WO2019157918A1 - 数据包传输、资源分配方法及装置、数据传输方法、终端 - Google Patents

数据包传输、资源分配方法及装置、数据传输方法、终端 Download PDF

Info

Publication number
WO2019157918A1
WO2019157918A1 PCT/CN2019/072829 CN2019072829W WO2019157918A1 WO 2019157918 A1 WO2019157918 A1 WO 2019157918A1 CN 2019072829 W CN2019072829 W CN 2019072829W WO 2019157918 A1 WO2019157918 A1 WO 2019157918A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
logical channel
data replication
replication
information
Prior art date
Application number
PCT/CN2019/072829
Other languages
English (en)
French (fr)
Inventor
陈琳
卢有雄
黄莹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019157918A1 publication Critical patent/WO2019157918A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of communications, and in particular to a data packet transmission, resource allocation method and apparatus, data transmission method, and terminal.
  • the current interface between the transmitting end and the receiving end of the PC5 bearer/packet Data Convergence Protocol (PDCP) entity/radio control (Radio Link Control, RLC for short) entity is the UE's own data packet.
  • the arrival situation is created as long as the bearer and the corresponding PDCP entity/RLC entity/logical channel are in the source identifier and the target identifier range is unique.
  • the bearer supporting data replication corresponds to one PDCP entity, two RLC entities, and two logical channels.
  • the original data packet and the duplicate data packet are processed by the PDCP layer, and then delivered to two transmitting RLC entities/logical channels respectively, and further passed through the media access control (Media Access).
  • Media Access Media Access
  • Control referred to as MAC
  • the receiving UE does not know which sidelink logical channels support the replication duplication and corresponds to which PDCP entity, so that the receiving UE will create two independent RLC receiving entities/logical channels/PDCP entities.
  • the two independent RLC receiving entities/logical channels/PDCP entities respectively sort and assemble the received data packets and then deliver them to the upper layer. This causes the high-level to receive a large number of duplicated packets.
  • the embodiments of the present invention provide a data packet transmission, resource allocation method and device, a data transmission method, and a terminal, so as to solve at least the problem in the related art that the logical channel cannot be distinguished from the replication duplication and the PDCP entity.
  • a data packet transmission method including: assembling a data packet including data replication information; and transmitting a data packet including data replication information.
  • a data packet transmission method comprising: receiving a data packet including data replication information; and processing the data packet according to the data replication information.
  • a data transmission method including: transmitting resource request assistance information to a base station; receiving resource allocation information; and performing data transmission according to the resource allocation information.
  • a resource allocation method including: receiving resource request assistance information sent by a terminal; and allocating a data transmission resource to the terminal according to the auxiliary information.
  • a data packet transmission apparatus comprising: an assembly module configured to assemble a data packet containing data replication information; and a transmission module configured to transmit a data packet including data replication information.
  • a data packet transmission apparatus comprising: a receiving module configured to receive a data packet including data copy information; and a processing module configured to process the data packet according to the data copy information.
  • a terminal including: a sending module, configured to send resource request assistance information to a base station; a receiving module configured to receive resource allocation information; and a transmission module configured to allocate according to the resource Information is transmitted for data.
  • a resource allocation apparatus including: a receiving module, configured to receive resource request assistance information sent by a terminal; and an allocation module configured to allocate data transmission to the terminal according to the auxiliary information Resources.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to run the computer program to perform any of the above The steps in the method embodiments.
  • a data packet containing data copy information is assembled; a data packet containing data copy information is transmitted. Since the assembled data packet includes the data replication information, the receiving side can distinguish whether the logical channel supports the replication duplication and the PDCP entity according to the data replication information in the received data packet, and does not need to create two independent RLC receiving entities/ The logical channel/PDCP entity avoids the high-level receiving a large number of repeated out-of-order packets.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal of a data packet transmission method according to an embodiment of the present invention
  • FIG. 2 is a flowchart 1 of a data packet transmission method according to an embodiment of the present invention.
  • FIG. 3 is a second flowchart of a data packet transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram 1 of LCID allocation and indication according to an embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of LCID allocation and indication according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram 3 of LCID allocation and indication according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a V2X communication scenario according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a resource allocation method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a logical channel and a set of available frequency points according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram 1 of SL auxiliary information and BSR reporting according to an embodiment of the present invention.
  • FIG. 12 is a second schematic diagram of SL auxiliary information and BSR reporting according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram 3 of SL auxiliary information and BSR reporting according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of multi-carrier SL SPS transmission according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of carrier selection and handover according to an embodiment of the present invention.
  • 16 is a block diagram 1 of a structure of a data packet transmission apparatus according to an embodiment of the present invention.
  • 17 is a structural block diagram 2 of a data packet transmission apparatus according to an embodiment of the present invention.
  • FIG. 18 is a structural block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 19 is a structural block diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal of a data packet transmission method according to an embodiment of the present invention.
  • mobile terminal 10 may include one or more (only one shown in FIG. 1) processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. And a memory 104 configured to store data.
  • the mobile terminal may further include a transmission device 106 configured as a communication function and an input and output device 108.
  • FIG. 1 is merely illustrative, and does not limit the structure of the above mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 may be configured to store a computer program, such as a software program of the application software and a module, such as a computer program corresponding to the data packet transmission method in the embodiment of the present invention, and the processor 102 runs the computer program stored in the memory 104, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 104 may include high speed random access memory and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 2 is a flowchart 1 of a data packet transmission method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 assembling a data packet including data replication information
  • Step S204 transmitting a data packet containing data replication information.
  • the assembled data packet contains data replication information
  • the receiving side after receiving the data packet received by the receiving side, it can distinguish whether the logical channel supports the replication duplication and the PDCP entity corresponding to the data replication information, and does not need to create two independent sets.
  • the RLC receives the entity/logical channel/PDCP entity, avoiding the high-level receiving a large number of repeated out-of-order packets.
  • the data replication information includes at least one of: a mapping relationship of two or more logical channel identifiers for data replication; a data replication indication, wherein the data replication indication is used to indicate whether the logical channel of the data is data replication. Logical channel or whether there is a corresponding logical channel for data replication.
  • assembling the data packet including the data replication information includes: establishing two or more data replication logical channels for the data that needs data replication, and assigning a logical channel identifier; in the logical channel prioritization process, the media access control MAC entity assembly includes the data.
  • a packet that replicates information includes: establishing two or more data replication logical channels for the data that needs data replication, and assigning a logical channel identifier; in the logical channel prioritization process, the media access control MAC entity assembly includes the data.
  • a packet that replicates information includes: establishing two or more data replication logical channels for the data that needs data replication, and assigning a logical channel identifier; in the logical channel prioritization process, the media access control MAC entity assembly includes the data.
  • a packet that replicates information includes: establishing two or more data replication logical channels for the data that needs data replication, and assigning a logical channel identifier; in the logical channel prioritization process, the media access control MAC entity assembly includes the data.
  • two or more data replication logical channels are established for data that requires data replication, and the logical channel identifier is allocated, including at least one of: assigning different logical channel identifiers to more than two data replication logical channels; When establishing two data replication logical channels, assigning a logical channel identifier to the first data replication logical channel of the two data replication logical channels, and assigning only one of the second data replication logical channels of the two data replication logical channels.
  • Logical channel identifier visible on the transmitting side where only the logical channel identifier visible on the transmitting side is within the range of available logical channel identifiers or not within the range of available logical channel identifiers; two are created for data requiring data replication
  • the same logical channel identifier is assigned to the two data replication logical channels, and the data replication indication is added to the second data replication logical channel; the first data replication logical channel is copied for the two or more data replication logical channels.
  • n Assign a logical channel identifier n to two
  • assembling the data packet including the data replication information includes at least one of: carrying the same logical channel identifier on a MAC subheader corresponding to data including two or more data replication logical channels; and including the first data replication logic
  • the data replication indication carried on the MAC subheader corresponding to the data of the channel is 0, and the data replication indication carried on the MAC subheader corresponding to the data including the data replication second logical channel is 1;
  • the MAC sub-header corresponding to the data of the other data replication logical channel except the logical channel carries the corresponding channel identifier, and also includes the logical channel identifier corresponding to the first data replication logical channel;
  • the data control unit CE includes the data replication More than one data replication logical channel identifier of the logical channel; carrying a data replication indication on the MAC subheader corresponding to the data including the first data replication logical channel.
  • FIG. 3 is a flowchart 2 of a data packet transmission method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps. :
  • Step S302 receiving a data packet including data replication information
  • Step S304 processing the data packet according to the data replication information.
  • the data replication information includes at least one of: a mapping relationship of two or more logical channel identifiers for data replication; a data replication indication, wherein the data replication indication is used to indicate whether the logical channel of the data is data replication. Logical channel or whether there is a corresponding data replication logical channel.
  • processing the data packet according to the data replication information includes: determining, according to the logical channel identifier and/or the data replication information of the MAC sub-header of the data packet, whether the logical channel corresponding to the logical channel identifier exists; and when the determination result is no, establishing The logical channel identifies the corresponding logical channel and the RLC entity, and establishes or associates with the corresponding packet data convergence protocol PDCP entity according to the data replication information; after the data packet is delivered to the corresponding logical channel, passes through the radio link control protocol RLC entity and the PDCP entity. deal with.
  • establishing or associating the corresponding PDCP entity according to the data replication information includes: determining, according to the mapping relationship of the two or more logical channel identifiers for data replication in the data replication information, that two or more data replication logical channels are allocated differently a logical channel identifier; determining whether a PDCP entity corresponding to a logical channel identifier other than the logical channel identifier corresponding to the data is established in the two or more logical channel identifiers; and if the judgment result is yes, the PDCP entity is associated; Otherwise, establish a PDCP entity.
  • establishing or associating the corresponding PDCP entity packet according to the data replication information includes: according to the data replication indication and the logical channel identifier in the data replication information, the logical channel is a logical channel used for data replication; determining the original for data replication Whether the PDCP entity corresponding to the PDCP entity corresponding to the data is established or used for data replication is established; when the judgment result is yes, the PDCP entity is associated; when the judgment result is no, the PDCP entity is established.
  • the establishing or associating the corresponding PDCP entity according to the data replication information includes: determining, according to the data replication indication and the logical channel identifier in the data replication information, the related data replication logical channel identifier, where the logical channel identifier associated with the logical channel identifier For the identifier of the logical channel identifier n or (n+m) mod k, n is a positive integer; according to the logical channel identifier, it is determined whether a PDCP entity corresponding to the logical channel identifier associated with the logical channel identifier has been established; When the PDCP entity is associated; when the judgment result is no, the PDCP entity is established.
  • the following two logical channels are taken as an example, and the receiving end and the transmitting end are described by taking the UE as an example.
  • the receiving UE needs to know that a certain transmission original data logical channel identification ID and its corresponding duplicate data packet logical channel identifier are possible to bind the two to the same PDCP receiving entity.
  • the transmitting UE needs to broadcast and transmit the mapping relationship between the original data and the logical channel corresponding to the duplicated data to the receiving UE, so that the receiving UE can distinguish the relationship between the original original and the duplicated logical channel, and perform correct unpacking. deal with. Specifically, you can consider the following possible implementations:
  • FIG. 4 is a schematic diagram 1 of LCID allocation and indication according to an embodiment of the present invention.
  • an application server Application Server, abbreviated as AS
  • AS Application Server
  • the reliability has higher requirements (such as the Packet Error Rate (PER) corresponding to the packet is lower than a pre-configured PER threshold, or the reliability level is higher than a pre-configured reliability level. Threshold), UE1 triggers SL transmission based on data replication.
  • PER Packet Error Rate
  • UE1 creates a bearer supporting data replication, including one PDCP entity, two RLC entities, and two logical channels.
  • the UE allocates the same logical channel identifier (LCID) 1 to the two logical channels, but adds additional data replication indication information to the logical channel storing the duplicate data packet, and is used to distinguish the logical channel storing the original data packet. , here can be referred to as LCID 1 '.
  • LCID 1 logical channel identifier
  • the MAC layer schedules data transmission, the data packet of the logical channel LCID 1 is transmitted by the component carrier (Component Carrier, CC for short) 1, and the data packet of the logical channel LCID 1' is transmitted by CC2.
  • Component Carrier Component Carrier
  • the LCID field is set to 1, and the copy indication field is set to 1, where the copy indication field is used to indicate that the LCID corresponds to the logical channel of the duplicate data packet.
  • the LCID field is set to 1
  • the copy indication field is set to 0.
  • the copy indication field indicates that the LCID corresponds to the logical channel of the original data packet.
  • UE1 transmits the MAC PDU containing the original and duplicate data packets of LCID 1 on CC1 and CC2.
  • the UE2 around UE1 successively receives the MAC PDUs transmitted on CC1 and CC2. It is assumed that UE2 first receives the MAC PDU on CC1, and UE2 judges that the data packet needs to be delivered to the LCID corresponding to the source and target identifier according to the source and destination identifier fields of the SL-SCH subheader and the LCID field of the MAC PDU subheader.
  • a logical channel of 1 if the logical channel already exists, UE2 delivers the MAC SDU to the corresponding RLC receiving entity.
  • UE2 establishes a logical channel with an LCID of 1, and a corresponding RLC entity and a PDCP entity. The received MAC SDU is then delivered to the corresponding RLC receiving entity.
  • UE2 receives the MAC PDU on CC2, and UE2 determines, according to the source and destination identifier fields of the SL-SCH subheader and the LCID field of the MAC PDU subheader, that the data packet needs to be delivered to the LCID corresponding to the source and target identifier ranges.
  • a logical channel of 1, further, UE2 determines, according to the copy indication field, that the MAC SDU corresponds to a duplicate data packet logical channel.
  • the UE2 If the UE2 has not created the duplicate data logical channel LCID1' corresponding to the LCID1 data, the UE2 establishes a duplicate data logical channel with the LCID of 1 and the corresponding RLC entity, and the PDCP entity can directly multiplex the PDCP corresponding to the original data logical channel with the LCID of 1. The entity then delivers the received MAC SDU to the RLC receiving entity corresponding to the logical channel of the replicated data. The UE2 processes the data packets according to the original data and the RLC entities of the logical data logical channels, and then processes the data packets to the public PDCP entity for sorting and discarding the duplicate data packets.
  • the data is further delivered to the upper layer for processing.
  • the PDCP receiving entity since two RLC receiving entities are associated with the same PDCP receiving entity, the PDCP receiving entity uniformly performs sorting and discards duplicate data packets, thereby avoiding the high-level receiving a large number of repeatedly out-of-order packets.
  • the above scheme may also have various changes, such as data replication indication by a logical channel storing the original data packet instead of copying the data packet.
  • one logical channel may be assigned a normal logical channel identifier (as allocated in the range of 00001-01010), and the second logical channel may be assigned an arbitrary logical channel only visible to UE1. Mark (as selected in the range of 01011-11011).
  • the LCID field in the MAC PDU subhead corresponding to the second logical channel data is consistent with the LCID of the first logical channel, but the copy indication field of the MAC PDU subheader is set to 1.
  • the receiving UE2 After receiving the MAC PDU, the receiving UE2 detects that the copy indication field of the corresponding MAC PDU subheader is set to 1, the UE2 creates a duplicate data logical channel (if the corresponding logical channel has not been created) and the corresponding RLC receiving entity,
  • the LCID can allocate an arbitrary logical channel identifier that is visible only to UE2 (as selected in the range of 01011-11011), and the PDCP entity multiplexes the PDCP receiving entity corresponding to the LCID1 logical channel.
  • FIG. 5 is a schematic diagram 2 of LCID allocation and indication according to an embodiment of the present invention.
  • the AS layer of the transmitting end UE1 receives a data packet from a high layer, and the data packet has high reliability requirements, and the UE1 trigger is based on SL transfer of data replication. If the corresponding PDCP entity/RLC entity/logical channel has not been created, UE1 creates a bearer supporting data replication, including one PDCP entity, two RLC entities, and two logical channels.
  • the logical channel identifiers assigned by the UE to the two logical channels are 1 and 2, respectively corresponding to the logical channels storing the original data packets and the duplicate data packets.
  • the data packet of the logical channel LCID 1 is transmitted through CC1, and the data packet of the logical channel LCID 2 is transmitted through CC2.
  • the LCID field is set to 2
  • the data replication peer logical channel field is set to 1, that is, the logical channel identifier corresponding to LCID1.
  • the LCID field is set to 1
  • the data replication peer logical channel field is set to 2.
  • UE1 sends a MAC PDU containing LCID 1 and LCID2 logical channel data on CC1 and CC2.
  • the UE2 around UE1 successively receives the MAC PDUs transmitted on CC1 and CC2. It is assumed that UE2 first receives the MAC PDU on CC1, and UE2 judges that the data packet needs to be delivered to the LCID corresponding to the source and target identifier according to the source and destination identifier fields of the SL-SCH subheader and the LCID field of the MAC PDU subheader.
  • UE2 delivers the MAC SDU to the corresponding RLC receiving entity, and if the logical channel has not been established, UE2 establishes a logical channel with an LCID of 1 in the source identifier and the target identifier range and The corresponding RLC receiving entity and the PDCP receiving entity then deliver the received MAC SDU to the corresponding RLC receiving entity. It should be noted that, before establishing the PDCP receiving entity, the UE2 needs to further copy the logical channel corresponding to the logical channel field of the peer according to the data of the MAC PDU sub-head, that is, whether the LCID has been established within the corresponding source identifier and the target identifier range.
  • UE2 can directly multiplex the PDCP receiving entity without establishing a new PDCP receiving entity for the logical channel of LCID1.
  • UE2 receives the MAC PDU on CC2, and UE2 determines, according to the source and destination identifier fields of the SL-SCH subheader and the LCID field of the MAC PDU subheader, that the data packet needs to be delivered to the LCID corresponding to the source and target identifier ranges.
  • a logical channel of 2 further, the UE2 determines, according to the data replication peer logical channel field, that the logical channel corresponding to the MAC SDU is LCID1. If the UE2 has not created a logical channel corresponding to the LCID2, the UE2 establishes a duplicate data logical channel with an LCID of 2 and a corresponding RLC entity, and the PDCP entity may directly multiplex the PDCP entity corresponding to the logical channel of the LCID1, and then deliver the received MAC SDU. The RLC receiving entity corresponding to the LCID2 logical channel.
  • the RLC entities corresponding to the LCID1 and LCID2 logical channels independently process the data packets, and then deliver the data packets to the common PDCP entity for sorting and discarding the duplicate data packets. After the PDCP layer processing is completed, the data is further delivered to the upper layer for processing.
  • the PDCP receiving entity since two RLC receiving entities are associated with the same PDCP receiving entity, the PDCP receiving entity uniformly performs sorting and discards duplicate data packets, thereby preventing the upper layer from receiving a large number of repeatedly out-of-order packets.
  • FIG. 6 is a schematic diagram 3 of LCID allocation and indication according to an embodiment of the present invention.
  • the two logical channel identifiers corresponding to the data copy are 1 and 2, respectively.
  • the MAC PDU sub-header corresponding to the MAC SDU with the LCID of 1 is assembled on the CC1.
  • the LCID indication carried by the MAC PDU sub-header is 1 and the data replication indication is 1, and the LCID indication carried by the MAC PDU sub-head corresponding to the MAC SDU with the LCID of 2 is assembled on the CC2. 2, the data copy indication is 0.
  • the UE2 first receives the data packet sent by the CC1, and determines that the data replication logical channel corresponding to the LCID1 is LCID2 according to the data replication indication and the system default/pre-configuration rule.
  • the PDCP receiving entity corresponding to the LCID2 logical channel multiplexes the PDCP receiving entity corresponding to the LCID1 logical channel.
  • the solution in the embodiment of the present invention can be applied to the Internet of Vehicles.
  • the following describes the car network accordingly.
  • the so-called car network is that vehicles can participate in wireless communication, through the use of advanced wireless cellular communication technology, real-time information interaction between the car and the car, the car and the roadside infrastructure, to inform each other's current status (including the location of the vehicle) , speed, acceleration, driving route) and learned road environment information, collaboratively aware of road hazard conditions, timely provide a variety of collision warning information to prevent road traffic safety accidents.
  • V2V Vehicle-to-Vehicle Communications
  • V2I Vehicle-to-Infrastructure Communications
  • Vehicle-to Vehicle-to-Vehicle communication
  • V2X Vehicle-to-Everything
  • the transmission of car networking information includes broadcast, multicast and unicast.
  • D2D UE-to-UE direct discovery/communication
  • MBSFN Multicast Broadcast Single Frequency based on multicast broadcast Single Frequency Network
  • SC-PTM Single Cell Point to Multipoint
  • FIG. 7 is a schematic diagram of a V2X communication scenario according to an embodiment of the present invention, as shown in FIG.
  • Scenario 1 this scenario supports SL5 (Sidelink) V2X communication based on PC5.
  • the UE sends a V2X message to one or more UEs through the PC5 interface.
  • this scenario supports U2 port-based V2X communication.
  • the UE uplink transmits a V2X message to the base station, and the base station downlinks the V2X message to one or more UEs in the local area.
  • scenario 3 can be further divided into scenario 3a and scenario 3b, which supports V2V communication using Uu and PC5 interfaces.
  • the UE sends a V2X message to the terminal type remote user unit (Remote Subscriber Unite, RSU for short) through the PC5 interface.
  • the terminal type RSU After receiving the V2X message from the PC5 interface, the terminal type RSU transmits the V2X message to the radio access network.
  • the radio access network downlinks the V2X message received from the terminal type RSU to one or more UEs in the local area.
  • the UE uplinks the V2X message to the radio access network, and the radio access network transmits the V2X message to the one or more terminal type RSUs after receiving the V2X message from the Uu interface, and the terminal type RSU receives the radio access network from the radio access network.
  • the incoming V2X message is sent to one or more UEs in the local area through the PC5 interface.
  • the present invention focuses on a communication mechanism for implementing car network message transmission based on the PC5 interface.
  • the sidelink communication supports two resource allocation modes: 1) Scheduled resource allocation (also referred to as mode 3). In this mode, the UE needs to enter a (Radio Resource Control, RRC for short) connection state, and the base station is The UE allocates a dedicated transmission resource; 2) UE autonomous resource selection (also referred to as mode 4). In this manner, the UE selects resources autonomously from the resource pool based on sensing, which can be used in the IDLE state or CONNECTED. State UE.
  • Scheduled resource allocation also referred to as mode 3
  • RRC Radio Resource Control
  • UE autonomous resource selection also referred to as mode 4
  • the UE needs to support sidelink transmission and reception of data on multiple carriers.
  • Each car network data corresponds to one car network service type
  • each car network service type corresponds to one layer 2 target identifier
  • a certain car network service type is associated with one or more available frequency points.
  • the UE may request resources from the base station by sending a sidelink buffer status report (BSR), which is based on the scheduled resource allocation (also referred to as mode 3).
  • BSR sidelink buffer status report
  • the Sidelink BSR contains the destination index, the logical channel group identifier, and the corresponding buffer size.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 8, the process includes the following steps:
  • Step S802 sending resource request assistance information to the base station
  • Step S804 receiving resource allocation information
  • Step S806 performing data transmission according to the resource allocation information.
  • the base station can allocate resource information to the terminal according to the auxiliary information, so that the terminal can perform data transmission according to the allocated resources.
  • receiving the resource allocation information includes: receiving resource allocation information that is sent by the base station in response to the resource request assistance information.
  • the method before sending the resource request assistance information to the base station, the method further includes: acquiring at least one of the following information corresponding to the data: a set of available frequency points, a priority PPPP of each adjacent service data packet, a reliability PPPR, and a target identification information. Establishing a corresponding logical channel or logical channel group according to the set of available frequency points and/or PPPP and/or PPPR and/or target identification information;
  • the logical channel included in the logical channel group has the same available frequency point.
  • the auxiliary information includes: a data target identifier.
  • the auxiliary information further includes: one or more logical channel identifiers corresponding to each target identifier.
  • the target identifier information further includes at least one of the following: a logical channel group identifier corresponding to the logical channel, a set of available frequency points, a priority PPPP of each adjacent service data packet, and a reliability PPPR.
  • the auxiliary information includes at least one of the following: an available frequency point list, a data replication indication, a data packet expected transmission period, a relative time offset of the data packet expected transmission, a reliability PPPR, and a maximum data packet size.
  • FIG. 9 is a flowchart of a resource allocation method according to an embodiment of the present invention. As shown in FIG. 9, the process includes the following steps:
  • Step S902 receiving resource request assistance information sent by the terminal
  • Step S904 allocating a data transmission resource to the terminal according to the auxiliary information.
  • the auxiliary information includes: a data target identifier.
  • the auxiliary information further includes: one or more logical channel identifiers corresponding to each target identifier.
  • the target identifier information further includes at least one of the following: a logical channel group identifier corresponding to the logical channel, a set of available frequency points, a priority PPPP of each adjacent service data packet, and a reliability PPPR.
  • the auxiliary information includes at least one of the following: an available frequency point list, a data replication indication, a data packet expected transmission period, a relative time offset of the data packet expected transmission, a reliability PPPR, and a maximum data packet size.
  • allocating the data transmission resource to the terminal according to the auxiliary information comprises: receiving a buffer status report and/or auxiliary information sent by the terminal; and allocating the data transmission resource to the terminal according to the buffer area information and/or the auxiliary information.
  • Each car network data corresponds to a type of car network service, and each car network service type corresponds to a layer 2 target identifier.
  • each type of car network service is associated with one or more available frequency points.
  • the Mode3 UE can request resources from the base station by sending a sidelink BSR.
  • the Sidelink BSR contains the destination index, the logical channel group identifier, and the corresponding buffer size.
  • data duplication and data split are introduced, different data packets correspond to different available frequency points.
  • an embodiment of the present invention provides an option for how the UE requests resources from the base station and how the base station appropriately allocates resources at each frequency point, as follows:
  • the data packets are delivered to different Logical channel. That is, when creating a logical channel, the UE considers not only the source identifier but also the target identifier range, and also needs to consider the PPPP information and the available frequency information and or the reliability (ProSe Per-Packet Reliability, PPPR for short) information.
  • 10 is a schematic diagram of a set of logical channels and available frequency points according to an embodiment of the present invention. As shown in FIG.
  • logical channels corresponding to different available frequency points are associated with different logical channel groups, that is, Given a logical channel group, the logical frequencies it contains correspond to the same available frequency points.
  • FIG. 11 is a schematic diagram of SL auxiliary information and BSR reporting according to an embodiment of the present invention. As shown in FIG. 11, the UE reports a target identifier to a base station, and corresponding to each target identifier, further includes each logical channel identifier in the target identifier range. .
  • the BSR may include a buffer index and a corresponding buffer size, where the buffer index corresponds to the index corresponding to the auxiliary information report data, and each index uniquely corresponds to a target identifier and a logical channel identifier combination.
  • the base station After receiving the foregoing resource request assistance information and the SL BSR including the buffer index and the buffer size, the base station learns the available frequency points, buffer sizes, and priorities corresponding to each logical channel (according to the logical channel identifier corresponding to the logical channel) And the priority information corresponding to the logical channel group), so that the UE1 can be allocated a resource on the appropriate carrier for the SL transmission of the UE1.
  • FIG. 12 is a schematic diagram 2 of SL auxiliary information and BSR reporting according to an embodiment of the present invention. As shown in FIG. 12, the UE reports to the base station target identification information that needs to be transmitted by the SL. Further, for each target identifier, each logical channel identifier included in the target identifier range is included.
  • a corresponding logical channel group identifier and or a set of available frequency points and or PPPR information are further included.
  • the BSR may include a target identifier, a logical channel identifier, and a corresponding buffer size.
  • the base station learns the available frequency points, buffer size and priority of each logical channel (according to the logical channel identifier corresponding to the logical channel and the priority corresponding to the logical channel group) Information), so that resources on the appropriate carrier can be allocated for UE1 scheduling for SL transmission of UE1.
  • FIG. 13 is a schematic diagram 3 of SL auxiliary information and BSR reporting according to an embodiment of the present invention.
  • mode3 UE1 a logical channel group, a logical channel, and a set of available frequency points as shown in FIG. 13 are created according to a data packet sent by a higher layer.
  • the transmitting UE1 may report the resource requesting auxiliary information to the base station.
  • the UE reports the target identification information that needs to perform the SL transmission to the base station.
  • each logical channel group identifier and the corresponding available frequency point set information within the target identifier range are reported.
  • the BSR may include a target identifier index, a logical channel group identifier, and a corresponding buffer size.
  • the base station learns the available frequency points, the buffer size, and the priority (according to the priority information corresponding to the logical channel group) corresponding to each logical channel group, so that the base station can schedule the UE1. Allocate resources on the appropriate carrier for SL transmission of UE1.
  • the Sidelink communication further supports the base station to configure a semi-persistent scheduling resource for the UE, and the R14V2X sends a semi-persistent scheduling (SPS) auxiliary message to the base station through the UE, which includes periodicity.
  • SPS semi-persistent scheduling
  • the indication information such as the offset, the data size, and the priority per pro service packet (PP) are used to assist the base station to allocate the SPS SL resource to the UE.
  • the base station needs to consider allocating the SPS resources on the available frequency points to the UE. This has not been achieved by the prior art.
  • the transmitting UE needs to report auxiliary information to help the base station to configure and activate the appropriate SPS process.
  • the UE assistance information may include the following: an estimated packet arrival period, an estimated packet arrival offset, a PPPP value, a MAC PDU size, and the like.
  • the auxiliary information reported by the UE to the base station may include an available carrier set and/or PPPR information, in addition to estimating the packet arrival period, estimating the packet arrival offset, the PPPP value, the MAC PDU size, and the like.
  • the base station may configure/activate SPS resources on the available carriers for the UE.
  • the UE may perform SL transmission on the corresponding carrier.
  • FIG. 14 is based on A schematic diagram of multi-carrier SL SPS transmission according to an embodiment of the present invention is shown in FIG. After receiving the above information, the base station selects two carriers from the set of available carriers to allocate/activate SPS resources for the UE. After receiving the SPS configuration and the SPS resource activation, the UE may perform SL transmission on the corresponding carrier.
  • the auxiliary information sent by the UE to the base station may include the UE selecting two available carrier information and a data copy indication.
  • the base station allocates/activates SPS resources for the UE on the two carriers.
  • the UE may perform SL transmission on the corresponding carrier.
  • the carrier selection of the UE includes two levels: selecting available carriers according to service type service type, PPPP, UE capability, Channel Busy Ratio (CBR).
  • the carrier implied here refers to a carrier set in which the UE can simultaneously perform sensing.
  • the UE's transmission resource selection depends on the sensing result of the UE.
  • the number of carriers that the UE can simultaneously perform sensing sensing is greater than the number of carriers that the UE can simultaneously transmit. Therefore, when performing carrier selection, a corresponding number of candidate frequency points can be configured for the V2X traffic in the UE according to the Rx chain restriction.
  • FIG. 15 is a schematic diagram of carrier selection and switching according to an embodiment of the present invention, as shown in FIG.
  • the UE in the connected state may send the available carrier information of interest to the base station, and the base station correspondingly configures the mode 4 or mode 4 transmission resource pool on the carriers for the UE.
  • the UE starts sensing and measuring the mode4 transmission resource pool on these carriers.
  • any of the following principles can be considered when selecting the sensing/measured carrier: 1) As far as possible, it can cover all V2X traffic flows, that is, at least one V2X traffic is included. The available carrier for flow. 2) If it is not guaranteed to cover each V2X traffic traffic, the available carriers corresponding to the V2X traffic with high priority may be preferred. 3) Generally speaking, the Tx UE also needs to perform sidelink reception. Therefore, the UE should also consider sidelink reception while selecting the sensing/measurement carrier. From the perspective of receiving as many sidelink messages as possible, the UE may prefer a high CBR value. Carrier.
  • the carrier is measured, and the CBR measurement result is reported to the AS layer for the UE to select an appropriate carrier.
  • the sensing result can be reported to the MAC layer for selecting the carrier.
  • H For carrier and resource selection, it can be divided into the following cases:
  • the carrier performs sidelink transmission.
  • the method is the most flexible, and is suitable for the UE to simultaneously send a V2X traffic scenario corresponding to multiple different available frequency point sets.
  • the UE's n Tx chains fixedly select n carriers for long-term (in seconds) for sidelink transmission: once this carrier is selected, it usually lasts for a long time, and the UE's Tx chain will continue. This carrier is sent on the carrier.
  • the number of Tx chains is the same as the number of carriers selected for sidelink transmission. Unless the carrier is overloaded, or there is no longer V2X traffic that needs to use this carrier, the other carriers will be reselected, and the Tx chain switch is required.
  • the timing of the carrier switch of the Tx chain has the following possibilities:
  • the UE's Tx chain begins to switch the switch to carrier f4 after carrier f1 sends the assembled MAC PDU.
  • the switch may take some time, after which the UE's Tx chain starts to work on carrier f4. on.
  • the dynamic scheduling rule can be used at this time, that is, all the sidelink processes corresponding to carrier f1 will process the assembled MAC PDUs. After the transmission is completed, the carrier is suspended, and the corresponding Hybrid Automatic Repeat reQuest (HARQ) process can suspend/reset/release.
  • HARQ Hybrid Automatic Repeat reQuest
  • the scheduling device of the UE needs to determine which carrier resources and which subframes the resources can be used for each MAC PDU to be assembled according to PPPP and CBR.
  • the UE selects a resource on a certain subframe of a certain carrier, it is further considered whether the subframe corresponds to the Tx chain switch time.
  • the UE needs to continue to perform carrier selection according to PPPP and CBR when assembling subsequent MAC PDUs.
  • the carrier may be the same or different from the carrier corresponding to the previous MAC PDU. If they are different, further consideration needs to be made on which subframes on the second carrier are selected.
  • the selected subframe overlaps with the first carrier, further consideration is needed to support such a support.
  • the bandwidth is combined with the band combination and whether it can meet the PSD requirements.
  • carrier reselection is triggered for each MAC PDU.
  • the UE scheduler reconsides which resources of which carrier of which carrier to use for transmission.
  • the UE allocates only one LCID for the logical channel corresponding to the data duplication, one is the logical channel 1 and the other is 1'.
  • the MAC of the MAC SDU assembled in the 1' corresponding logical channel The LCID contained in the subheader is 1, but the data duplication indication is added to the MAC subheader.
  • the receiving end can identify the data packet replication logical channel corresponding to the LCID1 according to the LCID and data duplication indication included in the MAC sub-header, thereby binding it to the PDCP receiving corresponding to the logical channel 1.
  • entity
  • the eNB determines the carrier selection, then 1) For dynamic resource scheduling, the UE reports to the base station which destination ids, corresponding logical channels, PPPPs, LCGIDs, and available frequency points for each logical channel, and subsequent UEs report sidelinks. The BSR reports the LCH index/buffer index/LCGID and the buffer size. 2) For the SPS resource scheduling, the auxiliary information reported by the UE to the base station needs to include the available frequency point set corresponding to each SPS auxiliary information, and the eNB allocates the available frequency points for the eNB. SPS resources on the frequency point.
  • the Tx chain For the carrier selection of the RRC layer, if the CBR change causes the selected carrier to change, the available carrier corresponding to the logical channel changes. In this case, a Tx chain needs to be triggered from the carrier f1switch to the newly selected carrier f5. For SPS type resource scheduling, it is possible that SL_RESOURCE_RESELECTION_COUNTER has not been reduced to zero. At this point, the Tx chain can wait until the Tx chain sends the already assembled MAC PDU to the carrier f1, starts switching to other carriers, or waits for all the sidelink processes corresponding to carrier f1 to send the assembled MAC PDU. Start switching to other carriers.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a data packet transmission device a terminal, and a resource allocation device are provided, which are used to implement the foregoing embodiments and preferred embodiments, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 16 is a block diagram showing the structure of a data packet transmission apparatus according to an embodiment of the present invention. As shown in FIG. 16, the apparatus includes:
  • the assembly module 162 is configured to assemble a data packet containing data replication information
  • the sending module 164 is connected to the assembling module 162 and configured to send a data packet containing data replication information.
  • the data replication information includes at least one of: a mapping relationship of two or more logical channel identifiers for data replication; a data replication indication, wherein the data replication indication is used to indicate whether the logical channel of the data is data replication. Logical channel or whether there is a corresponding logical channel for data replication.
  • the assembly module 162 is further configured to establish two or more data replication logical channels for the data that needs data replication, and allocate a logical channel identifier; in the logical channel prioritization process, the media access control MAC entity assembles the data replication information. data pack.
  • the assembly module 162 is further configured to allocate different logical channel identifiers for more than two data replication logical channels; or two data replication logics when establishing two data replication logical channels for data requiring data replication.
  • the first data replication logical channel in the channel is assigned a logical channel identifier
  • the second data replication logical channel of the two data replication logical channels is assigned a logical channel identifier visible only on the transmitting side, wherein only visible on the transmitting side
  • the logical channel identifies any value within the range of available logical channel identification or within the range of available logical channel identification; or, when two data replication logical channels are established for data requiring data replication, the two data replication logical channels are assigned the same Logical channel identifier, adding a data replication indication on the second data replication logical channel; or, assigning a logical channel identifier n to the first data replication logical channel of the two or more data replication logical channels, for more than two data replication
  • the assembling module 162 is further configured to carry the same logical channel identifier on the MAC sub-head corresponding to the data including the two or more data replication logical channels; and the MAC sub-corresponding to the data that includes the first data replication logical channel.
  • the data replication indication carried on the header is 0, and the data replication indication carried on the MAC subheader corresponding to the data including the data replication second logical channel is 1; or, in addition to the first data replication logical channel
  • the MAC subheader corresponding to the data of the other data replication logical channel carries the corresponding channel identifier, and also includes the logical channel identifier corresponding to the first data replication logical channel; or, the MAC control unit CE includes data to copy more than two data. Copying the logical channel identifier of the logical channel; or carrying the data copy indication on the MAC subheader corresponding to the data including the first data replication logical channel.
  • FIG. 17 is a block diagram showing the structure of a data packet transmission apparatus according to an embodiment of the present invention. As shown in FIG. 17, the apparatus includes:
  • the receiving module 172 is configured to receive a data packet including data replication information
  • the processing module 174 is coupled to the receiving module 172 and configured to process the data packet according to the data replication information.
  • the data replication information includes at least one of: a mapping relationship of two or more logical channel identifiers for data replication; a data replication indication, wherein the data replication indication is used to indicate whether the logical channel of the data is data replication. Logical channel or whether there is a corresponding data replication logical channel.
  • the processing module 174 is further configured to: determine, according to the logical channel identifier and/or the data replication information of the MAC sub-header of the data packet, whether the logical channel corresponding to the logical channel identifier exists; and when the determination result is no, establish a logical channel.
  • the corresponding logical channel and the RLC entity are identified, and the corresponding packet data convergence protocol PDCP entity is established or associated according to the data replication information; after the data packet is delivered to the corresponding logical channel, it is processed by the radio link control protocol RLC entity and the PDCP entity.
  • the processing module 174 is further configured to: determine, according to the mapping relationship of the two or more logical channel identifiers for data replication in the data replication information, that two or more data replication logical channels are assigned different logical channel identifiers; Whether the PDCP entity corresponding to the logical channel identifier other than the logical channel identifier corresponding to the data has been established in the above logical channel identifiers; when the judgment result is yes, the PDCP entity is associated; when the judgment result is no, the PDCP entity is established. .
  • the processing module 174 is further configured to: according to the data replication indication and the logical channel identifier in the data replication information, the logical channel is a logical channel used for data replication; and determine whether the PDCP entity corresponding to the original data used for data replication is established. Whether the PDCP entity corresponding to the copy data used for data copying is established; when the judgment result is yes, the PDCP entity is associated; when the judgment result is no, the PDCP entity is established.
  • the processing module 174 is further configured to: determine, according to the data replication indication and the logical channel identifier in the data replication information, the related data replication logical channel identifier, where the logical channel identifier associated with the logical channel identifier is a logical channel identifier is n Or (n+m) mod k identifier, n is a positive integer; determining, according to the logical channel identifier, whether a PDCP entity corresponding to the logical channel identifier associated with the logical channel identifier has been established; and if the determination result is yes, the PDCP entity is associated; When the judgment result is no, the PDCP entity is established.
  • FIG. 18 is a structural block diagram of a terminal according to an embodiment of the present invention. As shown in FIG. 18, the terminal includes:
  • the sending module 182 is configured to send resource request assistance information to the base station.
  • the receiving module 184 is connected to the sending module 182 and configured to receive resource allocation information.
  • the transmission module 186 is connected to the receiving module 184 and configured to perform data transmission according to the resource allocation information.
  • the sending module 182 is further configured to: before sending the resource request assistance information to the base station, acquire at least one of the following information corresponding to the data: a set of available frequency points, a priority PPPP of each adjacent service data packet, and a reliability PPPR.
  • Target identification information establishing a corresponding logical channel or logical channel group according to the set of available frequency points and/or PPPP and/or PPPR and/or target identification information;
  • the logical channel included in the logical channel group has the same available frequency point.
  • the foregoing auxiliary information includes: a data target identifier.
  • the auxiliary information further includes: one or more logical channel identifiers corresponding to each target identifier.
  • the target identifier information further includes at least one of the following: a logical channel group identifier corresponding to the logical channel, a set of available frequency points, a priority PPPP of each adjacent service data packet, and a reliability PPPR.
  • the auxiliary information includes at least one of the following: an available frequency point list, a data replication indication, a data packet expected transmission period, a relative time offset of the data packet expected transmission, a reliability PPPR, and a maximum data packet size.
  • FIG. 19 is a structural block diagram of a resource allocation apparatus according to an embodiment of the present invention. As shown in FIG. 19, the apparatus includes:
  • the receiving module 192 is configured to receive resource request assistance information sent by the terminal.
  • the allocating module 194 is connected to the receiving module 192 and configured to allocate data transmission resources to the terminal according to the auxiliary information.
  • the auxiliary information includes: a data target identifier.
  • the auxiliary information further includes: one or more logical channel identifiers corresponding to each target identifier.
  • the target identifier information further includes at least one of the following: a logical channel group identifier corresponding to the logical channel, a set of available frequency points, a priority PPPP of each adjacent service data packet, and a reliability PPPR.
  • the auxiliary information includes at least one of the following: an available frequency point list, a data replication indication, a data packet expected transmission period, a relative time offset of the data packet expected transmission, a reliability PPPR, and a maximum data packet size.
  • the allocating module is further configured to receive the buffer status report and/or the auxiliary information sent by the terminal; allocate the data transmission resource; and allocate the data transmission resource to the terminal according to the buffer area information and/or the auxiliary information.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium having stored therein a computer program, wherein the computer program is configured to perform the steps of any of the above method embodiments when executed.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide an electronic device comprising a memory and a processor having a computer program stored therein, the processor being arranged to execute a computer program to perform the steps of any of the method embodiments described above.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the data packet transmission, resource allocation method and apparatus, data transmission method, and terminal provided by the embodiments of the present invention have the following beneficial effects: since the assembled data packet includes data replication information, the receiving side can receive the data according to the receiving The data replication information in the data packet distinguishes whether the logical channel supports the replication duplication and corresponds to which PDCP entity, and does not need to create two independent RLC receiving entities/logical channels/PDCP entities, thereby avoiding the high-level receiving a large number of repeatedly out-of-order packets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例中提供了一种数据包传输、资源分配方法及装置、数据传输方法、终端,其中,该数据包传输方法包括:组装包含数据复制信息的数据包;发送包含数据复制信息的数据包。通过本发明,解决相关技术中无法区分逻辑信道是否支持复制duplication以及对应于哪个PDCP实体的问题。

Description

数据包传输、资源分配方法及装置、数据传输方法、终端 技术领域
本发明涉及通信领域,具体而言,涉及一种数据包传输、资源分配方法及装置、数据传输方法、终端。
背景技术
目前发送端和接收端的终端间的直通接口PC5承载/分组数据汇聚协议层(Packet Data Convergence Protocol,简称为PDCP)实体/无线控制协议(Radio Link Control,简称为RLC)实体是UE自己根据数据包到达情况创建,只要保证承载及对应的PDCP实体/RLC实体/逻辑信道在源标识,目标标识范围内唯一即可。在引入设备直通链路(Sidelink,简称为SL)数据复制后,支持数据复制的承载对应于一个PDCP实体,两个RLC实体,两个逻辑信道。在发送端用户终端(User Equipment,简称为UE),原数据包和复制数据包经过发送PDCP层处理后,被分别投递到两个发送RLC实体/逻辑信道,进一步的通过媒体访问控制(Media Access Control,简称为MAC)层调度到不同的载波进行sidelink传输。而对于接收端UE来说,接收UE并不清楚哪些sidelink逻辑信道支持复制duplication以及对应于哪个PDCP实体,从而导致接收端UE会创建两套独立的RLC接收实体/逻辑信道/PDCP实体。这两套独立的RLC接收实体/逻辑信道/PDCP实体分别对接收到的数据包进行排序和组装,然后投递给高层。这会导致高层接收到大量重复乱序的数据包。
发明内容
本发明实施例提供了一种数据包传输、资源分配方法及装置、数据传输方法、终端,以至少解决相关技术中无法区分逻辑信道是否支持复制duplication以及对应于哪个PDCP实体的问题。
根据本发明的一个实施例,提供了一种数据包传输方法,包括:组装 包含数据复制信息的数据包;发送包含数据复制信息的数据包。
根据本发明的又一个实施例,提供了一种数据包传输方法,包括:接收包含数据复制信息的数据包;根据所述数据复制信息处理数据包。
根据本发明的又一个实施例,提供了一种数据传输方法,包括:向基站发送资源请求辅助信息;接收资源分配信息;根据所述资源分配信息进行数据传输。
根据本发明的又一个实施例,提供了一种资源分配方法,包括:接收终端发送的资源请求辅助信息;根据所述辅助信息为所述终端分配数据传输资源。
根据本发明的又一个实施例,提供了一种数据包传输装置,包括:组装模块,设置为组装包含数据复制信息的数据包;发送模块,设置为发送包含数据复制信息的数据包。
根据本发明的又一个实施例,提供了一种数据包传输装置,包括:接收模块,设置为接收包含数据复制信息的数据包;处理模块,设置为根据所述数据复制信息处理数据包。
根据本发明的又一个实施例,提供了一种终端,包括:发送模块,设置为向基站发送资源请求辅助信息;接收模块,设置为接收资源分配信息;传输模块,设置为根据所述资源分配信息进行数据传输。
根据本发明的又一个实施例,提供了一种资源分配装置,包括:接收模块,设置为接收终端发送的资源请求辅助信息;分配模块,设置为根据所述辅助信息为所述终端分配数据传输资源。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本发明中的实施例,组装包含数据复制信息的数据包;发送包含数据复制信息的数据包。由于组装的数据包包含了数据复制信息,使得接收侧可以根据接收的数据包中的数据复制信息区分逻辑信道是否支持复制duplication以及对应于哪个PDCP实体,无需再创建两套独立的RLC接收实体/逻辑信道/PDCP实体,避免了高层接收大量重复乱序的数据包。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例的一种数据包传输方法的移动终端的硬件结构框图;
图2是根据本发明实施例的数据包传输方法的流程图一;
图3是根据本发明实施例的数据包传输方法的流程图二;
图4是根据本发明实施例的LCID分配及指示示意图一;
图5是根据本发明实施例的LCID分配及指示示意图二;
图6是根据本发明实施例的LCID分配及指示示意图三;
图7是根据本发明实施例的V2X通信场景示意图;
图8是根据本发明实施例的数据传输方法的流程图;
图9是根据本发明实施例的资源分配方法的流程图;
图10是根据本发明实施例的逻辑信道与可用频点集合示意图;
图11是根据本发明实施例的SL辅助信息及BSR上报示意图一;
图12是根据本发明实施例的SL辅助信息及BSR上报示意图二;
图13是根据本发明实施例的SL辅助信息及BSR上报示意图三;
图14是根据本发明实施例的多载波SL SPS传输示意图;
图15是根据本发明实施例的载波选择及切换示意图;
图16是根据本发明实施例的数据包传输装置的结构框图一;
图17是根据本发明实施例的数据包传输装置的结构框图二;
图18是根据本发明实施例的终端的结构框图;
图19是根据本发明实施例的资源分配装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本发明实施例的一种数据包传输方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,可选地,上述移动终端还可以包括设置为通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的数据包传输方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其 他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的数据包传输方法,图2是根据本发明实施例的数据包传输方法的流程图一,如图2所示,该流程包括如下步骤:
步骤S202,组装包含数据复制信息的数据包;
步骤S204,发送包含数据复制信息的数据包。
通过上述步骤,由于组装的数据包包含了数据复制信息,使得接收侧接收的数据包后,可以根据数据复制信息区分逻辑信道是否支持复制duplication以及对应于哪个PDCP实体,无需再创建两套独立的RLC接收实体/逻辑信道/PDCP实体,避免了高层接收大量重复乱序的数据包。
可选地,数据复制信息包括如下至少之一:用于数据复制的两个以上逻辑信道标识的映射关系;数据复制指示,其中,数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制的逻辑信道。
可选地,组装包含数据复制信息的数据包包括:为需要数据复制的数据建立两个以上数据复制逻辑信道,分配逻辑信道标识;在逻辑信道优先化流程中,媒体访问控制MAC实体组装包含数据复制信息的数据包。
可选地,为需要数据复制的数据建立两个以上数据复制逻辑信道,分 配逻辑信道标识,包括以下至少之一:为两个以上数据复制逻辑信道分配不同的逻辑信道标识;在为需要数据复制的数据建立两个数据复制逻辑信道时,为两个数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识,为两个数据复制逻辑信道中第二个数据复制逻辑信道分配一个仅在发送侧可见的逻辑信道标识,其中,仅在发送侧可见的逻辑信道标识在可用逻辑信道标识范围内或不在可用逻辑信道标识范围内的任意取值;在为需要数据复制的数据建立两个数据复制逻辑信道时,为两个数据复制逻辑信道分配相同的逻辑信道标识,在第二个数据复制逻辑信道上增加数据复制指示;为两个以上数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识n,为两个以上数据复制逻辑信道中第二个数据复制逻辑信道分配的逻辑信道标识为(n+m)mod k,其中m和k可以由系统预配置或网络配置或默认取值,n为正整数。
可选地,组装包含数据复制信息的数据包包括以下至少之一:在包含两个以上数据复制逻辑信道的数据对应的MAC子头上携带相同的逻辑信道标识;在包含第一个数据复制逻辑信道的数据对应的MAC子头上携带的数据复制指示为0,而在包含数据复制第二逻辑信道的数据对应的MAC子头上携带的数据复制指示为1;在包含除第一个数据复制逻辑信道之外的其他数据复制逻辑信道的数据对应的MAC子头上除了携带对应的信道标识,还包含第一个数据复制逻辑信道对应的逻辑信道标识;在MAC控制单元CE中包含数据复制两个以上数据复制逻辑信道的逻辑信道标识;在包含第一个数据复制逻辑信道的数据对应的MAC子头上携带数据复制指示。
在本实施例中还提供了一种运行于上述移动终端的数据包传输方法,图3是根据本发明实施例的数据包传输方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,接收包含数据复制信息的数据包;
步骤S304,根据数据复制信息处理数据包。
可选地,数据复制信息包括如下至少之一:用于数据复制的两个以上逻辑信道标识的映射关系;数据复制指示,其中,数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制逻辑信道。
可选地,根据数据复制信息处理数据包包括:根据数据包的MAC子头的逻辑信道标识和/或数据复制信息,判断逻辑信道标识对应的逻辑信道是否存在;在判断结果为否时,建立逻辑信道标识对应的逻辑信道和RLC实体,并根据数据复制信息建立或关联对应的分组数据汇聚协议PDCP实体;将数据包投递到对应的逻辑信道后,经过无线链路控制协议RLC实体和PDCP实体处理。
可选地,根据数据复制信息建立或关联对应的PDCP实体包括:根据数据复制信息中的用于数据复制的两个以上逻辑信道标识的映射关系,确定两个以上数据复制逻辑信道分配了不同的逻辑信道标识;判断两个以上逻辑信道标识中是否有除数据对应的逻辑信道标识之外的其他逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
可选地,根据数据复制信息建立或关联对应的PDCP实体包包括:根据数据复制信息中的数据复制指示及逻辑信道标识,逻辑信道为用于数据复制的逻辑信道;判断用于数据复制的原始数据对应的PDCP实体是否建立或用于数据复制的复制数据对应的PDCP实体是否建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
可选地,根据数据复制信息建立或关联对应的PDCP实体包括:根据数据复制信息中的数据复制指示及逻辑信道标识,确定相关数据复制逻辑信道标识,其中,与逻辑信道标识相关的逻辑信道标识为逻辑信道标识为n或者(n+m)mod k的标识,n为正整数;根据逻辑信道标识判断是否有与逻辑信道标识相关的逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
为了方便理解上述实施例,下面以两个逻辑信道为例,接收端和发送端以UE为例进行说明。
例如,为了解决上述问题,接收UE需要知道某个传输原始数据逻辑信道标识ID及其对应的复制数据包逻辑信道标识才有可能将两者绑定到同一个PDCP接收实体。为了实现这一点,需要发送UE将原始数据和复制数据对应的逻辑信道之间的映射关系广播发送给接收UE,从而使得接收UE能够分辨原始original和复制duplicate逻辑信道的关系,进行正确的解包处理。具体的,可以考虑如下几种可能的实现方案:
1)图4是根据本发明实施例的LCID分配及指示示意图一,如图4所示,发送端UE1的应用服务器(Application Server,简称为AS)层从高层接收到数据包,该数据包对可靠性有较高要求(如该数据包对应的误包率(Packet Error Rate,简称为PER)低于某一预配置的PER门限,或是可靠性级别高于某一预配置的可靠性级别门限),UE1触发基于数据复制的SL传输。如果尚未创建对应的PDCP实体/RLC实体/逻辑信道,则UE1创建支持数据复制的承载,包括一个PDCP实体,两个RLC实体,两个逻辑信道。UE为两个逻辑信道分配相同的逻辑信道标识(Logical channel identify,简称为LCID)1,但对于存放复制数据包的逻辑信道增加额外的数据复制指示信息,用于区别存放原始数据包的逻辑信道,这里可以简称LCID 1’。当MAC层调度数据传输时,通过成员载波(Component Carrier,简称为CC)1传输逻辑信道LCID 1的数据包,通过CC2传输逻辑信道LCID 1’的数据包。由LCID 1’组装的MAC SDU对应的MAC PDU子头上,LCID字段设置为1,复制指示字段设置为1,这里复制指示字段用于指示该LCID对应着复制数据包的逻辑信道。而由LCID 1组装的MAC服务数据单元(Service Data Unit,简称为SDU)对应的MAC协议数据单元(Protocol Data Unit,简称为PDU)子头上,LCID字段设置为1,复制指示字段设置为0,这里复制指示字段指示该LCID对应着原始数据包的逻辑信道。
UE1在CC1和CC2上发送了包含LCID 1的原始和复制数据包的 MAC PDU后。UE1周围的UE2陆续接收到CC1和CC2上发送的MAC PDU。假设UE2首先接收CC1上的MAC PDU,UE2根据SL-SCH子头的源和目标标识字段以及MAC PDU子头的LCID字段判断需要将该数据包投递到对应于源和目标标识范围内的LCID为1的逻辑信道,如果已经存在该逻辑信道,则UE2将MAC SDU投递到对应的RLC接收实体,如果尚未建立该逻辑信道,则UE2建立LCID为1的逻辑信道以及对应的RLC实体和PDCP实体,然后将接收到的MAC SDU投递到对应的RLC接收实体。接下来UE2接收到CC2上的MAC PDU,UE2根据SL-SCH子头的源和目标标识字段以及MAC PDU子头的LCID字段判断需要将该数据包投递到对应于源和目标标识范围内的LCID为1的逻辑信道,进一步的,UE2根据复制指示字段确定该MAC SDU对应于复制数据包逻辑信道。如果UE2尚未创建对应于LCID1数据的复制数据逻辑信道LCID1’,则UE2建立LCID为1的复制数据逻辑信道以及对应的RLC实体,PDCP实体可直接复用LCID为1的原始数据逻辑信道对应的PDCP实体,然后将接收到的MAC SDU投递到对应与复制数据逻辑信道对应的RLC接收实体。UE2对应于原始数据和复制数据逻辑信道的RLC实体各自独立的对数据包进行排序等处理,之后将数据包投递到公用的PDCP实体进行排序以及丢弃重复数据包的处理。PDCP层处理完成之后,该数据进一步的投递到高层进行处理。总的来说,由于两个RLC接收实体关联到同一个PDCP接收实体,再由PDCP接收实体统一进行排序及丢弃重复数据包,从而避免了高层接收到大量重复乱序的数据包。
需要注意的是上述方案还可以有各种变化,如可以由存放原始数据包而不是复制数据包的逻辑信道进行数据复制指示。
对于数据复制承载对应的两个逻辑信道,可以为其中一个逻辑信道分配正常的逻辑信道标识(如在00001-01010范围内分配),而对于第二个逻辑信道分配一个只有UE1可见的任意逻辑信道标识(如在01011-11011范围内选择)。但是当组装MAC PDU时,第二个逻辑信道数据对应的MAC PDU子头中的LCID字段与第一个逻辑信道的LCID保持一致,但是MAC  PDU子头的复制指示字段设置为1。当接收UE2接收到该MAC PDU后,如果检测到对应MAC PDU子头的复制指示字段设置为1,则UE2创建复制数据逻辑信道(如果尚未创建对应的逻辑信道)和对应的RLC接收实体,其LCID可以分配一个只有UE2可见的任意逻辑信道标识(如在01011-11011范围内选择),而PDCP实体则复用LCID1逻辑信道对应的PDCP接收实体。
2)图5是根据本发明实施例的LCID分配及指示示意图二,如图5所示,发送端UE1的AS层从高层接收到数据包,该数据包对可靠性要求较高,UE1触发基于数据复制的SL传输。如果尚未创建对应的PDCP实体/RLC实体/逻辑信道,则UE1创建支持数据复制的承载,包括一个PDCP实体,两个RLC实体,两个逻辑信道。UE为两个逻辑信道分配的逻辑信道标识为1和2,分别对应于存放原始数据包和复制数据包的逻辑信道。当MAC层调度数据传输时,通过CC1传输逻辑信道LCID 1的数据包,通过CC2传输逻辑信道LCID 2的数据包。由LCID 2组装的MAC SDU对应的MAC PDU子头上,LCID字段设置为2,数据复制对端逻辑信道字段设置为1,即对应于LCID1的逻辑信道标识。而由LCID 1的数据组装的MAC SDU对应的MAC PDU子头上,LCID字段设置为1,数据复制对端逻辑信道字段设置为2。
UE1在CC1和CC2上发送了包含LCID 1和LCID2逻辑信道数据的MAC PDU后。UE1周围的UE2陆续接收到CC1和CC2上发送的MAC PDU。假设UE2首先接收CC1上的MAC PDU,UE2根据SL-SCH子头的源和目标标识字段以及MAC PDU子头的LCID字段判断需要将该数据包投递到对应于源和目标标识范围内的LCID为1的逻辑信道,如果已经存在该逻辑信道,则UE2将MAC SDU投递到对应的RLC接收实体,如果尚未建立该逻辑信道,则UE2在源标识和目标标识范围内建立LCID为1的逻辑信道以及对应的RLC接收实体和PDCP接收实体,然后将接收到的MAC SDU投递到对应的RLC接收实体。这里需要注意的是,在建立PDCP接收实体之前,UE2还需要进一步根据MAC PDU子头的数据复 制对端逻辑信道字段对应的逻辑信道,即判断是否已经在对应源标识和目标标识范围内建立LCID为2的逻辑信道。如果已经建立了LCID2逻辑信道及对应的RLC接收实体和PDCP接收实体,则UE2可以直接复用该PDCP接收实体,无需为LCID1的逻辑信道建立新的PDCP接收实体。接下来UE2接收到CC2上的MAC PDU,UE2根据SL-SCH子头的源和目标标识字段以及MAC PDU子头的LCID字段判断需要将该数据包投递到对应于源和目标标识范围内的LCID为2的逻辑信道,进一步的,UE2根据数据复制对端逻辑信道字段确定该MAC SDU对应的复制数据包逻辑信道为LCID1。如果UE2尚未创建对应于LCID2逻辑信道,则UE2建立LCID为2的复制数据逻辑信道以及对应的RLC实体,PDCP实体可直接复用LCID1的逻辑信道对应的PDCP实体,然后将接收到的MAC SDU投递到LCID2逻辑信道对应的RLC接收实体。对应于LCID1和LCID2逻辑信道的RLC实体各自独立的对数据包进行排序等处理,之后将数据包投递到公用的PDCP实体进行排序以及丢弃重复数据包的处理。PDCP层处理完成之后,该数据进一步的投递到高层进行处理。总的来说,由于两个RLC接收实体关联到同一个PDCP接收实体,再由PDCP接收实体统一进行排序及丢弃重复数据包,从而避免高层接收到大量重复乱序的数据包。
3)除上述LCID分配及PC5MAC PDU子头指示方式外,还可以考虑为承载原始数据包的逻辑信道分配的逻辑信道标识为n,而承载复制数据包的duplicate的逻辑信道为n+k(k>=1),或是采用(n+k)mod 10的默认或预配置规则对承载复制数据包的逻辑信道进行LCID分配。后续发送UE1在CC1和CC2上组装的MAC PDU如图6所示,图6是根据本发明实施例的LCID分配及指示示意图三。假设n和k分为取值为1,则数据复制对应的两个逻辑信道标识分别为1和2。在CC1上组装LCID为1的MAC SDU对应的MAC PDU子头携带的LCID指示为1,数据复制指示为1,而在CC2上组装LCID为2的MAC SDU对应的MAC PDU子头携带的LCID指示为2,数据复制指示为0。假设UE2先接收到CC1上发来 的数据包,根据数据复制指示以及系统默认/预配置规则判断LCID1对应的数据复制逻辑信道为LCID2。当UE2后续接收到在同一源标识和目标标识范围内LCID2的数据包时,LCID2逻辑信道对应的PDCP接收实体复用LCID1逻辑信道对应的PDCP接收实体。
需要注意的是,除了采用MAC子头的方式,还可以考虑通过MAC CE或是PC5信令承载上述指示信息,如原始数据和复制数据对应逻辑信道之间的映射关系。该信息可以仅在CC1上发送,也可以在CC2上发送,也可以同时在CC1和CC2组装的包含数据复制逻辑信道数据的MAC PDU内发送。
需要说明的是,本发明实施例中的方案可以应用于车联网。下面对车联网进行相应的介绍,随着通信技术的发展及需求的丰富,无线通信的应用场景也日益广泛,其中比较典型的是车联网(Vehicle Networking)。所谓的车联网,是车辆可以参与到无线通信中,通过利用先进的无线蜂窝通信技术,实现车与车,车与路侧基础设施间的实时信息交互,告知彼此目前的状态(包括车辆的位置,速度,加速度,行驶路径)及获知的道路环境信息,协作感知道路危险状况,及时提供多种碰撞预警信息,防止道路交通安全事故的发生。
车联网通信的模式具体分为三种:车车通信(Vehicle-to-Vehicle Communications,简称为V2V),车网通信(Vehicle-to-Infrastructure Communications,简称为V2I),车人通信(Vehicle-to-Pedestrian,简称为V2P)三类,这三类也可以统称为Vehicle-to-Everything(简称为V2X)通信。
在V2X车联网通信模式下,车联网信息的传输包括广播,组播和单播方式。主要的实现技术有两种:1)基于UE到UE的直接发现/通信(D2D,sidelink,ProSe)支持通过PC5接口进行V2X消息的传输;2)基于多播广播单频网络(Multicast Broadcast Single Frequency Network,简称为MBSFN)以及单小区点到多点(Single Cell Point to Multipoint,简称为SC-PTM)的广播机制支持通过Uu口进行V2X消息的广播/组播传输或基 于Uu口单播进行V2X消息的单播传输。需要注意的是,基于PC5接口的传输又可统称为D2D,邻近服务(Proximity Services,简称为ProSe)、设备直通链路(SideLink,简称为SL)。具体的V2X通信可分为如下三种场景,图7是根据本发明实施例的V2X通信场景示意图,如图7所示:
场景1,该场景支持基于PC5的SL(Sidelink)V2X通信。UE通过PC5接口发送V2X消息给一个或多个UE。
场景2,该场景支持基于Uu口的V2X通信。UE上行传输V2X消息到基站,基站将该V2X消息下行传输给局部区域的一个或多个UE。
场景3,场景3又可分为场景3a和场景3b,该场景支持使用Uu和PC5接口的V2V通信。UE通过PC5接口发送V2X消息给终端类型远程用户单元(Remote Subscriber Unite,简称为RSU),终端类型RSU从PC5接口接收到V2X消息后将该V2X消息上行传输给无线接入网。无线接入网将从终端类型RSU处接收到的V2X消息下行传输给局部区域的一个或多个UE。或者,UE上行传输V2X消息到无线接入网,无线接入网从Uu口接收到V2X消息后将该V2X消息传输到一个或者多个终端类型RSU,终端类型RSU将从无线接入网处接收到的V2X消息通过PC5接口发送给局部区域的一个或多个UE。
本发明重点讨论基于PC5接口实现车联网消息传输的通信机制。目前sidelink通信支持两种资源分配模式:1)基于调度的资源分配(Scheduled resource allocation,也称为mode 3),这种方式下UE需进入(Radio Resource Control,简称为RRC)连接状态,基站为UE分配专有发送资源;2)UE自主资源选择(UE autonomous resource selection,也称为mode 4),这种方式下UE基于sensing从资源池中自主选择资源,这种方式可用于IDLE态或者CONNECTED态UE。
随着自动驾驶,编队行驶等新的车联网需求出现,V2V/V2I/V2P业务有了更高的延迟需求,从100毫秒提升至10毫秒甚至3毫秒。同时,在保证低延迟需求的前提下,还需保证数据传输的高可靠性。另一方面,为 了能够提高数据传输率,要求支持多载波上的并发传输,UE如何请求多载波上的资源,以及基站如何合理的为终端使用的各个载波配置资源,目前尚未发现有效的解决。
如,目前UE需要支持在多个载波上进行sidelink发送和接收数据。每个车联网数据对应到一个车联网业务类型,每个车联网业务类型对应于一个层2目标标识,而某种车联网业务类型又关联到一个或多个可用频点。UE在传输车联网数据时,只能在车联网数据关联的可用频点上进行传输。基于调度的资源分配(Scheduled resource allocation,也称为mode 3),UE可通过发送sidelink缓冲状态报告(BootStrap Router,简称为BSR)向基站请求资源。Sidelink BSR中包含destination index,逻辑信道组标识以及对应的缓冲区大小。然而,引入数据复制data duplication以及数据切割data split后,不同的数据包对应了不同的可用频点,UE如何向基站请求资源以及基站如何合适的分配各个频点上的资源,目前技术尚未实现这一点。
在本实施例中还提供了一种运行于上述移动终端的数据传输方法,图8是根据本发明实施例的数据传输方法的流程图,如图8所示,该流程包括如下步骤:
步骤S802,向基站发送资源请求辅助信息;
步骤S804,接收资源分配信息;
步骤S806,根据资源分配信息进行数据传输。
通过上述步骤,通过向基站发送资源请求辅助信息,使得基站可以根据该辅助信息为终端分配资源信息,使得终端可以根据分配的资源进行数据传输。
可选地,接收资源分配信息包括:接收基站响应资源请求辅助信息反馈的资源分配信息。
可选地,在向基站发送资源请求辅助信息之前,还包括:获取数据对应的如下信息至少之一:可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR,目标标识信息;根据可用频点集合和/或PPPP和/ 或PPPR和/或目标标识信息建立对应的逻辑信道或者逻辑信道组;
可选地,逻辑信道组包含的逻辑信道对应的可用频点相同。
可选地,辅助信息包括:数据目标标识。
可选地,对应于每一个目标标识,辅助信息还包括:一个或多个逻辑信道标识。
可选地,对于每一个逻辑信道标识,目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
可选地,辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
在本实施例中还提供了一种运行于上述移动终端的数据包传输方法,图9是根据本发明实施例的资源分配方法的流程图,如图9所示,该流程包括如下步骤:
步骤S902,接收终端发送的资源请求辅助信息;
步骤S904,根据辅助信息为终端分配数据传输资源。
可选地,辅助信息包括:数据目标标识。
可选地,对应于每一个目标标识,辅助信息还包括:一个或多个逻辑信道标识。
可选地,对于每一个逻辑信道标识,目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
可选地,辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
可选地,根据辅助信息为终端分配数据传输资源包括:接收终端发送 的缓冲状态报告和/或辅助信息;根据缓存区信息和/或辅助信息为终端分配数据传输资源。
为了方便理解上述实施例,下面进行举例说明。
每个车联网数据对应到一种车联网业务类型,每个车联网业务类型对应于一个层2目标标识。此外每个车联网业务类型又关联到一个或多个可用频点。UE在传输车联网数据时,只能在车联网数据关联的可用频点上进行传输。Mode3UE可通过发送sidelink BSR向基站请求资源。Sidelink BSR中包含destination index,逻辑信道组标识以及对应的缓冲区大小。当引入data duplication以及data split后,不同的数据包对应了不同的可用频点。针对这种场景,本发明实施例中给出了UE如何向基站请求资源以及基站如何合适的分配各个频点上的资源的可选方案,具体如下:
1)对于给定源标识和目标标识范围内,如果数据包对应不同的可用频点集合(可用频点集合根据业务类型映射和或根据UE载波选择结果确定),则将这些数据包投递到不同的逻辑信道。即UE在创建逻辑信道时,不仅考虑源标识,目标标识范围内唯一,还需要考虑PPPP信息和或可用频点信息和或可靠性(ProSe Per-Packet Reliability,简称为PPPR)信息。图10是根据本发明实施例的逻辑信道与可用频点集合示意图,如图10所示,在发送UE1内,对于某个目标标识destination id1,如果有数据包对应的可用频点集合为{f1,f2},{f2},{f3},{f2,f3},{f1},则需要为其创建不同的逻辑信道。进一步的,如果有数据包对应的可用频点集合相同,但对应的PPPP不同,则也需要为其创建不同的逻辑信道,如在目标标识2(destination id2)范围内的LCH1和LCH2[]。进一步的,还可以考虑图8中以逻辑信道组为单位对应不同的可用频点集合,即在源标识和目标标识范围内,对应不同可用频点的逻辑信道关联到不同的逻辑信道组,即给定一个逻辑信道组内,其包含的逻辑信道对应的可用频点完全相同。
2)对于mode 3UE,其根据高层发来的数据包创建了如图10所示的逻辑信道组,逻辑信道及可用频点集合。为了让基站能分配对应载波资源 上的信息,发送UE1可向基站上报资源请求辅助信息。图11是根据本发明实施例的SL辅助信息及BSR上报示意图一,如图11所示,UE向基站上报目标标识,对应于每一个目标标识,进一步包含在目标标识范围内的各个逻辑信道标识。对于每一个逻辑信道,进一步包含对应的逻辑信道组标识和或可用频点集合和或PPPR信息。后续UE在上报SL BSR时,BSR可包含缓冲区索引以及对应的缓冲区大小,其中缓冲区索引对应着上述辅助信息上报数据对应的索引,每个索引唯一对应着一个目标标识及逻辑信道标识组合。基站收到上述资源请求辅助信息以及包含缓冲区索引和缓冲区大小的SL BSR后,基站获知了每个逻辑信道对应的可用频点,缓冲区大小以及优先级(根据逻辑信道对应的逻辑信道标识,以及逻辑信道组对应的优先级信息),从而可以为UE1调度分配合适的载波上的资源,用于UE1的SL传输。
3)对于mode3UE1,根据高层发来的数据包创建了如图10所示的逻辑信道组,逻辑信道及可用频点集合。为了让基站能分配对应载波资源上的信息,发送UE1可向基站上报资源请求辅助信息。图12是根据本发明实施例的SL辅助信息及BSR上报示意图二,如图12所示,UE向基站上报需要进行SL传输的目标标识信息。进一步的,对于每一个目标标识,包含在目标标识范围内的各个逻辑信道标识。对于每一个逻辑信道,进一步包含对应的逻辑信道组标识和或可用频点集合和或PPPR信息。后续UE在上报SL BSR时,BSR可包含目标标识索引,逻辑信道标识以及对应的缓冲区大小。基站收到上述资源请求辅助信息以及SL BSR后,基站获知了每个逻辑信道对应的可用频点,缓冲区大小以及优先级(根据逻辑信道对应的逻辑信道标识,以及逻辑信道组对应的优先级信息),从而可以为UE1调度分配合适的载波上的资源,用于UE1的SL传输。
4)图13是根据本发明实施例的SL辅助信息及BSR上报示意图三,对于mode3UE1,根据高层发来的数据包创建了如图13所示的逻辑信道组,逻辑信道及可用频点集合。与图10所示的不同可用频点集合的数据创建不同的逻辑信道相比,图13载波资源上的信息,发送UE1可向基站 上报资源请求辅助信息。如图13所示,UE向基站上报需要进行SL传输的目标标识信息。进一步的,对于每一个目标标识,上报在目标标识范围内的各个逻辑信道组标识以及对应的可用频点集合信息。后续UE在上报SL BSR时,BSR可包含目标标识索引,逻辑信道组标识以及对应的缓冲区大小。基站收到上述资源请求辅助信息以及SL BSR后,基站获知了每个逻辑信道组对应的可用频点,缓冲区大小以及优先级(根据逻辑信道组对应的优先级信息),从而可以为UE1调度分配合适的载波上的资源,用于UE1的SL传输。
需要说明的是,除了上述动态资源调度,Sidelink通信还支持基站为UE配置半静态调度资源,R14V2X通过UE向基站发送半持续调度(semi-persistent scheduling,简称为SPS)辅助消息,其中包含周期性,偏移量,数据大小和每个邻近服务数据包的优先级(ProSe(Proximity Service)priority per packet,简称为PPPP)等指示信息,来辅助基站为UE分配SPS SL资源。考虑到多载波场景,基站除了为UE进行SPS配置,还需要考虑为UE分配可用频点上的SPS资源,现有技术尚未实现这一点。
对于基于mode3的SPS资源分配,发送UE需要上报辅助信息,帮助基站配置以及激活合适的SPS进程。UE辅助信息可以包括以下内容:估计包到达周期,估计包到达offset,PPPP值,MAC PDU大小等。为了在多载波进行基于SPS的SL传输,UE向基站上报的辅助信息除了估计包到达周期,估计包到达offset,PPPP值,MAC PDU大小等,还可以包含可用载波集合和或PPPR等信息。基站收到上述信息后,可为UE配置/激活可用载波上的SPS资源。UE接收到SPS配置及SPS资源激活后,可在相应的载波上进行SL传输。
考虑到数据复制场景,UE需要在两个不同载波上传输数据,从而需要在两个载波上激活SPS SL传输。这种情况下,UE向基站上报的辅助信息除了估计包到达周期,估计包到达offset,PPPP值,MAC PDU大小等,还可以包含可用载波集合和或PPPR和或数据复制指示,图14是根据本发明实施例的多载波SL SPS传输示意图,如图14所示。基站收到上述信 息后,从可用载波集合中选择两个载波为UE分别分配/激活SPS资源。UE接收到SPS配置及SPS资源激活后,可在相应的载波上进行SL传输。
进一步的,如果是UE进行载波选择,则对于SPS的数据复制,UE向基站发送的辅助信息中可包含UE选择两个可用载波信息以及数据复制指示。基站收到上述信息后,在这两个载波上为UE分别分配/激活SPS资源。UE接收到SPS配置及SPS资源激活后,可在相应的载波上进行SL传输。
UE的载波选择包括两个层面:根据服务类型service type,PPPP,UE能力,信道占用比率(Channel Busy Ratio,简称为CBR)等选择可用载波。这里可用载波隐含指UE可以同时进行sensing的载波集合。对于mode4资源分配方式,UE的发送资源选择依赖于UE的sensing结果。通常UE能够同时进行感知sensing的载波个数大于UE能够同时进行发送的载波个数。因此进行载波选择时可以依据Rx chain限制为UE内的V2X流量(traffic)配置对应个数的候选频点,图15是根据本发明实施例的载波选择及切换示意图,如图15所示。
对于载波切换,连接态的UE可以将感兴趣的可用载波信息发送给基站,基站相应的为UE配置这些载波上的mode4或mode4发送资源池。对于mode4资源配置,UE开始对这些载波上的mode4发送资源池进行sensing及测量。
考虑到UE的Rx chain受限,在选择sensing/测量的载波时还可以考虑如下任一原则:1)尽可能保证能覆盖所有的V2X动态流量(traffic flow),即至少包含一个某一V2X traffic flow的可用载波。2)如果无法保证覆盖各个V2X流量traffic,则可以优选优先级高的V2X traffic对应的可用载波。3)一般来说Tx UE同时也需要进行sidelink接收,因此UE在选择sensing/测量载波的同时,也要考虑sidelink接收,从尽可能多接收sidelink消息的角度而言,UE可以优选CBR值高的载波。
Mode 4UE完成sensing/测量载波选择后,对这些载波进行测量,向 AS层上报CBR测量结果,用于UE选择合适的载波,与此同时,可以向MAC层上报sensing结果,用于选择该载波上的资源。对于载波及资源选择,可以分为如下几种情况:
UE的每子载波的n个Tx chain(Tx chain per subframe)选择不同的n个载波进行sidelink发送:这种方式相当于UE分时复用了m个(m>n,m<=感知载波数量sensing carrier no.)载波进行sidelink传输。该方式最灵活,适合UE同时需要发送对应多个不同可用频点集合V2X traffic场景。
UE的n个Tx chain在较长时间内(以秒级别)固定选择n个载波进行sidelink发送:这种方式一旦选择了某个载波,通常会持续较长时间,UE的Tx chain也会持续在这个载波(carrier)上进行发送。一般来说,Tx chain的个数与选择进行sidelink传输的carrier个数相同。除非这个carrier出现overload,或是不再存在需要使用这个carrier的V2X traffic,才会重新选择其他的carrier,此时需要进行Tx chain的切换(switch)。
对于后者对应的慢变的载波选择方式,如果出现CBR变化导致所选载波carrier发生变化,则会导致逻辑信道logical channel对应的可用载波carrier发生变化,此时需要触发某个Tx chain从载波carrier f1switch到新选中的carrier f4,对于SPS类型的资源调度,有可能SL_RESOURCE_RESELECTION_COUNTER尚未减为0。此时Tx chain进行载波切换(carrier switch)的时机有如下几种可能性:
一旦选择了新的carrier,UE的Tx chain在carrier f1将已经组装好的MAC PDU发送完之后,就开始切换switch到carrier f4,switch可能需要一定时间,之后UE的Tx chain就开始工作在carrier f4上。
对于SPS的资源选择方式,如果原来选择了一组SPS资源,且SL_RESOURCE_RESELECTION_COUNTER尚未减为0,此时可以沿用动态调度的规则,即等所有对应于carrier f1的sidelink过程process将已经组装好的MAC PDU发送完之后,暂停使用该载波,对应的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)process可以挂起/reset/ 释放。
考虑等到对应于carrier f1的所有sidelink process的SL_RESOURCE_RESELECTION_COUNTER都变为0后,再停止使用carrier f4。
对于快变的载波选择,UE的调度器在调度资源时,需要对每一个待组装的MAC PDU根据PPPP和CBR判断能使用哪个载波上的资源,哪些子帧上的资源。当UE选择了某个载波某个子帧上的资源时,还需要进一步考虑该子帧是否对应着Tx chain switch时间。选好一个载波上的资源后,UE在组装后续MAC PDU时,需要继续根据PPPP和CBR进行载波选择,该载波有可能与前一个MAC PDU对应的载波相同,也有可能不同。如果不同,则需要进一步考虑选择第二个载波上哪些子帧上的资源,除了考虑可能的Tx chain switch,如果选择的子帧与第一个载波有重叠overlap,还需要进一步考虑是否支持这样的带宽结合band combination,以及是否能满足PSD需求。
对应于这种方式,载波的重选是每一个MAC PDU触发的。对于SPS类型的mode4传输,则等到之前的SL_RESOURCE_RESELECTION_COUNTER次传输完成之后,UE调度器重新考虑使用哪个载波的哪些子帧上的资源进行传输。
上述实施例的基本思想如下:
1)UE为data duplication对应的逻辑信道仅分配一个LCID,一个是逻辑信道1,另一个是1’,UE在组装这两个数据包时,在1’对应的逻辑信道组装的MAC SDU的MAC子头中包含的LCID为1,但是MAC子头中增加data duplication指示。接收端收到该数据包后,根据MAC子头包含的LCID以及data duplication指示可以辨识出该数据包对应于LCID1的数据包复制逻辑信道,从而为其绑定到对应于逻辑信道1的PDCP接收实体;
2)UE在创建逻辑信道时,如果两个V2X data packet对应于相同 的目标id,相同的PPPP,但是对应于不同的可用频点集合,则应创建不同的逻辑信道。因此,不同的源id,目标id,可用频点集合,PPPP,对应不同的逻辑信道。
3)如果考虑eNB决定载波选择,则1)对于动态资源调度,UE向基站上报有哪些destination id,对应的逻辑信道,每个逻辑信道对应的PPPP,LCGID,可用频点集合,后续UE上报sidelink BSR时上报LCH index/buffer index/LCGID和buffer size;2)对于SPS资源调度,UE向基站上报的辅助信息中需要包含每条SPS辅助信息对应的可用频点集合,用于eNB为其分配可用频点上的SPS资源。
4)对于RRC层的载波选择,如果出现CBR变化导致所选carrier发生变化,则会导致logical channel对应的可用carrier发生变化,此时需要触发某个Tx chain从carrier f1switch到新选中的carrier f5,对于SPS类型的资源调度,有可能SL_RESOURCE_RESELECTION_COUNTER尚未减为0。此时Tx chain可以等到Tx chain在carrier f1将已经组装好的MAC PDU发送完之后,开始switch到其他载波,或是等所有对应于carrier f1的sidelink process将已经组装好的MAC PDU发送完之后,开始switch到其他载波。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种数据包传输装置、终端、资源分配装置, 该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图16是根据本发明实施例的数据包传输装置的结构框图一,如图16所示,该装置包括:
组装模块162,设置为组装包含数据复制信息的数据包;
发送模块164,连接至上述组装模块162,设置为发送包含数据复制信息的数据包。
可选地,数据复制信息包括如下至少之一:用于数据复制的两个以上逻辑信道标识的映射关系;数据复制指示,其中,数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制的逻辑信道。
可选地,组装模块162,还设置为为需要数据复制的数据建立两个以上数据复制逻辑信道,分配逻辑信道标识;在逻辑信道优先化流程中,媒体访问控制MAC实体组装包含数据复制信息的数据包。
可选地,组装模块162,还设置为为两个以上数据复制逻辑信道分配不同的逻辑信道标识;或,在为需要数据复制的数据建立两个数据复制逻辑信道时,为两个数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识,为两个数据复制逻辑信道中第二个数据复制逻辑信道分配一个仅在发送侧可见的逻辑信道标识,其中,仅在发送侧可见的逻辑信道标识在可用逻辑信道标识范围内或不在可用逻辑信道标识范围内的任意取值;或,在为需要数据复制的数据建立两个数据复制逻辑信道时,为两个数据复制逻辑信道分配相同的逻辑信道标识,在第二个数据复制逻辑信道上增加数据复制指示;或,为两个以上数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识n,为两个以上数据复制逻辑信道中第二个数据复制逻辑信道分配的逻辑信道标识为(n+m)mod k,其中m和 k可以由系统预配置或网络配置或默认取值,n为正整数。
可选地,组装模块162,还设置为在包含两个以上数据复制逻辑信道的数据对应的MAC子头上携带相同的逻辑信道标识;在包含第一个数据复制逻辑信道的数据对应的MAC子头上携带的数据复制指示为0,而在包含数据复制第二逻辑信道的数据对应的MAC子头上携带的数据复制指示为1;或,在包含除第一个数据复制逻辑信道之外的其他数据复制逻辑信道的数据对应的MAC子头上除了携带对应的信道标识,还包含第一个数据复制逻辑信道对应的逻辑信道标识;或,在MAC控制单元CE中包含数据复制两个以上数据复制逻辑信道的逻辑信道标识;或,在包含第一个数据复制逻辑信道的数据对应的MAC子头上携带数据复制指示。
图17是根据本发明实施例的数据包传输装置的结构框图二,如图17所示,该装置包括:
接收模块172,设置为接收包含数据复制信息的数据包;
处理模块174,连接至上述接收模块172,设置为根据数据复制信息处理数据包。
可选地,数据复制信息包括如下至少之一:用于数据复制的两个以上逻辑信道标识的映射关系;数据复制指示,其中,数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制逻辑信道。
可选地,处理模块174,还设置为根据数据包的MAC子头的逻辑信道标识和/或数据复制信息,判断逻辑信道标识对应的逻辑信道是否存在;在判断结果为否时,建立逻辑信道标识对应的逻辑信道和RLC实体,并根据数据复制信息建立或关联对应的分组数据汇聚协议PDCP实体;将数据包投递到对应的逻辑信道后,经过无线链路控制协议RLC实体和PDCP实体处理。
可选地,处理模块174,还设置为根据数据复制信息中的用于数据复制的两个以上逻辑信道标识的映射关系,确定两个以上数据复制逻辑信道 分配了不同的逻辑信道标识;判断两个以上逻辑信道标识中是否有除数据对应的逻辑信道标识之外的其他逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
可选地,处理模块174,还设置为根据数据复制信息中的数据复制指示及逻辑信道标识,逻辑信道为用于数据复制的逻辑信道;判断用于数据复制的原始数据对应的PDCP实体是否建立或用于数据复制的复制数据对应的PDCP实体是否建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
可选地,处理模块174,还设置为根据数据复制信息中的数据复制指示及逻辑信道标识,确定相关数据复制逻辑信道标识,其中,与逻辑信道标识相关的逻辑信道标识为逻辑信道标识为n或者(n+m)mod k的标识,n为正整数;根据逻辑信道标识判断是否有与逻辑信道标识相关的逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联PDCP实体;在判断结果为否时,建立PDCP实体。
图18是根据本发明实施例的终端的结构框图,如图18所示,该终端包括:
发送模块182,设置为向基站发送资源请求辅助信息。
接收模块184,连接至上述发送模块182,设置为接收资源分配信息;
传输模块186,连接至上述接收模块184,设置为根据资源分配信息进行数据传输。
可选地,发送模块182,还设置为在向基站发送资源请求辅助信息之前,获取数据对应的如下信息至少之一:可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR,目标标识信息;根据可用频点集合和/或PPPP和/或PPPR和/或目标标识信息建立对应的逻辑信道或者逻辑信道组;
可选地,逻辑信道组包含的逻辑信道对应的可用频点相同。
可选地,上述辅助信息包括:数据目标标识。
可选地,对应于每一个目标标识,辅助信息还包括:一个或多个逻辑信道标识。
可选地,对于每一个逻辑信道标识,目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
可选地,辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
图19是根据本发明实施例的资源分配装置的结构框图,如图19所示,该装置包括:
接收模块192,设置为接收终端发送的资源请求辅助信息。
分配模块194,连接至上述接收模块192,设置为根据辅助信息为终端分配数据传输资源。
可选地,辅助信息包括:数据目标标识。
可选地,对应于每一个目标标识,辅助信息还包括:一个或多个逻辑信道标识。
可选地,对于每一个逻辑信道标识,目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
可选地,辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
可选地,分配模块,还设置为接收终端发送的缓冲状态报告和/或辅助信息;分配数据传输资源;根据缓存区信息和/或辅助信息为终端分配数据传输资源。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于 本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种数据包传输、资源分配方法及装置、数据传输方法、终端具有以下有益效果:由于组装的数据包包含了数据复制信息,使得接收侧可以根据接收的数据包中的数据复制信息区分逻辑信道是否支持复制duplication以及对应于哪个PDCP实体,无需再创建两套独立的RLC接收实体/逻辑信道/PDCP实体,避免了高层接收大量重复乱序的数据包。

Claims (50)

  1. 一种数据包传输方法,包括:
    组装包含数据复制信息的数据包;
    发送所述包含数据复制信息的数据包。
  2. 根据权利要求1所述的方法,其中,所述数据复制信息包括如下至少之一:
    用于数据复制的两个以上逻辑信道标识的映射关系;
    数据复制指示,其中,所述数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制的逻辑信道。
  3. 根据权利要求1所述的方法,其中,组装包含所述数据复制信息的所述数据包包括:
    为需要数据复制的数据建立两个以上数据复制逻辑信道,分配逻辑信道标识;
    在逻辑信道优先化流程中,媒体访问控制MAC实体组装包含数据复制信息的数据包。
  4. 根据权利要求3所述的方法,其中,为需要数据复制的数据建立两个以上数据复制逻辑信道,分配逻辑信道标识,包括以下至少之一:
    为所述两个以上数据复制逻辑信道分配不同的逻辑信道标识;
    在为需要数据复制的数据建立两个数据复制逻辑信道时,为所述两个数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识,为所述两个数据复制逻辑信道中第二个数据复制逻辑信道分配一个仅在发送侧可见的逻辑信道标识,其中,所述仅在发送侧可见的逻辑信道标识在可用逻辑信道标识范围内或不在可用逻辑信道标识范围内的任意取值;
    在为需要数据复制的数据建立两个数据复制逻辑信道时,为所述两个数据复制逻辑信道分配相同的逻辑信道标识,在所述第二个数据复制逻辑信道上增加数据复制指示;
    为所述两个以上数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识n,为所述两个以上数据复制逻辑信道中第二个数据复制逻辑信道分配的逻辑信道标识为(n+m)mod k,其中m和k可以由系统预配置或网络配置或默认取值,n为正整数。
  5. 根据权利要求4所述的方法,其中,组装包含所述数据复制信息的所述数据包包括以下至少之一:
    在包含所述两个以上数据复制逻辑信道的数据对应的MAC子头上携带相同的逻辑信道标识;在包含所述第一个数据复制逻辑信道的数据对应的MAC子头上携带的数据复制指示为0,而在包含数据复制第二逻辑信道的数据对应的MAC子头上携带的数据复制指示为1;
    在包含除第一个数据复制逻辑信道之外的其他数据复制逻辑信道的数据对应的MAC子头上除了携带对应的信道标识,还包含所述第一个数据复制逻辑信道对应的逻辑信道标识;
    在MAC控制单元CE中包含数据复制两个以上数据复制逻辑信道的逻辑信道标识;
    在包含所述第一个数据复制逻辑信道的数据对应的MAC子头上携带数据复制指示。
  6. 一种数据包传输方法,包括:
    接收包含数据复制信息的数据包;
    根据所述数据复制信息处理数据包。
  7. 根据权利要求6所述的方法,其中,所述数据复制信息包括 如下至少之一:
    用于数据复制的两个以上逻辑信道标识的映射关系;
    数据复制指示,其中,所述数据复制指示用于指示数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制逻辑信道。
  8. 根据权利要求7所述的方法,其中,根据所述数据复制信息处理数据包包括:
    根据所述数据包的MAC子头的逻辑信道标识和/或数据复制信息,判断所述逻辑信道标识对应的逻辑信道是否存在;
    在判断结果为否时,建立所述逻辑信道标识对应的逻辑信道和RLC实体,并根据数据复制信息建立或关联对应的分组数据汇聚协议PDCP实体;
    将所述数据包投递到对应的逻辑信道后,经过无线链路控制协议RLC实体和PDCP实体处理。
  9. 根据权利要求8所述的方法,其中,根据所述数据复制信息建立或关联对应的PDCP实体包括:
    根据所述数据复制信息中的用于数据复制的两个以上逻辑信道标识的映射关系,确定两个以上数据复制逻辑信道分配了不同的逻辑信道标识;
    判断两个以上逻辑信道标识中是否有除所述数据对应的逻辑信道标识之外的其他逻辑信道标识对应的PDCP实体已经建立;
    在判断结果为是时,关联所述PDCP实体;
    在判断结果为否时,建立所述PDCP实体。
  10. 根据权利要求8所述的方法,其中,根据所述数据复制信息建立或关联对应的PDCP实体包包括:
    根据所述数据复制信息中的数据复制指示及逻辑信道标识,所述逻辑信道为用于数据复制的逻辑信道;
    判断用于数据复制的原始数据对应的PDCP实体是否建立或用于数据复制的复制数据对应的PDCP实体是否建立;
    在判断结果为是时,关联所述PDCP实体;
    在判断结果为否时,建立所述PDCP实体。
  11. 根据权利要求8所述的方法,其中,根据所述数据复制信息建立或关联对应的PDCP实体包括:
    根据所述数据复制信息中的数据复制指示及逻辑信道标识,确定相关数据复制逻辑信道标识,其中,与所述逻辑信道标识相关的逻辑信道标识为逻辑信道标识为n或者(n+m)mod k的标识,n为正整数;
    根据所述逻辑信道标识判断是否有与所述逻辑信道标识相关的逻辑信道标识对应的PDCP实体已经建立;
    在判断结果为是时,关联所述PDCP实体;
    在判断结果为否时,建立所述PDCP实体。
  12. 一种数据传输方法,包括:
    向基站发送资源请求辅助信息;
    接收资源分配信息;
    根据所述资源分配信息进行数据传输。
  13. 根据权利要求12所述的方法,其中,在向所述基站发送资源请求辅助信息之前,还包括:
    获取数据对应的如下信息至少之一:可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR,目标标识信息;
    根据所述可用频点集合和/或PPPP和/或PPPR和/或目标标识信息 建立对应的逻辑信道或者逻辑信道组。
  14. 根据权利要求13所述的方法,其中,所述逻辑信道组包含的逻辑信道对应的可用频点相同。
  15. 根据权利要求12所述的方法,其中,所述辅助信息包括:数据目标标识。
  16. 根据权利要求15所述的方法,其中,对应于每一个目标标识,所述辅助信息还包括:一个或多个逻辑信道标识。
  17. 根据权利要求16所述的方法,其中,对于每一个逻辑信道标识,所述目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
  18. 根据权利要求12所述的方法,其中,所述辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
  19. 一种资源分配方法,包括:
    接收终端发送的资源请求辅助信息;
    根据所述辅助信息为所述终端分配数据传输资源。
  20. 根据权利要求19所述的方法,其中,所述辅助信息包括:数据目标标识。
  21. 根据权利要求20所述的方法,其中,对应于每一个目标标识,所述辅助信息还包括:一个或多个逻辑信道标识。
  22. 根据权利要求21所述的方法,其中,对于每一个逻辑信道标识,所述目标标识信息还包括如下至少之一:逻辑信道对应的逻辑 信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
  23. 根据权利要求19所述的方法,其中,所述辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
  24. 根据权利要求22或23所述的方法,其中,根据所述辅助信息为所述终端分配数据传输资源包括:
    接收所述终端发送的缓冲状态报告和/或所述辅助信息;
    根据缓存区信息和/或所述辅助信息为所述终端分配数据传输资源。
  25. 一种数据包传输装置,包括:
    组装模块,设置为组装包含数据复制信息的数据包;
    发送模块,设置为发送包含数据复制信息的数据包。
  26. 根据权利要求25所述的装置,其中,所述数据复制信息包括如下至少之一:
    用于数据复制的两个以上逻辑信道标识的映射关系;
    数据复制指示,其中,所述数据复制指示用于指示所述数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制的逻辑信道。
  27. 根据权利要求25所述的装置,其中,所述组装模块,还设置为为需要数据复制的数据建立两个以上数据复制逻辑信道,分配逻辑信道标识;在逻辑信道优先化流程中,媒体访问控制MAC实体组装包含数据复制信息的数据包。
  28. 根据权利要求27所述的装置,其中,所述组装模块,还设 置为为所述两个以上数据复制逻辑信道分配不同的逻辑信道标识;或,在为需要数据复制的数据建立两个数据复制逻辑信道时,为所述两个数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识,为所述两个数据复制逻辑信道中第二个数据复制逻辑信道分配一个仅在发送侧可见的逻辑信道标识,其中,所述仅在发送侧可见的逻辑信道标识在可用逻辑信道标识范围内或不在可用逻辑信道标识范围内的任意取值;或,在为需要数据复制的数据建立两个数据复制逻辑信道时,为所述两个数据复制逻辑信道分配相同的逻辑信道标识,在所述第二个数据复制逻辑信道上增加数据复制指示;或,为所述两个以上数据复制逻辑信道中第一个数据复制逻辑信道分配一个逻辑信道标识n,为所述两个以上数据复制逻辑信道中第二个数据复制逻辑信道分配的逻辑信道标识为(n+m)mod k,其中m和k可以由系统预配置或网络配置或默认取值,n为正整数。
  29. 根据权利要求28所述的装置,其中,所述组装模块,还设置为在包含所述两个以上数据复制逻辑信道的数据对应的MAC子头上携带相同的逻辑信道标识;在包含所述第一个数据复制逻辑信道的数据对应的MAC子头上携带的数据复制指示为0,而在包含数据复制第二逻辑信道的数据对应的MAC子头上携带的数据复制指示为1;或,在包含除第一个数据复制逻辑信道之外的其他数据复制逻辑信道的数据对应的MAC子头上除了携带对应的信道标识,还包含所述第一个数据复制逻辑信道对应的逻辑信道标识;或,在MAC控制单元CE中包含数据复制两个以上数据复制逻辑信道的逻辑信道标识;或,在包含所述第一个数据复制逻辑信道的数据对应的MAC子头上携带数据复制指示。
  30. 一种数据包传输装置,包括:
    接收模块,设置为接收包含数据复制信息的数据包;
    处理模块,设置为根据所述数据复制信息处理数据包。
  31. 根据权利要求30所述的装置,其中,所述数据复制信息包括如下至少之一:
    用于数据复制的两个以上逻辑信道标识的映射关系;
    数据复制指示,其中,所述数据复制指示用于指示所述数据的逻辑信道的是否为数据复制的逻辑信道或是否存在对应的数据复制逻辑信道。
  32. 根据权利要求31所述的装置,其中,所述处理模块,还设置为根据所述数据包的MAC子头的逻辑信道标识和/或数据复制信息,判断所述逻辑信道标识对应的逻辑信道是否存在;在判断结果为否时,建立所述逻辑信道标识对应的逻辑信道和RLC实体,并根据数据复制信息建立或关联对应的分组数据汇聚协议PDCP实体;将所述数据包投递到对应的逻辑信道后,经过无线链路控制协议RLC实体和PDCP实体处理。
  33. 根据权利要求32所述的装置,其中,所述处理模块,还设置为根据所述数据复制信息中的用于数据复制的两个以上逻辑信道标识的映射关系,确定两个以上数据复制逻辑信道分配了不同的逻辑信道标识;判断两个以上逻辑信道标识中是否有除所述数据对应的逻辑信道标识之外的其他逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联所述PDCP实体;在判断结果为否时,建立所述PDCP实体。
  34. 根据权利要求32所述的装置,其中,所述处理模块,还设置为根据所述数据复制信息中的数据复制指示及逻辑信道标识,所述逻辑信道为用于数据复制的逻辑信道;判断用于数据复制的原始数据对应的PDCP实体是否建立或用于数据复制的复制数据对应的PDCP实体是否建立;在判断结果为是时,关联所述PDCP实体;在判断结果为否时,建立所述PDCP实体。
  35. 根据权利要求32所述的装置,其中,所述处理模块,还设置为根据所述数据复制信息中的数据复制指示及逻辑信道标识,确定相关数据复制逻辑信道标识,其中,与所述逻辑信道标识相关的逻辑信道标识为逻辑信道标识为n或者(n+m)mod k的标识,n为正整数;根据所述逻辑信道标识判断是否有与所述逻辑信道标识相关的逻辑信道标识对应的PDCP实体已经建立;在判断结果为是时,关联所述PDCP实体;在判断结果为否时,建立所述PDCP实体。
  36. 一种终端,包括:
    发送模块,设置为向基站发送资源请求辅助信息;
    接收模块,设置为接收资源分配信息;
    传输模块,设置为根据所述资源分配信息进行数据传输。
  37. 根据权利要求36所述的终端,其中,所述发送模块,还设置为在向所述基站发送资源请求辅助信息之前,获取数据对应的如下信息至少之一:可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR,目标标识信息;根据所述可用频点集合和/或PPPP和/或PPPR和/或目标标识信息建立对应的逻辑信道或者逻辑信道组。
  38. 根据权利要求37所述的终端,其中,所述逻辑信道组包含的逻辑信道对应的可用频点相同。
  39. 根据权利要求36所述的终端,其中,所述辅助信息包括:数据目标标识。
  40. 根据权利要求39所述的终端,其中,对应于每一个目标标识,所述辅助信息还包括:一个或多个逻辑信道标识。
  41. 根据权利要求40所述的终端,其中,对于每一个逻辑信道标识,所述目标标识信息还包括如下至少之一:逻辑信道对应的逻辑 信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
  42. 根据权利要求36所述的终端,其中,所述辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
  43. 一种资源分配装置,包括:
    接收模块,设置为接收终端发送的资源请求辅助信息;
    分配模块,设置为根据所述辅助信息为所述终端分配数据传输资源。
  44. 根据权利要求43所述的装置,其中,所述辅助信息包括:数据目标标识。
  45. 根据权利要求44所述的装置,其中,对应于每一个目标标识,所述辅助信息还包括:一个或多个逻辑信道标识。
  46. 根据权利要求45所述的装置,其中,对于每一个逻辑信道标识,所述目标标识信息还包括如下至少之一:逻辑信道对应的逻辑信道组标识,可用频点集合,每个邻近服务数据包的优先级PPPP,可靠性PPPR。
  47. 根据权利要求43所述的装置,其中,所述辅助信息包括以下至少之一:可用频点列表,数据复制指示,数据包预计传输周期,数据包预计传输的相对时间偏移,可靠性PPPR,最大数据包大小。
  48. 根据权利要求46或47所述的装置,其中,所述分配模块,还设置为接收所述终端发送的缓冲状态报告和/或所述辅助信息;分配数据传输资源;根据缓存区信息和/或所述辅助信息为所述终端分配数据传输资源。
  49. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至24任一项中所述的方法。
  50. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至24任一项中所述的方法。
PCT/CN2019/072829 2018-02-14 2019-01-23 数据包传输、资源分配方法及装置、数据传输方法、终端 WO2019157918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810151808.8 2018-02-14
CN201810151808.8A CN110167074A (zh) 2018-02-14 2018-02-14 数据包传输、资源分配方法及装置、数据传输方法、终端

Publications (1)

Publication Number Publication Date
WO2019157918A1 true WO2019157918A1 (zh) 2019-08-22

Family

ID=67619116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072829 WO2019157918A1 (zh) 2018-02-14 2019-01-23 数据包传输、资源分配方法及装置、数据传输方法、终端

Country Status (2)

Country Link
CN (1) CN110167074A (zh)
WO (1) WO2019157918A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132999B (zh) * 2019-12-31 2022-10-21 中国移动通信有限公司研究院 资源分配方法、装置、网络设备及存储介质
CN114071407A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 通信方法及装置
CN114257989A (zh) * 2020-09-23 2022-03-29 展讯通信(上海)有限公司 资源请求方法、资源配置方法及相关产品
CN116368852A (zh) * 2020-10-22 2023-06-30 华为技术有限公司 无线通信方法、装置及系统
CN112788664A (zh) * 2020-12-31 2021-05-11 努比亚技术有限公司 双WiFi数据传输方法、装置、终端及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OPPO: "Duplication Control Using MAC CE", 3GPP TSG-RAN2 MEETING AH#1, R2-1800066, 26 January 2018 (2018-01-26), XP051385991 *
POTEVIO: "Consideration on Packet Duplication over Sidelink", 3GPP TSG-RAN WG2#101, R2-1801983, 12 February 2018 (2018-02-12), XP051398935 *
SAMSUNG: "Packet Duplication for the Sidelink Carrier Aggregation", 3GPP TSG-RAN WG2 MEETING #100, R2-1713841, 1 December 2017 (2017-12-01), XP051372488 *

Also Published As

Publication number Publication date
CN110167074A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
US11764910B2 (en) Initial and retransmissions of data for V2X transmissions
RU2748541C1 (ru) Способы эффективного использования ресурсов между взаимодействующими транспортными средствами
JP6952710B2 (ja) 車両用通信におけるQoS実装のための改良メカニズム
US11051275B2 (en) Semi-persistent resource allocation behavior for V2X transmissions
WO2019157918A1 (zh) 数据包传输、资源分配方法及装置、数据传输方法、终端
RU2701117C1 (ru) Улучшенное полупостоянное распределение ресурсов для трафика v2v
JP6726355B2 (ja) V2x送信のための改良された無線リソース選択およびセンシング
RU2716738C2 (ru) Процедура приоритезации логического канала для логических каналов одноуровневой линии связи
WO2021022907A1 (zh) 数据传输方法、装置及存储介质
KR20210042930A (ko) 차량의 인터넷에서 사이드링크에 대한 리소스 구성을 위한 방법 및 장치
WO2017133501A1 (zh) 车联网业务拥塞控制的方法及装置
CN112997565A (zh) 用于单播和/或多播链路建立和维持的l2过程
CN108886781A (zh) 基于Uu的车辆到车辆通信的调度方法和系统
CN109803385B (zh) 请求资源的方法及装置,处理资源请求的方法及装置
TWI735192B (zh) 管理側鏈路訊務優先級之方法和裝置
CN113039737A (zh) 终端直接通信系统中确定分组通信范围的方法和装置
JP2023508827A (ja) 無線通信ネットワークにおけるサイドリンク通信のためのシステムおよび方法
CN111147202A (zh) 一种车联网的数据传输方法、发送终端和网络侧设备
US20210409984A1 (en) Method of monitoring data inactivity and an electronic device performing the method
WO2021072779A1 (zh) 传输处理方法、装置、设备以及存储介质
JP6990749B2 (ja) V2x送信のための改良された無線リソース選択およびセンシング
RU2719633C1 (ru) Улучшенное полупостоянное распределение ресурсов для трафика v2v
US20220264586A1 (en) Resource Allocation in Wireless Network
RU2734102C1 (ru) Улучшенное зондирование и выбор ресурсов радиосвязи для передач v2x
CN114258717A (zh) 在直通链路通信中使用资源的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19755101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19755101

Country of ref document: EP

Kind code of ref document: A1