WO2019157623A1 - Hybrid charging system - Google Patents

Hybrid charging system Download PDF

Info

Publication number
WO2019157623A1
WO2019157623A1 PCT/CN2018/076621 CN2018076621W WO2019157623A1 WO 2019157623 A1 WO2019157623 A1 WO 2019157623A1 CN 2018076621 W CN2018076621 W CN 2018076621W WO 2019157623 A1 WO2019157623 A1 WO 2019157623A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
charging system
power
inductive coil
switch
Prior art date
Application number
PCT/CN2018/076621
Other languages
French (fr)
Inventor
Kai TIAN
Tinho LI
Kuenfaat YUEN
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to PCT/CN2018/076621 priority Critical patent/WO2019157623A1/en
Publication of WO2019157623A1 publication Critical patent/WO2019157623A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the field of electric vehicles.
  • the invention relates to a hybrid charging system for electric vehicles and to a charging system arrangement.
  • Electric vehicles may be charged via wired or wireless power transfer.
  • Wireless power transfer via two inductively coupled coils, which form an air transformer, is in direct competition with wired power transfer that in the moment seems to be more reliable and cost effective.
  • the transfer distance at kilowatts power level increased from several millimeters to several hundred millimeters with a grid to load efficiency above 90%.
  • Both types may comprise a two stage topology comprising an AC-to-DC converter and a DC-to-DC converter with an internal transformer.
  • the transformer In the case of the wired topology, the transformer is part of the charging system, while in the wireless topology, the transformer is provided by the two inductively coupled coils.
  • the DC-to-DC converter is distributed between the charging system and the electric car to be charged.
  • WO 2016 019 463 A1 describes a charger capable of working work with wireless and wired charging technologies. However, no specific topologies are disclosed.
  • hybrid may refer to a charging system that is adapted for charging with the wired and wireless power transfer.
  • An electric vehicle may be a street vehicle that may be driven with an electric motor, which is supplied by a battery.
  • the hybrid charging system may be used for charging the battery.
  • a hybrid vehicle i.e. a vehicle with a combustion engine and an electrical motor, may be seen as an electric vehicle.
  • the hybrid charging system comprises a power converter connectable to a power source for converting the power from the power source into AC power output; a transformer connected with the power converter with a primary winding; a secondary side AC-to-DC converter connected with a secondary winding of the transformer and for providing a DC current for power transfer to an electric vehicle via a cable; and a first inductive coil connected in series with the primary winding of the transformer and for inductively coupling to a second inductive coil for power transfer to an electric vehicle via an air gap.
  • the hybrid charging system may be seen as a multi-mode charging system capable of delivering power through wired and wireless power transfer.
  • the hybrid charging system may share components that are used for wired and wireless charging.
  • One power converter which may comprise an AC-to-DC converter and a DC-to-AC converter, may be connected with both the transformer and the first inductive coil.
  • the DC-to-AC converter, the transformer and the secondary side AC-to-DC converter may be seen as a first DC-to-DC converter for wired charging.
  • the DC-to-AC converter, the inductively coupled first and second coils and an AC-to-DC converter provided in an electric vehicle may be seen as a second DC-to-DC converter for wireless charging via the air transformer formed by the inductively coupled first and second coils.
  • first and second DC-to-DC converters which share their primary side converter, both are galvanic separated converters.
  • the galvanic separation for the wired topology part may be a highly coupled transformer.
  • Both DC-to-DC converters may have a primary side DC-to-AC converter, which may be adapted to generate a square voltage waveform on the primary side of the respective transformer.
  • the transformer for the wired topology part of the charging system may comprise a primary and a secondary winding that are inductively coupled via a common core.
  • the AC-to-DC converter connected to the secondary winding may be connected with an electric vehicle via a cable.
  • the electric vehicle has a plug for such a cable, which then can directly charge a battery of the electric vehicle.
  • the galvanic separation for the wireless topology part may be a loosely coupled air transformer.
  • Both first and second inductive coils may be flat coils that may be arranged substantially parallel with each other.
  • the first coil may be provided in a ground adapter below the electric vehicle, which has the second inductive coil in its underbody. With such an air transformer, energy may be transmitted across distances of several decimeter.
  • a magnetic field that changes with time is generated with the first inductive coil. Part of the magnetic field flows through the second inductive coil and induces a current flow.
  • the second inductive coil may be connected via a rectifier with the battery of the electric car, which then may be charged.
  • the hybrid charging system further comprises a first switch connected across the primary winding of the transformer for bypassing power transfer to the primary winding of the transformer from the AC-to-AC-converter and a second switch connected across the first inductive coil for bypassing power transfer to the first inductive coil from the AC-to-AC-converter.
  • the first switch is a normally open switch and the second switch is a normally closed switch. It may be that the hybrid charging system is normally in a wired charging mode. When an electric vehicle is connected to the charging cable, it can be charged without the necessity of detecting a demand for charging.
  • a normally closed switch may be a switch that is closed, when no control signal is applied.
  • a normally open switch may be a switch that is open, when no control signal is applied. Both switches may be mechanical switches.
  • both switches may be switched and the electric vehicle may be charged via the first inductive coil.
  • the electric vehicle is adapted to be charged by both types of topologies.
  • the normally closed first switch and the normally open second switch provide the ability to charge the electric vehicle via the wire bound charging part.
  • the hybrid charging system further comprises a controller for opening and closing the first switch and the second switch, such that solely the transformer or solely the first inductive coil is fed with power transferred from the power converter.
  • the switches may be controlled by a controller that also may be responsible for controlling the semiconductor switches of the hybrid charging system. In particular, the semiconductor switches of the power converter.
  • the first switch is a normally closed switch and the second switch is a normally open switch, only one control signal may be applied to both switches by the controller.
  • the controller is adapted for receiving a wireless communication signal indicating a charging type of an electric vehicle.
  • the controller may be connected to a wireless receiver, for example a WLAN receiver.
  • the electric vehicle to be charged may send a charging signal with the respective charging type to the wireless receiver.
  • the controller may be adapted for opening and closing the first switch and the second switch according to the received charging type. I. e. when the charging type is “wired” , then the switches may be switched, such that the power is fed to the primary winding of the transformer transferred from the power converter and such that the first inductive coil is short-circuited from the power converter. When the charging type is “wireless” , then the switches may be switched, such that the primary winding of the transformer is short-circuited from the power converter and such that the first inductive coil is fed with the power transferred from the power converter.
  • the hybrid charging system further comprises a wireless receiver for receiving a charging signal from the electric vehicle with the second inductive coil.
  • the controller may be adapted for bypassing the transformer from the power converter and for feeding the power to the first inductive coil transferred from the power converter, when a charging signal is received by the wireless receiver.
  • Electric vehicles equipped with wireless charging technology may have a wireless transmission link (such as a WLAN radio transmission link) with the charging system.
  • the hybrid charging system may be adapted for automatically detecting the requested charging technology based on wireless communication between the electric vehicle and the hybrid charging system.
  • the hybrid charging system further comprises at least one compensation capacitor connected between the power converter and a connection point between the transformer and the first induction coil.
  • the at least one compensation capacitor may be present for forming an oscillating circuit with the primary winding of the transformer or the first inductive coil.
  • the oscillating circuit may be formed, when the corresponding switch is open.
  • the compensation capacitor (s) of the wireless power transfer part of the hybrid charging system may be integrated and/or shared with the wired power transfer part. Sharing the compensation capacitors may save components and costs for the hybrid charging system.
  • the one or more compensation capacitors may be combined with further passive components, such as inductors and/or resistors to adapt the resonance and/or filter behaviour of the circuit.
  • the second inductive coil and a corresponding compensation capacitor may form such an oscillating circuit, which may be provided by an electric vehicle.
  • the two oscillating circuits may be in resonance to improve the power transfer. In this way, an energy transmission with efficiency of up to 95%can be achieved.
  • the inductive power transfer via the first and second inductive coil may require a resonant circuit, since a large winding separation may have a relatively large leakage inductance and AC winding resistances.
  • the magnetizing flux may be significantly reduced, which results in a much lower magnetizing inductance and mutual inductance.
  • one or more additional compensation capacitors are needed to form the resonant circuit in both sides.
  • a basic requirement for a compensation capacitor may be to resonate with the corresponding inductance, to provide the reactive power required for the inductances to generate an adequate magnetic field.
  • the compensation capacitor (s) may minimize the input apparent power and/or may minimize the volt-ampere rating of the power supply.
  • the at least one compensation capacitor is connected between the power converter and a first switch for bypassing the power transferred to the transformer from the power converter and a second switch for bypassing the power transferred to the first inductive coil from the power converter.
  • a compensation capacitor is connected in series with the primary winding of the transformer and with the first inductive coil and/or a compensation capacitor is connected in parallel with the second inductive coil. It may be possible that more than one compensation capacitor are present.
  • the power converter comprises a grid side AC-to-DC converter and a primary side DC-to-AC converter.
  • a DC link with a DC link capacitor may be connected between the AC-to-DC converter and the DC-to-AC converter.
  • the primary side AC-to-DC converter and the following components (i.e. transformer part or inductive coil part) of each charging topology may be seen as DC-to-DC converter.
  • This DC-to-DC converter may be connected via the DC link with the grid side AC-to-DC converter.
  • the DC-to-AC converter is a full-bridge converter.
  • a full-bridge converter may comprise a half-bridge for each phase of the converter.
  • a half-bridge may comprise two series-connected switching devices, such as transistors or thyristors.
  • the grid side AC-to-DC converter may be an active front end or passive front end. It may be a single phase or a three phase converter.
  • the AC-to-DC converter comprises a boost converter and/or a passive rectifier.
  • a boost converter may comprise an inductance connected in series with a diode and switching device, such as a transistor or thyristor that is connected between the inductance and the diode.
  • the passive rectifier may generate a DC voltage that is boosted by the boost converter.
  • the AC-to-DC converter comprises a full-bridge converter. It has to be noted that the AC-to-DC converter may be a one-phase or three-phase converter. The DC-to-AC converter may be a one-phase converter.
  • the AC-to-DC converter may comprise a passive input filter, which may be composed of inductances and/or capacitors.
  • the secondary side AC-to-DC converter may have different topologies, which are not limited by the embodiments described in the following.
  • the secondary side DC-to-AC converter may comprise a diode bridge rectifier and optionally a filter.
  • a further aspect of the invention relates to a charging system arrangement, which comprises a hybrid charging system as described in the above and in the following and two electric cars, which may be charged either by the wired topology or by the wireless topology.
  • a first electric vehicle with a second inductive coil may be adapted for being inductively coupled with the first inductive coil provided by the hybrid charging system, wherein the first electric vehicle is adapted for being charged by the hybrid charging system.
  • a second electric vehicle may be adapted for being connected with the hybrid charging system with a cable, wherein the second electric vehicle is adapted for being charged by the hybrid charging system.
  • the hybrid charging system may be adapted for selectively charging the first electric vehicle or the second electric vehicle via the power converter.
  • the hybrid charging system may be switched via the first and second switch that the first electric vehicle is charged via the transformer and the secondary side AC-to-DC converter.
  • the first inductive coil may be bypassed from the power converter.
  • a wireless sender of the electric car may inform the hybrid charging system that the second electric car is present for charging.
  • the hybrid charging system may be switched via the first and second switch such that the second electric vehicle is charged via the first and second inductive coils.
  • the transformer then may be bypassed from the power converter.
  • Fig. 1 schematically shows a charging system arrangement according to an embodiment of the invention.
  • Fig. 2 schematically shows a hybrid charging system according to an embodiment of the invention.
  • Fig. 3 schematically shows a hybrid charging system according to a further embodiment of the invention.
  • Fig. 4 shows a schematic circuit diagram for a grid side AC-to-DC converter of a hybrid charging system according to an embodiment of the invention.
  • Fig. 5 shows a schematic circuit diagram for a further grid side AC-to-DC converter of a hybrid charging system according to an embodiment of the invention.
  • Fig. 6 shows a schematic circuit diagram for a DC-to-AC converter of a hybrid charging system according to an embodiment of the invention.
  • Fig. 7 shows a schematic circuit diagram for a secondary side AC-to-DC converter for a hybrid charging system according to an embodiment of the invention.
  • Fig. 1 shows a charging system arrangement 10 comprising a hybrid charging system 12 and two electric vehicles 14, 15.
  • the hybrid charging system 12 comprises a main part 16, which is adapted for converting power from a power source 18 into AC power.
  • the main part 16 may convert an AC current from an electrical grid 18 into an AC current of different, usually much higher frequency, which is supplied via a first cable 20 to a ground adapter 22, in which a first inductive coil 24 is arranged.
  • the main part 16 may be configured to convert a DC power from a DC power source into AC power output.
  • the main part 16, for example, may be connected to a wall.
  • the ground 22 may be arranged below the electric vehicle 14 in a ground 26, for example in a parking lot.
  • the first inductive coil 24 is inductively coupled via an air gap with a second inductive coil 28 in an on-board charging device 30 of the electrical vehicle 14.
  • the AC current induced in the second inductive coil 28 is rectified by an AC-to-DC converter 32 inside the electric vehicle 14 and supplied to a battery 34 of the electric vehicle 14.
  • the ground adapter 22 may comprise a wireless receiver 36 and the on-board charging device 30 may comprise a wireless sender 38 for indicating the main hybrid charging system 12 that an electric vehicle needs to be charged wirelessly.
  • the main part 16 of the hybrid charging system 12 is additionally adapted for converting the AC current from an electrical grid 18 into a DC current, which is supplied via a second cable 40 to the second electric vehicle 15, which battery 34 may be charged directly with the DC current. It has to be noted that it may be possible that the hybrid charging system 12 may be adapted for solely charging one of the electric vehicles 14, 15 at one time. It may be that only one electric vehicle 14, 15 is connected with the hybrid charging system 12.
  • Fig. 2 shows the wireless charging system 12 in more detail.
  • the main part 16 comprises a power converter 42 that is connected via a transformer 44 with a secondary side AC-to-DC converter 46 and a controller 48 for controlling the power converter 42.
  • the Power converter 42 comprises a grid side AC-to-DC converter 50 and a primary side DC-to-AC converter 52, which are connected via a DC link 54 with a DC link capacitor 56.
  • the main part may comprise a DC-to-AC converter that is connected via a transformer 44 with a secondary side AC-to-DC converter 46 and a controller 48 for controlling the DC-to-AC converter.
  • a first switch 58 is connected across the primary winding 60 of the transformer 44, such that a charging power transfers to the primary winding 60 of the transformer 44 from the AC-to-AC-converter 42 may be bypassed with the closed first switch 58. Otherwise, where it is open, the power transferred from the AC-to-AC-converter 42 will find its path towards the primary winding 60 of the transformer 44. .
  • the primary winding 60 of the transformer 44 is inductively coupled with a secondary winding 62 via a common core.
  • the secondary winding is connected to the AC-to-DC converter 46, which is connected with the charging cable 40.
  • the first inductive coil 24 is connected via the cable 20 in series to a primary winding 60 to the power converter 42.
  • a second switch 64 which as the first switch 58 is arranged in the main part 16, is connected across the first inductive coil 24, such that a charging power transfers to the first inductive coil 24 from the AC-to-AC-converter 42 may be bypassed with the closed second switch 64. Otherwise, where it is open, the power transferred from the AC-to-AC-converter 42 will find its path towards the first inductive coil 24.
  • Fig. 2 shows a compensation capacitor 66, which is connected between the power converter 42 and the first switch 58 and the second switch 64.
  • the switches 58, 64 may be controlled by the controller 48 to be open or closed. In a wired charging state, the switch 58 is controlled to be open and the switch 64 is controlled to be closed. In a wireless charging state, the switch 58 is controlled to be closed and the switch 64 is controlled to be open. In both states, the compensation capacitor 64 forms a resonant circuit with the respective inductance, i.e. the primary winding 60 or the first inductive coil 24.
  • the first switch 58 may be a normally open switch and the second switch 64 may be a normally closed switch. In such a way, the controller 48 may only need one control signal to move the switches in the wired charging state or the wireless charging state.
  • the second inductive coil 28 of the electric vehicle 14 may be connected with the compensation capacitor 68, forming a resonant circuit with the second inductive coil 28.
  • the primary winding 60 of the transformer 44 may be connected in parallel and/or in series with further inductors 69, which may be arranged between the first switch 58 and the primary winding 60. These inductors 69 may form an LLC circuit with the capacitor 66.
  • the controller controls switching devices of the AC-to-DC converter 50 to generate a DC current in the DC link 56 and controls switching devices of the DC-to-AC converter 52 to convert the DC current in the DC link 54 into the high frequency current.
  • the voltage in the grid 18 may have a voltage of 50 Hz or 60 Hz.
  • the pulse width modulated current output by the power converter 42 may have a frequency of more than 10 kHz.
  • the AC-to-DC converter 46 is supplied via the transformer 44 with the AC current from the power converter 42.
  • the AC-to-DC converter 46 generates a DC current that is supplied to the electric vehicle 15 for charging its battery 34.
  • the electric vehicle 14 When an electric vehicle 14 is positioned above the ground adapter 22, the electric vehicle 14, with the wireless sender 38, may send a charging signal to the wireless receiver 36.
  • the charging signal is received by the controller 48, which then switches the switches 58, 64 into the wireless charging state.
  • the AC current from the power converter is supplied to the first inductive coil 24.
  • a corresponding AC current is induced in the second inductive coil 28 and converted into a DC current by the AC-to-DC converter 32 of the electric vehicle 14.
  • the compensation capacitor 66 is connected in series with the primary winding 60 and the first inductive coil 24.
  • the compensation capacitor 68 is connected in series with the second inductive coil 28.
  • Fig. 3 shows a hybrid charging system 12, which differs from the charging system of Fig. 2 in that the compensation capacitor 66’is connected in parallel with the primary winding 60 and the first inductive coil 24. Furthermore, the compensation capacitor 68’is connected in parallel with the second inductive coil 28.
  • the hybrid charging system 12 may have both a compensation capacitor 66 in series and a compensation capacitor 66’in parallel to the primary winding 60 and the first inductive coil 24. The same applies to the compensation capacitors 68, 68’inside the electric vehicle 14. Furthermore, a compensation capacitor 66 (or 66’) may be combined with a compensation capacitor 68’ (or 68) .
  • Fig. 4 shows an example for an AC-to-DC converter 50, which is composed of a passive rectifier 70 and a boost converter 72.
  • the passive rectifier 70 comprises two diode half-bridges.
  • the boost converter 72 comprises three paralleled arms of an inductance series-connected with a diode and a switching device 74, which is connected between the inductance and the diode.
  • the switching devices 74 may be controlled by the controller 48.
  • Fig. 5 shows a further example for an AC-to-DC converter 50, which is composed of a passive input filter 76 and a three-phase full-bridge converter 78.
  • the passive input filter 76 comprises three single-phase LC-filters, which are star-connected via capacitors.
  • the full-bridge converter 78 comprises three half-bridges of series-connected switching devices 74. The switching devices 74 may be controlled by the controller 48.
  • Fig. 6 shows an example for a DC-to-AC converter 52, which is a single-phase full-bridge converter.
  • the DC-to-AC converter 52 comprises two half-bridges of series-connected switching devices 74.
  • the switching devices 74 may be controlled by the controller 48.
  • Fig. 7 shows an example for an AC-to-DC converter 46, which may be employed in the main part 16 and/or an example for an AC-to-DC converter 32, which may be employed in the on-board charging device 30.
  • the AC-to-DC converter 46, 32 comprises a passive rectifier 80 composed of two diode half-bridges and a CLC output filter 82. A diode may prevent an inverse current flow from the battery 34 into the rectifier AC-to-DC converter 46, 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A hybrid charging system (12) for electric vehicles (14, 15) comprises an power converter (42) connectable to an electric AC grid (18); a transformer (44) connected with the power converter (42) with a primary winding (60); a secondary side AC-to-DC converter (46) connected with a secondary winding (62) of the transformer (44) and for providing a DC current for power transfer to an electric vehicle (15) via a cable (40); and a first inductive coil (24) connected in series with the primary winding (60) of the transformer (44) and for inductively coupling to a second inductive coil (28) for power transfer to an electric vehicle (14) via an air gap.

Description

HYBRID CHARGING SYSTEM Technical Field
The invention relates to the field of electric vehicles. In particular, the invention relates to a hybrid charging system for electric vehicles and to a charging system arrangement.
Background Art
Electric vehicles may be charged via wired or wireless power transfer. Wireless power transfer via two inductively coupled coils, which form an air transformer, is in direct competition with wired power transfer that in the moment seems to be more reliable and cost effective. However, in the recent years, for wireless power transfer, the transfer distance at kilowatts power level increased from several millimeters to several hundred millimeters with a grid to load efficiency above 90%. These advances make wireless power transfer very attractive to charging of electric vehicles in both stationary and dynamic charging scenarios.
Even though in terms of functionality the two types of charging system are intrinsically different, they have some commonalities. Both types may comprise a two stage topology comprising an AC-to-DC converter and a DC-to-DC converter with an internal transformer. In the case of the wired topology, the transformer is part of the charging system, while in the wireless topology, the transformer is provided by the two inductively coupled coils. Thus, in the wireless case, the DC-to-DC converter is distributed between the charging system and the electric car to be charged.
WO 2016 019 463 A1 describes a charger capable of working work with wireless and wired charging technologies. However, no specific topologies are disclosed.
Brief Summary of the Invention
It is an objective of the invention to provide a simple and economic charging system providing wired and wireless charging capability.
This objective is achieved by the subject-matter of the independent claims. Further exemplary embodiments are evident from the dependent claims and the following description.
An aspect of the invention relates to a hybrid charging system for electric vehicles. In this context, the term “hybrid” may refer to a charging system that is adapted for charging with the wired and wireless power transfer. An electric vehicle may be a street vehicle that may be driven with an electric motor, which is supplied by a battery. The hybrid charging system may be used for charging the battery. Also a hybrid vehicle, i.e. a vehicle with a combustion engine and an electrical motor, may be seen as an electric vehicle.
According to an embodiment of the invention, the hybrid charging system comprises a power converter connectable to a power source for converting the power from the power source into AC power output; a transformer connected with the power converter with a primary winding; a secondary side AC-to-DC converter connected with a secondary winding of the transformer and for providing a DC current for power transfer to an electric vehicle via a cable; and a first inductive coil connected in series with the primary winding of the transformer and for inductively coupling to a second inductive coil for power transfer to an electric vehicle via an air gap.
The hybrid charging system may be seen as a multi-mode charging system capable of delivering power through wired and wireless power transfer.
The hybrid charging system may share components that are used for wired and wireless charging. One power converter, which may comprise an AC-to-DC converter and a DC-to-AC converter, may be connected with both the transformer and the first inductive coil. The DC-to-AC converter, the transformer and the secondary side AC-to-DC converter may be seen as a first DC-to-DC converter for wired charging. The DC-to-AC converter, the inductively coupled first and second coils and an AC-to-DC converter provided in an electric vehicle may be seen as a second DC-to-DC converter for wireless charging via the air transformer formed by the inductively coupled first and second coils.
It has to be noted that the first and second DC-to-DC converters, which share their primary side converter, both are galvanic separated converters. The galvanic separation for the wired topology part may be a highly coupled transformer.
Both DC-to-DC converters may have a primary side DC-to-AC converter, which may be adapted to generate a square voltage waveform on the primary side of the respective transformer.
The transformer for the wired topology part of the charging system may comprise a primary and a secondary winding that are inductively coupled via a common core. The AC-to-DC converter connected to the secondary winding may be connected with an electric vehicle via a cable. For example, the electric vehicle has a plug for such a cable, which then can directly charge a battery of the electric vehicle.
The galvanic separation for the wireless topology part may be a loosely coupled air transformer. Both first and second inductive coils may be flat coils that may be arranged substantially parallel with each other. For example, the first coil may be provided in a ground adapter below the electric vehicle, which has the second inductive coil in its underbody. With such an air transformer, energy may be transmitted across distances of several decimeter. A magnetic field that changes with time is generated with the first inductive coil. Part of the magnetic field flows through the second inductive coil and induces a current flow. The second inductive coil may be connected via a rectifier with the battery of the electric car, which then may be charged.
According to an embodiment of the invention, the hybrid charging system further comprises a first switch connected across the primary winding of the transformer for bypassing power transfer to the primary winding of the transformer from the AC-to-AC-converter and a second switch connected across the first inductive coil for bypassing power transfer to the first inductive coil from the AC-to-AC-converter.
According to an embodiment of the invention, the first switch is a normally open switch and the second switch is a normally closed switch. It may be that the hybrid charging system is normally in a wired charging mode. When an electric vehicle is connected to the charging cable, it can be charged without the necessity of detecting a demand for charging. A normally closed switch may be a switch that is closed, when no control signal is applied. A normally open switch may be a switch that is open, when no control signal is applied. Both switches may be mechanical switches.
On the other hand, when a controller receives a request for wireless charging, for example from a sensor that detects an electric vehicle or its second inductive coil near the first inductive coil, both switches may be switched and the electric vehicle may be charged via the first inductive coil.
It also may be that the electric vehicle is adapted to be charged by both types of topologies. In the case, there is a defect or problem with the wireless charging part of the hybrid charging system, the normally closed first switch and the normally open second switch provide the ability to charge the electric vehicle via the wire bound charging part.
According to an embodiment of the invention, the hybrid charging system further comprises a controller for opening and closing the first switch and the second switch, such that solely the transformer or solely the first inductive coil is fed with power transferred from the power converter. The switches may be controlled by a controller that also may be responsible for controlling the semiconductor switches of the hybrid charging system. In particular, the semiconductor switches of the power converter.
When the first switch is a normally closed switch and the second switch is a normally open switch, only one control signal may be applied to both switches by the controller.
According to an embodiment of the invention, the controller is adapted for receiving a wireless communication signal indicating a charging type of an electric vehicle. For example, the controller may be connected to a wireless receiver, for example a WLAN receiver. The electric vehicle to be charged may send a charging signal with the respective charging type to the wireless receiver.
The controller may be adapted for opening and closing the first switch and the second switch according to the received charging type. I. e. when the charging type is “wired” , then the switches may be switched, such that the power is fed to the primary winding of the transformer transferred from the power converter and such that the first inductive coil is short-circuited from the power converter. When the charging type is “wireless” , then the switches may be switched, such that the primary winding of the transformer is short-circuited from the power converter and such that the first inductive coil is fed with the power transferred from the power converter.
According to an embodiment of the invention, the hybrid charging system further comprises a wireless receiver for receiving a charging signal from the electric vehicle with the second inductive coil. The controller may be adapted for bypassing the transformer from the power converter and for feeding the power to the first inductive coil transferred from the power converter, when a charging signal is received by the wireless receiver. Electric vehicles equipped with wireless charging technology may have a wireless transmission link (such as a WLAN radio transmission link) with the charging system.
In general, the hybrid charging system may be adapted for automatically detecting the requested charging technology based on wireless communication between the electric vehicle and the hybrid charging system.
According to an embodiment of the invention, the hybrid charging system further comprises at least one compensation capacitor connected between the power converter and a connection point between the transformer and the first induction coil. The at least one compensation capacitor may be present for forming an oscillating circuit with the primary winding of the transformer or the first inductive coil. The oscillating circuit may be formed, when the corresponding switch is open.
In other words, the compensation capacitor (s) of the wireless power transfer part of the hybrid charging system may be integrated and/or shared with the wired power transfer part. Sharing the compensation capacitors may save components and costs for the hybrid charging system.
The one or more compensation capacitors may be combined with further passive components, such as inductors and/or resistors to adapt the resonance and/or filter behaviour of the circuit.
It has to be noted that also the second inductive coil and a corresponding compensation capacitor may form such an oscillating circuit, which may be provided by an electric vehicle. The two oscillating circuits may be in resonance to improve the power transfer. In this way, an energy transmission with efficiency of up to 95%can be achieved.
In particular, the inductive power transfer via the first and second inductive coil may require a resonant circuit, since a large winding separation may have a relatively large leakage inductance and AC winding resistances. Furthermore, the magnetizing flux may be significantly reduced, which results in a much lower magnetizing inductance and mutual inductance. For the first and second inductive coil operating at a frequency well below its self-resonant frequency, one or more additional compensation capacitors are needed to form the resonant circuit in both sides.
A basic requirement for a compensation capacitor may be to resonate with the corresponding inductance, to provide the reactive power required for the inductances to generate an adequate magnetic field. For both inductive coils, the compensation capacitor (s) may minimize the input apparent power and/or may minimize the volt-ampere rating of the power supply.
According to an embodiment of the invention, the at least one compensation capacitor is connected between the power converter and a first switch for bypassing the power transferred to the transformer from the power converter and a second switch for bypassing the power transferred to the first inductive coil from the power converter.
According to an embodiment of the invention, a compensation capacitor is connected in series with the primary winding of the transformer and with the first inductive coil and/or a compensation capacitor is connected in parallel with the second inductive coil. It may be possible that more than one compensation capacitor are present.
According to an embodiment of the invention, the power converter comprises a grid side AC-to-DC converter and a primary side DC-to-AC converter. A DC link with a DC link capacitor may be connected between the AC-to-DC converter and the DC-to-AC converter. As already mentioned above, the primary side AC-to-DC converter and the following components (i.e. transformer part or inductive coil part) of each charging topology may be seen as DC-to-DC converter. This DC-to-DC converter may be connected via the DC link with the grid side AC-to-DC converter.
There are several possible topologies for the AC-to-DC converter and the DC-to-AC converter, which, however, are not limited by the following embodiments.
According to an embodiment of the invention, the DC-to-AC converter is a full-bridge converter. A full-bridge converter may comprise a half-bridge for each phase of the converter. A half-bridge may comprise two series-connected switching devices, such as transistors or thyristors.
In general, the grid side AC-to-DC converter may be an active front end or passive front end. It may be a single phase or a three phase converter.
According to an embodiment of the invention, the AC-to-DC converter comprises a boost converter and/or a passive rectifier. A boost converter may comprise an inductance connected in series with a diode and switching device, such as a transistor or thyristor that  is connected between the inductance and the diode. The passive rectifier may generate a DC voltage that is boosted by the boost converter.
According to an embodiment of the invention, the AC-to-DC converter comprises a full-bridge converter. It has to be noted that the AC-to-DC converter may be a one-phase or three-phase converter. The DC-to-AC converter may be a one-phase converter.
Furthermore, the AC-to-DC converter may comprise a passive input filter, which may be composed of inductances and/or capacitors.
Also the secondary side AC-to-DC converter may have different topologies, which are not limited by the embodiments described in the following. For example, the secondary side DC-to-AC converter may comprise a diode bridge rectifier and optionally a filter.
A further aspect of the invention relates to a charging system arrangement, which comprises a hybrid charging system as described in the above and in the following and two electric cars, which may be charged either by the wired topology or by the wireless topology.
A first electric vehicle with a second inductive coil may be adapted for being inductively coupled with the first inductive coil provided by the hybrid charging system, wherein the first electric vehicle is adapted for being charged by the hybrid charging system.
A second electric vehicle may be adapted for being connected with the hybrid charging system with a cable, wherein the second electric vehicle is adapted for being charged by the hybrid charging system.
The hybrid charging system may be adapted for selectively charging the first electric vehicle or the second electric vehicle via the power converter. When only the first electric vehicle is connected to the hybrid charging system via a cable, the hybrid charging system may be switched via the first and second switch that the first electric vehicle is charged via the transformer and the secondary side AC-to-DC converter. The first inductive coil may be bypassed from the power converter.
When the second electric vehicle is positioned such that the first inductive coil and the second inductive coil are inductively coupled, a wireless sender of the electric car may inform the hybrid charging system that the second electric car is present for charging. In this case, the hybrid charging system may be switched via the first and second switch such that the second electric vehicle is charged via the first and second inductive coils. The transformer then may be bypassed from the power converter.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
Brief Description of the Drawings
The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments which are illustrated in the drawings, in which:
Fig. 1 schematically shows a charging system arrangement according to an embodiment of the invention.
Fig. 2 schematically shows a hybrid charging system according to an embodiment of the invention.
Fig. 3 schematically shows a hybrid charging system according to a further embodiment of the invention.
Fig. 4 shows a schematic circuit diagram for a grid side AC-to-DC converter of a hybrid charging system according to an embodiment of the invention.
Fig. 5 shows a schematic circuit diagram for a further grid side AC-to-DC converter of a hybrid charging system according to an embodiment of the invention.
Fig. 6 shows a schematic circuit diagram for a DC-to-AC converter of a hybrid charging system according to an embodiment of the invention.
Fig. 7 shows a schematic circuit diagram for a secondary side AC-to-DC converter for a hybrid charging system according to an embodiment of the invention.
The reference symbols used in the drawings, and their meanings, are listed in summary form in the list of reference symbols. In principle, identical parts are provided with the same reference symbols in the figures.
Preferred Embodiments of the Invention
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Note, the headings are for organizational purposes only and are not meant to be used to limit or interpret the description or claims. Furthermore, note that the word "may" is used throughout this application in a permissive sense (i.e., having the potential to, being able to) , not a mandatory sense (i.e., must) . " The term "include" , and derivations thereof, mean "including, but not limited to" . The term "connected" means "directly or indirectly connected" , and the term "coupled" means "directly or indirectly connected" .
Fig. 1 shows a charging system arrangement 10 comprising a hybrid charging system 12 and two  electric vehicles  14, 15.
The hybrid charging system 12 comprises a main part 16, which is adapted for converting power from a power source 18 into AC power. For example, the main part 16 may convert an AC current from an electrical grid 18 into an AC current of different, usually much higher frequency, which is supplied via a first cable 20 to a ground adapter 22, in which a first inductive coil 24 is arranged. As an alternative, the main part 16 may be configured to convert a DC power from a DC power source into AC power output.
The main part 16, for example, may be connected to a wall. The ground 22 may be arranged below the electric vehicle 14 in a ground 26, for example in a parking lot.
When the electric vehicle14 is positioned suitable above the ground adapter 22, the first inductive coil 24 is inductively coupled via an air gap with a second inductive coil 28 in an on-board charging device 30 of the electrical vehicle 14. The AC current induced in the second inductive coil 28 is rectified by an AC-to-DC converter 32 inside the electric vehicle 14 and supplied to a battery 34 of the electric vehicle 14.
The ground adapter 22 may comprise a wireless receiver 36 and the on-board charging device 30 may comprise a wireless sender 38 for indicating the main hybrid charging system 12 that an electric vehicle needs to be charged wirelessly.
The main part 16 of the hybrid charging system 12 is additionally adapted for converting the AC current from an electrical grid 18 into a DC current, which is supplied via a second cable  40 to the second electric vehicle 15, which battery 34 may be charged directly with the DC current. It has to be noted that it may be possible that the hybrid charging system 12 may be adapted for solely charging one of the  electric vehicles  14, 15 at one time. It may be that only one  electric vehicle  14, 15 is connected with the hybrid charging system 12.
Fig. 2 shows the wireless charging system 12 in more detail. Where the power source 18 is an AC power source, for example an electric AC grid, the main part 16 comprises a power converter 42 that is connected via a transformer 44 with a secondary side AC-to-DC converter 46 and a controller 48 for controlling the power converter 42. In particular, the Power converter 42 comprises a grid side AC-to-DC converter 50 and a primary side DC-to-AC converter 52, which are connected via a DC link 54 with a DC link capacitor 56. As an alternative, where the power source is a DC power source, for example an battery, the main part may comprise a DC-to-AC converter that is connected via a transformer 44 with a secondary side AC-to-DC converter 46 and a controller 48 for controlling the DC-to-AC converter.
first switch 58 is connected across the primary winding 60 of the transformer 44, such that a charging power transfers to the primary winding 60 of the transformer 44 from the AC-to-AC-converter 42 may be bypassed with the closed first switch 58. Otherwise, where it is open, the power transferred from the AC-to-AC-converter 42 will find its path towards the primary winding 60 of the transformer 44. . The primary winding 60 of the transformer 44 is inductively coupled with a secondary winding 62 via a common core. The secondary winding is connected to the AC-to-DC converter 46, which is connected with the charging cable 40.
The first inductive coil 24 is connected via the cable 20 in series to a primary winding 60 to the power converter 42. A second switch 64, which as the first switch 58 is arranged in the main part 16, is connected across the first inductive coil 24, such that a charging power transfers to the first inductive coil 24 from the AC-to-AC-converter 42 may be bypassed with the closed second switch 64. Otherwise, where it is open, the power transferred from the AC-to-AC-converter 42 will find its path towards the first inductive coil 24.
Furthermore, Fig. 2 shows a compensation capacitor 66, which is connected between the power converter 42 and the first switch 58 and the second switch 64.
The  switches  58, 64 may be controlled by the controller 48 to be open or closed. In a wired charging state, the switch 58 is controlled to be open and the switch 64 is controlled to be closed. In a wireless charging state, the switch 58 is controlled to be closed and the switch 64 is controlled to be open. In both states, the compensation capacitor 64 forms a resonant circuit with the respective inductance, i.e. the primary winding 60 or the first inductive coil 24.
The first switch 58 may be a normally open switch and the second switch 64 may be a normally closed switch. In such a way, the controller 48 may only need one control signal to move the switches in the wired charging state or the wireless charging state.
It has to be noted that also the second inductive coil 28 of the electric vehicle 14 may be connected with the compensation capacitor 68, forming a resonant circuit with the second inductive coil 28. Furthermore, the primary winding 60 of the transformer 44 may be connected in parallel and/or in series with further inductors 69, which may be arranged between the first switch 58 and the primary winding 60. These inductors 69 may form an LLC circuit with the capacitor 66.
In both the wired charging state and the wireless charging state, the controller controls switching devices of the AC-to-DC converter 50 to generate a DC current in the DC link 56  and controls switching devices of the DC-to-AC converter 52 to convert the DC current in the DC link 54 into the high frequency current. For example, the voltage in the grid 18 may have a voltage of 50 Hz or 60 Hz. On the other hand, the pulse width modulated current output by the power converter 42 may have a frequency of more than 10 kHz.
In the wired charging state, which is assumed by the hybrid charging system 12 without further information from the wireless receiver 36, the AC-to-DC converter 46 is supplied via the transformer 44 with the AC current from the power converter 42. The AC-to-DC converter 46 generates a DC current that is supplied to the electric vehicle 15 for charging its battery 34.
When an electric vehicle 14 is positioned above the ground adapter 22, the electric vehicle 14, with the wireless sender 38, may send a charging signal to the wireless receiver 36. The charging signal is received by the controller 48, which then switches the  switches  58, 64 into the wireless charging state. The AC current from the power converter is supplied to the first inductive coil 24. A corresponding AC current is induced in the second inductive coil 28 and converted into a DC current by the AC-to-DC converter 32 of the electric vehicle 14.
In Fig. 2, the compensation capacitor 66 is connected in series with the primary winding 60 and the first inductive coil 24. The compensation capacitor 68 is connected in series with the second inductive coil 28.
Fig. 3 shows a hybrid charging system 12, which differs from the charging system of Fig. 2 in that the compensation capacitor 66’is connected in parallel with the primary winding 60 and the first inductive coil 24. Furthermore, the compensation capacitor 68’is connected in parallel with the second inductive coil 28.
It has to be noted that the hybrid charging system 12 may have both a compensation capacitor 66 in series and a compensation capacitor 66’in parallel to the primary winding 60 and the first inductive coil 24. The same applies to the compensation capacitors 68, 68’inside the electric vehicle 14. Furthermore, a compensation capacitor 66 (or 66’) may be combined with a compensation capacitor 68’ (or 68) .
Fig. 4 shows an example for an AC-to-DC converter 50, which is composed of a passive rectifier 70 and a boost converter 72. The passive rectifier 70 comprises two diode half-bridges. The boost converter 72 comprises three paralleled arms of an inductance series-connected with a diode and a switching device 74, which is connected between the inductance and the diode. The switching devices 74 may be controlled by the controller 48.
Fig. 5 shows a further example for an AC-to-DC converter 50, which is composed of a passive input filter 76 and a three-phase full-bridge converter 78. The passive input filter 76 comprises three single-phase LC-filters, which are star-connected via capacitors. The full-bridge converter 78 comprises three half-bridges of series-connected switching devices 74. The switching devices 74 may be controlled by the controller 48.
Fig. 6 shows an example for a DC-to-AC converter 52, which is a single-phase full-bridge converter. The DC-to-AC converter 52 comprises two half-bridges of series-connected switching devices 74. The switching devices 74 may be controlled by the controller 48.
Fig. 7 shows an example for an AC-to-DC converter 46, which may be employed in the main part 16 and/or an example for an AC-to-DC converter 32, which may be employed in the on-board charging device 30. The AC-to- DC converter  46, 32 comprises a passive rectifier 80 composed of two diode half-bridges and a CLC output filter 82. A diode may prevent an inverse current flow from the battery 34 into the rectifier AC-to- DC converter  46, 32.
Though the present invention has been described on the basis of some preferred  embodiments, those skilled in the art should appreciate that those embodiments should by no way limit the scope of the present invention. Without departing from the spirit and concept of the present invention, any variations and modifications to the embodiments should be within the apprehension of those with ordinary knowledge and skills in the art, and therefore fall in the scope of the present invention which is defined by the accompanied claims.

Claims (15)

  1. A hybrid charging system (12) for electric vehicles (14, 15) , the charging system (12) comprising:
    a power converter (42) connectable to a power source (18) , for converting power from the power source (18) into AC power;
    a transformer (44) connected with the power converter (42) with a primary winding (60) ;
    a secondary side AC-to-DC converter (46) connected with a secondary winding (62) of the transformer (44) and for providing a DC current for power transfer to an electric vehicle (15) via a cable (40) ;
    a first inductive coil (24) connected in series with the primary winding (60) of the transformer (44) and for inductively coupling to a second inductive coil (28) for power transfer to an electric vehicle (14) via an air gap.
  2. The hybrid charging system (12) of claim 1, further comprising:
    a first switch (58) connected across the primary winding (60) of the transformer (44) for bypassing power transfer to the primary winding (60) of the transformer (44) from the power converter (42) ;
    a second switch (64) connected across the first inductive coil (24) for bypassing power transfer to the first inductive coil (24) from the power converter (42) .
  3. The hybrid charging system (12) of claim 2,
    wherein the first switch (58) is a normally open switch and the second switch (64) is a normally closed switch.
  4. The hybrid charging system (12) of claim 2 or 3, further comprising:
    a controller (48) for opening and closing the first switch (58) and the second switch (64) , such that solely the transformer (44) or solely the first inductive coil (24) is fed with power transferred from the power converter (42) .
  5. The hybrid charging system (12) of claim 4,
    wherein the controller (48) is adapted for receiving a wireless communication signal indicating a charging type of an electric vehicle (14) ;
    wherein the controller (48) is adapted for opening and closing the first switch (58) and the second switch (64) according to the received charging type.
  6. The hybrid charging system (12) of one of the previous claims, further comprising:
    a wireless receiver (36) for receiving a charging signal from the electric vehicle (14) with the second inductive coil (28) ;
    wherein the controller (48) is adapted for bypassing the power transfer to the primary winding (60) of the transformer (44) from the power converter (42) and for transferring the power to the first inductive coil (24) from the power converter (42) , when a charging signal is received by the wireless receiver (42) .
  7. The hybrid charging system (12) of one of the previous claims, further comprising:
    at least one compensation capacitor (66, 66’) interconnected between the power converter (42) and a connection point between the transformer (44) and the first induction coil (24) .
  8. The hybrid charging system (12) of claim 7,
    wherein the at least one compensation capacitor (66, 66’) is connected between the power converter (42) and a first switch (58) for bypassing power transfer to the transformer (44) from the power converter (42) and a second switch (64) for bypassing power transfer to the first inductive coil (24) from the power converter (42) .
  9. The hybrid charging system (12) of claim 7 or 8,
    wherein a compensation capacitor (66) is connected in series with the primary winding (60) of the transformer (44) and with the first inductive coil (24) .
  10. The hybrid charging system (12) of one of claims 7 to 9,
    wherein a compensation capacitor (68’) is connected in parallel with the second inductive coil (28) .
  11. The hybrid charging system (12) of one of the previous claims,
    wherein the power converter (42) comprises a grid side AC-to-DC converter (50) and a primary side DC-to-AC converter (52) ;
    wherein a DC link (54) with a DC link capacitor (56) is connected between the AC-to-DC converter (50) and the DC-to-AC converter (52) .
  12. The wireless charging system (12) of claim 11,
    wherein the DC-to-AC converter (50) comprises a full-bridge converter (78) .
  13. The wireless charging system (12) of claim 11 or 12,
    wherein the AC-to-DC converter (50) comprises a boost converter (52) and/or a passive rectifier (70) ; or
    wherein the AC-to-DC converter (14) comprises a full-bridge converter (58) .
  14. The hybrid charging system (12) of one of the previous claims,
    wherein the secondary side AC-to-DC converter (52) comprises a diode bridge rectifier.
  15. A charging system arrangement (10) , comprising:
    a hybrid charging system (12) according to one of the previous claims;
    a first electric vehicle (14) with a second inductive coil (28) adapted for being inductively connected with the first inductive coil (24) provided by the hybrid charging system (12) , wherein the first electric vehicle (14) is adapted for being charged by the hybrid charging system (12) ;
    a second electric vehicle (15) adapted for being connected with the hybrid charging system (12) with a cable (40) , wherein the second electric vehicle (15) is adapted for  being charged by the hybrid charging system (12) ;
    wherein the hybrid charging system (12) is adapted for selectively charging the first electric vehicle (14) or the second electric vehicle (15) via the power converter (42) .
PCT/CN2018/076621 2018-02-13 2018-02-13 Hybrid charging system WO2019157623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076621 WO2019157623A1 (en) 2018-02-13 2018-02-13 Hybrid charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076621 WO2019157623A1 (en) 2018-02-13 2018-02-13 Hybrid charging system

Publications (1)

Publication Number Publication Date
WO2019157623A1 true WO2019157623A1 (en) 2019-08-22

Family

ID=67618876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076621 WO2019157623A1 (en) 2018-02-13 2018-02-13 Hybrid charging system

Country Status (1)

Country Link
WO (1) WO2019157623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721671A (en) * 2021-01-15 2021-04-30 四川电力设计咨询有限责任公司 Primary and secondary side circuits of electric field coupling type wireless charging system and charging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (en) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd Onboard charging apparatus of battery vehicle
EP2717414A1 (en) * 2011-05-25 2014-04-09 Hitachi, Ltd. Charging system
US20150311723A1 (en) * 2014-03-31 2015-10-29 Evatran Group, Inc. Parallel series dc inductive power transfer system
CN206004371U (en) * 2016-09-23 2017-03-08 中惠创智(深圳)无线供电技术有限公司 A kind of bimodulus charging system of electric automobile
CN106849291A (en) * 2015-12-04 2017-06-13 中惠创智无线供电技术有限公司 A kind of wire and wireless mixed DC charging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (en) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd Onboard charging apparatus of battery vehicle
EP2717414A1 (en) * 2011-05-25 2014-04-09 Hitachi, Ltd. Charging system
US20150311723A1 (en) * 2014-03-31 2015-10-29 Evatran Group, Inc. Parallel series dc inductive power transfer system
CN106849291A (en) * 2015-12-04 2017-06-13 中惠创智无线供电技术有限公司 A kind of wire and wireless mixed DC charging system
CN206004371U (en) * 2016-09-23 2017-03-08 中惠创智(深圳)无线供电技术有限公司 A kind of bimodulus charging system of electric automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112721671A (en) * 2021-01-15 2021-04-30 四川电力设计咨询有限责任公司 Primary and secondary side circuits of electric field coupling type wireless charging system and charging method

Similar Documents

Publication Publication Date Title
US11383605B2 (en) Hybrid charging system
US9231424B2 (en) Charging system
US9266441B2 (en) Contactless power transfer system
US9793719B2 (en) Non-contact power supply apparatus
EP2445747B1 (en) Circuit arrangement for power distribution in a motor vehicle
US20150311724A1 (en) Ac inductive power transfer system
JP6622794B2 (en) Method and apparatus for regulating and controlling a double-coupled inductive power transfer system
US11427095B2 (en) Wireless charging system
US20140265945A1 (en) Electric Drive System
CN102271958A (en) Method for controlling a power supply device having a power inverter
KR20220101118A (en) Wireless charging receiver, system and control method
JP2017221093A (en) Integrated module of on-board charger (hereinafter called obc) and inverter, and control method thereof
JP2014176170A (en) Power incoming apparatus and charging system
Wang et al. A novel converter topology for a primary-side controlled wireless EV charger with a wide operation range
Ronanki et al. Power electronics for wireless charging of future electric vehicles
US9789778B2 (en) Circuit arrangement for providing a DC voltage in a vehicle and method of operating a circuit arrangement
US20190275905A1 (en) Charging device for a motor vehicle
CN110912278B (en) Wireless charging receiving end, protection method and system
WO2019157623A1 (en) Hybrid charging system
TW201117513A (en) Power supply device
JP6984793B2 (en) Power converter, vehicle including it and control method
KR20190070784A (en) Vehicle power control device
WO2014096080A2 (en) Circuit arrangement and method of operating a circuit arrangement
WO2024116655A1 (en) Non-contact power supply system, power transmission device, and power receiving device
US20230202319A1 (en) On-Board Charging Device for Electric Vehicle, System, and Methods for Wirelessly Charging Electric Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905923

Country of ref document: EP

Kind code of ref document: A1