WO2019159303A1 - 無線通信システム、端末および基地局 - Google Patents

無線通信システム、端末および基地局 Download PDF

Info

Publication number
WO2019159303A1
WO2019159303A1 PCT/JP2018/005356 JP2018005356W WO2019159303A1 WO 2019159303 A1 WO2019159303 A1 WO 2019159303A1 JP 2018005356 W JP2018005356 W JP 2018005356W WO 2019159303 A1 WO2019159303 A1 WO 2019159303A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
uci
communication system
wireless communication
Prior art date
Application number
PCT/JP2018/005356
Other languages
English (en)
French (fr)
Inventor
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/005356 priority Critical patent/WO2019159303A1/ja
Publication of WO2019159303A1 publication Critical patent/WO2019159303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present invention relates to a wireless communication system, a terminal, and a base station.
  • terminals For example, smartphones
  • traffic used by mobile terminals tends to increase in the future.
  • next generation for example, NR (New Radio) or 5G (5th generation mobile communication)
  • 4G (4th generation mobile communication) technical standard for example, Non-Patent Documents 1 to 11
  • 3GPP 3rd Generation Partnership Project
  • next-generation communication standards are assumed to support a wide variety of services.
  • eMBB Enhanced Mobile Broadband
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Covalent
  • URLLC aims to set the user plane delay in the uplink and downlink to 0.5 milliseconds even for low delay. This is a high requirement of less than 1/10 of LTE (Long Term Evolution), which is a 4G wireless communication system.
  • LTE Long Term Evolution
  • the terminal transmits data to the base station via a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • data transmitted on the uplink is referred to as uplink data.
  • the terminal transmits control information to the base station via a physical uplink control channel (PUCCH: Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • uplink data and UCI may be transmitted by PUSCH.
  • the UCI may include ACK (Acknowledgement) / NACK (Negative-Acknowledgement), which is delivery confirmation information for data transmitted on the downlink.
  • ACK Acknowledgement
  • NACK Negative-Acknowledgement
  • data transmitted on the downlink is referred to as downlink data.
  • UCI may include a scheduling request (SR: Scheduling Request) for requesting transmission resource allocation, periodic or aperiodic CSI (Channel State Information), and the like.
  • SR Scheduling Request
  • the periodic CSI includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator) and the like.
  • the periodic CSI is a case where periodic transmission resources are allocated in advance by RRC (Radio Resource Control) (periodic reporting).
  • Aperiodic CSI is a case where transmission is performed according to control information (CSI Request) included in a physical downlink control channel (PDCCH: Physical Downlink Control Channel).
  • the base station transmits data (downlink data) to the terminal via a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the base station transmits control information to the terminal via the PDCCH.
  • control information transmitted in the downlink is referred to as DCI (Downlink Control Information).
  • DCI includes, for example, UL grant information (PUSCH allocation information) and DL assignment (PDSCH allocation information), and is indicated in the technical standard as DCI Format (Non-patent Documents 2 and 17). .
  • the terminal when the UCI transmission timing and the uplink data transmission timing overlap, the terminal transmits UCI on the PUSCH by piggybacking (transmitting UCI on the PUSCH). Therefore, even in the next generation communication standard, when the UCI transmission timing and the data transmission timing overlap, the discussion proceeds in the direction of adopting that the terminal piggybacks the UCI to the PUSCH and transmits the data and the UCI. Yes.
  • the disclosed technology has been made in view of the above, and an object thereof is to make it possible to ensure redundancy according to the reliability required for uplink data.
  • the uplink control information is transmitted simultaneously with the uplink data using the channel assigned to the uplink data transmission.
  • a radio communication system capable of transmitting to a station, a first signal including first information related to a resource that allows a base station to place uplink control information on a channel allocated for transmission of uplink data to a terminal
  • the terminal transmits at least a part of the uplink control information on the channel and transmits it at the same time as the data according to the first information.
  • redundancy according to the reliability required for upstream data can be ensured.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a wireless communication system according to the first embodiment.
  • FIG. 2 is an explanatory diagram of an overview of the wireless communication system according to the first embodiment.
  • FIG. 3 is a sequence diagram illustrating the operation of the wireless communication system according to the first embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of a method using a dedicated field (in the case of 1 bit) in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a first example of a method of using a dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a wireless communication system according to the first embodiment.
  • FIG. 2 is an explanatory diagram of an overview of the wireless communication system according to the first embodiment.
  • FIG. 3 is a sequence diagram illustrating the operation of the wireless communication system according to the
  • FIG. 6 is an explanatory diagram illustrating a second example of the method using the dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 7 is an explanatory diagram illustrating a third example of the method using the dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 8 is an explanatory diagram illustrating an example of a method using a shared field in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of a method of using a shared field in the PDCCH in the wireless communication system according to the first embodiment.
  • FIG. 10 is an explanatory diagram of an overview of the wireless communication system according to the second embodiment.
  • FIG. 11 is an explanatory diagram of an overview of the wireless communication system according to the third embodiment.
  • FIG. 12 is a sequence diagram illustrating the operation of the wireless communication system according to the third embodiment.
  • FIG. 13 is a sequence diagram illustrating the operation of the wireless communication system according to the fourth embodiment.
  • FIG. 14 is a sequence diagram illustrating another operation of the wireless communication system according to the fourth embodiment.
  • FIG. 15 is a sequence diagram illustrating still another operation of the wireless communication system according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram of an overview of the wireless communication system according to the fifth embodiment.
  • FIG. 17 is a sequence diagram illustrating the operation of the wireless communication system according to the fifth embodiment.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of the base station.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of the terminal.
  • FIG. 20 is a schematic diagram of 5G NR.
  • FIG. 21 is a diagram illustrating a case where the UE 20 transmits the UCI by piggybacking it to the PUSCH when the UCI transmission timing and the data transmission timing overlap.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a wireless communication system according to the first embodiment.
  • the wireless communication system illustrated in FIG. 1 includes a base station 10 and a terminal 20.
  • the terminal 20 is, for example, a UE (User Equipment) in LTE or a next generation radio communication system.
  • the base station 10 is, for example, an eNB (evolved Node B) in LTE.
  • eNB evolved Node B
  • 5G base station 5G base station
  • gNB 5G base station
  • the terminal 20 is described as “UE20”
  • the base station 10 is described as “gNB10”.
  • New RAT is described as “NR” or “5G NR”.
  • the gNB 10 includes a communication unit 13 and a control unit 14.
  • the control unit 14 controls the operation of the communication unit 13.
  • the communication unit 13 includes a transmission unit 11 and a reception unit 12, and performs wireless communication with the UE 20.
  • the transmission unit 11 transmits data (downlink data) to the UE 20 using PDSCH, and transmits DCI to the UE 20 using PDCCH.
  • the receiving unit 12 receives data (uplink data) transmitted from the UE 20 on the PUSCH, and receives UCI transmitted from the UE 20 on the PUCCH.
  • the UE 20 includes a communication unit 23 and a control unit 24.
  • the control unit 24 controls the operation of the communication unit 23.
  • the communication unit 23 includes a transmission unit 21 and a reception unit 22 and performs wireless communication with the gNB 10.
  • the transmission unit 21 transmits uplink data to the gNB 10 using PUSCH, and transmits UCI to the gNB 10 using PUCCH.
  • the receiving unit 12 receives downlink data transmitted from the gNB 10 via the PDSCH, and receives DCI transmitted from the gNB 10 via the PDCCH.
  • FIG. 20 is a schematic diagram in 5G NR.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • a slot or a mini-slot is defined as a transmission unit in the time direction.
  • a slot-based transmission (long section) and a non-slot based transmission (short section) are defined.
  • the long section is defined as 1 slot
  • the short section is defined as 0.5 slot.
  • URLLC is assumed to use a short interval in order to realize low delay
  • eMBB is assumed to use both a long interval and a short interval.
  • UE20 transmits uplink data ("Data" in FIG.
  • UE20 transmits UCI containing Ack / Nack etc. to gNB10 via PUCCH.
  • UCI may be expressed as “UCI”, “Ack / Nack”, and “UCI (Ack / Nack etc.)”.
  • FIG. 21 is a diagram illustrating a case where the UE 20 transmits the UCI by PUgging back to the PUSCH when the UCI transmission timing and the data transmission timing overlap.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • the discussion is proceeding in the direction of adopting that the UE 20 transmits the UCI by piggybacking it to the PUSCH.
  • the uplink data occupying the PUSCH The ratio of decreases.
  • the redundancy of the uplink data in the PUSCH is insufficient and the error rate is deteriorated.
  • the required error rate may not be satisfied.
  • the gNB 10 instructs the UE 20 about UCI transmission when the timing of transmitting data on the PUSCH and the timing of transmitting UCI on the PUCCH overlap. This will be described with a specific example.
  • FIG. 2 is an explanatory diagram illustrating an overview of the wireless communication system according to the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • FIG. 3 is a sequence diagram illustrating the operation of the wireless communication system according to the first embodiment.
  • data scheduled to be transmitted is generated in a logical channel (hereinafter sometimes referred to as “LCH”).
  • the communication unit 23 of the UE 20 notifies the gNB 10 of the type of data scheduled to be transmitted through a Buffer status report or a scheduling request (SR) (step S100 in FIG. 3). That is, the UE 20 notifies the gNB 10 of the type of data to be transmitted.
  • SR scheduling request
  • the communication unit 23 is an example of a “notification unit”.
  • the communication unit 13 of the gNB 10 transmits DCI and downlink data to the UE 20 using the PDCCH and the corresponding PDSCH, respectively (step S110 in FIG. 3). That is, gNB10 transmits downlink data to UE20 by PDSCH, and transmits DCI to UE20 by PDCCH.
  • the DCI can include, for example, UL grant information (PUSCH allocation information) or DL assignment (PDSCH allocation information). In step S110, at least information on DL assignment is included.
  • the communication unit 13 of the gNB 10 relates to transmission of UCI according to at least one of the type of data notified from the UE 20 or the radio resources that can be allocated (for example, the number of resource blocks, the number of resource elements, etc.)
  • a PDCCH including information is transmitted.
  • the information regarding transmission of UCI is transmitted by PDCCH regarding UL grant, for example.
  • the communication unit 13 is an example of an “instruction unit”.
  • the gNB 10 transmits UCI using the channel (PUSCH) resource allocated for transmission of the first type of data. Is indicated on the PDCCH.
  • the gNB 10 transmits the UCI using a resource different from the channel allocated for the transmission of the second type of data.
  • PDCCH Physical Downlink Control Channel
  • gNB is the number of radio resources that can be occupied by UCI among radio resources that can be allocated (for example, the number of resource elements, the number of resource blocks), the number of bits, or the UCI occupancy rate in the PUSCH region (
  • at least one piece of information indicating the occupancy rate of UCI (or a part of information related to UCI) in the PUSCH region may be simply included in the PDCCH in step S120 and transmitted.
  • an upper limit value at which the UCI can be piggybacked using an RRC signal (for example, RRC Reconfiguration Message) or the like may be set in advance. Further, the occupation ratio can be calculated from equation (1) described later.
  • the control unit 24 adjusts information included in the UCI to be piggybacked so as to be within the range of the upper limit value. For example, only specific UCI information (for example, information on Ack / Nack) is piggybacked.
  • the UCI transmission timing and the uplink data transmission timing overlap.
  • the UCI is piggybacked on the PUSCH and transmitted.
  • the communication unit 23 of the UE 20 receives the PDCCH including information related to the UCI transmission, and uses the first type of data (see “ UL data ") and the piggybacked UCI information are transmitted (step S130 in FIG. 3).
  • the data type is the first type (for example, eMBB)
  • all UCIs may be piggybacked.
  • any upper limit value of the number of radio resources, the number of bits, and the occupation rate that can be occupied by UCI is indicated, or any of the above upper limit values is set in advance using an RRC message. If there is, the PCI is partially piggybacked so as to correspond to the number of resources, the number of bits, and the occupation rate that do not exceed the upper limit. As an example of piggybacking a part of UCI, for example, only information related to Ack / Nack is piggybacked.
  • the communication unit 23 of the UE 20 receives the PDCCH including information related to UCI transmission, and uses the second type of data (see FIG. 3). "UL data") and UCI (refer to "I '" in FIG. 2 for the UCI area) (step S130 in FIG. 3).
  • the data type is the second type (for example, URLLC)
  • it is desirable to perform piggyback so that the required quality of data can be maintained when piggybacking UCI. If the number of radio resources that can be occupied by UCI, the number of bits, or the occupation rate is instructed, or if an upper limit is set in advance using an RRC message, the upper limit is not exceeded.
  • a part of UCI is piggybacked so as to correspond to the number of resources, the number of bits, or the occupation rate.
  • the upper limit value may be changed according to the type of data or the allowable delay amount. Note that when a plurality of upper limit values are set, the UE 20 performs control so as to satisfy all the upper limit values, or performs control so as to satisfy any one upper limit value.
  • the communication unit 23 of the UE 20 uses a resource that has received the instruction to transmit a UCI that has not been transmitted in S130. Transmit (S140). Specifically, the communication unit 23 of the UE 20 transmits the UCI to the gNB 10 using a resource different from the PUSCH assigned to the uplink data transmitted in step S130 (step S140 in FIG. 3). For example, the UE 20 piggybacks the UCI on the PUSCH after the PUSCH assigned for data transmission and transmits the UCI to the NB 10 (see “I” in FIG. 2).
  • UE20 transmits UCI to gNB10 by PUCCH after PUSCH allocated for transmission of the 2nd type data (refer to "II" of Drawing 2).
  • the upper limit value may be provided in the same manner as in step S130 to limit the number of resources, the number of bits, or the occupation rate that can be piggybacked.
  • step S120 the communication unit 13 of the gNB 10 instructs the UE 20 regarding whether or not to transmit the UCI on the PUSCH according to a specific field in the PDCCH, or about resources that can be piggybacked. That is, the UE 20 is instructed about the piggyback on the UCI and the PUSCH.
  • Examples of the instruction method include a method using a set dedicated field and a method using an existing shared field as specific fields in the PDCCH.
  • the resources that can be piggybacked correspond to at least one of the number of resources, the number of bits, and the occupation rate.
  • FIG. 4 is an explanatory diagram illustrating an example of a method of using a dedicated field (in the case of 1 bit) in the PDCCH in the wireless communication system according to the first embodiment.
  • the dedicated field in the PDCCH is set to 1 bit, and the value of the dedicated field in the PDCCH is indicated by “0” and “1” by the gNB 10.
  • the gNB 10 maps the dedicated field values “0” and “1” in the PDCCH to the LCH in advance, and associates the LCH and the PDCCH.
  • the gNB 10 sets in advance a resource for transmitting UCI used when the value of the dedicated field in the PDCCH is “0” or “1” by RRC, and notifies the UE 20 of it.
  • the upper limit of the number of bits that can be piggybacked may be set by an RRC message. Further, the upper limit value may be made variable by using another dedicated field in the PDCCH.
  • the gNB 10 indicates the value of the dedicated field in the PDCCH with “0”.
  • the transmission timing of UCI and the transmission timing of data overlap.
  • the UE 20 transmits data on the PUSCH.
  • the UE 20 transmits the UCI on the PUSCH allocated for data transmission. That is, the UE 20 piggybacks the UCI to the PUSCH.
  • radio resource allocation information may be received from gNB before transmission. At this time, the number of resources, the number of bits, or the upper limit of the occupation rate that can be piggybacked by UCI is piggybacked to PUSCH.
  • the upper limit value is desirably changed depending on the type of data transmitted by the UE 20, for example. This is because the required delay amount and reliability differ depending on the data type, so that the radio resource of the entire radio system can be flexibly utilized by changing the upper limit value for each data type.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “1” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S140 the UE 20 does not transmit UCI on the PUSCH allocated for transmission of uplink data. That is, UE20 does not piggyback UCI to PUSCH in step S130.
  • the UE 20 transmits the UCI to the gNB 10 via a resource (PUSCH or PUCCH) different from the channel (PUSCH) allocated to the uplink data transmission transmitted in step S130 (step S140).
  • PUSCH or PUCCH resource allocated to the uplink data transmission transmitted in step S130
  • the UE 20 transmits the UCI to the gNB 10 via a resource (PUSCH or PUCCH) different from the channel (PUSCH) allocated to the uplink data transmission transmitted in step S130 (step S140).
  • PUSCH or PUCCH resource different from the channel (PUSCH) allocated to the uplink data transmission transmitted in step S130 (step S140).
  • PUSCH or PUCCH resource allocated to the uplink data transmission transmitted in step S130
  • up to the upper limit of the number of resources, the number of bits, or the occupation rate that UCI can piggyback is piggybacked.
  • the upper limit value is desirably changed depending on the type of data transmitted by the UE 20, for example. This is because the required delay amount and
  • the gNB 10 can recognize which channel the UCI is transmitted from the UE 20 through an instruction to the UE 20.
  • FIG. 5 is an explanatory diagram illustrating a first example of a method of using a dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • the dedicated field in the PDCCH is set to 2 bits, and gNB10 indicates the value of the dedicated field in the PDCCH as “00”, “01”, “10”, “11”.
  • the gNB 10 maps the dedicated field values “00”, “01”, “10”, and “11” in the PDCCH to the LCH in advance, and associates the LCH with the PDCCH.
  • the gNB 10 sets in advance a resource for transmitting a UCI to be used when the value of the dedicated field in the PDCCH is “00”, “01”, “10”, “11” by an RRC message.
  • the UE 20 may be notified.
  • the RRC message is, for example, any one of RRC Configuration setup message, RRC Reconfiguration message, and RRC establishment message.
  • step S120 the UE 20 is instructed by the gNB 10 that the value of the dedicated field in the PDCCH is “00”.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S130 the UE 20 does not piggyback the UCI to the PUSCH.
  • step S140 UCI is transmitted. Depending on the situation, this time UCI transmission may not be performed.
  • the gNB 10 indicates the value of the dedicated field in the PDCCH with “01”.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • the UE 20 piggybacks part of the UCI to the PUSCH, and transmits data and a part of the UCI.
  • the UE 20 transmits the UCI that was not transmitted in step S130.
  • UCI that has not been sent in step S140 may be abandoned. This process is used, for example, with an option that some UCIs are not transmitted depending on the situation.
  • the UCI that is piggybacked and transmitted in step S130 is, for example, information related to Ack / Nack for downlink data received on the PDSCH in step S110.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “10” by the gNB 10.
  • the UCI transmission timing and the data (for example, URLLC data) transmission timing overlap.
  • step S130 the UE 20 piggybacks all of the UCI, and transmits data and UCI on the PUSCH.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “11” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S130 the UE 20 does not piggyback the UCI to the PUSCH.
  • the UE 20 transmits the UCI to the gNB 10 using the PUCCH after the PUSCH assigned to the uplink data transmission (see “II” in FIG. 2).
  • UE20 piggybacks and transmits UCI to PUSCH after PUSCH allocated to data.
  • the values of these dedicated fields may be changed according to the type of data.
  • the first type of data for example, eMMB data
  • a setting is made so that transmission of UCI is given priority
  • the second type of data for example, URLLC data
  • transmission of uplink data is performed. Set so that priority can be given.
  • the gNB 10 can recognize how the UCI is transmitted from the UE 20 by an instruction to the UE 20.
  • FIG. 6 is an explanatory diagram illustrating a second example of another method using a dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • the dedicated field in the PDCCH is set to 2 bits (a, b), and the values of the dedicated field in the PDCCH are set to “00”, “01”, “10”, “11” by the gNB 10. ".
  • the gNB 10 maps the dedicated field values “00”, “01”, “10”, and “11” in the PDCCH to the LCH in advance, and associates the LCH with the PDCCH.
  • the gNB 10 sets in advance a resource for transmitting a UCI to be used when the value of the dedicated field in the PDCCH is “00”, “01”, “10”, “11” by an RRC message.
  • the UE 20 may be notified.
  • the RRC message is, for example, one of RRC Configuration setup message, RRC Reconfiguration message, and RRC establishment message.
  • 1 bit (a) of 2 bits (a, b) indicates whether or not information related to CSI among the information included in UCI is to be piggybacked, and the other 1 bit (b ) Indicates whether or not to piggyback information on Ack / Nack among the information included in the UCI.
  • step S120 the UE 20 is instructed by the gNB 10 that the value of the dedicated field in the PDCCH is “00”.
  • step S130 the transmission timing of UCI and the transmission timing of data overlap.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S140 the UE 20 does not piggyback UCI to PUSCH. This process is used, for example, as an option not to transmit UCI this time depending on the situation.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “01” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 piggybacks information on Ack / Nack included in UCI in the PUSCH, and transmits uplink data and information on Ack / Nack.
  • Step S140 UE20 transmits UCI (information about CSI) which was not transmitted in Step S130.
  • the UCI not sent in S130 may be abandoned without being transmitted. This process is used, for example, with an option that some UCIs are not transmitted depending on the situation.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “10” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 piggybacks information on CSI included in the UCI in the PUSCH, and transmits data and information on CSI.
  • Step S140 UE20 transmits UCI (information about Ack / Nack) which was not transmitted in Step S130.
  • the UCI not sent in S130 may be abandoned without being transmitted. This process is used, for example, with an option that some UCIs are not transmitted depending on the situation.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “11” by the gNB 10.
  • the UCI transmission timing and the data (for example, URLLC data) transmission timing overlap.
  • step S130 the UE 20 transmits data on the PUSCH.
  • step S130 the UE 20 piggybacks both the information related to CSI and the information related to Ack / Nack included in the UCI to the PUSCH. In short, uplink data, information on CSI included in UCI, and information on Ack / Nack are transmitted.
  • 2 bits are described in association with CSI and Ack / Nack, but the number of bits may be increased according to the type of information. Also, the presence or absence of piggyback may be indicated by 1 bit by grouping a plurality of information into one group. By doing in this way, gNB20 can select required (or high priority) information among UCI, and can receive it preferentially over the information of other UCI.
  • FIG. 7 is an explanatory diagram illustrating a third example of another method using a dedicated field (in the case of 2 bits) in the PDCCH in the wireless communication system according to the first embodiment.
  • the dedicated field in the PDCCH is set to 2 bits, and gNB10 indicates the value of the dedicated field in the PDCCH as “00”, “01”, “10”, “11”.
  • the gNB 10 maps the dedicated field values “00”, “01”, “10”, and “11” in the PDCCH to the LCH in advance, and associates the LCH with the PDCCH.
  • the gNB 10 sets in advance a resource for transmitting a UCI to be used when the value of the dedicated field in the PDCCH is “00”, “01”, “10”, “11” by an RRC message.
  • the UE 20 may be notified.
  • the RRC message is, for example, any one of an RRC configuration setup message, an RRC reconfiguration message, and an RRC establishment message.
  • the example of FIG. 7 is an example in which information that can be piggybacked on specific information in UCI can be adjusted, and the specific information is described as Ack / Nack.
  • step S120 the UE 20 is instructed by the gNB 10 that the value of the dedicated field in the PDCCH is “00”.
  • step S130 the transmission timing of UCI and the transmission timing of data overlap.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S140 the UE 20 does not piggyback UCI to PUSCH.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “01” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 performs a piggyback according to the number of bits corresponding to the information related to Ack / Nack included in the UCI in the PUSCH, and transmits data and information of Ack / Nack.
  • Step S140 UE20 transmits UCI (for example, information about CSI) which was not transmitted in Step S130.
  • the UCI not sent in S130 may be abandoned without being transmitted. This process is used, for example, with an option that some UCIs are not transmitted depending on the situation.
  • the Piggyback according to the corresponding number of bits can be set so that the value of ⁇ offset included in the equation (1) described later changes according to the number of bits of Ack / Nack. Means Piggyback.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “10” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • step S130 the UE 20 piggybacks information related to Ack / Nack included in the UCI in the PUSCH according to the determined index, and transmits data and information related to Ack / Nack.
  • the relationship between Index and Piggyabck will be described later.
  • Step S140 UE20 transmits UCI (for example, information about CSI) which was not transmitted in Step S130. Note that, as described above, the UCI not sent in S130 may be discarded without being transmitted. This process is used, for example, with an option that some UCIs are not transmitted depending on the situation.
  • step S120 the value of the dedicated field in the PDCCH is indicated by “11” by the gNB 10.
  • the transmission timing of UCI and the transmission timing of data overlap.
  • step S130 the UE 20 transmits uplink data using the PUSCH.
  • step S130 the UE 20 piggybacks both the information related to CSI and the information related to Ack / Nack included in the UCI to the PUSCH.
  • uplink data, information related to CSI included in UCI, and information related to Ack / Nack are transmitted using PUSCH.
  • Ack / Nack has been described as an example of specific UCI information, but other information may be similarly applied.
  • Ack / Nack as the specific UCI, when the downlink data is URLLC, it can be instructed to preferentially transmit information related to Ack / Nack for the downlink data.
  • each value may be associated with a ⁇ offset value described later.
  • Three types of ⁇ offsets related to Ack / Nack defined in TS38.331 V15.0.0 can be set according to the number of bits of Ack / Nack. Therefore, for example, it may be configured to notify that three types of ⁇ offset and piggyback are not performed with 2 bits. In this way, it may be specified that three types of ⁇ offset or piggyback are not performed regardless of the number of bits of Ack / Nack.
  • CSI may be used in combination with ⁇ offset corresponding to the number of bits of CSI defined in TS38.331 V15.0.0 (Non-patent Document 24) and non-piggybacking as well as Ack / Nack. .
  • the ⁇ offset may be generated according to the type of data.
  • the ⁇ offsets related to Ack / Nack can be defined, but they may be newly added for URLLC communication. By doing so, it is possible to control the UCI that is piggybacked to the PUSCH with a ⁇ offset corresponding to the type of data.
  • the method using the dedicated field in the PDCCH has been described by taking the case of 1 bit and the case of 2 bits as an example.
  • a resource for transmitting UCI may be set using the above bits.
  • the first 1 bit or 2 bits may be set in accordance with the above-described method, and resources for transmitting UCI may be set in consideration of specific contents (time, frequency, etc.) by the next n bits. It is also possible to add a bit indicating the type of data to the first bit, and to add information related to UCI's piggyback in subsequent bits. At that time, the instruction content of Piggyback may be changed by the first bit.
  • ⁇ offset HARQ-ACK is used as a parameter for determining the size of a resource for mapping ACK / NACK.
  • ⁇ offset CSI is used as a parameter for determining the size of a resource for mapping CSI.
  • ⁇ offset HARQ-ACK is described as an example.
  • ⁇ offset HARQ-ACK is a parameter that determines how many RE (Resource element) numbers are used for transmission when ACK / NACK is put on PUSCH.
  • the RE number is calculated by the following equation (1).
  • Q ′ is the number of REs and represents the number when ACK / NACK included in UCI is mapped.
  • O ACK represents the number of bits of ACK / NACK
  • L ACK represents the number of bits of a cyclic redundancy check (CRC) code added to ACK / NACK
  • M sc UCI is The number of PUSCH REs per symbol excluding the reference signal (RS) is shown.
  • C and Kr represent parameters obtained from the PDCCH that schedules PUSCH transmission.
  • 8 and 9 are explanatory diagrams illustrating an example of a method of using the ⁇ offset field in the PDCCH in the wireless communication system according to the first embodiment. 8 and 9 are respectively described in “Table 9.3-1” and “Table 9.3-3” in Section 9.3 of 3GPP TS38.213 V15.0.0 (Non-Patent Document 17). ing.
  • Table 9.3-1 shown in FIG. 8 indicates the value and number of ⁇ offset in the case of ACK / NACK, and associates 32 numbers “0” to “31” with ⁇ offset HARQ-ACK. .
  • ⁇ offset HARQ-ACK corresponding to the numbers “0” to “15”
  • a value of “1.000” or more is set.
  • “Reserved” is set in ⁇ offset HARQ-ACK corresponding to the numbers “16” to “31”.
  • the Index described above corresponds to this ⁇ offset. Therefore, when an index is obtained based on Equation 1, resources that can be piggybacked are determined.
  • Table 9.3-3 shown in FIG. 9 has four values “00”, “01”, “10”, and “11” as UCI offset indicators, and “Table 9.3-1” shown in FIG. Are associated with four selected numbers among the 32 numbers “0” to “31”.
  • the UCI offset indicator values “00”, “01”, “10”, and “11” shown in FIG. 9 are the dedicated fields shown in FIGS.
  • the values are set in the same manner as the values “00”, “01”, “10”, and “11”.
  • the values “01”, “10”, “11” shown in FIG. 9 are associated with the three selected values among the values “0” to “15” shown in FIG. .
  • the value “00” shown in FIG. 9 is associated with one of the values “16” to “31” shown in FIG.
  • the numerator of the equation (1) becomes “0”. That is, the RE number is “0”, and UCI related to ACK / NACK is not transmitted.
  • the values of the shared fields in the PDCCH are “00”, “01”, “10”, “11” by the gNB 10 (four values selected in FIG. 8). ).
  • the gNB 10 maps the shared field values “00”, “01”, “10”, and “11” in the PDCCH to the LCH in advance, and associates the LCH with the PDCCH.
  • gNB10 presets the resource which transmits UCI used when the value of the shared field in PDCCH is "00", "01”, “10", “11” with the message of RRC.
  • the UE 20 may be notified.
  • step S120 the value of the shared field in the PDCCH is instructed by the gNB 10 to the value “00” shown in FIG. 9 (one of the values “16” to “31” shown in FIG. 8). .
  • the UCI transmission timing and the data overlap.
  • step S130 the UE 20 transmits data on the PUSCH.
  • step S130 the UE 20 does not piggyback the UCI to the PUSCH. This process is used, for example, as an option not to transmit UCI this time depending on the situation.
  • the gNB 10 gives an instruction on the PDCCH according to the type of data notified from the UE 20.
  • the value of the shared field in the PDCCH is designated by the gNB 10 to the value “01” shown in FIG. 9 (one value among the values “0” to “15” shown in FIG. 8).
  • the transmission timing of UCI and the transmission timing of uplink data overlap.
  • the UE 20 piggybacks the number of resources corresponding to the ⁇ offset indicated by “01” to the PUSCH, and transmits data and UCI using the PUSCH. That is, the UE 20 piggybacks the UCI to the PUSCH.
  • step S120 the value of the shared field in the PDCCH is changed to the value “10” shown in FIG. 9 by the gNB 10 (another one of the values “0” to “15” shown in FIG. 8). Instructed to.
  • the UCI transmission timing and the data (for example, URLLC data) transmission timing overlap.
  • the UE 20 piggybacks the UCI to the PUSCH with the number of resources, the number of bits, or the occupation rate corresponding to the ⁇ offset indicated by “10”, and the UCI (UCI region in FIG. "I '") and uplink data are transmitted.
  • the UE 20 may transmit the remaining UCI to the gNB 10 on the PUSCH after the PUSCH allocated for data transmission (see “II” in FIG. 2), or transmit the remaining UCI. It is not necessary.
  • step S120 the value of the shared field in the PDCCH is changed by the gNB 10 to the value “11” shown in FIG. 9 (another one of the values “0” to “15” shown in FIG. 8).
  • step S130 the resource number or the bit number corresponding to the ⁇ offset indicated by “11” is piggybacked to the PUSCH, and the UCI and data are transmitted using the PUSCH.
  • the UE 20 transmits the remaining UCI to the gNB 10 on the PUCCH (see “II” in FIG. 2) after the PUSCH assigned for data transmission.
  • the same ⁇ offset as “10” and “11” may be set, one indicating that transmission is performed after PUSCH transmission, and the other may be set not to transmit the remaining UCI.
  • the gNB 10 can recognize how much UCI is transmitted from the UE 20 in which channel by an instruction to the UE 20.
  • a field indicating the number of bits of Ack / Nack to be mapped (that is, O in Equation 1) is used instead of the ⁇ offset field, and the number of bits of Ack / Nack is “ “0” may be indicated.
  • the number of CRC bits to be added is also “0”.
  • the radio communication system includes the terminal (UE 20) and the base station (gNB 10).
  • the UE 20 transmits the UCI to the gNB 10 simultaneously with the data using the channel (PUSCH) allocated for the data transmission.
  • the notification unit (communication unit 23) of the UE 20 may notify the type of data scheduled to be transmitted.
  • the type of data notified from the UE 20 is the first type (eMBB).
  • the instruction unit (communication unit 13) of the gNB 10 instructs the UE 20 to transmit the UCI using the channel (PUSCH) resource allocated to the transmission of the first type (eMBB) data.
  • the type of data notified from the UE 20 is the second type (URLLC).
  • the communication unit 13 of the gNB 10 instructs the UE 20 on resources that can be occupied by the UCI among the resources of the channel (PUSCH) allocated to the transmission of the second type (URLLC) data.
  • the communication unit 13 of the gNB 10 instructs the UE 20 on the resource for transmitting the UCI using a specific field (dedicated field or shared field) in the downlink channel (PDCCH).
  • the transmission unit (communication unit 23) of the UE 20 transmits the UCI to the gNB 10 using the resource instructed by the gNB 10.
  • the information corresponding to the upper limit value and the set value is piggybacked.
  • the gNB 10 transmits information related to UCI transmission to the UE 20 when uplink data and UCI transmission timing overlap. For example, gNB10 instructs to piggyback a part of UCI (for example, Ack / Nack information) on a channel (PUSCH) allocated for transmission of uplink data, and to transmit uplink data and a part of UCI. To do. As a result, the UE 20 can ensure the ratio of uplink data in the PUSCH. That is, PUSCH redundancy is not insufficient. Also, UCI information can be sent when there is a margin in resources.
  • PUSCH channel allocated for transmission of uplink data
  • the wireless communication system when transmitting uplink data, the quality of the uplink data is ensured and the required error rate can be satisfied.
  • UCI information can be transmitted without delay depending on resource conditions.
  • Ack / Nack when information related to Ack / Nack for URLLC downlink data and URLLC uplink data are generated simultaneously, Ack / Nack can be transmitted while ensuring redundancy of the uplink data. Therefore, it is possible to control the uplink data and downlink data so as to satisfy predetermined quality (reliability, allowable delay amount, etc.).
  • the gNB 10 has described the example in which the UE 20 is instructed to transmit the UCI resource using a specific field (dedicated field or shared field) in the PDCCH.
  • the gNB 10 instructs the UE 20 on the resource for transmitting the UCI by using information specifying the time-frequency region to which the PDCCH is allocated.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 10 is an explanatory diagram illustrating an overview of the wireless communication system according to the second embodiment.
  • Information specifying the time-frequency region to which the PDCCH is allocated includes the size, the RNTI (Radio Network Temporary Identity), the header, the location of the CORESET (Control resource set), the Search space, and the like.
  • the type of PDCCH (control information size, RNTI (Radio Network Temporary Identity), header) is determined according to the control content for PUSCH such as the type of data to be transmitted.
  • CORESET and Search space arranged according to the type of PDCCH are determined.
  • the gNB 10 maps the information specifying the time-frequency domain to which the PDCCH is allocated to the LCH in advance, and associates the LCH with the PDCCH.
  • the gNB 10 notifies the UE 20 of the correspondence relationship between the PDCCH region and the LCH using an RRC message.
  • the gNB 10 also sets the relationship between the resource for transmitting UCI, the number of resources that can be piggybacked, the number of bits that can be piggybacked, the upper limit value of the occupation ratio, and the LCH or region in advance, and notifies the UE 20 deep. Note that the notification of the above two correspondences may be performed simultaneously or separately.
  • the PDCCH is distinguished by the location of the CORESET and the search space.
  • the location of CORESET is distinguished as CORESET “CORESET # 1” for URLLC data or CORESET “CORESET # 2” for eMBB data.
  • “CORESET # 1” includes “Search space # A” as the Search space.
  • search space # A at least one upper limit value of the number of resources, the number of bits, or the occupation rate that can be piggybacked by UCI information is associated with a channel (PUSCH) allocated for uplink data transmission.
  • step S120 the gNB 10 instructs the PDCCH according to the type of data notified from the UE 20.
  • the location of the CORESET is instructed in advance by “CORESET # 2” by the gNB 10 as information for specifying the time-frequency region to which the PDCCH is allocated.
  • the transmission timing of UCI and the transmission timing of data overlap.
  • step S130 the UE 20 transmits data on the PUSCH.
  • step S140 the UE 20 transmits the UCI on the PUSCH allocated for data transmission. That is, the UE 20 piggybacks the UCI to the PUSCH.
  • At least one upper limit value of the number of resources, the number of bits, and the occupation rate that can be piggybacked by UCI information is set in a channel (PUSCH) allocated for transmission of URLLC data.
  • PUSCH channel allocated for transmission of URLLC data.
  • the location of the CORESET is instructed in advance with “CORESET # 1”, and in step S120, the PDCCH is in the region of the “CORESET # 1”. Sent by resource.
  • the UCI transmission timing and the data (for example, URLLC data) transmission timing overlap.
  • the UE 20 transmits data on the PUSCH.
  • the UE 20 does not transmit UCI on the PUSCH allocated for data transmission. That is, the UE 20 does not piggyback UCI to PUSCH.
  • the UE 20 transmits UCI to the gNB 10 using a resource (PUSCH or PUCCH) different from the channel (PUSCH) allocated for data transmission.
  • PUSCH or PUCCH resource
  • the information is piggybacked so as to correspond to the number of resources, the number of bits, or the occupation rate of the upper limit value that can be piggybacked related to the region.
  • Each region or LCH may be associated with a ⁇ offset value.
  • Three types of ⁇ offsets related to Ack / Nack defined in TS38.331 V15.0.0 can be set according to the number of bits of Ack / Nack. Therefore, for example, in each region or LCH, it may be set using an RRC message so as not to perform three types of ⁇ offsets and piggyback.
  • the gNB 10 may designate the UE 20 using the region or LCH not to perform three types of ⁇ offsets or piggybacks regardless of the number of bits of Ack / Nack.
  • CSI may be used in combination with ⁇ offset corresponding to the number of bits of CSI defined in TS38.331 V15.0.0 (Non-patent Document 24) and non-piggybacking as well as Ack / Nack. .
  • each region or LCH may be supported so that the ⁇ offset can be changed according to the type of data.
  • the current specification can define only three types of ⁇ offsets related to Ack / Nack, but two types are newly added for URLLC communication so that the ⁇ offset can be changed according to the region or LCH. By doing so, it is possible to control the UCI that is piggybacked to the PUSCH with a ⁇ offset corresponding to the type of data.
  • the gNB 10 can recognize which data is transmitted from the UE 20 based on the notification from the UE 20, and can recognize which channel the UCI is transmitted from the UE 20 according to an instruction to the UE 20.
  • the upper limit of the number of resources that can be piggybacked, the number of bits, and the occupation ratio can be changed depending on the area where the PDCCH is stored, the upper limit corresponding to the type of data can be set by making the data and the area related Can do.
  • the radio communication system includes the terminal (UE20) and the base station (gNB10).
  • the UE 20 uses a channel allocated for data transmission to transfer part or all of the UCI simultaneously with uplink data. Send to gNB10.
  • the notification unit (communication unit 23) of the UE 20 notifies the type of data scheduled to be transmitted.
  • the communication unit 13 of the gNB 10 has at least one upper limit of the number of resources, the number of bits, and the occupation rate that can be piggybacked by the UCI depending on the area (size, RNTI, header, CORESET location, Search space) to which the downlink channel (PDCCH) is allocated.
  • the transmission unit (communication unit 23) of the UE 20 determines the UCI within a range that does not exceed the upper limit of the number of resources, the number of bits, and the occupation rate instructed to the gNB10. Send to.
  • the gNB 10 can change the upper limit of the amount of UCI information to be piggybacked when uplink data and UCI transmission timing overlap. For example, when the gNB 10 performs piggyback on the channel (PUSCH) allocated for transmission of the second type (URLLC) data, an upper limit value that can sufficiently maintain the quality of the PUSCH is set. As a result, the proportion of uplink data in the PUSCH is ensured. That is, PUSCH redundancy is not insufficient. For this reason, in the wireless communication system according to the second embodiment, when URLLC data that requires high reliability is transmitted, resources allocated to the URLLC data are secured, and the required error rate is satisfied. be able to.
  • PUSCH channel allocated for transmission of the second type
  • the PUSCH redundancy can be reduced from the second type (URLLC) data, so that the upper limit value can be increased by the reduced amount. That is, UCI that can be piggybacked can be increased.
  • the gNB 10 gives information on UCI transmission in association with uplink data allocation information and gives an instruction.
  • the gNB 10 indicates using a resource different from the PDCCH that indicates the PUSCH assigned to uplink data transmission.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 11 is an explanatory diagram of an overview of the wireless communication system according to the third embodiment.
  • the horizontal axis represents time, and the vertical axis represents frequency.
  • the type of data notified from the UE 20 is the second type (for example, URLLC).
  • the gNB 10 uses a resource (PUSCH or PUCCH) that is different from the PUSCH assigned to the transmission of the data using a resource different from the PDCCH that indicates the PUSCH assigned to the transmission of the second type of data. Instruct the UE 20.
  • the gNB 10 uses a PDCCH that is different from the PDCCH that indicates the PUSCH assigned to the transmission of the second type of data.
  • the UE 20 transmits the UCI to the gNB 10 on the PUSCH after the PUSCH allocated for the transmission of the second type of data (see “III” in FIG. 11).
  • FIG. 12 is a sequence diagram illustrating the operation of the wireless communication system according to the third embodiment.
  • data scheduled to be transmitted occurs in the LCH.
  • the communication unit 23 of the UE 20 notifies the gNB 10 of the type of data scheduled to be transmitted, using Buffer status report or SR (step S200 in FIG. 12). That is, the UE 20 notifies the gNB 10 of the type of data to be transmitted.
  • the communication unit 13 of the gNB 10 transmits DCI and data to the UE 20 through the PDCCH and the corresponding PDSCH, respectively (step S210 in FIG. 12). That is, gNB10 transmits downlink data to UE20 by PDSCH, and transmits DCI to UE20 by PDCCH.
  • the DCI includes, for example, UL grant information (PUSCH allocation information) and DL assignment (PDSCH allocation information).
  • the communication unit 13 of the gNB 10 instructs on which channel the UCI is transmitted according to the type of data notified from the UE 20 using the PDCCH related to the UL grant (step S220 in FIG. 12). Specifically, when the type of data notified from the UE 20 is the second type (for example, URLLC), the communication unit 13 of the gNB 10 does not piggyback the UCI to the PUSCH, or piggybacks at least a part of the UCI. This is indicated on the PDCCH.
  • the following first and second methods may be used as methods for instructing PCICH not to piggyback UCI to PUSCH or to piggyback a part of UCI.
  • the first method is a method using a specific field (dedicated field or shared field) in the PDCCH in the first embodiment.
  • the second method is a method using information (size, RNTI, header, CORESET location, Search space) that specifies a time-frequency region to which the PDCCH is allocated in the second embodiment.
  • the operation is not limited to the type of data and may be performed as described above.
  • the communication unit 13 of the gNB 10 instructs a new transmission timing (resource) of UCI using another PDCCH (step S225 in FIG. 12).
  • the communication unit 13 of the gNB 10 uses a channel (PUSCH) allocated for transmission of the second type of data using a PDCCH different from the PDCCH indicating the PUSCH allocated for transmission of the second type of data.
  • the UE 20 is instructed with a resource different from ().
  • the communication unit 23 of the UE 20 transmits uplink data (“UL data” in FIG. 12) using the PUSCH (step S230 in FIG. 12). Further, the communication unit 23 of the UE 20 transmits UCI to the gNB 10 using the resource instructed by the gNB 10. Specifically, the communication unit 23 of the UE 20 transmits the UCI to the gNB 10 using a resource different from the PUSCH allocated for the transmission of the second type of data (Step S240 in FIG. 12). For example, UE20 transmits UCI to gNB10 by PUSCH after PUSCH allocated for transmission of uplink data (refer "III" of FIG. 11). Or UE20 transmits UCI to gNB10 by PUCCH after PUSCH allocated to transmission of the 2nd type of data.
  • step S220 and step S225 may be performed in the order of processing or the processing timing may be the same.
  • the gNB 10 can recognize which data is transmitted from the UE 20 based on the notification from the UE 20, and can recognize which channel the UCI is transmitted from the UE 20 according to an instruction to the UE 20.
  • the radio communication system includes the terminal (UE20) and the base station (gNB10).
  • the UE 20 uses part of the UCI at the same time as the data using the channel allocated for data transmission. Send to
  • the gNB 10 instructs the UE 20 to delay the UCI transmission timing when the second type (URLLC) data and the UCI transmission timing overlap. For example, as a resource different from the channel (PUSCH) allocated by the gNB 10 for transmission of the second type (URLLC) data, the PUSCH after the channel (PUSCH) (see “III” in FIG. 11) or PUCCH is indicated. As a result, the proportion of uplink data in the PUSCH is ensured. That is, PUSCH redundancy is not insufficient. For this reason, in the wireless communication system according to the third embodiment, when URLLC data that requires high reliability is transmitted, resources allocated to the URLLC data are secured, and the required error rate is satisfied. be able to. Further, as in the first and second embodiments, a part of the UCI may be piggybacked in step S230. By doing so, UCI can be transmitted while securing resources allocated to data, so that resources can be effectively utilized.
  • the UE 20 assumes a case where the second type of data is generated after notifying the first type as the data type, and the UCI transmission timing and the data transmission timing overlap. To do. In this case, in the wireless communication system according to the fourth embodiment, the UE 20 transmits the UCI to the gNB 10 using a PUSCH different from the PUSCH assigned to the transmission of the second type of data.
  • the same parts as those in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 13 is a sequence diagram illustrating the operation of the wireless communication system according to the fourth embodiment.
  • the first type of data (“eMBB data” in FIG. 13) is generated as data scheduled to be transmitted.
  • the communication unit 23 of the UE 20 notifies the gNB 10 of the data of the first type (eMBB) as the type of data scheduled to be transmitted, using Buffer status report or SR (step S300 in FIG. 13). That is, the UE 20 notifies the gNB 10 of the type of data to be transmitted.
  • step S300 the second type of data (“URLLC data” in FIG. 13) is generated in LCH # y (step S305 in FIG. 13).
  • the communication unit 13 of the gNB 10 transmits DCI and data to the UE 20 through the PDCCH and the corresponding PDSCH, respectively (step S310 in FIG. 13). That is, gNB10 transmits downlink data to UE20 by PDSCH, and transmits DCI to UE20 by PDCCH.
  • the DCI includes, for example, UL grant information (PUSCH allocation information) and DL assignment (PDSCH allocation information).
  • the communication unit 13 of the gNB 10 indicates the number of resources or the number of bits to be piggybacked by the UCI according to the type of data notified from the UE 20 using the PDCCH related to UL grant (step S320 in FIG. 13).
  • the communication unit 23 of the UE 20 uses the number of resources, the number of bits, or the number of resources indicated by the PDCCH so that the second type (URLLC) data can have a predetermined quality.
  • the UCI for piggybacking is made smaller than the number of bits and the occupation ratio.
  • the information to be piggybacked is reduced so as not to exceed the upper limit value according to the data to be transmitted.
  • the remaining UCI that could not be transmitted for example, when the first type of data generated in S300 is separately transmitted on the PUSCH, it may be transmitted with piggyback (step S340 in FIG. 13).
  • transmission can be performed by newly receiving allocation information after step S330.
  • the remaining UCI may be transmitted on PUCCH.
  • FIG. 14 is a sequence diagram illustrating another operation of the wireless communication system according to the fourth embodiment.
  • the timing at which the second type (URLLC) data is generated in LCH # y is different from the example shown in FIG.
  • the second type of data (“URLLC data” in FIG. 14) is generated in LCH # y (step S315 in FIG. 14).
  • Other processes are the same as those in FIG.
  • FIG. 15 is a sequence diagram illustrating still another operation of the wireless communication system according to the fourth embodiment.
  • the timing at which the second type (URLLC) data is generated in LCH # y is different from the examples shown in FIGS. 13 and 14.
  • the second type of data (“URLLC data” in FIG. 15) is generated in LCH # y (step S325 in FIG. 15).
  • Other processes are the same as those in FIG.
  • a DMRS sequence or arrangement pattern is provided. Used.
  • a DMRS sequence or arrangement pattern indicates whether or not UCI is carried on PUSCH by an orthogonal code.
  • the DMRS sequence or arrangement pattern of the first PUSCH is determined in advance. For example, when the orthogonal code is ⁇ +1, +1, +1, +1 ⁇ , the DMRS sequence or arrangement pattern of the first PUSCH indicates that UCI is not placed on the first PUSCH.
  • the DMRS sequence or arrangement pattern of the second PUSCH is generated by the UE 20 changing the orthogonal code. For example, by changing the orthogonal code to ⁇ +1, -1, +1, -1 ⁇ , the DMRS sequence or arrangement pattern of the second PUSCH indicates that the UCI is placed on the second PUSCH.
  • the gNB 10 recognizes the second type (URLLC) data transmitted from the UE 20 in step S330 and the UCI transmitted from the UE 20 in step S340 based on the DMRS sequence or arrangement pattern. it can. Further, for example, the value of ⁇ offset may be indicated by using a DMRS series or arrangement pattern.
  • URLLC second type
  • step S330 in order to enable the gNB 10 to recognize whether the data transmitted from the UE 20 in step S330 is the second type (URLLC) data, the following two methods are used.
  • MCS Modulation and Coding Scheme specified by PDCCH
  • the size of the URLLC data autonomously replaced by the UE 20 is smaller than the size of the data scheduled to be transmitted on the PUSCH originally assigned for eMBB.
  • the UE 20 fills the deficiency with zeros to match the data size, and generates the first PUSCH based on the MCS specified by the PDCCH.
  • the UE 20 fills the deficiency with eMBB data to match the size, and generates the first PUSCH based on the MCS specified by the PDCCH.
  • the gNB 10 can be recognized by the UE 20 attaching a header to the eMBB data.
  • the second method uses another MCS different from the MCS specified by the PDCCH.
  • the gNB 10 designates the MCS when the DMRS sequence or the arrangement pattern indicates that UCI is not placed on the PUSCH as another MCS in advance by RRC. And UE20 produces
  • the gNB 10 designates the size when transmitting URLLC data by RRC in advance with another MCS. And UE20 adjusts an encoding rate according to the allocated resource based on other MCS in step S330, and produces
  • the radio communication system includes the terminal (UE20) and the base station (gNB10).
  • the UE 20 uses the channel allocated for data transmission to transfer all or part of the UCI simultaneously with the data gNB10. Send to.
  • the data type which UE20 transmits you may change the information content (the number of resources, the number of bits, an occupation rate) of UCI transmitted by piggybacking to PUSCH.
  • the second type of data is generated after the first type is notified as the data type, and the timing for transmitting the data and the timing for transmitting the UCI may overlap.
  • the communication unit 23 of the UE 20 changes the upper limit value corresponding to the second type of data, and piggybacks the UCI according to the changed upper limit value.
  • the UE 20 piggybacks the UCI according to the type of data and transmits the UCI to the gNB 10.
  • the UE 20 may use a resource (PUSCH) different from the channel (PUSCH) allocated for transmission of the second type of data.
  • PUSCH resource allocated for transmission of the second type of data.
  • the proportion of uplink data in the PUSCH is ensured. That is, PUSCH redundancy is not insufficient.
  • URLLC data that requires high reliability is transmitted, resources allocated to the URLLC data are secured, and the required error rate is satisfied. be able to.
  • the amount of information to be piggybacked can be adjusted according to the type of data.
  • the UE 20 receives the second type of data after receiving the first type as the data type, and determines the UCI for the first data and the UCI for the second data. Assume that the transmission timing and the uplink data transmission timing overlap. In this case, the UE 20 in the wireless communication system according to the fifth embodiment piggybacks the UCI having a higher priority among the UCI for the first data and the UCI for the second data to the PUSCH.
  • the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 16 is an explanatory diagram of an overview of the wireless communication system according to the fifth embodiment.
  • the horizontal axis represents time
  • the vertical axis represents frequency.
  • FIG. 17 is a sequence diagram illustrating the operation of the wireless communication system according to the fifth embodiment.
  • data scheduled to be transmitted is generated in a logical channel (hereinafter sometimes referred to as “LCH”).
  • LCH logical channel
  • the communication unit 23 of the UE 20 notifies the gNB 10 of the type of data scheduled to be transmitted through a Buffer status report or a scheduling request (SR) (step S400 in FIG. 17).
  • SR scheduling request
  • the communication unit 13 of the gNB 10 transmits DCI and downlink data of the first type (for example, eMMB) to the UE 20 using the PDCCH and the corresponding PDSCH, respectively (step S410 in FIG. 17). That is, the gNB 10 transmits the first type of downlink data to the UE 20 using the PDSCH, and transmits the first DCI for the first type of downlink data to the UE 20 using the PDCCH.
  • the DCI includes, for example, UL grant information (PUSCH allocation information) and DL assignment (PDSCH allocation information).
  • high priority data (second type (for example, URLLC) data) is generated in the gNB 10.
  • the communication unit 13 of the gNB 10 transmits the second DCI and the second type of data for the second type of data to the UE 20 using the PDCCH and the corresponding PDSCH, respectively (step S420 in FIG. 17). That is, gNB10 transmits 2nd type downlink data to UE20 by PDSCH, and transmits 2nd DCI to UE20 by PDCCH.
  • high-priority data is, for example, URLLC data that requires high reliability and low delay, and is preferentially scheduled as soon as data is generated.
  • the communication unit 13 of the gNB 10 sets a PDCCH including information related to UCI transmission according to at least one of the type of data notified from the UE 20 or the radio resources that can be allocated (for example, the number of resource blocks). Send. Note that the information related to the transmission of UCI is transmitted, for example, on the PDCCH related to UL grant. (Step S430 in FIG. 17).
  • the Ack / Nack transmission timing for the first downlink data, the Ack / Nack transmission timing for the second downlink data, and the data transmission timing overlap.
  • the UCI can be piggybacked on the PUSCH according to the information related to the transmission of the UCI included in the PDCCH received in S430, the UCI is piggybacked and transmitted with the number of resources, the number of bits, or the occupation rate that can be piggybacked. .
  • UCI (for example, Ack / Nack) must be transmitted for a plurality of downlink data of the first downlink data and the second downlink data.
  • resources that can be transmitted by UCI are limited in order to ensure redundancy.
  • the UCI to be piggybacked is determined according to the priority of the information.
  • the priority depends on, for example, the type of downlink data, the reception timing, and the type of information (Ack / Nack, CSI).
  • Ack / Nack For example, in the priority of data types, in the case of URLLC data and eMMB data, priority is given to URLLC data that requires a lower delay.
  • Ack / Nack information is preferentially transmitted in order to reduce the possibility of retransmission.
  • piggybacking is performed from the reception timing that is fast.
  • the gNB 10 determines that the transmission has failed and is retransmitted.
  • HARQ processing is performed on the retransmission data and the received data, and the corresponding result is later Transmit according to the timing received at. *
  • the communication unit 23 of the UE 20 when the communication unit 23 of the UE 20 receives an instruction to transmit a UCI that has not been piggybacked using another resource, the communication unit 23 transmits a UCI that has not been transmitted using the resource that has received the instruction (see FIG. 17 S450). Specifically, the communication unit 23 of the UE 20 transmits the UCI to the gNB 10 using a resource different from the PUSCH allocated for data transmission (S450 in FIG. 17). For example, UE20 transmits UCI to gNB10 by PUSCH after PUSCH allocated for transmission of the 2nd type of data. Or UE20 transmits UCI to gNB10 by PUCCH after PUSCH allocated to transmission of the 2nd type of data. In addition, when transmitting UCI with another resource, you may instruct
  • the radio communication system includes the terminal (UE 20) and the base station (gNB 10).
  • the UE 20 uses part of the UCI at the same time as the data using the channel allocated for data transmission. Send to.
  • the PUSCH is piggybacked from high-priority UCI information according to the upper limit value that can be piggybacked.
  • the wireless communication system when the UCI transmission timing and the data transmission timing overlap, a part of the UCI included in the UCI is piggybacked to the PUSCH according to the priority of the UCI information. To do. As a result, the proportion of uplink data in the PUSCH is ensured. That is, the redundancy of the uplink data included in the PUSCH is not insufficient. For this reason, in the wireless communication system according to the fifth embodiment, when transmitting data for URLLC that requires high reliability, resources allocated to the data for URLLC are secured, and the required error rate is satisfied. be able to. Further, for example, even if the downstream data is URLLC data, it is possible to control so that the Ack / Nack for the data is preferentially piggybacked.
  • each component in the embodiment does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution / integration of each part is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / integrated in arbitrary units according to various loads and usage conditions. Can be configured.
  • each device is executed entirely or arbitrarily on a CPU (Central Processing Unit) (or a micro computer such as MPU (Micro Processing Unit) or MCU (Micro Controller Unit)). You may make it do.
  • Various processes may be executed in whole or in any part on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic.
  • the base station 10 and the terminal 20 of the embodiment can be realized by the following hardware configuration, for example.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of the base station 10.
  • the base station 10 includes a processor 101, a memory 102, an RF (Radio Frequency) unit 103, and a network interface (IF) 104.
  • the processor 101 include a CPU, a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the memory 102 include a RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), a ROM (Read Only Memory), a flash memory, and the like.
  • the various processes performed in the base station 10 may be realized by the processor 101 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 102, and each program may be executed by the processor 101.
  • each configuration corresponds to a function of the control unit 13. Further, the transmission unit 11 and the reception unit 12 are realized by the RF unit 103.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of the terminal 20.
  • the terminal 20 includes a processor 201, a memory 202, and an RF unit 203.
  • the processor 201 include a CPU, a DSP, and an FPGA.
  • the memory 202 include RAM such as SDRAM, ROM, flash memory, and the like.
  • the various processes performed by the terminal 20 of the embodiment may be realized by the processor 201 executing programs stored in various memories such as a nonvolatile storage medium. That is, a program corresponding to each process executed by each configuration may be recorded in the memory 202, and each program may be executed by the processor 201.
  • each configuration corresponds to a function of the control unit 23.
  • the transmission unit 21 and the reception unit 22 are realized by the RF unit 203.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末が上りデータを送信するタイミングと上り制御情報を送信するタイミングとが重なるときに、上りデータの送信に割り当てられたチャネルを用いて、上り制御情報を上りデータと同時に基地局に送信することが可能な無線通信システムにおいて、 基地局が、端末に、上りデータの送信に割り当てられるチャネルに上り制御情報をのせることが可能なリソースに関する第1の情報を含む第1の信号を送信する。端末は、前記上りデータを送信するタイミングと前記制御情報を送信するタイミングとが重なるときに、第1の情報に応じて、チャネルに上り制御情報の少なくとも一部をのせてデータと同時に送信する。これにより、高信頼度が要求されるデータに割り当てられるリソースを確保し、要求される誤り率を満たすことができる。

Description

無線通信システム、端末および基地局
 本発明は、無線通信システム、端末および基地局に関する。
 現在のネットワークは、モバイル端末(例えば、スマートフォン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末(以下、「端末」と記載する)が使うトラフィックは、今後も拡大していく傾向にある。
 一方で、IoT(Internet of a Things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、次世代(例えば、NR(New Radio)又は、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の技術標準(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。なお、次世代の通信規格については、3GPP(3rd Generation Partnership Project)の作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められている(例えば、非特許文献12~38)。
 次世代の通信規格では、多種多様なサービスに対応することを想定しており、例えば、eMBB(Enhanced Mobile Broadband)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。
 上記のうちの1つのユースケースであるURLLCでは、誤り率が10-5という超高信頼性の要求がある。超高信頼性を実現する1つの方法として、使用リソース量を増やしてデータに冗長性を持たせる方法がある。しかし、無線リソースは限りがあるので、無制限に使用リソースを増やすことはできない。
 また、URLLCでは、低遅延に関しても、上りリンクおよび下りリンクにおけるユーザプレーンの遅延を0.5ミリ秒とすることが目標とされている。これは4Gの無線通信システムであるLTE(Long Term Evolution)の1/10未満という高い要求である。
 このように、URLLCでは、上述のような超高信頼性と低遅延とを同時に満たすことが要求される。
 また、4Gの無線通信ステムにおいて、端末は、物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)を介してデータを基地局に送信する。以下、上りリンクで送信されるデータを上りデータと記載する。また、端末は、物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)を介して制御情報を基地局に送信する。以下、上りリンクで送信される制御情報のことをUCI(Uplink Control Information)と記載する。なお、上りデータとUCIとを同時に送信する場合には、上りデータとUCIとをPUSCHで送信することもある。
 ここで、UCIには、下りリンクで送信されたデータに対する送達確認情報であるACK(Acknowledgement)/NACK(Negative-Acknowledgement)が含まれることがある。以下、下りリンクで送信されるデータを下りデータと記載する。また、UCIには、送信リソースの割り当てを要求するスケジューリングリクエスト(SR:Scheduling Request)、周期的または非周期的なCSI(Channel State Information)等が含まれることがある。
 CSIには、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)等が含まれる。また、周期的なCSIとは、RRC(Radio Resource Control)により予め周期的な送信リソースが割り当てられる場合(periodic reporting)である。非周期的なCSIとは、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)に含まれる制御情報(CSI Request)に応じて送信が行われる場合(aperiodic reporting)である。
 また、4Gの無線通信ステムでは、例えば、基地局は、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)を介してデータ(下りデータ)を端末に送信する。また、基地局は、PDCCHを介して制御情報を端末に送信する。以下、下りリンクで送信される制御情報をDCI(Downlink Control Information)と記載する。
 ここで、DCIには、例えば、UL grantの情報(PUSCHの割当て情報)やDL assignment(PDSCHの割当て情報)が含まれ、DCI Formatとして技術標準に示されている(非特許文献2、17)。
 また、4Gの無線通信ステムでは、端末は、UCIの送信タイミングと上りデータの送信タイミングとが重なる場合、UCIをPUSCHにPiggybackして送信する(UCIをPUSCHに載せて送信する)。そこで、次世代の通信規格においても、UCIの送信タイミングとデータの送信タイミングとが重なる場合、端末がUCIをPUSCHにPiggybackして、データとUCIを送信することを採用する方向で議論が進んでいる。
3GPP TS 36.211  V15.0.0 (2017-12) 3GPP TS 36.212  V15.0.1 (2018-01) 3GPP TS 36.213  V15.0.0 (2017-12) 3GPP TS 36.300  V15.0.0 (2017-12) 3GPP TS 36.321  V15.0.0 (2017-12) 3GPP TS 36.322  V15.0.0 (2017-12) 3GPP TS 36.323  V14.5.0 (2017-12) 3GPP TS 36.331  V15.0.1 (2018-01) 3GPP TS 36.413  V15.0.0 (2017-12) 3GPP TS 36.423  V15.0.0 (2017-12) 3GPP TS 36.425  V14.0.0 (2017-03) 3GPP TS 37.340  V15.0.0 (2017-12) 3GPP TS 38.201  V15.0.0 (2017-12) 3GPP TS 38.202  V15.0.0 (2017-12) 3GPP TS 38.211  V15.0.0 (2017-12) 3GPP TS 38.212  V15.0.0 (2017-12) 3GPP TS 38.213  V15.0.0 (2017-12) 3GPP TS 38.214  V15.0.0 (2017-12) 3GPP TS 38.215  V15.0.0 (2017-12) 3GPP TS 38.300  V15.0.0 (2017-12) 3GPP TS 38.321  V15.0.0 (2017-12) 3GPP TS 38.322  V15.0.0 (2017-12) 3GPP TS 38.323  V15.0.0 (2017-12) 3GPP TS 38.331  V15.0.0 (2017-12) 3GPP TS 38.401  V15.0.0 (2017-12) 3GPP TS 38.410  V 0.6.0  (2017-12) 3GPP TS 38.413  V 0.5.0 (2017-12) 3GPP TS 38.420  V 0.5.0 (2017-12) 3GPP TS 38.423  V 0.5.0 (2017-12) 3GPP TS 38.470  V15.0.0  (2018-01) 3GPP TS 38.473  V15.0.0  (2017-12) 3GPP TR 38.801  V14.0.0 (2017-04) 3GPP TR 38.802  V14.2.0 (2017-09) 3GPP TR 38.803  V14.2.0 (2017-09) 3GPP TR 38.804  V14.0.0 (2017-03) 3GPP TR 38.900  V14.3.1 (2017-07) 3GPP TR 38.912  V14.1.0 (2017-06) 3GPP TR 38.913  V14.3.0 (2017-06)
 ところで、制御情報(UCI)の送信タイミングと上りデータの送信タイミングとが重なるときに、端末がUCIをPUSCHにPiggybackして送信するとPUSCHに占める上りデータの割合が少なくなる。このため、PUSCH内の上りデータの冗長度が不足して誤り率が悪くなる。例えば、次世代の無線通信ステムにおいて、高信頼度が要求されるようなURLLCの上りデータを送信する場合に、URLLC用の上りデータを所定の信頼度にするためのリソースが確保されず、要求される誤り率を満たせなくなる可能性がある。
 開示の技術は、上記に鑑みてなされたものであって、上りデータに要求される信頼性に応じた冗長度を確保することを可能にすることを目的とする。
 1つの態様では、端末が上りデータを送信するタイミングと上り制御情報を送信するタイミングとが重なるときに、前記上りデータの送信に割り当てられたチャネルを用いて、上り制御情報を上りデータと同時に基地局に送信することが可能な無線通信システムにおいて、基地局が端末に、上りデータの送信に割り当てられるチャネルに上り制御情報をのせることが可能なリソースに関する第1の情報を含む第1の信号を送信し、端末は、上りデータを送信するタイミングと制御情報を送信するタイミングとが重なるときに、第1の情報に応じて、チャネルに上り制御情報の少なくとも一部をのせてデータと同時に送信する。
 1つの側面では、上りデータに要求される信頼性に応じた冗長度を確保することができる。
図1は、実施例1に係る無線通信システムの構成の一例を示す概略図である。 図2は、実施例1に係る無線通信システムの概要を示す説明図である。 図3は、実施例1に係る無線通信システムの動作を示すシーケンス図である。 図4は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(1ビットの場合)を用いる方法の一例を示す説明図である。 図5は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる方法の第1の例を示す説明図である。 図6は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる方法の第2の例を示す説明図である。 図7は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる方法の第3の例を示す説明図である。 図8は、実施例1に係る無線通信システムにおいて、PDCCHの中の共用フィールドを用いる方法の一例を示す説明図である。 図9は、実施例1に係る無線通信システムにおいて、PDCCHの中の共用フィールドを用いる方法の一例を示す説明図である。 図10は、実施例2に係る無線通信システムの概要を示す説明図である。 図11は、実施例3に係る無線通信システムの概要を示す説明図である。 図12は、実施例3に係る無線通信システムの動作を示すシーケンス図である。 図13は、実施例4に係る無線通信システムの動作を示すシーケンス図である。 図14は、実施例4に係る無線通信システムの他の動作を示すシーケンス図である。 図15は、実施例4に係る無線通信システムの更に他の動作を示すシーケンス図である。 図16は、実施例5に係る無線通信システムの概要を示す説明図である。 図17は、実施例5に係る無線通信システムの動作を示すシーケンス図である。 図18は、基地局のハードウェア構成の一例を示す図である。 図19は、端末のハードウェア構成の一例を示す図である。 図20は、5G NRの概略図である。 図21は、UCIの送信タイミングとデータの送信タイミングとが重なるときにUE20がUCIをPUSCHにPiggybackして送信する場合を示した図である。
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書としては、例えば、上述した非特許文献1~38が挙げられる。
 以下に、本願の開示する無線通信システム、基地局、端末、および通信方法の実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。
 [無線通信システムの構成]
 図1は、実施例1に係る無線通信システムの構成の一例を示す概略図である。図1に示す無線通信システムは、基地局10と、端末20とを有する。
 端末20は、例えばLTEまたは次世代の無線通信システムにおけるUE(User Equipment)である。基地局10は、例えばLTEにおけるeNB(evolved Node B)である。また、3GPPで検討されている5Gでは、新しい通信技術として、New RAT(Radio Access Technology)を採用することが検討されている。New RATでは、基地局は、5GNB(5Gの基地局)またはgNBと呼ばれている。以下、端末20を「UE20」と記載し、基地局10を「gNB10」と記載する。また、New RATを「NR」または「5G NR」と記載する。
 gNB10は、通信部13および制御部14を有する。制御部14は、通信部13の動作を制御する。
 通信部13は、送信部11および受信部12を有し、UE20との間で無線通信を行なう。例えば、送信部11は、PDSCHでデータ(下りデータ)をUE20に送信し、PDCCHでDCIをUE20に送信する。例えば、受信部12は、UE20からPUSCHで送信されたデータ(上りデータ)を受信し、UE20からPUCCHで送信されたUCIを受信する。
 UE20は、通信部23および制御部24を有する。制御部24は、通信部23の動作を制御する。
 通信部23は、送信部21および受信部22を有し、gNB10との間で無線通信を行なう。例えば、送信部21は、PUSCHで上りデータをgNB10に送信し、PUCCHでUCIをgNB10に送信する。例えば、受信部12は、gNB10からPDSCHで送信された下りデータを受信し、gNB10からPDCCHで送信されたDCIを受信する。
 図20は、5G NRにおける概略図である。図20において、横軸は時間を表し、縦軸は周波数を表している。5G NRでは、時間方向の送信単位としてスロット(slot)または、ミニスロットが規定されている。具体的には、Slot-based transmission(長区間)とNon-slot based transmission(短区間)が規定されている。例えば、長区間が1slotに規定され、短区間が0.5slotに規定されている。例えば、URLLCは低遅延を実現するために短区間の使用が想定され、eMBBは長区間および短区間の両方の使用が想定されている。ここで、UE20は、PUSCHで上りデータ(図16中の「Data」)と復調参照信号(DMRS:Demodulation Reference Signal)とをgNB10に送信する。また、UE20は、PUCCHを介してAck/Nackなどを含むUCIをgNB10に送信する。以下、UCIを図示する場合、「UCI」、「Ack/Nack」、「UCI(Ack/Nackなど)」と表記する場合もある。
 図21は、UCIの送信タイミングとデータの送信タイミングとが重なるときにUE20がUCIをPUSCHにPiggybackして送信する場合を示した図である。図21において、横軸は時間を表し、縦軸は周波数を表している。例えば、5Gの通信規格では、UCIの送信タイミングとデータの送信タイミングとが重なる場合、UE20がUCIをPUSCHにPiggybackして送信することを採用する方向で議論が進んでいる。しかし、4Gの無線通信ステムと同様に、UCIの送信タイミングとデータの送信タイミングとが重なるときにUE20がUCIをPUSCHにPiggybackして送信する場合、図21に示すように、PUSCHに占める上りデータの割合が少なくなる。このため、PUSCHにおける上りデータの冗長度が不足して誤り率が悪くなる。例えば、5Gの無線通信ステムにおいて、高信頼度が要求されるようなURLLC用の上りデータを送信する場合に、要求される誤り率を満たせなくなる可能性がある。
 そこで、実施例1に係る無線通信システムでは、gNB10は、PUSCHでデータを送信するタイミングとPUCCHでUCIを送信するタイミングとが重なる場合のUCIの送信に関する指示をUE20に行う。これについて具体例を挙げて説明する。
 図2は、実施例1に係る無線通信システムの概要を示す説明図である。図2において、横軸は時間を表し、縦軸は周波数を表している。図3は、実施例1に係る無線通信システムの動作を示すシーケンス図である。
 例えば、論理チャネル(以下、「LCH」と記載することもある)において、送信予定のデータが発生する。この場合、UE20の通信部23は、Buffer status report、または、スケジューリングリクエスト(SR)により、送信予定のデータの種類をgNB10に通知する(図3のステップS100)。すなわち、UE20は、送信したいデータの種類をgNB10に通知する。なお通知する際には、例えば、2ビットの情報を用いて、データの種類または、データの優先度(例えば、許容遅延量に応じてきまる優先度)を通知する。なお、通信部23は、「通知部」の一例である。
 次に、gNB10の通信部13は、PDCCHおよび対応するPDSCHでそれぞれDCIおよび下りデータをUE20に送信する(図3のステップS110)。すなわち、gNB10は、PDSCHで下りデータをUE20に送信し、PDCCHでDCIをUE20に送信する。DCIには、例えば、UL grantの情報(PUSCHの割当て情報)または、DL assignment(PDSCHの割当て情報)が含めることが可能である。なお、ステップS110では、少なくともDL assignmentの情報が含まれている。
 次に、gNB10の通信部13は、UE20から通知されたデータの種類または、割り当てることが可能な無線リソース(例えば、リソースブロックの数、リソースエレメント数等)の少なくとも一方に応じてUCIの送信に関する情報を含むPDCCHを送信する。なお、UCIの送信に関する情報は、例えば、UL grantに関するPDCCHで送信される。(図3のステップS120)。通信部13は、「指示部」の一例である。例えば、gNB10は、UE20から通知されるデータの種類が第1の種類(例えばeMBB)である場合、第1の種類のデータの送信に割り当てられたチャネル(PUSCH)のリソースでUCIを送信することを、PDCCHで指示する。一方、gNB10は、UE20から通知されるデータの種類が第2の種類(例えばURLLC)である場合、第2の種類のデータの送信に割り当てられたチャネルとは異なるリソースでUCIを送信することを、PDCCHで指示する。また、gNBは、割り当てることが可能な無線リソースのうちUCIが占めることが可能な無線リソース数(例えば、リソースエレメント数、リソースブロック数)、ビット数、または、PUSCHの領域におけるUCIの占有率(以降、PUSCHの領域におけるUCI(または、UCIに関する情報の一部)の占有率を単に占有率と記載する。)を示す情報の少なくとも1つをステップS120のPDCCHに含めて送信しても良い。なお、RRC信号(例えば、RRCReconfigrationMeassage)等を用いてUCIをPiggybackすることが可能な上限値を予め設定しても良い。また、占有率は、後述する式(1)から算出することが可能である。
 なお、上限値が設定されている場合は、制御部24において、上限値の範囲に納まるようにPiggybackするUCIに含まれる情報を調整する。例えば、特定のUCIの情報(例えば、Ack/Nackに関する情報)のみをPiggybackする。
 次に、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。ここで、ステップS120で受信したPDCCHに含まれるUCIの送信に関する情報に応じてPUSCHにUCIをPiggybackして送信する。例えば、データの種類が第1の種類(例えばeMBB)である場合、UE20の通信部23は、UCIの送信に関する情報を含むPDCCHを受信し、PUSCHで第1の種類のデータ(図3の「UL data」)とPiggybackしたUCIの情報を送信する(図3のステップS130)。なお、データの種類が第1の種類(例えばeMBB)の場合は、UCIを全てPiggybackするとしても良い。また、UCIが占めることが可能な無線リソース数、ビット数、占有率の何れかの上限値が指示されている場合または、予めRRCのメッセージを用いて上記の何れかの上限値が設定されている場合は、上限値を超えないリソース数、ビット数、占有率に対応するようにUCIの一部をPiggybackする。
 なお、UCIの一部をPiggybackする例としては、例えば、Ack/Nackに関する情報のみをPiggybackする。
 また、例えば、データの種類が第2の種類(例えばURLLC)である場合、UE20の通信部23は、UCIの送信に関する情報を含むPDCCHを受信し、PUSCHで第2の種類のデータ(図3の「UL data」)とUCI(UCIの領域は、図2の「I’」を参照)を送信する(図3のステップS130)。なお、データの種類が第2の種類(例えばURLLC)の場合は、UCIをPiggybackする際に、データが要求される品質を保てるようにPiggybackすることが望ましい。なお、UCIが占めることが可能な無線リソース数、ビット数、または、占有率が指示されている場合または、予めRRCのメッセージを用いて上限値が設定されている場合は、上限値を超えないリソース数、ビット数、または、占有率に対応するようにUCIの一部をPiggybackする。また、予めRRCメッセージ等で上限値を決める場合は、例えば、データの種類または、許容遅延量等に応じて上限値を変更できるようにしても良い。なお、UE20は、上限値を複数設定されている場合、全ての上限値を満たすように制御するか、何れか1つの上限値を満たすように制御する。
 また、UE20の通信部23は、PiggybackされなかったUCIに対して他のリソースで送信するように指示を受けている場合は、指示を受けているリソースを用いてS130において送信していないUCIを送信する(S140)。具体的には、UE20の通信部23は、ステップS130で送信する上りデータに割り当てられたPUSCHとは異なるリソースでUCIをgNB10に送信する(図3のステップS140)。例えば、UE20は、データの送信に割り当てられたPUSCHの後のPUSCHでUCIをPiggybackしてNB10に送信する(図2の「I」を参照)。または、UE20は、第2の種類のデータの送信に割り当てられたPUSCHの後のPUCCHでUCIをgNB10に送信する(図2の「II」を参照)。
 なお、UCIを他のリソースで送信する場合は、ステップS120で基地局が送信するPDCCHを用いて指示しても良いし、別途、基地局が割り当てに関するPDCCHを送信しても良い。また、S140でUCIをPUSCHにPiggybackして送信する際には、ステップS130と同様に上限値を設けてPiggyback可能なリソース数、ビット数または、占有率を制限しても良い。
 ここで、ステップS120において、gNB10の通信部13は、PDCCHの中の特定のフィールドにより、UCIをPUSCHに載せて送信するか否かまたは、Piggyback可能なリソースについてUE20に指示する。すなわち、UE20に対して、UCIをPUSCHにPiggybackに関する指示を行う。この指示方法としては、PDCCHの中の特定のフィールドとして、設定された専用フィールドを用いる方法と、既存の共用フィールドを用いる方法とが挙げられる。なお、Piggyback可能なリソースとは、リソース数、ビット数、または、占有率の少なくとも何れか一つに対応する。
 まず、PDCCHの中の特定のフィールドとして、設定された専用フィールドを用いる方法について説明する。
 図4は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(1ビットの場合)を用いる方法の一例を示す説明図である。
 図4に示すように、PDCCHの中の専用フィールドが1ビットに設定され、gNB10によりPDCCHの中の専用フィールドの値が“0”、“1”で指示される。ここで、gNB10は、予めPDCCHの中の専用フィールドの値“0”、“1”をLCHにマッピングして、LCHとPDCCHとを関連付けておく。gNB10は、RRCにより、PDCCHの中の専用フィールドの値が“0”、“1”である場合に使用されるUCIを送信するリソースを予め設定しておき、UE20に通知しておく。また、Piggybackできるビット数の上限をRRCのメッセージで設定しても良い。また、PDCCHの中に別の専用フィールドを用いて上限値を可変にしても良い。
 例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“0”で指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHでデータを送信する。また、ステップS140において、UE20は、データの送信に割り当てられたPUSCHにUCIを載せて送信する。すなわち、UE20は、UCIをPUSCHにPiggybackする。なお、ステップS140でPUSCHが送信される場合は、送信するまでにgNBから無線リソースの割り当て情報を受信しても良い。この際にUCIがPiggyback可能なリソース数、ビット数、または、占有率の上限値までをPUSCHにPiggybackする。なお、上限値は、例えば、UE20が送信するデータの種類によって変更することが望ましい。なぜなら、データの種類に応じて要求される遅延量や信頼性が異なるためデータの種類毎に上限値を変更することで無線システム全体の無線リソースを柔軟に活用することができる。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“1”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS140において、UE20は、上りデータの送信に割り当てられたPUSCHにUCIを載せて送信しない。すなわち、UE20は、ステップS130でUCIをPUSCHにPiggybackしない。この場合、UE20は、ステップS130で送信する上りデータの送信に割り当てられたチャネル(PUSCH)とは異なるリソース(PUSCHまたはPUCCH)を介してUCIをgNB10に送信する(ステップS140)。なお、ステップS140でPUSCHを用いてUCIを送信する場合、UCIがPiggyback可能なリソース数、ビット数、または、占有率の上限値までをPUSCHにPiggybackする。なお、上限値は、例えば、UE20が送信するデータの種類によって変更することが望ましい。なぜなら、データの種類に応じて要求される遅延量や信頼性が異なるためデータの種類毎に上限値を変更することで無線システム全体の無線リソースを柔軟に活用することができる。
 このように、gNB10は、UE20への指示により、どのチャネルでUCIがUE20から送信されるのかを認識することができる。
 図5は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる方法の第1の例を示す説明図である。
 図5に示すように、PDCCHの中の専用フィールドが2ビットに設定され、gNB10によりPDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”で指示される。ここで、gNB10は、予めPDCCHの中の専用フィールドの値“00”、“01”、“10”、“11”をLCHにマッピングして、LCHとPDCCHとを関連付けておく。gNB10は、RRCのメッセージにより、PDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”である場合に使用されるUCIを送信するリソースを予め設定しておき、UE20に通知しても良い。なお、RRCメッセージは、例えば、RRC Configration setup message、RRC Reconfigration message、RRC establishment messageの何れかである。
 例えば、ステップS120において、UE20は、gNB10によりPDCCHの中の専用フィールドの値が“00”で指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS130において、UE20は、UCIをPUSCHにPiggybackしない。また、ステップS140でUCIを送信する。なお、状況に応じて、今回のUCIの送信を行わない、ということにしても良い。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“01”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHにUCIの一部をPiggybackし、データとUCIの一部を送信する。また、ステップS140において、UE20は、ステップS130で送信しなかったUCIを送信する。なお、ステップS140で送っていないUCIを放棄しても良い。この処理は、例えば、状況に応じて一部のUCIを送信しない、というオプションで使用される。
 なお、ステップS130でPiggybackして送信するUCIとしては、例えば、ステップS110においてPDSCHで受信した下りデータに対するAck/Nackに関する情報である。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“10”で指示される。ここで、UE20において、UCIの送信タイミングとデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、UCIの全てをPiggybackし、PUSCHでデータとUCIを送信する。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“11”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS130において、UE20は、UCIをPUSCHにPiggybackしない。この場合、例えば、UE20は、上りデータの送信に割り当てられたPUSCHの後のPUCCH(図2の「II」を参照)を用いてUCIをgNB10に送信する。または、UE20は、データに割り当てられたPUSCHの後のPUSCHにUCIをPiggybackして送信する。
 なお、これらの専用フィールドの値は、データの種類に応じて設定を変更しても良い。例えば、第1の種類のデータ(例えばeMMBデータ)の場合、UCIの送信を優先して送信できるような設定をし、第2の種類のデータ(例えば、URLLCデータ)の場合、上りデータの送信を優先できるようにするような設定する。
 このように、gNB10は、UE20への指示により、UCIがUE20からどのように送信されるのかを認識することができる。
 図6は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる別の方法の第2の例を示す説明図である。
 図6に示すように、PDCCHの中の専用フィールドが2ビット(a,b)に設定され、gNB10によりPDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”で指示される。ここで、gNB10は、予めPDCCHの中の専用フィールドの値“00”、“01”、“10”、“11”をLCHにマッピングして、LCHとPDCCHとを関連付けておく。gNB10は、RRCのメッセージにより、PDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”である場合に使用されるUCIを送信するリソースを予め設定しておき、UE20に通知しても良い。なお、RRCメッセージは、例えば、RRC Configration setup message、 RRC Reconfigration message、RRC establishment messageの何れかである。
また、図6の例では、2ビット(a,b)のうちの1ビット(a)をUCIに含まれる情報のうちのCSIに関する情報をPiggybackするか否かを示し、他の1ビット(b)をUCIに含まれる情報のうちのAck/Nackに関する情報をPiggybackするか否かを示す。
 例えば、ステップS120において、UE20は、gNB10によりPDCCHの中の専用フィールドの値が“00”で指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS140において、UE20は、UCIをPUSCHにPiggybackしない。この処理は、例えば、状況に応じて今回はUCIを送信しない、というオプションで使用される。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“01”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHにUCIに含まれるAck/Nackに関する情報をPiggybackし、上りデータとAck/Nackの情報を送信する。また、ステップS140において、UE20は、ステップS130で送信しなかったUCI(CSIに関する情報)を送信する。なお、S130で送っていないUCIを送信せずに放棄しても良い。この処理は、例えば、状況に応じて一部のUCIを送信しない、というオプションで使用される。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“10”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHにUCIに含まれるCSIに関する情報をPiggybackし、データとCSIに関する情報を送信する。また、ステップS140において、UE20は、ステップS130で送信しなかったUCI(Ack/Nackに関する情報)を送信する。なお、S130で送っていないUCIを送信せずに放棄しても良い。この処理は、例えば、状況に応じて一部のUCIを送信しない、というオプションで使用される。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“11”で指示される。ここで、UE20において、UCIの送信タイミングとデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHでデータを送信する。また、ステップS130において、UE20は、UCIに含まれるCSIに関する情報とAck/Nackに関する情報を共にPUSCHにPiggybackする。要するに、上りデータとUCIに含まれるCSIに関する情報とAck/Nackに関する情報を送信する。
 なお、図6では、2ビットをCSIとAck/Nackに対応付けて説明したが、情報の種類に応じてビット数を増やしても良い。また、複数の情報を一つのグループにして1ビットでPiggybackの有無を示しても良い。このようにすることで、gNB20は、UCIのうち必要な(または優先度の高い)情報を選択し、他のUCIの情報よりも優先的に受信することができる。
 図7は、実施例1に係る無線通信システムにおいて、PDCCHの中の専用フィールド(2ビットの場合)を用いる別の方法の第3の例を示す説明図である。
 図7に示すように、PDCCHの中の専用フィールドが2ビットに設定され、gNB10によりPDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”で指示される。ここで、gNB10は、予めPDCCHの中の専用フィールドの値“00”、“01”、“10”、“11”をLCHにマッピングして、LCHとPDCCHとを関連付けておく。gNB10は、RRCのメッセージにより、PDCCHの中の専用フィールドの値が“00”、“01”、“10”、“11”である場合に使用されるUCIを送信するリソースを予め設定しておき、UE20に通知しても良い。なお、RRCメッセージは、例えば、RRC Configration setup message、RRC Reconfigration message、RRC establishment messageの何れかである。
また、図7の例では、UCIのうち特定の情報に対してPiggybackできる情報を調整できるようしている例であり、特定の情報としてAck/Nackとして説明している。
 例えば、ステップS120において、UE20は、gNB10によりPDCCHの中の専用フィールドの値が“00”で指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS140において、UE20は、UCIをPUSCHにPiggybackしない。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“01”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHにUCIに含まれるAck/Nackに関する情報を対応するビット数に応じたPiggybackを行い、データとAck/Nackの情報を送信する。また、ステップS140において、UE20は、ステップS130で送信しなかったUCI(例えば、CSIに関する情報)を送信する。なお、S130で送っていないUCIを送信せずに放棄しても良い。この処理は、例えば、状況に応じて一部のUCIを送信しない、というオプションで使用される。なお、対応するビット数に応じたPiggybackとは、後述する式(1)に含まれるβオフセットの値がAck/Nackのビット数に応じて変化するように設定ができるため、その設定に応じたPiggybackを意味する。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“10”で指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHにUCIに含まれるAck/Nackに関する情報を決められたIndexに応じてPiggybackし、データとAck/Nackに関する情報を送信する。なお、IndexとPiggyabckの関係については、後述する。また、ステップS140において、UE20は、ステップS130で送信しなかったUCI(例えば、CSIに関する情報)を送信する。なお、上記のようにS130で送っていないUCIを送信せずに放棄しても良い。この処理は、例えば、状況に応じて一部のUCIを送信しない、というオプションで使用される。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の専用フィールドの値が“11”で指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHで上りデータを送信する。また、ステップS130において、UE20は、UCIに含まれるCSIに関する情報とAck/Nackに関する情報を共にPUSCHにPiggybackする。要するに、PUSCHで上りデータとUCIに含まれるCSIに関する情報とAck/Nackに関する情報を送信する。
 なお、図7では、特定のUCIの情報としてAck/Nackを例に説明したが、他の情報でも同様に適応しても良い。なお、特定のUCIとしてAck/Nackの場合は、下りのデータがURLLCのときに、その下りデータに対するAck/Nackに関する情報を優先的に送信するように指示することができる。
 また、各値を後述するβオフセットの値と対応付けても良い。TS38.331 V15.0.0(非特許文献24)に規定されているAck/Nackに関するβオフセットは、Ack/Nackのビット数に応じて3種類設定することができる。
 そこで、2ビットで例えば、3種類のβオフセットとPiggybackをしないことを通知するように構成するようにしても良い。ようするに、Ack/Nackのビット数に関係なく3種類のβオフセットまたは、Piggybackをしないことを指定するようにしても良い。なお、CSIについてもAck/Nackと同様にTS38.331 V15.0.0(非特許文献24)に規定されているCSIのビット数に応じたβオフセットとPiggybackしないことを組み合わせて用いても良い。
 また、βオフセットをデータの種類に応じて生成するようにしても良い。例えば、現在の仕様は、Ack/Nackに関するβオフセットを3種類しか規定できないがURLLCの通信に向けて新たに追加しても良い。このようにすることで、データの種類に応じたβオフセットでPUSCHにPiggybackするUCIを制御することができる。
 また、実施例1に係る無線通信システムでは、PDCCHの中の専用フィールドを用いる方法として、1ビットの場合と2ビットの場合とを例に挙げて説明したが、これに限定されず、3ビット以上のビットを用いて、UCIを送信するリソースを設定してもよい。例えば、先頭の1ビットまたは2ビットは上述の方法に従い、次のnビットにより具体的な内容(時間、周波数など)を考慮して、UCIを送信するリソースを設定してもよい。また、先頭ビットにデータの種類を示すビットを付与し、それ以降のビットでUCIのPiggybackに関する情報を付与することもできる。なお、その際に、先頭ビットによってPiggybackの指示内容を変更しても良い。
 次に、PDCCHの中の特定のフィールドとして、他のパラメータの値を規定する既存のフィールドを共用フィールドとして用いる方法について説明する。
 既存のフィールドを用いる場合、UCIをマッピングするリソースの大きさに関するフィールド(またはマッピングするUCIビット数に関するフィールド)にて、マッピングするリソースの大きさが「0」(またはマッピングするUCIビット数が「0」)という指示を行う。ACK/NACKをマッピングするリソースの大きさを決めるパラメータとしてβoffset HARQ-ACKが使われる。CSIをマッピングするリソースの大きさを決めるパラメータとしてβoffset CSIが使われる。以下ではβoffset HARQ-ACKを例に説明する。βoffset HARQ-ACKは、ACK/NACKをPUSCHに載せるときに、どのくらいのRE(Resource element)数を使って送信するかを決めるパラメータである。ここで、RE数は、以下の式(1)により算出される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Q’は、RE数であり、UCIに含まれるACK/NACKをマッピングするときの数を表す。また、式(1)の分子において、OACKは、ACK/NACKのビット数を表し、LACKはACK/NACKに付加される巡回冗長検査(CRC)符号のビット数を表し、Msc UCIは、参照信号(RS:Reference Signal)を除いたシンボルあたりのPUSCHのRE数を示す。また、式(1)の分母において、CおよびKrは、PUSCH伝送をスケジューリングするPDCCHから得られるパラメータを表す。Q’が所定のRE数α・Msc UCIより大きい場合、ACK/NACKのマッピングは所定のRE数のみ行う。 
 図8、図9は、実施例1に係る無線通信システムにおいて、PDCCHの中のβオフセット・フィールドを用いる方法の一例を示す説明図である。図8、図9は、それぞれ、3GPP TS38.213 V15.0.0(非特許文献17)のセクション9.3の「Table 9.3-1」、「Table 9.3-3」に記載されている。
 図8に示す「Table 9.3-1」は、ACK/NACKの場合のβオフセットの値と番号を示し、32個の番号“0”~“31”と、βoffset HARQ-ACKとを対応付ける。番号“0”~“15”に対応するβoffset HARQ-ACKには、「1.000」以上の値が設定されている。番号“16”~“31”に対応するβoffset HARQ-ACKには、「Reserved」が設定されている。なお、上記説明した、Indexとは、このβオフセットに対応している。そのため、数1に基づいてIndexがきまるとPiggyback可能なリソースが決まる。
 図9に示す「Table 9.3-3」は、UCIオフセットインジケータとして4個の値“00”、“01”、“10”、“11”と、図8に示す「Table 9.3-1」の32個の番号“0”~“31”のうち、選択された4個の番号とを対応付ける。
 例えば、既存の共用フィールドを用いる方法についても、図9に示すUCIオフセットインジケータの値“00”、“01”、“10”、“11”は、それぞれ、図5乃至図7に示した専用フィールドの値“00”、“01”、“10”、“11”と同様に設定される。この場合、gNB10において、図9に示す値“01”、“10”、“11”と、図8に示す値“0”~“15”のうち、選択された3つの値とが対応付けられる。また、gNB10において、図9に示す値“00”と、図8に示す値“16”~“31”のうちの1つの値とが対応付けられる。ここで、図8に示す値“16”~“31”に対応するβoffset HARQ-ACKに「0」が設定されることにより、式(1)の分子が「0」となる。すなわち、RE数は「0」となり、ACK/NACKに関するUCIが送信されない。
 具体的には、図9に示すように、gNB10によりPDCCHの中の共用フィールドの値が“00”、“01”、“10”、“11”(図8において、選択された4個の値)で指示される。ここで、gNB10は、予めPDCCHの中の共用フィールドの値“00”、“01”、“10”、“11”をLCHにマッピングして、LCHとPDCCHとを関連付けておく。また、gNB10は、RRCのメッセージにより、PDCCHの中の共用フィールドの値が“00”、“01”、“10”、“11”である場合に使用されるUCIを送信するリソースを予め設定しておき、UE20に通知しておいても良い。
 例えば、ステップS120において、gNB10によりPDCCHの中の共用フィールドの値が、図9に示す値“00”(図8に示す値“16”~“31”のうちの1つの値)に指示される。ここで、UE20において、UCIの送信タイミングとデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHでデータを送信する。また、ステップS130において、UE20は、UCIをPUSCHにPiggybackしない。この処理は、例えば、状況に応じて今回はUCIを送信しない、というオプションで使用される。
 また、例えば、ステップS120において、gNB10は、UE20から通知されたデータの種類に応じてPDCCHで指示する。このとき、gNB10によりPDCCHの中の共用フィールドの値が、図9に示す値“01”(図8に示す値“0”~“15”のうちの1つの値)に指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、”01”で示されるβオフセットに応じたリソース数をPUSCHにPiggybackし、PUSCHでデータとUCIを送信する。すなわち、UE20は、UCIをPUSCHにPiggybackする。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の共用フィールドの値が、図9に示す値“10”(図8に示す値“0”~“15”のうちの他の1つの値)に指示される。ここで、UE20において、UCIの送信タイミングとデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、”10”で示されるβオフセットに応じたリソース数、ビット数、または、占有率でUCIをPUSCHにPiggybackし、PUSCHでUCI(UCIの領域は、図2の「I’」を参照)と上りデータとを送信する。この場合、例えば、UE20は、データの送信に割り当てられたPUSCHの後のPUSCH(図2の「II」を参照)で残りのUCIをgNB10に送信してもいいし、残りのUCIを送信しなくても良い。
 また、例えば、ステップS120において、gNB10によりPDCCHの中の共用フィールドの値が、図9に示す値“11”(図8に示す値“0”~“15”のうちの更に他の1つの値)に指示される。ここで、UE20において、UCIの送信タイミングと上りデータの送信タイミングとが重なる。このとき、ステップS130において、”11”で示されるβオフセットに応じたリソース数または、ビット数をPUSCHにPiggybackし、PUSCHでUCIとデータを送信する。この場合、例えば、UE20は、データの送信に割り当てられたPUSCHの後のPUCCH(図2の「II」を参照)で残りのUCIをgNB10に送信する。
 なお、例えば、”10”、”11”と同じβオフセットを設定し、一方は、PUSCH送信後に送信することを示し、他方は、残りのUCIを送信しないように設定しても良い。 
 このように、gNB10は、UE20への指示により、どのチャネルでどのくらいのUCIがUE20から送信されるのかを認識することができる。なお、PDCCHの中の共用フィールドを用いる例として、βオフセット・フィールドの代わりに、マッピングするAck/Nackのビット数(即ち数式1におけるO)を示すフィールドを用い、Ack/Nackのビット数が「0」と指示できるようにしても良い。この場合、付加するCRCビット数も「0」である。 
 以上の説明により、実施例1に係る無線通信システムは、端末(UE20)と基地局(gNB10)とを具備する。ここで、UE20は、データを送信するタイミングと制御情報(UCI)を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネル(PUSCH)を用いて、UCIをデータと同時にgNB10に送信する。この無線通信システムでは、UE20の通知部(通信部23)は、送信予定のデータの種類を通知しても良い。UE20から通知されるデータの種類が第1の種類(eMBB)である。この場合、gNB10の指示部(通信部13)は、第1の種類(eMBB)のデータの送信に割り当てられたチャネル(PUSCH)のリソースでUCIを送信することをUE20に指示する。UE20から通知されるデータの種類が第2の種類(URLLC)である。この場合、gNB10の通信部13は、第2の種類(URLLC)のデータの送信に割り当てられたチャネル(PUSCH)のリソースのうちUCIが占めることが可能なリソースをUE20に指示する。ここで、gNB10の通信部13は、下りチャネル(PDCCH)の中の特定のフィールド(専用フィールドまたは共用フィールド)により、UCIを送信するリソースをUE20に指示する。UE20の送信部(通信部23)は、データを送信するタイミングとUCIを送信するタイミングとが重なる場合、gNB10に指示されたリソースでUCIをgNB10に送信する。なお、PUSCHにPiggybackする際には、上限値及び設定値がある場合は、上限値及び設定値に応じた情報をPiggybackする。
 上述のように、実施例1に係る無線通信システムでは、gNB10は、上りデータとUCIの送信タイミングとが重なる場合にUCIの送信に関する情報をUE20に送信する。例えば、gNB10により、上りのデータの送信に割り当てられたチャネル(PUSCH)にUCIの一部(例えば、Ack/Nackの情報)をPiggybackして、上りデータとUCIの一部を送信するように指示する。その結果、UE20は、PUSCHに占める上りデータの割合が確保することができる。すなわち、PUSCHの冗長度が不足しない。また、リソースに余裕がある場合にUCIの情報も送ることができる。このため、実施例1に係る無線通信システムでは、例えば、上りデータを送信する場合、上りデータに対する品質を確保され、要求される誤り率を満たすことができる。また、UCIの情報もリソースの状況によっては、遅らせることなく送信することもできる。
 また、特に、URLLCの下りデータに対するAck/Nackに関する情報とURLLCの上りデータを同時に発生した場合は、上りデータの冗長度を確保しつつ、Ack/Nackを送信するようにできる。そのため、上りデータと下りデータに対して所定の品質(信頼度や許容遅延量等)を満たすように制御することができる。
 実施例1に係る無線通信システムでは、gNB10は、PDCCHの中の特定のフィールド(専用フィールドまたは共用フィールド)により、UCIを送信するリソースをUE20に指示する例を説明した。実施例2に係る無線通信システムでは、gNB10は、PDCCHが割り当てられた時間対周波数の領域を特定する情報により、UCIを送信するリソースをUE20に指示する。実施例2では、実施例1と同じ部分には同じ符号を付し、その説明を省略する。
 図10は、実施例2に係る無線通信システムの概要を示す説明図である。
 PDCCHが割り当てられた時間対周波数の領域を特定する情報としては、サイズ、RNTI(Radio Network Temporary Identity)、ヘッダ、CORESET(Control resource set)の場所、Search spaceなどが挙げられる。なお、送信するデータの種類などPUSCHに対する制御内容によってPDCCHの種類(制御情報のサイズ、RNTI(Radio Network Temporary Identity)、ヘッダ)が決められる。さらには、PDCCHの種類に応じて配置されるCORESETとSearch spaceが決められる。ここで、gNB10は、予め、PDCCHが割り当てられた時間対周波数の領域を特定する情報をLCHにマッピングして、LCHとPDCCHとを関連付けておく。gNB10は、PDCCHの領域とLCHの対応関係をRRCメッセージにより、UE20に通知しておく。gNB10はまた、RRCのメッセージにより、UCIを送信するリソースまたは、Piggyback可能なリソース数、ビット数または、占有率の上限値とLCHまたは領域との関係を予め設定しておき、UE20に通知しておく。なお、上記の2つの対応関係の通知については、同時に行っても良いし、別々にしても良い。
 例えば、図10に示すように、PDCCHは、CORESETの場所や、Search spaceにより区別される。例えば、CORESETの場所は、URLLCのデータ向けのCORESET“CORESET#1”、または、eMBBのデータ向けのCORESET“CORESET#2”として区別される。“CORESET#1”内には、Search spaceとして“Search space#A”が含まれる。“Search space#A”の設定には、上りデータの送信に割り当てられたチャネル(PUSCH)にUCIの情報がPiggybackできるリソース数、ビット数または占有率の少なくとも1つの上限値が関連付けられている。
 例えば、ステップS120において、gNB10は、UE20から通知されたデータの種類に応じてPDCCHで指示する。このとき、gNB10により、PDCCHが割り当てられた時間対周波数の領域を特定する情報として、CORESETの場所が“CORESET#2”で事前に指示される。ここで、UE20において、UCIの送信タイミングとデータの送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHでデータを送信する。また、ステップS140において、UE20は、データの送信に割り当てられたPUSCHにUCIを載せて送信する。すなわち、UE20は、UCIをPUSCHにPiggybackする。なお、URLLCのデータの送信に割り当てられたチャネル(PUSCH)にUCIの情報がPiggybackできるリソース数、ビット数、占有率の少なくとも1つの上限値が設定されている。なお、“CORESET#2”内の“Search space”(図示無し)においても、上りデータの送信に割り当てられたチャネル(PUSCH)にUCIの情報がPiggybackできるリソース数、ビット数または、占有率の少なくとも1つの上限値が設定されている。
 例えば、gNB10により、PDCCHが割り当てられた時間対周波数の領域を特定する情報として、CORESETの場所が“CORESET#1”で事前に指示され、ステップS120において、PDCCHが“CORESET#1”の領域のリソースで送信される。ここで、UE20において、UCIの送信タイミングとデータ(例えばURLLCのデータ)の送信タイミングとが重なる。このとき、ステップS130において、UE20は、PUSCHでデータを送信する。また、ステップS130において、UE20は、データの送信に割り当てられたPUSCHにUCIを載せて送信しない。すなわち、UE20は、UCIをPUSCHにPiggybackしない。この場合、UE20は、データの送信に割り当てられたチャネル(PUSCH)とは異なるリソース(PUSCHまたはPUCCH)でUCIをgNB10に送信する。なお、UCIをPUSCHにPiggybackして送信する場合は、領域と関連するPiggyback可能な上限値のリソース数、ビット数、または、占有率に対応するように情報をPiggybackする。
 なお、各領域または、LCHをβオフセットの値と対応付けても良い。TS38.331 V15.0.0(非特許文献24)に規定されているAck/Nackに関するβオフセットは、Ack/Nackのビット数に応じて3種類設定することができる。
そこで、各領域または、LCHで例えば、3種類のβオフセットとPiggybackをしないようにRRCのメッセージを用いて設定するようにしても良い。ようするに、gNB10は、Ack/Nackのビット数に関係なく3種類のβオフセットまたは、Piggybackをしないことを領域または、LCHを用いてUE20に指定するようにしても良い。なお、CSIについてもAck/Nackと同様にTS38.331 V15.0.0(非特許文献24)に規定されているCSIのビット数に応じたβオフセットとPiggybackしないことを組み合わせて用いても良い。
 また、βオフセットをデータの種類に応じて変更できるように各領域または、LCH対応するようにしても良い。例えば、現在の仕様は、Ack/Nackに関するβオフセットを3種類しか規定できないがURLLCの通信に向けて新たに2種類追加し、領域または、LCHに応じてβオフセットを変更できるようにする。このようにすることで、データの種類に応じたβオフセットでPUSCHにPiggybackするUCIを制御することができる。
 このように、gNB10は、UE20からの通知により、どのデータがUE20から送信されるのかを認識し、UE20への指示により、どのチャネルでUCIがUE20から送信されるのかを認識することができる。また、PDCCHが格納される領域によりPiggyback可能なリソース数、ビット数、占有率の上限値が変更できるためデータと領域に関係性を持たせることでデータの種類に対応した上限値を設定することができる。
 以上の説明により、実施例2に係る無線通信システムでは、端末(UE20)と基地局(gNB10)とを具備する。ここで、UE20は、データを送信するタイミングと制御情報(UCI)を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネルを用いて、UCIの一部または全部を上りデータと同時にgNB10に送信する。この無線通信システムでは、UE20の通知部(通信部23)は、送信予定のデータの種類を通知する。gNB10の通信部13は、下りチャネル(PDCCH)が割り当てられた領域(サイズ、RNTI、ヘッダ、CORESETの場所、Search space)により、UCIがPiggybackできるリソース数、ビット数、占有率の少なくとも1つの上限をUE20に指示する。UE20の送信部(通信部23)は、データを送信するタイミングとUCIを送信するタイミングとが重なる場合、gNB10に指示されたリソース数、ビット数、占有率の上限を超えない範囲でUCIをgNB10に送信する。
 このように、実施例2に係る無線通信システムでは、gNB10は、上りデータとUCIの送信タイミングとが重なる場合にPiggybackするUCIの情報量の上限を変更することができる。例えば、gNB10により、第2の種類(URLLC)のデータの送信に割り当てられたチャネル(PUSCH)にPiggybackする際には、PUSCHの品質が十分に保てる上限値を設定する。その結果、PUSCHに占める上りデータの割合が確保される。すなわち、PUSCHの冗長度が不足しない。このため、実施例2に係る無線通信システムでは、高信頼度が要求されるようなURLLC用のデータを送信する場合、URLLC用のデータに割り当てられるリソースが確保され、要求される誤り率を満たすことができる。また、第1の種類(eMMB)のデータの場合、第2の種類(URLLC)のデータより、PUSCHの冗長度を減らせるためその減らした分だけ上限値を上げることができる。即ち、PiggybackできるUCIを増やすことができる。
 実施例1、2に係る無線通信システムでは、gNB10は、上りデータの割り当て情報に関連させてUCIの送信に関する情報を付与し指示をしている。実施例3に係る無線通信システムでは、gNB10は、上りデータの送信に割り当てられたPUSCHを指示するPDCCHとは異なるリソースを用いて指示する。実施例3では、実施例1、2と同じ部分には同じ符号を付し、その説明を省略する。
 図11は、実施例3に係る無線通信システムの概要を示す説明図である。図11において、横軸は時間を表し、縦軸は周波数を表している。例えば、UE20から通知されるデータの種類が第2の種類(例えばURLLC)である。この場合、gNB10は、第2の種類のデータの送信に割り当てられたPUSCHを指示するPDCCHとは異なるリソースを用いて、そのデータの送信に割り当てられたPUSCHとは異なるリソース(PUSCHまたはPUCCH)をUE20に指示する。例えば、gNB10は、第2の種類のデータの送信に割り当てられたPUSCHを指示するPDCCHとは別のPDCCHを用いる。この場合、UE20は、第2の種類のデータの送信に割り当てられたPUSCHの後のPUSCHでUCIをgNB10に送信する(図11の「III」を参照)。
 図12は、実施例3に係る無線通信システムの動作を示すシーケンス図である。
 例えば、LCHにおいて、送信予定のデータが発生する。この場合、UE20の通信部23は、Buffer status reportまたはSRにより、送信予定のデータの種類をgNB10に通知する(図12のステップS200)。すなわち、UE20は、送信したいデータの種類をgNB10に通知する。
 次に、gNB10の通信部13は、PDCCHおよび対応するPDSCHでそれぞれDCIおよびデータをUE20に送信する(図12のステップS210)。すなわち、gNB10は、PDSCHで下りデータをUE20に送信し、PDCCHでDCIをUE20に送信する。DCIには、例えば、UL grantの情報(PUSCHの割当て情報)やDL assignment(PDSCHの割当て情報)が含まれる。
 次に、gNB10の通信部13は、UE20から通知されたデータの種類に応じてUCIをどのチャネルで送信するのかを、UL grantに関するPDCCHで指示する(図12のステップS220)。具体的には、gNB10の通信部13は、UE20から通知されるデータの種類が第2の種類(例えばURLLC)である場合、UCIをPUSCHにPiggybackしないことまたは、UCIの少なくとも一部をPiggybackすることをPDCCHで指示する。ここで、UCIをPUSCHにPiggybackしないことまたは、UCIの一部をPiggybackすることをPDCCHで指示する方法としては、以下の第1、第2の方法が挙げられる。第1の方法とは、実施例1におけるPDCCHの中の特定のフィールド(専用フィールドまたは共用フィールド)を用いる方法である。第2の方法とは、実施例2におけるPDCCHが割り当てられた時間対周波数の領域を特定する情報(サイズ、RNTI、ヘッダ、CORESETの場所、Search space)を用いる方法である。なお、データの種類に限らず上記のように動作しても良い。
 また、gNB10の通信部13は、UCIの新しい送信タイミング(リソース)を別のPDCCHで指示する(図12のステップS225)。例えば、gNB10の通信部13は、第2の種類のデータの送信に割り当てられたPUSCHを指示するPDCCHとは別のPDCCHを用いて、第2の種類のデータの送信に割り当てられたチャネル(PUSCH)とは異なるリソースをUE20に指示する。
 UE20において、UCIの送信タイミングとデータの送信タイミングとが重なるときに、UE20の通信部23は、PUSCHで上りデータ(図12の「UL data」)を送信する(図12のステップS230)。また、UE20の通信部23は、gNB10で指示されたリソースでUCIをgNB10に送信する。具体的には、UE20の通信部23は、第2の種類のデータの送信に割り当てられたPUSCHとは異なるリソースでUCIをgNB10に送信する(図12のステップS240)。例えば、UE20は、上りデータの送信に割り当てられたPUSCHの後のPUSCHでUCIをgNB10に送信する(図11の「III」を参照)。または、UE20は、第2の種類のデータの送信に割り当てられたPUSCHの後のPUCCHでUCIをgNB10に送信する。
 ここで、ステップS220とステップS225とは、処理の順番が前後したり、処理のタイミングが同じになったりしてもよい。
 このように、gNB10は、UE20からの通知により、どのデータがUE20から送信されるのかを認識し、UE20への指示により、どのチャネルでUCIがUE20から送信されるのかを認識することができる。
 以上の説明により、実施例3に係る無線通信システムでは、端末(UE20)と基地局(gNB10)とを具備する。ここで、UE20は、データを送信するタイミングと制御情報(UCI)を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネルを用いて、UCIの一部または全部をデータと同時にgNB10に送信する
 このように、実施例3に係る無線通信システムでは、gNB10は、第2の種類(URLLC)のデータとUCIの送信タイミングとが重なる場合にUCIの送信タイミングを遅らせる指示をUE20に行なう。例えば、gNB10により、第2の種類(URLLC)のデータの送信に割り当てられたチャネル(PUSCH)とは異なるリソースとして、そのチャネル(PUSCH)の後のPUSCH(図11の「III」を参照)またはPUCCHが指示される。その結果、PUSCHに占める上りデータの割合が確保される。すなわち、PUSCHの冗長度が不足しない。このため、実施例3に係る無線通信システムでは、高信頼度が要求されるようなURLLC用のデータを送信する場合、URLLC用のデータに割り当てられるリソースが確保され、要求される誤り率を満たすことができる。また、実施例1及び2と同様にステップS230でUCIの一部をPiggybackしても良い。そのようにすることで、データに割り当てられるリソースが確保しつつ、UCIを送信することができるので、リソースを有効に活用することができる。
 実施例4に係る無線通信システムでは、UE20は、データの種類として第1の種類を通知した後に第2の種類のデータが発生し、UCIの送信タイミングとデータの送信タイミングとが重なる場合について想定する。この場合、実施例4に係る無線通信システムでは、UE20は、第2の種類のデータの送信に割り当てられたPUSCHとは異なるPUSCHでUCIをgNB10に送信する。実施例4では、実施例1乃至3と同じ部分には同じ符号を付し、その説明を省略する。
 図13は、実施例4に係る無線通信システムの動作を示すシーケンス図である。
 例えば、LCH#xにおいて、送信予定のデータとして、第1の種類のデータ(図13の「eMBB data」)が発生する。この場合、UE20の通信部23は、Buffer status reportまたはSRにより、送信予定のデータの種類として、第1の種類(eMBB)のデータをgNB10に通知する(図13のステップS300)。すなわち、UE20は、送信したいデータの種類をgNB10に通知する。
 しかし、ステップS300の処理後に、LCH#yにおいて、第2の種類のデータ(図13の「URLLC data」)が発生する(図13のステップS305)。
 次に、gNB10の通信部13は、PDCCHおよび対応するPDSCHでそれぞれDCIおよびデータをUE20に送信する(図13のステップS310)。すなわち、gNB10は、PDSCHで下りデータをUE20に送信し、PDCCHでDCIをUE20に送信する。DCIには、例えば、UL grantの情報(PUSCHの割当て情報)やDL assignment(PDSCHの割当て情報)が含まれる。
 ここで、gNB10の通信部13は、UE20から通知されたデータの種類に応じて、UCIのPiggybackするリソース数または、ビット数をUL grantに関するPDCCHで指示する(図13のステップS320)
 次に、UE20において、ステップS305で発生した第2のデータの送信を優先させるため、第2の種類のデータとUCIの送信タイミングとが重なる。この場合、UE20の通信部23は、第2の種類(URLLC)のデータが所定の品質をたもつことが可能なリソース数、ビット数、または占有率になるようにPDCCHで指示されたリソース数、ビット数、占有率よりもPiggybackするUCIを少なくする。ようするに、送信するデータに応じた上限値をこえないようにPiggybackする情報を減らす。そして、送信できなかった、残りのUCIについては、その後に、例えば、別途、S300で発生した第1種類のデータをPUSCHで送信する際にPiggybackして送信しても良い(図13のステップS340)。なお、新たなリソースの割り当てとしては、例えば、ステップS330以降に新たに割り当ての情報を受信することで送信ができる。また、ステップS340で送信するPUSCHよりも先にPUCCHで情報を送れる場合は、PUCCHで残りのUCIを送信しても良い。
 図14は、実施例4に係る無線通信システムの他の動作を示すシーケンス図である。図14に示す例では、LCH#yにおいて、第2の種類(URLLC)のデータが発生するタイミングが、図13に示す例とは異なる。例えば、ステップS310の処理後に、LCH#yにおいて、第2の種類のデータ(図14の「URLLC data」)が発生する(図14のステップS315)。それ以外の処理については、図13の場合と同じである。
 図15は、実施例4に係る無線通信システムの更に他の動作を示すシーケンス図である。図15に示す例では、LCH#yにおいて、第2の種類(URLLC)のデータが発生するタイミングが、図13、図14に示す例とは異なる。例えば、ステップS320の処理後に、LCH#yにおいて、第2の種類のデータ(図15の「URLLC data」)が発生する(図15のステップS325)。それ以外の処理については、図13の場合と同じである。
 ここで、ステップS330においてUE20から送信された第2の種類(URLLC)のデータと、ステップS340においてUE20から送信されたUCIと、をgNB10により認識可能にするために、DMRSの系列または配置パターンが用いられる。例えば、DMRSの系列または配置パターンは、直交コードにより、PUSCHにUCIを載せているか否かを表す。
 ステップS330においてUE20から第2の種類(URLLC)のデータが送信されるとき、第1のPUSCHのDMRSの系列または配置パターンは、予め決められている。例えば、直交コードが{+1、+1、+1、+1}であることにより、第1のPUSCHのDMRSの系列または配置パターンは、第1のPUSCHにUCIを載せていない旨を表す。
 一方、ステップS340においてUE20からUCIが送信されるとき、第2のPUSCHのDMRSの系列または配置パターンは、UE20が直交コードを変更することにより生成される。例えば、直交コードが{+1、-1、+1、-1}に変更されることにより、第2のPUSCHのDMRSの系列または配置パターンは、第2のPUSCHにUCIを載せている旨を表す。
 このように、gNB10は、DMRSの系列または配置パターンにより、ステップS330においてUE20から送信された第2の種類(URLLC)のデータと、ステップS340においてUE20から送信されたUCIと、を認識することができる。また、例えば、DMRSの系列または配置パターンを用いて、βオフセットの値を示すようにしても良い。
 また、ステップS330においてUE20から送信されたデータが第2の種類(URLLC)のデータであるのか否かをgNB10により認識可能にするために、以下の2つの方法が用いられる。
 第1の方法では、PDCCHで指定されたMCS(Modulation and Coding Scheme)を用いる方法である。例えば、元々eMBB向けに割り当てられたPUSCHで送信予定だったデータのサイズに比べて、UE20が自律的に差し替えたURLLCのデータのサイズが小さい。この場合、UE20は、ステップS330において、不足分をゼロで埋めてデータサイズを合わせておき、PDCCHで指定されたMCSに基づいて第1のPUSCHを生成する。または、UE20は、ステップS330において、不足分をeMBBのデータで埋めてサイズを合わせておき、PDCCHで指定されたMCSに基づいて第1のPUSCHを生成する。この場合、UE20がeMBBのデータにヘッダを付すことにより、gNB10が認識可能である。
 第2の方法では、PDCCHで指定されたMCSとは異なる他のMCSを用いる方法である。例えば、gNB10は、予めRRCにより、DMRSの系列または配置パターンがPUSCHにUCIを載せていない旨を表すときのMCSを、他のMCSとして指定しておく。そして、UE20は、ステップS330において、他のMCSに基づいて第1のPUSCHを生成する。または、gNB10は、予めRRCによりURLLCのデータを送信するときのサイズを他のMCSで指定しておく。そして、UE20は、ステップS330において、他のMCSに基づいて、割り当てられたリソースに合わせて符号化レートを調整し、第1のPUCCHを生成する。これにより、gNB10がURLLCのデータを識別可能となる。
 以上の説明により、実施例4に係る無線通信システムでは、端末(UE20)と基地局(gNB10)とを具備する。ここで、UE20は、データを送信するタイミングと制御情報(UCI)を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネルを用いて、UCIの全部または一部をデータと同時にgNB10に送信する。なお、UE20が送信するデータ種類に応じて、PUSCHにPiggybackして送信するUCIの情報量(リソース数、ビット数、占有率)を変化させて良い。ここで、UE20において、データの種類として第1の種類を通知した後に第2の種類のデータが発生し、更に、データを送信するタイミングとUCIを送信するタイミングとが重なる場合がある。この場合、UE20の通信部23は、第2の種類のデータに対応した上限値に変更し、変更した上限値に応じてUCIをPiggybackする。
 このように、実施例4に係る無線通信システムでは、UCIの送信タイミングとデータの送信タイミングとが重なるときに、UE20は、データの種類に応じてUCIをPiggybackしてgNB10に送信する。このとき、UE20は、第2の種類のデータの送信に割り当てられたチャネル(PUSCH)とは異なるリソース(PUSCH)を用いても良い。その結果、PUSCHに占める上りデータの割合が確保される。すなわち、PUSCHの冗長度が不足しない。このため、実施例4に係る無線通信システムでは、高信頼度が要求されるようなURLLC用のデータを送信する場合、URLLC用のデータに割り当てられるリソースが確保され、要求される誤り率を満たすことができる。また、データの種類に応じてPiggybackを行う情報量を調整することもできる。
 実施例5に係る無線通信システムでは、UE20は、データの種類として第1の種類を受信した後に第2の種類のデータを受信し、第1のデータに対するUCIと第2のデータに対するUCIとの送信タイミングと上りのデータの送信タイミングとが重なる場合について想定する。この場合、実施例5に係る無線通信システムにおけるUE20は、第1のデータに対するUCIと第2のデータに対するUCIのうち優先度の高いUCIをPUSCHにPiggybackする。実施例5では、実施例1乃至4と同じ部分には同じ符号を付し、その説明を省略する。
 図16は、実施例5に係る無線通信システムの概要を示す説明図である。図16において、横軸は時間を表し、縦軸は周波数を表している。図17は、実施例5に係る無線通信システムの動作を示すシーケンス図である。
 例えば、論理チャネル(以下、「LCH」と記載することもある)において、送信予定のデータが発生する。この場合、UE20の通信部23は、Buffer status report、または、スケジューリングリクエスト(SR)により、送信予定のデータの種類をgNB10に通知する(図17のステップS400)。
 次に、gNB10の通信部13は、PDCCHおよび対応するPDSCHでそれぞれDCIおよび第1の種類(例えば、eMMB)の下りデータをUE20に送信する(図17のステップS410)。すなわち、gNB10は、PDSCHで第1の種類の下りデータをUE20に送信し、PDCCHで第1の種類の下りデータに対する第1のDCIをUE20に送信する。DCIには、例えば、UL grantの情報(PUSCHの割当て情報)やDL assignment(PDSCHの割当て情報)が含まれる。
 次に、gNB10において優先度の高いデータ(第2の種類(例えば、URLLC)のデータ)が発生したとする。gNB10の通信部13は、PDCCHおよび対応するPDSCHでそれぞれ第2の種類のデータに対する第2のDCIおよび第2の種類のデータをUE20に送信する(図17のステップS420)。すなわち、gNB10は、PDSCHで第2の種類の下りデータをUE20に送信し、PDCCHで第2のDCIをUE20に送信する。なお、優先度の高いデータは、例えば、高信頼性と低遅延が要求されるURLLCデータあり、データが発生するとなるべく早く優先してスケジューリングされるとする。
 次に、gNB10の通信部13は、UE20から通知されたデータの種類または、割り当てることが可能な無線リソース(例えば、リソースブロックの数)の少なくとも一方に応じてUCIの送信に関する情報を含むPDCCHを送信する。なお、UCIの送信に関する情報は、例えば、UL grantに関するPDCCHで送信される。(図17のステップS430)。
 次に、UE20において、第1の下りデータに対するAck/Nackの送信タイミングと、第2の下りデータに対するAck/Nackの送信タイミングと、データの送信タイミングとが重なる。ここで、S430で受信したPDCCHに含まれるUCIの送信に関する情報に応じてPUSCHにUCIをPiggyback可能な場合は、Piggyback可能なリソース数、ビット数、または、占有率でUCIをPiggybackして送信する。(図17のステップS440)
 なお、この際に第1の下りデータと第2の下りデータとの複数の下りデータに対してUCI(例えば、Ack/Nack)を送信しなければならない。しかし、上りデータの信頼性の要求が高いデータの場合、冗長度を確保するためにUCIが送信できるリソースが限られる。
 そこで、情報の優先度に応じてPiggybackするUCIを決める。優先度は、例えば、下りデータの種類、受信タイミング、情報の種類(Ack/Nack、CSI)に応じてきまる。例えば、データの種類での優先度では、URLLCのデータとeMMBのデータの場合は、より低遅延が要求されるURLLCデータを優先にする。また、UCIの情報の種類の場合、例えば、再送の可能性を少なくするためにAck/Nackの情報を優先的に送信する。また、受信タイミングでは、例えば、受信タイミングがはやいものからPiggybackする。なお、受信タイミングから所定の時間を経過すると、gNB10から送信失敗と判定され再送され、再送データを受信した場合は、再送データと受信していたデータとでHARQ処理を行いそれに応じた結果を後で受信したタイミングに応じて送信する。 
 また、UE20の通信部23は、PiggybackされなかったUCIに対して他のリソースで送信するように指示を受けている場合は、指示を受けているリソースで送信していないUCIを送信する(図17のS450)。具体的には、UE20の通信部23は、データの送信に割り当てられたPUSCHとは異なるリソースでUCIをgNB10に送信する(図17のS450)。例えば、UE20は、第2の種類のデータの送信に割り当てられたPUSCHの後のPUSCHでUCIをgNB10に送信する。または、UE20は、第2の種類のデータの送信に割り当てられたPUSCHの後のPUCCHでUCIをgNB10に送信する。
 なお、UCIを他のリソースで送信する場合は、ステップS430で基地局が送信するPDCCHを用いて指示しても良いし、別途、gNB10が割り当てに関するPDCCHを送信しても良い。
 以上の説明により、実施例5に係る無線通信システムでは、端末(UE20)と基地局(gNB10)とを具備する。ここで、UE20は、データを送信するタイミングと制御情報(UCI)を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネルを用いて、UCIの一部または全部をデータと同時にgNB10に送信する。この無線通信システムでは、Piggyback可能な上限値に応じて優先度の高いUCIの情報からPUSCHにPiggybackする。
 このように、実施例5に係る無線通信システムでは、UCIの送信タイミングとデータの送信タイミングとが重なるときに、UCIの情報の優先度に応じてUCIに含まれる一部のUCIをPUSCHにPiggybackする。その結果、PUSCHに占める上りデータの割合が確保される。すなわち、PUSCHに含まれる上りデータの冗長度が不足しない。このため、実施例5に係る無線通信システムでは、高信頼度が要求されるようなURLLC用のデータを送信する場合、URLLC用のデータに割り当てられるリソースが確保され、要求される誤り率を満たすことができる。また、例えば、下りのデータがURLLC用のデータであっても、そのデータに対してのAck/Nackを優先的にPiggybackを行うように制御することもできる。
 [他の実施例]
 実施例における各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
 さらに、各装置で行われる各種処理は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしてもよい。また、各種処理は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしてもよい。
 実施例の基地局10および端末20は、例えば、次のようなハードウェア構成により実現することができる。
 図18は、基地局10のハードウェア構成の一例を示す図である。基地局10は、プロセッサ101と、メモリ102と、RF(Radio Frequency)部103と、ネットワークインターフェース(IF)104とを有している。プロセッサ101の一例としては、CPU、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等が挙げられる。また、メモリ102の一例としては、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。
 そして、実施例の基地局10で行われる各種処理は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサ101で実行することによって実現されてもよい。すなわち、各構成によって実行される各処理に対応するプログラムがメモリ102に記録され、各プログラムがプロセッサ101で実行されてもよい。ここで、各構成とは、制御部13の機能に相当する。また、送信部11、受信部12は、RF部103によって実現される。
 なお、ここでは、実施例の基地局10で行われる各種処理が1つのプロセッサ101によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。
 図19は、端末20のハードウェア構成の一例を示す図である。端末20は、プロセッサ201と、メモリ202と、RF部203とを有している。プロセッサ201の一例としては、CPU、DSP、FPGA等が挙げられる。また、メモリ202の一例としては、SDRAM等のRAM、ROM、フラッシュメモリ等が挙げられる。
 そして、実施例の端末20で行われる各種処理は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサ201で実行することによって実現されてもよい。すなわち、各構成によって実行される各処理に対応するプログラムがメモリ202に記録され、各プログラムがプロセッサ201で実行されてもよい。ここで、各構成とは、制御部23の機能に相当する。また、送信部21、受信部22は、RF部203によって実現される。
 なお、ここでは、実施例の端末20で行われる各種処理が1つのプロセッサ201によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。
 10 基地局
 11 送信部
 12 受信部
 13 通信部
 14 制御部
 20 端末
 21 送信部
 22 受信部
 23 通信部
 24 制御部
101 プロセッサ
102 メモリ
103 RF部
104 ネットワークIF
201 プロセッサ
202 メモリ
203 RF部

Claims (20)

  1.  端末が上りデータを送信するタイミングと上り制御情報を送信するタイミングとが重なるときに、前記上りデータの送信に割り当てられたチャネルを用いて、前記上り制御情報を前記上りデータと同時に基地局に送信することが可能な無線通信システムにおいて、
     前記基地局は、
     前記端末に、前記上りデータの送信に割り当てられるチャネルに前記上り制御情報をのせることが可能なリソースに関する第1の情報を含む第1の信号を送信する第1送信部を有し、前記端末は、
     前記上りデータを送信するタイミングと前記制御情報を送信するタイミングとが重なるときに、前記第1の情報に応じて、前記チャネルに前記上り制御情報の少なくとも一部をのせて前記データと同時に送信する第2送信部とを有することを特徴とする無線通信システム。
  2.  前記端末は、前記上りデータを送信するタイミングと前記上り制御情報を送信するタイミングとが重なるときに前記第1の情報に応じて、前記上り制御情報のなかから一部の情報を前記チャネルのせるように制御する制御部を有することを特徴とする請求項1に記載の無線通信システム。
  3.  前記一部の情報は、前記上りデータの種類に応じて、可変にすることが可能であることを特徴とする請求項2に記載の無線通信システム。
  4.  前記制御部は、前記上りデータの種類に応じたβオフセットを用いて前記リソースを算出することができることを特徴とする請求項2または3に記載の無線通信システム。
  5.  前記一部の情報は、前記上り制御情報における優先度に応じた情報であることを特徴とする請求項2乃至4のうち何れか1つに記載の無線通信システム。
  6.  前記優先度は、受信した下りデータの種類、受信タイミング、前記上り制御信号の種類の少なくとも1つに応じてきまることを特徴とする請求項5に記載の無線通信システム。
  7.  前記制御部は、前記上り制御信号に下りデータに対するAck/Nackの情報が含まれる場合、前記Ack/Nackの情報を前記一部の情報に含めてPiggybackすることを特徴とする請求項2乃至5のうち何れか1つに記載の無線通信システム。
  8.  前記制御部は、前記第2送信部から前記上り制御情報のうち前記一部の情報と異なる他の情報を別の上りリソースで送信するように制御するか又は、前記他の情報を送信しないように制御することを特徴とする請求項2乃至7のうち何れか1つに記載の無線通信システム。
  9.  前記第1送信部は、前記他の情報を送信する別の上りリソースを指定する情報または、前記他の情報を送信しないように制御するための情報を前記第1の信号と異なる第2の信号を用いて送信することを特徴とする請求項8に記載の無線通信システム。
  10.  前記第1の情報は、前記チャネルに前記上り制御情報をPiggybackすることが可能なリソース数、ビット数、または、前記チャネルに対して前記上り制御情報が占めることが可能な占有率の少なくとも1つに関する上限値を示すことが可能な情報であることを特徴とする請求項1乃至9のうち何れか1つに記載の無線通信システム。
  11.  前記上限値は、データの種類に応じて変更することが可能な請求項10に記載の無線通信システム。
  12.  前記第1の情報は、前記チャネルに前記上り制御情報をPiggybackすることが可能なリソース数、ビット数、または、前記チャネルに対して前記上り制御情報が占めることが可能な占有率の少なくとも1つを示す情報であることを特徴とする請求項1乃至9の何れか1つに記載の無線通信システム。
  13.  前記第1送信部は、下り制御信号である前記第1の信号を送信することを特徴とする請求項1乃至12のうち何れか1つに記載の無線通信システム。
  14.  前記第1送信部は、前記下り制御信号の中の特定のフィールドにより、前記リソースに関する情報を送信することを特徴とする請求項13に記載の無線通信システム。
  15.  前記第1送信部は、前記下り制御信号の中の特定のフィールドに含まれるビット毎に前記上り制御信号の1つまたは複数の情報を対応させることを特徴とする請求項13に記載の無線通信システム。
  16.  前記第1送信部は、RRC信号である前記第1の信号を送信することを特徴とする請求項1乃至11のうち何れか1つに記載の無線通信システム。
  17.  前記制御部は、下り制御信号が割り当てられた領域に応じた前記一部の情報を前記チャネルにのせることを特徴とする請求項1乃至16のうちの何れか1つに記載の無線通信システム。
  18.  前記制御部は、第1の下りデータに対する第1の上り制御信号と前記第1の下りデータよりも優先度の高い第2の下りデータに対する第2の上り制御信号の送信タイミングが重なった時に、前記第2の上り制御信号を優先的に前記一部の情報となるように制御することを特徴とする請求項1乃至17のうちの何れか1つに記載の無線通信システム。
  19.  上りデータを送信するタイミングと上り制御情報を送信するタイミングとが重なるときに、前記上りデータの送信に割り当てられたチャネルを用いて、前記上り制御情報を前記上りデータと同時に基地局に送信することが可能な端末において、
      前記上りデータの送信に割り当てられるチャネルに前記上り制御情報をのせることが可能なリソースに関する第1の情報を含む第1の信号を受信する受信部と、
     前記上りデータを送信するタイミングと前記上り制御情報を送信するタイミングとが重なるときに、前記第1の情報に応じて、前記チャネルに前記上り制御情報の少なくとも一部をのせて前記データと同時に送信する送信部と、
    を有することを特徴とする端末。
  20.  上りデータを送信するタイミングと上り制御情報を送信するタイミングとが重なるときに、データの送信に割り当てられたチャネルを用いて、前記上り制御情報を前記上りデータと同時に送信することが可能な端末と無線通信を行なう基地局において、
      前記端末に、前記上りデータの送信に割り当てられるチャネルに前記上り制御情報をのせることが可能なリソースに関する第1の情報を含む第1の信号を送信する送信部と、
     前記端末において、前記上りデータを送信するタイミングと前記上り制御情報を送信するタイミングとが重なるときに、前記第1の情報に応じて、少なくとも一部の前記制御情報をのせた前記チャネルを受信する受信部と、
    を有することを特徴とする基地局。
PCT/JP2018/005356 2018-02-15 2018-02-15 無線通信システム、端末および基地局 WO2019159303A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005356 WO2019159303A1 (ja) 2018-02-15 2018-02-15 無線通信システム、端末および基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005356 WO2019159303A1 (ja) 2018-02-15 2018-02-15 無線通信システム、端末および基地局

Publications (1)

Publication Number Publication Date
WO2019159303A1 true WO2019159303A1 (ja) 2019-08-22

Family

ID=67618602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005356 WO2019159303A1 (ja) 2018-02-15 2018-02-15 無線通信システム、端末および基地局

Country Status (1)

Country Link
WO (1) WO2019159303A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838907B2 (en) * 2020-02-04 2023-12-05 Qualcomm Incorporated Simultaneous feedback information and uplink shared channel transmissions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on UCI feedback for URLLC", 3GPP TSG-RAN WG1#AH R1-1800054, January 2018 (2018-01-01), XP051384557 *
HUAWEI ET AL.: "On UCI multiplexing", 3GPP TSG- RAN WG1#91 RL-1719397, 18 November 2017 (2017-11-18), XP051369306 *
LG ELECTRONICS: "Discussion on sPUSCH design with TTI shortening", 3GPP TSG-RAN WG1#85 R1-164544, 14 May 2016 (2016-05-14), XP051096392 *
ZTE ET AL.: "Simultaneous transmission and reception in sTTI", 3GPP TSG-RAN WG1#86B R1-1609375, 1 October 2016 (2016-10-01), XP051159468 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838907B2 (en) * 2020-02-04 2023-12-05 Qualcomm Incorporated Simultaneous feedback information and uplink shared channel transmissions

Similar Documents

Publication Publication Date Title
AU2021212111B2 (en) Uplink transmission method and corresponding equipment
US11595973B2 (en) Method for processing uplink control information and terminal
US20230337198A1 (en) Harq process management method and apparatus for slot aggregation
KR102616557B1 (ko) 무선 통신 시스템에서 데이터 및 제어 정보 송수신 방법 및 장치
US10355897B2 (en) Method and apparatus for transmission of uplink control information
US20190103943A1 (en) Uplink transmission method and corresponding equipment
US11664845B2 (en) Device system and method for new radio (NR) communication
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
CN103532688B (zh) 一种跨频带载波聚合下的dci传输方法及装置
EP3358877A1 (en) User terminal, wireless base station, and wireless communication method
US12075425B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
US20220248436A1 (en) Method and device for transmitting harq-ack
US11647553B2 (en) Method and apparatus for performing dual connectivity for UEs in wireless communication system
KR101763207B1 (ko) Tdd에서 epdcch에 대한 pucch 자원 배정에서 aro 값들
WO2017194022A1 (zh) 下行控制信息的传输方法、装置及系统
US20210160011A1 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
CN111757294A (zh) 一种重传资源的调度方法及设备
US11811696B2 (en) Wireless communication system, base station, terminal, and method of communication
WO2019159303A1 (ja) 無線通信システム、端末および基地局
CN114390698A (zh) 一种数据传输的方法、装置、介质以及程序产品
US12126565B2 (en) Wireless communication system, base station, terminal, and method of communication
US20220232617A1 (en) Method and apparatus for uplink data transmission skipping in wireless communication system
JP2024116781A (ja) 上りリンク制御情報の効率的な送信のための端末装置、基地局装置、制御方法、及びプログラム
JP2024116780A (ja) 上りリンク制御情報の効率的な送信のための端末装置、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP