WO2019159252A1 - Stress estimation device and stress estimation method using biosignal - Google Patents

Stress estimation device and stress estimation method using biosignal Download PDF

Info

Publication number
WO2019159252A1
WO2019159252A1 PCT/JP2018/005056 JP2018005056W WO2019159252A1 WO 2019159252 A1 WO2019159252 A1 WO 2019159252A1 JP 2018005056 W JP2018005056 W JP 2018005056W WO 2019159252 A1 WO2019159252 A1 WO 2019159252A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
short
term
period
biological signal
Prior art date
Application number
PCT/JP2018/005056
Other languages
French (fr)
Japanese (ja)
Inventor
中島 嘉樹
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019571856A priority Critical patent/JP6849106B2/en
Priority to PCT/JP2018/005056 priority patent/WO2019159252A1/en
Publication of WO2019159252A1 publication Critical patent/WO2019159252A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to a stress estimation apparatus and a stress estimation method using a biological signal.
  • Long-term stress is a stress that accumulates when a person is exposed to various stressors over a long period of time. Long-term stress can lead to mental illness such as depression. Occupational stress is an example of long-term stress. Occupational stress is stress that accumulates especially when workers are exposed to various stressors during work. Depression caused by occupational stress decreases worker productivity. Therefore, early detection and prevention of depression and the like are important. Various long-term stress estimation techniques have been proposed for early detection and prevention of depression and the like.
  • Non-Patent Documents 1, 2, 3, and 4 An example of a long-term stress estimation system is described in Non-Patent Documents 1, 2, 3, and 4.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose a technique for identifying the degree of stress using a feature value obtained by statistically processing a biological signal of a subject over a long period of one month. The feature amount is obtained by statistically processing the biological signal for each action time such as sitting, walking, running, and sleeping. A person with a high score and a person with a low score in a PSSPS (Perceived Stress Scale) questionnaire often used as an index of long-term stress is identified.
  • PSSPS Perceived Stress Scale
  • Non-Patent Document 3 discloses a technique for estimating the happiness level and productivity of a user based on the frequency distribution of the duration of human physical activity.
  • Non-Patent Document 4 includes statistics (average, standard deviation) of behaviors such as walking, conversation, and desk work, and their behavior time (the behavior time itself, the ratio of the behavior time in one day, and the number of behaviors). And median) and the personality and depression indicators.
  • each non-patent document performs statistical processing over the entire period (for example, one month) during which stress is to be estimated when calculating the feature value for stress estimation from the biological signal data. Therefore, a sufficiently high estimation accuracy cannot be obtained.
  • An object of the present invention is to provide a stress estimation device and a stress estimation method capable of estimating long-term stress with high accuracy.
  • the stress estimation device generates a whole-period biological signal by connecting the biological signal data collected from the subject of stress estimation over the whole period in which stress is estimated, A biosignal forming means for generating a plurality of short-term biosignals by connecting them over a plurality of short-terms shorter than the period, and calculating a stress feature quantity from the whole-period biosignal as a full-period feature quantity, A stress feature quantity calculating means for calculating a stress feature quantity from the inter-vivo signal and making it a short-term feature quantity; and a stress score estimating means for estimating a stress score from the whole-period feature quantity and the short-term feature quantity.
  • the biological signal data collected from the subject of the stress estimation is connected over the entire period in which the stress is to be estimated to generate a biological signal for the entire period.
  • Connected over each of a plurality of short periods shorter than the period to generate a plurality of short-term biosignals calculate stress feature values from the whole-period biosignals as full-time feature values, and stress from the short-term biosignals
  • the feature amount is calculated as a short-term feature amount
  • a stress score is estimated from the whole-period feature amount and the short-term feature amount.
  • the stress estimation program generates a whole-period biological signal by connecting the biological signal data collected from the subject of stress estimation to the computer over the whole period in which the stress is to be estimated. Are connected over each of a plurality of short periods shorter than the whole period to generate a plurality of short-term biological signals, and a stress characteristic quantity is calculated from the whole-period biological signal to be a whole-period characteristic quantity.
  • a process of calculating a stress feature quantity from the inter-vivo signal and making it a short-term feature quantity and a process of estimating a stress score from the whole-period feature quantity and the short-term feature quantity are executed.
  • FIG. FIG. 1 is a block diagram showing a first embodiment of a stress estimation apparatus.
  • the stress estimation apparatus is realized by the information processing server 100.
  • the information processing server 100 includes a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, and a stress score estimation unit. 106 and a stress score output unit 107.
  • the biological signal constituting unit 102, the stress feature quantity calculating unit 105, and the stress score estimating unit 106 are, for example, 1 in the information processing server 100 according to a stress estimation program stored in a storage unit (not shown) in the information processing server 100.
  • processors for example, CPU: Central Processing Unit
  • the biological signal storage unit 101, the whole-period biological signal storage unit 103, and the short-term biological signal storage unit 104 can be realized by a storage device (not shown) in the information processing server 100.
  • the storage unit in which the stress estimation program is stored is a non-transitory nonvolatile memory such as a ROM (Read Only Memory), a flash memory, or a hard disk.
  • the storage device realized by the biological signal storage unit 101, the whole-period biological signal storage unit 103, and the short-term biological signal storage unit 104 is, for example, a hard disk, a flash memory, or an SSD (Solid State Drive).
  • the stress estimation apparatus is realized by the information processing server 100, but the constituent elements of the stress estimation apparatus can also be realized by a hardware circuit.
  • the biological signal storage unit 101 stores biological signal data collected from the subject of stress estimation.
  • the biological signal configuration unit 102 uses the biological signal data stored in the biological signal storage unit 101.
  • the biological signal configuration unit 102 connects biological signal data over a predetermined period.
  • the predetermined period includes an entire period for which a stress score is to be calculated and a period shorter than the entire period (short period: for example, one day). For example, when the entire period is one month, the biological signal configuration unit 102 connects the biological signal data for one month to generate a biological signal for the entire period.
  • the short period is one day, the biological signal data of each day from the first day to the last day of January is connected to obtain a short-term biological signal for each day.
  • the numerical sequence PN represented by the expression (1) is a biological signal for one day on the Nth day.
  • the “certain biological signal” may be any one-dimensional signal such as a heartbeat, a pulse wave, a numerical value of skin conductivity, and an acceleration in the X-axis direction.
  • pn represents the nth biological signal data itself.
  • the whole period biological signal (biological signal for one month) Q is expressed by equation (2).
  • M represents the number of days in one month. M is 28, 29, 30, or 31 depending on the situation.
  • the biological signal data stored in the biological signal storage unit 101 is RL which is a set of fragmented pn as follows. Here, E L > S L.
  • the biological signal data on a specific N'th day is R L ' , R L' +1 , R L '+2 .
  • the biological signal PN ′ of the N′th day is generated by sequentially connecting RL ′, RL ′ + 1, and RL ′ + 2.
  • the N 'date of the first data p (N' - 1) and D even when the air-period between the 'first data p SL of' R L is present, in the biological signal storage unit 101, Information indicating the existence of such an empty period is recorded. Even when an empty period exists between the last data on the N'th day and the last data of R L '+2 , information indicating the existence of such an empty period is recorded in the biological signal storage unit 101. Is done.
  • the information of the missing data is recorded together with the data PN ′ for one day on the N′th day.
  • Let the record be NPN ' .
  • the biological signal constituting unit 102 performs a process of cutting RL .
  • the biological signal configuration unit 102 can configure PN ′ and NP N ′ from an appropriate combination of RL .
  • the biological signal constructing unit 102 can construct Q from an appropriate combination of R L.
  • Q the information NQ of the missing data is recorded in the biological signal storage unit 101. In this case, the number of components of Q is less than MD.
  • the process described above is referred to as “concatenation” in this specification.
  • the entire period is one month and the short period is one day.
  • these two periods may have any length.
  • the whole-period biological signal storage unit 103 stores the whole-period biological signal (all-period biological signal) output from the biological signal configuration unit 102.
  • the short-term biological signal construction unit 104 stores a short-term biological signal (short-term biological signal) output from the biological signal construction unit 102.
  • the stress feature quantity calculation unit 105 calculates a stress feature quantity for each of the whole-period biosignal and the short-term biosignal, and outputs the stress feature quantity as a full-period feature quantity and a short-term feature quantity.
  • the stress feature amount as described in Non-Patent Documents 1, 2, 3, and 4, the feature amount statistically processed for each action time such as sitting, walking, running, deskwork, dialogue, and sleep (for example, average) , Variance, median, power spectral density, and components of a histogram of the number of peaks for a certain period of time such as 30 seconds).
  • the frequency distribution of the duration of the activity more than a predetermined threshold value etc. is used suitably.
  • the stress score estimation unit 106 receives the whole-period feature value and the short-term feature value output from the stress feature value calculation unit 105.
  • the stress score estimation unit 106 estimates a stress score from the whole-period feature value and the short-term feature value.
  • the stress score is a score of stress accumulated over a long period of time. For example, it is a score recognized to reflect psychological stress such as the score of a PSS questionnaire.
  • the stress score estimation unit 106 uses a database in which biosignal data acquired from many subjects in advance and the stress score that is teacher data are stored as a set. The machine learning model learned in the above is used.
  • the stress score estimation unit 106 may estimate the PSS score itself as the stress score, but may perform class classification using the stress score or the like. For example, the stress score estimation unit 106 sets two or more classes by setting threshold values for one or more stress scores. Then, the stress score estimation unit 106 classifies the stress score using a threshold value. In this case, the calculated stress score is a number specifying a classification class.
  • the stress score estimation unit 106 outputs the stress score estimation value to the stress score output unit 107.
  • a stress score that reflects the overall tendency of stress and the tendency of finer changes in time at the same time is estimated.
  • the stress experience for the entire period for which stress should be estimated but also information on the frequency of psychologically important stress experiences for each short period can be obtained, so a more accurate stress score can be estimated. is there.
  • the biological signal construction unit 102 acquires time-series biological signal data from the biological signal storage unit 101 (step A1).
  • the biological signal construction unit 102 connects the biological signal data based on the time-series information included in the biological signal data (step A2).
  • the biological signal construction unit 102 determines from the time-series information of the biological signal data the short-term biological signal separation position (for example, 24 hours that is the end of the day when the short period is one day, one week is the short period).
  • the data is read (at 24 o'clock on Sunday, which is the end of one week) (step A3), the data connection is stopped (step A6).
  • the biological signal configuration unit 102 stores the connected biological signal data in the short-term biological signal storage unit 104 as a short-term biological signal (step A8).
  • step A4 when the biosignal forming unit 102 reads the final position of all the stress estimation periods (for example, 24 hours on the 30th or 31st day when the entire period is one month) (step A4), data The connection is stopped (step A7). Then, the biological signal configuration unit 102 stores the connected biological signal data in the whole-period biological signal storage unit 103 as a whole-period biological signal (step A9).
  • the whole-period biological signal and the short-term biological signal stored in the whole-period biological signal storage unit 103 and the short-term biological signal storage unit 104 are input to the stress feature amount calculation unit 105.
  • the stress feature amount calculation unit 105 calculates a stress feature amount for each of the whole-period biological signal and the short-term biological signal. For example, as described in Non-Patent Documents 1, 2, 3, and 4, the stress feature quantity calculation unit 105 statistically processes stresses by action time such as sitting, walking, running, deskwork, dialogue, and sleep.
  • a feature amount (for example, a component of a histogram of the average, variance, median, power spectral density, and peak number for a fixed period such as 30 seconds) is calculated (steps A10 and A11).
  • the stress feature amount calculation unit 105 may calculate a frequency distribution or the like of the duration of an activity exceeding a certain threshold as the stress feature amount.
  • the stress score estimation unit 106 estimates the stress score using the calculated all-period feature value and short-term feature value. In order to accurately estimate the stress score, the stress score estimation unit 106 estimates the stress score using the machine learning model as described above (step A12). The stress score output unit 107 outputs the estimated score.
  • the stress score is estimated using both the feature amount based on the whole-period biological signal (long-term feature amount) and the feature amount based on the short-term biological signal (short-term feature amount). That is, not only the stress experience of the whole period for which stress should be estimated, but also information on the frequency of stress experience for each short period, which is psychologically important. Therefore, long-term stress is estimated with higher accuracy.
  • FIG. 3 is a block diagram showing a second embodiment of the stress estimation apparatus.
  • a short-term feature amount difference calculation unit 108 is added to the stress estimation apparatus of the first embodiment shown in FIG.
  • the stress estimation apparatus is realized by the information processing server 100 is taken as an example.
  • the configurations and functions of the unit 105, the stress score estimation unit 106, and the stress score output unit 107 are the same as the configurations and functions of the corresponding elements shown in FIG.
  • the short-term feature value difference calculation unit 108 performs difference calculation on a part of the feature value based on the short-term biological signal calculated by the stress feature value calculation unit 105.
  • the difference calculation is effective in the following cases.
  • the short-term feature amount difference calculation unit 108 calculates the difference between Friday at the weekend and Monday at the beginning of the week.
  • the short-term feature amount difference calculation unit 108 outputs the difference to the stress score estimation unit 106 as a feature amount.
  • the short-term feature quantity difference calculation unit 108 calculates, for example, a short-term feature quantity difference before and after the biosignal data non-acquisition period, and the calculation result is added to the stress score estimation unit 106 as an additional short-term feature quantity. Output.
  • the short-term feature value difference calculation unit 108 also outputs the short-term feature value input from the stress feature value calculation unit 105 to the stress score estimation unit 106.
  • the stress feature quantity calculation unit 105 may be configured to output the short-term feature quantity directly to the stress score estimation unit 106.
  • steps A1 to A12 shown in FIG. 4 is the same as the processing shown in FIG.
  • step B1 the short-term feature amount difference calculation unit 108 performs the difference calculation as described above on the feature amount based on the short-term biological signal calculated by the stress feature amount calculation unit 105.
  • the stress score estimation unit 106 also considers the difference input from the short-term feature amount difference calculation unit 108 when estimating the stress score. It is considered that the difference reflects the degree of reduction or increase in stress during the period when the biological signal data is not acquired. Based on the difference, the stress score estimation unit 106 can estimate, for example, the frequency related to recovery from the stress experience. The stress score estimation unit 106 can perform more accurate stress estimation by adding a difference to the stress score.
  • information on the difference regarding the feature quantity based on the short-term biosignal can be obtained. Provides information on frequency of recovery from stress experiences. That information is also used to achieve higher estimation accuracy.
  • FIG. 5 is a block diagram showing a third embodiment of the stress estimation apparatus.
  • a feature amount calculation unit 109 is added to the stress estimation apparatus of the second embodiment shown in FIG. Note that, in the third embodiment, a case where the stress estimation apparatus is realized by the information processing server 100 is taken as an example.
  • the feature quantity calculation unit 109 calculates all or part of the short-term feature quantity calculated by the stress feature quantity calculation unit 105 and all or part of the short-term feature quantity difference calculated by the short-term feature quantity difference calculation unit 108.
  • feature quantity (feature value) calculation or feature value detection is executed.
  • the feature value include a maximum value, a minimum value, a second maximum value, a second minimum value, a first quartile, a third quartile, and a standard deviation.
  • the stress score estimator 106 not only calculates the difference between the short-term feature value and the short-term feature value, but also all or a part of the short-term feature value or all or a part of the difference value of the short-term feature value (maximum Value, minimum value, second maximum value, second minimum value, first quartile, third quartile, standard deviation, etc.) Information about experience and frequency can be obtained. Note that the stress score estimation unit 106 may consider the feature amount of both the whole or part of the short-term feature amount and the whole or part of the difference of the short-term feature amount.
  • the feature quantity calculation unit 109 targets the short-term feature quantity calculated by the stress feature quantity calculation unit 105 and the short-term feature quantity difference calculated by the short-term feature quantity difference calculation unit 108.
  • the feature value is calculated for all or a part of each.
  • the short-term feature value of the user A is “20, 1, 19, 2, 18, 3, 17, 4”
  • the short-term feature value of the user B is “11, 10, 11, 10, 11, Suppose that it was 10, 11, 10 ". From these figures, it can be said that the user A frequently experienced a short-term stress experience. Moreover, it can be said that the user B has few strong stress experiences as the user A experienced. Therefore, in this example, the score of the PSSA questionnaire is expected to be higher for user A.
  • the entire period is divided into eight periods to make it a short period, but conditions such as how many short periods the entire period is divided can be arbitrarily set according to the situation.
  • the maximum value, minimum value, second maximum value, and second minimum value of the short-term feature amount are used to estimate how much stress has been experienced during the entire period in which long-term stress should be estimated.
  • the maximum value of the user A is “20”, and the second maximum value is “19”.
  • the maximum value of user B is “11”, and the second maximum value is also “11”.
  • the reason why not only the maximum value but also the minimum value is used is that each feature quantity includes not only those proportional to the stress experience but also those that are inversely proportional or inversely proportional. .
  • the 1st quartile and the 3rd quartile help to estimate the frequency of strong stress experiences during the entire period in which long-term stress should be estimated.
  • the first quartile of user A is “19”
  • the first quartile of user B is “11”.
  • the reason why not only the first quartile but also the third quartile is used as the feature amount is the same as the case of the maximum value and the minimum value. This is because it includes not only those that do, but also those that are inversely proportional or inversely proportional.
  • Standard deviation (variation of stress experience) helps to estimate the difference between weak and strong stress experiences over the entire period in which long-term stress should be estimated.
  • the standard deviation of user A is 8.64
  • the standard deviation of user B is 0.53.
  • the feature amount calculation is performed on the difference between the short-term feature amount and the short-term feature amount.
  • the stress score estimation unit 106 also takes into account the value (feature value) calculated by the feature amount calculation unit 109 when estimating the stress score. That is, feature values (maximum value, minimum value, second maximum value, second minimum value, first fourteenth) regarding all or part of the short-term feature value, or all or part of the difference of the short-term feature value. Quantile, third quartile, standard deviation, etc.) are also considered.
  • the stress score estimation unit 106 can perform more accurate stress estimation by taking them into consideration.
  • Example 1 Next, the first embodiment will be described with reference to FIGS.
  • the first example is an example corresponding to the first embodiment. In the following description, reference is also made to specific conditions in an experiment actually performed in order to confirm the effect of the first embodiment.
  • FIG. 7 is an explanatory diagram showing an example of the overall configuration of the stress estimation apparatus of the first embodiment.
  • the analysis server 400 as an information processing server is configured to be able to communicate with the biological signal sensors 420A and 420B and the information display devices 430A and 430B via the communication units 410a, 410b, 410c, and 410d. Has been.
  • the biological signal sensors 420A and 420B acquire a biological signal of a user who is a worker during working hours.
  • Biosignal sensors 420A and 420B are wristband type sensors as described in Non-Patent Documents 1 and 2, as an example. However, a sensor such as a badge type or an employee card type as described in Non-Patent Documents 3 and 4 can also be suitably used as the biological signal sensors 420A and 420B.
  • the E4 sensor acquires skin conductivity, triaxial acceleration, pulse wave, and skin surface temperature data at sampling rates of 4 Hz, 32 Hz, 64 Hz, and 1 Hz ⁇ ⁇ ⁇ ⁇ , respectively.
  • the acquired data is stored in the built-in memory of the biological signal sensors 420A and 420B.
  • the communication means 410a, 410b, 410c transmit the biological signal data acquired by the biological signal sensors 420A, 420B to the analysis server 400.
  • the E4 sensor is connected to a personal computer with an attached USB (Universal Serial Bus) cable as the communication means 410a and 410b.
  • the personal computer uploads the biological signal data to Empatica Cloud via a wireless LAN (Local Area Network) as the communication means 410c and the Internet as the communication means 410d by the installed dedicated software.
  • the analysis server 400 downloads biosignal data from Empatica Cloud.
  • FIG. 8 is a block diagram illustrating a configuration example of the analysis server.
  • the analysis server 400 includes a communication interface 111, a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, and a stress score estimation unit 106.
  • the stress score output unit 107 and the stress score storage unit 110 exist.
  • the biological signal constituting unit 102, the stress feature amount calculating unit 105, and the stress score estimating unit 106 are, for example, a processor (for example, a CPU) in the analysis server 400 according to a program stored in a storage unit (not shown) in the analysis server 400. ) Can be realized by executing the process.
  • the biological signal storage unit 101, the whole-period biological signal storage unit 103, the short-term biological signal storage unit 104, and the stress score storage unit 110 can be realized by a storage device (not shown) in the analysis server 400.
  • the biological signal storage unit 101 stores biological signal data received by the communication interface 111.
  • the biological signal configuration unit 102 generates a biological signal for the entire period using the biological signal data stored in the biological signal storage unit 101.
  • the biological signal configuration unit 102 also generates a short-term biological signal.
  • the whole-period biological signal and the short-term biological signal are stored in the whole-period biological signal storage unit 103 and the short-term biological signal storage unit 104.
  • the stress feature quantity calculation unit 105 calculates the stress feature quantity from the whole period biosignal for one month.
  • the stress feature amount calculation unit 105 calculates a stress feature amount from a short-term biosignal for each week.
  • the stress feature amount as described above, the feature amount statistically processed for each action time such as sitting, walking, running, deskwork, dialogue and sleep (for example, average, variance, median, power spectral density, and 30 A component of a histogram of the number of peaks in a certain period such as seconds) or a frequency distribution of the duration of an activity exceeding a certain threshold value is preferably used.
  • Non-Patent Document 1 the average, variance, median value, power spectral density, and a certain period such as 30 seconds disclosed in Non-Patent Document 1, such as sweating, body movement, skin surface temperature, etc. All the components of the histogram of the number of peaks were calculated. Moreover, about these, calculation was performed about the three activity states of a sitting position, a walk, and driving
  • the heart rate that Empatica E4 can acquire was not used.
  • the power spectral density, the histogram element of the number of peaks in a certain period, and the like depend on the data acquisition time. Therefore, they are normalized by dividing them by the actual data acquisition time (pure data acquisition time excluding all of the time when data could not be acquired properly due to a mounting error or the time when it was not mounted).
  • the stress score estimation unit 106 estimates long-term stress using the inputted long-term feature value for one month and short-term feature value for each week.
  • PSS was estimated by regression analysis as long-term stress.
  • the score calculated from the PSS questionnaire conducted at the end of the experiment period (one month) is used as teacher data for the user, and the linear regression model is learned using the feature amount calculated by the stress feature amount calculation unit 105.
  • the model was used to estimate PSS.
  • the Leave-One-person-Out-Cross-Validation method was used. That is, in order to estimate the PSS score of one user, all the other users are used as training data, and a learned model using the PSS score and the feature amount of those users is used.
  • a model including the above performance index is referred to as a “first embodiment model”.
  • FIG. 9 shows the results when the correlation coefficient is maximum for each of the first embodiment model and the reference model. In the example shown in FIG. 9, the first example model exceeds the reference model for all performance indexes.
  • the stress score estimated by the stress score estimation unit 106 is recorded in the stress score storage unit 110 via the stress score output unit 107.
  • the stress score can be supplied to a personal computer via the communication interface 111, the Internet, and a wireless LAN according to a user request.
  • the stress score is displayed on the information display devices 430A and 430B.
  • the functions of the information display devices 430A and 430B and the functions of the biological signal sensors 420A and 420B are realized by different components, but these functions may be realized by one terminal. .
  • FIG. 10 is a block diagram illustrating an overall configuration example of the stress estimation apparatus according to the second embodiment.
  • a stress estimation device is constructed in the wearable terminal 500.
  • the biological signal sensor 420 corresponding to the biological signal sensors 420A and 420B shown in FIG. 7 is built in the wearable terminal 500.
  • an information display device 430 corresponding to the information display devices 430A and 430B shown in FIG.
  • Wearable terminal 500 further incorporates analysis device 510.
  • the analysis device 510 includes a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, a stress score estimation unit 106, and a stress score output unit. 107 and a stress score storage unit 110.
  • the second embodiment there is no process for transmitting and receiving signals via components corresponding to the communication means 410a, 410b, 410c, 410d. Therefore, the function of the stress estimation device is realized even in a situation where communication means cannot be obtained.
  • the operation of the stress estimation apparatus other than the process of transmitting and receiving signals is the same as that in the first embodiment.
  • a wristwatch type terminal is illustrated as the wearable terminal 500, but the wearable terminal 500 is not limited to a wristwatch type terminal, and a spectacle type terminal or the like can also be suitably used.
  • long-term stress can be estimated with high accuracy.
  • psychologically important short-term stress is calculated not only by the entire period in which long-term stress is to be estimated, but also by calculating the characteristic amount for stress estimation in units of time shorter than that. This is because it is possible to incorporate information on the presence and frequency of experience into the estimation of long-term stress.
  • FIG. 11 is a block diagram showing the main part of the stress estimation apparatus.
  • the stress estimation device 10 generates biosignals for all periods by connecting biosignal data collected from a stress estimation target person over all periods for which stress is to be estimated.
  • the biological signal constituting unit 12 (in the embodiment, realized by the biological signal constituting unit 102) is configured to connect the signal data over a plurality of short periods shorter than the entire period to generate a plurality of short term biological signals. )
  • a stress feature quantity calculating unit 15 in the embodiment, calculating a stress feature quantity from the whole period biosignal to obtain a whole period feature quantity and calculating a stress feature quantity from the short period biosignal to obtain a short period feature quantity.
  • a stress score estimation unit 16 (in the embodiment, stress score estimation) that estimates a stress score from the whole-period feature quantity and the short-term feature quantity. It is realized in parts 106.) And a.
  • FIG. 12 is a block diagram showing a main part of another aspect of the stress estimation apparatus.
  • the stress estimation apparatus 10 illustrated in FIG. 12 further includes a full-period biosignal storage unit 13 (in the embodiment, realized by the full-period biosignal storage unit 103) that stores the generated full-period biosignal.
  • Short-term biological signal storage means 14 (in the embodiment, realized by the short-term biological signal storage unit 104) for storing the short-term biological signal, and the stress feature amount calculating means 15 includes the whole-period biological signal.
  • the whole-period feature value is calculated using the whole-period biological signal stored in the storage unit, and the short-term feature value is calculated using the short-term biological signal stored in the short-term biological signal storage unit.
  • FIG. 13 is a block diagram showing a main part of another aspect of the stress estimation apparatus.
  • the stress estimation apparatus 10 shown in FIG. 13 further calculates the difference between the short-term feature values before and after the biological signal data non-acquisition period, and outputs the calculation result to the stress score estimation means 16 as an additional short-term feature value.
  • Short-term feature amount supplementing means 18 (implemented by the short-term feature amount difference calculation unit 108 in the embodiment) is provided.
  • FIG. 14 is a block diagram showing a main part of another aspect of the stress estimation apparatus.
  • the stress estimation apparatus 10 shown in FIG. 14 further calculates a feature value from the short-term feature value calculated from the short-term biological signal or the short-term feature value output by the short-term feature-value supplementing unit 18, Short-term feature value calculation means 19 (implemented by the feature value calculation unit 109 in the embodiment) that outputs to the stress score estimation means 16 as an additional short-term feature value is provided.
  • Biosignal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a biosignal for the entire period, and the biosignal data is obtained from the entire period.
  • a plurality of short-term biological signals connected to each other over a plurality of short short-term biological signals,
  • a stress feature quantity calculating means for calculating a stress feature quantity from the whole-period biosignal to obtain a full-period feature quantity, and calculating a stress feature quantity from the short-term biosignal to make a short-term feature quantity;
  • a stress estimation apparatus comprising: a stress score estimation unit that estimates a stress score from the whole period feature quantity and the short period feature quantity.
  • Short-term feature quantity supplementing means for calculating a difference between the short-term feature quantities before and after the biosignal data non-acquisition period and outputting the calculation result to the stress score estimating means as an additional short-term feature quantity
  • the stress estimation apparatus according to Supplementary Note 1 or Supplementary Note 2.
  • a feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value output by the short-term feature value supplementing means, and the calculation result is added to the additional short-term feature.
  • the stress estimation apparatus according to supplementary note 3, further comprising short-term feature value calculation means for outputting to the stress score estimation means as a quantity.
  • the biological signal data is a part or all of signals of skin electrical conductivity, skin surface temperature, pulse wave, heartbeat, voice, and acceleration.
  • the stress estimation device according to any one of Supplementary notes 1 to 4 .
  • Biosignal data collected from the subject of stress estimation is linked over the entire period for which stress is to be estimated to generate a biosignal for the entire period, and the biosignal data is obtained from the entire period.
  • a stress feature value is calculated from the whole-period biosignal to obtain a full-time feature value
  • a stress feature value is calculated from the short-term biosignal to a short-term feature value
  • a stress estimation method for estimating a stress score from the whole-period feature value and the short-term feature value are connected over each of a plurality of short periods to generate a plurality of short-term biological signals.
  • the generated whole-period biological signal is stored in the whole-period biological signal storage means
  • the generated short-term biosignal is stored in a short-term biosignal storage means
  • Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means The stress estimation method according to appendix 6, wherein the short-term feature amount is calculated.
  • An additional short-term feature value is calculated for calculating a stress score by calculating a feature value from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference.
  • the stress estimation method according to appendix 8 which is used as an inter-feature value.
  • the biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period.
  • the stress estimation program for performing the process which estimates a stress score from the said whole period feature-value and the said short-term feature-value.
  • Processing for storing the generated all-period biosignal in the all-period biosignal storage means A process of storing the generated short-term biosignal in the short-term biosignal storage means; Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means.
  • the stress estimation program according to appendix 10 wherein the processing for calculating the short-term feature amount is executed.
  • a feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference, and the calculated result is used as an additional short-term feature value used for stress score estimation;
  • a non-temporary recording medium storing a stress estimation program, and when the stress estimation program is executed by a processor, The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. Connect over each of the short periods to generate multiple short-term biosignals, A stress feature value is calculated from the whole-period biosignal to obtain a full-time feature value, a stress feature value is calculated from the short-term biosignal to a short-term feature value, A stress score is estimated from the all-period feature value and the short-term feature value.
  • the generated whole period biological signal is stored in the whole period biological signal storage means
  • the generated short-term biosignal is stored in a short-term biosignal storage means
  • a feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference, and the calculated result is used as an additional short-term feature value used for stress score estimation;

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • Developmental Disabilities (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Physics & Mathematics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Educational Technology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

This stress estimation device is provided with: a biosignal composing means 12 which connects, over the entire period in which stress is to be estimated, biosignal data collected from a stress estimation subject to generate an entire period biosignal, and which connects, over each of a plurality of short periods shorter than the entire period, the biosignal data to generate a plurality of short period biosignals; a stress feature amount calculation means 15 which calculates a stress feature amount from the entire period biosignal to take the calculated stress feature amount as an entire period feature amount, and calculates stress feature amounts from the plurality of short period biosignals to take the calculated stress feature amounts as short period feature amounts; and a stress score estimation means 16 which estimates a stress score from the entire period feature amount and the short period feature amounts.

Description

生体信号を用いるストレス推定装置およびストレス推定方法Stress estimation apparatus and stress estimation method using biological signal
 本発明は、生体信号を用いるストレス推定装置およびストレス推定方法に関する。 The present invention relates to a stress estimation apparatus and a stress estimation method using a biological signal.
 長期ストレス(chronic stress)は、人が長期間に亘って様々なストレッサー(stresser)に曝されることによって蓄積されるストレスである。長期ストレスは、鬱病等の精神疾患をもたらす可能性がある。職業性ストレス(occupational stress )は、長期ストレスの一例である。職業性ストレスは、特に勤務者が就業中に様々なストレッサーに曝されることによって蓄積されるストレスである。職業性ストレスがもたらす鬱病等は、労働者の生産性を低下させる。よって、鬱病等の早期発見および防止は重要である。鬱病等の早期発見および防止のために、様々な長期ストレス推定技術が提案されている。 Long-term stress is a stress that accumulates when a person is exposed to various stressors over a long period of time. Long-term stress can lead to mental illness such as depression. Occupational stress is an example of long-term stress. Occupational stress is stress that accumulates especially when workers are exposed to various stressors during work. Depression caused by occupational stress decreases worker productivity. Therefore, early detection and prevention of depression and the like are important. Various long-term stress estimation techniques have been proposed for early detection and prevention of depression and the like.
 長期ストレス推定システムの一例が、非特許文献1,2,3,4に記載されている。例えば、非特許文献1および非特許文献2には、1ヶ月という長期に亘る被験者の生体信号が統計的に処理された特徴量を用いて、ストレスの程度を識別する技術が開示されている。特徴量は、生体信号を、座位、歩行、走行、および睡眠等の行動時間別に統計的に処理することによって得られる。そして、長期ストレスの指標としてよく用いられるPSS (Perceived Stress Scale)アンケートのスコアが高い人と低い人とが識別されている。 An example of a long-term stress estimation system is described in Non-Patent Documents 1, 2, 3, and 4. For example, Non-Patent Document 1 and Non-Patent Document 2 disclose a technique for identifying the degree of stress using a feature value obtained by statistically processing a biological signal of a subject over a long period of one month. The feature amount is obtained by statistically processing the biological signal for each action time such as sitting, walking, running, and sleeping. A person with a high score and a person with a low score in a PSSPS (Perceived Stress Scale) questionnaire often used as an index of long-term stress is identified.
 非特許文献3には、人の身体活動の継続時間の頻度分布によって、ユーザの幸福度および生産性を推定する技術が開示されている。非特許文献4には、歩行、会話、およびデスクワーク等の行動と、それらの行動時間(行動時間そのもの、1日における当該行動時間の割合、および行動の数)の統計量(平均、標準偏差、および中央値)と、性格や鬱の指標との間の相関分析が示されている。 Non-Patent Document 3 discloses a technique for estimating the happiness level and productivity of a user based on the frequency distribution of the duration of human physical activity. Non-Patent Document 4 includes statistics (average, standard deviation) of behaviors such as walking, conversation, and desk work, and their behavior time (the behavior time itself, the ratio of the behavior time in one day, and the number of behaviors). And median) and the personality and depression indicators.
 各非特許文献に記載された技術は、生体信号データからストレス推定のための特徴量を算出する際、ストレスが推定されるべき期間全体(例えば、1ヶ月)に亘って統計的処理を行う。そのために、充分高い推定精度が得られない。 The technique described in each non-patent document performs statistical processing over the entire period (for example, one month) during which stress is to be estimated when calculating the feature value for stress estimation from the biological signal data. Therefore, a sufficiently high estimation accuracy cannot be obtained.
 その理由は、心理学的に長期ストレスを反映すると認められているPSS アンケートや職業性ストレス簡易調査票のストレス反応の項目等では、ストレスが推定されるべき期間(1ヶ月)の全体的なストレス経験は問われず、その期間中の短期間のストレス経験の有無やその頻度が問われているためである。このように、長期ストレスを推定する処理において、ストレスが推定されるべき期間よりも細かい粒度の時間単位の生体信号情報は、充分に利用されていない。その結果、PSS アンケートや職業性ストレス簡易調査票等の長期ストレス指標におけるスコアを高精度に推定することが難しい。 The reason for this is that in the PSS や questionnaire, which is psychologically recognized to reflect long-term stress, and the stress response items in the Occupational Stress Simple Questionnaire, the overall stress during the period in which stress should be estimated (1 month) This is because there is no question of experience, and whether or not there is a short-term stress experience during that period and the frequency of the experience. As described above, in the process of estimating the long-term stress, the biological signal information in the time unit having a finer granularity than the period in which the stress is to be estimated is not sufficiently utilized. As a result, it is difficult to accurately estimate the scores of long-term stress indicators such as PSS questionnaires and simple occupational stress questionnaires.
 本発明は、高い精度で長期ストレスを推定できるストレス推定装置およびストレス推定方法を提供することを目的とする。 An object of the present invention is to provide a stress estimation device and a stress estimation method capable of estimating long-term stress with high accuracy.
 本発明によるストレス推定装置は、ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、生体信号データを、全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する生体信号構成手段と、全期間生体信号からストレス特徴量を算出して全期間特徴量とし、短期間生体信号からストレス特徴量を算出して短期間特徴量とするストレス特徴量算出手段と、全期間特徴量と短期間特徴量とからストレススコアを推定するストレススコア推定手段とを備える。 The stress estimation device according to the present invention generates a whole-period biological signal by connecting the biological signal data collected from the subject of stress estimation over the whole period in which stress is estimated, A biosignal forming means for generating a plurality of short-term biosignals by connecting them over a plurality of short-terms shorter than the period, and calculating a stress feature quantity from the whole-period biosignal as a full-period feature quantity, A stress feature quantity calculating means for calculating a stress feature quantity from the inter-vivo signal and making it a short-term feature quantity; and a stress score estimating means for estimating a stress score from the whole-period feature quantity and the short-term feature quantity.
 本発明によるストレス推定方法は、ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、生体信号データを、全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成し、全期間生体信号からストレス特徴量を算出して全期間特徴量とし、短期間生体信号からストレス特徴量を算出して短期間特徴量とし、全期間特徴量と短期間特徴量とからストレススコアを推定する。 In the stress estimation method according to the present invention, the biological signal data collected from the subject of the stress estimation is connected over the entire period in which the stress is to be estimated to generate a biological signal for the entire period. Connected over each of a plurality of short periods shorter than the period to generate a plurality of short-term biosignals, calculate stress feature values from the whole-period biosignals as full-time feature values, and stress from the short-term biosignals The feature amount is calculated as a short-term feature amount, and a stress score is estimated from the whole-period feature amount and the short-term feature amount.
 本発明によるストレス推定プログラムは、コンピュータに、ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、生体信号データを、全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する処理と、全期間生体信号からストレス特徴量を算出して全期間特徴量とし、短期間生体信号からストレス特徴量を算出して短期間特徴量とする処理と、全期間特徴量と短期間特徴量とからストレススコアを推定する処理とを実行させる。 The stress estimation program according to the present invention generates a whole-period biological signal by connecting the biological signal data collected from the subject of stress estimation to the computer over the whole period in which the stress is to be estimated. Are connected over each of a plurality of short periods shorter than the whole period to generate a plurality of short-term biological signals, and a stress characteristic quantity is calculated from the whole-period biological signal to be a whole-period characteristic quantity. A process of calculating a stress feature quantity from the inter-vivo signal and making it a short-term feature quantity and a process of estimating a stress score from the whole-period feature quantity and the short-term feature quantity are executed.
 本発明によれば、長期ストレスを高精度に推定できる。 According to the present invention, long-term stress can be estimated with high accuracy.
ストレス推定装置の第1の実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of a stress estimation apparatus. 第1の実施形態のストレス推定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the stress estimation apparatus of 1st Embodiment. ストレス推定装置の第2の実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of a stress estimation apparatus. 第2の実施形態のストレス推定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the stress estimation apparatus of 2nd Embodiment. ストレス推定装置の第3の実施形態を示すブロック図である。It is a block diagram which shows 3rd Embodiment of a stress estimation apparatus. 第3の実施形態のストレス推定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the stress estimation apparatus of 3rd Embodiment. 第1の実施例のストレス推定装置の全体的な構成例を示す説明図である。It is explanatory drawing which shows the example of a whole structure of the stress estimation apparatus of a 1st Example. 分析サーバの構成例を示すブロック図である。It is a block diagram which shows the structural example of an analysis server. 第1実施例モデルおよび参照モデルの性能指標を示す説明図である。It is explanatory drawing which shows the performance parameter | index of a 1st Example model and a reference model. 第2の実施例のストレス推定装置の全体的な構成例を示すブロック図である。It is a block diagram which shows the example of a whole structure of the stress estimation apparatus of 2nd Example. ストレス推定装置の主要部を示すブロック図である。It is a block diagram which shows the principal part of a stress estimation apparatus. ストレス推定装置の他の態様の主要部を示すブロック図である。It is a block diagram which shows the principal part of the other aspect of a stress estimation apparatus. ストレス推定装置のさらに他の態様の主要部を示すブロック図である。It is a block diagram which shows the principal part of the further another aspect of a stress estimation apparatus. ストレス推定装置の別の態様の主要部を示すブロック図である。It is a block diagram which shows the principal part of another aspect of a stress estimation apparatus.
 以下、本発明の実施形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施形態1.
 図1は、ストレス推定装置の第1の実施形態を示すブロック図である。第1の実施形態では、ストレス推定装置は、情報処理サーバ100で実現されている。情報処理サーバ100は、生体信号記憶部101と、生体信号構成部102と、全期間生体信号記憶部103と、短期間生体信号記憶部104と、ストレス特徴量算出部105と、ストレススコア推定部106と、ストレススコア出力部107とを含む。
Embodiment 1. FIG.
FIG. 1 is a block diagram showing a first embodiment of a stress estimation apparatus. In the first embodiment, the stress estimation apparatus is realized by the information processing server 100. The information processing server 100 includes a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, and a stress score estimation unit. 106 and a stress score output unit 107.
 なお、生体信号構成部102、ストレス特徴量算出部105およびストレススコア推定部106は、例えば情報処理サーバ100における記憶部(図示せず)に格納されたストレス推定プログラムに従って、情報処理サーバ100における1つまたは複数のプロセッサ(例えば、CPU:Central Processing Unit )が処理を実行することによって実現可能である。生体信号記憶部101、全期間生体信号記憶部103および短期間生体信号記憶部104は、情報処理サーバ100における記憶装置(図示せず)で実現可能である。 Note that the biological signal constituting unit 102, the stress feature quantity calculating unit 105, and the stress score estimating unit 106 are, for example, 1 in the information processing server 100 according to a stress estimation program stored in a storage unit (not shown) in the information processing server 100. One or a plurality of processors (for example, CPU: Central Processing Unit) can execute the processing. The biological signal storage unit 101, the whole-period biological signal storage unit 103, and the short-term biological signal storage unit 104 can be realized by a storage device (not shown) in the information processing server 100.
 また、ストレス推定プログラムが格納される記憶部は、例えば、ROM(Read Only Memory)、フラッシュメモリ、ハードディスクなどの非一時的な不揮発性メモリである。また、生体信号記憶部101、全期間生体信号記憶部103および短期間生体信号記憶部104実現する記憶装置は、一例として、ハードディスク、フラッシュメモリ、またはSSD(Solid State Drive )である。 The storage unit in which the stress estimation program is stored is a non-transitory nonvolatile memory such as a ROM (Read Only Memory), a flash memory, or a hard disk. The storage device realized by the biological signal storage unit 101, the whole-period biological signal storage unit 103, and the short-term biological signal storage unit 104 is, for example, a hard disk, a flash memory, or an SSD (Solid State Drive).
 また、本実施形態では、ストレス推定装置は情報処理サーバ100で実現されるが、ストレス推定装置の構成要素をハードウェア回路で実現することも可能である。 In this embodiment, the stress estimation apparatus is realized by the information processing server 100, but the constituent elements of the stress estimation apparatus can also be realized by a hardware circuit.
 生体信号記憶部101は、ストレス推定の対象者から収集された生体信号データを記憶する。生体信号構成部102は、生体信号記憶部101が記憶している生体信号データを用いる。生体信号構成部102は、所定期間に亘る生体信号データを連結する。本実施形態では、所定期間として、ストレススコアが算出されるべき全期間と、全期間よりも短い期間(短期間:例えば、1日)とがある。例えば、全期間が1ケ月である場合には、生体信号構成部102は、1ケ月間の生体信号データを連結して全期間生体信号とする。また、短期間が1日である場合には、1月の第1日から末日までのそれぞれの日の生体信号データを連結し、各々の日に関する短期間生体信号とする。 The biological signal storage unit 101 stores biological signal data collected from the subject of stress estimation. The biological signal configuration unit 102 uses the biological signal data stored in the biological signal storage unit 101. The biological signal configuration unit 102 connects biological signal data over a predetermined period. In the present embodiment, the predetermined period includes an entire period for which a stress score is to be calculated and a period shorter than the entire period (short period: for example, one day). For example, when the entire period is one month, the biological signal configuration unit 102 connects the biological signal data for one month to generate a biological signal for the entire period. When the short period is one day, the biological signal data of each day from the first day to the last day of January is connected to obtain a short-term biological signal for each day.
 以下、一例として、全期間を1ケ月、短期間を1日とする。(1)式で示される数列PNを、第N日の1日分のある生体信号とする。「ある生体信号」は、心拍、脈波、皮膚導電性の数値、X軸方向の加速度等、1次元の信号であれば、いずれでもよい。数列において、pnはn番目の生体信号データそのものを表す。D は、1日分の生体信号の数である。例えば、サンプリングレートをSR[Hz]とすると、うるう秒が挿入されるような例外的な場合を除き、D =24*3600*SRである。 Hereinafter, as an example, the whole period is 1 month and the short period is 1 day. The numerical sequence PN represented by the expression (1) is a biological signal for one day on the Nth day. The “certain biological signal” may be any one-dimensional signal such as a heartbeat, a pulse wave, a numerical value of skin conductivity, and an acceleration in the X-axis direction. In the numerical sequence, pn represents the nth biological signal data itself. D is the number of biological signals for one day. For example, assuming that the sampling rate is SR [Hz], D = 24 * 3600 * SR except in exceptional cases where a leap second is inserted.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 全期間生体信号(1ケ月分の生体信号)Q は、(2)式で示される。 The whole period biological signal (biological signal for one month) Q is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 (2)式において、M は、1ケ月の日数を示す。M は、状況に応じて、28,29,30,31のいずれかの数になる。生体信号記憶部101に記憶された生体信号データは、下記のような断片化されたpnの集合であるRLである。ここで、EL>SL である。 In the formula (2), M represents the number of days in one month. M is 28, 29, 30, or 31 depending on the situation. The biological signal data stored in the biological signal storage unit 101 is RL which is a set of fragmented pn as follows. Here, E L > S L.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 例えば、特定の第N'日の生体信号データが、RL' ,RL' +1,RL' +2であるとする。このとき、RL' ,RL' +1,RL' +2を順に連結することによって、第N'日の生体信号PN' が生成される。 For example, it is assumed that the biological signal data on a specific N'th day is R L ' , R L' +1 , R L '+2 . At this time, the biological signal PN ′ of the N′th day is generated by sequentially connecting RL ′, RL ′ + 1, and RL ′ + 2.
 各RLが収集された時点の間に空期間(RLの収集が途絶えた期間)が存在することがある。その場合には、生体信号記憶部101に、空期間の存在を示す情報も記録される。この場合、PN' の構成要素の数はD よりも少ない。 There may be an empty period (period in which the collection of R L ceases) between the time each R L is collected. In that case, information indicating the existence of an empty period is also recorded in the biological signal storage unit 101. In this case, the number of components of P N ′ is less than D.
 また、第N'日の最初のデータp(N' - 1)D と、RL' の最初のデータpSL'との間に空期間が存在する場合にも、生体信号記憶部101に、そのような空期間の存在を示す情報が記録される。第N'日の最後のデータとRL' +2の最後のデータとの間に空期間が存在する場合にも、生体信号記憶部101に、そのような空期間の存在を示す情報が記録される。 Further, the N 'date of the first data p (N' - 1) and D, even when the air-period between the 'first data p SL of' R L is present, in the biological signal storage unit 101, Information indicating the existence of such an empty period is recorded. Even when an empty period exists between the last data on the N'th day and the last data of R L '+2 , information indicating the existence of such an empty period is recorded in the biological signal storage unit 101. Is done.
 このようにして、第N'日の1日分のデータPN' とともに、データが抜けている部分の情報も記録される。その記録をNPN'とする。なお、1日の区切り位置がRLの途中に存在する場合には、生体信号構成部102は、RLを切断する処理を行う。 In this way, the information of the missing data is recorded together with the data PN ′ for one day on the N′th day. Let the record be NPN ' . When the day break position is in the middle of RL , the biological signal constituting unit 102 performs a process of cutting RL .
 以上のようにして、生体信号構成部102は、適切なRLの組み合わせからPN' およびNPN'を構成することができる。同様にして、生体信号構成部102は、適切なRLの組み合わせからQ を構成することも可能である。Q についても、データが抜けている部分の情報NQが、生体信号記憶部101に記録される。この場合、Q の構成要素の数は、MDよりも少ない。 As described above, the biological signal configuration unit 102 can configure PN ′ and NP N ′ from an appropriate combination of RL . Similarly, the biological signal constructing unit 102 can construct Q from an appropriate combination of R L. As for Q, the information NQ of the missing data is recorded in the biological signal storage unit 101. In this case, the number of components of Q is less than MD.
 以上に説明されたプロセスを、本明細書では、「連結」と呼ぶ。なお、本実施形態では、全期間を1ヶ月、短期間を1日とするが、短期間の2倍が全期間以下であれば、これらの2つの期間はどのような長さでもよい。 The process described above is referred to as “concatenation” in this specification. In this embodiment, the entire period is one month and the short period is one day. However, as long as twice the short period is equal to or less than the entire period, these two periods may have any length.
 全期間生体信号記憶部103は、生体信号構成部102が出力した全期間の生体信号(全期間生体信号)を記憶する。短期間生体信号構成部104は、生体信号構成部102が出力した短期間の生体信号(短期間生体信号)を記憶する。 The whole-period biological signal storage unit 103 stores the whole-period biological signal (all-period biological signal) output from the biological signal configuration unit 102. The short-term biological signal construction unit 104 stores a short-term biological signal (short-term biological signal) output from the biological signal construction unit 102.
 ストレス特徴量算出部105は、全期間生体信号と短期間生体信号とのそれぞれについてストレス特徴量を算出し、全期間特徴量および短期間特徴量として出力する。ストレス特徴量として、非特許文献1,2,3,4に挙げられているように、座位、歩行、走行、デスクワーク、対話および睡眠等の行動時間別に統計的に処理した特徴量(例えば、平均、分散、中央値、パワースペクトル密度、および、30秒間等の一定期間のピーク数のヒストグラムの構成要素等)が好適に用いられる。また、所定のしきい値以上の活動の継続時間の頻度分布等も、好適に用いられる。 The stress feature quantity calculation unit 105 calculates a stress feature quantity for each of the whole-period biosignal and the short-term biosignal, and outputs the stress feature quantity as a full-period feature quantity and a short-term feature quantity. As the stress feature amount, as described in Non-Patent Documents 1, 2, 3, and 4, the feature amount statistically processed for each action time such as sitting, walking, running, deskwork, dialogue, and sleep (for example, average) , Variance, median, power spectral density, and components of a histogram of the number of peaks for a certain period of time such as 30 seconds). Moreover, the frequency distribution of the duration of the activity more than a predetermined threshold value etc. is used suitably.
 ストレススコア推定部106には、ストレス特徴量算出部105から出力された全期間特徴量および短期間特徴量が入力される。ストレススコア推定部106は、全期間特徴量および短期間特徴量からストレススコアを推定する。ストレススコアは、長期間に亘って蓄積されたストレスのスコアである。例えば、PSS アンケートのスコア等の心理学的にストレスを反映することが認められているスコアである。ストレススコアを正確に推定するために、ストレススコア推定部106は、予め多くの被験者から取得した生体信号データと、教師データであるストレススコアとがセットになって記憶されているデータベースを用いて充分に学習された機械学習モデル等を用いる。 The stress score estimation unit 106 receives the whole-period feature value and the short-term feature value output from the stress feature value calculation unit 105. The stress score estimation unit 106 estimates a stress score from the whole-period feature value and the short-term feature value. The stress score is a score of stress accumulated over a long period of time. For example, it is a score recognized to reflect psychological stress such as the score of a PSS questionnaire. In order to accurately estimate the stress score, the stress score estimation unit 106 uses a database in which biosignal data acquired from many subjects in advance and the stress score that is teacher data are stored as a set. The machine learning model learned in the above is used.
 なお、ストレススコア推定部106は、ストレススコアとして、PSS スコアそのものを推定してもよいが、ストレススコア等を使用してクラス分類を行ってもよい。例えば、ストレススコア推定部106は、1つまたは複数のストレススコアに関するしきい値を設定することによって2以上の数のクラスを設定する。そして、ストレススコア推定部106は、しきい値を使用して、ストレススコアのクラス分類を行う。この場合、算出されるストレススコアは分類クラスを指定する番号等である。 Note that the stress score estimation unit 106 may estimate the PSS score itself as the stress score, but may perform class classification using the stress score or the like. For example, the stress score estimation unit 106 sets two or more classes by setting threshold values for one or more stress scores. Then, the stress score estimation unit 106 classifies the stress score using a threshold value. In this case, the calculated stress score is a number specifying a classification class.
 ストレススコア推定部106は、ストレススコアの推定値を、ストレススコア出力部107に出力する。 The stress score estimation unit 106 outputs the stress score estimation value to the stress score output unit 107.
 本実施形態では、上記のような機能が実現されることによって、ストレスの全体の傾向とストレスのより細かい時間変化の傾向とが同時に反映されたストレススコアが推定される。すなわち、ストレスが推定されるべき全期間のストレス経験だけではなく、心理学的に重要な短期間毎のストレス経験の頻度の情報も得られるので、より正確なストレススコアを推定することが可能である。 In the present embodiment, by realizing the function as described above, a stress score that reflects the overall tendency of stress and the tendency of finer changes in time at the same time is estimated. In other words, not only the stress experience for the entire period for which stress should be estimated, but also information on the frequency of psychologically important stress experiences for each short period can be obtained, so a more accurate stress score can be estimated. is there.
 次に、図2のフローチャートを参照して本実施形態の動作を説明する。 Next, the operation of this embodiment will be described with reference to the flowchart of FIG.
 まず、生体信号構成部102は、生体信号記憶部101から、時系列生体信号データを取得する(ステップA1)。生体信号構成部102は、生体信号データに含まれる時系列情報に基づいて生体信号データを連結する(ステップA2)。 First, the biological signal construction unit 102 acquires time-series biological signal data from the biological signal storage unit 101 (step A1). The biological signal construction unit 102 connects the biological signal data based on the time-series information included in the biological signal data (step A2).
 さらに、生体信号構成部102は、生体信号データの時系列情報から短期間生体信号の区切り位置(例えば、短期間が1日であるときには1日の終わりである24時、短期間が1週であるときには1週間の終わりである日曜日の24 時)を読み取ったとき(ステップA3)、データ連結を停止する(ステップA6)。そして、生体信号構成部102は、連結した生体信号データを、短期間生体信号として短期間生体信号記憶部104に保存する(ステップA8)。 Furthermore, the biological signal construction unit 102 determines from the time-series information of the biological signal data the short-term biological signal separation position (for example, 24 hours that is the end of the day when the short period is one day, one week is the short period). When the data is read (at 24 o'clock on Sunday, which is the end of one week) (step A3), the data connection is stopped (step A6). Then, the biological signal configuration unit 102 stores the connected biological signal data in the short-term biological signal storage unit 104 as a short-term biological signal (step A8).
 また、生体信号構成部102が、ストレス推定期間の全期間の最終位置(例えば、全期間が1ヶ月であるときには第30日または第31日の24時)を読み取ったとき(ステップA4)、データ連結を停止する(ステップA7)。そして、生体信号構成部102は、連結した生体信号データを、全期間生体信号として全期間生体信号記憶部103に保存する(ステップA9)。 In addition, when the biosignal forming unit 102 reads the final position of all the stress estimation periods (for example, 24 hours on the 30th or 31st day when the entire period is one month) (step A4), data The connection is stopped (step A7). Then, the biological signal configuration unit 102 stores the connected biological signal data in the whole-period biological signal storage unit 103 as a whole-period biological signal (step A9).
 全期間生体信号記憶部103および短期間生体信号記憶部104が記憶する全期間生体信号および短期間生体信号は、ストレス特徴量算出部105に入力される。ストレス特徴量算出部105は、全期間生体信号と短期間生体信号とのそれぞれについてストレス特徴量を算出する。ストレス特徴量算出部105は、例えば、非特許文献1,2,3,4に挙げられているように、座位、歩行、走行、デスクワーク、対話および睡眠等の行動時間別に統計的に処理したストレス特徴量(例えば、平均、分散、中央値、パワースペクトル密度、および、30秒間等の一定期間のピーク数のヒストグラムの構成要素等)を算出する(ステップA10,A11)。なお、ストレス特徴量算出部105は、一定のしきい値以上の活動の継続時間の頻度分布等を、ストレス特徴量として算出してもよい。 The whole-period biological signal and the short-term biological signal stored in the whole-period biological signal storage unit 103 and the short-term biological signal storage unit 104 are input to the stress feature amount calculation unit 105. The stress feature amount calculation unit 105 calculates a stress feature amount for each of the whole-period biological signal and the short-term biological signal. For example, as described in Non-Patent Documents 1, 2, 3, and 4, the stress feature quantity calculation unit 105 statistically processes stresses by action time such as sitting, walking, running, deskwork, dialogue, and sleep. A feature amount (for example, a component of a histogram of the average, variance, median, power spectral density, and peak number for a fixed period such as 30 seconds) is calculated (steps A10 and A11). Note that the stress feature amount calculation unit 105 may calculate a frequency distribution or the like of the duration of an activity exceeding a certain threshold as the stress feature amount.
 最後に、ストレススコア推定部106は、上述したように、算出された全期間特徴量と短期間特徴量とを用いて、ストレススコアを推定する。ストレススコアを正確に推定するために、ストレススコア推定部106は、上述したような機械学習モデル等を用いてストレススコアを推定する(ステップA12)。ストレススコア出力部107は、推定されたスコアを出力する。 Finally, as described above, the stress score estimation unit 106 estimates the stress score using the calculated all-period feature value and short-term feature value. In order to accurately estimate the stress score, the stress score estimation unit 106 estimates the stress score using the machine learning model as described above (step A12). The stress score output unit 107 outputs the estimated score.
 本実施形態の効果を説明する。 The effect of this embodiment will be described.
 本実施形態では、全期間生体信号に基づく特徴量(長期間特徴量)と短期間生体信号に基づく特徴量(短期間特徴量)とをともに用いてストレススコアが推定される。すなわち、ストレスが推定されるべき全期間のストレス経験だけではなく、心理学的に重要な短期間毎のストレス経験の頻度の情報も得られる。よって、長期ストレスがより高精度に推定される。 In the present embodiment, the stress score is estimated using both the feature amount based on the whole-period biological signal (long-term feature amount) and the feature amount based on the short-term biological signal (short-term feature amount). That is, not only the stress experience of the whole period for which stress should be estimated, but also information on the frequency of stress experience for each short period, which is psychologically important. Therefore, long-term stress is estimated with higher accuracy.
実施形態2.
 次に、本発明の第2の実施形態を図面を参照して詳細に説明する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.
 図3は、ストレス推定装置の第2の実施形態を示すブロック図である。第2の実施形態のストレス推定装置には、図1に示された第1の実施形態のストレス推定装置に対して、短期間特徴量差分計算部108が付加されている。なお、第2の実施形態でも、ストレス推定装置が情報処理サーバ100で実現される場合を例にする。 FIG. 3 is a block diagram showing a second embodiment of the stress estimation apparatus. In the stress estimation apparatus of the second embodiment, a short-term feature amount difference calculation unit 108 is added to the stress estimation apparatus of the first embodiment shown in FIG. In the second embodiment, a case where the stress estimation apparatus is realized by the information processing server 100 is taken as an example.
 図2における短期間特徴量差分計算部108以外の構成要素、すなわち、生体信号記憶部101、生体信号構成部102、全期間生体信号記憶部103、短期間生体信号記憶部104、ストレス特徴量算出部105、ストレススコア推定部106、およびストレススコア出力部107の構成および機能は、図1に示された対応する要素の構成および機能と同じである。 Components other than the short-term feature amount difference calculation unit 108 in FIG. 2, that is, the biological signal storage unit 101, the biological signal configuration unit 102, the whole-period biological signal storage unit 103, the short-term biological signal storage unit 104, and the stress feature amount calculation The configurations and functions of the unit 105, the stress score estimation unit 106, and the stress score output unit 107 are the same as the configurations and functions of the corresponding elements shown in FIG.
 短期間特徴量差分計算部108は、ストレス特徴量算出部105が算出した短期間生体信号に基づく特徴量の一部を対象として差分計算を実行する。差分計算は、以下のような場合に効果的である。 The short-term feature value difference calculation unit 108 performs difference calculation on a part of the feature value based on the short-term biological signal calculated by the stress feature value calculation unit 105. The difference calculation is effective in the following cases.
 例えば、ユーザが勤務者であって、勤務先企業の制度として長期ストレス推定を実施している場合、勤務日にしか生体信号が取得されないことがある。そのような場合には、ストレス蓄積が緩和される期間として重要であると推察される週末のストレス蓄積の状況を生体信号から取得できない。そこで、短期間特徴量差分計算部108は、週末の金曜日と週明けの月曜日との差分を算出する。短期間特徴量差分計算部108は、差分も特徴量としてストレススコア推定部106に出力する。 For example, when a user is a worker and long-term stress estimation is performed as a system of a company at work, a biological signal may be acquired only on the working day. In such a case, the stress accumulation situation at the weekend, which is presumed to be important as a period during which stress accumulation is alleviated, cannot be obtained from the biological signal. Therefore, the short-term feature amount difference calculation unit 108 calculates the difference between Friday at the weekend and Monday at the beginning of the week. The short-term feature amount difference calculation unit 108 outputs the difference to the stress score estimation unit 106 as a feature amount.
 すなわち、短期間特徴量差分計算部108は、例えば、生体信号データ未取得期間の前後の短期間特徴量の差分を計算し、計算結果を、追加の短期間特徴量としてストレススコア推定部106に出力する。 That is, the short-term feature quantity difference calculation unit 108 calculates, for example, a short-term feature quantity difference before and after the biosignal data non-acquisition period, and the calculation result is added to the stress score estimation unit 106 as an additional short-term feature quantity. Output.
 なお、短期間特徴量差分計算部108は、ストレス特徴量算出部105から入力した短期間特徴量もストレススコア推定部106に出力する。しかし、ストレス特徴量算出部105が、短期間特徴量を直接ストレススコア推定部106に出力するように構成されてもよい。 The short-term feature value difference calculation unit 108 also outputs the short-term feature value input from the stress feature value calculation unit 105 to the stress score estimation unit 106. However, the stress feature quantity calculation unit 105 may be configured to output the short-term feature quantity directly to the stress score estimation unit 106.
 次に、図4のフローチャートを参照して本実施形態の動作を説明する。 Next, the operation of this embodiment will be described with reference to the flowchart of FIG.
 図4に示すステップA1~A12の処理は、図2に示された処理と同じである。 The processing in steps A1 to A12 shown in FIG. 4 is the same as the processing shown in FIG.
 ステップB1において、短期間特徴量差分計算部108は、ストレス特徴量算出部105が算出した短期間生体信号に基づく特徴量に対して、上述したような差分計算を実行する。 In step B1, the short-term feature amount difference calculation unit 108 performs the difference calculation as described above on the feature amount based on the short-term biological signal calculated by the stress feature amount calculation unit 105.
 本実施形態では、ストレススコア推定部106は、ストレススコアの推定に際して、短期間特徴量差分計算部108から入力される差分も考慮する。差分には、生体信号データが取得されない期間におけるストレスの低減の程度または増加の程度が反映されていると考えられる。ストレススコア推定部106は、差分に基づいて、例えばストレス経験からの回復に関する頻度を推定できる。ストレススコア推定部106は、ストレススコアに差分を加味することによって、より的確なストレス推定を行うことができる。 In this embodiment, the stress score estimation unit 106 also considers the difference input from the short-term feature amount difference calculation unit 108 when estimating the stress score. It is considered that the difference reflects the degree of reduction or increase in stress during the period when the biological signal data is not acquired. Based on the difference, the stress score estimation unit 106 can estimate, for example, the frequency related to recovery from the stress experience. The stress score estimation unit 106 can perform more accurate stress estimation by adding a difference to the stress score.
 本実施形態では、全期間生体信号に基づく特徴量、短期間生体信号に基づく特徴量に加えて、短期間生体信号に基づく特徴量に関する差分の情報が得られるので、例えば、ユーザの短期間におけるストレス経験からの回復に関する頻度の情報が得られる。その情報も使用して、より高い推定精度が達成される。 In this embodiment, in addition to the feature quantity based on the whole-period biosignal and the feature quantity based on the short-term biosignal, information on the difference regarding the feature quantity based on the short-term biosignal can be obtained. Provides information on frequency of recovery from stress experiences. That information is also used to achieve higher estimation accuracy.
実施形態3.
 次に、本発明の第3の実施形態を図面を参照して説明する。
Embodiment 3. FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings.
 図5は、ストレス推定装置の第3の実施形態を示すブロック図である。第3の実施形態のストレス推定装置には、図3に示された第2の実施形態のストレス推定装置に対して、特徴量計算部109が付加されている。なお、第3の実施形態でも、ストレス推定装置が情報処理サーバ100で実現される場合を例にする。 FIG. 5 is a block diagram showing a third embodiment of the stress estimation apparatus. In the stress estimation apparatus of the third embodiment, a feature amount calculation unit 109 is added to the stress estimation apparatus of the second embodiment shown in FIG. Note that, in the third embodiment, a case where the stress estimation apparatus is realized by the information processing server 100 is taken as an example.
 図5における特徴量計算部109以外の構成要素、すなわち、生体信号記憶部101、生体信号構成部102、全期間生体信号記憶部103、短期間生体信号記憶部104、ストレス特徴量算出部105、ストレススコア推定部106、ストレススコア出力部107、および短期間特徴量差分計算部108は、図3に示された要素と同様に構成される。 Components other than the feature amount calculation unit 109 in FIG. 5, that is, the biological signal storage unit 101, the biological signal configuration unit 102, the whole-period biological signal storage unit 103, the short-term biological signal storage unit 104, the stress feature amount calculation unit 105, The stress score estimation unit 106, the stress score output unit 107, and the short-term feature amount difference calculation unit 108 are configured in the same manner as the elements shown in FIG.
 特徴量計算部109は、ストレス特徴量算出部105が算出した短期間特徴量の全部または一部、および短期間特徴量差分計算部108が算出した短期間特徴量の差分の全部または一部を対象として、特徴量(特徴値)の計算または特徴値の検出を実行する。特徴値として、例えば、最大値、最小値、第2の最大値、第2の最小値、第1四分位、第3四分位、および標準偏差等が挙げられる。 The feature quantity calculation unit 109 calculates all or part of the short-term feature quantity calculated by the stress feature quantity calculation unit 105 and all or part of the short-term feature quantity difference calculated by the short-term feature quantity difference calculation unit 108. As an object, feature quantity (feature value) calculation or feature value detection is executed. Examples of the feature value include a maximum value, a minimum value, a second maximum value, a second minimum value, a first quartile, a third quartile, and a standard deviation.
 ストレススコア推定部106は、短期間特徴量および短期間特徴量の差分だけではなく、短期間特徴量の全部もしくは一部、または、短期間特徴量の差分の全部もしくは一部の特徴値(最大値、最小値、第2の最大値、第2の最小値、第1四分位、第3四分位、および標準偏差等)を考慮することによって、より明確に心理学的に重要なストレス経験およびその頻度に関する情報を得ることができる。なお、ストレススコア推定部106は、短期間特徴量の全部または一部と、短期間特徴量の差分の全部または一部との双方の特徴量を考慮してもよい。 The stress score estimator 106 not only calculates the difference between the short-term feature value and the short-term feature value, but also all or a part of the short-term feature value or all or a part of the difference value of the short-term feature value (maximum Value, minimum value, second maximum value, second minimum value, first quartile, third quartile, standard deviation, etc.) Information about experience and frequency can be obtained. Note that the stress score estimation unit 106 may consider the feature amount of both the whole or part of the short-term feature amount and the whole or part of the difference of the short-term feature amount.
 次に、図6のフローチャートを参照して本実施形態の動作を説明する。 Next, the operation of this embodiment will be described with reference to the flowchart of FIG.
 図6におけるステップA1~A12,B1の処理は、図4に示された処理と同じである。 6 is the same as the process shown in FIG. 4 in steps A1 to A12 and B1.
 ステップC1,C2において、特徴量計算部109は、ストレス特徴量算出部105が算出した短期間特徴量と、短期間特徴量差分計算部108が算出した短期間特徴量の差分とを対象として、それぞれの全部または一部を対象として特徴値の計算を実行する。 In steps C <b> 1 and C <b> 2, the feature quantity calculation unit 109 targets the short-term feature quantity calculated by the stress feature quantity calculation unit 105 and the short-term feature quantity difference calculated by the short-term feature quantity difference calculation unit 108. The feature value is calculated for all or a part of each.
 特徴値を計算する意義を説明する。特徴量(特徴値)が、あるストレス経験の強さに比例する場合を例にする。長期ストレスが推定されるべき全期間では、ユーザAとユーザBとで特徴量が同一であるとする。また、各々の短期間が、長期ストレスが推定されるべき全期間の(1/8)である場合を例にする。 Explain the significance of calculating feature values. A case where the feature amount (feature value) is proportional to the intensity of a certain stress experience is taken as an example. Assume that the user A and the user B have the same feature amount in the entire period in which long-term stress is to be estimated. Moreover, the case where each short period is (1/8) of the whole period for which long-term stress should be estimated is taken as an example.
 一例として、ユーザAの短期間特徴量が「20、1、19、2、18、3、17、4」であり、ユーザBの短期間特徴量が「11、10、11、10,11、10、11、10」であったとする。これらの数値から、短期間の強いストレス経験が頻繁に起こったのはユーザAであるといえる。また、ユーザBは、ユーザAが経験したほどの強いストレス経験は少ないといえる。よって、この例では、PSS アンケートのスコアは、ユーザAの方が高くなることが予想される。なお、ここでは一例として全期間が8分割されて短期間とされるが、全期間をいくつの短期間に分割するか等の条件は状況に応じて任意に設定できる。 As an example, the short-term feature value of the user A is “20, 1, 19, 2, 18, 3, 17, 4”, and the short-term feature value of the user B is “11, 10, 11, 10, 11, Suppose that it was 10, 11, 10 ". From these figures, it can be said that the user A frequently experienced a short-term stress experience. Moreover, it can be said that the user B has few strong stress experiences as the user A experienced. Therefore, in this example, the score of the PSSA questionnaire is expected to be higher for user A. Here, as an example, the entire period is divided into eight periods to make it a short period, but conditions such as how many short periods the entire period is divided can be arbitrarily set according to the situation.
 短期間特徴量の最大値、最小値、第2の最大値、および第2の最小値は、長期ストレスが推定されるべき全期間の中で、どの程度の強いストレス経験があったかを推定することに役立つ。上記のユーザAとユーザBとの例では、ユーザAの最大値は「20」、第2の最大値は「19」である。ユーザBの最大値は「11」であり、第2の最大値も「11」である。なお、最大値だけでなく最小値も使用される理由は、個々の特徴量の中には、ストレス経験に比例するものだけでなく、反比例や逆比例するもの等が含まれているためである。 The maximum value, minimum value, second maximum value, and second minimum value of the short-term feature amount are used to estimate how much stress has been experienced during the entire period in which long-term stress should be estimated. To help. In the example of the user A and the user B, the maximum value of the user A is “20”, and the second maximum value is “19”. The maximum value of user B is “11”, and the second maximum value is also “11”. The reason why not only the maximum value but also the minimum value is used is that each feature quantity includes not only those proportional to the stress experience but also those that are inversely proportional or inversely proportional. .
 第1四分位および第3四分位は、長期ストレスが推定されるべき全期間の中で、強いストレス経験の頻度を推定することに役立つ。上記のユーザAとユーザBとの例では、ユーザAの第1四分位は「19」であり、ユーザBの第1四分位は「11」である。なお、第1四分位だけでなく第3四分位も特徴量として使用される理由は、最大値および最小値の場合と同じように、個々の特徴量の中には、ストレス経験に比例するものだけでなく、反比例や逆比例するもの等が含まれているためである。 The 1st quartile and the 3rd quartile help to estimate the frequency of strong stress experiences during the entire period in which long-term stress should be estimated. In the above example of user A and user B, the first quartile of user A is “19”, and the first quartile of user B is “11”. The reason why not only the first quartile but also the third quartile is used as the feature amount is the same as the case of the maximum value and the minimum value. This is because it includes not only those that do, but also those that are inversely proportional or inversely proportional.
 標準偏差(ストレス経験のばらつき)は、長期ストレスが推定されるべき全期間の中で、弱いストレス経験と強いストレス経験との差を推定することに役立つ。全期間特徴量が同じでも、弱いストレス経験と強いストレス経験との間で大きな差があるということは、頻繁に比較的強いストレス経験が存在したということを意味する。例えば、ユーザAとユーザBとの例では、ユーザAの標準偏差は8.64であり、ユーザBの標準偏差は0.53である。 Standard deviation (variation of stress experience) helps to estimate the difference between weak and strong stress experiences over the entire period in which long-term stress should be estimated. The fact that there is a large difference between a weak stress experience and a strong stress experience, even though the whole-period feature amount is the same, means that a relatively strong stress experience frequently existed. For example, in the example of user A and user B, the standard deviation of user A is 8.64, and the standard deviation of user B is 0.53.
 さらに、ユーザAとユーザBとの短期間特徴量について、それぞれ隣り合う2つの短期間特徴量のペア4つを対象として差分計算が実行されると、ユーザAについて「19、17、15、13」、ユーザBについて「1、1、1、1」である。これらについて、最大値、第2最大値、第1四分位、および標準偏差等を計算した場合、いずれも、ユーザAの方が高くなる。 Further, when the difference calculation is performed on the four short-term feature values adjacent to each other for the short-term feature values of the user A and the user B, for the user A, “19, 17, 15, 13 ”,“ 1, 1, 1, 1 ”for user B. In these cases, when the maximum value, the second maximum value, the first quartile, the standard deviation, and the like are calculated, the user A is higher in all cases.
 本実施形態では、短期間特徴量および短期間特徴量の差分を対象として特徴量の計算が実行される。全期間特徴量、短期間特徴量、および短期間特徴量の差分の情報とともに、短期間特徴量と短期間特徴量の差分とに関する特徴値も使用することによって、より明確に心理学的に重要な指標を得ることができる。 In the present embodiment, the feature amount calculation is performed on the difference between the short-term feature amount and the short-term feature amount. By using feature values for short-term feature quantities and short-term feature quantities along with information on all-period feature quantities, short-term feature quantities, and short-term feature quantity differences, it becomes more clearly psychologically important. Can be obtained.
 具体的には、ストレススコア推定部106は、ストレススコアの推定に際して特徴量計算部109が計算した結果の値(特徴値)も考慮する。つまり、短期間特徴量の全部または一部、または、短期間特徴量の差分の全部または一部に関する特徴値(最大値、最小値、第2の最大値、第2の最小値、第1四分位、第3四分位、および標準偏差等)も考慮する。ストレススコア推定部106は、それらも考慮することによって、より的確なストレス推定を行うことができる。 Specifically, the stress score estimation unit 106 also takes into account the value (feature value) calculated by the feature amount calculation unit 109 when estimating the stress score. That is, feature values (maximum value, minimum value, second maximum value, second minimum value, first fourteenth) regarding all or part of the short-term feature value, or all or part of the difference of the short-term feature value. Quantile, third quartile, standard deviation, etc.) are also considered. The stress score estimation unit 106 can perform more accurate stress estimation by taking them into consideration.
実施例1.
 次に、図7および図8を参照して、第1の実施例を説明する。第1の実施例は、第1の実施形態に対応する実施例である。以下の説明では、第1の実施形態の効果を確認するために実際に行った実験における具体的な条件にも言及される。
Example 1.
Next, the first embodiment will be described with reference to FIGS. The first example is an example corresponding to the first embodiment. In the following description, reference is also made to specific conditions in an experiment actually performed in order to confirm the effect of the first embodiment.
 図7は、第1の実施例のストレス推定装置の全体的な構成例を示す説明図である。図7に示す例では、情報処理サーバとしての分析サーバ400は、通信手段410a,410b,410c,410dを介して、生体信号センサ420A,420Bおよび情報表示装置430A,430Bと通信可能であるよう構成されている。 FIG. 7 is an explanatory diagram showing an example of the overall configuration of the stress estimation apparatus of the first embodiment. In the example shown in FIG. 7, the analysis server 400 as an information processing server is configured to be able to communicate with the biological signal sensors 420A and 420B and the information display devices 430A and 430B via the communication units 410a, 410b, 410c, and 410d. Has been.
 生体信号センサ420A,420Bは、就業者であるユーザの生体信号を、就業時間に取得する。ユーザの生体信号として、非特許文献1,2,3,4に挙げられているような、ユーザの発汗を反映する皮膚表面電気活動、ユーザの体動を反映する3軸加速度、ユーザの体温(皮膚表面温)脈波、心拍、および音声等が挙げられる。 The biological signal sensors 420A and 420B acquire a biological signal of a user who is a worker during working hours. Non-patent documents 1, 2, 3, and 4 as skin signals of the user, the skin surface electrical activity that reflects the user's perspiration, the triaxial acceleration that reflects the user's body movement, the user's body temperature ( Skin surface temperature) pulse wave, heartbeat, voice and the like.
 生体信号センサ420A,420Bは、一例として、非特許文献1,2に記載されているようなリストバンドタイプのセンサである。しかし、非特許文献3,4に記載されているようなバッジタイプまたは社員証タイプ等のセンサも、生体信号センサ420A,420Bとして好適に使用可能である。 Biosignal sensors 420A and 420B are wristband type sensors as described in Non-Patent Documents 1 and 2, as an example. However, a sensor such as a badge type or an employee card type as described in Non-Patent Documents 3 and 4 can also be suitably used as the biological signal sensors 420A and 420B.
 実際の実験では、Empatica社の E4 センサを用いた。E4 センサは、皮膚導電性、3軸加速度、脈波、および皮膚表面温度の各データを、それぞれ、4Hz、32Hz、64Hz、1Hz のサンプリングレートで取得する。取得されたデータは、生体信号センサ420A,420Bの内蔵メモリに保存される。 In actual experiments, Empatica's E4 sensor was used. The E4 sensor acquires skin conductivity, triaxial acceleration, pulse wave, and skin surface temperature data at sampling rates of 4 Hz, 32 Hz, 64 Hz, and 1 Hz そ れ ぞ れ, respectively. The acquired data is stored in the built-in memory of the biological signal sensors 420A and 420B.
 通信手段410a,410b,410cは、生体信号センサ420A,420Bが取得した生体信号データを分析サーバ400に送信する。 The communication means 410a, 410b, 410c transmit the biological signal data acquired by the biological signal sensors 420A, 420B to the analysis server 400.
 実際の実験では、E4センサは、通信手段410a,410bとしての付属のUSB (Universal Serial Bus)ケーブルでパーソナルコンピュータに接続される。パーソナルコンピュータは、インストールされた専用ソフトウエアによって、通信手段410cとしての無線LAN(Local Area Network)および通信手段410dとしてのインターネット、を介して生体信号データをEmpatica Cloudにアップロードする。分析サーバ400は、Empatica Cloudから生体信号データをダウンロードする。 In an actual experiment, the E4 sensor is connected to a personal computer with an attached USB (Universal Serial Bus) cable as the communication means 410a and 410b. The personal computer uploads the biological signal data to Empatica Cloud via a wireless LAN (Local Area Network) as the communication means 410c and the Internet as the communication means 410d by the installed dedicated software. The analysis server 400 downloads biosignal data from Empatica Cloud.
 図8は、分析サーバの構成例を示すブロック図である。分析サーバ400には、通信インターフェース111、生体信号記憶部101、生体信号構成部102、全期間生体信号記憶部103、短期間生体信号記憶部104、ストレス特徴量算出部105、ストレススコア推定部106、ストレススコア出力部107、およびストレススコア記憶部110が存在する。 FIG. 8 is a block diagram illustrating a configuration example of the analysis server. The analysis server 400 includes a communication interface 111, a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, and a stress score estimation unit 106. The stress score output unit 107 and the stress score storage unit 110 exist.
 なお、生体信号構成部102、ストレス特徴量算出部105およびストレススコア推定部106は、例えば分析サーバ400における記憶部(図示せず)に格納されたプログラムに従って、分析サーバ400におけるプロセッサ(例えば、CPU)が処理を実行することによって実現可能である。生体信号記憶部101、全期間生体信号記憶部103、短期間生体信号記憶部104およびストレススコア記憶部110は、分析サーバ400における記憶装置(図示せず)で実現可能である。 Note that the biological signal constituting unit 102, the stress feature amount calculating unit 105, and the stress score estimating unit 106 are, for example, a processor (for example, a CPU) in the analysis server 400 according to a program stored in a storage unit (not shown) in the analysis server 400. ) Can be realized by executing the process. The biological signal storage unit 101, the whole-period biological signal storage unit 103, the short-term biological signal storage unit 104, and the stress score storage unit 110 can be realized by a storage device (not shown) in the analysis server 400.
 生体信号記憶部101は、通信インターフェース111で受信された生体信号データを記憶する。生体信号構成部102は、生体信号記憶部101が記憶している生体信号データを用いて、全期間生体信号を生成する。また、生体信号構成部102は、短期間生体信号も生成する。全期間生体信号および短期間生体信号は、全期間生体信号記憶部103および短期間生体信号記憶部104に記憶される。 The biological signal storage unit 101 stores biological signal data received by the communication interface 111. The biological signal configuration unit 102 generates a biological signal for the entire period using the biological signal data stored in the biological signal storage unit 101. In addition, the biological signal configuration unit 102 also generates a short-term biological signal. The whole-period biological signal and the short-term biological signal are stored in the whole-period biological signal storage unit 103 and the short-term biological signal storage unit 104.
 実際の実験では、全期間を1ヶ月、短期間を1週間とした。 In the actual experiment, the whole period was set to 1 month and the short period was set to 1 week.
 ストレス特徴量算出部105は、1ケ月間の全期間生体信号からストレス特徴量を算出する。また、ストレス特徴量算出部105は、1週間毎の短期間生体信号からストレス特徴量を算出する。ストレス特徴量として、上述したような、座位、歩行、走行、デスクワーク、対話および睡眠等の行動時間別に統計的に処理した特徴量(例えば、平均、分散、中央値、パワースペクトル密度、および、30秒間等の一定期間のピーク数のヒストグラムの構成要素等)、または、一定のしきい値以上の活動の継続時間の頻度分布等が好適に用いられる。 The stress feature quantity calculation unit 105 calculates the stress feature quantity from the whole period biosignal for one month. The stress feature amount calculation unit 105 calculates a stress feature amount from a short-term biosignal for each week. As the stress feature amount, as described above, the feature amount statistically processed for each action time such as sitting, walking, running, deskwork, dialogue and sleep (for example, average, variance, median, power spectral density, and 30 A component of a histogram of the number of peaks in a certain period such as seconds) or a frequency distribution of the duration of an activity exceeding a certain threshold value is preferably used.
 実際の実験では、ストレス特徴量として、非特許文献1に開示されている、発汗、体動、皮膚表面温等の、平均、分散、中央値、パワースペクトル密度、および、30秒間等の一定期間のピーク数のヒストグラムの構成要素の全てを計算した。また、それらについて、座位、歩行および走行の3活動状態、ならびに、それら全てを合わせた全体について計算を行った。なお、非特許文献1では、睡眠時全体および睡眠時の第1,第2,第3,第4四半期について特徴量を計算するとされている。しかし、本実施例では、対象が就業者であり、就業時間中のデータしか取得していないので、睡眠時のデータは用いられない。また、本実施例では、Empatica E4 が取得可能な心拍を使用しなかった。また、パワースペクトル密度、および、一定期間のピーク数のヒストグラム要素等は、データ取得時間の大小に依存する。そこで、それらを、実際のデータ取得時間(装着ミス等できちんとデータが取得できなかった時間や装着していなかった時間等の全てを除く純粋なデータ取得時間)で割ることによって正規化する。 In actual experiments, as stress feature quantities, the average, variance, median value, power spectral density, and a certain period such as 30 seconds disclosed in Non-Patent Document 1, such as sweating, body movement, skin surface temperature, etc. All the components of the histogram of the number of peaks were calculated. Moreover, about these, calculation was performed about the three activity states of a sitting position, a walk, and driving | running | working, and the whole which put them together. In Non-Patent Document 1, it is assumed that the feature amount is calculated for the whole sleep and the first, second, third, and fourth quarters during sleep. However, in this embodiment, since the subject is a worker and only data during working hours is acquired, data during sleep is not used. Further, in this example, the heart rate that Empatica E4 can acquire was not used. Further, the power spectral density, the histogram element of the number of peaks in a certain period, and the like depend on the data acquisition time. Therefore, they are normalized by dividing them by the actual data acquisition time (pure data acquisition time excluding all of the time when data could not be acquired properly due to a mounting error or the time when it was not mounted).
 ストレススコア推定部106は、入力された1ケ月間の長期間特徴量および1週間毎の短期間特徴量を用いて、長期ストレスを推定する。 The stress score estimation unit 106 estimates long-term stress using the inputted long-term feature value for one month and short-term feature value for each week.
 実際の実験では、長期ストレスとして、PSS を回帰分析によって推定した。ユーザに対して実験期間(1ヶ月間)の最後に実施されたPSS アンケートから算出したスコアを教師データとし、ストレス特徴量算出部105が算出した特徴量を用いて線形回帰モデルを学習させ、このモデルを用いてPSS を推定した。推定において、Leave One-person Out Cross Validation 法を用いた。すなわち、1人のユーザのPSS スコアを推定するために、他の全てのユーザを訓練データとし、それらのユーザの PSS スコアと特徴量とを用いる学習済みのモデルを使用した。 In actual experiments, PSS was estimated by regression analysis as long-term stress. The score calculated from the PSS questionnaire conducted at the end of the experiment period (one month) is used as teacher data for the user, and the linear regression model is learned using the feature amount calculated by the stress feature amount calculation unit 105. The model was used to estimate PSS. In the estimation, the Leave-One-person-Out-Cross-Validation method was used. That is, in order to estimate the PSS score of one user, all the other users are used as training data, and a learned model using the PSS score and the feature amount of those users is used.
 さらに、モデルの性能評価も行った。その際に、線形回帰モデルのハイパーパラメータに関する正則化係数を0.2に固定した。また、サンプル数が少なくなりがちなPSS スコアが高い領域のユーザおよび低い領域のユーザに関して、Over Sampling 法によって訓練サンプルを増加した。 Furthermore, the performance of the model was also evaluated. At that time, the regularization coefficient regarding the hyperparameter of the linear regression model was fixed to 0.2. In addition, training samples were increased by Over Sampling method for users with high and low PSS scores, which tend to have a small number of samples.
 具体的には、PSS スコアでの上位20%、下位20%のユーザについて、Over Sampling によって訓練サンプル数を増やす処理を導入した。なお、Over Sampling 比に関して、1対1(Over Sampling をしない)、10対1(上位20%および下位20%の訓練サンプルを10倍に増やす場合)、および、1対0(上位20%および下位20%以外の中位60%のサンプルを学習しない場合)の3つの場合の処理を実行した。特徴量の選択に関して、PSS との相関係数の上位5位まで、上位10位まで、および上位20位までの3つの場合の処理を実行した。上記の9通り(3×3)に対して、PSS との相関係数の3つの場合について、線形回帰によって推定した PSS スコアと実際のスコアの間の相関係数を計算した。また、推定 PSS スコアの実際のスコアに対する誤差、具体的には RMSE(Rooted Mean Square Error)を性能指標として計算した。 Specifically, for the top 20% and the bottom 20% of users in the PSS score, we introduced a process to increase the number of training samples by Over Sampling. Regarding Over Sampling ratio, one-to-one (no Over Sampling), 10: 1 (when training samples of top 20% and bottom 20% are increased 10 times), and 1-0 (top 20% and bottom) The processing in the three cases (when not learning the middle 60% sample other than 20%) was executed. Regarding the selection of feature values, processing was performed in three cases, up to the top five, the top ten, and the top 20 of the correlation coefficient with PSS. The correlation coefficient between the PSS) score estimated by linear regression and the actual score was calculated for three cases (3 × 3) of the correlation coefficient with PSS. Also, the error of the estimated PSS score with respect to the actual score, specifically RMSE (Rooted Mean Square Error), was calculated as a performance index.
 さらに、PSS スコア上位20%のユーザを「高ストレス群」として定義し、高ストレス群ユーザを見出すための再現率カーブおよび適合率カーブを作成した。そして、それらのカーブの下の面積(Area Under Curve)も性能指標として計算した。以上の性能指標を含むモデルを「第1実施例モデル」とする。 Furthermore, the users with the top 20% of PSS scores were defined as “high stress group”, and a recall curve and relevance rate curve were created for finding high stress group users. The area under these curves (Area Under Curve) was also calculated as a performance index. A model including the above performance index is referred to as a “first embodiment model”.
 また、第1の実施形態の効果を確認するために、短期間特徴量を用いず、1ヶ月間の全期間特徴量のみを用いたモデル(「参考モデル」とする。)の性能指標も計算した。図9に、第1実施例モデルと参考モデルとのそれぞれについて、相関係数が最大の場合の結果が図9に示されている。図9に示す例では、全ての性能指標に関して、第1実施例モデルは、参照モデルを上回る。 In addition, in order to confirm the effect of the first embodiment, a performance index of a model (referred to as “reference model”) using only the whole-period feature quantity for one month without using the short-term feature quantity is also calculated. did. FIG. 9 shows the results when the correlation coefficient is maximum for each of the first embodiment model and the reference model. In the example shown in FIG. 9, the first example model exceeds the reference model for all performance indexes.
 ストレススコア推定部106が推定したストレススコアは、ストレススコア出力部107を介してストレススコア記憶部110に記録される。 The stress score estimated by the stress score estimation unit 106 is recorded in the stress score storage unit 110 via the stress score output unit 107.
 ストレススコアは、ユーザの要求に応じて、通信インターフェース111、インターネット、および無線LANを介してパーソナルコンピュータに供給可能である。パーソナルコンピュータにおいて、情報表示装置430A,430Bにストレススコアが表示される。 The stress score can be supplied to a personal computer via the communication interface 111, the Internet, and a wireless LAN according to a user request. In the personal computer, the stress score is displayed on the information display devices 430A and 430B.
 なお、本実施例では、情報表示装置430A,430Bの機能と生体信号センサ420A,420Bの機能とは別の構成要素で実現されているが、それらの機能が1つの端末で実現されてもよい。 In this embodiment, the functions of the information display devices 430A and 430B and the functions of the biological signal sensors 420A and 420B are realized by different components, but these functions may be realized by one terminal. .
実施例2.
 次に、図10を参照して、第2の実施例を説明する。第2の実施例も、第1の実施形態に対応する実施例である。図10は、第2の実施例のストレス推定装置の全体的な構成例を示すブロック図である。第2の実施例では、ウェアラブル端末500において、ストレス推定装置が構築されている。
Example 2
Next, a second embodiment will be described with reference to FIG. The second example is also an example corresponding to the first embodiment. FIG. 10 is a block diagram illustrating an overall configuration example of the stress estimation apparatus according to the second embodiment. In the second embodiment, a stress estimation device is constructed in the wearable terminal 500.
 図7に示された生体信号センサ420A,420Bに相当する生体信号センサ420が、ウェアラブル端末500に内蔵されている。また、図7に示された情報表示装置430A,430Bに相当する情報表示装置430が、ウェアラブル端末500に内蔵されている。 The biological signal sensor 420 corresponding to the biological signal sensors 420A and 420B shown in FIG. 7 is built in the wearable terminal 500. In addition, an information display device 430 corresponding to the information display devices 430A and 430B shown in FIG.
 ウェアラブル端末500は、さらに、分析装置510を内蔵する。分析装置510は、生体信号記憶部101、生体信号構成部102、全期間生体信号記憶部103、短期間生体信号記憶部104、ストレス特徴量算出部105、ストレススコア推定部106、ストレススコア出力部107、およびストレススコア記憶部110を含む。 Wearable terminal 500 further incorporates analysis device 510. The analysis device 510 includes a biological signal storage unit 101, a biological signal configuration unit 102, a whole-period biological signal storage unit 103, a short-term biological signal storage unit 104, a stress feature amount calculation unit 105, a stress score estimation unit 106, and a stress score output unit. 107 and a stress score storage unit 110.
 第1の実施例と比較すると、第2の実施例では、通信手段410a,410b,410c,410dに相当する構成要素を介して信号を送受信するプロセスが存在しない。したがって、通信手段が得られない状況でもストレス推定装置の機能が実現される。 Compared with the first embodiment, in the second embodiment, there is no process for transmitting and receiving signals via components corresponding to the communication means 410a, 410b, 410c, 410d. Therefore, the function of the stress estimation device is realized even in a situation where communication means cannot be obtained.
 信号を送受信するプロセス以外のストレス推定装置の動作は、第1の実施例における動作と同じである。 The operation of the stress estimation apparatus other than the process of transmitting and receiving signals is the same as that in the first embodiment.
 なお、図10には、ウェアラブル端末500として腕時計タイプの端末が例示されているが、ウェアラブル端末500は、腕時計タイプのものに限られず、眼鏡タイプの端末等も好適に使用可能である。 In FIG. 10, a wristwatch type terminal is illustrated as the wearable terminal 500, but the wearable terminal 500 is not limited to a wristwatch type terminal, and a spectacle type terminal or the like can also be suitably used.
 以上に説明したように、上記の実施形態では、長期ストレスを高精度に推定できる。その理由は、長期ストレスが推定されるべき期間全体だけでなく、それより短期間の時間単位で、ストレス推定のための特徴量が算出されることによって、心理学的に重要な短期間のストレス経験の有無とその頻度の情報を、長期ストレスの推定に取り入れることが可能になっているからである。 As described above, in the above embodiment, long-term stress can be estimated with high accuracy. The reason for this is that psychologically important short-term stress is calculated not only by the entire period in which long-term stress is to be estimated, but also by calculating the characteristic amount for stress estimation in units of time shorter than that. This is because it is possible to incorporate information on the presence and frequency of experience into the estimation of long-term stress.
 図11は、ストレス推定装置の主要部を示すブロック図である。図11に示すように、ストレス推定装置10は、ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、生体信号データを、全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する生体信号構成手段12(実施形態では、生体信号構成部102で実現される。)と、全期間生体信号からストレス特徴量を算出して全期間特徴量とし、短期間生体信号からストレス特徴量を算出して短期間特徴量とするストレス特徴量算出手段15(実施形態では、ストレス特徴量算出部105で実現される。)と、全期間特徴量と短期間特徴量とからストレススコアを推定するストレススコア推定手段16(実施形態では、ストレススコア推定部106で実現される。)とを備える。 FIG. 11 is a block diagram showing the main part of the stress estimation apparatus. As shown in FIG. 11, the stress estimation device 10 generates biosignals for all periods by connecting biosignal data collected from a stress estimation target person over all periods for which stress is to be estimated. The biological signal constituting unit 12 (in the embodiment, realized by the biological signal constituting unit 102) is configured to connect the signal data over a plurality of short periods shorter than the entire period to generate a plurality of short term biological signals. ) And a stress feature quantity calculating unit 15 (in the embodiment, calculating a stress feature quantity from the whole period biosignal to obtain a whole period feature quantity and calculating a stress feature quantity from the short period biosignal to obtain a short period feature quantity. And a stress score estimation unit 16 (in the embodiment, stress score estimation) that estimates a stress score from the whole-period feature quantity and the short-term feature quantity. It is realized in parts 106.) And a.
 図12は、ストレス推定装置の他の態様の主要部を示すブロック図である。図12に示すストレス推定装置10は、さらに、生成された全期間生体信号を記憶する全期間生体信号記憶手段13(実施形態では、全期間生体信号記憶部103で実現される。)と、生成された短期間生体信号を記憶する短期間生体信号記憶手段14(実施形態では、短期間生体信号記憶部104で実現される。)とを備え、ストレス特徴量算出手段15が、全期間生体信号記憶手段に記憶されている全期間生体信号を使用して全期間特徴量を算出し、短期間生体信号記憶手段に記憶されている短期間生体信号を使用して短期間特徴量を算出する。 FIG. 12 is a block diagram showing a main part of another aspect of the stress estimation apparatus. The stress estimation apparatus 10 illustrated in FIG. 12 further includes a full-period biosignal storage unit 13 (in the embodiment, realized by the full-period biosignal storage unit 103) that stores the generated full-period biosignal. Short-term biological signal storage means 14 (in the embodiment, realized by the short-term biological signal storage unit 104) for storing the short-term biological signal, and the stress feature amount calculating means 15 includes the whole-period biological signal. The whole-period feature value is calculated using the whole-period biological signal stored in the storage unit, and the short-term feature value is calculated using the short-term biological signal stored in the short-term biological signal storage unit.
 図13は、ストレス推定装置の他の態様の主要部を示すブロック図である。図13に示すストレス推定装置10は、さらに、生体信号データ未取得期間の前後の短期間特徴量の差分を計算し、計算結果を、追加の短期間特徴量としてストレススコア推定手段16に出力する短期間特徴量補充手段18(実施形態では、短期間特徴量差分計算部108で実現される。)を備える。 FIG. 13 is a block diagram showing a main part of another aspect of the stress estimation apparatus. The stress estimation apparatus 10 shown in FIG. 13 further calculates the difference between the short-term feature values before and after the biological signal data non-acquisition period, and outputs the calculation result to the stress score estimation means 16 as an additional short-term feature value. Short-term feature amount supplementing means 18 (implemented by the short-term feature amount difference calculation unit 108 in the embodiment) is provided.
 図14は、ストレス推定装置の別の態様の主要部を示すブロック図である。図14に示すストレス推定装置10は、さらに、短期間生体信号から算出された短期間特徴量または短期間特徴量補充手段18が出力した短期間特徴量から特徴値を算出し、算出結果を、追加の短期間特徴量としてストレススコア推定手段16に出力する短期間特徴量計算手段19(実施形態では、特徴量計算部109で実現される。)を備える。 FIG. 14 is a block diagram showing a main part of another aspect of the stress estimation apparatus. The stress estimation apparatus 10 shown in FIG. 14 further calculates a feature value from the short-term feature value calculated from the short-term biological signal or the short-term feature value output by the short-term feature-value supplementing unit 18, Short-term feature value calculation means 19 (implemented by the feature value calculation unit 109 in the embodiment) that outputs to the stress score estimation means 16 as an additional short-term feature value is provided.
 上記の実施形態の一部又は全部は以下の付記のようにも記載されうるが、本発明の構成は以下の構成に限定されない。 Some or all of the above embodiments can be described as the following supplementary notes, but the configuration of the present invention is not limited to the following configurations.
(付記1)ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する生体信号構成手段と、
 前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とするストレス特徴量算出手段と、
 前記全期間特徴量と前記短期間特徴量とからストレススコアを推定するストレススコア推定手段と
 を備えるストレス推定装置。
(Supplementary note 1) Biosignal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a biosignal for the entire period, and the biosignal data is obtained from the entire period. A plurality of short-term biological signals connected to each other over a plurality of short short-term biological signals,
A stress feature quantity calculating means for calculating a stress feature quantity from the whole-period biosignal to obtain a full-period feature quantity, and calculating a stress feature quantity from the short-term biosignal to make a short-term feature quantity;
A stress estimation apparatus comprising: a stress score estimation unit that estimates a stress score from the whole period feature quantity and the short period feature quantity.
(付記2)生成された前記全期間生体信号を記憶する全期間生体信号記憶手段と、
 生成された前記短期間生体信号を記憶する短期間生体信号記憶手段とを備え、
 前記ストレス特徴量算出手段は、前記全期間生体信号記憶手段に記憶されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に記憶されている前記短期間生体信号を使用して前記短期間特徴量を算出する
 付記1のストレス推定装置。
(Supplementary note 2) Whole-period biosignal storage means for storing the generated whole-period biosignal;
Short-term biosignal storage means for storing the generated short-term biosignal,
The stress feature quantity calculation means calculates the whole period feature quantity using the whole period biosignal stored in the whole period biosignal storage means, and is stored in the short period biosignal storage means. The stress estimation apparatus according to claim 1, wherein the short-term feature value is calculated using the short-term biological signal.
(付記3)生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、追加の短期間特徴量として前記ストレススコア推定手段に出力する短期間特徴量補充手段をさらに備える
 付記1または付記2のストレス推定装置。
(Supplementary note 3) Short-term feature quantity supplementing means for calculating a difference between the short-term feature quantities before and after the biosignal data non-acquisition period and outputting the calculation result to the stress score estimating means as an additional short-term feature quantity The stress estimation apparatus according to Supplementary Note 1 or Supplementary Note 2.
(付記4)前記短期間生体信号から算出された前記短期間特徴量または前記短期間特徴量補充手段が出力した前記短期間特徴量から特徴値を算出し、算出結果を、追加の短期間特徴量として前記ストレススコア推定手段に出力する短期間特徴量計算手段をさらに備える
 付記3のストレス推定装置。
(Supplementary Note 4) A feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value output by the short-term feature value supplementing means, and the calculation result is added to the additional short-term feature. The stress estimation apparatus according to supplementary note 3, further comprising short-term feature value calculation means for outputting to the stress score estimation means as a quantity.
(付記5)前記生体信号データは、皮膚電気伝導度、皮膚表面温度、脈波、心拍、音声、加速度の信号の一部または全部である
 付記1から付記4のうちのいずれかのストレス推定装置。
(Supplementary Note 5) The biological signal data is a part or all of signals of skin electrical conductivity, skin surface temperature, pulse wave, heartbeat, voice, and acceleration. The stress estimation device according to any one of Supplementary notes 1 to 4 .
(付記6)ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成し、
 前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とし、
 前記全期間特徴量と前記短期間特徴量とからストレススコアを推定する
 ストレス推定方法。
(Appendix 6) Biosignal data collected from the subject of stress estimation is linked over the entire period for which stress is to be estimated to generate a biosignal for the entire period, and the biosignal data is obtained from the entire period. Are connected over each of a plurality of short periods to generate a plurality of short-term biological signals,
A stress feature value is calculated from the whole-period biosignal to obtain a full-time feature value, a stress feature value is calculated from the short-term biosignal to a short-term feature value,
A stress estimation method for estimating a stress score from the whole-period feature value and the short-term feature value.
(付記7)生成された前記全期間生体信号を全期間生体信号記憶手段に保存し、
 生成された前記短期間生体信号を短期間生体信号記憶手段に保存し、
 前記全期間生体信号記憶手段に保存されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に保存されている前記短期間生体信号を使用して前記短期間特徴量を算出する
 付記6のストレス推定方法。
(Supplementary Note 7) The generated whole-period biological signal is stored in the whole-period biological signal storage means,
The generated short-term biosignal is stored in a short-term biosignal storage means,
Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means The stress estimation method according to appendix 6, wherein the short-term feature amount is calculated.
(付記8)生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、前記ストレススコア推定のために使用する追加の短期間特徴量とする
 付記6または付記7のストレス推定方法。
(Additional remark 8) The difference of the said short-term feature-value before and behind biosignal data non-acquisition period is calculated, and let a calculation result be the additional short-term feature-value used for the said stress score estimation. Stress estimation method.
(付記9)前記短期間生体信号から算出された前記短期間特徴量または前記差分に基づく前記短期間特徴量から特徴値を算出し、算出結果を、ストレススコア推定のために使用する追加の短期間特徴量とする
 付記8のストレス推定方法。
(Supplementary note 9) An additional short-term feature value is calculated for calculating a stress score by calculating a feature value from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference. The stress estimation method according to appendix 8, which is used as an inter-feature value.
(付記10)コンピュータに、
 ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する処理と、
 前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とする処理と、
 前記全期間特徴量と前記短期間特徴量とからストレススコアを推定する処理と
 を実行させるためのストレス推定プログラム。
(Appendix 10)
The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. A process of generating a plurality of short-term biosignals connected over each of a short period;
Calculating a stress feature quantity from the whole-period biosignal to obtain a full-period feature quantity, and calculating a stress feature quantity from the short-term biosignal to make a short-term feature quantity;
The stress estimation program for performing the process which estimates a stress score from the said whole period feature-value and the said short-term feature-value.
(付記11)コンピュータに、
 生成された前記全期間生体信号を全期間生体信号記憶手段に保存する処理と、
 生成された前記短期間生体信号を短期間生体信号記憶手段に保存する処理と、
 前記全期間生体信号記憶手段に保存されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に保存されている前記短期間生体信号を使用して前記短期間特徴量を算出する処理とを実行させる
 付記10のストレス推定プログラム。
(Supplementary note 11)
Processing for storing the generated all-period biosignal in the all-period biosignal storage means;
A process of storing the generated short-term biosignal in the short-term biosignal storage means;
Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means The stress estimation program according to appendix 10, wherein the processing for calculating the short-term feature amount is executed.
(付記12)コンピュータに、
 生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、前記ストレススコア推定のために使用する追加の短期間特徴量とする処理を実行させる
 付記10または付記11のストレス推定プログラム。
(Supplementary note 12)
The difference between the short-term feature values before and after the biosignal data non-acquisition period is calculated, and the calculation result is executed as an additional short-term feature value used for the stress score estimation. Stress estimation program.
(付記13)コンピュータに、
 前記短期間生体信号から算出された前記短期間特徴量または前記差分に基づく前記短期間特徴量から特徴値を算出し、算出結果を、ストレススコア推定のために使用する追加の短期間特徴量とする処理を実行させる
 付記12のストレス推定プログラム。
(Supplementary note 13)
A feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference, and the calculated result is used as an additional short-term feature value used for stress score estimation; The stress estimation program according to appendix 12, which causes the processing to be executed.
(付記14)ストレス推定プログラムが記憶された非一時的な記録媒体であって、ストレス推定プログラムは、プロセッサで実行されるときに、
 ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成し、
 前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とし、
 前記全期間特徴量と前記短期間特徴量とからストレススコアを推定する。
(Supplementary note 14) A non-temporary recording medium storing a stress estimation program, and when the stress estimation program is executed by a processor,
The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. Connect over each of the short periods to generate multiple short-term biosignals,
A stress feature value is calculated from the whole-period biosignal to obtain a full-time feature value, a stress feature value is calculated from the short-term biosignal to a short-term feature value,
A stress score is estimated from the all-period feature value and the short-term feature value.
(付記15)ストレス推定プログラムは、プロセッサで実行されるときに、
 生成された前記全期間生体信号を全期間生体信号記憶手段に保存し、
 生成された前記短期間生体信号を短期間生体信号記憶手段に保存し、
 前記全期間生体信号記憶手段に保存されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に保存されている前記短期間生体信号を使用して前記短期間特徴量を算出する。
 付記14の記録媒体。
(Supplementary Note 15) When the stress estimation program is executed by the processor,
The generated whole period biological signal is stored in the whole period biological signal storage means,
The generated short-term biosignal is stored in a short-term biosignal storage means,
Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means To calculate the short-term feature value.
The recording medium of appendix 14.
(付記16)ストレス推定プログラムは、プロセッサで実行されるときに、
 生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、前記ストレススコア推定のために使用する追加の短期間特徴量とする
 付記14または付記15の記録媒体。
(Supplementary Note 16) When the stress estimation program is executed by the processor,
The recording medium according to supplementary note 14 or supplementary note 15, wherein a difference between the short-term feature values before and after the biosignal data non-acquisition period is calculated, and the calculation result is an additional short-term feature value used for the stress score estimation.
(付記17)ストレス推定プログラムは、プロセッサで実行されるときに、
 前記短期間生体信号から算出された前記短期間特徴量または前記差分に基づく前記短期間特徴量から特徴値を算出し、算出結果を、ストレススコア推定のために使用する追加の短期間特徴量とする処理を実行させる
 付記16の記録媒体。
(Supplementary Note 17) When the stress estimation program is executed by the processor,
A feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference, and the calculated result is used as an additional short-term feature value used for stress score estimation; The recording medium according to appendix 16, wherein the processing is executed.
 10  ストレス推定装置
 12  生体信号構成手段
 13  全期間生体信号記憶手段
 14  短期間生体信号記憶手段
 15  ストレス特徴量算出手段
 16  ストレススコア推定手段
 18  短期間特徴量補充手段
 100 情報処理サーバ
 101 生体信号記憶部
 102 生体信号構成部
 103 全期間生体信号記憶部
 104 短期間生体信号記憶部
 105 ストレス特徴量算出部
 106 ストレススコア推定部
 107 ストレススコア出力部
 108 短期間特徴量差分計算部
 109 特徴量計算部
 110 ストレススコア記憶部
 111 通信インターフェース
 400 分析サーバ
 410a,410b,410c,410d 通信手段
 420,420A,420B 生体信号センサ
 430,430A,430B 情報表示装置
 500 ウェアラブル端末
 510 分析装置
DESCRIPTION OF SYMBOLS 10 Stress estimation apparatus 12 Biological signal structure means 13 Whole period biological signal storage means 14 Short period biological signal storage means 15 Stress feature-value calculation means 16 Stress score estimation means 18 Short-term feature-value supplement means 100 Information processing server 101 Biosignal storage part DESCRIPTION OF SYMBOLS 102 Biosignal structure part 103 Whole period biosignal storage part 104 Short period biosignal storage part 105 Stress feature-value calculation part 106 Stress score estimation part 107 Stress score output part 108 Short-term feature-value difference calculation part 109 Feature-value calculation part 110 Stress Score storage unit 111 Communication interface 400 Analysis server 410a, 410b, 410c, 410d Communication means 420, 420A, 420B Biological signal sensor 430, 430A, 430B Information display device 500 Wearable terminal 510 Analysis Location

Claims (10)

  1.  ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する生体信号構成手段と、
     前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とするストレス特徴量算出手段と、
     前記全期間特徴量と前記短期間特徴量とからストレススコアを推定するストレススコア推定手段と
     を備えるストレス推定装置。
    The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. A biological signal composing means that generates a plurality of short-term biological signals connected over a short period of time;
    A stress feature quantity calculating means for calculating a stress feature quantity from the whole-period biosignal to obtain a full-period feature quantity, and calculating a stress feature quantity from the short-term biosignal to make a short-term feature quantity;
    A stress estimation apparatus comprising: a stress score estimation unit that estimates a stress score from the whole period feature quantity and the short period feature quantity.
  2.  生成された前記全期間生体信号を記憶する全期間生体信号記憶手段と、
     生成された前記短期間生体信号を記憶する短期間生体信号記憶手段とを備え、
     前記ストレス特徴量算出手段は、前記全期間生体信号記憶手段に記憶されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に記憶されている前記短期間生体信号を使用して前記短期間特徴量を算出する
     請求項1記載のストレス推定装置。
    A lifetime biosignal storage means for storing the generated lifetime biosignal;
    Short-term biosignal storage means for storing the generated short-term biosignal,
    The stress feature quantity calculation means calculates the whole period feature quantity using the whole period biosignal stored in the whole period biosignal storage means, and is stored in the short period biosignal storage means. The stress estimation apparatus according to claim 1, wherein the short-term feature value is calculated using the short-term biological signal.
  3.  生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、追加の短期間特徴量として前記ストレススコア推定手段に出力する短期間特徴量補充手段をさらに備える
     請求項1または請求項2記載のストレス推定装置。
    The short-term feature quantity supplementing means for calculating a difference between the short-term feature quantities before and after the biosignal data non-acquisition period and outputting the calculation result to the stress score estimating means as an additional short-term feature quantity. The stress estimation apparatus according to claim 1 or 2.
  4.  前記短期間生体信号から算出された前記短期間特徴量または前記短期間特徴量補充手段が出力した前記短期間特徴量から特徴値を算出し、算出結果を、追加の短期間特徴量として前記ストレススコア推定手段に出力する短期間特徴量計算手段をさらに備える
     請求項3記載のストレス推定装置。
    A feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value output by the short-term feature value supplementing unit, and the calculation result is used as an additional short-term feature value to calculate the stress. The stress estimation apparatus according to claim 3, further comprising a short-term feature amount calculation means for outputting to the score estimation means.
  5.  前記生体信号データは、皮膚電気伝導度、皮膚表面温度、脈波、心拍、音声、加速度の信号の一部または全部である
     請求項1から請求項4のうちのいずれか1項に記載のストレス推定装置。
    The stress according to any one of claims 1 to 4, wherein the biological signal data is part or all of skin electrical conductivity, skin surface temperature, pulse wave, heartbeat, voice, and acceleration signals. Estimating device.
  6.  ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成し、
     前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とし、
     前記全期間特徴量と前記短期間特徴量とからストレススコアを推定する
     ストレス推定方法。
    The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. Connect over each of the short periods to generate multiple short-term biosignals,
    A stress feature value is calculated from the whole-period biosignal to obtain a full-time feature value, a stress feature value is calculated from the short-term biosignal to a short-term feature value,
    A stress estimation method for estimating a stress score from the whole-period feature value and the short-term feature value.
  7.  生成された前記全期間生体信号を全期間生体信号記憶手段に保存し、
     生成された前記短期間生体信号を短期間生体信号記憶手段に保存し、
     前記全期間生体信号記憶手段に保存されている前記全期間生体信号を使用して前記全期間特徴量を算出し、前記短期間生体信号記憶手段に保存されている前記短期間生体信号を使用して前記短期間特徴量を算出する
     請求項6記載のストレス推定方法。
    The generated whole period biological signal is stored in the whole period biological signal storage means,
    The generated short-term biosignal is stored in a short-term biosignal storage means,
    Using the whole-period biosignal stored in the whole-period biosignal storage means to calculate the whole-period feature amount, and using the short-term biosignal stored in the short-term biosignal storage means The stress estimation method according to claim 6, wherein the short-term feature amount is calculated.
  8.  生体信号データ未取得期間の前後の前記短期間特徴量の差分を計算し、計算結果を、前記ストレススコア推定のために使用する追加の短期間特徴量とする
     請求項6または請求項7記載のストレス推定方法。
    The difference of the said short-term feature-value before and behind biosignal data non-acquisition period is calculated, and a calculation result is made into the additional short-term feature-value used for the said stress score estimation. Stress estimation method.
  9.  前記短期間生体信号から算出された前記短期間特徴量または前記差分に基づく前記短期間特徴量から特徴値を算出し、算出結果を、ストレススコア推定のために使用する追加の短期間特徴量とする
     請求項8記載のストレス推定方法。
    A feature value is calculated from the short-term feature value calculated from the short-term biological signal or the short-term feature value based on the difference, and the calculated result is used as an additional short-term feature value used for stress score estimation; The stress estimation method according to claim 8.
  10.  コンピュータに、
     ストレス推定の対象者から収集された生体信号データを、ストレスが推定されるべき全期間に亘って連結して全期間生体信号を生成し、前記生体信号データを、前記全期間よりも短い複数の短期間のそれぞれに亘って連結して複数の短期間生体信号を生成する処理と、
     前記全期間生体信号からストレス特徴量を算出して全期間特徴量とし、前記短期間生体信号からストレス特徴量を算出して短期間特徴量とする処理と、
     前記全期間特徴量と前記短期間特徴量とからストレススコアを推定する処理と
     を実行させるためのストレス推定プログラム。
    On the computer,
    The biological signal data collected from the subject of stress estimation is connected over the entire period in which stress is to be estimated to generate a whole period biological signal, and the biological signal data is a plurality of shorter than the whole period. A process of generating a plurality of short-term biosignals connected over each of a short period;
    Calculating a stress feature quantity from the whole-period biosignal to obtain a full-period feature quantity, and calculating a stress feature quantity from the short-term biosignal to make a short-term feature quantity;
    The stress estimation program for performing the process which estimates a stress score from the said whole period feature-value and the said short-term feature-value.
PCT/JP2018/005056 2018-02-14 2018-02-14 Stress estimation device and stress estimation method using biosignal WO2019159252A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019571856A JP6849106B2 (en) 2018-02-14 2018-02-14 Stress estimation device and stress estimation method using biological signals
PCT/JP2018/005056 WO2019159252A1 (en) 2018-02-14 2018-02-14 Stress estimation device and stress estimation method using biosignal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005056 WO2019159252A1 (en) 2018-02-14 2018-02-14 Stress estimation device and stress estimation method using biosignal

Publications (1)

Publication Number Publication Date
WO2019159252A1 true WO2019159252A1 (en) 2019-08-22

Family

ID=67618927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005056 WO2019159252A1 (en) 2018-02-14 2018-02-14 Stress estimation device and stress estimation method using biosignal

Country Status (2)

Country Link
JP (1) JP6849106B2 (en)
WO (1) WO2019159252A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048965A (en) * 2019-09-24 2021-04-01 カシオ計算機株式会社 Feature amount extraction device, state estimation device, feature amount extraction method, state estimation method and program
WO2021161525A1 (en) * 2020-02-14 2021-08-19 日本電気株式会社 Stress estimation device, stress estimation method, and computer-readable recording medium
WO2021199270A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Stress management device, stress management method, and computer-readable recording medium
WO2021199271A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Stress release degree calculation device, stress release degree calculation method, and computer-readable recording medium
WO2022038776A1 (en) * 2020-08-21 2022-02-24 日本電気株式会社 Stress inference device, inference method, program, and storage medium
WO2022113276A1 (en) * 2020-11-27 2022-06-02 日本電気株式会社 Information processing device, control method, and storage medium
WO2022157872A1 (en) * 2021-01-21 2022-07-28 日本電気株式会社 Information processing apparatus, feature quantity selection method, teacher data generation method, estimation model generation method, stress level estimation method, and program
WO2022208874A1 (en) * 2021-04-02 2022-10-06 日本電気株式会社 Learning device, stress estimation device, learning method, stress estimation method, and storage medium
WO2022254575A1 (en) * 2021-06-01 2022-12-08 日本電気株式会社 Stress factor estimation device, stress factor estimation method and storage medium
WO2023119433A1 (en) * 2021-12-21 2023-06-29 日本電気株式会社 Calculation method, calculation device, and storage medium
WO2024122363A1 (en) * 2022-12-09 2024-06-13 株式会社資生堂 Stress diagnosis system, stress diagnosis apparatus, program, and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212391A (en) * 2007-03-05 2008-09-18 Isuzu Motors Ltd Stress detector
JP2016500016A (en) * 2012-10-30 2016-01-07 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. Measurement of psychological stress from cardiovascular and activity signals
JP2018011721A (en) * 2016-07-20 2018-01-25 日本電気株式会社 Stress estimation device, stress estimation method, and stress estimation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212391A (en) * 2007-03-05 2008-09-18 Isuzu Motors Ltd Stress detector
JP2016500016A (en) * 2012-10-30 2016-01-07 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. Measurement of psychological stress from cardiovascular and activity signals
JP2018011721A (en) * 2016-07-20 2018-01-25 日本電気株式会社 Stress estimation device, stress estimation method, and stress estimation program

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048965A (en) * 2019-09-24 2021-04-01 カシオ計算機株式会社 Feature amount extraction device, state estimation device, feature amount extraction method, state estimation method and program
JP7205433B2 (en) 2019-09-24 2023-01-17 カシオ計算機株式会社 State estimation device, state estimation method and program
WO2021161525A1 (en) * 2020-02-14 2021-08-19 日本電気株式会社 Stress estimation device, stress estimation method, and computer-readable recording medium
JPWO2021161525A1 (en) * 2020-02-14 2021-08-19
JP7276586B2 (en) 2020-02-14 2023-05-18 日本電気株式会社 STRESS ESTIMATION DEVICE, STRESS ESTIMATION METHOD, AND PROGRAM
JP7416215B2 (en) 2020-03-31 2024-01-17 日本電気株式会社 Stress release rate calculation device, stress release rate calculation method, and program
WO2021199270A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Stress management device, stress management method, and computer-readable recording medium
WO2021199271A1 (en) * 2020-03-31 2021-10-07 日本電気株式会社 Stress release degree calculation device, stress release degree calculation method, and computer-readable recording medium
JP7456495B2 (en) 2020-03-31 2024-03-27 日本電気株式会社 Stress management device, stress management method, and program
WO2022038776A1 (en) * 2020-08-21 2022-02-24 日本電気株式会社 Stress inference device, inference method, program, and storage medium
WO2022113276A1 (en) * 2020-11-27 2022-06-02 日本電気株式会社 Information processing device, control method, and storage medium
WO2022157872A1 (en) * 2021-01-21 2022-07-28 日本電気株式会社 Information processing apparatus, feature quantity selection method, teacher data generation method, estimation model generation method, stress level estimation method, and program
WO2022208874A1 (en) * 2021-04-02 2022-10-06 日本電気株式会社 Learning device, stress estimation device, learning method, stress estimation method, and storage medium
WO2022254575A1 (en) * 2021-06-01 2022-12-08 日本電気株式会社 Stress factor estimation device, stress factor estimation method and storage medium
WO2023119433A1 (en) * 2021-12-21 2023-06-29 日本電気株式会社 Calculation method, calculation device, and storage medium
WO2024122363A1 (en) * 2022-12-09 2024-06-13 株式会社資生堂 Stress diagnosis system, stress diagnosis apparatus, program, and method

Also Published As

Publication number Publication date
JPWO2019159252A1 (en) 2020-12-03
JP6849106B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2019159252A1 (en) Stress estimation device and stress estimation method using biosignal
US20190365332A1 (en) Determining wellness using activity data
US20230119345A1 (en) Methods for modeling neurological development and diagnosing a neurological impairment of a patient
Kocielnik et al. Smart technologies for long-term stress monitoring at work
US9962104B2 (en) Stress-measuring device and method
US20200090812A1 (en) Machine learning for measuring and analyzing therapeutics
US20180310867A1 (en) System and method for stress level management
US20180240543A1 (en) Information processing apparatus, method and non-transitory computer-readable storage medium
US20190008466A1 (en) Life log utilization system, life log utilization method, and recording medium
US20140343959A1 (en) Analysis system and analysis method
CN110111815A (en) Animal anomaly sound monitoring method and device, storage medium, electronic equipment
EP4024313A1 (en) Advertisement viewing information output method, advertisement viewing information output program, and information processing device
WO2021136030A1 (en) Medical event prediction method, wearable device and computer-readable storage medium
CN113764099A (en) Psychological state analysis method, device, equipment and medium based on artificial intelligence
US11515043B1 (en) Method and device for hair loss prediction and personalized scalp care
US20220206745A1 (en) Relationship analysis utilizing biofeedback information
JP2018200622A (en) Mental Health Measure Support System and Mental Health Measure Support Method
US20190074076A1 (en) Health habit management
RU2704547C1 (en) Method for remote collection and group treatment of psychophysiological reactions with presentation of various information
EP3716151A1 (en) Stress monitor and stress-monitoring method
EP3675137A1 (en) Method and system for more efficient wellbeing estimation and improvement
WO2023135632A1 (en) Stress estimation device, stress estimation method, and storage medium
WO2022208873A1 (en) Stress estimation device, stress estimation method, and storage medium
WO2022113276A1 (en) Information processing device, control method, and storage medium
KR102506646B1 (en) Apparatus and method for generating narrative for lifestyle recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906330

Country of ref document: EP

Kind code of ref document: A1