができる。 Once the open state is closed, the peripheral edge of the inner surface of the diaphragm comes into close contact with the annular edge of the side plate portion of the yoke. Here, the notch provided in the peripheral edge portion of the diaphragm stops at a position corresponding to the annular edge of the side plate portion of the yoke toward the center. Therefore, regardless of the notch, the peripheral edge portion of the inner surface of the diaphragm closes the annular edge of the side plate portion of the yoke. Therefore, as described above, in order to maintain the closed state, the magnetic force to be generated by the solenoid coil can be reduced against the biasing force by the biasing portion. Therefore, in this solenoid valve, a small amount of current is supplied to the solenoid coil, and power saving can be achieved. In particular, in the electromagnetic valve of this embodiment, the diaphragm extends spatially continuously from the center toward the peripheral edge until it covers the annular edge of the side plate portion of the yoke. Therefore, the pressing force by the back side pressure is further increased. Therefore, this solenoid valve can further save power.
 一実施形態の電磁弁では、上記閉状態では、上記ダイアフラムの上記内面と、上記ポールピースの上記一端部のうち上記開口の周りの周端面、若しくは、上記ヨークの上記側板部の環状縁とを互いに密接させるように、上記ダイアフラムの上記内面、または、上記ポールピースの上記一端部のうち上記開口の周りの周端面、若しくは、上記ヨークの上記側板部の環状縁に、弾性を有するコーティングが設けられていることを特徴とする。 In the solenoid valve according to an embodiment, in the closed state, the inner surface of the diaphragm and a peripheral end surface around the opening of the one end portion of the pole piece, or an annular edge of the side plate portion of the yoke. An elastic coating is provided on the inner surface of the diaphragm, the peripheral end surface around the opening, or the annular edge of the side plate portion of the yoke so as to be in close contact with each other. It is characterized by being.
 この一実施形態の電磁弁では、上記弾性を有するコーティングのおかげで、上記閉状態では、上記ダイアフラムの上記内面と、上記ポールピースの上記一端部のうち上記開口の周りの周端面、若しくは、上記ヨークの上記側板部の環状縁とが互いに確実に密接する。したがって、上記閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が確実に少なくて済む。したがって、この電磁弁では、省電力化を確実に図ることができる。 In the electromagnetic valve of this embodiment, thanks to the elastic coating, in the closed state, the inner surface of the diaphragm and the peripheral end surface around the opening of the one end of the pole piece, or the above The annular edge of the side plate portion of the yoke is securely in contact with each other. Therefore, in order to maintain the closed state, the magnetic force that should be generated by the solenoid coil is surely small against the urging force of the urging portion. Therefore, with this solenoid valve, power saving can be achieved reliably.
 別の局面では、この開示の血圧計は、
 被測定部位の血圧を測定する血圧計であって、
 本体と、
 被測定部位に装着されるカフと、
 上記本体に搭載され、流路を通して上記カフに流体を供給するためのポンプと、
 上記本体に搭載され、上記ポンプまたは上記流路と大気との間に介挿された上記電磁弁と、
 上記ポンプによって上記流路を通して上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
 上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部とを備え、
 上記電磁弁は、上記ダイアフラムの背面が上記ポンプまたは上記流路に連通する側、上記第1の流体出入口が大気側に向けられて介挿されていることを特徴とする。
In another aspect, the blood pressure monitor of this disclosure is
A sphygmomanometer that measures the blood pressure of a measurement site,
The body,
A cuff attached to the measurement site;
A pump mounted on the body for supplying fluid to the cuff through a flow path;
The electromagnetic valve mounted on the main body and interposed between the pump or the flow path and the atmosphere;
A pressure controller for controlling the pressure of the cuff by supplying fluid to the cuff through the flow path by the pump and / or discharging the fluid from the cuff through the electromagnetic valve;
A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the cuff,
The solenoid valve is characterized in that the rear surface of the diaphragm is inserted with the side communicating with the pump or the flow path, and the first fluid inlet / outlet facing the atmosphere side.
 この開示の血圧計では、典型的には、本体とカフとが一体に、被測定部位に装着される。この装着状態で、圧力制御部が、上記ポンプによって上記流路を通して上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する。血圧算出部は、上記カフに収容された上記流体の圧力に基づいて血圧を算出する。ここで、この血圧計では、上記電磁弁は、本開示の小型に構成され得る電磁弁からなっている。したがって、上記本体、ひいては血圧計全体を、小型に構成できる。 In the sphygmomanometer of this disclosure, typically, the main body and the cuff are integrally attached to the measurement site. In this mounted state, the pressure control unit supplies the fluid to the cuff through the flow path by the pump and / or discharges the fluid from the cuff through the electromagnetic valve to control the pressure of the cuff. The blood pressure calculator calculates blood pressure based on the pressure of the fluid contained in the cuff. Here, in this sphygmomanometer, the electromagnetic valve is composed of an electromagnetic valve that can be configured in a small size according to the present disclosure. Accordingly, the main body, and thus the entire blood pressure monitor, can be configured in a small size.
 また、この血圧計では、上記電磁弁は、上記ダイアフラムの背面が上記ポンプまたは上記流路に連通する側、上記第1の流体出入口が大気側に向けられて介挿されている。したがって、上記圧力制御部による上記カフの加圧制御中に上記電磁弁が一旦開状態から閉状態になると、この閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が少なくて済む。したがって、この血圧計では、上記電磁弁の上記ソレノイドコイルに対する通電量が少なくて済み、省電力化を図ることができる。 In this sphygmomanometer, the solenoid valve is inserted such that the back surface of the diaphragm communicates with the pump or the flow path, and the first fluid inlet / outlet faces the atmosphere side. Therefore, once the solenoid valve is changed from the open state to the closed state during the pressurization control of the cuff by the pressure control unit, the solenoid is resisted against the biasing force by the biasing unit in order to maintain the closed state. The magnetic force to be generated by the coil is small. Therefore, in this sphygmomanometer, the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
 別の局面では、この開示の血圧計は、
 被測定部位の血圧を測定する血圧計であって、
 本体と、
 被測定部位に装着されるカフとを備え、
 上記カフは、上記被測定部位に接して配置される測定用流体袋と、この測定用流体袋の外周側に重ねて配置される押圧用流体袋とを内包し、
 上記本体に搭載された、上記押圧用流体袋および上記測定用流体袋に流体を供給するためのポンプと、
 上記ポンプと上記押圧用流体袋とを流体流通可能に接続する第1の流路と、
 上記ポンプまたは第1の流路と上記測定用流体袋とを流体流通可能に接続し、かつ、開閉弁が介挿された第2の流路と、
 上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記被測定部位を圧迫する制御を行う圧力制御部と、
 上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する血圧算出部とを備え、
 上記開閉弁は上記電磁弁からなり、
 上記第2の流路において、上記開閉弁は、上記ダイアフラムの背面が上記ポンプに連通する上流側、上記第1の流体出入口が上記測定用流体袋に連通する下流側に向けられて介挿されていることを特徴とする。
In another aspect, the blood pressure monitor of this disclosure is
A sphygmomanometer that measures the blood pressure of a measurement site,
The body,
With a cuff attached to the measurement site,
The cuff includes a measurement fluid bag disposed in contact with the measurement site, and a pressing fluid bag disposed on the outer peripheral side of the measurement fluid bag,
A pump mounted on the main body for supplying fluid to the pressing fluid bag and the measuring fluid bag;
A first flow path connecting the pump and the pressing fluid bag so as to allow fluid flow;
A second flow path in which the pump or the first flow path and the measurement fluid bag are connected so as to allow fluid flow, and an on-off valve is inserted;
A pressure control unit that performs control for supplying the fluid to the pressing fluid bag from the pump through the first flow path and compressing the measurement site;
A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the fluid bag for measurement,
The on-off valve consists of the solenoid valve,
In the second flow path, the on-off valve is inserted with the rear surface of the diaphragm facing the upstream side communicating with the pump and the first fluid inlet / outlet facing the downstream side communicating with the measurement fluid bag. It is characterized by.
 この開示の血圧計では、カフが被測定部位に装着された装着状態では、上記カフに内包された測定用流体袋が被測定部位に接して配置される。また、上記カフに内包された押圧用流体袋がこの測定用流体袋の外周側に重ねて配置される。 In the sphygmomanometer according to the present disclosure, when the cuff is attached to the measurement site, the measurement fluid bag contained in the cuff is disposed in contact with the measurement site. Further, the pressing fluid bag enclosed in the cuff is disposed so as to overlap the outer peripheral side of the measuring fluid bag.
 血圧測定時には、例えば、上記ソレノイドコイルが無通電状態にされて上記開閉弁が開状態に保たれ、上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体が供給されるとともに、上記ポンプまたは第1の流路から上記第2の流路を通して上記流体が予め定められた量だけ供給される。次に、上記ソレノイドコイルが通電状態にされて上記開閉弁が開状態から閉状態に切り換えられる。次に、圧力制御部が、上記開閉弁を閉状態に保ち、上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記測定用流体袋を介して上記被測定部位を圧迫する。上記押圧用流体袋の加圧過程または減圧過程で、血圧算出部が、上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する(オシロメトリック法)。 At the time of blood pressure measurement, for example, the solenoid coil is turned off and the on-off valve is kept open, and the fluid is supplied from the pump to the pressing fluid bag through the first flow path. The fluid is supplied from the pump or the first channel through the second channel by a predetermined amount. Next, the solenoid coil is energized, and the on-off valve is switched from the open state to the closed state. Next, the pressure control unit keeps the on-off valve in a closed state, supplies the fluid from the pump to the pressing fluid bag through the first flow path, and passes the measured fluid bag through the measuring fluid bag. Squeeze the area. In the pressurizing process or the depressurizing process of the pressing fluid bag, the blood pressure calculating unit calculates the blood pressure based on the pressure of the fluid contained in the measuring fluid bag (oscillometric method).
 ここで、この血圧計では、上記測定用流体袋は、上記被測定部位の動脈通過部分に加えられた圧力自体を検出する。したがって、例えば上記カフの幅方向寸法を小さく(例えば25mm程度に)設定した結果、加圧時に上記押圧用流体袋が厚さ方向に大きく膨張して上記押圧用流体袋自体に圧迫ロスが発生した場合であっても、上記測定用流体袋の圧力に基づいて血圧を精度良く測定できる。 Here, in the sphygmomanometer, the measurement fluid bag detects the pressure itself applied to the artery passage portion of the measurement site. Therefore, for example, as a result of setting the width direction dimension of the cuff to be small (for example, about 25 mm), the pressing fluid bag expands greatly in the thickness direction during pressurization, and a compression loss occurs in the pressing fluid bag itself. Even in this case, the blood pressure can be accurately measured based on the pressure in the measurement fluid bag.
 また、この血圧計では、上記第2の流路において、上記開閉弁は、上記ダイアフラムの背面が上記ポンプに連通する上流側、上記第1の流体出入口が上記測定用流体袋に連通する下流側に向けられて介挿されている。したがって、上記開閉弁を開状態から閉状態に切り換えられ、上記圧力制御部によって上記閉状態が保たれている期間中、この閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が少なくて済む。したがって、この血圧計では、上記電磁弁の上記ソレノイドコイルに対する通電量が少なくて済み、省電力化を図ることができる。 In the sphygmomanometer, in the second flow path, the opening / closing valve includes an upstream side where the back surface of the diaphragm communicates with the pump, and a downstream side where the first fluid inlet / outlet communicates with the measurement fluid bag. Is inserted and pointed to. Therefore, the on-off valve is switched from the open state to the closed state, and in order to maintain the closed state while the closed state is maintained by the pressure control unit, the biasing force by the biasing unit is resisted. Thus, the magnetic force to be generated by the solenoid coil is small. Therefore, in this sphygmomanometer, the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
 さらに別の局面では、この開示の血圧測定方法は、
 上記血圧計を用いて被測定部位の血圧を測定する血圧測定方法であって、
 上記カフが被測定部位に装着された装着状態で、上記ソレノイドコイルを無通電状態にして上記開閉弁を開状態に保ち、上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給するとともに、上記ポンプまたは第1の流路から上記第2の流路を通して上記流体を予め定められた量だけ供給する予備供給ステップと、
 上記ソレノイドコイルを通電状態にして上記開閉弁を開状態から閉状態に切り換える切換ステップと、
 上記開閉弁を閉状態に保ち、上記圧力制御部によって上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記被測定部位を圧迫しながら、上記血圧算出部によって上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する血圧算出ステップと
を有し、
 上記閉状態に保たれている期間中に、この閉状態に切り換えられた直後の上記ソレノイドコイルの通電量に比して、上記ソレノイドコイルの通電量を少なく設定することを特徴とする。
In yet another aspect, the blood pressure measurement method of this disclosure includes:
A blood pressure measurement method for measuring blood pressure at a measurement site using the sphygmomanometer,
With the cuff attached to the part to be measured, the solenoid coil is de-energized, the open / close valve is kept open, and the fluid is transferred from the pump to the pressing fluid bag through the first flow path. And a preliminary supply step of supplying a predetermined amount of the fluid from the pump or the first flow path through the second flow path,
A switching step of switching the solenoid valve from an open state to a closed state by energizing the solenoid coil;
While maintaining the on-off valve in a closed state, the pressure control unit supplies the fluid to the pressing fluid bag from the pump through the first flow path and compresses the measurement site, while the blood pressure calculation unit A blood pressure calculation step for calculating a blood pressure based on the pressure of the fluid contained in the measurement fluid bag,
The energization amount of the solenoid coil is set to be smaller than the energization amount of the solenoid coil immediately after being switched to the closed state during the period of being kept in the closed state.
 この血圧測定方法では、まず、上記本体とこの本体から延在するカフとが一体に被測定部位に装着された装着状態で、上記ソレノイドコイルを無通電状態にして上記開閉弁を開状態に保ち、上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給するとともに、上記ポンプまたは第1の流路から上記第2の流路を通して上記流体を予め定められた量だけ供給する(予備供給ステップ)。次に、上記ソレノイドコイルを通電状態にして上記開閉弁を開状態から閉状態に切り換える(切換ステップ)。次に、上記開閉弁を閉状態に保ち、上記圧力制御部によって上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記被測定部位を圧迫しながら、上記血圧算出部によって上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する(血圧算出第3ステップ)。 In this blood pressure measurement method, first, with the main body and the cuff extending from the main body being integrally attached to the measurement site, the solenoid coil is not energized and the on-off valve is kept open. The fluid is supplied from the pump to the pressing fluid bag through the first flow path, and the fluid is supplied in a predetermined amount from the pump or the first flow path through the second flow path. (Preliminary supply step). Next, the solenoid coil is energized to switch the on-off valve from the open state to the closed state (switching step). Next, the blood pressure is maintained while the on-off valve is kept closed and the pressure control unit supplies the fluid to the pressing fluid bag from the pump through the first flow path to compress the measurement site. The blood pressure is calculated based on the pressure of the fluid contained in the fluid bag for measurement by the calculation unit (blood pressure calculation third step).
 ここで、上記血圧計では、上記第2の流路において、上記開閉弁は、上記ダイアフラムの背面が上記ポンプに連通する上流側、上記第1の流体出入口が上記測定用流体袋に連通する下流側に向けられて介挿されている。したがって、上記開閉弁を開状態から閉状態に切り換えられ(切換ステップ)、上記圧力制御部によって上記閉状態が保たれている期間中、この閉状態を維持するために、上記付勢部による付勢力に抗して上記ソレノイドコイルが発生すべき磁力が少なくて済む。そこで、この血圧測定方法では、上記閉状態に保たれている期間中に、この閉状態に切り換えられた直後の上記ソレノイドコイルの通電量に比して、上記ソレノイドコイルの通電量を少なく設定する。これによって、上記電磁弁の上記ソレノイドコイルに対する通電量が少なくて済み、省電力化を図ることができる。 Here, in the sphygmomanometer, in the second flow path, the open / close valve is configured such that the rear surface of the diaphragm communicates with the pump upstream, and the first fluid inlet / outlet communicates with the measurement fluid bag. It is directed to the side. Therefore, the on / off valve is switched from the open state to the closed state (switching step), and during the period in which the closed state is maintained by the pressure control unit, the biasing unit applies the bias to maintain the closed state. The magnetic force to be generated by the solenoid coil against the force is small. Therefore, in this blood pressure measurement method, the energization amount of the solenoid coil is set to be smaller than the energization amount of the solenoid coil immediately after switching to the closed state during the period in which the closed state is maintained. . As a result, the energization amount of the solenoid valve to the solenoid coil is small, and power saving can be achieved.
 さらに別の局面では、この開示の機器は、
 被測定部位の血圧を測定可能な機器であって、
 本体と、
 上記本体から延在し、被測定部位に装着されるカフと、
 上記本体に搭載された、上記カフに流体を供給するためのポンプと、
 上記本体に搭載された上記電磁弁と、
 上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
 上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
を備えたことを特徴とする。
In yet another aspect, the device of this disclosure is
A device capable of measuring the blood pressure of a measurement site,
The body,
A cuff that extends from the main body and is attached to the measurement site;
A pump mounted on the body for supplying fluid to the cuff;
The solenoid valve mounted on the body;
A pressure controller that controls the pressure of the cuff by supplying fluid to the cuff by the pump and / or discharging the fluid from the cuff through the solenoid valve;
And a blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the cuff.
 この開示の機器では、典型的には、本体とカフとが一体に、被測定部位に装着される。この装着状態で、圧力制御部が、上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する。血圧算出部は、上記カフに収容された上記流体の圧力に基づいて血圧を算出する(オシロメトリック法)。ここで、この機器では、上記電磁弁は、本開示の小型に構成され得る電磁弁からなっている。したがって、上記本体、ひいては機器全体を、小型に構成でき、また、省電力化を図ることができる。 In the device of this disclosure, typically, the main body and the cuff are integrally attached to the measurement site. In this mounted state, the pressure control unit supplies the fluid to the cuff by the pump and / or discharges the fluid from the cuff through the electromagnetic valve to control the pressure of the cuff. The blood pressure calculation unit calculates blood pressure based on the pressure of the fluid contained in the cuff (oscillometric method). Here, in this device, the solenoid valve is composed of a solenoid valve that can be configured in a small size according to the present disclosure. Therefore, the main body, and thus the entire device, can be configured in a small size, and power can be saved.
 以上より明らかなように、この発明の電磁弁、血圧計、および機器は、小型に構成可能で省電力化を図ることができる。また、この発明の血圧測定方法によれば、上記血圧計の省電力化を図ることができる。 As apparent from the above, the solenoid valve, blood pressure monitor, and device of the present invention can be configured in a small size and can save power. Further, according to the blood pressure measurement method of the present invention, power saving of the sphygmomanometer can be achieved.
この発明の一実施形態の電磁弁の外観を示す斜視図である。It is a perspective view which shows the external appearance of the solenoid valve of one Embodiment of this invention. 上記電磁弁を分解状態で斜めから見たところを示す図である。It is a figure which shows the place which looked at the said solenoid valve from the diagonal in the decomposition | disassembly state. 図2のものを別の方向から見たところを示す図である。It is a figure which shows the place which looked at the thing of FIG. 2 from another direction. 上記電磁弁を流体出入口を含む面で切断したときの断面構造の一例(実施例1)を示す図である。It is a figure which shows an example (Example 1) of a cross-section when the said solenoid valve is cut | disconnected by the surface containing a fluid inlet / outlet. 上記実施例1の電磁弁のケース内に設けられたダイアフラムの平面形状を示す図である。It is a figure which shows the planar shape of the diaphragm provided in the case of the solenoid valve of the said Example 1. FIG. 上記実施例1の電磁弁が開状態にあるときに、この電磁弁を通る流体の流れを示す図である。It is a figure which shows the flow of the fluid which passes along this solenoid valve, when the solenoid valve of the said Example 1 exists in an open state. 上記実施例1の電磁弁が閉状態にあるときに、この電磁弁の各部に加わる力を示す図である。It is a figure which shows the force added to each part of this solenoid valve, when the solenoid valve of the said Example 1 exists in a closed state. 図1~図3に示した電磁弁を流体出入口を含む面で切断したときの断面構造の別の例(実施例2)を示す図である。FIG. 4 is a diagram showing another example (Example 2) of a cross-sectional structure when the electromagnetic valve shown in FIGS. 1 to 3 is cut along a plane including a fluid inlet / outlet. 上記実施例2の電磁弁のケース内に設けられたダイアフラムの平面形状を示す図である。It is a figure which shows the planar shape of the diaphragm provided in the case of the solenoid valve of the said Example 2. FIG. 上記実施例2の電磁弁が開状態にあるときに、この電磁弁を通る流体の流れを示す図である。It is a figure which shows the flow of the fluid which passes along this solenoid valve, when the solenoid valve of the said Example 2 exists in an open state. 上記実施例2の電磁弁が閉状態にあるときに、この電磁弁の各部に加わる力を示す図である。It is a figure which shows the force added to each part of this solenoid valve, when the solenoid valve of the said Example 2 exists in a closed state. 図4に対応して、比較例の電磁弁を流体出入口を含む面で切断したときの断面構造を示す図である。FIG. 5 is a view showing a cross-sectional structure when the electromagnetic valve of the comparative example is cut along a plane including a fluid inlet / outlet corresponding to FIG. 上記比較例の電磁弁のケース内に設けられたダイアフラムの平面形状を示す図である。It is a figure which shows the planar shape of the diaphragm provided in the case of the solenoid valve of the said comparative example. 上記比較例の電磁弁が開状態にあるときに、この電磁弁を通る流体の流れを示す図である。It is a figure which shows the flow of the fluid which passes along this solenoid valve, when the solenoid valve of the said comparative example is in an open state. 上記比較例の電磁弁が閉状態にあるときに、この電磁弁の各部に加わる力を示す図である。It is a figure which shows the force added to each part of this solenoid valve, when the solenoid valve of the said comparative example is in a closed state. 上記各電磁弁を開閉弁として備えた、この発明の一実施形態の血圧計のブロック構成を示す図である。It is a figure which shows the block configuration of the sphygmomanometer of one Embodiment of this invention provided with each said solenoid valve as an on-off valve. 上記血圧計の動作フローを示す図である。It is a figure which shows the operation | movement flow of the said blood pressure meter. 図17Aの動作フローに含まれた加圧速度制御のフローを示す図である。It is a figure which shows the flow of the pressurization speed control contained in the operation | movement flow of FIG. 17A. 図18(A)は、上記開閉弁が実施例1の電磁弁であるときの、電磁弁の駆動力と開度との関係を示す図である。図18(B)は、上記開閉弁が実施例2の電磁弁であるときの、電磁弁の駆動力と開度との関係を示す図である。図18(C)は、上記開閉弁が比較例の電磁弁であるときの、電磁弁の駆動力と開度との関係の軌跡を示す図である。FIG. 18A is a diagram showing the relationship between the driving force of the solenoid valve and the opening when the on-off valve is the solenoid valve of the first embodiment. FIG. 18B is a diagram showing the relationship between the driving force of the solenoid valve and the opening when the on-off valve is the solenoid valve of the second embodiment. FIG. 18C is a diagram showing a trajectory of the relationship between the driving force and the opening degree of the solenoid valve when the on-off valve is a comparative solenoid valve. 図19(A)、図19(B)は、図1~図3に示した電磁弁のケースを変形してなる一例の電磁弁を示す図である。FIGS. 19A and 19B are diagrams showing an example of an electromagnetic valve obtained by modifying the case of the electromagnetic valve shown in FIGS. 図20(A)、図20(B)は、図1~図3に示した電磁弁のケースを変形してなる別の例の電磁弁を示す図である。20 (A) and 20 (B) are diagrams showing another example of the solenoid valve obtained by modifying the case of the solenoid valve shown in FIGS. 1 to 3.
 以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、この発明の一実施形態の電磁弁(全体を符号2で示す。)の外観を斜めから見たところを示している。また、図2は、上記電磁弁2を分解状態で示している。図3は、図2のものを別の方向から見たところを示している。理解の容易のために、図1~図3および後述の図4~図15、図19~図20では、XYZ直交座標を併せて示している。以下では、便宜上、Z方向を厚さ方向、XY方向を平面方向と呼ぶことがある。 FIG. 1 shows a perspective view of an external appearance of a solenoid valve (the whole is denoted by reference numeral 2) according to an embodiment of the present invention. FIG. 2 shows the electromagnetic valve 2 in an exploded state. FIG. 3 shows that FIG. 2 is viewed from another direction. For easy understanding, XYZ orthogonal coordinates are also shown in FIGS. 1 to 3 and FIGS. 4 to 15 and 19 to 20 described later. Hereinafter, for convenience, the Z direction may be referred to as a thickness direction, and the XY direction may be referred to as a plane direction.
 (電磁弁の構成)
 図1によって分かるように、この電磁弁2は筐体としてのケース10を備えている。このケース10は、厚さ方向片側(+Z側)に配された蓋ケース10Aと、厚さ方向反対側(-Z側)に配された主ケース10Bとを含んでいる。この例では、蓋ケース10Aは、外壁をなす円板状の第2の端壁10-2と、第2の端壁10-2の中央から外部(+Z側)へ突出した円筒部10a(流体を通すための第2の流体出入口12をなす。)とを有している。主ケース10Bは、矩形(この例では正方形)の板状の第1の端壁10-1と、この第1の端壁10-1に連なる略円筒状の外周壁10-3とを有している。図3に示すように、第1の端壁10-1の中央には、後述するポールピース4が嵌合される貫通孔10wが設けられている。また、第1の端壁10-1の1辺(この例では、-Y側の辺)には、配線(図示しないリード線)が通される貫通孔10uが設けられている。第1の端壁10-1の外面の四隅には、それぞれ金属(銅など)からなる接続端子71,72,73,74(参照)が一体に設けられている。
(Configuration of solenoid valve)
As can be seen from FIG. 1, the electromagnetic valve 2 includes a case 10 as a housing. The case 10 includes a lid case 10A disposed on one side in the thickness direction (+ Z side) and a main case 10B disposed on the opposite side in the thickness direction (−Z side). In this example, the lid case 10A includes a disk-shaped second end wall 10-2 forming an outer wall, and a cylindrical portion 10a (fluid) protruding from the center of the second end wall 10-2 to the outside (+ Z side). And a second fluid inlet / outlet port 12 for passing the fluid. The main case 10B has a rectangular (in this example, square) plate-shaped first end wall 10-1 and a substantially cylindrical outer peripheral wall 10-3 connected to the first end wall 10-1. ing. As shown in FIG. 3, a through hole 10w into which a pole piece 4 described later is fitted is provided in the center of the first end wall 10-1. In addition, a through hole 10u through which a wiring (a lead wire (not shown)) passes is provided on one side (in this example, the side on the -Y side) of the first end wall 10-1. Connection terminals 71, 72, 73, and 74 (reference) made of metal (such as copper) are integrally provided at the four corners of the outer surface of the first end wall 10-1.
 この例では、蓋ケース10Aは、非磁性のプラスチック材料を一体成形して形成されている。また、主ケース10Bは、接続端子71,72,73,74とともに非磁性のプラスチック材料を一体成形(インサート成形)して形成されている。この例では、蓋ケース10Aの第2の端壁10-2は、主ケース10Bの外周壁10-3に対して溶着されている。ただし、これに限られるものではなく、第2の端壁10-2は外周壁10-3に対してねじ込み式に取り付けられていてもよい。 In this example, the lid case 10A is formed by integrally molding a nonmagnetic plastic material. The main case 10B is formed by integrally molding (insert molding) a nonmagnetic plastic material together with the connection terminals 71, 72, 73, and 74. In this example, the second end wall 10-2 of the lid case 10A is welded to the outer peripheral wall 10-3 of the main case 10B. However, the present invention is not limited to this, and the second end wall 10-2 may be screwed to the outer peripheral wall 10-3.
 図2、図3によって分かるように、この電磁弁2のケース10の内部には、ヨーク3と、このヨーク3(の端板部3b)に直交して一体に取り付けられたポールピース4と、ソレノイドコイル7と、付勢部としてのコイルばね5と、ダイアフラム6と、このダイアフラム6に一体に形成された弾性体8とが設けられている。 As can be seen from FIG. 2 and FIG. 3, inside the case 10 of the electromagnetic valve 2, a yoke 3 and a pole piece 4 integrally attached perpendicularly to the yoke 3 (end plate portion 3 b), A solenoid coil 7, a coil spring 5 as an urging portion, a diaphragm 6, and an elastic body 8 formed integrally with the diaphragm 6 are provided.
 ヨーク3は、図2に示すように、環状(この例では、円形)の周縁をもつ端板部3bと、この端板部3bの周縁に連なり、端板部3bの片側(+Z側)に隣り合う空間SP1を環状に取り囲む側板部3cとを含んでいる。図3に示すように、端板部3bの中央には貫通孔3wが設けられ、この貫通孔3wにポールピース4が嵌合されている。端板部3bの周縁部のうち、主ケース10Bの第1の端壁10-1の貫通孔10uに対応する部分には、配線(図示しないリード線)が通される貫通孔3uが設けられている。なお、ヨーク3の端板部3bの周縁の形状は、円形に限られるものではなく、丸角四角形(角が丸くされた四角形)などであってもよい。側板部3cの側壁部の環状の形状も同様である。 As shown in FIG. 2, the yoke 3 is connected to the end plate portion 3b having an annular (circular in this example) peripheral edge, and the peripheral edge of the end plate portion 3b, and on one side (+ Z side) of the end plate portion 3b. And a side plate portion 3c surrounding the adjacent space SP1 in a ring shape. As shown in FIG. 3, a through hole 3w is provided in the center of the end plate portion 3b, and a pole piece 4 is fitted in the through hole 3w. A portion of the peripheral edge of the end plate portion 3b corresponding to the through hole 10u of the first end wall 10-1 of the main case 10B is provided with a through hole 3u through which wiring (lead wire not shown) is passed. ing. The shape of the peripheral edge of the end plate portion 3b of the yoke 3 is not limited to a circle, and may be a rounded square (a square with rounded corners). The same applies to the annular shape of the side wall portion of the side plate portion 3c.
 この例では、ヨーク3の側板部3cの外径は、主ケース10Bの外周壁10-3の内径よりも小さく設定されている。これにより、図4に示す組立状態で、ヨーク3の側板部3cと主ケース10Bの外周壁10-3との間に、コイルばね5を収容する環状の空間SP2が形成される。 In this example, the outer diameter of the side plate portion 3c of the yoke 3 is set smaller than the inner diameter of the outer peripheral wall 10-3 of the main case 10B. Thereby, in the assembled state shown in FIG. 4, an annular space SP2 for accommodating the coil spring 5 is formed between the side plate portion 3c of the yoke 3 and the outer peripheral wall 10-3 of the main case 10B.
 図2、図3によって分かるように、ポールピース4は、全体として略円筒状の形状を有している。このポールピース4は、軸方向(Z方向)に関して、ヨーク3の貫通孔3wに嵌合して外部へ突出する突起部4aと、この突起部4aの外径よりも大きい外径をもつ主部4bとを備えている。つまり、このポールピース4は、ヨーク3の端板部3bに直交して、片側(+Z側)の空間SP1に存する一端部4eから反対側(-Z側)の他端部4fまで一方向(Z方向)に延在している。また、この例では、ポールピース4は、一端部4eに、ダイアフラム6の弾性体8に向かって開いた円形の平面形状をもつ窪み4dを有している。この窪み4dの底に円形の開口4oが開いている。ポールピース4の他端部4fに、ポールピース4内を通して開口4oと連通した円形の第1の流体出入口11が設けられている。 2 and 3, the pole piece 4 has a substantially cylindrical shape as a whole. The pole piece 4 has a projection 4a that fits into the through-hole 3w of the yoke 3 and protrudes outside in the axial direction (Z direction), and a main portion having an outer diameter larger than the outer diameter of the projection 4a. 4b. That is, this pole piece 4 is orthogonal to the end plate portion 3b of the yoke 3 in one direction (from one end portion 4e existing in the space SP1 on one side (+ Z side) to the other end portion 4f on the opposite side (−Z side) ( Z direction). Further, in this example, the pole piece 4 has a recess 4d having a circular planar shape that opens toward the elastic body 8 of the diaphragm 6 at one end 4e. A circular opening 4o is opened at the bottom of the recess 4d. A circular first fluid inlet / outlet port 11 communicating with the opening 4 o through the pole piece 4 is provided at the other end portion 4 f of the pole piece 4.
 この例では、ヨーク3とポールピース4は、それぞれ磁性材料であるSUM24L(硫黄複合快削鋼)からなっている。また、この例では、ヨーク3の貫通孔3wにポールピース4の突起部4aが圧入されて、ヨーク3とポールピース4は一体に構成されている。これにより、ポールピース4とヨーク3との間の磁気抵抗が小さく、それらを経路とする磁気回路の効率が高まる。また、ポールピース4とヨーク3との間の気密性を高めて、漏気を防ぐことができる。なお、ヨーク3とポールピース4とを空間的に連続した一体物として構成してもよい。 In this example, the yoke 3 and the pole piece 4 are each made of SUM24L (sulfur composite free cutting steel) which is a magnetic material. In this example, the protrusion 4a of the pole piece 4 is press-fitted into the through hole 3w of the yoke 3, so that the yoke 3 and the pole piece 4 are integrally formed. Thereby, the magnetic resistance between the pole piece 4 and the yoke 3 is small, and the efficiency of the magnetic circuit using them as a path is increased. Moreover, the airtightness between the pole piece 4 and the yoke 3 can be improved, and air leakage can be prevented. Note that the yoke 3 and the pole piece 4 may be configured as a spatially continuous unit.
 この例では、図4中に示すように、ポールピース4の一端部4eのうち開口4oの周りの周端面4e1の全周に、弾性を有するコーティング9Aが設けられている(この例を特に「実施例1」と呼ぶ。)。 In this example, as shown in FIG. 4, a coating 9 </ b> A having elasticity is provided on the entire periphery of the peripheral end surface 4 e 1 around the opening 4 o in the one end portion 4 e of the pole piece 4. Called Example 1).
 図2、図3によって分かるように、ソレノイドコイル7は、圧肉の円筒状の外形を有している。このソレノイドコイル7の寸法は、ポールピース4とヨーク3の側板部3cとの間の環状の空間SP1に収容され得るように設定されている。このソレノイドコイル7から、図示しない一対のリード線が延在している。 As can be seen from FIGS. 2 and 3, the solenoid coil 7 has a compact cylindrical outer shape. The dimensions of the solenoid coil 7 are set such that the solenoid coil 7 can be accommodated in an annular space SP1 between the pole piece 4 and the side plate portion 3c of the yoke 3. A pair of lead wires (not shown) extend from the solenoid coil 7.
 コイルばね5は、略円筒形の輪郭を有している。このコイルばね5は、図4に示す組立状態で、ヨーク3の側板部3cと主ケース10Bの外周壁10-3との間の環状の空間SP2に沿って配置されて、ダイアフラム6を、一方向(Z方向)に並行移動させる態様で、ポールピース4の一端部4eから離間する向き(すなわち、+Z向き)に付勢する。図4中には、コイルばね5がダイアフラム6を付勢する付勢力f2が矢印で模式的に示されている。これにより、付勢部が少ない部品(すなわち、コイルばね5)で簡単に構成され得る。 The coil spring 5 has a substantially cylindrical outline. The coil spring 5 is disposed along the annular space SP2 between the side plate portion 3c of the yoke 3 and the outer peripheral wall 10-3 of the main case 10B in the assembled state shown in FIG. In a manner of parallel movement in the direction (Z direction), the pole piece 4 is biased in a direction away from the one end 4e (that is, + Z direction). In FIG. 4, a biasing force f <b> 2 in which the coil spring 5 biases the diaphragm 6 is schematically indicated by an arrow. Thereby, it can be simply comprised with components (namely, coil spring 5) with few energizing parts.
 図2、図3によって分かるように、ダイアフラム6は、略円板状の外形を有している。この例(実施例1)では、図5(ダイアフラム6の平面形状を示す)によって分かるように、ダイアフラム6の径方向に関して中心6cと周縁部6eとの間で、かつ、周方向に関して等角度ピッチ(この例では、90°ピッチ)で、4つの円形の貫通孔6s,6t,6u,6vが設けられている。これにより、ダイアフラム6の背面(+Z側を向いた面)6a側と内面(-Z側を向いた面)6b側との間で貫通孔6s,6t,6u,6vを通して流体が流通可能になっている。ダイアフラム6は、中心6cから周縁部6eへ向かって、貫通孔6s,6t,6u,6vが存在する方位では空間的に部分的に途切れている。この結果、この例では、ダイアフラム6は、中心6cから周縁部6eへ向かって、少なくともポールピース4の一端部4eのうち開口4oの周りの周端面4e1(コーティング9Aが設けられている部分に相当)の全周を覆うように空間的に連続的に延在している。これにより、後述の閉状態のとき、ダイアフラム6の内面6bは、コーティング9Aを介してポールピース4の一端部4eの周端面4e1に密接する。 2 and 3, the diaphragm 6 has a substantially disk-shaped outer shape. In this example (Embodiment 1), as can be seen from FIG. 5 (showing the planar shape of the diaphragm 6), an equiangular pitch between the center 6c and the peripheral edge 6e with respect to the radial direction of the diaphragm 6 and with respect to the circumferential direction. In this example, four circular through holes 6s, 6t, 6u, 6v are provided. As a result, fluid can flow through the through holes 6s, 6t, 6u, and 6v between the rear surface (surface facing the + Z side) 6a side and the inner surface (surface facing the -Z side) 6b side of the diaphragm 6. ing. The diaphragm 6 is spatially partially interrupted in the direction in which the through holes 6s, 6t, 6u, and 6v exist from the center 6c toward the peripheral edge 6e. As a result, in this example, the diaphragm 6 corresponds to a peripheral end surface 4e1 (a portion provided with the coating 9A) around the opening 4o in at least one end portion 4e of the pole piece 4 from the center 6c toward the peripheral edge portion 6e. ) Are continuously extended spatially so as to cover the entire circumference. Thereby, in the closed state described later, the inner surface 6b of the diaphragm 6 is in close contact with the peripheral end surface 4e1 of the one end portion 4e of the pole piece 4 through the coating 9A.
 図4によって分かるように、ダイアフラム6は、ヨーク3の側板部3cの環状縁3eにまたがる寸法をもっている。この結果、ダイアフラム6の外径は、コイルばね5の外径と略一致している。ダイアフラム6が外周壁10-3内で一方向(Z方向)に並行移動できるように、ダイアフラム6の外径と主ケース10Bの外周壁10-3の内径との間には、若干の隙間が設けられている。 As can be seen from FIG. 4, the diaphragm 6 has a dimension extending over the annular edge 3 e of the side plate portion 3 c of the yoke 3. As a result, the outer diameter of the diaphragm 6 substantially matches the outer diameter of the coil spring 5. There is a slight gap between the outer diameter of the diaphragm 6 and the inner diameter of the outer peripheral wall 10-3 of the main case 10B so that the diaphragm 6 can move in one direction (Z direction) within the outer peripheral wall 10-3. Is provided.
 この例では、ダイアフラム6は、上述のように略円板状であるとともに、磁性材料としてのパーマロイ(Ni-Feの合金)からなっている。これにより、ダイアフラム6は、例えば棒状の可動鉄心に比して、軽く構成され得る。その場合、鉛直方向に対して電磁弁2の姿勢(向き)が様々に変化したとき、電磁弁2の姿勢によって特性(例えば、通電電流対流量特性)が影響を受け難くなる。 In this example, the diaphragm 6 is substantially disc-shaped as described above, and is made of permalloy (Ni—Fe alloy) as a magnetic material. Thereby, the diaphragm 6 can be comprised lightly compared with a rod-shaped movable iron core, for example. In that case, when the posture (orientation) of the electromagnetic valve 2 changes in various directions with respect to the vertical direction, the characteristics (for example, the current-flow-current characteristic) are hardly affected by the posture of the electromagnetic valve 2.
 図2、図3によって分かるように、ダイアフラム6の中央には、ポールピース4の一端部4eの窪み4d内に形成された開口4oに対向して、開口4oを塞ぐための略円柱状の弾性体8が一体に取り付けられている。この例では、弾性体8は、シリコーンゴムからなる。しかしながら、これに限られるものではなく、弾性体8は、ニトリルゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)などの他の弾性材料(可撓性材料)からなっていてもよい。この弾性体8の外径は、開口4oの直径よりも大きく、かつ、窪み4dの内径よりも小さく設定されている。これにより、後述の閉状態のとき、弾性体8は、ポールピース4の一端部4eの窪み4dに収容された状態で、開口4oを確実に塞ぐことができる。 As can be seen from FIGS. 2 and 3, the diaphragm 6 has a substantially cylindrical elastic member for closing the opening 4 o opposite to the opening 4 o formed in the recess 4 d of the one end 4 e of the pole piece 4. The body 8 is attached integrally. In this example, the elastic body 8 is made of silicone rubber. However, it is not restricted to this, The elastic body 8 may consist of other elastic materials (flexible material), such as nitrile rubber (NBR) and ethylene propylene diene rubber (EPDM). The outer diameter of the elastic body 8 is set larger than the diameter of the opening 4o and smaller than the inner diameter of the recess 4d. Thereby, the elastic body 8 can block | close the opening 4o reliably in the state accommodated in the hollow 4d of the one end part 4e of the pole piece 4 at the time of the closed state mentioned later.
 また、この例では、弾性体8は、インサート成形によってダイアフラム6と一体に取り付けられている。これにより、ダイアフラム6と弾性体8を簡単に一体に取り付けることができる。しかしながら、これに限られるものではなく、ダイアフラム6へ弾性体8を、圧入、接着などによって取り付けてもよい。 In this example, the elastic body 8 is integrally attached to the diaphragm 6 by insert molding. Thereby, the diaphragm 6 and the elastic body 8 can be easily attached integrally. However, the invention is not limited to this, and the elastic body 8 may be attached to the diaphragm 6 by press-fitting, bonding, or the like.
 (電磁弁の組み立て手順)
 この電磁弁2の組み立ては、図2、図3の状態(分解状態)から、例えば次のような手順で行われる。
 i) まず、主ケース10Bにヨーク3とポールピース4を収容する。その際、主ケース10Bの第1の端壁10-1の貫通孔10wに、ポールピース4の突起部4aを通して嵌合させる。これとともに、主ケース10Bの第1の端壁10-1の貫通孔10uに、ヨーク3の端板部3bの貫通孔3uを対応させる。
 ii) 次に、ソレノイドコイル7を、ポールピース4とヨーク3の側板部3cとの間の環状の空間SP1に収容する。その際、ソレノイドコイル7から延在する一対のリード線(図示せず)を、ヨーク3の端板部3bの貫通孔3uと主ケース10Bの第1の端壁10-1の貫通孔10uとを通して、主ケース10Bの外部に引き出す。
 iii) 次に、引き出した一対のリード線を、第1の端壁10-1の外面に設けられた4つの接続端子71,72,73,74のうちのいずれか2つに1本ずつ半田付けする。なお、4つの接続端子71,72,73,74のうちの残りの2つはダミー端子として残される。
 iv) 次に、主ケース10Bにヨーク3を、また、ヨーク3にソレノイドコイル7を、それぞれ接着剤で気密に接着する。その際、上記一対のリード線が通っているヨーク3の端板部3bの貫通孔3u、および/または、主ケース10Bの第1の端壁10-1の貫通孔10uを接着剤で充填して、気密性を得る。
 v) 次に、コイルばね5を、ヨーク3の側板部3cと主ケース10Bの外周壁10-3との間の環状の空間SP2(図4参照)に収容する。
 vi) 続いて、ダイアフラム6を、コイルばね5の片側(+Z側)から、空間SP1を介してヨーク3の端板部3bに対向するように配する。さらに、蓋ケース10Aでダイアフラム6をコイルばね5の付勢力f2に抗して押しながら、蓋ケース10Aの第2の端壁10-2を、主ケース10Bの外周壁10-3に対して超音波溶着法によって、気密に溶着する。
 このようにして、図4に示すように、電磁弁2が組み立てられる。
(Solenoid valve assembly procedure)
The assembly of the electromagnetic valve 2 is performed, for example, in the following procedure from the state shown in FIGS. 2 and 3 (disassembled state).
i) First, the yoke 3 and the pole piece 4 are accommodated in the main case 10B. At this time, the pole piece 4 is fitted into the through hole 10w of the first end wall 10-1 of the main case 10B through the protrusion 4a. At the same time, the through hole 3u of the end plate portion 3b of the yoke 3 is made to correspond to the through hole 10u of the first end wall 10-1 of the main case 10B.
ii) Next, the solenoid coil 7 is accommodated in the annular space SP1 between the pole piece 4 and the side plate portion 3c of the yoke 3. At that time, a pair of lead wires (not shown) extending from the solenoid coil 7 are connected to the through hole 3u of the end plate portion 3b of the yoke 3 and the through hole 10u of the first end wall 10-1 of the main case 10B. And is pulled out of the main case 10B.
iii) Next, a pair of lead wires drawn out are soldered one by one to any two of the four connection terminals 71, 72, 73, 74 provided on the outer surface of the first end wall 10-1. Attach. The remaining two of the four connection terminals 71, 72, 73, 74 are left as dummy terminals.
iv) Next, the yoke 3 is bonded to the main case 10B, and the solenoid coil 7 is bonded to the yoke 3 in an airtight manner with an adhesive. At that time, the through hole 3u of the end plate portion 3b of the yoke 3 through which the pair of lead wires pass and / or the through hole 10u of the first end wall 10-1 of the main case 10B are filled with an adhesive. And get airtight.
v) Next, the coil spring 5 is accommodated in the annular space SP2 (see FIG. 4) between the side plate portion 3c of the yoke 3 and the outer peripheral wall 10-3 of the main case 10B.
vi) Subsequently, the diaphragm 6 is arranged from one side (+ Z side) of the coil spring 5 so as to face the end plate portion 3b of the yoke 3 through the space SP1. Further, while pushing the diaphragm 6 against the urging force f2 of the coil spring 5 with the lid case 10A, the second end wall 10-2 of the lid case 10A exceeds the outer peripheral wall 10-3 of the main case 10B. It is welded airtight by sonic welding.
In this way, the electromagnetic valve 2 is assembled as shown in FIG.
 この図4の組立状態では、ケース10は、密閉ケースとして、ポールピース4の突起部4a(他端部4fを含む。)が外部に露出した状態で、ヨーク3と、ポールピース4の主部4bと、ソレノイドコイル7と、ダイアフラム6(および弾性体8)と、コイルばね5とを、一括して気密に覆う。主ケース10Bの第1の端壁10-1はヨーク3の端板部3bの外面(-Z側を向いた面)に沿う一方、蓋ケース10Aの第2の端壁10-2はダイアフラム6の背面(+Z側を向いた面)6aに沿った状態になる。特に、この例では、第1の流体出入口11をなすポールピース4の突起部4aが第1の端壁10-1から外部へ突出し、また、第2の流体出入口12をなす円筒部10aが第2の端壁10-2から外部へ突出している。したがって、それらの第1の流体出入口11、第2の流体出入口12をそれぞれ流路の例えば下流側、上流側に流体流通可能に容易に接続することができる。これにより、この電磁弁2は、流路に容易に介挿され得る。 In the assembled state of FIG. 4, the case 10 is a sealed case, and the yoke 3 and the main part of the pole piece 4 with the protrusion 4 a (including the other end 4 f) of the pole piece 4 exposed to the outside. 4b, the solenoid coil 7, the diaphragm 6 (and the elastic body 8), and the coil spring 5 are collectively and airtightly covered. The first end wall 10-1 of the main case 10B is along the outer surface (the surface facing the -Z side) of the end plate portion 3b of the yoke 3, while the second end wall 10-2 of the lid case 10A is the diaphragm 6 It is in a state along the rear surface (surface facing the + Z side) 6a. In particular, in this example, the protrusion 4a of the pole piece 4 that forms the first fluid inlet / outlet 11 protrudes from the first end wall 10-1 to the outside, and the cylindrical portion 10a that forms the second fluid inlet / outlet 12 2 projecting outward from the end wall 10-2. Accordingly, the first fluid inlet / outlet port 11 and the second fluid inlet / outlet port 12 can be easily connected to, for example, the downstream side and the upstream side of the flow path so as to allow fluid flow. Thereby, this electromagnetic valve 2 can be easily inserted in the flow path.
 (電磁弁の開閉動作)
 この電磁弁2が使用される場合、上述のように第1の流体出入口11、第2の流体出入口12をそれぞれ流路の下流側、上流側に流体流通可能に接続することによって、電磁弁2が流路に介挿される。図6に示すように、この電磁弁2では、ソレノイドコイル7が無通電状態にある非作動時には、コイルばね5による付勢力f2によって、ダイアフラム6がポールピース4の一端部4eから離間し、これにより、弾性体8がポールピース4の一端部4eの開口4oから離間して上記開口4oが開放された開状態になる。つまり、この電磁弁2は常開弁となる。
(Solenoid valve opening / closing operation)
When this electromagnetic valve 2 is used, as described above, the first fluid inlet / outlet port 11 and the second fluid inlet / outlet port 12 are connected to the downstream side and the upstream side of the flow path so as to allow fluid flow, respectively. Is inserted into the flow path. As shown in FIG. 6, in this solenoid valve 2, when the solenoid coil 7 is in a non-energized state, the diaphragm 6 is separated from the one end portion 4e of the pole piece 4 by the biasing force f2 by the coil spring 5. As a result, the elastic body 8 is separated from the opening 4o of the one end 4e of the pole piece 4, and the opening 4o is opened. That is, this solenoid valve 2 is a normally open valve.
 この開状態にある場合は、この電磁弁2を通した流体の流通が許容される。この電磁弁2が開状態であれば、例えば、第2の流体出入口12から矢印LA1で示すように流体が入る。この流体は、矢印LA2s,LA2uで示すように、ダイアフラム6の貫通孔6s,6t,6u,6vを通り、続いて、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を通り、一端部4eの開口4oを経て、矢印LA3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2を通して流体が流通し得る。 When in this open state, fluid flow through the solenoid valve 2 is allowed. If the electromagnetic valve 2 is in an open state, for example, fluid enters from the second fluid inlet / outlet port 12 as indicated by an arrow LA1. This fluid passes through the through holes 6s, 6t, 6u, 6v of the diaphragm 6 as shown by the arrows LA2s, LA2u, and subsequently, a gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8. And flows out from the first fluid inlet / outlet port 11 as shown by an arrow LA3 through the opening 4o of the one end 4e. Thus, the fluid can flow through the electromagnetic valve 2 from the second fluid inlet / outlet 12 toward the first fluid inlet / outlet 11 or vice versa.
 ソレノイドコイル7が通電状態にある作動時には、図7に示すように、ソレノイドコイル7が発生する磁力F0(ダイアフラム6の各部に加わる磁力f0,f0,…の合力)によって、コイルばね5による付勢力f2とポールピース4の一端部4eの窪み4dから弾性体8が受ける反発力f2′(これらのf2とf2′の合力を抗力F2と表す。)に抗して、ダイアフラム6がポールピース4の一端部4eに接近し、これにより、弾性体8によってポールピース4の一端部4eの開口4oが塞がれた閉状態になり得る。具体的には、ソレノイドコイル7が通電状態(作動時)にあるとき、ソレノイドコイル7が発生する磁力線は、主に、例えば図7中に2点鎖線Mで示すように、ヨーク3の側板部3cを通して端板部3bの周縁に達し、端板部3bの周縁から端板部3bを通して端板部3bとポールピース4との直交箇所に達し、この直交箇所からポールピース4を通してポールピース4の一端部4eに達し、一端部4eからこの一端部4eとダイアフラム6との接近箇所に達し、さらに、ダイアフラム6を通してヨーク3の側板部3cの環状縁3eに達する経路(磁気回路)を循環する。ソレノイドコイル7に対する通電の向きが逆になれば、ソレノイドコイル7が発生する磁力線は、この経路を逆向きに循環する。これにより、ソレノイドコイル7は、ダイアフラム6に対してコイルばね5による付勢力f2に抗した磁力F0を発生する。この磁力F0によってダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれた閉状態になり得る。閉状態にある場合は、ポールピース4内を通した流体の流通は遮断される。このように、この電磁弁2では、ソレノイドコイル7が無通電状態(非作動時)であるか、ソレノイドコイル7が通電状態(作動時)であるかに応じて、開状態または閉状態になることができる。これにより、ポールピース4内、つまり、この電磁弁2を通した流体の流通を許容または遮断することができる。 When the solenoid coil 7 is energized, as shown in FIG. 7, the biasing force of the coil spring 5 is generated by the magnetic force F0 generated by the solenoid coil 7 (the resultant force of the magnetic forces f0, f0,... Applied to each part of the diaphragm 6). The diaphragm 6 is formed on the pole piece 4 against the repulsive force f2 ′ (the resultant force of these f2 and f2 ′ is expressed as a drag force F2) received by the elastic body 8 from f2 and the recess 4d of the end 4e of the pole piece 4. By approaching the one end portion 4e, the elastic body 8 can close the opening 4o of the one end portion 4e of the pole piece 4. Specifically, when the solenoid coil 7 is in an energized state (at the time of operation), the lines of magnetic force generated by the solenoid coil 7 are mainly the side plates of the yoke 3 as indicated by a two-dot chain line M in FIG. 3c reaches the periphery of the end plate portion 3b, reaches from the periphery of the end plate portion 3b through the end plate portion 3b to an orthogonal position between the end plate portion 3b and the pole piece 4, and passes through the pole piece 4 from this orthogonal position. It reaches one end 4e, reaches from the one end 4e to a position where the one end 4e approaches the diaphragm 6, and further circulates through a path (magnetic circuit) that reaches the annular edge 3e of the side plate 3c of the yoke 3 through the diaphragm 6. If the direction of energization to the solenoid coil 7 is reversed, the lines of magnetic force generated by the solenoid coil 7 circulate in this direction in the reverse direction. As a result, the solenoid coil 7 generates a magnetic force F <b> 0 against the urging force f <b> 2 by the coil spring 5 with respect to the diaphragm 6. Due to this magnetic force F0, the diaphragm 6 approaches the one end 4e of the pole piece 4, and the opening 4o can be closed by the elastic body 8. When in the closed state, the fluid flow through the pole piece 4 is blocked. As described above, the solenoid valve 2 is in an open state or a closed state depending on whether the solenoid coil 7 is in a non-energized state (during operation) or whether the solenoid coil 7 is in a conduction state (during operation). be able to. Thereby, the flow of the fluid through the pole piece 4, that is, through the electromagnetic valve 2 can be allowed or blocked.
 さらに、この電磁弁2では、閉状態のとき、ダイアフラム6の内面6bが、コーティング9Aを介してポールピース4の一端部4eの周端面4e1に密接する。したがって、閉状態をアシストすることができる。 Furthermore, in this solenoid valve 2, when closed, the inner surface 6b of the diaphragm 6 is in close contact with the peripheral end surface 4e1 of the one end 4e of the pole piece 4 through the coating 9A. Therefore, the closed state can be assisted.
 電磁弁2の開閉状態としては、閉状態と開状態との間に、ソレノイドの通電量に応じて流量が制御される中間状態が存在する。開状態から閉状態へ遷移するとき、ダイアフラム6の弾性体8が、ポールピース4の一端部4eの開口4oに接近する。これにより、安定した通電電流(または駆動電圧)対流量特性が得られる。 As the open / close state of the solenoid valve 2, there is an intermediate state in which the flow rate is controlled according to the energization amount of the solenoid between the closed state and the open state. When transitioning from the open state to the closed state, the elastic body 8 of the diaphragm 6 approaches the opening 4 o of the one end 4 e of the pole piece 4. Thereby, a stable energization current (or drive voltage) versus flow rate characteristic can be obtained.
 ここで、この電磁弁2では、流体の流通を許容または遮断するために、板状のダイアフラム6が、ヨーク3の端板部3bに対向した姿勢でポールピース4の一端部4eに対して接近または離間する向きに一方向(Z方向)に並行移動する構成になっている。すなわち、従来例(可動鉄心が棒状で、かつその長手方向に沿って移動する)とは異なり、この電磁弁2では、板状のダイアフラム6が、このダイアフラム6の板面に対して垂直な一方向(Z方向)に移動する。したがって、ダイアフラム6が移動する一方向(Z方向)に関して電磁弁2のサイズを小さくできる。この結果、電磁弁2を小型に構成できる。 Here, in this solenoid valve 2, the plate-like diaphragm 6 approaches the one end 4 e of the pole piece 4 in a posture facing the end plate 3 b of the yoke 3 in order to allow or block the fluid flow. Alternatively, it is configured to move in parallel in one direction (Z direction) in the direction of separation. That is, unlike the conventional example (in which the movable iron core is rod-shaped and moves along its longitudinal direction), in this solenoid valve 2, the plate-like diaphragm 6 is perpendicular to the plate surface of the diaphragm 6. Move in the direction (Z direction). Therefore, the size of the solenoid valve 2 can be reduced in one direction (Z direction) in which the diaphragm 6 moves. As a result, the electromagnetic valve 2 can be configured in a small size.
 特に、この電磁弁2では、ケース10の第1の端壁10-1から第2の端壁10-2までのサイズを小さく設定することによって、第1及び第2の端壁10-1,10-2に沿った偏平な外形をもつことができる。そのような外形は、この電磁弁2(ケース10)を例えば配線基板に沿って取り付けて、電磁弁2(ケース10)と配線基板とを併せて全体として偏平に構成するのに適する。 In particular, in the electromagnetic valve 2, the first and second end walls 10-1, 10-1, 10-2 are set by reducing the size of the case 10 from the first end wall 10-1 to the second end wall 10-2. It can have a flat outline along 10-2. Such an outer shape is suitable for mounting the electromagnetic valve 2 (case 10) along, for example, a wiring board and forming the electromagnetic valve 2 (case 10) and the wiring board together in a flat shape as a whole.
 この例では、図1に示すように、ケース10の厚さ(Z方向寸法)Hは約2.5mmに設定されている。また、ケース10の平面方向の寸法(XY方向寸法)W1,W2はそれぞれ約5.5mmに設定されている。このように、ケース10は偏平な外形をもつ。また、この例では、蓋ケース10Aの円筒部10aが第2の端壁10-2から+Z側に突出する寸法は、約1.6mmに設定されている。円筒部10aの外径、内径は、それぞれ約1.3mm、約0.8mmに設定されている。また、ポールピース4の突起部4aが主ケース10Bの第1の端壁10-1から-Z側に突出する寸法は、約1.6mmに設定されている。ポールピース4の突起部4aの外径、内径は、それぞれ約1.3mm、約0.5mmに設定されている。このように、電磁弁2を小型に構成できる。 In this example, as shown in FIG. 1, the thickness (Z-direction dimension) H of the case 10 is set to about 2.5 mm. In addition, the planar dimension (XY dimension) W1, W2 of the case 10 is set to about 5.5 mm. Thus, the case 10 has a flat outer shape. In this example, the dimension in which the cylindrical portion 10a of the lid case 10A protrudes from the second end wall 10-2 to the + Z side is set to about 1.6 mm. The outer diameter and inner diameter of the cylindrical portion 10a are set to about 1.3 mm and about 0.8 mm, respectively. Further, the dimension in which the protrusion 4a of the pole piece 4 protrudes from the first end wall 10-1 of the main case 10B to the -Z side is set to about 1.6 mm. The outer diameter and inner diameter of the protrusion 4a of the pole piece 4 are set to about 1.3 mm and about 0.5 mm, respectively. Thus, the solenoid valve 2 can be configured in a small size.
 また、このように電磁弁2を小型に構成できる結果、電磁弁2を軽量化できる。特に、従来の電磁弁の棒状の可動鉄心に代えて、この電磁弁2はパーマロイからなる板状のダイアフラム6を備えているので、電磁弁2を軽量化できる。また、鉛直方向に対して電磁弁2の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ない。したがって、電磁弁2の開閉を安定して確実に行うことができる。 Further, as a result of the electromagnetic valve 2 being configured in a small size as described above, the electromagnetic valve 2 can be reduced in weight. In particular, instead of the rod-like movable iron core of the conventional solenoid valve, the solenoid valve 2 includes a plate-like diaphragm 6 made of permalloy, so that the solenoid valve 2 can be reduced in weight. Even if the posture of the solenoid valve 2 changes variously with respect to the vertical direction, there is little change in characteristics (for example, current-flow characteristic versus flow characteristic). Therefore, the electromagnetic valve 2 can be opened and closed stably and reliably.
 (血圧計への適用)
 図16は、上述の電磁弁2を開閉弁33として備えた一実施形態の血圧計100の概略的なブロック構成を示している。この血圧計100は、大別して、手首または上腕などの被測定部位90に装着されるカフ20と、本体100Mとを備えている。被測定部位90には動脈91が通っている。
(Application to blood pressure monitor)
FIG. 16 shows a schematic block configuration of a sphygmomanometer 100 according to an embodiment provided with the above-described electromagnetic valve 2 as the on-off valve 33. The sphygmomanometer 100 roughly includes a cuff 20 attached to a measurement site 90 such as a wrist or an upper arm, and a main body 100M. An artery 91 passes through the measurement site 90.
 カフ20は、被測定部位90に接して配置される測定用流体袋としてのセンシングカフ21と、このセンシングカフ21の外周側に重ねて配置される押圧用流体袋としての押圧カフ23とを含んでいる。なお、押圧カフ23とセンシングカフ21との間に沿って、押圧カフ23の圧力をセンシングカフ21を介して被測定部位90に効果的に伝えるための補強板が配置されていてもよい。 The cuff 20 includes a sensing cuff 21 as a measurement fluid bag disposed in contact with the measurement site 90, and a press cuff 23 as a pressing fluid bag disposed on the outer periphery side of the sensing cuff 21. It is out. A reinforcing plate for effectively transmitting the pressure of the pressing cuff 23 to the measurement site 90 via the sensing cuff 21 may be disposed between the pressing cuff 23 and the sensing cuff 21.
 本体100Mは、制御部110と、表示器50と、記憶部としてのメモリ51と、操作部52と、電源部53と、ポンプ30と、排気弁34と、既述の電磁弁2からなる開閉弁33と、押圧カフ23の圧力を検出するための第1圧力センサ31と、センシングカフ21の圧力を検出するための第2圧力センサ32とを搭載している。 The main body 100M includes an opening / closing unit including a control unit 110, a display 50, a memory 51 as a storage unit, an operation unit 52, a power supply unit 53, a pump 30, an exhaust valve 34, and the electromagnetic valve 2 described above. A valve 33, a first pressure sensor 31 for detecting the pressure of the pressing cuff 23, and a second pressure sensor 32 for detecting the pressure of the sensing cuff 21 are mounted.
 表示器50は、ディスプレイおよびインジケータ等を含み、制御部110からの制御信号に従って所定の情報(例えば、血圧測定結果など)を表示する。 The display device 50 includes a display, an indicator, and the like, and displays predetermined information (for example, blood pressure measurement result) according to a control signal from the control unit 110.
 操作部52は、電源部53をON(オン)またはOFF(オフ)するための指示の入力を受け付けるスイッチからなっている。操作部52は、ユーザによる指示に応じた操作信号を制御部110に入力する。 The operation unit 52 includes a switch that receives an input of an instruction for turning the power supply unit 53 on (on) or off (off). The operation unit 52 inputs an operation signal according to an instruction from the user to the control unit 110.
 メモリ51は、血圧計100を制御するためのプログラムのデータ、血圧計100を制御するために用いられるデータ、血圧計100の各種機能を設定するための設定データ、および血圧値の測定結果のデータなどを記憶する。また、メモリ51は、プログラムが実行されるときのワークメモリなどとして用いられる The memory 51 is data of a program for controlling the sphygmomanometer 100, data used for controlling the sphygmomanometer 100, setting data for setting various functions of the sphygmomanometer 100, and data of blood pressure value measurement results Memorize etc. The memory 51 is used as a work memory when the program is executed.
 制御部110は、CPU(Central Processing Unit)を含み、この血圧計100全体の動作を制御する。具体的には、制御部110は、メモリ51に記憶された血圧計100を制御するためのプログラムに従って圧力制御部として働いて、操作部52からの操作信号に応じて、ポンプ30、開閉弁33等を駆動する制御を行う。また、制御部110は、血圧算出部として働いて、血圧値を算出し、表示器50およびメモリ51を制御する。具体的な血圧測定の仕方については後述する。 The control unit 110 includes a CPU (Central Processing Unit) and controls the overall operation of the sphygmomanometer 100. Specifically, the control unit 110 works as a pressure control unit according to a program for controlling the sphygmomanometer 100 stored in the memory 51, and in response to an operation signal from the operation unit 52, the pump 30 and the on-off valve 33. Etc. are controlled. The control unit 110 also functions as a blood pressure calculation unit, calculates a blood pressure value, and controls the display 50 and the memory 51. A specific method for measuring blood pressure will be described later.
 電源部53は、この例では、充電可能な2次電池からなっている。電源部53は、制御部110、ポンプ30など、本体100M内の各部に電力を供給する。 In this example, the power supply unit 53 is composed of a rechargeable secondary battery. The power supply unit 53 supplies power to each unit in the main body 100M, such as the control unit 110 and the pump 30.
 ポンプ30は、この例では圧電ポンプからなり、制御部110から与えられる制御信号に基づいて駆動される。このポンプ30は、本体100M内に設けられた第1の流路390(部分的な流路390a,390b,390cを直列に含む。)を介して、押圧カフ23に流体流通可能に接続されている。 The pump 30 is a piezoelectric pump in this example, and is driven based on a control signal supplied from the control unit 110. This pump 30 is connected to the press cuff 23 through a first flow path 390 (including partial flow paths 390a, 390b, and 390c in series) provided in the main body 100M so that fluid can flow. Yes.
 排気弁34は、この例では、ポンプ30に流路391を介して接続された公知のパッシブ弁からなり、ポンプ30のオン(起動)/オフ(停止)に伴って開閉される。すなわち、この排気弁は、ポンプ30がオンされると閉じて、押圧カフ23内に空気を封入するのを助ける一方、ポンプ30がオフされると開いて、押圧カフ23の空気を大気900中へ排出させる。なお、この排気弁34は、逆止弁の機能を有し、排出される空気が逆流することはない。 In this example, the exhaust valve 34 is a known passive valve connected to the pump 30 via a flow path 391, and is opened and closed as the pump 30 is turned on (started) / off (stopped). That is, this exhaust valve closes when the pump 30 is turned on and helps to enclose air in the pressure cuff 23, while it opens when the pump 30 is turned off to allow the air in the pressure cuff 23 to enter the atmosphere 900. To discharge. The exhaust valve 34 has a check valve function, and the discharged air does not flow backward.
 開閉弁33は、この例では、第1の流路390とセンシングカフ21とを接続する第2の流路380(部分的な流路380a,380b,380cを直列に含む。)に介挿されている。この第2の流路380において、開閉弁33は、第2の流体出入口12(ダイアフラム6の背面6a側)がポンプ30に連通する上流側に流体流通可能に接続され、また、第1の流体出入口11(ポールピース4側)がセンシングカフ21に連通する下流側に流体流通可能に接続されている。なお、第2の流路380は、ポンプ30とセンシングカフ21との間に接続されていてもよい。 In this example, the on-off valve 33 is inserted into a second flow path 380 (including partial flow paths 380a, 380b, and 380c in series) that connects the first flow path 390 and the sensing cuff 21. ing. In the second flow path 380, the on-off valve 33 is connected to the upstream side where the second fluid inlet / outlet 12 (on the rear face 6a side of the diaphragm 6) communicates with the pump 30 so that fluid can flow therethrough. The inlet / outlet port 11 (pole piece 4 side) is connected to the downstream side communicating with the sensing cuff 21 so that fluid can flow. The second flow path 380 may be connected between the pump 30 and the sensing cuff 21.
 第1圧力センサ31、第2圧力センサ32は、この例ではそれぞれピエゾ抵抗式圧力センサからなっている。第1圧力センサ31は、第1の流路390につながる流路392を介して、押圧カフ23内の圧力を検出する。第2圧力センサ32は、第2の流路380につながる流路381を介して、センシングカフ21内の圧力を検出する。
 (血圧測定の動作)
 図17Aは、この発明の一実施形態の血圧測定方法として、ユーザが血圧計100によって血圧測定を行う際の動作フローを示している。
In this example, the first pressure sensor 31 and the second pressure sensor 32 are each composed of a piezoresistive pressure sensor. The first pressure sensor 31 detects the pressure in the pressing cuff 23 via a flow path 392 connected to the first flow path 390. The second pressure sensor 32 detects the pressure in the sensing cuff 21 via the flow path 381 connected to the second flow path 380.
(Blood pressure measurement operation)
FIG. 17A shows an operation flow when the user performs blood pressure measurement with the sphygmomanometer 100 as the blood pressure measurement method according to one embodiment of the present invention.
 カフ20が被測定部位90に装着された装着状態で、ユーザが本体100Mに設けられた操作部52によって測定開始を指示すると、制御部110は、処理用メモリ領域を初期化する(図17AのステップS1)。また、制御部110は、ポンプ30をオフし、排気弁34を開くとともに、開閉弁33を開状態に維持して、押圧カフ23内およびセンシングカフ21内の空気を排気する。続いて、第1圧力センサ31、第2圧力センサ32の0mmHg調整(大気圧を0mmHgに設定する。)を行う。 When the user instructs the start of measurement with the operation unit 52 provided in the main body 100M with the cuff 20 attached to the measurement site 90, the control unit 110 initializes the processing memory area (FIG. 17A). Step S1). In addition, the control unit 110 turns off the pump 30 and opens the exhaust valve 34 and maintains the on-off valve 33 in an open state to exhaust the air in the pressing cuff 23 and the sensing cuff 21. Subsequently, 0 mmHg adjustment (the atmospheric pressure is set to 0 mmHg) of the first pressure sensor 31 and the second pressure sensor 32 is performed.
 次に、制御部110は圧力制御部として働いて、ポンプ30をオンし(ステップS2)、開閉弁33を開状態に維持して、押圧カフ23およびセンシングカフ21に空気を予備的に供給する(ステップS3;予備供給ステップ)。このとき、第1圧力センサ31、第2圧力センサ32によって押圧カフ23、センシングカフ21の圧力をそれぞれモニタしながら、ポンプ30を駆動する。これにより、第1の流路390を通して押圧カフ23に、また、第2の流路380を通してセンシングカフ21に、それぞれ流体としての空気を予め定められた量だけ予備的に供給する。この例では、この予備的な供給は、センシングカフ21の圧力が所定の圧力(この例では、15mmHg)に到達するか、もしくは、ポンプ30の駆動時間が所定の時間(この例では、3秒間)だけ経過するまで行う。 Next, the control unit 110 operates as a pressure control unit, turns on the pump 30 (step S2), maintains the on-off valve 33 in an open state, and preliminarily supplies air to the pressing cuff 23 and the sensing cuff 21. (Step S3; preliminary supply step). At this time, the pump 30 is driven while monitoring the pressure of the pressure cuff 23 and the sensing cuff 21 by the first pressure sensor 31 and the second pressure sensor 32, respectively. As a result, a predetermined amount of air as a fluid is preliminarily supplied to the pressing cuff 23 through the first channel 390 and to the sensing cuff 21 through the second channel 380. In this example, the preliminary supply is performed when the pressure of the sensing cuff 21 reaches a predetermined pressure (15 mmHg in this example) or the driving time of the pump 30 is a predetermined time (in this example, 3 seconds). ) Until it passes.
 次に、制御部110は、開閉弁33を開状態から閉状態に切り換える(ステップS4;切換ステップ)。続いて、制御部110は、ポンプ30を一旦オフし、排気弁34を開く(ステップS5)。これにより、押圧カフ23内の空気を第1の流路390と排気弁34を通して排気する。このとき、センシングカフ21内には予備的に供給された空気が残存する。したがって、これ以降のステップで押圧カフ23が加圧されたときに、第2圧力センサ32は、センシングカフ21内の圧力を確実に検出することができる。第2圧力センサ32によって検出されるセンシングカフ21内の圧力には、被測定部位90の動脈91を通る脈波による変動成分(これを脈波信号と呼ぶ。)が含まれている。 Next, the control unit 110 switches the on-off valve 33 from the open state to the closed state (step S4; switching step). Subsequently, the control unit 110 temporarily turns off the pump 30 and opens the exhaust valve 34 (step S5). Thereby, the air in the press cuff 23 is exhausted through the first flow path 390 and the exhaust valve 34. At this time, the preliminarily supplied air remains in the sensing cuff 21. Therefore, when the pressing cuff 23 is pressurized in the subsequent steps, the second pressure sensor 32 can reliably detect the pressure in the sensing cuff 21. The pressure in the sensing cuff 21 detected by the second pressure sensor 32 includes a fluctuation component due to a pulse wave passing through the artery 91 of the measurement site 90 (this is referred to as a pulse wave signal).
 次に、制御部110は圧力制御部として働いて、ポンプ30をオンし、排気弁34を閉じて、押圧カフ23の加圧(すなわち、被測定部位90の圧迫)を開始する(ステップS6)。これにより、押圧カフ23は、センシングカフ21を介して被測定部位90を圧迫する。押圧カフ23の圧力をP0とし、センシングカフ21の圧力をP1とする。この例では、制御部110は、ポンプ30から第1の流路390を通して押圧カフ23に空気を供給しながら、第1圧力センサ31の出力(すなわち、押圧カフ23の圧力P0)に基づいて、加圧速度を制御する(ステップS7)。 Next, the control unit 110 operates as a pressure control unit, turns on the pump 30, closes the exhaust valve 34, and starts pressurization of the pressure cuff 23 (that is, compression of the measured portion 90) (step S6). . Thereby, the pressing cuff 23 presses the measurement site 90 via the sensing cuff 21. The pressure of the pressing cuff 23 is P0, and the pressure of the sensing cuff 21 is P1. In this example, the control unit 110 supplies air to the pressing cuff 23 from the pump 30 through the first flow path 390, and based on the output of the first pressure sensor 31 (that is, the pressure P0 of the pressing cuff 23), The pressurization speed is controlled (step S7).
 詳しくは、この例では、図17Bの加圧速度制御のフローに示すように、制御部110は、加圧速度が目標速度に一致しているか否かを判断する(図17BのステップS81)。ここで、加圧速度が目標速度に一致していれば(ステップS81でYES)、そのまま図17Aのフローにリターンする。一方、加圧速度が目標速度に一致していなければ(図17BのステップS81でNO)、図17BのステップS82に進んで、加圧速度が目標速度よりも大きいか否かを判断する。ここで、加圧速度が目標速度よりも大きければ(ステップS82でYES)、ポンプ30の駆動電圧を現在の制御電圧から一定値β[V]だけ低下させる(ステップS83)。一方、加圧速度が目標速度よりも小さければ(ステップS82でNO)、ポンプ30の駆動電圧を現在の制御電圧から一定値β[V]だけ上昇させる(ステップS84)。しかる後、図17Aのフローにリターンする。 Specifically, in this example, as shown in the flow of pressurization speed control in FIG. 17B, the control unit 110 determines whether or not the pressurization speed matches the target speed (step S81 in FIG. 17B). Here, if the pressurization speed matches the target speed (YES in step S81), the process directly returns to the flow of FIG. 17A. On the other hand, if the pressurization speed does not match the target speed (NO in step S81 in FIG. 17B), the process proceeds to step S82 in FIG. 17B to determine whether the pressurization speed is greater than the target speed. If the pressurization speed is higher than the target speed (YES in step S82), the drive voltage of the pump 30 is decreased from the current control voltage by a constant value [beta] [V] (step S83). On the other hand, if the pressurization speed is lower than the target speed (NO in step S82), the drive voltage of the pump 30 is increased from the current control voltage by a fixed value β [V] (step S84). Thereafter, the process returns to the flow of FIG. 17A.
 このようにして押圧カフ23の圧力P0が或る程度(約30~40mmHg以上に)上昇すると、センシングカフ21に予備的に供給された空気の影響が小さくなって、押圧カフ23の圧力P0とセンシングカフ21の圧力P1とが略等しくなる(すなわち、P0≒P1となる。)。 When the pressure P0 of the pressure cuff 23 increases to a certain extent (about 30 to 40 mmHg or more) in this way, the influence of the air preliminarily supplied to the sensing cuff 21 is reduced, and the pressure P0 of the pressure cuff 23 The pressure P1 of the sensing cuff 21 becomes substantially equal (that is, P0≈P1).
 なお、第1圧力センサ31の出力ではなく、第2圧力センサ32の出力(すなわち、センシングカフ21の圧力をP1)に基づいて、加圧速度を制御してもよい。 The pressurization speed may be controlled based on the output of the second pressure sensor 32 (that is, the pressure of the sensing cuff 21 is P1) instead of the output of the first pressure sensor 31.
 次に、図17AのステップS8で、制御部110は血圧算出部として働いて、この時点で取得されている脈波信号(第2圧力センサ32の出力に含まれた脈波による変動成分)に基づいて、公知のオシロメトリック法により血圧値(収縮期血圧SBP(Systolic Blood Pressure)と拡張期血圧DBP(Diastolic Blood Pressure))の算出を試みる。 Next, in step S8 of FIG. 17A, the control unit 110 operates as a blood pressure calculation unit, and converts the pulse wave signal acquired at this time (the fluctuation component due to the pulse wave included in the output of the second pressure sensor 32). Based on this, an attempt is made to calculate blood pressure values (systolic blood pressure SBP (Systolic Blood Pressure) and diastolic blood pressure DBP (Diastolic Blood Pressure)) by a known oscillometric method.
 この時点で、データ不足のために未だ血圧値を算出できない場合は(ステップS9でNO)、カフ圧が上限圧力(安全のために、例えば300mmHgというように予め定められている。)に達していない限り、ステップS7~S9の処理を繰り返す。 At this time, if the blood pressure value cannot be calculated yet due to lack of data (NO in step S9), the cuff pressure has reached the upper limit pressure (for example, 300 mmHg is determined in advance for safety). Unless otherwise specified, the processes in steps S7 to S9 are repeated.
 このようにして血圧値の算出ができたら(ステップS9でYES)、制御部110は、血圧値の測定結果を表示器50に表示する。さらに、制御部110は、ポンプ30をオフし、排気弁34を開き(ステップS10)、また、開閉弁33を開いて(ステップS11)、押圧カフ23内、センシングカフ21内の空気を排気する制御を行う。 If the blood pressure value can be calculated in this way (YES in step S9), the control unit 110 displays the measurement result of the blood pressure value on the display 50. Further, the control unit 110 turns off the pump 30, opens the exhaust valve 34 (step S10), and opens the on-off valve 33 (step S11), and exhausts the air in the pressing cuff 23 and the sensing cuff 21. Take control.
 なお、血圧算出は、押圧カフ23の加圧過程でなく、減圧過程で行われてもよい。 The blood pressure calculation may be performed not in the pressurizing process of the pressing cuff 23 but in the depressurizing process.
 ここで、この血圧計100では、センシングカフ21は、被測定部位90の動脈通過部分に加えられた圧力自体を検出する。したがって、例えばカフ20の幅方向寸法を小さく(例えば25mm程度に)設定した結果、加圧時に押圧カフ23が厚さ方向に大きく膨張して押圧カフ23自体に圧迫ロスが発生した場合であっても、センシングカフ21の圧力に基づいて血圧を精度良く測定できる。 Here, in the sphygmomanometer 100, the sensing cuff 21 detects the pressure itself applied to the arterial passage portion of the measurement site 90. Therefore, for example, as a result of setting the width direction dimension of the cuff 20 to be small (for example, about 25 mm), the pressure cuff 23 is greatly expanded in the thickness direction at the time of pressurization, and a compression loss occurs in the pressure cuff 23 itself. In addition, the blood pressure can be accurately measured based on the pressure of the sensing cuff 21.
 また、この血圧計100では、第2の流路380において、開閉弁33は、第2の流体出入口12(ダイアフラム6の背面6a側)がポンプ30に連通する上流側、第1の流体出入口11(ポールピース4側)がセンシングカフ21に連通する下流側に向けられて介挿されている。したがって、開閉弁33を開状態から閉状態に切り換えられ、制御部110によって閉状態が保たれている期間中(特に、図17AのステップS7~S9の処理の期間中)、次に詳述するように、この閉状態を維持するために、コイルばね5による付勢力f2等に抗してソレノイドコイル7が発生すべき磁力が少なくて済む。したがって、この血圧計100では、電磁弁2のソレノイドコイル7に対する通電量が少なくて済み、省電力化を図ることができる。 In the sphygmomanometer 100, in the second flow path 380, the on-off valve 33 includes the first fluid inlet / outlet 11 on the upstream side where the second fluid inlet / outlet 12 (on the back surface 6 a side of the diaphragm 6) communicates with the pump 30. The (pole piece 4 side) is inserted toward the downstream side communicating with the sensing cuff 21. Therefore, during the period when the on-off valve 33 is switched from the open state to the closed state and the closed state is maintained by the control unit 110 (particularly during the processing of steps S7 to S9 in FIG. 17A), a detailed description will be given below. Thus, in order to maintain this closed state, the magnetic force that the solenoid coil 7 should generate can be reduced against the biasing force f2 and the like by the coil spring 5. Therefore, in the sphygmomanometer 100, the energization amount to the solenoid coil 7 of the electromagnetic valve 2 is small, and power saving can be achieved.
 この血圧計100では、開閉弁33が小型で軽量に構成される電磁弁2からなっている。したがって、本体100M、ひいては血圧計100全体を、小型で軽量に構成できる。また、鉛直方向に対して開閉弁33(電磁弁2)の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ない。したがって、開閉弁33の開閉を安定して確実に行うことができ、したがって血圧計100の動作を安定化できる。 In this sphygmomanometer 100, the on-off valve 33 is composed of the electromagnetic valve 2 that is small and lightweight. Therefore, the main body 100M, and thus the entire blood pressure monitor 100, can be configured to be small and lightweight. Even if the posture of the on-off valve 33 (solenoid valve 2) changes variously with respect to the vertical direction, there is little change in characteristics (for example, energization current versus flow rate characteristics). Therefore, the on-off valve 33 can be opened and closed stably and reliably, and thus the operation of the sphygmomanometer 100 can be stabilized.
 (閉状態を維持するための磁力)
 閉状態を維持するための磁力を説明するために、上述の実施例1の電磁弁2を変形してなる実施例2の電磁弁(これを符号2Bで表す。図8~図11に示す。)と、比較例の電磁弁(これを符号2Xで表す。図12~図15に示す。)とを、先に説明する。なお、図8~図11、図12~図15において、それぞれ図4~図7中の構成要素と同じ構成要素には同じ符号を付して重複する説明を省略する。
(Magnetic force to maintain the closed state)
In order to explain the magnetic force for maintaining the closed state, the electromagnetic valve of the second embodiment obtained by modifying the electromagnetic valve 2 of the first embodiment (this is represented by reference numeral 2B, as shown in FIGS. 8 to 11). ) And a comparative electromagnetic valve (represented by reference numeral 2X, shown in FIGS. 12 to 15) will be described first. In FIGS. 8 to 11 and FIGS. 12 to 15, the same components as those in FIGS. 4 to 7 are denoted by the same reference numerals, and redundant description is omitted.
 図8は、実施例2の電磁弁2Bの断面構造を、図4に対応して示している。実施例1の電磁弁2では、ポールピース4の一端部4eのうち開口4oの周りの周端面4e1にコーティング9Aが設けられているが、それに代えて、この電磁弁2Bでは、ヨーク3の側板部3cの環状縁3eの全周に、弾性を有するコーティング9Bが設けられている。また、図9は、実施例2の電磁弁2Bのダイアフラム(これを符号6Bで表す。)の平面形状を、図5に対応して示している。実施例1の電磁弁2では、ダイアフラム6の径方向に関して中心6cと周縁部6eとの間に4つの円形の貫通孔6s,6t,6u,6vが設けられているが、それに代えて、この電磁弁2Bでは、ダイアフラム6Bの周縁部6eに、中心6cへ向かって、ヨーク3の側板部3cの環状縁3e(コーティング9Bが設けられている部分に相当)に対応する位置で止まる略円弧状の切り欠き6i,6j,6kが設けられている。この結果、ダイアフラム6Bは、中心6cから周縁部6eへ向かって、ヨーク3の側板部3cの環状縁3eの全周を覆うように空間的に連続的に延在している。この実施例2の電磁弁2Bでは、その他の点は実施例1の電磁弁2と同様に構成されている。 FIG. 8 shows a cross-sectional structure of the electromagnetic valve 2B of Example 2 corresponding to FIG. In the electromagnetic valve 2 according to the first embodiment, the coating 9A is provided on the peripheral end surface 4e1 around the opening 4o in the one end 4e of the pole piece 4. Instead, in this electromagnetic valve 2B, the side plate of the yoke 3 is provided. A coating 9B having elasticity is provided on the entire circumference of the annular edge 3e of the portion 3c. FIG. 9 shows the planar shape of the diaphragm of the electromagnetic valve 2B of the second embodiment (this is represented by reference numeral 6B) in correspondence with FIG. In the solenoid valve 2 according to the first embodiment, four circular through holes 6s, 6t, 6u, and 6v are provided between the center 6c and the peripheral edge 6e with respect to the radial direction of the diaphragm 6. In the electromagnetic valve 2B, a substantially arc shape that stops at a position corresponding to the annular edge 3e of the side plate portion 3c of the yoke 3 (corresponding to a portion provided with the coating 9B) toward the center 6c toward the peripheral edge 6e of the diaphragm 6B. Are provided with notches 6i, 6j, 6k. As a result, the diaphragm 6B extends spatially and continuously so as to cover the entire circumference of the annular edge 3e of the side plate 3c of the yoke 3 from the center 6c toward the peripheral edge 6e. The electromagnetic valve 2B according to the second embodiment is configured in the same manner as the electromagnetic valve 2 according to the first embodiment in other respects.
 この電磁弁2Bでは、図10に示す開状態では、例えば、第2の流体出入口12(ダイアフラム6Bの背面6a側)から矢印LB1で示すように流体が入る。この流体は、矢印LB2i,LB2kで示すように、ダイアフラム6の切り欠き6i,6j,6kを通り、続いて、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を通り、一端部4eの開口4oを経て、矢印LB3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2Bを通して流体が流通し得る。 In the electromagnetic valve 2B, in the open state shown in FIG. 10, for example, fluid enters from the second fluid inlet / outlet 12 (on the back surface 6a side of the diaphragm 6B) as indicated by an arrow LB1. This fluid passes through the notches 6i, 6j, 6k of the diaphragm 6 as shown by arrows LB2i, LB2k, and then passes through the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8. Through the opening 4o of the one end 4e, the fluid flows out from the first fluid inlet / outlet port 11 as indicated by an arrow LB3. In this way, fluid can flow through the electromagnetic valve 2B from the second fluid inlet / outlet 12 toward the first fluid inlet / outlet 11 or vice versa.
 また、この電磁弁2Bでは、図11に示す閉状態では、実施例1の電磁弁2におけるのと同様に、ソレノイドコイル7が発生した磁力F0によってダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。したがって、この電磁弁2を通した流体の流通を遮断することができる。さらに、この電磁弁2Bでは、ダイアフラム6Bの内面6bの周縁部6eは、コーティング9Bを介してヨーク3の側板部3cの環状縁3eに密接する。ここで、ダイアフラム6Bの周縁部6eに設けられている切り欠き6i,6j,6kは、中心6cへ向かって、ヨーク3の側板部3cの環状縁3eに対応する位置で止まっている。したがって、切り欠き6i,6j,6kにかかわらず、ダイアフラム6Bの内面6bの周縁部6eがヨーク3の側板部3cの環状縁3eを塞ぐ。したがって、閉状態をアシストすることができる。 Further, in the electromagnetic valve 2B, in the closed state shown in FIG. 11, the diaphragm 6 is moved against the one end 4e of the pole piece 4 by the magnetic force F0 generated by the solenoid coil 7, as in the electromagnetic valve 2 of the first embodiment. The opening 4o is closed by the elastic body 8. Therefore, the fluid flow through the electromagnetic valve 2 can be blocked. Further, in this electromagnetic valve 2B, the peripheral edge portion 6e of the inner surface 6b of the diaphragm 6B is in close contact with the annular edge 3e of the side plate portion 3c of the yoke 3 through the coating 9B. Here, the notches 6i, 6j, 6k provided in the peripheral edge 6e of the diaphragm 6B are stopped at a position corresponding to the annular edge 3e of the side plate 3c of the yoke 3 toward the center 6c. Therefore, regardless of the notches 6i, 6j, 6k, the peripheral edge 6e of the inner surface 6b of the diaphragm 6B closes the annular edge 3e of the side plate 3c of the yoke 3. Therefore, the closed state can be assisted.
 図12は、比較例の電磁弁2Xの断面構造を、図4に対応して示している。この電磁弁2Xでは、実施例1の電磁弁2におけるポールピース4の一端部4eのうち開口4oの周りの周端面4e1のコーティング9A、または、実施例2の電磁弁2Bにおけるヨーク3の側板部3cの環状縁3eのコーティング9Bに相当するものが省略されている。この比較例の電磁弁2Xでは、その他の点は実施例1の電磁弁2と同様に構成されている。例えば、図13に示すように、この電磁弁2Xのダイアフラム6の平面形状は、実施例1の電磁弁2のものと同じに設定されている。 FIG. 12 shows a cross-sectional structure of a comparative electromagnetic valve 2X corresponding to FIG. In this electromagnetic valve 2X, the coating 9A on the peripheral end surface 4e1 around the opening 4o of the one end portion 4e of the pole piece 4 in the electromagnetic valve 2 of the first embodiment, or the side plate portion of the yoke 3 in the electromagnetic valve 2B of the second embodiment. A part corresponding to the coating 9B of the annular edge 3e of 3c is omitted. The electromagnetic valve 2X of this comparative example is configured in the same manner as the electromagnetic valve 2 of Example 1 in other respects. For example, as shown in FIG. 13, the planar shape of the diaphragm 6 of the electromagnetic valve 2X is set to be the same as that of the electromagnetic valve 2 of the first embodiment.
 この電磁弁2Xでは、図14に示す開状態では、実施例1の電磁弁2におけるのと同様に、矢印LC1,LC2s,LC2u,LC3で示すように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2Xを通して流体が流通し得る。 In the electromagnetic valve 2X, in the open state shown in FIG. 14, as in the electromagnetic valve 2 of the first embodiment, as indicated by arrows LC1, LC2s, LC2u, LC3, the first fluid inlet / outlet 12 is used to The fluid can flow through the electromagnetic valve 2X toward the fluid inlet / outlet port 11 or vice versa.
 また、この電磁弁2Xでは、図15に示す閉状態では、実施例1の電磁弁2におけるのと同様に、ソレノイドコイル7が発生した磁力F0によってダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。したがって、この電磁弁2を通した流体の流通を遮断することができる。この閉状態では、ダイアフラム6の内面6bが、ポールピース4の一端部4eの周端面4e1に当接する。しかし、ダイアフラム6の内面6bと周端面4e1との間には、コーティング9Aに相当するものが存在しない。このため、流体は、矢印LX2s,LX2uで示すように、ダイアフラム6の貫通孔6s,6t,6u,6vを通り、ダイアフラム6の内面6bと周端面4e1との間を通して、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間へ入り得る。このため、この電磁弁2Xでは、閉状態をアシストする能力は期待されない。 Further, in the electromagnetic valve 2X, in the closed state shown in FIG. 15, the diaphragm 6 is moved against the one end 4e of the pole piece 4 by the magnetic force F0 generated by the solenoid coil 7 as in the electromagnetic valve 2 of the first embodiment. The opening 4o is closed by the elastic body 8. Therefore, the fluid flow through the electromagnetic valve 2 can be blocked. In this closed state, the inner surface 6 b of the diaphragm 6 contacts the peripheral end surface 4 e 1 of the one end portion 4 e of the pole piece 4. However, there is nothing corresponding to the coating 9A between the inner surface 6b of the diaphragm 6 and the peripheral end surface 4e1. For this reason, as shown by arrows LX2s and LX2u, the fluid passes through the through holes 6s, 6t, 6u, and 6v of the diaphragm 6 and passes between the inner surface 6b of the diaphragm 6 and the peripheral end surface 4e1, and thus one end of the pole piece 4. It can enter the gap between the recess 4d of 4e and the elastic body 8. For this reason, in this solenoid valve 2X, the ability to assist a closed state is not expected.
 さて、実施例1の電磁弁2では、図5に示したように、ダイアフラム6は、中心6cから周縁部6eへ向かって、ポールピース4の一端部4eのうち開口4oの周りの周端面4e1(コーティング9Aが設けられている部分に相当)の全周を覆うように空間的に連続的に延在している。これにより、図7に示したように、閉状態のとき、ダイアフラム6の内面6bは、コーティング9Aを介してポールピース4の一端部4eの周端面4e1に密接する。ここで、ポールピース4の一端部4eの周端面4e1で囲まれた領域(開口4oを含む)の面積(これをSaとする。)は、ポールピース4の一端部4eの窪み4dの直径(コーティング9Aの内径に相当)をΦaとすると、Sa=πΦa/4となる。 Now, in the solenoid valve 2 of the first embodiment, as shown in FIG. 5, the diaphragm 6 has a peripheral end surface 4e1 around the opening 4o in one end portion 4e of the pole piece 4 from the center 6c toward the peripheral portion 6e. It extends spatially and continuously so as to cover the entire circumference (corresponding to the portion where the coating 9A is provided). Thereby, as shown in FIG. 7, when closed, the inner surface 6b of the diaphragm 6 is in close contact with the peripheral end surface 4e1 of the one end 4e of the pole piece 4 through the coating 9A. Here, the area of the region (including the opening 4o) surrounded by the peripheral end surface 4e1 of the one end portion 4e of the pole piece 4 (referred to as Sa) is the diameter of the recess 4d of the one end portion 4e of the pole piece 4 ( When coating 9A corresponds to the inside diameter of) the a .PHI.a, the Sa = πΦa 2/4.
 実施例2の電磁弁2Bでは、図9に示したように、ダイアフラム6Bは、中心6cから周縁部6eへ向かって、ヨーク3の側板部3cの環状縁3e(コーティング9Bが設けられている部分に相当)を覆うまで全周にわたって空間的に連続的に延在している。これにより、図11に示したように、閉状態のとき、ダイアフラム6Bの内面6bの周縁部6eは、コーティング9Bを介してヨーク3の側板部3cの環状縁3eに密接する。ヨーク3の側板部3cの環状縁3eで囲まれた領域の面積(これをSbとする。)は、ヨーク3の側板部3cの環状縁3eの内径(コーティング9Bの内径に相当)をΦbとすると、Sb=πΦb/4となる。 In the solenoid valve 2B of the second embodiment, as shown in FIG. 9, the diaphragm 6B is formed from the center 6c toward the peripheral edge 6e, and the annular edge 3e of the side plate portion 3c of the yoke 3 (the portion provided with the coating 9B). Until it covers the entire circumference. Accordingly, as shown in FIG. 11, in the closed state, the peripheral edge portion 6e of the inner surface 6b of the diaphragm 6B is in close contact with the annular edge 3e of the side plate portion 3c of the yoke 3 through the coating 9B. The area (referred to as Sb) of the region surrounded by the annular edge 3e of the side plate portion 3c of the yoke 3 is defined as the inner diameter of the annular edge 3e of the side plate portion 3c of the yoke 3 (corresponding to the inner diameter of the coating 9B) being Φb. Then, it becomes Sb = πΦb 2/4.
 ここで、ポールピース4の開口4oの面積(これをS0とする。開口4oの直径をΦとすると、S0=πΦ/4となる。)に比して、ポールピース4の一端部4eで塞がれる領域(開口4oを含む)の面積Saが大きく、さらに、ヨーク3の側板部3cの環状縁3eで囲まれた領域の面積Sbが大きい。つまり、S0<Sa<Sbである。また、例えば、第1の流体出入口11側から開口4oに加わる流体の圧力(センシングカフ21の圧力P1に実質的に等しいので、これを開口側圧力P1とする。)と、ダイアフラム6の背面6aに加わる流体の圧力(押圧カフ23の圧力P0に実質的に等しいので、これを背面側圧力P0とする。)とが同じ陽圧(大気圧を超える)であるものとする。その場合、開口側圧力P1による押圧力(これをF1とする。)と背面側圧力P0による押圧力(面積SaのときFaとし、面積SbのときFbとする。)との大小関係として、前者のF1に比して後者のFa、Fbの方が大きくなる。つまり、F1=P1×S0であり、Fa=P0×Saであり、Fb=P0×Sbであるから、例えば0<P1≒P0であれば、F1<Fa<Fbとなる。開口側圧力P1よりも背面側圧力P0が大きければ(つまり、P1<P0であれば)、さらにF1≪Fa≪Fbとなる。 Here, the area of the opening 4o of the pole piece 4 (hereinafter referred to as S0. If the diameter of the opening 4o and [Phi, the S0 = πΦ 2/4.) As compared with, at one end 4e of the pole piece 4 The area Sa of the closed region (including the opening 4o) is large, and the area Sb of the region surrounded by the annular edge 3e of the side plate portion 3c of the yoke 3 is large. That is, S0 <Sa <Sb. In addition, for example, the pressure of the fluid applied to the opening 4o from the first fluid inlet / outlet 11 side (substantially equal to the pressure P1 of the sensing cuff 21, this is referred to as the opening side pressure P1), and the back surface 6a of the diaphragm 6 It is assumed that the pressure of the fluid applied to the pressure (substantially equal to the pressure P0 of the pressing cuff 23, which is referred to as the back side pressure P0) is the same positive pressure (exceeds atmospheric pressure). In this case, the former relationship between the pressing force by the opening side pressure P1 (referred to as F1) and the pressing force by the back side pressure P0 (referred to as Fa for the area Sa and Fb for the area Sb) is as follows. The latter Fa and Fb are larger than F1. That is, since F1 = P1 × S0, Fa = P0 × Sa, and Fb = P0 × Sb, for example, if 0 <P1≈P0, F1 <Fa <Fb. If the back side pressure P0 is larger than the opening side pressure P1 (that is, if P1 <P0), then F1 << Fa << Fb.
 この結果、実施例1の電磁弁2、実施例2の電磁弁2Bでは、一旦開状態から閉状態になると、背面側圧力P0が開口側圧力P1以上(ただし、いずれも陽圧とする。)であれば、上記閉状態を維持するために、抗力F2(コイルばね5の付勢力f2と、窪み4dから弾性体8への反発力f2′)に抗してソレノイドコイル7が発生すべき磁力F0が少なくて済む。つまり、電磁弁2では、F0=F1+F2-Faになる。また、電磁弁2Bでは、F0=F1+F2-Fbになる。したがって、例えば0<P1≒P0であれば、F1よりもFa,Fbが大きくなる分だけ、ソレノイドコイル7が発生すべき磁力F0が少なくて済む。これにより、上記閉状態がアシストされる。したがって、実施例1の電磁弁2、実施例2の電磁弁2Bでは、ソレノイドコイル7に対する通電量が少なくて済み、省電力化を図ることができる。 As a result, in the solenoid valve 2 of the first embodiment and the solenoid valve 2B of the second embodiment, once the open state is changed to the closed state, the back side pressure P0 is equal to or higher than the open side pressure P1 (however, both are positive pressures). If so, in order to maintain the closed state, the magnetic force that the solenoid coil 7 should generate against the drag F2 (the biasing force f2 of the coil spring 5 and the repulsive force f2 'from the recess 4d to the elastic body 8). F0 is small. That is, in the solenoid valve 2, F0 = F1 + F2-Fa. In the solenoid valve 2B, F0 = F1 + F2-Fb. Therefore, for example, if 0 <P1≈P0, the magnetic force F0 to be generated by the solenoid coil 7 can be reduced by the amount of Fa and Fb larger than F1. Thereby, the closed state is assisted. Therefore, in the solenoid valve 2 of the first embodiment and the solenoid valve 2B of the second embodiment, the energization amount to the solenoid coil 7 is small, and power saving can be achieved.
 これに対して、比較例の電磁弁2Xでは、図15に示したように、閉状態では、流体がポールピース4の一端部4eの窪み4dと弾性体8との間の隙間へ入り得るので、背面側圧力P0がダイアフラム6に対する実質的な押圧力として働かない。このため、例えば0<P1≒P0であっても、ソレノイドコイル7が発生すべき磁力は、F0≒F1+F2になり、実質的に低減されない。つまり、比較例の電磁弁2Xでは、閉状態がアシストされない。 On the other hand, in the electromagnetic valve 2X of the comparative example, as shown in FIG. 15, in the closed state, the fluid can enter the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8. The back pressure P0 does not work as a substantial pressing force against the diaphragm 6. For this reason, even if, for example, 0 <P1≈P0, the magnetic force to be generated by the solenoid coil 7 is F0≈F1 + F2, and is not substantially reduced. That is, in the electromagnetic valve 2X of the comparative example, the closed state is not assisted.
 例えば、図18(A)、図18(B)、図18(C)は、それぞれ実施例1の電磁弁2、実施例2の電磁弁2B、比較例の電磁弁2Xについて、ソレノイドコイル7が発生する磁力F0とそれらの弁の開度との関係を示している。弁の開度は、弁が全開のとき100%、弁が全閉のとき0%とそれぞれ表している。なお、簡単のため、各弁の開状態と閉状態との間の中間状態については、無視して説明する。 For example, FIG. 18A, FIG. 18B, and FIG. 18C show the solenoid coil 7 for the solenoid valve 2 of Example 1, the solenoid valve 2B of Example 2, and the solenoid valve 2X of Comparative Example, respectively. The relationship between the magnetic force F0 which generate | occur | produces and the opening degree of those valves is shown. The opening degree of the valve is expressed as 100% when the valve is fully opened and 0% when the valve is fully closed. For simplicity, an intermediate state between the open state and the closed state of each valve will be ignored and described.
 図18(A)に示すように、実施例1の電磁弁2が、最初に背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下で、磁力F0=0、したがって開度100%である点ST1にあるものとする。ソレノイドコイル7の通電量を増して、実線AQ1で示すように磁力F0を大きくしてゆくと、この例では磁力F0a1のときに開状態から閉状態に移行する。この例では、磁力F0がF0a1を少し超えた点ST2で一旦止められている。ここで、この電磁弁2では、一旦開状態から閉状態になると、例えば背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下では、既述のように、閉状態を維持するためにソレノイドコイル7が発生すべき磁力F0が少なくて済む。この例では、ソレノイドコイル7の通電量を減らして、破線AQ2で示すように磁力F0を小さくしてゆくと、磁力F0a1のときには未だ開状態に復帰せず、破線AQ3で示すように磁力F0a2(>0)のときに開状態に復帰する。そして、最初の点ST1に戻っている。 As shown in FIG. 18 (A), the electromagnetic valve 2 of Example 1 is first subjected to the magnetic force F0 = 0 and therefore the opening degree 100% under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg. It is assumed that it is at a certain point ST1. When the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line AQ1, in this example, the state shifts from the open state to the closed state when the magnetic force F0a1. In this example, the magnetic force F0 is temporarily stopped at a point ST2 where the magnetic force F0 slightly exceeds F0a1. Here, when the electromagnetic valve 2 is once changed from the open state to the closed state, for example, under the conditions of the back side pressure P0 = 300 mmHg and the opening side pressure P1 = 300 mmHg, as described above, to maintain the closed state. The magnetic force F0 to be generated by the solenoid coil 7 is small. In this example, when the energization amount of the solenoid coil 7 is reduced and the magnetic force F0 is reduced as shown by the broken line AQ2, the magnetic F0a1 does not return to the open state yet, and the magnetic force F0a2 (shown by the broken line AQ3). It returns to the open state when> 0). And it has returned to the first point ST1.
 したがって、図17Aに示した血圧測定の動作フローにおいて、ステップS4で開閉弁33としての電磁弁2が閉状態にされた後、ステップS11で開状態にされるまでの期間中、特に押圧カフ23を加圧しながら血圧算出を行っている期間中(図17AのステップS7~S9)に、ステップS4直後のソレノイドコイル7の通電量に比して、ソレノイドコイル7の通電量を少なく設定しても、閉状態を維持することができる。例えば図18(A)中の磁力F0a1と磁力F0a2との間の点ST3の磁力になるようにソレノイドコイル7の通電量を設定しても、閉状態を維持することができる。これにより、省電力化を図ることができる。 Therefore, in the operation flow of blood pressure measurement shown in FIG. 17A, during the period from when the solenoid valve 2 as the on-off valve 33 is closed in step S4 until it is opened in step S11, in particular, the pressure cuff 23 Even when the energization amount of the solenoid coil 7 is set to be smaller than the energization amount of the solenoid coil 7 immediately after step S4 during the period of calculating blood pressure while pressurizing (steps S7 to S9 in FIG. 17A). The closed state can be maintained. For example, the closed state can be maintained even if the energization amount of the solenoid coil 7 is set so as to be the magnetic force at the point ST3 between the magnetic force F0a1 and the magnetic force F0a2 in FIG. Thereby, power saving can be achieved.
 例えば、抗力F2(コイルばね5の付勢力f2と、窪み4dから弾性体8への反発力f2′)をF2=5.0×10-2[N]とする。すると、背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下では、図18(A)中の矢印AQ1に沿って開状態から閉状態に移行するときの磁力はF0a1=F2=5.0×10-2[N]となる。また、開口4oの直径をΦ=0.5mm、ポールピース4の一端部4eの窪み4dの直径をΦa=1.2mmとする。すると、例えば、背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下では、背面側圧力P0による押圧力はFa=4.52×10-2[N]、開口側圧力P1よる押圧力はF1=7.84×10-3[N]となる。したがって、図18(A)中の矢印AQ3に沿って閉状態から開状態に移行するための磁力はF0a2=F1+F2-Fa≒1.3×10-2[N]となる。 For example, the drag force F2 (the urging force f2 of the coil spring 5 and the repulsive force f2 ′ from the depression 4d to the elastic body 8) is F2 = 5.0 × 10 −2 [N]. Then, under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg, the magnetic force when shifting from the open state to the closed state along the arrow AQ1 in FIG. 18A is F0a1 = F2 = 5. 0 × a 10 -2 [N]. The diameter of the opening 4o is Φ = 0.5 mm, and the diameter of the recess 4d of the one end 4e of the pole piece 4 is Φa = 1.2 mm. Then, for example, under the conditions of the back side pressure P0 = 300 mmHg and the opening side pressure P1 = 300 mmHg, the pressing force by the back side pressure P0 is Fa = 4.52 × 10 −2 [N], and the pressing force by the opening side pressure P1 Is F1 = 7.84 × 10 −3 [N]. Therefore, the magnetic force for shifting from the closed state to the open state along arrow AQ3 in FIG. 18A is F0a2 = F1 + F2-Fa≈1.3 × 10 −2 [N].
 図18(B)に示すように、実施例2の電磁弁2Bが、最初に背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下で、磁力F0=0、したがって開度100%である点ST11にあるものとする。ソレノイドコイル7の通電量を増して、実線BQ1で示すように磁力F0を大きくしてゆくと、この例では磁力F0b1のときに開状態から閉状態に移行する。この例では、磁力F0がF0b1を少し超えた点ST12で一旦止められている。ここで、この電磁弁2Bでは、一旦開状態から閉状態になると、例えば背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下では、既述のように、閉状態を維持するためにソレノイドコイル7が発生すべき磁力F0が少なくて済む。この例では、ソレノイドコイル7の通電量を減らして、破線BQ2で示すように磁力F0を小さくしてゆくと、磁力F0b1乃至磁力ゼロのときには未だ開状態に復帰せず、破線BQ3で示すように磁力F0b2(<0)のときに開状態に復帰する。その後、磁力F0がゼロに戻されて、最初の点ST11に戻っている。 As shown in FIG. 18 (B), the electromagnetic valve 2B of Example 2 is first subjected to a magnetic force F0 = 0 and therefore an opening degree of 100% under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg. It is assumed that it is at a certain point ST11. When the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line BQ1, in this example, the state shifts from the open state to the closed state when the magnetic force F0b1. In this example, the magnetic force F0 is temporarily stopped at a point ST12 where the magnetic force F0 slightly exceeds F0b1. Here, in the electromagnetic valve 2B, once the state is changed from the open state to the closed state, for example, under the conditions of the back side pressure P0 = 300 mmHg and the opening side pressure P1 = 300 mmHg, The magnetic force F0 to be generated by the solenoid coil 7 is small. In this example, when the energization amount of the solenoid coil 7 is decreased and the magnetic force F0 is reduced as shown by the broken line BQ2, the magnetic flux F0b1 to the zero magnetic force is not yet returned to the open state, as shown by the broken line BQ3. It returns to the open state when the magnetic force is F0b2 (<0). Thereafter, the magnetic force F0 is returned to zero and returned to the first point ST11.
 したがって、図17Aに示した血圧測定の動作フローにおいて、ステップS4で開閉弁33としての電磁弁2Bが閉状態にされた後、ステップS11で開状態にされるまでの期間中、特に押圧カフ23を加圧しながら血圧算出を行っている期間中(図17AのステップS7~S9)に、ステップS4直後のソレノイドコイル7の通電量に比して、ソレノイドコイル7の通電量を少なく設定しても、閉状態を維持することができる。例えばソレノイドコイル7の通電量をゼロ(図18(A)中の磁力ゼロの点ST13)に設定しても、閉状態を維持することができる。これにより、省電力化を図ることができる。 Therefore, in the operation flow of blood pressure measurement shown in FIG. 17A, during the period from when the electromagnetic valve 2B as the on-off valve 33 is closed at step S4 until it is opened at step S11, the pressure cuff 23 is particularly good. Even when the energization amount of the solenoid coil 7 is set to be smaller than the energization amount of the solenoid coil 7 immediately after step S4 during the period of calculating blood pressure while pressurizing (steps S7 to S9 in FIG. 17A). The closed state can be maintained. For example, the closed state can be maintained even if the energization amount of the solenoid coil 7 is set to zero (point ST13 of zero magnetic force in FIG. 18A). Thereby, power saving can be achieved.
 例えば、先の例と同様に、抗力F2(コイルばね5の付勢力f2と、窪み4dから弾性体8への反発力f2′)をF2=5.0×10-2[N]とする。すると、背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下では、図18(B)中の矢印BQ1に沿って開状態から閉状態に移行するときの磁力はF0b1=F2=5.0×10-2[N]となる。また、開口4oの直径をΦ=0.5mm、ポールピース4の一端部4eの窪み4dの直径をΦa=1.2mmとする。すると、例えば、背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下では、背面側圧力P0による押圧力はFb=2.82×10-1[N]、開口側圧力P1よる押圧力はF1=7.84×10-3[N]となる。したがって、図18(B)中の矢印BQ3に沿って閉状態から開状態に移行するための磁力はF0b2=F1+F2-Fb=-2.2×10-1[N]となる。 For example, as in the previous example, the drag force F2 (the urging force f2 of the coil spring 5 and the repulsive force f2 ′ from the recess 4d to the elastic body 8) is F2 = 5.0 × 10 −2 [N]. Then, under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg, the magnetic force when shifting from the open state to the closed state along the arrow BQ1 in FIG. 18B is F0b1 = F2 = 5. 0 × 10 −2 [N]. The diameter of the opening 4o is Φ = 0.5 mm, and the diameter of the recess 4d of the one end 4e of the pole piece 4 is Φa = 1.2 mm. Then, for example, under the conditions of the back side pressure P0 = 300 mmHg and the opening side pressure P1 = 300 mmHg, the pressing force by the back side pressure P0 is Fb = 2.82 × 10 −1 [N], and the pressing force by the opening side pressure P1 Is F1 = 7.84 × 10 −3 [N]. Therefore, the magnetic force for shifting from the closed state to the open state along arrow BQ3 in FIG. 18B is F0b2 = F1 + F2-Fb = −2.2 × 10 −1 [N].
 なお、実施例1の電磁弁2、実施例2の電磁弁2Bでは、閉状態を維持するためのソレノイドコイル7の通電量(磁力)が背面側圧力P0と開口側圧力P1に依存するので、実際には、それらの値P0,P1の変化に応じて、ソレノイドコイル7の通電量(磁力)を連続的または段階的に可変して設定するのが望ましい。 In the electromagnetic valve 2 of Example 1 and the electromagnetic valve 2B of Example 2, the energization amount (magnetic force) of the solenoid coil 7 for maintaining the closed state depends on the back side pressure P0 and the opening side pressure P1, Actually, it is desirable to set the energization amount (magnetic force) of the solenoid coil 7 continuously or stepwise in accordance with changes in the values P0 and P1.
 これに対して、図18(C)に示すように、比較例の電磁弁2Xが、最初に背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下で、磁力F0=0、したがって開度100%である点ST21にあるものとする。ソレノイドコイル7の通電量を増して、実線XQ1で示すように磁力F0を大きくしてゆくと、この例では磁力F01のときに開状態から閉状態に移行する。この例では、磁力F0がF01を少し超えた点ST22で一旦止められている。ここで、この比較例の電磁弁2Xでは、背面側圧力P0と開口側圧力P1とが同じ条件下では、閉状態がアシストされない。例えば、背面側圧力P0=300mmHg、開口側圧力P1=300mmHgの条件下では、ソレノイドコイル7の通電量を減らして磁力F0を小さくしてゆくと、実線XQ1上を逆行して、概ね磁力F01のときに開状態に復帰する。そして、最初の点ST21に戻る。この結果、比較例の電磁弁2Xでは、閉状態を維持するために、ソレノイドコイル7の通電量(による磁力)をその点ST22に維持することになる。 On the other hand, as shown in FIG. 18 (C), the electromagnetic valve 2X of the comparative example is first opened under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg. It is assumed that the point is at a point ST21 which is 100%. When the energization amount of the solenoid coil 7 is increased and the magnetic force F0 is increased as shown by the solid line XQ1, in this example, the state shifts from the open state to the closed state at the magnetic force F01. In this example, the magnetic force F0 is temporarily stopped at a point ST22 where it slightly exceeds F01. Here, in the electromagnetic valve 2X of this comparative example, the closed state is not assisted under the same conditions of the back side pressure P0 and the opening side pressure P1. For example, under the conditions of the back side pressure P0 = 300 mmHg and the opening side pressure P1 = 300 mmHg, when the energization amount of the solenoid coil 7 is decreased and the magnetic force F0 is reduced, the magnetic force F01 is reversed and the magnetic force F01 is substantially reduced. Sometimes it returns to the open state. Then, the process returns to the first point ST21. As a result, in the electromagnetic valve 2X of the comparative example, in order to maintain the closed state, the energization amount (the magnetic force) of the solenoid coil 7 is maintained at that point ST22.
 例えば、先の2つの例と同様に、抗力F2(コイルばね5の付勢力f2と、窪み4dから弾性体8への反発力f2′)をF2=5.0×10-2[N]とする。すると、背面側圧力P0=0mmHg、開口側圧力P1=0mmHgの条件下では、図18(C)中の矢印XQ1に沿って開状態から閉状態に移行するとき(または、その逆に閉状態から開状態に移行するとき)の磁力はF01≒F2=5.0×10-2[N]となる。なお、開口4oの直径をΦ=0.5mm、ポールピース4の一端部4eの窪み4dの直径をΦa=1.2mmとする。 For example, as in the previous two examples, the drag force F2 (the urging force f2 of the coil spring 5 and the repulsive force f2 ′ from the recess 4d to the elastic body 8) is expressed as F2 = 5.0 × 10 −2 [N]. To do. Then, under the conditions of the back side pressure P0 = 0 mmHg and the opening side pressure P1 = 0 mmHg, when shifting from the open state to the closed state along the arrow XQ1 in FIG. 18C (or vice versa) The magnetic force at the time of transition to the open state is F01≈F2 = 5.0 × 10 −2 [N]. The diameter of the opening 4o is Φ = 0.5 mm, and the diameter of the recess 4d of the one end 4e of the pole piece 4 is Φa = 1.2 mm.
 (排気弁としての適用)
 これまでの例では、電磁弁2(または電磁弁2B)が図16中の開閉弁33として用いられたが、これに限られるものではない。電磁弁2(または電磁弁2B)が図16中の排気弁34として用いられてもよい。
(Application as exhaust valve)
In the examples so far, the electromagnetic valve 2 (or electromagnetic valve 2B) has been used as the on-off valve 33 in FIG. 16, but the present invention is not limited to this. The electromagnetic valve 2 (or electromagnetic valve 2B) may be used as the exhaust valve 34 in FIG.
 例えば、電磁弁2は、排気弁34として、第2の流体出入口12が流路391に連通して接続され、第1の流体出入口11が大気900へ向かって開放されている。 For example, in the solenoid valve 2, as the exhaust valve 34, the second fluid inlet / outlet 12 is connected in communication with the flow path 391, and the first fluid inlet / outlet 11 is opened toward the atmosphere 900.
 そのようにした場合、この血圧計100では、排気弁34が小型で軽量に構成され得る電磁弁2からなっている。したがって、本体100M、ひいては血圧計100全体を、小型で軽量に構成できる。また、鉛直方向に対して排気弁34(電磁弁2)の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ないので、排気弁34の開閉を安定して確実に行うことができ、したがって血圧計100の動作を安定化できる。 In such a case, in the sphygmomanometer 100, the exhaust valve 34 includes the electromagnetic valve 2 that can be configured to be small and lightweight. Therefore, the main body 100M, and thus the entire blood pressure monitor 100, can be configured to be small and lightweight. Further, even if the posture of the exhaust valve 34 (solenoid valve 2) changes variously with respect to the vertical direction, since the change in characteristics (for example, current-carrying current versus flow characteristic) is small, the opening and closing of the exhaust valve 34 can be stably performed. Therefore, the operation of the sphygmomanometer 100 can be stabilized.
 また、図17Aに示した動作フローによる血圧測定中に、排気弁34の第2の流体出入口12には、背面側圧力として押圧カフ23の圧力P0が加わる。排気弁34の第1の流体出入口11には、開口側圧力として大気圧(0mmHg)が加わる。排気弁34としての電磁弁2が一旦開状態から閉状態になると、この閉状態を維持するために、抗力F2(コイルばね5の付勢力f2と、窪み4dから弾性体8への反発力f2′)に抗してソレノイドコイル7が発生すべき磁力F0が少なくて済む。したがって、この血圧計100では、例えば図17A中のステップS5でポンプ30をオンし、排気弁34を閉じた後、ステップS10でポンプ30をオフし、排気弁34を開くまでの期間中、特に押圧カフ23を加圧しながら血圧算出を行っている期間中(図17AのステップS7~S9)に、ステップS5直後の排気弁34のソレノイドコイル7の通電量に比して、排気弁34のソレノイドコイル7の通電量を少なく設定しても、閉状態を維持することができる。これにより、省電力化を図ることができる。 Further, during the blood pressure measurement by the operation flow shown in FIG. 17A, the pressure P0 of the pressing cuff 23 is applied to the second fluid inlet / outlet 12 of the exhaust valve 34 as the back side pressure. Atmospheric pressure (0 mmHg) is applied to the first fluid inlet / outlet port 11 of the exhaust valve 34 as the opening side pressure. Once the electromagnetic valve 2 as the exhaust valve 34 is changed from the open state to the closed state, the drag force F2 (the urging force f2 of the coil spring 5 and the repulsive force f2 from the depression 4d to the elastic body 8 is maintained in order to maintain the closed state. It is possible to reduce the magnetic force F0 that the solenoid coil 7 should generate against '). Therefore, in the sphygmomanometer 100, for example, during the period from when the pump 30 is turned on and the exhaust valve 34 is closed in step S5 in FIG. 17A until the pump 30 is turned off and the exhaust valve 34 is opened in step S10. During the period when the blood pressure is calculated while pressurizing the pressing cuff 23 (steps S7 to S9 in FIG. 17A), the solenoid of the exhaust valve 34 is compared with the energization amount of the solenoid coil 7 of the exhaust valve 34 immediately after step S5. Even if the energization amount of the coil 7 is set to be small, the closed state can be maintained. Thereby, power saving can be achieved.
 なお、電磁弁2(または電磁弁2B)が排気弁34として用いられる場合、血圧計100は、図16に示したようなカフ20(センシングカフ21と押圧カフ23とを含む。)ではなく、一般的な1つの流体袋のみを含むカフを備えたものであってもよい。 When the solenoid valve 2 (or solenoid valve 2B) is used as the exhaust valve 34, the sphygmomanometer 100 is not the cuff 20 (including the sensing cuff 21 and the press cuff 23) as shown in FIG. A cuff including only one general fluid bag may be provided.
 (コーティングの配置に関する変形例)
 閉状態をアシストするために、図4~図7に示した実施例1の電磁弁2では、ポールピース4の一端部4eのうち開口4oの周りの周端面4e1に、弾性を有するコーティング9Aが設けられた。また、図8~図11に示した実施例2の電磁弁2Bでは、ヨーク3の側板部3cの環状縁3eに、弾性を有するコーティング9Bが設けられた。しかしながら、これに限られるものではない。例えば、ダイアフラム6(または6B)の内面6bのうち、ポールピース4の一端部4eの周端面4e1に対応する部分、若しくは、ヨーク3の側板部3cの環状縁3eに対応する部分、または、ダイアフラム6(または6B)の内面6bの全域に、弾性を有するコーティングが設けられてもよい。
(Variation related to coating arrangement)
In order to assist the closed state, in the electromagnetic valve 2 of the first embodiment shown in FIGS. 4 to 7, the coating 9A having elasticity is provided on the peripheral end surface 4e1 around the opening 4o of the one end portion 4e of the pole piece 4. Provided. Further, in the electromagnetic valve 2B of the second embodiment shown in FIGS. 8 to 11, the coating 9B having elasticity is provided on the annular edge 3e of the side plate portion 3c of the yoke 3. However, the present invention is not limited to this. For example, of the inner surface 6b of the diaphragm 6 (or 6B), a portion corresponding to the peripheral end surface 4e1 of the one end portion 4e of the pole piece 4, a portion corresponding to the annular edge 3e of the side plate portion 3c of the yoke 3, or the diaphragm An elastic coating may be provided on the entire area of the inner surface 6b of 6 (or 6B).
 これにより、閉状態では、ダイアフラム6(または6B)の内面6bと、ポールピース4の一端部4eのうち開口4oの周りの周端面4e1、若しくは、ヨーク3の側板部3cの環状縁3eとを互いに密接させることができる。したがって、実施例1の電磁弁2、実施例2の電磁弁2Bにおけるのと同様に、閉状態をアシストすることができる。 Thereby, in the closed state, the inner surface 6b of the diaphragm 6 (or 6B) and the peripheral end surface 4e1 around the opening 4o of the one end portion 4e of the pole piece 4 or the annular edge 3e of the side plate portion 3c of the yoke 3 are connected. Can be close to each other. Accordingly, the closed state can be assisted in the same manner as in the electromagnetic valve 2 of the first embodiment and the electromagnetic valve 2B of the second embodiment.
 なお、そのようなダイアフラム6(または6B)の内面6bに設けられるコーティングは、一体成形によって、弾性体8と同じ材料で空間的に連続して一体に形成されていてもよい。これにより、電磁弁の部品の作製工程を簡素化できる。 It should be noted that the coating provided on the inner surface 6b of the diaphragm 6 (or 6B) may be integrally and continuously formed of the same material as the elastic body 8 by integral molding. Thereby, the manufacturing process of the components of a solenoid valve can be simplified.
 (ケースに関する変形例)
 上の例では、電磁弁2,2Bの第2の流体出入口12は、蓋ケース10Aの第2の端壁10-2から外部(+Z側)に突出した円筒部10aによって構成された。その場合、電磁弁2,2Bをストレートの流路に介挿することが容易になる。しかしながら、これに限られるものではない。
(Modifications related to the case)
In the above example, the second fluid inlet / outlet 12 of the solenoid valves 2 and 2B is configured by the cylindrical portion 10a protruding outward (+ Z side) from the second end wall 10-2 of the lid case 10A. In that case, it becomes easy to insert the solenoid valves 2 and 2B in the straight flow path. However, the present invention is not limited to this.
 例えば、図19(A)、図19(B)は、実施例1の電磁弁2のケース10を変形してなる一例の電磁弁2Dを示している。図19(A)は、この電磁弁2Dを+Z側から見たところを示している。また、図19(B)は、図19(A)における下側(-Y側)から見た断面構造を示している。この図から分かるように、この電磁弁2Dでは、第2の流体出入口12をなす円筒部10bは、主ケース10Bの外周壁10-3から、外部(+X側)へ突出して配置されている。その他の点は、実施例1の電磁弁2と同様に構成されている(なお、図19(B)では、簡単のため、図4、図6、図7に比してダイアフラム6の構造が簡素化して図示され、また、コーティング9Aの図示が省力されている。この点は、後述の図20(B)でも同様である。)。 For example, FIGS. 19A and 19B show an example of an electromagnetic valve 2D obtained by modifying the case 10 of the electromagnetic valve 2 of the first embodiment. FIG. 19A shows the electromagnetic valve 2D viewed from the + Z side. FIG. 19B shows a cross-sectional structure viewed from the lower side (−Y side) in FIG. As can be seen from this figure, in this solenoid valve 2D, the cylindrical portion 10b forming the second fluid inlet / outlet 12 is disposed so as to protrude from the outer peripheral wall 10-3 of the main case 10B to the outside (+ X side). The other points are configured in the same manner as the electromagnetic valve 2 of the first embodiment (in FIG. 19B, for the sake of simplicity, the structure of the diaphragm 6 is larger than that of FIGS. 4, 6, and 7. The illustration is simplified, and the illustration of the coating 9A is saved, and this is the same in FIG.
 この電磁弁2Dが開状態にあるとき、第2の流体出入口12から図19(B)中に矢印LD1で示すように流体が入る。この流体は、矢印LD2で示すように、ダイアフラム6の内面6bとヨーク3の側板部3cの環状縁3eとの間の隙間、ダイアフラム6の内面6bとポールピース4の一端部4eとの間の隙間、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を順に通り、一端部4eの開口4oを経て、矢印LD3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2D通して流体が流通し得る。 When the electromagnetic valve 2D is in the open state, fluid enters from the second fluid inlet / outlet port 12 as shown by an arrow LD1 in FIG. 19 (B). As shown by the arrow LD2, this fluid flows between the inner surface 6b of the diaphragm 6 and the annular edge 3e of the side plate portion 3c of the yoke 3, and between the inner surface 6b of the diaphragm 6 and one end 4e of the pole piece 4. The gap and the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8 are sequentially passed through the opening 4o of the one end 4e to flow out from the first fluid inlet / outlet 11 as indicated by the arrow LD3. To do. In this way, fluid can flow through the electromagnetic valve 2D from the second fluid inlet / outlet 12 toward the first fluid inlet / outlet 11 or vice versa.
 この電磁弁2Dが閉状態にあるときは、実施例1の電磁弁2におけるのと同様に、ダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。また、第2の流体出入口12から、主ケース10Bの外周壁10-3とダイアフラム6の周縁部6eとの間の隙間を通して、ダイアフラム6の背面6aに背面側圧力P0が加えられる。したがって、実施例1の電磁弁2におけるのと同様に、閉状態がアシストされる。 When the electromagnetic valve 2D is in the closed state, the diaphragm 6 approaches the one end 4e of the pole piece 4 as in the electromagnetic valve 2 of the first embodiment, and the opening 4o is closed by the elastic body 8. Can be removed. Further, the back side pressure P0 is applied to the back surface 6a of the diaphragm 6 from the second fluid inlet / outlet 12 through a gap between the outer peripheral wall 10-3 of the main case 10B and the peripheral edge portion 6e of the diaphragm 6. Accordingly, the closed state is assisted in the same manner as in the solenoid valve 2 of the first embodiment.
 この電磁弁2Dでは、第2の流体出入口12をなす円筒部10bが蓋ケース10Aの第2の端壁10-2から外部(+Z側)へ突出するのを避けることができる。これにより、電磁弁を薄型化できる。例えば、主ケース10Bを配線基板(図示せず)の上面に沿って取り付け、第1の流体出入口11をなす突起部4aを上記配線基板を貫通して下方へ延在させて、電磁弁2Dと上記配線基板とを併せて全体として偏平に構成することができる。 In this electromagnetic valve 2D, it is possible to avoid the cylindrical portion 10b forming the second fluid inlet / outlet 12 from projecting to the outside (+ Z side) from the second end wall 10-2 of the lid case 10A. Thereby, a solenoid valve can be reduced in thickness. For example, the main case 10B is attached along the upper surface of the wiring board (not shown), and the protrusion 4a that forms the first fluid inlet / outlet 11 extends downward through the wiring board, so that the electromagnetic valve 2D The wiring board and the wiring board can be configured flat as a whole.
 また、図20(A)、図20(B)は、実施例1の電磁弁2のケース10を変形してなる別の例の電磁弁2Eを示している。図20(A)は、この電磁弁2Eを+Z側から見たところを示している。また、図20(B)は、図20(A)における下側(-Y側)から見た断面構造を示している。この図から分かるように、この電磁弁2Eでは、第2の流体出入口12をなす円筒部10cは、主ケース10Bの第1の端壁10-1から、外部(-Z側)へ突出して配置されている。その他の点は、実施例1の電磁弁2と同様に構成されている。 20A and 20B show another example electromagnetic valve 2E obtained by modifying the case 10 of the electromagnetic valve 2 of the first embodiment. FIG. 20A shows the electromagnetic valve 2E viewed from the + Z side. FIG. 20B shows a cross-sectional structure viewed from the lower side (−Y side) in FIG. As can be seen from this figure, in this solenoid valve 2E, the cylindrical portion 10c forming the second fluid inlet / outlet 12 is disposed so as to protrude from the first end wall 10-1 of the main case 10B to the outside (−Z side). Has been. Other points are the same as those of the solenoid valve 2 of the first embodiment.
 この電磁弁2Eが開状態にあるとき、第2の流体出入口12から図20(B)中に矢印LE1で示すように流体が入る。この流体は、矢印LE2で示すように、主ケース10Bの外周壁10-3とヨーク3の側板部3cとの間の隙間、ダイアフラム6の内面6bとヨーク3の側板部3cの環状縁3eとの間の隙間、ダイアフラム6の内面6bとポールピース4の一端部4eとの間の隙間、ポールピース4の一端部4eの窪み4dと弾性体8との間の隙間を順に通り、一端部4eの開口4oを経て、矢印LE3で示すように第1の流体出入口11から外部へ流出する。このように、第2の流体出入口12から第1の流体出入口11へ向かって、またはその逆向きに、この電磁弁2E通して流体が流通し得る。 When the electromagnetic valve 2E is in an open state, fluid enters from the second fluid inlet / outlet port 12 as shown by an arrow LE1 in FIG. 20 (B). As shown by an arrow LE2, this fluid flows between the outer peripheral wall 10-3 of the main case 10B and the side plate 3c of the yoke 3, the inner surface 6b of the diaphragm 6 and the annular edge 3e of the side plate 3c of the yoke 3. The gap between the inner surface 6b of the diaphragm 6 and the one end 4e of the pole piece 4, the gap between the recess 4d of the one end 4e of the pole piece 4 and the elastic body 8 in this order, and the one end 4e. And flows out from the first fluid inlet / outlet port 11 as indicated by an arrow LE3. In this way, fluid can flow through the electromagnetic valve 2E from the second fluid inlet / outlet 12 toward the first fluid inlet / outlet 11 or vice versa.
 この電磁弁2Eが閉状態にあるときは、実施例1の電磁弁2におけるのと同様に、ダイアフラム6がポールピース4の一端部4eに対して接近して、弾性体8によって開口4oが塞がれる。また、第2の流体出入口12から、主ケース10Bの外周壁10-3とヨーク3の側板部3cとの間の隙間、主ケース10Bの外周壁10-3とダイアフラム6の周縁部6eとの間の隙間を順に通して、ダイアフラム6の背面6aに背面側圧力P0が加えられる。したがって、実施例1の電磁弁2におけるのと同様に、閉状態がアシストされる。 When the electromagnetic valve 2E is in the closed state, the diaphragm 6 approaches the one end 4e of the pole piece 4 and the opening 4o is closed by the elastic body 8 as in the electromagnetic valve 2 of the first embodiment. Can be removed. Further, from the second fluid inlet / outlet 12, a gap between the outer peripheral wall 10-3 of the main case 10B and the side plate portion 3c of the yoke 3, and between the outer peripheral wall 10-3 of the main case 10B and the peripheral portion 6e of the diaphragm 6 are provided. The back side pressure P0 is applied to the back surface 6a of the diaphragm 6 through the gaps in order. Accordingly, the closed state is assisted in the same manner as in the solenoid valve 2 of the first embodiment.
 この電磁弁2Eでは、電磁弁2Dにおけるのと同様に、第2の流体出入口12をなす円筒部10cが蓋ケース10Aの第2の端壁10-2から外部(+Z側)へ突出するのを避けることができる。これにより、電磁弁を薄型化できる。さらに、この電磁弁2Eでは、第2の流体出入口12をなす円筒部10cを第1の流体出入口11をなす突起部4aと同じ向き(-Z向き)に突出させることとができる。例えば、主ケース10Bを配線基板(図示せず)の上面に沿って取り付け、円筒部10cと突起部4aを両方とも上記配線基板を貫通して下方へ延在させて、電磁弁2Eと上記配線基板とを併せて全体として偏平に構成することができる。また、その場合、この電磁弁2Eにつながる流路を、上記配線基板の下方のみに配置することができる。 In this solenoid valve 2E, as in the solenoid valve 2D, the cylindrical portion 10c forming the second fluid inlet / outlet 12 protrudes from the second end wall 10-2 of the lid case 10A to the outside (+ Z side). Can be avoided. Thereby, a solenoid valve can be reduced in thickness. Further, in the electromagnetic valve 2E, the cylindrical portion 10c forming the second fluid inlet / outlet 12 can be protruded in the same direction (the −Z direction) as the protruding portion 4a forming the first fluid inlet / outlet 11. For example, the main case 10B is attached along the upper surface of a wiring board (not shown), and both the cylindrical portion 10c and the protruding portion 4a extend downward through the wiring board, so that the electromagnetic valve 2E and the wiring Together with the substrate, it can be configured flat as a whole. In this case, the flow path connected to the electromagnetic valve 2E can be disposed only below the wiring board.
 なお、図19(A)、図19(B)と図20(A)、図20(B)に示すケース10の変形は、実施例2の電磁弁2Bにも同様に適用され得る。 In addition, the deformation | transformation of case 10 shown to FIG. 19 (A), FIG. 19 (B), FIG. 20 (A), and FIG. 20 (B) can be applied similarly to the solenoid valve 2B of Example 2.
 (機器への適用)
 上述の実施形態では、この発明の電磁弁が血圧計に適用されたが、これに限られるものではない。この発明の電磁弁は、血圧計以外の様々な機器に適用され得る。また、この発明の電磁弁は、血圧測定機能と他の様々な機能を実行する機能部を含む機器にも適用され得る。その場合、機器を、小型で軽量に構成できる。また、鉛直方向に対して電磁弁の姿勢が様々に変化したとしても、特性(例えば、通電電流対流量特性)の変化が少ないので、電磁弁の開閉を安定して確実に行うことができ、したがって機器の動作を安定化できる。
(Application to equipment)
In the above-described embodiment, the electromagnetic valve of the present invention is applied to a sphygmomanometer. However, the present invention is not limited to this. The electromagnetic valve of the present invention can be applied to various devices other than a blood pressure monitor. Moreover, the solenoid valve of this invention can be applied also to the apparatus containing the function part which performs a blood pressure measurement function and other various functions. In that case, the device can be configured to be small and lightweight. In addition, even if the attitude of the solenoid valve changes variously with respect to the vertical direction, since the change in characteristics (for example, the current-flow characteristic versus the current flow) is small, the solenoid valve can be opened and closed stably and reliably. Therefore, the operation of the device can be stabilized.
 以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。 The above embodiments are merely examples, and various modifications can be made without departing from the scope of the present invention. The plurality of embodiments described above can be established independently, but combinations of the embodiments are also possible. In addition, various features in different embodiments can be established independently, but the features in different embodiments can be combined.
  2,2B,2D,2E,2X 電磁弁
  3 ヨーク
  4 ポールピース
  5 コイルばね
  6,6B ダイアフラム
  7 ソレノイドコイル
  8 弾性体
  9A,9B コーティング
  10 ケース
  10-1 第1の端壁
  10-2 第2の端壁
  10-3 外周壁
  11 第1の流体出入口
  12 第2の流体出入口
  100 血圧計
2, 2B, 2D, 2E, 2X Solenoid valve 3 Yoke 4 Pole piece 5 Coil spring 6, 6B Diaphragm 7 Solenoid coil 8 Elastic body 9A, 9B Coating 10 Case 10-1 First end wall 10-2 Second end Wall 10-3 Outer peripheral wall 11 First fluid inlet / outlet 12 Second fluid inlet / outlet 100 Sphygmomanometer

Claims (16)

  1.  流体の流通を許容または遮断する電磁弁であって、
     環状の周縁をもつ端板部と、この端板部の周縁に連なり、上記端板部の片側に隣り合う空間を環状に取り囲む側板部とを含むヨークと、
     上記ヨークの上記端板部に直交して、上記片側の空間に存する一端部から反対側の他端部まで一方向に延在するポールピースとを備え、このポールピースは、上記一端部に開口を有し、上記他端部に、上記ポールピース内を通して上記開口と連通した第1の流体出入口を有し、
     上記ポールピースと上記ヨークの上記側板部との間の環状の空間に収容されたソレノイドコイルと、
     上記ヨークの上記端板部に上記空間を介して対向するとともに上記ヨークの上記側板部の環状縁にまたがる寸法をもつ板状の磁性材料からなるダイアフラムと、
     上記ダイアフラムを、上記一方向に並行移動させる態様で、上記ポールピースの上記一端部から離間する向きに付勢する付勢部とを備え、
     上記ソレノイドコイルが無通電状態にある非作動時には、上記付勢部による付勢力によって、上記ダイアフラムが上記ポールピースの上記一端部から離間して上記開口が開放された開状態になり、
     上記ソレノイドコイルが通電状態にある作動時には、上記ソレノイドコイルが発生する磁力によって上記付勢部による付勢力に抗して、上記ダイアフラムが上記ポールピースの上記一端部に接近して上記開口が塞がれた閉状態になり得、
     上記ダイアフラムは、中心から周縁部へ向かって、上記ポールピースの上記一端部のうち上記開口の周りの周端面の全周、または、上記ヨークの上記側板部の環状縁の全周を覆うように空間的に連続的に延在し、上記閉状態では、上記ダイアフラムの上記端板部に対向する側の内面が、上記ポールピースの上記一端部のうち上記開口の周りの上記周端面、または、上記ヨークの上記側板部の上記環状縁に密接する構成になっていることを特徴とする電磁弁。
    A solenoid valve that allows or blocks fluid flow,
    A yoke including an end plate portion having an annular periphery, and a side plate portion connected to the periphery of the end plate portion and surrounding the space adjacent to one side of the end plate portion in an annular shape;
    A pole piece extending in one direction from one end existing in the space on one side to the other end on the opposite side, perpendicular to the end plate portion of the yoke, and the pole piece is open to the one end A first fluid inlet / outlet communicating with the opening through the pole piece at the other end,
    A solenoid coil housed in an annular space between the pole piece and the side plate of the yoke;
    A diaphragm made of a plate-like magnetic material facing the end plate portion of the yoke through the space and having a dimension extending over the annular edge of the side plate portion of the yoke;
    A biasing portion that biases the diaphragm in a direction to move away from the one end of the pole piece in a manner to move the diaphragm in parallel in the one direction,
    During non-operation when the solenoid coil is in a non-energized state, the diaphragm is separated from the one end of the pole piece by the urging force of the urging unit, and the opening is opened.
    During operation in which the solenoid coil is energized, the diaphragm approaches the one end of the pole piece against the urging force of the urging portion by the magnetic force generated by the solenoid coil, and the opening is closed. Closed state,
    The diaphragm covers the entire circumference of the peripheral end surface around the opening or the entire circumference of the annular edge of the side plate portion of the yoke from the center toward the peripheral edge. In the closed state, the inner surface on the side facing the end plate portion of the diaphragm is the peripheral end surface around the opening of the one end of the pole piece, or in the closed state, or A solenoid valve characterized in that it is in close contact with the annular edge of the side plate portion of the yoke.
  2.  請求項1に記載の電磁弁において、
     上記ポールピースと上記ヨークは一体に構成されていることを特徴とする電磁弁。
    The solenoid valve according to claim 1,
    The electromagnetic valve, wherein the pole piece and the yoke are integrally formed.
  3.  請求項1または2に記載の電磁弁において、
     上記ダイアフラムをなす磁性材料はパーマロイであることを特徴とする電磁弁。
    The solenoid valve according to claim 1 or 2,
    A magnetic valve, wherein the magnetic material forming the diaphragm is permalloy.
  4.  請求項1から3までのいずれか一つに記載の電磁弁において、
     上記ダイアフラムのうち上記ポールピースの上記一端部の上記開口に対向する部分に、上記開口を塞ぐための弾性体が一体に取り付けられていることを特徴とする電磁弁。
    In the solenoid valve according to any one of claims 1 to 3,
    An electromagnetic valve, wherein an elastic body for closing the opening is integrally attached to a portion of the diaphragm facing the opening at the one end of the pole piece.
  5.  請求項4に記載の電磁弁において、
     上記ポールピースは、上記一端部に、上記ダイアフラムに取り付けられた上記弾性体に向かって開いた窪みを有し、この窪みの底に上記開口が開いていることを特徴とする電磁弁。
    The solenoid valve according to claim 4,
    The said pole piece has the hollow opened toward the said elastic body attached to the said diaphragm in the said one end part, The said opening is opened in the bottom of this hollow, The electromagnetic valve characterized by the above-mentioned.
  6.  請求項1から5までのいずれか一つに記載の電磁弁において、
     上記ポールピースの上記他端部が外部に露出した状態で、上記ヨークと、上記ポールピースのうち上記片側の空間に延在する部分と、上記ソレノイドコイルと、上記ダイアフラムと、上記付勢部とを、一括して流体密に覆う密閉ケースを備え、
     上記密閉ケースの外壁を貫通して第2の流体出入口が設けられていることを特徴とする電磁弁。
    In the solenoid valve according to any one of claims 1 to 5,
    With the other end of the pole piece exposed to the outside, the yoke, a portion of the pole piece that extends into the space on the one side, the solenoid coil, the diaphragm, and the biasing portion, With a hermetically sealed case that fluidly and collectively covers
    A solenoid valve characterized in that a second fluid inlet / outlet is provided through the outer wall of the sealed case.
  7.  請求項6に記載の電磁弁において、
     上記密閉ケースは、上記ヨークの上記端板部の外面に沿った第1の端壁と、上記ダイアフラムの上記端板部とは反対側を向いた背面に沿った第2の端壁と、上記第1の端壁の周縁部と上記第2の端壁の周縁部とをつなぐ環状の外周壁とを含むことを特徴とする電磁弁。
    The solenoid valve according to claim 6,
    The sealed case includes a first end wall along an outer surface of the end plate portion of the yoke, a second end wall along a back surface facing the side opposite to the end plate portion of the diaphragm, An electromagnetic valve comprising: an annular outer peripheral wall connecting a peripheral portion of the first end wall and a peripheral portion of the second end wall.
  8.  請求項7に記載の電磁弁において、
     上記第1の流体出入口が設けられた上記ポールピースの上記他端部は、上記密閉ケースの上記第1の端壁から外部へ突出して配置されていることを特徴とする電磁弁。
    The solenoid valve according to claim 7,
    The electromagnetic valve according to claim 1, wherein the other end portion of the pole piece provided with the first fluid inlet / outlet is disposed to protrude outward from the first end wall of the sealed case.
  9.  請求項7または8に記載の電磁弁において、
     上記第2の流体出入口は、上記密閉ケースの上記第1の端壁、上記第2の端壁、または上記外周壁から、外部へ突出して配置されていることを特徴とする電磁弁。
    The solenoid valve according to claim 7 or 8,
    The electromagnetic valve, wherein the second fluid inlet / outlet is disposed to protrude outward from the first end wall, the second end wall, or the outer peripheral wall of the sealed case.
  10.  請求項7から9までのいずれか一つに記載の電磁弁において、
     上記付勢部は、上記ヨークの上記側板部と上記密閉ケースの上記外周壁との間の環状の空間に沿って配置されたコイルばねを含むことを特徴とする電磁弁。
    The solenoid valve according to any one of claims 7 to 9,
    The urging portion includes a coil spring disposed along an annular space between the side plate portion of the yoke and the outer peripheral wall of the sealing case.
  11.  請求項1から10までのいずれか一つに記載の電磁弁において、
     上記ダイアフラムは、中心から周縁部へ向かって、上記ヨークの上記側板部の環状縁を覆うまで空間的に連続的に延在し、
     上記ダイアフラムの上記周縁部に、上記中心へ向かって、上記ヨークの上記側板部の上記環状縁に対応する位置で止まる切り欠きが設けられていることを特徴とする電磁弁。
    The solenoid valve according to any one of claims 1 to 10,
    The diaphragm extends spatially continuously from the center toward the peripheral edge until it covers the annular edge of the side plate portion of the yoke,
    A solenoid valve characterized in that a notch that stops at a position corresponding to the annular edge of the side plate portion of the yoke is provided in the peripheral portion of the diaphragm toward the center.
  12.  請求項1から11までのいずれか一つに記載の電磁弁において、
     上記閉状態では、上記ダイアフラムの上記内面と、上記ポールピースの上記一端部のうち上記開口の周りの周端面、若しくは、上記ヨークの上記側板部の環状縁とを互いに密接させるように、上記ダイアフラムの上記内面、または、上記ポールピースの上記一端部のうち上記開口の周りの周端面、若しくは、上記ヨークの上記側板部の環状縁に、弾性を有するコーティングが設けられていることを特徴とする電磁弁。
    The solenoid valve according to any one of claims 1 to 11,
    In the closed state, the diaphragm is arranged so that the inner surface of the diaphragm and the peripheral end surface around the opening of the one end of the pole piece or the annular edge of the side plate of the yoke are in close contact with each other. A coating having elasticity is provided on the inner surface of the first or second end of the pole piece, the peripheral end surface around the opening, or the annular edge of the side plate of the yoke. solenoid valve.
  13.  被測定部位の血圧を測定する血圧計であって、
     本体と、
     被測定部位に装着されるカフと、
     上記本体に搭載され、流路を通して上記カフに流体を供給するためのポンプと、
     上記本体に搭載され、上記ポンプまたは上記流路と大気との間に介挿された、請求項1から12までのいずれか一つに記載の電磁弁と、
     上記ポンプによって上記流路を通して上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
     上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部とを備え、
     上記電磁弁は、上記ダイアフラムの背面が上記ポンプまたは上記流路に連通する側、上記第1の流体出入口が大気側に向けられて介挿されていることを特徴とする血圧計。
    A sphygmomanometer that measures the blood pressure of a measurement site,
    The body,
    A cuff attached to the measurement site;
    A pump mounted on the body for supplying fluid to the cuff through a flow path;
    The solenoid valve according to any one of claims 1 to 12, which is mounted on the main body and interposed between the pump or the flow path and the atmosphere;
    A pressure controller for controlling the pressure of the cuff by supplying fluid to the cuff through the flow path by the pump and / or discharging the fluid from the cuff through the electromagnetic valve;
    A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the cuff,
    The sphygmomanometer, wherein the solenoid valve is inserted such that a back surface of the diaphragm communicates with the pump or the flow path, and the first fluid inlet / outlet faces the atmosphere side.
  14.  被測定部位の血圧を測定する血圧計であって、
     本体と、
     被測定部位に装着されるカフとを備え、
     上記カフは、上記被測定部位に接して配置される測定用流体袋と、この測定用流体袋の外周側に重ねて配置される押圧用流体袋とを内包し、
     上記本体に搭載された、上記押圧用流体袋および上記測定用流体袋に流体を供給するためのポンプと、
     上記ポンプと上記押圧用流体袋とを流体流通可能に接続する第1の流路と、
     上記ポンプまたは第1の流路と上記測定用流体袋とを流体流通可能に接続し、かつ、開閉弁が介挿された第2の流路と、
     上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記被測定部位を圧迫する制御を行う圧力制御部と、
     上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する血圧算出部とを備え、
     上記開閉弁は、請求項1から12までのいずれか一つに記載の電磁弁からなり、
     上記第2の流路において、上記開閉弁は、上記ダイアフラムの背面が上記ポンプに連通する上流側、上記第1の流体出入口が上記測定用流体袋に連通する下流側に向けられて介挿されていることを特徴とする血圧計。
    A sphygmomanometer that measures the blood pressure of a measurement site,
    The body,
    With a cuff attached to the measurement site,
    The cuff includes a measurement fluid bag disposed in contact with the measurement site, and a pressing fluid bag disposed on the outer peripheral side of the measurement fluid bag,
    A pump mounted on the main body for supplying fluid to the pressing fluid bag and the measuring fluid bag;
    A first flow path connecting the pump and the pressing fluid bag so as to allow fluid flow;
    A second flow path in which the pump or the first flow path and the measurement fluid bag are connected so as to allow fluid flow, and an on-off valve is inserted;
    A pressure control unit that performs control for supplying the fluid to the pressing fluid bag from the pump through the first flow path and compressing the measurement site;
    A blood pressure calculator that calculates blood pressure based on the pressure of the fluid contained in the fluid bag for measurement,
    The on-off valve comprises the electromagnetic valve according to any one of claims 1 to 12,
    In the second flow path, the on-off valve is inserted with the rear surface of the diaphragm facing the upstream side communicating with the pump and the first fluid inlet / outlet facing the downstream side communicating with the measurement fluid bag. A blood pressure monitor characterized by
  15.  請求項14に記載の血圧計を用いて被測定部位の血圧を測定する血圧測定方法であって、
     上記カフが被測定部位に装着された装着状態で、上記ソレノイドコイルを無通電状態にして上記開閉弁を開状態に保ち、上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給するとともに、上記ポンプまたは第1の流路から上記第2の流路を通して上記流体を予め定められた量だけ供給する予備供給ステップと、
     上記ソレノイドコイルを通電状態にして上記開閉弁を開状態から閉状態に切り換える切換ステップと、
     上記開閉弁を閉状態に保ち、上記圧力制御部によって上記ポンプから上記第1の流路を通して上記押圧用流体袋に上記流体を供給して上記被測定部位を圧迫しながら、上記血圧算出部によって上記測定用流体袋に収容された上記流体の圧力に基づいて血圧を算出する血圧算出ステップと
    を有し、
     上記閉状態に保たれている期間中に、この閉状態に切り換えられた直後の上記ソレノイドコイルの通電量に比して、上記ソレノイドコイルの通電量を少なく設定することを特徴とする血圧測定方法。
    A blood pressure measurement method for measuring blood pressure at a site to be measured using the sphygmomanometer according to claim 14,
    With the cuff attached to the part to be measured, the solenoid coil is de-energized, the open / close valve is kept open, and the fluid is transferred from the pump to the pressing fluid bag through the first flow path. And a preliminary supply step of supplying a predetermined amount of the fluid from the pump or the first flow path through the second flow path,
    A switching step of switching the solenoid valve from an open state to a closed state by energizing the solenoid coil;
    While maintaining the on-off valve in a closed state, the pressure control unit supplies the fluid to the pressing fluid bag from the pump through the first flow path and compresses the measurement site, while the blood pressure calculation unit A blood pressure calculation step for calculating a blood pressure based on the pressure of the fluid contained in the measurement fluid bag,
    A method for measuring blood pressure, wherein the energization amount of the solenoid coil is set to be smaller than the energization amount of the solenoid coil immediately after being switched to the closed state during the period of being kept in the closed state. .
  16.  被測定部位の血圧を測定可能な機器であって、
     本体と、
     上記本体から延在し、被測定部位に装着されるカフと、
     上記本体に搭載された、上記カフに流体を供給するためのポンプと、
     上記本体に搭載された、請求項1から12までのいずれか一つに記載の電磁弁と、
     上記ポンプによって上記カフへ流体を供給し、および/または、上記カフから上記電磁弁を通して流体を排出させて、上記カフの圧力を制御する圧力制御部と、
     上記カフに収容された上記流体の圧力に基づいて血圧を算出する血圧算出部と
    を備えたことを特徴とする機器。
    A device capable of measuring the blood pressure of a measurement site,
    The body,
    A cuff that extends from the main body and is attached to the measurement site;
    A pump mounted on the body for supplying fluid to the cuff;
    The solenoid valve according to any one of claims 1 to 12, which is mounted on the main body,
    A pressure controller that controls the pressure of the cuff by supplying fluid to the cuff by the pump and / or discharging the fluid from the cuff through the solenoid valve;
    An apparatus comprising: a blood pressure calculation unit that calculates a blood pressure based on a pressure of the fluid contained in the cuff.
PCT/JP2019/002302 2018-02-13 2019-01-24 Electronic valve, sphygmomanometer, blood pressure measuring method, and apparatus WO2019159639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018023416A JP2019136351A (en) 2018-02-13 2018-02-13 Magnetic valve, blood pressure manometer, blood pressure measurement method and appliance
JP2018-023416 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159639A1 true WO2019159639A1 (en) 2019-08-22

Family

ID=67619393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002302 WO2019159639A1 (en) 2018-02-13 2019-01-24 Electronic valve, sphygmomanometer, blood pressure measuring method, and apparatus

Country Status (2)

Country Link
JP (1) JP2019136351A (en)
WO (1) WO2019159639A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117489U (en) * 1975-03-19 1976-09-24
DE3424913A1 (en) * 1984-07-06 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart Electromagnetic valve
JPH0467838A (en) * 1990-07-09 1992-03-03 Omron Corp Electromagnetic exhaust valve of sphygmomanometer
JPH04250133A (en) * 1991-01-28 1992-09-07 Matsushita Electric Works Ltd Constant speed exhaust device for blood pressure meter
JPH0685979U (en) * 1993-05-24 1994-12-13 エヌオーケー株式会社 Control valve
JPH10238647A (en) * 1997-02-27 1998-09-08 Citizen Watch Co Ltd Electromagnetic exhaust valve
JP2006242232A (en) * 2005-03-01 2006-09-14 Nippon Seimitsu Sokki Kk Electric exhaust valve and blood pressure meter
CN204327994U (en) * 2014-11-25 2015-05-13 比亚迪股份有限公司 A kind of Proportional valve and there is the electronic sphygmomanometer of this Proportional valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117489U (en) * 1975-03-19 1976-09-24
DE3424913A1 (en) * 1984-07-06 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart Electromagnetic valve
JPH0467838A (en) * 1990-07-09 1992-03-03 Omron Corp Electromagnetic exhaust valve of sphygmomanometer
JPH04250133A (en) * 1991-01-28 1992-09-07 Matsushita Electric Works Ltd Constant speed exhaust device for blood pressure meter
JPH0685979U (en) * 1993-05-24 1994-12-13 エヌオーケー株式会社 Control valve
JPH10238647A (en) * 1997-02-27 1998-09-08 Citizen Watch Co Ltd Electromagnetic exhaust valve
JP2006242232A (en) * 2005-03-01 2006-09-14 Nippon Seimitsu Sokki Kk Electric exhaust valve and blood pressure meter
CN204327994U (en) * 2014-11-25 2015-05-13 比亚迪股份有限公司 A kind of Proportional valve and there is the electronic sphygmomanometer of this Proportional valve

Also Published As

Publication number Publication date
JP2019136351A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2019159640A1 (en) Electronic valve, sphygmomanometer, and apparatus
JP2019138403A5 (en)
US9482221B2 (en) Gas control apparatus
US7380571B2 (en) Directional control valve
US11293427B2 (en) Valve, and fluid control device including valve
CN110693476B (en) Flow control valve and blood pressure information measuring device with same
JP5364592B2 (en) Solenoid valve
US11867168B2 (en) Fluid control device and sphygmomanometer
JP2015111562A (en) Switch structure and explosion proof apparatus
WO2019159639A1 (en) Electronic valve, sphygmomanometer, blood pressure measuring method, and apparatus
JP2017219136A (en) Flow control valve, its process of manufacture and blood pressure information measurement device
US11638531B2 (en) Blood pressure measuring device and method of manufacturing blood pressure measuring device
JP6724565B2 (en) Flow control valve and blood pressure information measuring device
EP3456255B1 (en) Valve, fluid control device, and blood-pressure monitor
JP4252512B2 (en) Small solenoid valve
JP6790467B2 (en) Flow control valve and blood pressure information measuring device
JP2009063119A (en) Solenoid valve
JPS6376969A (en) Selector valve
US7409902B2 (en) Actuators with connected diaphragms
JP2016138573A (en) Solenoid valve and electronic sphygmomanometer
WO2019139040A1 (en) Blood pressure measurement device
JP2913067B2 (en) Solenoid valve
JP2587537Y2 (en) solenoid valve
JP2009024510A (en) Diaphragm pump
JPH10267164A (en) Exhaust valve device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753968

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753968

Country of ref document: EP

Kind code of ref document: A1