WO2019157993A1 - 电力电子变压器结构 - Google Patents

电力电子变压器结构 Download PDF

Info

Publication number
WO2019157993A1
WO2019157993A1 PCT/CN2019/074474 CN2019074474W WO2019157993A1 WO 2019157993 A1 WO2019157993 A1 WO 2019157993A1 CN 2019074474 W CN2019074474 W CN 2019074474W WO 2019157993 A1 WO2019157993 A1 WO 2019157993A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage side
low
side module
module
power electronic
Prior art date
Application number
PCT/CN2019/074474
Other languages
English (en)
French (fr)
Inventor
邓占锋
葛俊
赵国亮
石振江
王丰
石秋雨
康伟
乔光尧
Original Assignee
全球能源互联网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司 filed Critical 全球能源互联网研究院有限公司
Priority to US17/310,326 priority Critical patent/US20220093313A1/en
Publication of WO2019157993A1 publication Critical patent/WO2019157993A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Definitions

  • the present disclosure relates to a transformer structure, and more particularly to a power electronic transformer structure.
  • Embodiments of the present disclosure provide a power electronic transformer structure.
  • a power electronic transformer structure comprising: a bracket, a high frequency transformer, a base, a high voltage side module and a low voltage side module,
  • the high side modules are respectively located at the front, the top and the rear of the bracket;
  • the low pressure side module is located at the bottom of the bracket;
  • the high frequency transformer is located in the middle of the bracket.
  • FIG. 1 is a schematic structural diagram of a transformer according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a liquid circulation of a transformer structure according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a deionized water system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a deionized exchange resin filling structure provided by an embodiment of the present disclosure
  • 1-high frequency transformer 2, 3 or 4- high voltage side module; 5 - low voltage side module; 6 - high and low pressure side module cooling circuit; 7 - copper row; 8 - bracket; 9 - base; - water-cooled heat sink; 11-electrode; 12-high frequency transformer cooling circuit; 13-deionized water system; 14-strainer; 15-deionized resin resin; 15-1-tank; ; 15-3-deionized exchange resin; 15-4-net cage; 15-5-net cover; 15-6-outlet pipe; 15-7-top cover; 15-8-inlet pipe; 15-9-sealing Ring; 16-fine filter.
  • the transformer structure provided by the present disclosure includes: a bracket 8, a high frequency transformer 1, a base 9, a high voltage side module, and a low side module 5 cooling circuit, and the high voltage side module Located at the front, top and rear of the bracket 8 respectively; the low-voltage side module 5 is located at the bottom of the bracket 8; the high-frequency transformer 1 is located at the middle of the bracket 8; the bracket 8 and the base 9 are Made of epoxy material, the bracket 8 and the base 9 are formed by an epoxy laminate machine; the transformer structure is a ring-shaped design, and the load connection and the insulation block are reasonably designed to ensure the high-voltage side modules are interphased, and the different phases are high-voltage.
  • the side module and the high and low voltage side modules have sufficient electrical insulation strength; the interphase, high and low voltage insulation inside the high frequency transformer 1 is ensured by the epoxy casting material and the process; the epoxy bracket material has good mechanical and electrical properties. Epoxy material can meet the dynamic and static load requirements of power electronic transformers.
  • the front portion and the rear portion are oppositely disposed; the top portion and the bottom portion are oppositely disposed.
  • the middle portion is located between the front and the rear and is located between the top and the bottom.
  • the bottom portion is typically used to contact or connect with a support surface of the transformer structure, for example, to ground that houses the transformer structure.
  • the bottom portion in this example is a portion close to the base 9.
  • the high voltage side module may include various power modules on the high voltage side, for example, a rectifier module on the high voltage side and/or a transformer module on the high voltage side.
  • the rectifier module on the high voltage side may be simply referred to as a high voltage side rectifier module;
  • the transformer module on the high voltage side may be referred to as a high voltage side transformer module.
  • the low side module may include various power modules on the low voltage side, for example, a rectifier module on the low voltage side and/or a transformer module on the low pressure side.
  • the rectifier module on the low voltage side may be referred to as a low voltage side rectifier module
  • the transformer module on the low voltage side may be simply referred to as a low voltage transformer module.
  • the high side module and the low side module may further include: a current module having other functions, such as a harmonic filter module or the like.
  • the high-voltage side module and the low-voltage side module are relatively opposite, and the voltage value processed by the high-voltage side module is higher than the voltage value processed by the low-voltage side module.
  • the high-voltage side modules 2, 3 and 4 and the low-voltage side module 5 are independent of each other, and are respectively connected with the three-phase high-voltage primary terminal and the low-voltage secondary terminal of the high-frequency transformer 1, and are connected by using a lapped copper busbar.
  • the copper row 7 can be copper-clad aluminum busbar, because the position through the high-frequency current causes the skin effect of the lapped copper row 7 is obvious, the lapped copper row 7 is connected by a copper-clad aluminum bus bar.
  • the high voltage side module and the high frequency transformer are connected by a lapped copper row; the copper row may be a copper clad aluminum bus bar.
  • the high-frequency transformer 1 and the high-voltage side module and the low-voltage side module are respectively provided with a cooling circuit, a cooling circuit 12 of the high-frequency transformer and a cooling circuit of the high-voltage side module and a cooling circuit of the low-voltage side module 6 Parallel; the high-frequency transformer cooling circuit 12 is connected in parallel with the high-voltage side module and the voltage-side module cooling circuit 6 to realize an intensive mode of large series small parallel connection; the cooling circuit is a cooling water circuit; and the cooling circuit and the low voltage of the high-voltage side module
  • the side modules are arranged in series; the high-voltage side module and the low-voltage side module are connected in series, which effectively reduces the number of connection points, reduces the probability of liquid leakage and liquid leakage, and simplifies the liquid path into a whole, which facilitates device maintenance;
  • the full control device in the high-voltage side three-phase rectification inverter module works in the same state.
  • the water-cooled heat dissipation plate used for cooling in the module should meet the minimum junction temperature of the full control device, and the flow resistance is minimized, and the water circuit in series is ensured.
  • the temperature difference between the inlet liquid of the middle end module and the inlet of the end module does not exceed 5 °C.
  • the bracket 8 is in the shape of a "well", and the high frequency transformer 1 is disposed on the inner side of the well-shaped bracket, and the outer side thereof is tangent to the inner side of the four structures constituting the trap-shaped bracket.
  • the high-voltage side module and the low-voltage side module respectively include: a shielding case, a driving board, a power component and a water-cooling heat dissipation plate 10; the inlet and the outlet of the water-cooling heat dissipation plate 10 are provided with an electrode 11;
  • the following components were obtained in terms of mass percentage: P was 0.02%, Mn was 0.11%, Si was 0.282%, Cr was 25%, Ni was 18%, Mo was 0.293%, Cu was 0.121%, and Ti was 0.0015.
  • the water-cooled heat sink 10 used at the rated flow rate, the overall flow resistance and the high-frequency transformer flow resistance are basically the same and should not be too large, so as to ensure that the overall operation of the power electronic transformer does not cause water seepage due to excessive operating pressure of the cooling system. Water leakage phenomenon; the electrode 11 is used to ensure that the corrosion of the aluminum material heat sink due to the electrochemical reaction of the cooling water is minimized during the operation of the device.
  • the low-voltage side module 5 drives and controls the high-voltage side module through an optical fiber
  • the high-voltage side rectifying module and the low-voltage side rectifying module are respectively fixedly connected to the bracket 8 through a fixing member; the bracket 8 is fastened to the high-frequency transformer 1 by a fastener, and the fastener passes through an equipotential
  • the wire is connected to the iron core or the coil of the high-frequency transformer 1 to ensure that there is no floating potential in the whole device; the fixing member and the fastener can be bolted.
  • the power electronic transformer structure includes: connecting the N power electronic transformers in series; the power electronic transformer is connected to the AC power grid through the first end of the high voltage side non-inverting module, and the end is connected to the DC power grid. Valve structure;
  • the high-voltage side module is configured to rectify and invert the grid-side current into a high-frequency transformer through an internal full-control device; wherein the high-frequency current passes through the high-frequency transformer and is rectified through the low-voltage side
  • the module becomes a low voltage DC; the low voltage DC is used to provide a DC load supply.
  • the transformer structure is a valve structure in which the N power electronic transformers are connected to the AC power grid through the first end of the power electronic transformer on the high voltage side, and the end is connected to the DC power grid; the high voltage side module rectifies the network side current through the internal full control device.
  • the inverter becomes a high-frequency current injected into the high-frequency transformer, and the high-frequency current passes through the transformer and becomes a low-voltage direct current through the low-voltage side rectifier module to provide a DC load power supply.
  • the valve structure may be a structure consisting of one or more switches, and the N power electronic transformers may be inter-high voltage input high voltage side devices, and may be connected to the valve structure of the DC grid after being connected in series.
  • the primary of the first power electronic transformer is connected to the AC grid
  • the secondary of the last power electronic transformer is connected to the DC grid.
  • the high frequency is relative to the low frequency, and the frequency for the high frequency alternating current is higher than the frequency of the low frequency alternating current.
  • the high-frequency alternating current can be an alternating current of 3 kHz or more
  • the low-frequency alternating current can be an alternating current of 3 kHz or less.
  • the grid side current may be: a current that is connected from the grid to the power electronic transformer.
  • the ion water system provided by the embodiment of the present disclosure is deionized water treated by the deionized water system 13 , which has extremely low conductivity and can be within a short distance. Passing the high-voltage side three-phase modules 2, 3 and 4 and the low-voltage side module 5, and ensuring the insulation requirements thereof; the cooling circuit 12 of the high-frequency transformer and the cooling circuit of the high-voltage side module and the cooling circuit 6 of the low-voltage side module are cooled The water channel with the same water flow rate; at the same time, in order to improve the cooling efficiency and reduce the volume of the power electronic transformer, the high-voltage side module, the low-voltage side module, and the high-frequency transformer 1 are all water-cooled; the deionized water system 13 includes: a strainer 14, a deionization resin tank 15 and a fine filter 16; the deionization resin tank 15 includes a tank body 15-1, a support frame 15-2, a cage 15-4, and a de
  • the upper cover 15-7; the can body 15-1 is a cylindrical can body, the upper cover 15-7 is provided at the upper end of the can body 15-1, and the support frame is cylindrically arranged at the lower part of the can body 15-2; the outer diameter of the support frame 15-2 is matched with the inner diameter of the can body 15-1
  • the cage 15-4 is a cylindrical structure disposed in the can body 15-1, and a mesh cover 15-5 is disposed at an upper end of the cage 15-4, and a deionization exchange is provided in the cage 15-4.
  • a resin 15-3 a bottom edge of the cage 15-4 is disposed on the support frame 15-2; a side of the can body 15-1 above the cage 15-4 is provided with an inlet pipe 15-8, An outlet pipe 15-6 is disposed in the through hole at the center of the upper cover 15-7, and the lower end of the outlet pipe 15-6 extends into the ion exchange resin 15-3; the outlet pipe 15-6 is A sealing ring 15-9 is disposed between the through holes in the center of the upper cover 15-7; the deionization resin 15-3 is disposed in the cage 15-5, and the upper cover 15 is opened when the ion exchange resin 15-3 needs to be replaced. -7, the cage 15-4 is proposed, and the work of replacing the ion exchange resin 15-3 can be completed, which is convenient and quick; the deionized exchange resin tank 15 has a simple overall structure, low cost and convenient maintenance.
  • the bracket is an epoxy bracket
  • the bracket is wrapped with a high-frequency transformer
  • the outer ring supports the high-voltage side module and the low-voltage side module
  • the annular arrangement makes the transformer structure more compact and uniform.
  • the functionalized structure is unique and innovative; further, the bracket is an epoxy bracket, which overcomes the problem that the high-frequency transformer core and the coil have a heavier weight, and the epoxy resin is difficult to be solidified after casting, and the deformation is difficult to ensure; The insulation requirements of the overall structure of the power electronic transformer are guaranteed, and the yield of the product is greatly improved.
  • the technical solution provided by the embodiment of the present disclosure adopts a hybrid design of a liquid cooling tube string and a parallel connection, so that the number of joints is minimized, the probability of water leakage is small, and the integrity is stronger.
  • the technical solution provided by the embodiment of the present disclosure adopts a high-voltage side module, a low-voltage side rectification module and a transformer to be bridged by a copper-clad aluminum bus bar, which has the characteristics of cost saving and high frequency working condition.
  • the high-voltage side rectification module adopts a full-control device to integrate the rectification and inverter functions into a smaller volume.
  • the technical solution provided by the embodiment of the present disclosure uses the deionized exchange resin to fill, when the deionization exchange resin needs to be replaced, the upper cover is opened, and the network box is put forward, and the work of replacing the ion exchange resin can be completed, which is convenient. Fast; the overall structure is simple, the cost is low, and it is convenient for maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

一种电力电子变压器结构,变压器结构包括:支架(8)、高频变压器(1)、基座(9)、高压侧模块(2,3,4)、低压侧模块(5),高压侧模块分别位于支架的前部、顶部和后部;低压侧模块位于支架底部;高频变压器位于支架中部。

Description

电力电子变压器结构
相关申请的交叉引用
本申请基于申请号为201810149716.6、申请日为2018年02月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及一种变压器结构,尤其涉及一种电力电子变压器结构。
背景技术
随着现代电网的不断发展,越来越多的分布式的发电系统和分布式储能系统需要同电网连接,新能源发电系统并网时,需要接口设备提供多级电压调整、交直流互通转换、智能能量管理等功能,而传统的变压器功能有限,无法提供上述功能。
发明内容
本公开实施例提供一种电力电子变压器结构。
一种电力电子变压器结构,所述变压器结构包括:支架、高频变压器、基座、高压侧模块和低压侧模块,
所述高压侧模块分别位于所述支架的前部、顶部和后部;
所述低压侧模块位于所述支架底部;
所述高频变压器位于所述支架中部。
附图说明
图1为本公开实施例提供的变压器结构示意图;
图2为本公开实施例提供的变压器结构液体流通原理图;
图3为本公开实施例提供的去离子水系统结构示意图;
图4为本公开实施例提供的去离子交换树脂灌结构示意图;
其中,1-高频变压器;2、3或4-高压侧模块;5-低压侧模块;6-高、低压侧模块的冷却回路;7-铜排;8-支架;9-基座;10-水冷散热板;11-电极;12-高频变压器的冷却回路;13-去离子水系统;14-粗滤器;15-去离子交换树脂灌;15-1-罐体;15-2支撑架;15-3-去离子交换树脂;15-4-网箱;15-5-网盖;15-6-出水管;15-7-上盖;15-8-进水管;15-9-密封环;16-精滤器。
具体实施方式
为了更好地理解本公开,下面结合附图对本公开的技术方案做进一步详细说明。
如图1至图2所示,本公开提供的变压器结构,所述变压器结构包括:支架8、高频变压器1、基座9、高压侧模块和低压侧模块5冷却回路,所述高压侧模块分别位于所述支架8的前部、顶部和后部;所述低压侧模块5位于所述支架8底部;所述高频变压器1位于所述支架8中部;所述支架8和基座9由环氧材料制得,所述支架8和基座9由环氧层压板机加而成;变压器结构为环型设计,通过合理设计其载荷支撑、绝缘格挡保证高压侧模块相间,不同相高压侧模块及高、低压侧模块间具有足够的电气绝缘强度;高频变压器1内部的相间、高低压绝缘由环氧浇注材料及工艺保证;环氧支架材料采用具有良好的机械性能及电气性能的环氧材料,能够满足电力电子变压器的动、静态载荷需求。
所述前部和所述后部相对设置;所述顶部和所述底部相对设置。中部位于前部和后部之间,且位于顶部和底部之间。所述底部通常用于与所述变 压器结构的支撑面接触或连接,例如,与放置所述变压器结构的地面连接。在本示例中所述底部为靠近所述基座9的局部。
所述高压侧模块可包括:位于高压侧的各种电力模块,例如,位于高压侧的整流模块和/或位于高压侧的变压模块。在本实施例中,高压侧的整流模块可以简称为高压侧整流模块;高压侧的变压模块可以简称为高压侧变压模块。
所述低压侧模块可包括:位于低压侧的各种电力模块,例如,位于低压侧的整流模块和/或,位于低压侧的变压模块。在本实施例中,低压侧的整流模块可以简称为低压侧整流模块,低压侧的变压模块可以简称为低压变压模块。
在一些实施例中,所述高压侧模块和低压侧模块还可包括:具有其他功能的电流模块,例如,谐波过滤模块等。
在本实施例中,所述高压侧模块和低压侧模块是相对而言的,高压侧模块处理的电压值高于低压侧模块处理的电压值。
所述高压侧模块2、3和4以及所述低压侧模块5间相互独立,分别与所述高频变压器1的三相高压原边端子及低压次边接线端子连接,连接使用搭接铜排7连接,所述铜排7可采用铜包铝母线,由于该位置通过高频电流导致搭接铜排7集肤效应明显,故搭接铜排7采用铜包铝母线连接。例如,所述高压侧模块与所述高频变压器间之间通过搭接的铜排连接;该铜排可为铜包铝母线。
所述高频变压器1和所述高压侧模块及低压侧模块,均分别设有冷却回路,所述高频变压器的冷却回路12与所述高压侧模块的冷却回路及低压侧模块的冷却回路6并联;高频变压器的冷却回路12与高压侧模块、电压侧模块冷却回路6并联,实现了大串联小并联的集约模式;所述冷却回路为冷却水路;所述高压侧模块的冷却回路与低压侧模块串联设置;高压侧模 块、低压侧模块之间采用串联方式连接,有效的减少了连接点数量,降低渗液、漏液概率,并使液路简化为一整体,方便装置维护;为保障高压侧三相整流逆变模块中的全控器件工作在相同状态,该模块中用于冷却的水冷散热板应在满足全控器件结温的情况下,流阻达到最小,同时保证在串联水路中首端模块进液与末端模块进液温差不超过5℃。所述支架8为“井”字形,所述高频变压器1设于所述井字形支架的内侧,且其外侧与构成所述井字形支架四个构建的内侧相切。
所述高压侧模块及所述低压侧模块均分别包括:屏蔽壳、驱动板卡、功率元件和水冷散热板10;所述水冷散热板10的进、出口设有电极11;所述电极11包括按质量百分比计的下述组份制得:P为0.02%、Mn为0.11%、Si为0.282%、Cr为25%、Ni为18%、Mo为0.293%、Cu为0.121%、Ti为0.0015%;采用的水冷散热板10在额定流量下,整体流阻与高频变压器流阻基本相同且不宜过大,从而保障电力电子变压器整体运行时,不会因冷却系统运行压力过高而产生渗水、漏水现象;采用的电极11,保障在装置运行过程中铝材质散热板因冷却水电化学反应而出现的腐蚀达到最低。
所述低压侧模块5通过光纤驱动和控制所述高压侧模块;
所述高压侧整流模块及低压侧整流模块分别通过固定件与所述支架8固定连接;所述支架8通过紧固件与所述高频变压器1紧固连接,所述紧固件通过等电位线与所述高频变压器1的铁芯或线圈连接,从而保证装置整体不存在悬浮电位;固定件和紧固件可采用螺栓。
在一些实施例中,所述电力电子变压器结构包括:将N个所述电力电子变压器串联使用;所述电力电子变压器在高压侧同相模块间通过串联后首端接入交流电网,末端接入直流电网的阀结构;
所述高压侧模块,用于通过内部的全控器件将网侧电流整流、逆变成为高频电流注入所述高频变压器;其中,高频电流经所述高频变压器 后,通过低压侧整流模块变为低压直流;所述低压直流,用于提供直流负载供电。
所述变压器结构为将N个所述电力电子变压器在高压侧通过串联后首端接入交流电网,末端接入直流电网的阀结构;所述高压侧模块通过内部的全控器件将网侧电流整流、逆变成为高频电流注入高频变压器,高频电流经变压器后通过低压侧整流模块变为低压直流,提供直流负载供电。
所述阀结构可为由一个或多个开关组成的结构,N个电力电子变压器可为间交流高压输入高压侧器件,可并在串联之后连接到直流电网的阀结构。
例如,N个电力电子变压器串联后,第一个电力电子变压器的初级连接到接入交流电网,最后一个电力电子变压器的次级连接到直流电网。
在本实施例中,高频是相对于低频而言的,针对于高频交流电的频率高于低频交流电的频率。例如,高频交流电可为3kHz及以上的交流电,低频交流电可为3kHz以下的交流电。
所述网侧电流可为:从电网接入到所述电力电子变压器的电流。
如图3至图4所示,本公开实施例提供的离子水系统,所述冷却水为经去离子水系统13处理的去离子水,其具有极低的电导率,能在较短距离内通过高压侧三相模块2、3和4与低压侧模块5,并保证其绝缘要求;所述高频变压器的冷却回路12与所述高压侧模块的冷却回路及低压侧模块冷却回路6为冷却水流量相同的水路;同时,为了提高冷却效率、减小电力电子变压器体积,高压侧模块、低压侧模块、高频变压器1均采用水冷却方式;所述去离子水系统13包括:依次连接的粗滤器14、去离子交换树脂罐15和精滤器16;所述去离子交换树脂罐15包括:罐体15-1、支撑架15-2、网箱15-4、去离子交换树脂15-3和上盖15-7;所述罐体15-1为圆柱形罐体,罐体15-1上端开口处设有所述上盖15-7,罐体内下部设有圆柱形的所述支撑架15-2;所述支撑架15-2的外径与所述罐体15-1的内径配合设置;所述 网箱15-4为设于所述罐体15-1内的圆柱形结构,网箱15-4上端设有网盖15-5,网箱15-4内设有去离子交换树脂15-3,网箱15-4底面边沿设置于所述支撑架15-2上面;在网箱15-4上方的所述罐体15-1侧面设有进水管15-8,在所述上盖15-7中心位置的通孔中设有出水管15-6,所述出水管15-6下端伸至去所述离子交换树脂15-3中;所述出水管15-6与所述上盖15-7中心的通孔之间设置有密封环15-9;去离子交换树脂15-3设置于网箱15-5中,需要更换去离子交换树脂15-3时,打开上盖15-7,提出网箱15-4,即可完成更换去离子交换树脂15-3的工作,方便,快捷;去离子交换树脂罐15整体结构简单,成本低廉,方便维修。
(1)本公开实施例提供的技术方案,采用的支架为环氧支架,支架内包裹高频变压器,外环绕支撑高压侧模块、低压侧模块,其环形布置,使变压器结构更紧凑、统一、功能化结构具有独特性和创新性;进一步地,支架为环氧支架,克服了由于高频变压器铁芯及线圈自重较重,浇筑后环氧树脂固化成型难度大、形变难以保证的问题;同时,保障了电力电子变压器整体结构的绝缘要求,大大提高了产品的成品率。
(2)本公开实施例提供的技术方案,采用液体冷却管串、并联的混合设计,使接头数量最少,漏水渗水概率小、整体性更强的优势。
(3)本公开实施例提供的技术方案,采用高压侧模块、低压侧整流模块与变压器间通过铜包铝母线搭接,具有节约成本、适于高频工况的特点。
(4)本公开实施例提供的技术方案,高压侧整流模块采用全控器件将整流、逆变功能集成体积更小。
(5)本公开实施例提供的技术方案,采用的去离子交换树脂灌,在需要更换去离子交换树脂时,打开上盖,提出网箱,即可完成更换去离子交换树脂的工作,方便,快捷;整体结构简单,成本低廉,方便维修。
以上仅为本公开的实施例而已,并不用于限制本公开,凡在本公开的精 神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本公开的权利要求范围之内。

Claims (10)

  1. 一种电力电子变压器结构,所述变压器结构包括:支架、高频变压器、基座、高压侧模块和低压侧模块,
    所述高压侧模块分别位于所述支架的前部、顶部和后部;
    所述低压侧模块位于所述支架底部;
    所述高频变压器位于所述支架中部。
  2. 如权利要求1所述的一种电力电子变压器结构,其中,
    所述高压侧模块与所述高频变压器间之间通过搭接的铜排连接;
    所述低压侧模块与所述高频变压器间的连接为搭接铜排连接;
    所述铜排为铜包铝母线。
  3. 如权利要求1所述的一种电力电子变压器结构,其中,
    所述高频变压器和所述高压侧模块及所述低压侧模块,均分别设有冷却回路;
    所述高频变压器的冷却回路,分别与所述高压侧模块的冷却回路及所述低压侧模块的冷却回路并联;
    所述高压侧模块的冷却回路与所述高压侧模块及所述低压侧模块串联设置。
  4. 如权利要求1所述的一种电力电子变压器结构,其中,
    所述支架为“井”字形,所述高频变压器设于所述井字形支架的内侧,且所述高频变压器外侧与构成所述井字形支架四个构件的内侧相切。
  5. 如权利要求3所述的一种电力电子变压器结构,其中,
    所述冷却回路为冷却水路,所述冷却回路里的水为经去离子水系统处理的去离子水;所述高频变压器的冷却回路,与所述高压侧模块的冷却回路及低压侧模块的冷却回路为冷却水流量相同的水路。
  6. 如权利要求5所述的一种电力电子变压器结构,其中,
    所述高压侧模块及低压侧模块均分别包括:屏蔽壳、驱动板卡、功率器件和与所述冷却回路连接的水冷散热板;所述水冷散热板的进、出口设有电极;
    所述电极包括按质量百分比计的下述组份制得:P为0.02%、Mn为0.11%、Si为0.282%、Cr为25%、Ni为18%、Mo为0.293%、Cu为0.121%、Ti为0.0015%。
  7. 如权利要求1所述的一种电力电子变压器结构,其中,
    所述低压侧模块通过光纤驱动和控制所述高压侧模块。
  8. 如权利要求1所述的一种电力电子变压器结构,其中,
    高压侧整流模块及低压侧整流模块,分别通过固定件与所述支架固定连接;
    所述支架通过紧固件与所述高频变压器紧固连接,所述紧固件通过等电位线与所述高频变压器的铁芯或线圈连接。
  9. 如权利要求1所述的一种电力电子变压器结构,其中,
    所述支架和基座由环氧材料制得。
  10. 如权利要求1至9任一项所述的电力电子变压器结构,其中,
    所述电力电子变压器结构包括:将N个所述电力电子变压器串联;
    所述电力电子变压器在高压侧通过串联后首端接入交流电网,末端接入直流电网的阀结构;
    所述高压侧模块,用于通过内部的全控器件将网侧电流整流、逆变成为高频电流注入所述高频变压器;其中,高频电流经所述高频变压器后,通过低压侧整流模块变为低压直流;
    所述低压直流,用于提供直流负载供电。
PCT/CN2019/074474 2018-02-13 2019-02-01 电力电子变压器结构 WO2019157993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/310,326 US20220093313A1 (en) 2018-02-13 2019-02-01 Power electronic transformer structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810149716.6A CN110164649A (zh) 2018-02-13 2018-02-13 一种电力电子变压器结构
CN201810149716.6 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157993A1 true WO2019157993A1 (zh) 2019-08-22

Family

ID=67619144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074474 WO2019157993A1 (zh) 2018-02-13 2019-02-01 电力电子变压器结构

Country Status (3)

Country Link
US (1) US20220093313A1 (zh)
CN (1) CN110164649A (zh)
WO (1) WO2019157993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666039A (zh) * 2023-06-18 2023-08-29 江苏北辰互邦电力股份有限公司 一种防腐蚀效果好的海上风电变压器及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202534468U (zh) * 2012-03-08 2012-11-14 上海东普电器制造有限公司 叠合式复合体化水冷模块
CN105304267A (zh) * 2015-11-25 2016-02-03 北京金自天正智能控制股份有限公司 一种纳米非晶合金高频脉冲变压器及其应用
CN105428045A (zh) * 2015-12-21 2016-03-23 银川欣安瑞电气有限公司 高频水冷变压器
CN107659196A (zh) * 2017-11-13 2018-02-02 国网江苏省电力公司南通供电公司 三端口电力电子变压器
CN208225644U (zh) * 2018-02-13 2018-12-11 全球能源互联网研究院有限公司 一种电力电子变压器结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537074A (en) * 1993-08-24 1996-07-16 Iversen; Arthur H. Power semiconductor packaging
US5331536A (en) * 1992-11-05 1994-07-19 Opt Industries, Inc. Low leakage high current transformer
US7295448B2 (en) * 2004-06-04 2007-11-13 Siemens Vdo Automotive Corporation Interleaved power converter
US8902622B2 (en) * 2010-10-06 2014-12-02 Mitsubishi Electric Corporation Power supply apparatus
TWI628908B (zh) * 2012-12-10 2018-07-01 澳大利亞商艾克西弗洛克斯控股私營有限公司 具有整合式差速器之電動馬達/發電機
US9943016B2 (en) * 2014-11-04 2018-04-10 Ge Aviation Systems Llc Cooling structure
JP2023531343A (ja) * 2020-04-29 2023-07-24 ゼネラル・エレクトリック・カンパニイ より高い電力密度、より小さなサイズ、および絶縁された電力ポートを有する電力電子ビルディングブロック(pebb)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202534468U (zh) * 2012-03-08 2012-11-14 上海东普电器制造有限公司 叠合式复合体化水冷模块
CN105304267A (zh) * 2015-11-25 2016-02-03 北京金自天正智能控制股份有限公司 一种纳米非晶合金高频脉冲变压器及其应用
CN105428045A (zh) * 2015-12-21 2016-03-23 银川欣安瑞电气有限公司 高频水冷变压器
CN107659196A (zh) * 2017-11-13 2018-02-02 国网江苏省电力公司南通供电公司 三端口电力电子变压器
CN208225644U (zh) * 2018-02-13 2018-12-11 全球能源互联网研究院有限公司 一种电力电子变压器结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116666039A (zh) * 2023-06-18 2023-08-29 江苏北辰互邦电力股份有限公司 一种防腐蚀效果好的海上风电变压器及其使用方法
CN116666039B (zh) * 2023-06-18 2023-11-03 江苏北辰互邦电力股份有限公司 一种防腐蚀效果好的海上风电变压器及其使用方法

Also Published As

Publication number Publication date
CN110164649A (zh) 2019-08-23
US20220093313A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2019157993A1 (zh) 电力电子变压器结构
CN202889177U (zh) 一种水冷型大功率高频开关电源装置
CN207098929U (zh) 以水冷散热基板为基准的列车供电功率模块
CN208225644U (zh) 一种电力电子变压器结构
CN206117530U (zh) 一种高频整流装置
CN102957302A (zh) 一种水冷型大功率高频开关电源装置
CN201466976U (zh) 一体化高频整流装置
CN206349934U (zh) 一种低高度平板电源
CN110198129A (zh) 一种大功率同步整流高频开关电源
CN209962841U (zh) 一种智能升压站
CN210325444U (zh) 一种油浸式变压器的冷却装置
CN208209797U (zh) 一种基于多介质热交换散热的开关型微波高压电源
CN206698097U (zh) 一种节能快速氧化的高频开关电源
CN207490767U (zh) 一种变频器
CN208521752U (zh) 一种变压器用循环且过滤式冷却装置
CN106301008B (zh) 一种水冷变频器整流模块结构
CN206941004U (zh) 一种生箔机用直流电源与生箔机的安装结构
CN108111029B (zh) 一种饱和电抗器集中布置的换流阀塔
CN206451571U (zh) 一种新型高频配电变压器
CN106685241B (zh) 新型h桥逆变器
US11515803B2 (en) Isolated power converter and hydrogen production system
CN218384751U (zh) 一种电源水冷变压器
CN216721188U (zh) 一种高压三相交流电的整流机组柜
CN220830394U (zh) 一种用于直流单晶炉的配电整流柜系统
CN220604461U (zh) 一种变压器的散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19755230

Country of ref document: EP

Kind code of ref document: A1