WO2019156482A1 - Method for preparing supported hybrid metallocene catalyst - Google Patents

Method for preparing supported hybrid metallocene catalyst Download PDF

Info

Publication number
WO2019156482A1
WO2019156482A1 PCT/KR2019/001535 KR2019001535W WO2019156482A1 WO 2019156482 A1 WO2019156482 A1 WO 2019156482A1 KR 2019001535 W KR2019001535 W KR 2019001535W WO 2019156482 A1 WO2019156482 A1 WO 2019156482A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
supported
catalyst
Prior art date
Application number
PCT/KR2019/001535
Other languages
French (fr)
Korean (ko)
Inventor
권현지
이승미
김포은
이기수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190013833A external-priority patent/KR102342780B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/954,719 priority Critical patent/US11091569B2/en
Priority to EP19751865.7A priority patent/EP3714975B1/en
Priority to CN201980006506.4A priority patent/CN111491734B/en
Publication of WO2019156482A1 publication Critical patent/WO2019156482A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a method for producing a hybrid supported metallocene catalyst and a method for producing a polyolefin using the catalyst prepared accordingly.
  • the polymerization process of olefin is classified into high pressure process, solution process, slurry process, and gas phase process, and various efforts are made to prepare an olefin polymer having desired properties by applying various metallocene catalysts to the polymerization process.
  • Metallocene catalysts used in the production of polyethylene using slurries and gas-phase polymerization processes must be firmly immobilized on a suitable carrier to avoid reactor fouling due to leaching.
  • the apparent density of the polymer is closely related to the reactor unit productivity, not only should the catalyst activity be high, but also the apparent density of the polymer should be high.
  • a technique is generally used to increase the amount of aluminoxane, which is a co-catalyst, while simultaneously using a high active metallocene catalyst to increase catalyst activity.
  • aluminoxane which is a co-catalyst
  • a high active metallocene catalyst to increase catalyst activity.
  • polymerization occurs first on the surface of the carrier, and the resulting polymer crystallizes to inhibit the diffusion of the next monomer (momomer di ffusion). 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the metallocene catalyst is composed of a combination of a main component a metallocene compound as a main catalyst mainly composed of an aluminum organometallic compound of the cocatalyst, the single site catalyst as a sort of homogeneous catalyst complexes such as metal (not 13 ⁇ 416 ..)
  • the molecular weight distribution is narrow according to the characteristics of the single active site, and the homogeneous composition of the comonomer is obtained, and the stereoregularity, copolymerization characteristic, molecular weight, It has the property to change the crystallinity.
  • the present invention is to provide a method for preparing a hybrid supported metallocene catalyst capable of producing a polyolefin polymer having both an apparent density and a molecular weight distribution of the polymer while maintaining high active catalyst properties. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the present invention is to provide a method for producing a polyolefin using a catalyst prepared by the method as described above.
  • the step of supporting at least one first metallocene compound on the silica carrier the step of supporting at least one first metallocene compound on the silica carrier
  • the aluminum-based promoter compound is 60% by weight to 90 of the total amount
  • a method for producing a hybrid supported metallocene catalyst supported on a carrier there is provided a method for producing a polyolefin comprising the step of polymerizing the olefin monomer in the presence of a hybrid supported metallocene catalyst prepared according to the method as described above.
  • the terms first, second, etc. are used to describe various components, which terms are only used to distinguish one component from another component.
  • the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the hybrid supported metallocene catalyst of the present invention means a group on which at least one first metallocene compound and at least one second metallocene compound are supported.
  • the hybrid supported metallocene catalyst of the present invention is characterized in that an aluminum-based promoter is supported together with the metallocene compound.
  • the metal-supported metallocene catalyst 20 of the present invention may be further comprises a borate compound to the second co-catalyst.
  • the present invention relates to a method for preparing a 25 mixed supported metallocene catalyst, which can produce a polyolefin polymer having both improved apparent density and molecular weight distribution while maintaining high active catalyst properties.
  • the step of supporting at least one first metallocene compound on the silica carrier comprising: Contacting the silica carrier carrying the first metallocene compound with at least one aluminum-based promoter compound to support the aluminum-based promoter compound on the silica 30 carrier; And said 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • a method for preparing a supported metallocene catalyst may be provided.
  • the present invention is to produce a mixed metal metallocene catalyst, silica to enable the control of the particle size of the polymer produced at the same time to implement the fine structure of the polymer for maximizing the active site generation and molecular weight distribution (3 ⁇ 4 ⁇ )) and comonomer distribution control
  • the catalyst is divided into the carrier so that the promoter is distributed in a relatively large amount.
  • the second split-input is carried out at a temperature of -5X: to 40X: to maintain high active catalyst properties while increasing polymer apparent density and wide molecular weight distribution to improve processability.
  • 50 wt% to 90 wt% of the total amount of the promoter compound is about 100X: to about 150 First input from
  • the present invention can provide a supported metallocene catalyst having a specific parameter with respect to the content of time in the carrier.
  • the present invention comprises an outer layer comprising up to one third of the total diameter of the particle from each surface towards the center when the carrier catalyst particles are cut in cross section, and from one third point to the inner center of the particle. Containing the rest of the 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • a silica carrier composed of an inner layer and having an aluminum-based promoter compound supported on the inside and the surface of the carrier; And two or more metallocene compounds supported on the silica carrier.
  • the city / element content ratio (% by weight) of the inner layer is 65% or more of the sand / element content ratio (% by weight) of the outer layer,
  • the present invention can implement a wide molecular weight distribution (_) with a high apparent density by first supporting at least one first metallocene compound on the silica carrier.
  • the present invention can increase the supporting ratio of the city compared to the existing by high-temperature split injection of the aluminum promoter.
  • the present invention is to ensure that the co-catalyst is further supported on the inner layer than the prior art by a method for dividing when carrying the aluminum-based co-catalyst compound on the support. Therefore, the supported metallocene catalyst of the present invention contains a large amount of aluminum-based promoter compound in the inner layer in the composition consisting of the inner layer and the outer layer, thereby improving the apparent density compared to the existing and easy to control the catalyst activity Do.
  • the time / element content ratio (weight%) of the inner layer is determined by the time of the outer layer. / Element content ratio (65% or more of the weight, preferably 90% to 150%).
  • Such a method for producing a hybrid supported metallocene catalyst according to the present invention comprises the steps of: supporting at least one first metallocene compound on a silica carrier; remind
  • One or more aluminum based silica carriers carrying the first metallocene compound Contacting the cocatalyst compound to support the aluminum-based cocatalyst compound on the silica carrier; And supporting at least one second metallocene compound on the aluminum carrier-supported silica carrier.
  • the first metallocene compound is first supported on a silica carrier, and then the aluminum-based cocatalyst is supported, and when the aluminum-based cocatalyst compound is supported, the temperature is changed from a high temperature to a low temperature and dividedly injected at different temperatures.
  • the present invention may select a silica carrier having a morphology suitable for the Philips loop slurry process.
  • the present invention optimizes the binding of alkylaluminoxanes, which are supported metallocene catalysts and promoters, by selectively controlling the amount of silanol and siloxane groups of the silica carrier through calcinations conditions.
  • the chemical bond of the hydroxy key of the silica, that is, the 0H group and the co-catalyst for example, a decrease in viscosity at high temperature of MA(1) is allowed to penetrate to the inside, followed by a chemical reaction, and then physical adsorption occurs on the surface of the silica.
  • the firing temperature of the silica can be carried out from the temperature at which the moisture disappears from the surface of the silica to the temperature range from which the hydroxyl group, that is, the 0H group, is completely disappeared from the surface of the silica.
  • the firing conditions are preferably calcined at a temperature of about 100 ° C. to about 700 ° C.
  • the water content of the silica carrier is preferably about 0.1 wt% to about 7 wt%. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the inside of the silica carrier referred to in the present invention includes pores.
  • water content of the carrier is defined as the percentage of the weight of water contained in the carrier relative to the total weight of the carrier.
  • the support is indicated, a hydroxyl group at the time of about 0.5 on the surface of the support 01 / for to about 511 «1101 / I, preferably about 0.7 ⁇ 01 ⁇ and about 2 _ 01, depending on the water content of the above-mentioned range May contain hydroxyl groups of seedlings.
  • Such a carrier may be at least one member selected from the group consisting of silica, silica-alumina and silica-magnesia, preferably silica.
  • the method for producing a hybrid supported metallocene catalyst according to the present invention includes the step of supporting at least one first metallocene compound on the silica carrier.
  • the present invention implements a broad molecular weight distribution ( ⁇ ⁇ ) by first supporting at least one first metallocene compound on the silica carrier to produce a feature of producing a polymer having excellent processability.
  • ⁇ ⁇ broad molecular weight distribution
  • the first metallocene compound and the second metallocene compound are main catalyst components that can exhibit activity as a catalyst together with the aluminum-based promoter compound.
  • the metallocene compound may be used as one or more first metallocene compounds and one or more second metallocene compounds without limitation to those conventional in the art.
  • the metallocene compound includes 1) a metallocene compound including a combination of non-bridged and Cp-based compounds; and 2) a combination of Si bridge Cp and Cp-based Si bridges.
  • Metallocene compound 3) Metallocene compound comprising a combination of C bridge Cp and Cp system, 4) Si bridge Cp or C bridge Cp (C bridge Mi and amine combination Metallocene compound comprising a, 5) Metallocene compound comprising a combination of ethylene bridge Cp and Cp system, 6) Metal containing a combination of phenylene bridge Cp and amine-based Rosene compound, 7) CC, Si-C, or metallocene compound containing Si-Si bridge, etc. can all be used.
  • the Cp may be cyclopentadienyl, indenyl, fluorenyl, indenoindole (Inin), or the like, and the structure thereof is not limited. Also, the
  • Si-based bridges may include t-butoxy-nuclear substituents and similar structures, and in the case of indene structures, may include tetrahydro-indene structures.
  • the metallocene compound of the present invention includes a low molecular metallocene compound (Cp-based) and a high molecular metallocene compound (eg, CGC type or ansa type).
  • the first metallocene compound of the metallocene compound for example, 1) a metallocene compound comprising a combination of non-bridged Cp and Cp-based, 2) Si bridge Cp ( A metallocene compound comprising a combination of Si bridge Cp) and a Cp system, 3) a metallocene compound comprising a combination of C bridge Cp and a Cp system, 5) an ethylene bridge Cp And metallocene compounds containing a combination of Cp-based and 7) CC, Si-C, or Si-Si bridges may be used.
  • the second metallocene compound of the metallocene compound for example, 4) a metallocene compound including a combination of Si bridge Cp or C bridge Cp and an amine-based, or 6) One or more kinds of metallocene compounds including a combination of phenylene bridge Cp and amines may be used. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the metallocene compound may be at least one selected from the group consisting of Formulas 1 to 5 below:
  • And 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1 -indenyl, and fluorenyl radicals They may be substituted with hydrocarbons of 1 to 20 carbon atoms;
  • And 0 are the same as or different from each other, and each independently hydrogen, alkyl of 01-020, 01-(: 10 alkoxy, alkoxyalkyl of 2-020, aryl of 06-020, 06- (aryloxy of 10), 02 to 020 alkenyl, 07 to 040 alkylaryl, 07 to 040 arylalkyl, 08 to 040 arylalkenyl, or 02 to (10: alkynyl, and At least one of is not hydrogen;
  • M 2 is a Group 4 transition metal; 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • 0 ? 3 and are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1 -indenyl and fluorenyl radicals, which are 1 to Can be substituted with 20 hydrocarbons;
  • 11 ° and # are the same as or different from each other, and are each independently hydrogen, alkyl of 01-020, alkoxy of 01-(: 10, alkoxyalkyl of 01-020, aryl of C6-020, aryl of 06-10 (: 10) Oxy, 01-020 alkenyl, 01-040 alkylaryl, 07-040 arylalkyl, 08-040 arylalkenyl, or 01-10 (alkynyl;
  • Yo 1 is ! 3 ⁇ with collar Crosslink the ring, or a single! At least one or a combination of radicals comprising carbon, germanium, silicon, phosphorus or nitrogen atoms which crosslink the ring to ⁇ 1 2 ;
  • alkyl of 01-020 01-(: 10 alkoxy, 02-020 alkoxyalkyl, 06-020 aryl, 06-(: 10 aryloxy, 02-020 alkenyl, (21-040) Alkylaryl, 07-040 arylalkyl, 08- 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the seedlings 1 ' to II 4 are the same as or different from each other, and each independently hydrogen, (the alkyl group of 1 to 020, the alkenyl group of 01 to 020, the aryl group of 06 to 020, the alkyl group of 07 to 020) An aryl group, an arylalkyl group of 07 to 020, or an amine group of 01 to 020, and adjacent to the above-mentioned II 1 to II 4 and seedlings 1 ' to 4'
  • Two or more may be linked to each other to form one or more aliphatic rings, aromatic rings, or heterocycles;
  • 06-020 aryl groups 06-010 aryloxy groups, 02-020 alkenyl groups, 07-040 alkylaryl groups, or 07-040 arylalkyl groups;
  • M 4 is a Group 4 transition metal
  • and are the same as or different from each other, and each independently halogen, 01-020 alkyl group, 02-020 alkenyl group, 06-020 aryl group, nitro group, amido group, (: 1-020 alkylsilyl group, (The 1-020 alkoxy group, 02-020 ester group, or 01-020 sulfonate group;
  • II 5 and 11 5 ' are each independently hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 20 carbon atoms, aryl of 6 to 20 carbon atoms, silyl of 6 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, carbon atoms A metalloid of a Group 4 metal substituted with 7 to 20 arylalkyl or hydrocarbyl;
  • the II 5 and II 5 ′ or two parent 5 ′ may be linked to an alkylidine comprising alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
  • II 6 are each independently hydrogen, a halogen atom, an aryl, a carbon number of 1 to 20 carbon atoms alkyl, C2 to C20 alkenyl, C6 to C20 aryl, C7 to C20 alkylaryl, C7 to C20 of the Alkoxy of 1 to 20, aryloxy or amido of 6 to 20 carbon atoms;
  • Two or more seedlings 6 of the II 6 may be linked to each other to form an aliphatic ring or an aromatic ring;
  • CY 1 is a substituted or unsubstituted aliphatic or aromatic ring, and the substituent group substituted in CY 1 is a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, and having 7 to 7 carbon atoms.
  • alkylaryl arylalkyl having 7 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, aryloxy having 6 to 20 carbon atoms, and amido; when the substituents are plural, two or more substituents from the substituents are connected to each other.
  • M 5 is a Group 4 transition metal
  • Q 3 and Q 4 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms.
  • the metallocene compound including a combination of the non-bridge Cp and the Cp-based may include the compound represented by Chemical Formula 1.
  • the metal bridgene compound containing a combination of Si bridge Cp (metal bridgeene compound containing a combination of Si bridge and Cp system and C bridge Cp (C bridge Cp) and Cp system, the compound represented by the formula (2)
  • the Cp 3 R c ring and the Cp 4 R d ring may be cross-linked, or one Cp 4 R d ring may be cross-linked with M 2 to carbon, germanium, silicon, phosphorus of B 1 .
  • a metallocene compound including a combination of the Si bridge Cp or the C bridge Cp and an amine may include a compound represented by Chemical Formula 3.
  • the metallocene compound including a combination of ethylene bridge Cp and Cp-based may include a compound represented by Chemical Formula 4. Crosslinking two cyclopentadienyl groups in the formula (4)
  • Germanium, silicon, phosphorus or nitrogen atoms are distinguished.
  • the arylalkyltene group of 07 to 040 represents a divalent substituent in the form of further removing a hydrogen atom from each alkyl group, cycloalkyl group, aryl group, alkylaryl group, arylalkyl group.
  • the metallocene compound including a combination of the phenylene bridge Cp and an amine system may include a compound represented by Chemical Formula 5.
  • hydrocarbyl as defined in Formula 5, is a monovalent group in which hydrogen atoms are removed from hydrocarbons, and includes ethyl, phenyl, and the like.
  • the metalloid is a metalloid, an element showing intermediate properties between metal and nonmetal, and includes arsenic, boron, silicon, tellurium, and the like.
  • the first metallocene compound may be a compound represented by Formula 1, 2, or 4, and specifically, may be a compound represented by Formula 1.
  • the second metallocene compound in the hybrid supported metallocene catalyst may be a compound represented by Formulas 3 and 5, and specifically, may be a compound represented by Formula 3.
  • specific examples of the compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. ⁇ ⁇ 0 2019/156482 1 1710 2019/001535
  • Specific examples of the compound represented by Chemical Formula 2 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. 2019/156482 1 »(: 1/10 ⁇ 019/001535
  • specific examples of the compound represented by Chemical Formula 3 include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • ⁇ of Formula 4 is from 02 to
  • 020 is an alkylene group or an ethylene group, and minutes are each independently hydrogen, 01
  • the compound represented by Chemical Formula 5 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
  • each II 7 is independently hydrogen or methyl; ( 5 and silver may each independently be methyl, dimethyl amido or chloride.
  • the metallocene compound represented by Chemical Formula 5 is structurally connected to a metal site by a cyclopentadienyl ligand introduced with an amido group linked to a phenylene bridge in a ring form. The angle is narrow and the 0 3 ⁇ 5 -0 4 angle to which the monomer approaches can be kept wide.
  • the substituents of Chemical Formulas 1 to 5 are more specifically described as follows.
  • the alkyl group of 01 to 020 includes a linear or branched alkyl group, and specifically, methyl group, ethyl group, propyl group, isopropyl group, 11 -butyl group, butyl group, pentyl group, nuclear group, heptyl group, octyl group Etc., but is not limited to this.
  • the alkenyl group of 02 to 020 includes a straight or branched alkenyl group, and specifically includes an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto.
  • the alkylene group of 02 to 020 includes a linear or branched alkylene group, and specifically, may include an ethylene group, a propylten group, a butylten group, a pentylene group, a nuclear styrene group, a heptylene group, an octylene group, and the like. It is not limited only. Specific examples of the 03 to 020 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, a cycloheptyl group, and a cyclooctyl group, but are not limited thereto. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the 03 to 020 cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentyltene group, a cyclonuxylene group, a cycloheptylene group, and a cyclooctylene group, but are not limited thereto.
  • the aryl group of 06 to 020 includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, and a fluorenyl group, but is not limited thereto.
  • the arylene group of 06 to 020 includes a monocyclic or condensed aryl group, and specifically includes a phenylene group, a biphenylene group, a naphthylene group, a phenanthrenylene group, a fluorenylene group, and the like. It is not.
  • 01 to 020 alkoxy groups include, but are not limited to, methoxy, ethoxy, phenyloxy and cyclonucleooxy groups.
  • the alkoxyalkyl group of 02 to 020 is a functional group in which at least one hydrogen of an alkyl group is substituted with an alkoxy group, and specifically, a methoxymethyl group, a methoxyethyl group , an ethoxymethyl group , a ⁇ 30 -propoxymethyl group, ⁇ 30- Propoxyethyl group , Alkoxyalkyl groups such as 1 61 1; -butoxymethyl group,!; -Butoxyethyl group, and 1 61.! ; Or an aryloxyalkyl group such as a phenoxynucleosil group, but is not limited thereto.
  • the alkyl silyl group of 01 to 020 or the alkoxysilyl group of 01 to 020 is a functional group in which 1 to 3 hydrogens of 3 ⁇ 4 are substituted with 1 to 3 alkyl groups or alkoxy groups as described above, and specifically methylsilyl group, dimethyl Alkylsilyl groups such as silyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group or dimethylpropylsilyl group; Alkoxy silyl groups, such as a methoxy silyl group, a dimethoxy silyl group, a trimethoxy silyl group, or a dimethoxyethoxy silyl group; Alkoxyalkylsilyl groups , such as a methoxy dimethyl silyl group, a diethoxy methyl silyl group, or a dimethoxy propyl silyl group, are mentioned, but it is not limited to this. 2019/156482 1 »(
  • the silylalkyl group of 01 to 020 is a functional group in which one or more hydrogens of the alkyl group as described above are substituted with a silyl group, and specific examples thereof include-(: 3 ⁇ 4-3 ⁇ 4, methylsilylmethyl group or dimethylethoxysilylpropyl group, and the like. , Not limited to this.
  • the halogen word) may be fluorine 00, chlorine (II), bromine () or iodine (I).
  • the sulfonate group-0-ssaet 2-yo 'seedlings in the structure may be an alkyl group of 01 to 020.
  • the 01 to 020 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto.
  • the ester group -0- ⁇ "our structure of" "is 01 to 019 may be an alkyl group, a substituent of the type removing a hydrogen atom from the carboxylic acid of C2 to 020.
  • substituents are optionally a hydroxy group within the range exhibiting the same or similar effects as the desired effect; Halogen; alkyl group or alkenyl group, aryl group, alkoxy group; alkyl group or alkenyl group, aryl group, alkoxy group; silyl group; alkylsilyl group or alkoxysilyl containing at least one hetero atom of group 14 to 16 hetero atoms Group, phosphine group, phosphide group, sulfonate group, and sulfone group.
  • the other metals include titanium (), zirconium () and hafnium (), but this is not limited. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the metallocene compound may be synthesized by applying known reactions. Specifically, each ligand compound may be prepared, and then a metal precursor compound may be added to perform metallization ( 111 1 011 ), but the present invention is not limited thereto. For detailed synthesis methods, see Examples. .
  • the present invention is characterized in that the aluminum-based cocatalyst compound is added at high temperature after the first support of the at least one first metallocene compound on the silica carrier.
  • the supporting step of the first metallocene compound may be performed by mixing and stirring the silica carrier and the metallocene compound in the presence of a solvent.
  • the amount of the first metallocene compound supported on the silica carrier by the step is about 0.01 ⁇ 0 1 ⁇ to about 1 _ 0 1 / sugar, or about 0.1 1110 1 / sugar based on the carrier 1 About 1 1111110 1 / dragon . That is, in view of the contribution effect of the catalytic activity by the first metallocene compound, it is preferable to fall within the above-described supported amount range.
  • the temperature condition in the supporting step of the first metallocene compound is not particularly limited.
  • the method for producing a hybrid supported metallocene catalyst of the present invention by contacting the silica carrier carrying the first metallocene compound with at least one aluminum-based promoter compound, Sequentially supporting the aluminum gray catalyst compound. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the present invention provides a low temperature of about -5 X: to about 40 I: at a high temperature of about 100 V to about 150 X: when the aluminum-based promoter compound is supported on a silica carrier carrying the first metallocene compound. While changing the temperature, there is a feature of split injection at different temperatures. That is, the aluminum-based cocatalyst compound is about a part of the total amount
  • the aluminum-based promoter compound is a part of the total amount, that is, about 50% to 90% by weight, or about 60% to 90% by weight of about 100% To about 150 X], or about
  • the silica carrier on which the aluminum-based promoter compound is loaded is about 60 wt% to about 90 of the total amount of alkylaluminoxane added at a high temperature of about 110 X: to about 130 I: Weight percent
  • the remaining alkylaluminoxane such as from about 40% to about 10% by weight of the alkylaluminoxane, may be obtained by carrying out a secondary charge on a silica carrier to carry out the post-reaction. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the silica carrier on which the first metallocene compound obtained in the above step is supported is contacted with an aluminum compound as a cocatalyst component.
  • the contact method of the present invention by contacting the aluminum-based cocatalyst compound by split injection into the silica carrier in the secondary as described above, as described above, a larger amount of aluminum-based cocatalyst compound in the silica carrier as described above It is to be penetrated and also to carry a considerable amount of aluminum-based promoter compound on the surface.
  • an aluminum-based promoter compound provides a silica carrier composed of an inner layer and an outer layer surrounding the silica carrier supported on the inside and the surface thereof.
  • the chemical bond (( ⁇ 3 3 ⁇ 1016111 :)) predominates, lowers the viscosity of the reactants, and the alkyl at high temperature is easy to diffuse to the pores of the silica.
  • the cocatalyst component is supported on the silica surface by physical adhesion (1) 1173 31 3 (ie! 011).
  • the apparent density and the catalytic activity of the polymer can be controlled not only by the amount of alkylaluminoxane and the contact temperature, but also by the injection method.
  • the supporting conditions of the alkylaluminoxane are, as described above, at least two alkylaluminoxanes.
  • Split injection is used at high and low temperatures more than one time, for example, aluminum-based co-solvent compounds are divided twice.
  • the alkylaluminoxane is supported while being dividedly added to carry out post-reaction.
  • the aluminum-based cocatalyst compound is first supported by adding about 50% by weight to about 90% by weight, or about 60% by weight to about 90% by weight of the total amount of alkylaluminoxane in the first injection. Add the remaining balance to the secondary. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the aluminum-based promoter compound which is the promoter
  • the aluminum-based promoter compound is unevenly supported on the carrier, and aluminum is excessively present on the surface of the carrier.
  • metallocene compounds with small molecules are uniformly supported inside and outside. Therefore, since the aluminum-based cocatalyst compound is collectively added, the metallocene compound supported therein cannot be activated so that the total catalyst activity is reduced, and as a result, the polymerization by the catalyst activated only on the outside proceeds, resulting in low apparent density. There is a problem. In particular, even when the cocatalyst is separately added as described above, the primary
  • the step may be carried out by mixing the silica carrier and the alkylaluminoxane in the presence or absence of a solvent and reacting with stirring.
  • the aluminum-based promoter compound may be represented by the following formula (6), for example.
  • II 8 , II 9 , and 11 1 are the same as or different from each other, and are each independently hydrogen, halogen, A hydrocarbyl group of 020 to 020, or a C ⁇ 020 hydrocarbyl group substituted with halogen;
  • 1 is 0 or 1;
  • the aluminum-based cocatalyst compound of Chemical Formula 6 may be an alkylaluminoxane compound, a trialkylaluminum compound, etc., in which a repeating unit is bonded in a linear, circular, or reticular form.
  • the alkyl group bonded to aluminum in the aluminum-based cocatalyst compound may be each consisting of 1 to 20 carbon atoms or 1 to 10 carbon atoms.
  • aluminum-based promoter compounds include alkyl aluminoxane compounds such as methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane; Or trialkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trinuclear silaluminum, trioctatalaluminum or isoprenylaluminum.
  • alkyl aluminoxane compounds such as methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane
  • trialkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trinuclear silaluminum, trioctatalaluminum
  • the amount of the aluminum-based promoter compound supported on the silica carrier by the above step is about 5 1 p 101 to about 15 ⁇ 101 / yo, or about 8 1 when 01 / yo to about 13 11 ⁇ It can be 101 / day. That is, within the supported amount range, the aluminum-based promoter compound is supported on the silica carrier by dividing at a high temperature and a low temperature, so that the above-described pre- and post-reaction of the aluminum-based promoter compound can be performed.
  • a solvent may be used to induce a smooth contact reaction between the carrier and the aluminum-based promoter compound, or may be reacted without the solvent.
  • the solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene, benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran ⁇ ; Most organic solvents such as acetone and ethyl acetate can be used. 5
  • nucleic acid, heptane, toluene or dichloromethane may be used as the solvent.
  • the present invention can provide a silica carrier in which a greater amount of aluminum-based promoter compound penetrates into the inside of the silica carrier and a significant amount of 10 aluminum-based promoter compound is bound to the outside thereof.
  • the method for producing a supported metallocene catalyst according to the present invention includes the step of supporting at least one second metallocene compound on a silica carrier carrying the aluminum-based promoter compound.
  • the present invention is supported by the above method according to the reaction conditions of each metallocene compound by supporting at least one second metallocene compound on a silica carrier in which the first metallocene compound and the aluminum-based promoter compound are separately supported.
  • the interaction with the promoter is optimized to allow the catalyst properties to be adjusted.
  • metallocene catalyst 20 produced supported metal in this way using a SEM / EDS analysis examining the inside depth of the profile carrier of the catalyst (depth prof i le), of silica of an aluminum-based co-catalyst compound, confirmed that the external loading is controlled can do.
  • the second metallocene compound may be used at least one selected from the group consisting of 25 to 25 as described above.
  • the step can be carried out by mixing the carrier and the second metallocene compound in the presence of a solvent and reacting with stirring. 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the supporting amount of the second metallocene compound supported on the silica carrier by the above step is about 0.01 1111110 1 / yaw about 1 ⁇ 0 1 / seedling, or about 0.1 minus 0 1 ⁇ to about 1 based on the carrier 1 yaw _ 0 1 / can be for. That is, in consideration of the contribution effect of the catalytic activity by the metallocene compound, it is preferable to fall within the above-described supporting amount range.
  • the temperature condition in the supporting step of the second metallocene compound is not particularly limited.
  • the silica carrier on which the first metallocene compound is supported is brought into contact with at least one aluminum-based promoter compound to contact the silica carrier with the aluminum-based promoter compound.
  • the second metallocene compound is sequentially supported, whereby polyolefin having a wide molecular weight distribution with apparent density can be produced very effectively.
  • the mixed molar ratio of the first metallocene compound and the second metallocene compound may be about 1: 0.5 to 1: 2.5 or about 1: 1 to 1: 1.5.
  • the present invention can further support a borate compound as the second catalyst.
  • the present invention is one or more first metallocene compounds, one or more aluminum-based promoter compounds, and one or more
  • the method may further include supporting a borate compound as a second cocatalyst on a silica carrier on which the second metallocene compound is supported. Therefore, according to one preferred embodiment of the invention, the carrier is supported by at least one low 11 metallocene compound, an aluminum-based promoter as a first promoter, and a borate compound as a second promoter, The second metallocene compound may be supported.
  • an aluminum-based cocatalyst as one or more first metallocene compounds and a first cocatalyst on a carrier 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the compound may be supported, at least one second metallocene compound may be supported, and the borate compound may be supported as a low 12 cocatalyst.
  • the second cocatalyst may include a borate compound in the form of a trisubstituted ammonium salt, a borate compound in the form of a dialkyl ammonium salt, or a borate compound in the form of a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimethylammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri-butyl) ammonium tetraphenylborate, Methyltetracyclocyclodecylammonium tetraphenylborate, Tetraphenylborate, diethylanilium tetraphenylborate,
  • Trimethylaninium) tetraphenylborate trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethyl Ammonium Tetrakis (pentafluorophenyl) borate, Tripropylammonium Tetrakis (pentafluorophenyl) borate, Tri-butylammonium Tetrakis (pentafluorophenyl) borate, Tri (tert-butyl) ammoniumtetrakis (Pentafluorophenyl) borate, ⁇ -dimethylaninium tetrakis (pentafluorophenyl) borate, -diethylanilium tetrakis
  • Trimethylanilium) tetrakis (pentafluorophenyl) boride trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, triethylammonium tetrakis (2,3,4,6-tetrafluoro Lophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tri-butyl) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate,
  • the borate compound may be supported by a content of about 0 to about 1 11111101 by subtracting about 0.01 based on the use of silica carrier 1.
  • the supporting order is not particularly limited.
  • a borate compound may be finally supported on a silica carrier after supporting one or more second metallocene compounds.
  • the present invention optionally provides a non-aluminum-based promoter compound to be a silica carrier. After supporting it, it can carry out in order of supporting a borate type compound, and then supporting one or more metallocene compounds.
  • a method for producing a polyolefin comprising the step of polymerizing the olefin monomer in the presence of the supported metallocene catalyst.
  • the method for producing the polyolefin may include preparing the hybrid supported metallocene catalyst; And polymerizing the olefinic monomers in the presence of the catalyst.
  • the supported metallocene catalyst according to the present invention itself is subjected to a polymerization reaction. Can be used.
  • the supported metallocene catalyst may be prepared by using a prepolymerized catalyst by contacting with an olefinic monomer.
  • the supported metallocene catalyst may be separately contacted with an olefinic monomer such as ethylene propylene 1-butene, 1-nuxene, 1-octene, and the like. It can also be prepared by using a prepolymerized catalyst.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms (for example, pentane, nucleic acid, heptane, nonanedecane and isomers thereof) and an aromatic hydrocarbon solvent such as toluene benzene, and chlorine such as dichloromethane chlorobenzene. Dilution with an atom substituted hydrocarbon solvent or the like may be carried out to the reactor.
  • the polymerization reaction may be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor gas phase reactor, or a solution reactor.
  • the olefin monomer may be selected and used according to the type of the deliolefin to be prepared, preferably ethylene, propylene, 1-butene 1-pentene 4 -methyl- 1-pentene, 1 -nucleene 1 -heptene 1 -octene , 1 -Desen , 1 -Undesen , 1- 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • One or more olefinic monomers selected from the group consisting of -5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene and 3 -chloromethylstyrene can be used.
  • the polyolefin may be polyethylene which is an ethylene homopolymer, or may be a binary copolymer of ethylene-1-nuxene.
  • Polyolefins prepared according to the method provide the effect of high apparent density, broad molecular weight distribution, and settling efficiency while maintaining high activity equal to or higher than the existing.
  • the polyolefin has an apparent density of about 0.38 yong / 1 kPa or about 0.38 yo / ⁇ about 0.8 sugar or about 0.4 g / mL or more or about 0.4
  • the polyolefin When the polymerization reaction is carried out in a loop slurry reactor, the polyolefin has an apparent density of about 0.47 or more or about 0.47 or about 0.8 to about 0.8 or about 0.49 g / x or about 0.49 g or more. / mL to about 0.8 palaces per square foot.
  • the apparent density of the polyolefin may vary depending on the density, particle size, and particle size distribution of the polyolefin. The larger the particle size distribution, the higher the apparent density. However, the larger the particle size distribution, the larger the amount of small particles (fine powders), and the fine powders do not settle well in the solvent during polymerization, thereby lowering the settling efficiency.
  • the particle size distribution should also be viewed, rather than the absolute value of the apparent density.
  • the apparent density of the polyolefin may appear lower as the particle size is larger.
  • the hybrid supported catalyst of the present invention even if the activity is equal or more, 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the particle size is large and the distribution is narrow, and the apparent density increases, which has the advantage. This means that the particles of the resulting polymer are densely produced, thereby improving the settling efficiency when copolymers of the same density are produced through copolymerization in actual continuous processes, and the ethylene consumption per hour (polymer production) is about 15% or more, Or about 17.5% or more, or about 20% or more, thereby increasing overall productivity.
  • the particle size is 180!
  • the fine powder content below may be less than about 0.1% based on the total weight of the total polyolefin, and may preferably appear to be about 0.01% or less at all.
  • the particle size of the polyolefin when the particle size of the polyolefin is less than 300 ⁇ may be about 1.2% or less or about 0 to 1.2%, or about 1.0% or less or about 0.2% to 1.0%.
  • the particle size of the polyolefin in excess of 300 / / 500 ⁇ ! If less than About 19.2, or about 16 3 ⁇ 4 to about 18.5%.
  • the particle size of the polyolefin exceeds 500 _ may be about 75 ⁇ vtro or more, or about 80% or more.
  • the particle size of the polyolefin exceeds 850 when the particle size of the polyolefin exceeds 850 may be about 20% or more, or about 25% or more.
  • the sum of the content ranges of the respective particle sizes in the particle size distribution of the polyolefin may not exceed 100%.
  • the particle size distribution analysis of the polyethylene can be measured using a sieve that can separate the polymer by particle size, and the specific measuring method is as described in the ethylene homopolymerization-related polymerization preparation example described below.
  • the polyolefin has a fine powder content of 0 or less with a particle size of 180 ⁇ or less based on the total weight of total polyolefins, and a particle size of about 0.4 or less for a particle size of more than 180_ and about 0.4.
  • the apparent density (BD) of the polyolefin may be measured based on ASTM D 1895 Method A. Specifically, the bulk density (BD) of the polyolefin is determined by filling a polyolefin in a 100 mL volume (eg, SUS container) and measuring the weight (g) of the polyolefin, from which the weight per unit volume (g / mL) This can be a value.
  • the polyolefin may have a wide molecular weight distribution with the high apparent density and the optimized particle size distribution as described above.
  • the polyolefin ions molecular weight distribution (Mw / Mn) may be about 4.0 or more or about 4.0 to about 8.0, or about 4.2 or more or about 4.2 to about 7.0.
  • MTO molecular weight distribution
  • GPC gel permeation chromatography
  • Mn number average molecular weight
  • GPC Water Permeation Chromatography
  • a Waters PL-GPC220 device Polymer Laboratories PLgel MIX-B 300 mm length column
  • the measurement temperature is 160 ° C
  • 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) can be used as a solvent
  • the flow rate can be applied to l mL / min.
  • Assay curves formed using polystyrene standards can be used to derive the values of Mw and Mn.
  • the weight average molecular weight of the polystyrene standard specimen is 2000 / 1110 1, 10000 / / 1, 30000 / / 1, 70000 yo / 1110 1, 200000 yo / 1110 1, 700000 yo / 1, 2000000 yo / 0 1, 4000000 / / 1, 10000000 /
  • the polyolefin may exhibit a weight average molecular weight of about 50000 g / mol to about 250000 g / mol.
  • the polyolefin can also have a density value measured by ASTM 1505 from about 0.920 g / cm 3 to about 0.950 g / cm 3 , preferably from about 0.930 g / cm 3 to about 0.940 g ⁇ : m 3 .
  • the polyolefin may have a settling efficiency of about 65% to about 80%, or about 67% to about 80%, which is defined by Equation 1 below.
  • Settling efficiency (%) amount of ethylene used ⁇ : amount of ethylene used + solvent content.
  • the hybrid supported catalyst according to the present invention can not only produce a polyolefin with improved apparent density, wide molecular weight distribution, and settling efficiency as described above, but also maintain high catalytic activity.
  • the catalytic activity may be measured by dividing the weight of polyethylene produced through the polymerization process by 0 3 ⁇ 4 ) by the weight of the supported catalyst used in the polymerization process ( ⁇ ), wherein the catalytic activity is about 10 (Polyolefin) / ⁇ (catalyst) to about 25 (polyolefin) / 3 ⁇ 4 (catalyst), or about 10.8 (Polyolefin) / ⁇ (catalyst) or more (polyolefin) / ⁇ (catalyst) to about 23 Can be.
  • Catalytic activity is at least about 11 (polyolefin) / ⁇ (catalyst) or about 11 (Polyolefin) / solvent (catalyst), or about 11.5 (Polyolefin) / yo (catalyst) to about (polyolefin) / ⁇ (catalyst).
  • the method for measuring the catalytic activity is as described in the ethylene homopolymerization related polymerization preparation example described later, and the description for the specific measurement method is omitted.
  • the supported catalyst co-catalyst loading rate is improved, the morphology (reduced fine powder reduction) and apparent density of the produced polymer is increased while maintaining the high catalytic activity, and the settling ( 3 1: 11 13 ⁇ 4 ) efficiency is improved.
  • the molecular weight distribution can be used very effectively to produce a polyolefin with improved processability.
  • 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. From the 6-t-butoxynucleic acid, it was found that the Gr inganrd reaction proceeded well. Thus 6-t-butoxynuclear magnesium Chloride (6-t-buthoxyhexyl magnesium chloride) was synthesized.
  • TiCl 3 (THF) 3 (10 mmol) was quickly added to the dilithium salt of a -78 ° C ligand synthesized in THF solution from (Dimethyl (tetramethylCpH) t-Butylaminosi lane). The reaction solution was stirred for 12 hours while slowly raising the temperature to _78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a dark black solution was obtained. After removing THF from the reaction solution, nucleic acid was added to filter the product.
  • a hybrid supported metallocene catalyst was produced in the same manner as in Example 1, except that the temperature to be introduced was raised to 130 I: instead of 110 I :.
  • Silica 952 (manufactured by High 0 ⁇ 011), was dehydrated and dried under vacuum at a temperature of 600 V for 12 hours.
  • reaction solution was decanted 0 (1 6 € 31 1 011 ). Thereafter, 10% methylaluminoxane () / toluene solution was added to the reactor in 7.4.
  • a hybrid supported metallocene catalyst was prepared in the same manner as in Example 1, except that the temperature to be charged was lowered to 110 I: rather than 60 I :. Comparative Example 3 Hybrid Supported Metallocene Catalyst
  • a hybrid supported metallocene catalyst was prepared in the same manner as in Comparative Example 1, except that the temperature to be charged was 60 ° C .:
  • the mixture was dried under reduced pressure for about 4 hours at about 50 to prepare a hybrid supported metallocene catalyst.
  • the first metallocene was prepared.
  • the supported content and supported temperature of the compound and the second metallocene compound and the promoter are shown in Table 1 below.
  • the first metallocene compound (precursor 1), the second metallocene compound (precursor 2), and the co-catalyst (show 0) were classified according to the order of '' ⁇ .
  • Catalytic activity Activity, kgPE / gSi0 2
  • the weight of the catalyst used in the polymerization reaction of Preparation Example and Comparative Preparation Example and the weight of the polymer produced from the polymerization reaction were measured to determine the polymerization reaction of Preparation Example and Comparative Preparation Example.
  • the catalytic activity (act ivi ty) of each of the examples and comparative catalysts used was calculated. Specifically, as described above, the weight (kg) of the polyethylene obtained after the polymerization process and the drying process is measured to be a kgPE value, and the weight (g) of the supported catalyst used in the polymerization process is gSi ⁇ 3 ⁇ 4, thus obtained.
  • the weight (kg) of polyethylene was measured and the value obtained by dividing the kgPE value by the weight (g) g Si0 2 of the supported catalyst was shown as catalyst activity.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of polyethylene were measured using the product made by Water Corporation), and the molecular weight distribution (MffD, Mw / Mn) was calculated by dividing the weight average molecular weight by the number average molecular weight.
  • GPC Water Permeation Chromatography
  • the measurement temperature was 160 ° C
  • 1,2,4-trichlorobenzene (1,2,4-Tr i chlorobenzene) was used as a solvent
  • the flow rate was 1 mL / min.
  • Polyethylene samples according to Preparation Examples and Comparative Preparation Examples contained trichlorobenzene (1,2,4-B 0.0125%) using a GPC analysis device (PL-GP220), respectively.
  • Tr ichlorobenzene was dissolved in 160 ° C for 10 hours, pretreated, prepared at a concentration of 10 mg / 10mL, and then supplied in an amount of 200 y L.
  • the calibration curves formed using polystyrene standard specimens were used to derive the values of Mw and Mn.
  • the weight average molecular weight of the polystyrene standard specimens is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 9 types of dragon / 11101, 4000000 dragon / 11101 , 10000000 dragon / MUI were used.
  • Particle size distribution analysis The polymers were separated by particle size using sieve (sieve, size 850 pm, 500 pm, 300 jm, 180 jM n). Specifically, using the sieve as described above, respectively, the particle size of the polymer is more than 850, 0850), more than 500 _ 850, or less (> 500), more than 300 ⁇ ⁇ less than 500 m if ( ⁇ 300), 180 / if 300 m or less in excess of Fe (> 300), that, based on the, total weight of the total polymer hanhue measuring the weight of the polymer corresponding to the differential case state (Fine) of less than 180 pm particle
  • the weight of polymer separated by size is expressed as percentage (wt%).
  • the results of particle size distribution (PSD) analysis are based on the weight values separated by sieve in the laboratory, without using a specific device or based on specific criteria.
  • BD Apparent Density
  • A1 loading rate (%) measurement The A1 loading rate in the supported catalyst was measured by an Inductively Coupled Plasma Spectrometer (ICP) analysis method. At this time, the A1 loading rate (%) represents the amount of the actually supported promoter relative to the amount of promoter (A1) put in the preparation of the supported catalyst as a percentage value.
  • the equipment used for analysis was ICP-OES (Perkin Elmer) and the analysis conditions were set to Plasma Gas 12 L / min, Auxiliary Gas 0.2 L / min, Nebulizer Gas 0.8 L / min, and RF Power was 1300 WATTS, Sample flow rate was measured by Radial View at 1.50 mL / min. Table 2
  • Production Examples 1 to 3 is able to prepare a polyethylene that meets both the 0.40 / 0.41 to ⁇ /! ⁇ broad molecular weight distribution of a high bulk density and 4.2 to 4.3 for.
  • Preparation Examples 1 to 3 had a catalytic activity of 9.9 To 12 1 ⁇ 3 ⁇ 4 / ⁇ 0 2 while maintaining a high particle size and narrow distribution, the apparent density has the advantage of rising.
  • the resulting polymer particles are dense 2019/156482 1 »(: 1 ⁇ 1 ⁇ 2019/001535
  • the hybrid supported catalysts of Examples 1 to 3 used in the polyethylene polymerization process of Preparation Examples 1 to 3 can broaden the polymer! ⁇ !) By supporting the first metallocene precursor before the supported catalyst. The processability of the polymer can be improved.
  • the hybrid supported catalyst of Example 1 can support the splitting of the promoter sequentially at a high temperature to evenly support the promoter to the inside of the carrier, thereby significantly increasing the apparent density of the resulting polymer.
  • the apparent density of polyethylene was lower than that of Preparation Examples 1 to 3 by applying the catalysts of Comparative Examples 1 to 3 all at once or partly supported at a low temperature of 80.
  • Comparative Production Example 4 even when the promoter was supported at a high temperature of 110 X :, even when the hybrid supported catalyst of Comparative Example 4, which was supported at one time without split injection, was used, the apparent density of polyethylene was lower than that of the split injection. It can be seen that.
  • the first metallocene compound was supported prior to the support of the promoter, so that the molecular weight distribution of the polymer (which could be widely secured, but the particle size distribution of the polymer was wide and the apparent density ⁇ £ 1 ) was low.
  • the ethylene- 1 -nuxene copolymerization reaction of Preparation Example 4 and Comparative Preparation Examples 7 to 9 was carried out using the hybrid supported metallocene catalyst of Example 1 and Comparative Examples 1, 4 and 5.
  • the polymerization reactor was a continuous polymerization reactor, that is, a loop slurry reactor, which is an isobutane Slurry loop process, the reactor volume was 140 L, and the reaction flow rate was operated at about 7 m / s. Gases (ethylene, hydrogen) and comonomer 1-hexene required for polymerization are continuously and continuously injected, and the individual flow rate is adjusted to the target product.
  • Ethylene load (C2) Weight (kg / h): Ethylene consumption per hour (polymer production amount), ie ethylene per unit time, when the ethylene- 1-nuxene copolymerization reaction is carried out under the polymerization conditions as described above. Load shedding weight (kg / h) was measured.
  • MI 2. i6 and MFRR (21.6 / 2.16) Melt Index (MI 2.16, Melt Index) was measured according to ASTM D 1238 (Condition E, 190 ° C, 2.16 kg load). On the other hand, the melt flow index ⁇ 1 0 ⁇ yaw root ratio ⁇ ,! 3 ⁇ 4 , 21.6 / 2.16) MFR 21.6 was calculated by dividing by MFR 2.16 , MFR 21.6 measured under a temperature of 190 ° C and a load of 21.6 kg according to ISO 1133, MFR 2.16 measured under a temperature of 190 ° C and a load of 2.16 kg according to ISO 1133 It was. (8) Density: Measured according to the method of ASTM D 1505.
  • Slurry density (DI, slurry density): Slurry density was measured using radiation as a value representing the amount of polymer per unit volume in a slurry loop reactor.
  • Preparation Example 4 is a high apparent by using the hybrid supported catalyst of Example 1 to carry the first metallocene precursor first, and then to carry a split catalyst and to support the second metallocene precursor It can be seen that it is possible to effectively produce polyolefins having a density and a wide molecular weight distribution. Particularly, in Preparation Example 4, after the primary catalyst was first supported at a high temperature of 110 ° C, the residue was sequentially supported at 40 ° C, and then dividedly supported so as to evenly support the promoter to the inside of the carrier. Continuous polymerization under the density (slurry densi ty, DI) significantly increased the settling efficiency (SE) and ethylene rod while having high activity.
  • slurry densi ty, DI significantly increased the settling efficiency (SE) and ethylene rod while having high activity.

Abstract

The present invention relates to a method for preparing a supported hybrid metallocene catalyst and, more particularly, to a method in which a first metallocene compound is supported, a promoter is supported by means of split addition, in which a part of the promoter is primarily added at 100°C to 150°C and the rest is secondarily added at -5°C to 40°C, and a second metallocene compound is supported. Therefore, the present invention enables enhancement of the promotor supporting rate in a supported catalyst, maintenance of high catalyst activity, increased morphology (reduction of fine particle generation) and apparent density of a generated polymer, and increased settling efficiency and also can efficiently be used for preparation of polyolefin showing increased molecular weight distribution and thus having enhanced processability.

Description

【발명의 명칭】  [Name of invention]
혼성 담지 메탈로센촉매의 제조방법 【기술분야】  Manufacturing Method of Hybrid Supported Metallocene Catalyst [Technical Field]
관련출원들과의 상호인용  Citation with Related Applications
본출원은 2018년 2월 8일자한국특허 출원 제 10-2018-0015903호 및 2019 년 2 월 1 일자 한국 특허 출원 제 10-2019-0013833 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다. 본 발명은 혼성 담지 메탈로센 촉매를 제조하는 방법 및 이에 따라 제조된촉매를이용한폴리올레핀의 제조방법에 관한것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0015903 dated February 8, 2018 and Korean Patent Application No. 10-2019-0013833 dated February 1, 2019. All content disclosed in the literature is included as part of this specification. The present invention relates to a method for producing a hybrid supported metallocene catalyst and a method for producing a polyolefin using the catalyst prepared accordingly.
【배경기술】 Background Art
일반적으로 올레핀의 중합 공정은 고압 공정, 용액 공정, 슬러리 공정, 기상 공정 등으로 분류되며, 상기 중합 공정에 다양한 메탈로센계 촉매들을적용하여 원하는물성을갖는올레핀 중합체를 제조하려는노력이 다방면으로이루어지고있다. 슬러리 및 기체상 (gas-phase) 중합 공정을 이용한 폴리에틸렌의 제조방법에서 사용되는 메탈로센 촉매는 적당한 담체에 단단히 고정화되어 leaching으로인한반응기 파울링 (foul ing)을발생하지 않아야한다. 특히, 중합체의 겉보기 밀도는 반응기 단위 생산성에 밀접한 연관이 있으므로 촉매 활성이 높을뿐만아니라중합체의 겉보기 밀도또한높아야한다. 담지 메탈로센 촉매를 제조하기 위해 일반적으로 촉매 활성을 증가시키고자 고활성 메탈로센 촉매를 사용함과 동시에 조촉매인 알루미녹산 양을 늘려 담지하는 기술이 일반적이다. 그러나, 고활성 담지 촉매의 경우, 담체의 표면에서 중합이 먼저 일어나게 되고, 생성된 중합체가 결정화되어 다음 단량체의 확산 (momomer di ffusion)을 저해하여 2019/156482 1»(:1^1{2019/001535 Generally, the polymerization process of olefin is classified into high pressure process, solution process, slurry process, and gas phase process, and various efforts are made to prepare an olefin polymer having desired properties by applying various metallocene catalysts to the polymerization process. have. Metallocene catalysts used in the production of polyethylene using slurries and gas-phase polymerization processes must be firmly immobilized on a suitable carrier to avoid reactor fouling due to leaching. In particular, since the apparent density of the polymer is closely related to the reactor unit productivity, not only should the catalyst activity be high, but also the apparent density of the polymer should be high. In order to manufacture a supported metallocene catalyst, a technique is generally used to increase the amount of aluminoxane, which is a co-catalyst, while simultaneously using a high active metallocene catalyst to increase catalyst activity. However, in the case of the highly active supported catalyst, polymerization occurs first on the surface of the carrier, and the resulting polymer crystallizes to inhibit the diffusion of the next monomer (momomer di ffusion). 2019/156482 1 »(: 1 ^ 1 {2019/001535
속이 비어 있는 중합체를 형성함으로써 겉보기 밀도가 낮아지는 경우가 일반적이다. 이러한 문제점을 해결하고자 저온 저압에서 먼저 예비중합 (1 1 0161^ 2^ 1011) 함으로써 에틸렌 등의 중합 단량체의 담체의 내부까지 확산되는 속도를 조절하려는 시도가 있으나, 중합 반응기를 추가로 설치해야 하는 문제점이 있다. 또한 염화알루미늄 등으로 담체 표면의 하이드록시 그룹을 처리하여 담지 효율을 향상시키는 담지법이 있으나, 촉매 제조비용이 증가하고부반응으로 인한촉매 균일성을저해할 수있다. 한편, 이러한메탈로센 촉매는 메탈로센 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 일종의 균일계 착체 촉매로 단일 활성점 촉매 ( 1¾16 。。없 )이며 , 단일 활성점 특성에 따라분자량분포가좁으며,공단량체의 조성 분포가균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다. 하지만, 이러한 메탈로센 촉매를 고상 담체에 담지시켜 폴리올레핀 등 중합체의 벌크 밀도를 증가시키고자 하는 경우, 많은 경우에 있어 촉매의 활성과 중합체의 분자량 분포가 저하되는 문제점이 발생하였다. 따라서, 상기한 단점들을 해결하기 위해서 고활성 촉매 특성을 유지하면서 중합체의 겉보기 밀도와분자량분포가모두향상된 폴리올레핀 중합체를 제조할 수 있는 혼성 담지 메탈로센 촉매의 제조 방법에 대한 요구가계속되고 있다. It is common for apparent density to become low by forming a hollow polymer. In order to solve this problem, there is an attempt to control the rate of diffusion to the inside of the carrier of a polymerized monomer such as ethylene by prepolymerization ( 1 1 01 , 61 ^ 2 ^ 1 011) at low temperature and low pressure, but additionally, a polymerization reactor is installed. There is a problem that must be done. In addition, there is a supporting method for improving the supporting efficiency by treating the hydroxy group on the surface of the carrier with aluminum chloride, etc., but the catalyst manufacturing cost increases and can reduce the catalyst uniformity due to side reactions. Meanwhile, the metallocene catalyst is composed of a combination of a main component a metallocene compound as a main catalyst mainly composed of an aluminum organometallic compound of the cocatalyst, the single site catalyst as a sort of homogeneous catalyst complexes such as metal (not 1¾16 ..) The molecular weight distribution is narrow according to the characteristics of the single active site, and the homogeneous composition of the comonomer is obtained, and the stereoregularity, copolymerization characteristic, molecular weight, It has the property to change the crystallinity. However, when the metallocene catalyst is to be supported on a solid carrier to increase the bulk density of a polymer such as polyolefin, in many cases, there is a problem in that the activity of the catalyst and the molecular weight distribution of the polymer are lowered. Accordingly, there is a continuing need for a method for preparing a hybrid supported metallocene catalyst capable of producing a polyolefin polymer having both an apparent density and a molecular weight distribution of the polymer while maintaining high active catalyst properties to solve the above disadvantages.
【발명의 상세한설명】 Detailed Description of the Invention
【기술적 과제】  [Technical problem]
본 발명은 고활성 촉매 특성을 유지하면서 중합체의 겉보기 밀도와 분자량분포가모두향상된 폴리올레핀 중합체를제조할수 있는혼성 담지 메탈로센촉매의 제조방법을제공하고자한다. 2019/156482 1»(:1^1{2019/001535 The present invention is to provide a method for preparing a hybrid supported metallocene catalyst capable of producing a polyolefin polymer having both an apparent density and a molecular weight distribution of the polymer while maintaining high active catalyst properties. 2019/156482 1 »(: 1 ^ 1 {2019/001535
또한, 본 발명은 상술한 바와 같은 방법으로 제조된 촉매를 이용한 폴리올레핀의 제조방법을제공하고자한다. 【기술적 해결방법】 In addition, the present invention is to provide a method for producing a polyolefin using a catalyst prepared by the method as described above. Technical Solution
발명의 일 구현예에 따르면,실리카담체에 1종 이상의 제 1 메탈로센 화합물을담지시키는단계;  According to one embodiment of the invention, the step of supporting at least one first metallocene compound on the silica carrier;
상기 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과접촉시켜,상기 실리카담체에 상기 알루미늄계 조촉매 화합물을담지시키는단계;및  Contacting the silica carrier on which the first metallocene compound is supported with at least one aluminum-based promoter compound to support the aluminum-based promoter compound on the silica carrier; and
상기 알루미늄계 조촉매 화합물이 담지된 실리카담체에 1종 이상의 제 2메탈로센화합물을담지시키는단계;  Supporting at least one second metallocene compound on the silica carrier on which the aluminum-based promoter compound is supported;
를포함하며,  Including,
상기 알루미늄계 조촉매 화합물은 전체 투입량중 60중량%내지 90
Figure imgf000004_0001
The aluminum-based promoter compound is 60% by weight to 90 of the total amount
Figure imgf000004_0001
담체에 담지되는, 혼성 담지 메탈로센촉매의 제조방법이 제공된다. 한편, 발명의 다른 일 구현예에 따르면, 상술한 바와 같은 방법에 따라 제조되는 혼성 담지 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합반응시키는단계를포함하는폴리올레핀의 제조방법이 제공된다. 본발명에서, 제 1, 제 2등의 용어는다양한구성요소들을설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는목적으로만사용된다. 또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다’', "구비하다" 또는 "가지다’ 등의 2019/156482 1»(:1^1{2019/001535 Provided is a method for producing a hybrid supported metallocene catalyst supported on a carrier. On the other hand, according to another embodiment of the invention, there is provided a method for producing a polyolefin comprising the step of polymerizing the olefin monomer in the presence of a hybrid supported metallocene catalyst prepared according to the method as described above. In the present invention, the terms first, second, etc. are used to describe various components, which terms are only used to distinguish one component from another component. In addition, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the words "include", "include" or "have" 2019/156482 1 »(: 1 ^ 1 {2019/001535
용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나또는 그 이상의 다른 특징들이나숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는것으로이해되어야한다. The term is intended to designate that the implemented feature, number, step, component, or combination thereof exists, and preliminary to the presence or addition of one or more other features, numbers, steps, components, or a combination thereof. It should be understood to not exclude it.
55
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는본발명을특정한개시 형태에 대해 한정하려는 것이 아니며, 본발명의 사상및 기술범위에 포함되는모든 변경, 균등물내지 대체물을 10 포함하는것으로이해되어야한다. 이하 발명의 구체적인 구현예에 따른 혼성 담지 메탈로센 촉매의 제조 방법 및 이에 따라 제조된 촉매를 이용한 폴리올레핀의 제조 방법에 관하여 보다상세하게설명하기로한다. As the invention allows for various changes and numerous modifications, particular embodiments will be illustrated and described in detail below. However, it should be understood to include not intended to limit the invention to the particular form disclosed, and 10 all included in the spirit and scope of the present invention changes, equivalents and substitutes. Hereinafter, a method of preparing a hybrid supported metallocene catalyst and a method of preparing polyolefin using the catalyst prepared according to a specific embodiment of the present invention will be described in detail.
1515
먼저, 본 발명의 혼성 담지 메탈로센 촉매는 1 종 이상의 제 1 메탈로센 화합물과 1 종 이상의 제 2 메탈로센 화합물이 담지되는 족매를 의미한다. 또한, 본 발명의 혼성 담지 메탈로센 촉매는 상기 메탈로센 화합물과함께 알루미늄계 조촉매가담지되는 것을특징으로 한다. 그리고, 20 본 발명의 담지 메탈로센 촉매는 보레이트계 화합물을 제 2 조촉매로 더 포함할수 있다. 이러한 본 발명은 고활성 촉매 특성을 유지하면서 중합체의 겉보기 밀도 및 분자량분포가모두 향상된 폴리올레핀 중합체를 제조할 수 있는, 25 혼성 담지 메탈로센촉매의 제조방법에 관한것이다. 발명의 일 구현예에 따르면 , 실리카담체에 1종이상의 제 1 메탈로센 화합물을 담지시키는 단계; 상기 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과 접촉시켜, 상기 실리카 30 담체에 상기 알루미늄계 조촉매 화합물을 담지시키는 단계; 및 상기 2019/156482 1»(:1^1{2019/001535 First, the hybrid supported metallocene catalyst of the present invention means a group on which at least one first metallocene compound and at least one second metallocene compound are supported. In addition, the hybrid supported metallocene catalyst of the present invention is characterized in that an aluminum-based promoter is supported together with the metallocene compound. Then, the metal-supported metallocene catalyst 20 of the present invention may be further comprises a borate compound to the second co-catalyst. The present invention relates to a method for preparing a 25 mixed supported metallocene catalyst, which can produce a polyolefin polymer having both improved apparent density and molecular weight distribution while maintaining high active catalyst properties. According to one embodiment of the invention, the step of supporting at least one first metallocene compound on the silica carrier; Contacting the silica carrier carrying the first metallocene compound with at least one aluminum-based promoter compound to support the aluminum-based promoter compound on the silica 30 carrier; And said 2019/156482 1 »(: 1 ^ 1 {2019/001535
알루미늄계 조촉매 화합물 담지된 실리카 담체에 1종 이상의 제 2 메탈로센 화합물을 담지시키는 단계;를 포함하며, 상기 알루미늄계 조촉매 화합물은 서로 다른 온도에서 분할 투입 방법에 의해 실리카 담체에 담지되는 혼성 담지 메탈로센촉매의 제조방법이 제공될수 있다. 즉, 본발명은혼성 담지 메탈로센촉매 제조시, 활성점 생성 극대화 및 분자량 분포(¾■)) 및 공단량체 분포 조절을 위하여 고분자 미세 구조 구현과 동시에 생성된 고분자의 입도 조절이 가능하도록, 실리카 담체에 조촉매가내부에 상대적으로많이 분포되도록조촉매를분할투입하되, 제 1
Figure imgf000006_0001
Supporting at least one second metallocene compound on an aluminum-based promoter supported silica carrier; wherein the aluminum-based promoter compound is mixed on the silica carrier by a split dosing method at different temperatures. A method for preparing a supported metallocene catalyst may be provided. In other words, the present invention is to produce a mixed metal metallocene catalyst, silica to enable the control of the particle size of the polymer produced at the same time to implement the fine structure of the polymer for maximizing the active site generation and molecular weight distribution (¾ ■)) and comonomer distribution control The catalyst is divided into the carrier so that the promoter is distributed in a relatively large amount.
Figure imgf000006_0001
1 차로 분할 투입한 후에, -5 X: 내지 40 X:의 온도에서 2 차로 분할 투입하여 고활성 촉매 특성을 유지하면서 중합체 겉보기 밀도 증가와 더불어 넓은분자량분포를구현하여 가공성을향상시키는특징이 있다. 특히, 상기 알루미늄계 조촉매 화합물은, 실시카 담체에 제 1 메탈로센화합물을담지시킨후에,상기 조촉매 화합물의 전체 투입량중 50 중량%내지 90중량%를 약 100 X: 내지 약 150 (:에서 1차투입하고, 전체
Figure imgf000006_0002
After the first split-input, the second split-input is carried out at a temperature of -5X: to 40X: to maintain high active catalyst properties while increasing polymer apparent density and wide molecular weight distribution to improve processability. Particularly, in the aluminum-based promoter compound, after supporting the first metallocene compound on the carrier carrier, 50 wt% to 90 wt% of the total amount of the promoter compound is about 100X: to about 150 First input from
Figure imgf000006_0002
촉매 내 조촉매 담지율을 향상시키며 슬러리 루프 파일럿 공정 평가 시 생성된 중합체의 모폴로지(미분 생성 감소) 및 겉보기 밀도가 높아지며 세틀링 塔) 효율이 향상되어 공정 운전시 활성이 상승하고 에틸렌 로드를 현저히 증가시킬 수 있고, 분자량 분포가 증가하여 가공성이 향상되며, 겉보기 밀도가 높고 넓은 분자량 분포를 갖는 폴리올레핀을 제조하는데 매우효과적으로사용할수있다. 이러한 방법에 따라, 본 발명은 담체에서 시/ 의 함량에 대하여 특정 파라미터를 갖는 담지 메탈로센 촉매를 제공할수 있다. 바람직하게, 본 발명은 담체 촉매 입자를 횡단면으로 잘랐을 때, 각 표면으로부터 중심부쪽으로입자의 전체지름의 1/3이 되는지점까지를포함하는외부층, 및 상기 입자의 1/3지점으로부터 내부중심까지의 나머지 부분을포함하는 2019/156482 1»(:1^1{2019/001535 Improved catalyst loading in the catalyst and improved polymer morphology (reduced fine powder generation) and apparent density and settling efficiency during slurry loop pilot process evaluation, resulting in higher activity and significantly increased ethylene load during process operation It is possible to improve the processability by increasing the molecular weight distribution, and can be used very effectively to produce polyolefins having a high apparent density and a wide molecular weight distribution. According to this method, the present invention can provide a supported metallocene catalyst having a specific parameter with respect to the content of time in the carrier. Preferably, the present invention comprises an outer layer comprising up to one third of the total diameter of the particle from each surface towards the center when the carrier catalyst particles are cut in cross section, and from one third point to the inner center of the particle. Containing the rest of the 2019/156482 1 »(: 1 ^ 1 {2019/001535
내부층으로 이루어지고, 알루미늄계 조촉매 화합물이 담체의 내부 및 표면에 담지된 실리카 담체와; 상기 실리카 담체에 담지된 2 종 이상의 메탈로센 화합물;을 포함한다. 일 예로, 상기 내부층의 시/ 원소 함량비(중량%)가 상기 외부층의 사/ 원소 함량비(중량%)의 65% 이상인 ,A silica carrier composed of an inner layer and having an aluminum-based promoter compound supported on the inside and the surface of the carrier; And two or more metallocene compounds supported on the silica carrier. For example, the city / element content ratio (% by weight) of the inner layer is 65% or more of the sand / element content ratio (% by weight) of the outer layer,
5 담지 메탈로센촉매를제공할수 있다. 특히, 본발명은실리카담체에 1종 이상의 제 1 메탈로센 화합물을 먼저 담지하여 높은 겉보기 밀도와 함께 넓은 분자량 분포(_)를 구현할 수 있다. 또한, 본 발명은 알루미늄 조촉매를고온분할투입하여 기존에 비해시의 담지율을높일수 있다. It can provide 5 supported metallocene catalysts. In particular, the present invention can implement a wide molecular weight distribution (_) with a high apparent density by first supporting at least one first metallocene compound on the silica carrier. In addition, the present invention can increase the supporting ratio of the city compared to the existing by high-temperature split injection of the aluminum promoter.
10 본발명에 따른혼성 담지 메탈로센촉매는, 실리카담체의 내부 및 기공에 전체적으로 기존보다 많은 양의 알루미늄계 조촉매 화합물이 침투하여 화학적 결합되어 있고, 표면에도 상당량의 알루미늄계 조촉매 화합물이 물리적 결합되어 있는 특징이 있다. 즉, 기존에는 담체 내부에 침투하여 화학적 결합이 되어 있는 알루미늄계 조촉매 화합물이 작다. 10 In the hybrid supported metallocene catalyst according to the present invention, a large amount of aluminum-based promoter compound penetrates into the silica carrier and pores, and is chemically bonded, and a considerable amount of aluminum-based promoter compound is physically bonded to the surface. There is a combined feature. That is, conventionally, the aluminum-based promoter compound that penetrates into the carrier and is chemically bonded is small.
15 하지만, 본 발명은 알루미늄계 조촉매 화합물을 담체에 담지시 분할하는 방법에 의해 종래보다 내부층에 조촉매가 더 담지되도록 하는 것이다. 따라서, 본 발명의 담지 메탈로센 촉매는 내부층 및 외부층으로 이루어진 구성에서 내부층에 많은 양의 알루미늄계 조촉매 화합물이 포함되어 있고, 이에 따라기존대비 겉보기 밀도를향상시키고촉매 활성 조절이 용이하다. 15, but the present invention is to ensure that the co-catalyst is further supported on the inner layer than the prior art by a method for dividing when carrying the aluminum-based co-catalyst compound on the support. Therefore, the supported metallocene catalyst of the present invention contains a large amount of aluminum-based promoter compound in the inner layer in the composition consisting of the inner layer and the outer layer, thereby improving the apparent density compared to the existing and easy to control the catalyst activity Do.
20 20
이러한 특징을 갖는 본 발명의 혼성 담지 메탈로센 촉매는, 알루미늄계 조촉매 화합물이 담지된 실리카 담체를 원소 분석하였을 때, 상기 내부층의 시 / 원소 함량비(중량%)가 상기 외부층의 시/ 원소 함량비(중량 의 65% 이상이 되고, 바람직하게는 90% 내지 150%가 된다. In the hybrid supported metallocene catalyst of the present invention having the above characteristics, when the silica carrier on which the aluminum-based promoter compound is supported is subjected to elemental analysis, the time / element content ratio (weight%) of the inner layer is determined by the time of the outer layer. / Element content ratio (65% or more of the weight, preferably 90% to 150%).
25 이는 알루미늄계 조촉매 화합물의 알루미늄이 실리카 담체의 내부층부까지 깊게 침투한양이 많음을의미한다. 이러한 본 발명에 따른 혼성 담지 메탈로센 촉매의 제조 방법은, 실리카 담체에 1종 이상의 제 1 메탈로센 화합물을 담지시키는 단계; 상기 25 which is aluminum-based means Hanyang plenty penetrate deeply to the inside layer portion of the crude aluminum silica support of the catalyst compound. Such a method for producing a hybrid supported metallocene catalyst according to the present invention comprises the steps of: supporting at least one first metallocene compound on a silica carrier; remind
30 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과 접촉시켜, 상기 실리카 담체에 상기 알루미늄계 조촉매 화합물을 담지시키는 단계; 및 상기 알루미늄계 조촉매 화합물 담지된 실리카 담체에 1종 이상의 제 2 메탈로센 화합물을 담지시키는 단계;를 포함한다. 특히, 본 발명은 실리카 담체에 제 1 메탈로센 화합물을 먼저 담지시킨 후에 알루미늄계 조촉매를 담지시키면서, 알루미늄계 조촉매 화합물 담지시 고온에서 저온으로 온도를 변경하면서, 서로 다른 온도에서 분할투입하는특징이 있다 이하, 상기 본발명의 방법에 포함될수 있는각단계에 대하여 보다 상세히 설명한다. 먼저, 본 발명은 필립스 루프 슬러리 공정에 적합한 모폴로지를 가지는 실리카 담체를 선택할 수 있다. 본 발명은 소성 (calcinat ions) 조건을 통해 선택적으로 실리카 담체의 실란올기 및 실록산기 양을 조절함으로써 담지되는 메탈로센 촉매 및 조촉매인 알킬알루미녹산의 결합을최적화한다. 또한, 상기 실리카의 히드록시키, 즉, 0H 기의 화학적 결합과 조촉매 (예를 들면, MA⑴의 고온에서의 점도저하로 내부까지 침투 후 화학 반응이 진행되게 한후, 실리카표면에서 물리적 흡착이 이루어지도록하기 위해, 실리카의 소성 온도는 실리카의 표면에서 수분이 없어지는 온도에서부터 그 표면에서 히드록식기, 즉, 0H 기가 완전히 없어지는 온도 범위까지 진행 가능하다. 바람직한 일 구현예에 따른, 상기 실리카담체의 소성 조건은 약 100 °C 내지 약 700 °C의 온도에서 소성하는 것이 바람직하다. 상기 소성을통해, 실리카담체의 함수율은 약 0.1중량%내지 약 7중량%가되는것이 바람직하다. 2019/156482 1»(:1^1{2019/001535 30 One or more aluminum based silica carriers carrying the first metallocene compound Contacting the cocatalyst compound to support the aluminum-based cocatalyst compound on the silica carrier; And supporting at least one second metallocene compound on the aluminum carrier-supported silica carrier. Particularly, in the present invention, the first metallocene compound is first supported on a silica carrier, and then the aluminum-based cocatalyst is supported, and when the aluminum-based cocatalyst compound is supported, the temperature is changed from a high temperature to a low temperature and dividedly injected at different temperatures. Features are described below in more detail with respect to each step that can be included in the method of the present invention. First, the present invention may select a silica carrier having a morphology suitable for the Philips loop slurry process. The present invention optimizes the binding of alkylaluminoxanes, which are supported metallocene catalysts and promoters, by selectively controlling the amount of silanol and siloxane groups of the silica carrier through calcinations conditions. In addition, the chemical bond of the hydroxy key of the silica, that is, the 0H group and the co-catalyst (for example, a decrease in viscosity at high temperature of MA⑴ is allowed to penetrate to the inside, followed by a chemical reaction, and then physical adsorption occurs on the surface of the silica. In order to achieve this, the firing temperature of the silica can be carried out from the temperature at which the moisture disappears from the surface of the silica to the temperature range from which the hydroxyl group, that is, the 0H group, is completely disappeared from the surface of the silica. The firing conditions are preferably calcined at a temperature of about 100 ° C. to about 700 ° C. Through the firing, the water content of the silica carrier is preferably about 0.1 wt% to about 7 wt%. 2019/156482 1 »(: 1 ^ 1 {2019/001535
본 발명에서 언급하는상기 실리카담체의 내부는 기공을포함한다. 또한, 본 명세서 전체에서 명시적인 언급이 없는 한, 담체의 ’함수율’이라 함은 담체의 전체 중량에 대하여 담체 내에 포함되어 있는 수분의 중량을 백분율로나타낸것으로정의한다. 또한, 상기 담체는 전술한 범위의 함수율을 나타냄에 따라, 담체의 표면에 약 0.5 때01/용 내지 약 5 11«1101/요 의 하이드록시기, 바람직하게 약 0.7 ^01^내지 약 2 _01/묘의 하이드록시기를포함할수 있다. 이와 같은 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상일 수 있으며, 바람직하게는 실리카일 수 있다. 이 밖에도, 상기 함수율 범위를 만족하는 담체라면 그 구성에 제한없이 사용할수있다. 한편, 본발명에 따른혼성 담지 메탈로센촉매의 제조방법은, 상기 실리카 담체에 1 종 이상의 제 1 메탈로센 화합물을 담지시키는 단계를 포함한다. 특히, 본 발명은 상기 실리카 담체에 1 종 이상의 제 1 메탈로센 화합물을 먼저 담지하여 넓은 분자량 분포 (■å))를 구현하며 가공성이 우수한중합체를제조하는특징이 나타나도록한다. 또한, 본 발명에 따르면 에틸렌 중합을 통해, 높은 겉보기 밀도와 넓은 분자량 분포와 함께 촉매 활성이 증가되므로, 폴리올레핀의 생산성을 크게 향상시킬수있다. 본발명의 혼성 담지 메탈로센촉매에서, 상기 제 1메탈로센화합물 및 제 2 메탈로센 화합물은 알루미늄계 조촉매 화합물과 함께 촉매로서의 활성을나타낼수있도록하는주촉매 성분이다. 상기 메탈로센 화합물로는본 발명에 속하는 기술분야에서 통상적인 것을 제한 없이 1종 이상의 제 1 메탈로센 화합물 및 1 종 이상의 제 2 메탈로센 화합물로 사용할 수 있다. 예를 들면, 상기 메탈로센 화합물은 1) 브리지되지 않은 Cp(non bridge 와 Cp계의 조합을 포함하는 메탈로센 화합물, 2) Si브리지 Cp(Si bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 3) C 브리지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 4) Si 브리지 Cp(Si bridge Cp) 또는 C 브리지 Cp(C bridge 미와 아민계의 조합을 포함하는 메탈로센 화합물, 5) 에틸렌 브리지 Cp(ethylene bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 6) 페닐렌 브리지 Cp(phenylene bridge Cp)와아민계의 조합을포함하는메탈로센화합물, 7) C-C, Si-C, 또는 Si-Si 브리지를 포함하는 메탈로센 화합물 등을 모두 사용 가능하다. 상기 Cp는 사이클로펜타디에닐, 인데닐, 플루오레닐, 인데노인돌 (Inin)계 등일 수 있고, 그 구조가 제한되지 않는다. 또한, 상기The inside of the silica carrier referred to in the present invention includes pores. In addition, unless stated otherwise throughout the present specification, the term "water content" of the carrier is defined as the percentage of the weight of water contained in the carrier relative to the total weight of the carrier. In addition, the support is indicated, a hydroxyl group at the time of about 0.5 on the surface of the support 01 / for to about 511 «1101 / I, preferably about 0.7 ^ 01 ^ and about 2 _ 01, depending on the water content of the above-mentioned range May contain hydroxyl groups of seedlings. Such a carrier may be at least one member selected from the group consisting of silica, silica-alumina and silica-magnesia, preferably silica. In addition, any carrier that satisfies the above water content range can be used without limitation. On the other hand, the method for producing a hybrid supported metallocene catalyst according to the present invention includes the step of supporting at least one first metallocene compound on the silica carrier. In particular, the present invention implements a broad molecular weight distribution (■ å) by first supporting at least one first metallocene compound on the silica carrier to produce a feature of producing a polymer having excellent processability. In addition , according to the present invention, since the catalytic activity is increased with high apparent density and wide molecular weight distribution through ethylene polymerization, the productivity of the polyolefin can be greatly improved. In the hybrid supported metallocene catalyst of the present invention, the first metallocene compound and the second metallocene compound are main catalyst components that can exhibit activity as a catalyst together with the aluminum-based promoter compound. The metallocene compound may be used as one or more first metallocene compounds and one or more second metallocene compounds without limitation to those conventional in the art. For example, the metallocene compound includes 1) a metallocene compound including a combination of non-bridged and Cp-based compounds; and 2) a combination of Si bridge Cp and Cp-based Si bridges. Metallocene compound, 3) Metallocene compound comprising a combination of C bridge Cp and Cp system, 4) Si bridge Cp or C bridge Cp (C bridge Mi and amine combination Metallocene compound comprising a, 5) Metallocene compound comprising a combination of ethylene bridge Cp and Cp system, 6) Metal containing a combination of phenylene bridge Cp and amine-based Rosene compound, 7) CC, Si-C, or metallocene compound containing Si-Si bridge, etc. can all be used. The Cp may be cyclopentadienyl, indenyl, fluorenyl, indenoindole (Inin), or the like, and the structure thereof is not limited. Also, the
Si계 브리지의 경우 t-부톡시-핵실 치환기와그유사구조를포함할수 있고, 인덴 구조를 포함하는 경우 테트라하이드로-인덴 구조를 포함할 수 있다. 또한,본발명의 메탈로센 화합물은저분자메탈로센 화합물 (Cp계)과고분자 메탈로센화합물 (예를들면, CGC타입 또는 ansa타입)을포함한다. 좀더 구체적으로,상기 메탈로센 화합물중 제 1 메탈로센 화합물로는 예컨대, 1) 브리지되지 않은 Cp(non bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 2) Si브리지 Cp(Si bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 3) C 브리지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물, 5) 에틸렌 브리지 Cp(ethylene bridge Cp)와 Cp계의 조합을 포함하는메탈로센 화합물,또는 7) C-C, Si-C,또는 Si-Si브리지를포함하는 메탈로센 화합물 중 1종 이상을 사용할 수 있다. 또한, 상기 메탈로센 화합물 중 제 2 메탈로센 화합물로는 예컨대, 4) Si브리지 Cp(Si bridge Cp) 또는 C브리지 Cp(C bridge Cp)와아민계의 조합을포함하는메탈로센화합물, 또는 6)페닐렌브리지 Cp(phenylene bridge Cp)와아민계의 조합을포함하는 메탈로센화합물중 1종이상을사용할수 있다. 2019/156482 1»(:1^1{2019/001535 Si-based bridges may include t-butoxy-nuclear substituents and similar structures, and in the case of indene structures, may include tetrahydro-indene structures. In addition, the metallocene compound of the present invention includes a low molecular metallocene compound (Cp-based) and a high molecular metallocene compound (eg, CGC type or ansa type). More specifically, as the first metallocene compound of the metallocene compound, for example, 1) a metallocene compound comprising a combination of non-bridged Cp and Cp-based, 2) Si bridge Cp ( A metallocene compound comprising a combination of Si bridge Cp) and a Cp system, 3) a metallocene compound comprising a combination of C bridge Cp and a Cp system, 5) an ethylene bridge Cp And metallocene compounds containing a combination of Cp-based and 7) CC, Si-C, or Si-Si bridges may be used. In addition, as the second metallocene compound of the metallocene compound, for example, 4) a metallocene compound including a combination of Si bridge Cp or C bridge Cp and an amine-based, or 6) One or more kinds of metallocene compounds including a combination of phenylene bridge Cp and amines may be used. 2019/156482 1 »(: 1 ^ 1 {2019/001535
이러한 메탈로센 화합물의 바람직한 일 구현예를 들면, 하기 화학식 1 내지 5로이루어진군에서 선택되는 1종이상일수있다: For example, the metallocene compound may be at least one selected from the group consisting of Formulas 1 to 5 below:
[화학식 1][Formula 1]
Figure imgf000011_0001
상기 화학식 1에서,
Figure imgf000011_0001
In Chemical Formula 1,
은 4족전이금속이고;  Is a Group 4 transition metal;
。 및 2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7 -테트라하이드로 -1 -인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느하나이고,이들은탄소수 1 내지 20의 탄화수소로치환될수 있으며; And 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1 -indenyl, and fluorenyl radicals They may be substituted with hydrocarbons of 1 to 20 carbon atoms;
및 0는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 01 내지 020의 알킬, 01 내지 (:10의 알콕시, 2 내지 020의 알콕시알킬, 06 내지 020의 아릴, 06내지 (:10의 아릴옥시, 02내지 020의 알케닐, 07내지 040의 알킬아릴, 07내지 040의 아릴알킬, 08내지 040의 아릴알케닐,또는 02 내지 (:10의 알키닐이고, 단, 및
Figure imgf000011_0002
중 적어도 하나 이상은 수소가 아니며;
And 0 are the same as or different from each other, and each independently hydrogen, alkyl of 01-020, 01-(: 10 alkoxy, alkoxyalkyl of 2-020, aryl of 06-020, 06- (aryloxy of 10), 02 to 020 alkenyl, 07 to 040 alkylaryl, 07 to 040 arylalkyl, 08 to 040 arylalkenyl, or 02 to (10: alkynyl, and
Figure imgf000011_0002
At least one of is not hydrogen;
方은 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 010의 알케닐, 07내지 040의 알킬아릴, 07내지 040의 아릴알킬, C6내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 02 내지 020의 알킬알콕시, 또는 07 내지 040의 아릴알콕시이고;  Each independently represents a halogen atom, alkyl of 01-020, alkenyl of 02-010, alkylaryl of 07-040, arylalkyl of 07-040, aryl of C6-020, substituted or unsubstituted 01-020 Alkylidene, substituted or unsubstituted amino group, alkylalkoxy of 02-020, or arylalkoxy of 07-040;
은 1또는 0이고;  Is 1 or 0;
[화학식 2][Formula 2]
Figure imgf000011_0003
상기 화학식 2에서,
Figure imgf000011_0003
In Chemical Formula 2,
M2는 4족전이 금속이고; 2019/156482 1»(:1^1{2019/001535 M 2 is a Group 4 transition metal; 2019/156482 1 »(: 1 ^ 1 {2019/001535
0? 3
Figure imgf000012_0001
서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4, 5, 6, 7 -테트라하이드로 -1 -인데닐 및 플루오레닐 라디칼로 이루어진군으로부터 선택된 어느하나이고, 이들은탄소수 1 내지 20의 탄화수소로치환될수있으며;
0 ? 3 and
Figure imgf000012_0001
Are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1 -indenyl and fluorenyl radicals, which are 1 to Can be substituted with 20 hydrocarbons;
11。 및 #는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 01 내지 020의 알킬, 01 내지 (:10의 알콕시, 01 내지 020의 알콕시알킬, C6 내지 020의 아릴, 06내지 (:10의 아릴옥시, 01내지 020의 알케닐, 01내지 040의 알킬아릴, 07내지 040의 아릴알킬, 08내지 040의 아릴알케닐,또는 01내지 (:10의 알키닐이고; 11 ° and # are the same as or different from each other, and are each independently hydrogen, alkyl of 01-020, alkoxy of 01-(: 10, alkoxyalkyl of 01-020, aryl of C6-020, aryl of 06-10 (: 10) Oxy, 01-020 alkenyl, 01-040 alkylaryl, 07-040 arylalkyl, 08-040 arylalkenyl, or 01-10 (alkynyl;
는 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 Each independently represents a halogen atom, 01-020 alkyl, 02-
(:10의 알케닐, 07내지 40의 알킬아릴, 01내지 040의 아릴알킬, 06내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 。20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 02 내지 020의 알킬알콕시, 또는 07내지 040의 아릴알콕시이고; (10: alkenyl, 07 to 40 alkylaryl, 01 to 040 arylalkyl, 06 to 020 aryl, substituted or unsubstituted 01 to 20 alkylidene, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy of; or arylalkoxy of 07 to 040;
1!3^ 고리와
Figure imgf000012_0002
고리를 가교 결합시키거나, 하나의 ! 고리를 ^12에 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자를 포함하는라디칼중하나이상또는이들의 조합이고;
Yo 1 is ! 3 ^ with collar
Figure imgf000012_0002
Crosslink the ring, or a single! At least one or a combination of radicals comprising carbon, germanium, silicon, phosphorus or nitrogen atoms which crosslink the ring to ^ 1 2 ;
01은 1또는 0이고; [화학식 3] 서, 01 is 1 or 0; [Formula 3]
속이고; Cheating;
Figure imgf000012_0003
디에닐, 인데닐, 4, 5, 6, 7 -테트라하이드로 -1 -인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로치환될수있으며;
Figure imgf000012_0003
Dienyl, indenyl, 4, 5, 6, 7-tetrahydro-l-indenyl and fluorenyl radicals, which can be substituted with hydrocarbons having 1 to 20 carbon atoms;
수소, 01 내지 020의 알킬, 01 내지 (:10의 알콕시, 02 내지 020의 알콕시알킬, 06내지 020의 아릴, 06내지 (:10의 아릴옥시, 02내지 020의 알케닐, (21내지 040의 알킬아릴, 07내지 040의 아릴알킬, 08 내지 2019/156482 1»(:1^1{2019/001535 Hydrogen, alkyl of 01-020, 01-(: 10 alkoxy, 02-020 alkoxyalkyl, 06-020 aryl, 06-(: 10 aryloxy, 02-020 alkenyl, (21-040) Alkylaryl, 07-040 arylalkyl, 08- 2019/156482 1 »(: 1 ^ 1 {2019/001535
◦40의 아릴알케닐,또는 02내지 00의 알키닐이고;Arylalkenyl of 40 or alkynyl of 02 to 00;
3은 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 010의 알케닐, 내지 040의 알킬아릴, 01내지 040의 아릴알킬, 06내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 02 내지 020의 알킬알콕시, 또는 07 내지 040의 아릴알콕시이고;  Each independently represent a halogen atom, alkyl of 01-020, alkenyl of 02-010, alkylaryl of 040, arylalkyl of 01-040, aryl of 06-020, substituted or unsubstituted alkyl of 01-020 Lidene, a substituted or unsubstituted amino group, alkylalkoxy of 02-020, or arylalkoxy of 07-040;
#는
Figure imgf000013_0001
고리와 _1를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는질소원자함유라디칼중하나이상또는이들의 조합이고;
# Is
Figure imgf000013_0001
One or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom-containing radicals which crosslink the ring and _1;
Figure imgf000013_0002
로 이루어진군에서 선택된 어느하나이고,상기 는각각독립적으로 01 내지 020의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이고,
Figure imgf000013_0002
Any one selected from the group consisting of, wherein is independently 01 to 020 alkyl, aryl, substituted alkyl or substituted aryl,
[화학식 4] [Formula 4]
Figure imgf000013_0003
상기 화학식 4에서,
Figure imgf000013_0003
In Chemical Formula 4,
II1 내지 ^ 및 묘1’ 내지 II4은 서로 동일하거나 상이하고, 각각 독립적으로수소,(그1 내지 020의 알킬기, 01내지 020의 알케닐기, 06내지 020의 아릴기, 07내지 020의 알킬아릴기, 07내지 020의 아릴알킬기,또는 01 내지 020의 아민기이고,상기 II1 내지 II4및 묘1’ 내지 묘4’ 중 인접하는II 1 to ^ and the seedlings 1 ' to II 4 are the same as or different from each other, and each independently hydrogen, (the alkyl group of 1 to 020, the alkenyl group of 01 to 020, the aryl group of 06 to 020, the alkyl group of 07 to 020) An aryl group, an arylalkyl group of 07 to 020, or an amine group of 01 to 020, and adjacent to the above-mentioned II 1 to II 4 and seedlings 1 ' to 4'
2 개 이상이 서로 연결되어 1 개 이상의 지방족 고리, 방향족 고리, 또는 헤테로고리를형성할수 있고; Two or more may be linked to each other to form one or more aliphatic rings, aromatic rings, or heterocycles;
少 및 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 01 내지 020의 알킬기, 03내지 020의 시클로알킬기,(그1 내지 020의 알콕시기, 2019/156482 1»(:1^1{2019/001535 S and are the same as or different from each other, and each independently hydrogen, an alkyl group of 01 to 020, a cycloalkyl group of 03 to 020, (the alkoxy group of 1 to 020, 2019/156482 1 »(: 1 ^ 1 {2019/001535
06 내지 020 의 아릴기, 06 내지 010 의 아릴옥시기, 02 내지 020 의 알케닐기, 07내지 040의 알킬아릴기 ,또는 07내지 040의 아릴알킬기이고; 06-020 aryl groups, 06-010 aryloxy groups, 02-020 alkenyl groups, 07-040 alkylaryl groups, or 07-040 arylalkyl groups;
는 02내지 020의 알킬렌기, 03내지 020의 시클로알킬렌기, 06 내지 020의 아릴텐기, 07내지 040의 알킬아릴렌기,또는公1내지 040의 아릴알킬렌기이고;  Is an alkyl group of 02 to 020, a cycloalkylene group of 03 to 020, an arylten group of 06 to 020, an alkyl arylene group of 07 to 040, or an arylalkylene group of 1 to 040;
M4는 4족전이금속이며; M 4 is a Group 4 transition metal;
公 및 는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 01 내지 020의 알킬기, 02 내지 020의 알케닐기, 06 내지 020의 아릴기, 니트로기,아미도기,(:1 내지 020의 알킬실릴기,(그1 내지 020의 알콕시기, 02 내지 020의 에스테르기 ,또는 01 내지 020의 술포네이트기이고;  公 and are the same as or different from each other, and each independently halogen, 01-020 alkyl group, 02-020 alkenyl group, 06-020 aryl group, nitro group, amido group, (: 1-020 alkylsilyl group, (The 1-020 alkoxy group, 02-020 ester group, or 01-020 sulfonate group;
[화학식 5] [Formula 5]
Figure imgf000014_0001
상기 화학식 5에서,
Figure imgf000014_0001
In Chemical Formula 5,
II5및 115'는각각독립적으로수소,탄소수 1 내지 20의 알킬,탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 II5과 II5' 또는 2개의 모5'가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는알킬리딘에 의해서로연결되아고리를형성할수 있으며; II 5 and 11 5 ' are each independently hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 20 carbon atoms, aryl of 6 to 20 carbon atoms, silyl of 6 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, carbon atoms A metalloid of a Group 4 metal substituted with 7 to 20 arylalkyl or hydrocarbyl; The II 5 and II 5 ′ or two parent 5 ′ may be linked to an alkylidine comprising alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
II6는 각각독립적으로수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2내지 20의 알케닐, 탄소수 6내지 20의 아릴, 탄소수 7내지 20의 알킬아릴,탄소수 7내지 20의 아릴알킬,탄소수 1 내지 20의 알콕시,탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 II6 중에서 2개 이상의 묘6는 서로연결되어 지방족고리 또는방향족고리를형성할수있으며; CY1은 치환또는 치환되지 않은지방족또는 방향족고리이고,상기 CY1에서 치환되는치환기는할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴,탄소수 7내지 20의 아릴알킬,탄소수 1 내지 20의 알콕시,탄소수 6내지 20의 아릴옥시,아미도이고;상기 치환기가복수 개일 경우에는상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를형성할수있으며; II 6 are each independently hydrogen, a halogen atom, an aryl, a carbon number of 1 to 20 carbon atoms alkyl, C2 to C20 alkenyl, C6 to C20 aryl, C7 to C20 alkylaryl, C7 to C20 of the Alkoxy of 1 to 20, aryloxy or amido of 6 to 20 carbon atoms; Two or more seedlings 6 of the II 6 may be linked to each other to form an aliphatic ring or an aromatic ring; CY 1 is a substituted or unsubstituted aliphatic or aromatic ring, and the substituent group substituted in CY 1 is a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, and having 7 to 7 carbon atoms. 20 alkylaryl, arylalkyl having 7 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, aryloxy having 6 to 20 carbon atoms, and amido; when the substituents are plural, two or more substituents from the substituents are connected to each other. Can form aliphatic or aromatic rings;
M5는 4족전이금속이고; M 5 is a Group 4 transition metal;
Q3 및 Q4는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2내지 20의 알케닐,탄소수 6내지 20의 아릴, 탄소수 7내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6내지 20의 아릴아미도또는탄소수 1 내지 20의 알킬리덴이다. 이때, 상기 브리지되지 않은 Cp(non bridge Cp)와 Cp계의 조합을 포함하는메탈로센화합물은,상기 화학식 1로표시되는화합물을포함할수 있다. 상기 Si브리지 Cp(Si bridge 미와 Cp계의 조합을포함하는메탈로센 화합물과 C 브리지 Cp(C bridge Cp)와 Cp계의 조합을 포함하는 메탈로센 화합물은,상기 화학식 2로표시되는화합물을포함할수 있다.상기 화학식 2에서 Cp3Rc고리와 Cp4Rd고리를 가교 결합시키거나, 하나의 Cp4Rd고리를 M2에 가교 결합시키는 것은 B1의 탄소, 게르마늄, 규소, 인 또는 질소 원자이다. 상기 Si 브리지 Cp(Si bridge Cp) 또는 C 브리지 Cp(C bridge Cp)와 아민계의 조합을포함하는 메탈로센 화합물은,상기 화학식 3으로표시되는 화합물을포함할수있다. 상기 에틸렌브리지 Cp(ethylene bridge Cp)와 Cp계의 조합을포함하는 메탈로센 화합물은, 상기 화학식 4로 표시되는 화합물을 포함할 수 있다. 상기 화학식 4에서 2개의 시클로펜타디에닐 그룹을 가교 결합시키는 것은
Figure imgf000016_0001
Q 3 and Q 4 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms. Alkylamido having 1 to 20 carbon atoms, arylamido having 6 to 20 carbon atoms or alkylidene having 1 to 20 carbon atoms. In this case, the metallocene compound including a combination of the non-bridge Cp and the Cp-based may include the compound represented by Chemical Formula 1. The metal bridgene compound containing a combination of Si bridge Cp (metal bridgeene compound containing a combination of Si bridge and Cp system and C bridge Cp (C bridge Cp) and Cp system, the compound represented by the formula (2) In Formula 2, the Cp 3 R c ring and the Cp 4 R d ring may be cross-linked, or one Cp 4 R d ring may be cross-linked with M 2 to carbon, germanium, silicon, phosphorus of B 1 . Or a nitrogen atom A metallocene compound including a combination of the Si bridge Cp or the C bridge Cp and an amine may include a compound represented by Chemical Formula 3. The metallocene compound including a combination of ethylene bridge Cp and Cp-based may include a compound represented by Chemical Formula 4. Crosslinking two cyclopentadienyl groups in the formula (4)
Figure imgf000016_0001
게르마늄,규소, 인또는질소원자와는구별되는것이다.상기 화학식 4에서 #로서 02 내지 020의 알킬렌기, 03 내지 020의 시클로알킬렌기, 06 내지 020의 아릴렌기, 07 내지 040의 알킬아릴렌기, 또는 07 내지 040의 아릴알킬텐기는 각각의 알킬기, 시클로알킬기, 아릴기, 알킬아릴기, 아릴알킬기로부터 수소 원자를 추가 제거한 형태의 2가의 치환기를 나타낸 것이다. 상기 페닐렌 브리지 Cp(phenylene bridge Cp)와 아민계의 조합을 포함하는메탈로센화합물은,상기 화학식 5로표시되는화합물을포함할수 있다. 또한, 상기 화학식 5에 정의된, 하이드로카르빌은 하이드로카르본으로부터 수소원자를 제거한형태의 1가기로서,에틸,페닐 등을 포함한다. 또한, 상기 메탈로이드는 준금속으로 금속과 비금속의 중간적 성질을보이는원소로서,비소,붕소,규소,텔루르등을포함한다. 구체적으로,본 발명의 혼성 담지 메탈로센 촉매에서 제 1 메탈로센 화합물은, 화학식 1, 2, 4 로 표시되는 화합물일 수 있으며, 구체적으로 화학식 1 로 표시되는 화합물일 수 있다. 또한, 상기 혼성 담지 메탈로센 촉매에서 제 2 메탈로센 화합물은, 화학식 3, 5 로 표시되는 화합물일 수 있으며,구체적으로화학식 3으로표시되는화합물일수있다. 본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물의 구체적인 예로는하기 구조식들중하나로표시되는화합물을들수 있으나, 본발명이 이에만한정되는것은아니다. \¥0 2019/156482 1 1710 2019/001535 Germanium, silicon, phosphorus or nitrogen atoms are distinguished. In formula (4), 02 to 020 alkylene group, 03 to 020 cycloalkylene group, 03 to 020 arylene group, 06 to 020 arylene group, 07 to 040 alkyl arylene group, or The arylalkyltene group of 07 to 040 represents a divalent substituent in the form of further removing a hydrogen atom from each alkyl group, cycloalkyl group, aryl group, alkylaryl group, arylalkyl group. The metallocene compound including a combination of the phenylene bridge Cp and an amine system may include a compound represented by Chemical Formula 5. In addition, hydrocarbyl, as defined in Formula 5, is a monovalent group in which hydrogen atoms are removed from hydrocarbons, and includes ethyl, phenyl, and the like. In addition, the metalloid is a metalloid, an element showing intermediate properties between metal and nonmetal, and includes arsenic, boron, silicon, tellurium, and the like. Specifically, in the hybrid supported metallocene catalyst of the present invention, the first metallocene compound may be a compound represented by Formula 1, 2, or 4, and specifically, may be a compound represented by Formula 1. In addition, the second metallocene compound in the hybrid supported metallocene catalyst may be a compound represented by Formulas 3 and 5, and specifically, may be a compound represented by Formula 3. According to an embodiment of the present invention, specific examples of the compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. \ ¥ 0 2019/156482 1 1710 2019/001535
Figure imgf000017_0001
상기 화학식 2로표시되는화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은아니다. 2019/156482 1»(:1/10公019/001535
Figure imgf000017_0001
Specific examples of the compound represented by Chemical Formula 2 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. 2019/156482 1 »(: 1/10 公 019/001535
Figure imgf000018_0001
본 발명의 일 실시예에 따르면, 상기 화학식 3 으로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수있으나,본발명이 이에만한정되는것은아니다. 2019/156482 1»(:1^1{2019/001535
Figure imgf000018_0001
According to one embodiment of the present invention, specific examples of the compound represented by Chemical Formula 3 include a compound represented by one of the following structural formulas, but the present invention is not limited thereto. 2019/156482 1 »(: 1 ^ 1 {2019/001535
Figure imgf000019_0001
본 발명의 일 실시예에 따르면, 상기 화학식 4 의 ¥는 02 내지
Figure imgf000019_0001
According to an embodiment of the present invention, ¥ of Formula 4 is from 02 to
020의 알킬렌기,또는에틸렌기이고, 및分는각각독립적으로수소, 01
Figure imgf000019_0002
020 is an alkylene group or an ethylene group, and minutes are each independently hydrogen, 01
Figure imgf000019_0002
할로겐일수있으나,이에 제한되는것은아니다. 또한, 상기 화학식 4 로 표시되는 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는것은아니다. It may be halogen, but is not limited to this. In addition, specific examples of the compound represented by Chemical Formula 4 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000019_0003
2019/156482 1»(:1/10公019/001535
Figure imgf000020_0001
또한,상기 화학식 5로 표시되는 화합물은 하기 구조식들 중 하나로 표시되는화합물을들수있으나,본발명이 이에만한정되는것은아니다.
Figure imgf000019_0003
2019/156482 1 »(: 1/10 公 019/001535
Figure imgf000020_0001
In addition, the compound represented by Chemical Formula 5 may include a compound represented by one of the following structural formulas, but the present invention is not limited thereto.
Figure imgf000020_0002
2019/156482 1»(:1^1{2019/001535
Figure imgf000020_0002
2019/156482 1 »(: 1 ^ 1 {2019/001535
상기 구조식에서, II7은 각각 독립적으로 수소 또는 메틸이며; (5 및 은각각독립적으로메틸,디메틸아미도또는클로라이드일수 있다. 상기 화학식 5로표시되는 메탈로센 화합물은 페닐렌 브리지에 고리 형태로 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로
Figure imgf000021_0001
각도는 좁고, 단량체가접근하는 03^5-04각도는넓게유지할수있다. 본 발명의 혼성 담지 메탈로센 촉매에서, 상기 화학식 1 내지 5 의 치환기들을보다구체적으로설명하면하기와같다. 상기 01 내지 020 의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, 11-부틸기, 부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는것은아니다. 상기 02 내지 020 의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을들수있으나, 이에만한정되는것은아니다. 상기 02 내지 020 의 알킬렌기로는 직쇄 또는 분지쇄의 알킬렌기를 포함하고, 구체적으로 에틸렌기, 프로필텐기, 부틸텐기, 펜틸렌기, 핵실렌기, 헵틸렌기, 옥틸렌기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 03 내지 020 시클로알킬기로는 구체적으로 시클로프로필기 , 시클로부틸기 , 시클로펜틸기, 시클로핵실기 , 시클로헵틸기, 시클로옥틸기 등을들수 있으나, 이에만한정되는것은아니다. 2019/156482 1»(:1^1{2019/001535
In the above formula, each II 7 is independently hydrogen or methyl; ( 5 and silver may each independently be methyl, dimethyl amido or chloride. The metallocene compound represented by Chemical Formula 5 is structurally connected to a metal site by a cyclopentadienyl ligand introduced with an amido group linked to a phenylene bridge in a ring form.
Figure imgf000021_0001
The angle is narrow and the 0 3 ^ 5 -0 4 angle to which the monomer approaches can be kept wide. In the hybrid supported metallocene catalyst of the present invention, the substituents of Chemical Formulas 1 to 5 are more specifically described as follows. The alkyl group of 01 to 020 includes a linear or branched alkyl group, and specifically, methyl group, ethyl group, propyl group, isopropyl group, 11 -butyl group, butyl group, pentyl group, nuclear group, heptyl group, octyl group Etc., but is not limited to this. The alkenyl group of 02 to 020 includes a straight or branched alkenyl group, and specifically includes an allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, and the like, but is not limited thereto. The alkylene group of 02 to 020 includes a linear or branched alkylene group, and specifically, may include an ethylene group, a propylten group, a butylten group, a pentylene group, a nuclear styrene group, a heptylene group, an octylene group, and the like. It is not limited only. Specific examples of the 03 to 020 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, a cycloheptyl group, and a cyclooctyl group, but are not limited thereto. 2019/156482 1 »(: 1 ^ 1 {2019/001535
상기 03내지 020시클로알킬렌기로는구체적으로시클로프로필렌기 , 시클로부틸렌기 , 시클로펜틸텐기, 시클로핵실렌기, 시클로헵틸렌기 , 시클로옥틸렌기 등을들수있으나, 이에만한정되는것은아니다. 상기 06 내지 020 의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을들수 있으나, 이에만한정되는것은아니다. 상기 06 내지 020 의 아릴렌기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐렌기, 비페닐렌기, 나프틸렌기, 페난트레닐렌기, 플루오레닐렌기 등을들수있으나, 이에만한정되는것은아니다. 상기 01내지 020의 알콕시기로는메톡시기, 에톡시기 , 페닐옥시기, 시클로핵실옥시기 등을들수있으나, 이에만한정되는것은아니다. 상기 02내지 020의 알콕시알킬기는상술한바와같은알킬기의 1개 이상의 수소가 알콕시기로 치환된 작용기이며, 구체적으로 메톡시메틸기, 메톡시에틸기 , 에톡시메틸기 , { 30 -프로폭시메틸기, ᅵ30 -프로폭시에틸기,
Figure imgf000022_0001
1611;-부톡시메틸기, !;-부특시에틸기, 161·!;- 부톡시핵실기 등의 알콕시알킬기 ; 또는 페녹시핵실기 등의 아릴옥시알킬기를들수있으나, 이에만한정되는것은아니다. 상기 01내지 020의 알킬실릴기 또는 01내지 020의 알콕시실릴기는 - ¾의 1내지 3개의 수소가 1내지 3개의 상술한바와같은알킬기 또는 알콕시기로 치환된 작용기이며, 구체적으로 메틸실릴기 , 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 또는 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 또는 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등의 알콕시알킬실릴기를들수 있으나, 이에만한정되는것은아니다. 2019/156482 1»(:1^1{2019/001535
Specific examples of the 03 to 020 cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentyltene group, a cyclonuxylene group, a cycloheptylene group, and a cyclooctylene group, but are not limited thereto. The aryl group of 06 to 020 includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, and a fluorenyl group, but is not limited thereto. The arylene group of 06 to 020 includes a monocyclic or condensed aryl group, and specifically includes a phenylene group, a biphenylene group, a naphthylene group, a phenanthrenylene group, a fluorenylene group, and the like. It is not. Examples of 01 to 020 alkoxy groups include, but are not limited to, methoxy, ethoxy, phenyloxy and cyclonucleooxy groups. The alkoxyalkyl group of 02 to 020 is a functional group in which at least one hydrogen of an alkyl group is substituted with an alkoxy group, and specifically, a methoxymethyl group, a methoxyethyl group , an ethoxymethyl group , a {30 -propoxymethyl group, ᅵ 30- Propoxyethyl group ,
Figure imgf000022_0001
Alkoxyalkyl groups such as 1 61 1; -butoxymethyl group,!; -Butoxyethyl group, and 1 61.! ; Or an aryloxyalkyl group such as a phenoxynucleosil group, but is not limited thereto. The alkyl silyl group of 01 to 020 or the alkoxysilyl group of 01 to 020 is a functional group in which 1 to 3 hydrogens of ¾ are substituted with 1 to 3 alkyl groups or alkoxy groups as described above, and specifically methylsilyl group, dimethyl Alkylsilyl groups such as silyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group or dimethylpropylsilyl group; Alkoxy silyl groups, such as a methoxy silyl group, a dimethoxy silyl group, a trimethoxy silyl group, or a dimethoxyethoxy silyl group; Alkoxyalkylsilyl groups , such as a methoxy dimethyl silyl group, a diethoxy methyl silyl group, or a dimethoxy propyl silyl group, are mentioned, but it is not limited to this. 2019/156482 1 »(: 1 ^ 1 {2019/001535
상기 01 내지 020 의 실릴알킬기는 상술한 바와 같은 알킬기의 1 이상의 수소가 실릴기로 치환된 작용기이며, 구체적으로 -(:¾- ¾, 메틸실릴메틸기 또는 다이메틸에톡시실릴프로필기 등을 들 수 있으나, 이에만한정되는것은아니다. 상기 할로겐어 )은 불소 00 , 염소(이), 브롬( ) 또는 요오드(I)일수 있다. 상기 술포네이트기는 -0-쌨2-의 구조로 묘는 01 내지 020 의 알킬기일 수 있다. 구체적으로, 01 내지 020 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등을 들 수 있으나, 이에만 한정되는것은아니다. 상기 에스테르기는 -0-¥ ’ '의 구조로모 "는 01내지 019의 알킬기일 수 있으며, C2 내지 020 의 카르복실산에서 수소 원자를 제거한 형태의 치환기이다. 구체적으로 , 02 내지 020 에스테르기는 메틸레이트기, 에틸레이트기, 프로필레이트기, 피발레이트기 등을 들 수 있으나, 이에만 한정되는것은아니다. 상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬기 또는 알케닐기, 아릴기, 알콕시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬기 또는 알케닐기, 아릴기, 알콕시기; 실릴기; 알킬실릴기 또는 알콕시실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될수 있다. 상기 4 족 전이금속으로는 티타늄( ), 지르코늄( ), 하프늄( ) 등을들수있으나, 이에만한정되는것은아니다. 2019/156482 1»(:1^1{2019/001535 The silylalkyl group of 01 to 020 is a functional group in which one or more hydrogens of the alkyl group as described above are substituted with a silyl group, and specific examples thereof include-(: ¾-¾, methylsilylmethyl group or dimethylethoxysilylpropyl group, and the like. , Not limited to this. The halogen word) may be fluorine 00, chlorine (II), bromine () or iodine (I). The sulfonate group-0-ssaet 2-yo 'seedlings in the structure "may be an alkyl group of 01 to 020. Specifically, the 01 to 020 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto. The ester group -0- ¥ "our structure of" "is 01 to 019 may be an alkyl group, a substituent of the type removing a hydrogen atom from the carboxylic acid of C2 to 020. In particular, 02 to 020 ester group methylate Group, ethylate group, propylate group, pivalate group, etc., but are not limited thereto .. The above-mentioned substituents are optionally a hydroxy group within the range exhibiting the same or similar effects as the desired effect; Halogen; alkyl group or alkenyl group, aryl group, alkoxy group; alkyl group or alkenyl group, aryl group, alkoxy group; silyl group; alkylsilyl group or alkoxysilyl containing at least one hetero atom of group 14 to 16 hetero atoms Group, phosphine group, phosphide group, sulfonate group, and sulfone group. The other metals include titanium (), zirconium () and hafnium (), but this is not limited. 2019/156482 1 »(: 1 ^ 1 {2019/001535
본 발명의 일 실시예에 따르면, 상기 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있다. 구체적으로는, 각각의 리간드 화합물을 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(111 1 011)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은 아니며, 보다 상세한 합성 방법은실시예를참고할수 있다. 한편,본발명은실리카담체에 1종이상의 제 1메탈로센 화합물을 먼저 담지한 후에 알루미늄계 조촉매 화합물을 고온 분할 투입하는 것을 특징으로한다. 상기 제 1 메탈로센 화합물의 담지 단계는 용매의 존재 하에 상기 실리카 담체와 메탈로센 화합물을 혼합하여 교반하면서 반응시키는 방법으로수행할수 있다. 이때, 상기 단계에 의해 실리카 담체에 담지되는 제 1 메탈로센 화합물의 담지량은담체 1용을기준으로 약 0.01 ^01^내지 약 1 _01/당, 또는 약 0.1이11101/당내지 약 1 11111101/용일 수 있다. 즉, 상기 제 1메탈로센 화합물에 의한 촉매 활성의 기여 효과를 감안하여 전술한 담지량 범위에 해당되도록하는것이 바람직하다. 상기 제 1 메탈로센 화합물의 담지 단계에서 그온도조건은특별히 제한되지 않는다. 한편, 상기 과정 다음으로, 본 발명의 혼성 담지 메탈로센 촉매의 제조 방법은, 상기 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과 접촉시켜, 상기 실리카 담체에 상기 알루미늄계조촉매 화합물을순차적으로담지시키는단계를포함한다. 2019/156482 1»(:1^1{2019/001535 According to an embodiment of the present invention, the metallocene compound may be synthesized by applying known reactions. Specifically, each ligand compound may be prepared, and then a metal precursor compound may be added to perform metallization ( 111 1 011 ), but the present invention is not limited thereto. For detailed synthesis methods, see Examples. . On the other hand, the present invention is characterized in that the aluminum-based cocatalyst compound is added at high temperature after the first support of the at least one first metallocene compound on the silica carrier. The supporting step of the first metallocene compound may be performed by mixing and stirring the silica carrier and the metallocene compound in the presence of a solvent. At this time, the amount of the first metallocene compound supported on the silica carrier by the step is about 0.01 ^ 0 1 ^ to about 1 _ 0 1 / sugar, or about 0.1 1110 1 / sugar based on the carrier 1 About 1 1111110 1 / dragon . That is, in view of the contribution effect of the catalytic activity by the first metallocene compound, it is preferable to fall within the above-described supported amount range. The temperature condition in the supporting step of the first metallocene compound is not particularly limited. On the other hand, after the above process, the method for producing a hybrid supported metallocene catalyst of the present invention, by contacting the silica carrier carrying the first metallocene compound with at least one aluminum-based promoter compound, Sequentially supporting the aluminum gray catalyst compound. 2019/156482 1 »(: 1 ^ 1 {2019/001535
특히, 본 발명은 알루미늄계 조촉매 화합물을 제 1 메탈로센 화합물이 담지된 실리카 담체에 담지시, 약 100 V 내지 약 150 X:의 고온에서 약 -5 X: 내지 약 40 I:의 저온으로 온도를 변경하면서, 서로 다른온도에서 분할투입하는특징이 있다. 즉, 상기 알루미늄계 조촉매 화합물은 전체 투입량 중의 일부를 약 In particular, the present invention provides a low temperature of about -5 X: to about 40 I: at a high temperature of about 100 V to about 150 X: when the aluminum-based promoter compound is supported on a silica carrier carrying the first metallocene compound. While changing the temperature, there is a feature of split injection at different temperatures. That is, the aluminum-based cocatalyst compound is about a part of the total amount
Figure imgf000025_0001
Figure imgf000025_0001
포함할수 있다. 따라서, 본 발명의 바람직한 일 구현예에 따라, 상기 알루미늄계 조촉매 화합물은 전체 투입량 중 일부, 즉, 약 50 중량% 내지 90 중량%, 혹은 약 60 중량% 내지 90 중량%를 약 100
Figure imgf000025_0002
내지 약 150 X〕, 혹은 약
May include Thus, according to one preferred embodiment of the present invention, the aluminum-based promoter compound is a part of the total amount, that is, about 50% to 90% by weight, or about 60% to 90% by weight of about 100%
Figure imgf000025_0002
To about 150 X], or about
110 I: 내지 약 130 꼇의 온도에서 1차투입하고, 전체투입량중의 나머지 함량, 즉, 약 50 중량% 내지 10 중량%, 혹은 약 40 중량% 내지 약110 I: first dose at a temperature of from about 130 kPa, the remainder of the total dose, ie from about 50% to 10% by weight, or from about 40% to about
10 중량%을 약 -5 V 내지 약 40 X :, 혹은 약 0 내지 약 40 의 온도에서 2차투입하는분할투입방법에 의해 실리카담체에 담지되는혼성 담지 메탈로센촉매의 제조방법이 제공된다. 또한, 본 발명의 바람직한 일 구현예에 따라, 상기 알루미늄계 조촉매 화합물이 담지된 실리카 담체는 약 110 X: 내지 약 130 I:의 고온에서 전체 알킬알루미녹산의 투입량의 약 60중량%내지 약 90중량%를
Figure imgf000025_0003
Provided is a method for preparing a hybrid supported metallocene catalyst supported on a silica carrier by a split dosing method in which 10 wt% is secondaryly injected at a temperature of about −5 V to about 40 ×: or about 0 to about 40. In addition, according to a preferred embodiment of the present invention, the silica carrier on which the aluminum-based promoter compound is loaded is about 60 wt% to about 90 of the total amount of alkylaluminoxane added at a high temperature of about 110 X: to about 130 I: Weight percent
Figure imgf000025_0003
저온에서 나머지의 알킬알루미녹산, 예컨대, 약 40 중량% 내지 약 10 중량%의 알킬알루미녹산을 실리카 담체에 2 차 투입하면서 담지하여 후반응을진행하는방법으로얻어질수있다. 2019/156482 1»(:1^1{2019/001535 The remaining alkylaluminoxane, such as from about 40% to about 10% by weight of the alkylaluminoxane, may be obtained by carrying out a secondary charge on a silica carrier to carry out the post-reaction. 2019/156482 1 »(: 1 ^ 1 {2019/001535
보다 구체적으로 설명하면, 본 발명은 상기 단계에서 수득한 제 1 메탈로센 화합물이 담지된 실리카 담체를 조촉매 성분인 알루미늄계 화합물과 접촉한다. 이때, 본 발명의 접촉방법은 상기와 같이 알루미늄계 조촉매 화합물을 2차에 걸쳐 실리카 담체에 분할투입하여 접촉함으로써, 상술한 바와 같이 실리카 담체의 내부에 기존보다 많은 양의 알루미늄계 조촉매 화합물이 침투되도록 하고, 또한 표면에도 상당량의 알루미늄계 조촉매 화합물이 담지되도록한다. 이러한방법에 따라, 알루미늄계 조촉매 화합물이 내부 및 표면에 담지된 실리카 담체의 내부층과 이를 둘러싼 외부층으로이루어진실리카담체를제공하게 된다. 본 발명은실리카내부에 조촉매 함유량을증가시키기 위해, 화학적 결합 ((土 3 3 ±1016111:)이 우세하고, 반응물의 점도를 낮주어 실리카의 내부의 기공까지 확산이 용이한 조건인 고온에서 알킬알루미녹산과 실리카 담체를 미리 접촉하고 , 저온에서 추가적으로 알킬알루미녹산을 접촉시킴으로써 실리카 표면에서 물리적 듭착 (1)1173 31 3( 이"야 !011)으로 조촉매 성분이 담지되게 하는 특징이 있다 . 따라서, 본 발명에 따르면, 알킬알루미녹산양과접촉온도뿐아니라투입방법에 따라중합체의 겉보기 밀도와촉매 활성을조절할수있다. 이러한 알킬알루미녹산의 담지 조건은, 상술한 바대로, 알킬알루미녹산을 적어도 두 번 이상 고온 및 저온에서 분할투입하는 방법을 사용한다. 예를 들어, 알루미늄계 조족매 화합물은 두 번 분할
Figure imgf000026_0001
More specifically, in the present invention, the silica carrier on which the first metallocene compound obtained in the above step is supported is contacted with an aluminum compound as a cocatalyst component. At this time, the contact method of the present invention by contacting the aluminum-based cocatalyst compound by split injection into the silica carrier in the secondary as described above, as described above, a larger amount of aluminum-based cocatalyst compound in the silica carrier as described above It is to be penetrated and also to carry a considerable amount of aluminum-based promoter compound on the surface. According to this method, an aluminum-based promoter compound provides a silica carrier composed of an inner layer and an outer layer surrounding the silica carrier supported on the inside and the surface thereof. In order to increase the content of the cocatalyst in the silica, the chemical bond ((土3 3 ± 1016111 :)) predominates, lowers the viscosity of the reactants, and the alkyl at high temperature is easy to diffuse to the pores of the silica. By contacting aluminoxane and silica carrier in advance and additionally contacting alkylaluminoxane at low temperature, the cocatalyst component is supported on the silica surface by physical adhesion (1) 1173 31 3 (ie! 011). According to the present invention, the apparent density and the catalytic activity of the polymer can be controlled not only by the amount of alkylaluminoxane and the contact temperature, but also by the injection method.The supporting conditions of the alkylaluminoxane are, as described above, at least two alkylaluminoxanes. Split injection is used at high and low temperatures more than one time, for example, aluminum-based co-solvent compounds are divided twice.
Figure imgf000026_0001
40 의 범위에서, 알킬알루미녹산을 분할 투입하면서 담지하여 후반응을 진행한다. 또한, 상기 알루미늄계 조촉매 화합물은 1 차 투입시 전체 알킬알루미녹산의 투입량의 약 50 중량% 내지 약 90 중량%, 혹은 약 60 중량% 내지 약 90 중량%를 가하여 1 차 담지하고, 2 차 투입시 나머지 잔량을가하여 2차담지한다. 2019/156482 1»(:1^1{2019/001535 In the range of 40, the alkylaluminoxane is supported while being dividedly added to carry out post-reaction. In addition, the aluminum-based cocatalyst compound is first supported by adding about 50% by weight to about 90% by weight, or about 60% by weight to about 90% by weight of the total amount of alkylaluminoxane in the first injection. Add the remaining balance to the secondary. 2019/156482 1 »(: 1 ^ 1 {2019/001535
이때, 상기 조촉매인 알루미늄계 조촉매 화합물이 분할 투입되지 않고 한꺼번에 투입되면, 담지체에 알루미늄계 조촉매 화합물이 불균일하게 담지되어 담체 표면에는과다하게 알루미늄이 존재하게 된다. 반면, 분자의 크기가 작은 메탈로센 화합물은 내외부에서 균일하게 담지되어 있다. 따라서, 상기 알루미늄계 조촉매 화합물이 일괄 투입됨으로 인해, 내부에 담지된 메탈로센 화합물은 활성화되지 못하여 전체 촉매 활성이 감소하고, 이에 따라 외부에만 활성화된 촉매에 의한 중합이 진행되어 겉보기 밀도가 낮아지는문제점이 있다. 특히, 상술한 바와 같이 조촉매를 분할 투입할 때에도, 상기 1 차
Figure imgf000027_0001
At this time, if the aluminum-based promoter compound, which is the promoter, is added at once without being divided into, the aluminum-based promoter compound is unevenly supported on the carrier, and aluminum is excessively present on the surface of the carrier. On the other hand, metallocene compounds with small molecules are uniformly supported inside and outside. Therefore, since the aluminum-based cocatalyst compound is collectively added, the metallocene compound supported therein cannot be activated so that the total catalyst activity is reduced, and as a result, the polymerization by the catalyst activated only on the outside proceeds, resulting in low apparent density. There is a problem. In particular, even when the cocatalyst is separately added as described above, the primary
Figure imgf000027_0001
수행하는 경우에, 투입된 함량 대비 최종 촉매내에 담지된 함량을 현저히 증가시킬 수 있다. 즉, 상술한 바와 같이, 조촉매를 고온에서 분할 담지함으로써, 같은 양의 조촉매를 사용하여 담지 공정을 수행한다고 하여도 실제로 촉매에 담지되는 조촉매의 양이 훨씬 많으며, 담지 효율이 더 높게 나타낼수있다.
Figure imgf000027_0002
When carried out, it is possible to significantly increase the content supported in the final catalyst relative to the input content. That is, as described above, even if the supporting process is carried out using the same amount of the promoter by supporting the split at high temperature, the amount of the promoter actually supported on the catalyst is much higher, and the supporting efficiency is higher. Can be.
Figure imgf000027_0002
제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 활성을보조하는조촉매 성분이다. 상기 단계는 용매의 존재 또는 부재 하에 상기 실리카 담체와 알킬알루미녹산을 혼합하여 교반하면서 반응시키는 방법으로 수행할 수 있다. 여기서, 상기 알루미늄계 조촉매 화합물은 일예로, 하기 화학식 6으로표시되는것일수있다. It is a cocatalyst component which assists the activity of a 1st metallocene compound and a 2nd metallocene compound. The step may be carried out by mixing the silica carrier and the alkylaluminoxane in the presence or absence of a solvent and reacting with stirring. Here, the aluminum-based promoter compound may be represented by the following formula (6), for example.
[화학식 6] [Formula 6]
-[쇼1(119)-(0)山-111() 2019/156482 1»(:1^1{2019/001535 -(Show 1 (11 9 )-(0) 山 -11 1 () 2019/156482 1 »(: 1 ^ 1 {2019/001535
상기 화학식 6에서, In Chemical Formula 6,
II8, II9, 및 111()은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐,
Figure imgf000028_0001
내지 020의 하이드로카빌기, 또는 할로겐으로 치환된 C\ 내지 020의 하이드로카빌기이고;
II 8 , II 9 , and 11 1 () are the same as or different from each other, and are each independently hydrogen, halogen,
Figure imgf000028_0001
A hydrocarbyl group of 020 to 020, or a C \ 020 hydrocarbyl group substituted with halogen;
1은 0또는 1이며;  1 is 0 or 1;
X는 2이상의 정수이다. 상기 화학식 6의 알루미늄계 조촉매 화합물은 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물, 또는 트리알킬알루미늄 화합물 등이 될 수 있다. 또한, 상기 알루미늄계 조촉매 화합물 중에서 알루미늄에 결합된 알킬기는 각각 탄소수 1 내지 20 또는 탄소수 1 내지 10으로 이루어진 것일 수 있다. 구체적으로, 이러한 알루미늄계 조촉매 화합물의 구체적인 예로는, 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등의 알킬알루미녹산계 화합물; 또는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리핵실알루미늄, 트리옥탈알루미늄 또는 이소프레닐알루미늄등의 트리알킬알루미늄화합물을들수있다. 상기 단계에 의해 실리카 담체에 담지되는 알루미늄계 조촉매 화합물의 담지량은 실리카 담체 1용을 기준으로 약 5 1101 내지 약 15 ^101 /요, 또는 약 8 101/요내지 약 13 11^101 /요일 수 있다. 즉, 상기 담지량 범위 내에서, 고온 및 저온에서 분할하여 알루미늄계 조촉매 화합물을 실리카담체에 담지시킴으로써, 상술한 알루미늄계 조촉매 화합물의 선반응 및후반응을진행할수있다. 이때, 상기 단계는 담체와 알루미늄계 조촉매 화합물의 원활한 접촉반응을유도하기 위하여 용매가사용될수 있으며, 용매 없이 반응시킬 수도있다. 상기 용매로는 핵산, 펜탄, 헵탄과 같은 지방족 탄화수소; 톨루엔, 벤젠과 같은 방향상 탄화수소; 디클로로메탄과 같은 염소원자로 치환된 탄화수소; 디에틸에테르, 테트라하이드로퓨란奸 )과 같은 에테르계; 아세톤, 에틸아세테이트 등 대부분의 유기용매를 사용할 수 있다. 5 바람직하게는, 상기 용매로 핵산, 헵탄, 톨루엔 또는 디클로로메탄을 사용할수있다. 이러한과정으로, 본 발명은 실리카 담체의 내부에 기존보다 많은 양의 알루미늄계 조촉매 화합물이 침투되어 있고, 그 외부에도 상당량의 10 알루미늄계조촉매 화합물이 결합된실리카담체를제공할수있다. 한편, 본 발명에 따른 담지 메탈로센 촉매의 제조방법은, 상기 알루미늄계 조촉매 화합물이 담지된 실리카 담체에 1 종 이상의 제 2 메탈로센화합물을담지시키는단계를포함한다. X is an integer of 2 or more. The aluminum-based cocatalyst compound of Chemical Formula 6 may be an alkylaluminoxane compound, a trialkylaluminum compound, etc., in which a repeating unit is bonded in a linear, circular, or reticular form. In addition, the alkyl group bonded to aluminum in the aluminum-based cocatalyst compound may be each consisting of 1 to 20 carbon atoms or 1 to 10 carbon atoms. Specifically, specific examples of such aluminum-based promoter compounds include alkyl aluminoxane compounds such as methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane; Or trialkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trinuclear silaluminum, trioctatalaluminum or isoprenylaluminum. The amount of the aluminum-based promoter compound supported on the silica carrier by the above step is about 5 1 p 101 to about 15 ^ 101 / yo, or about 8 1 when 01 / yo to about 13 11 ^ It can be 101 / day. That is, within the supported amount range, the aluminum-based promoter compound is supported on the silica carrier by dividing at a high temperature and a low temperature, so that the above-described pre- and post-reaction of the aluminum-based promoter compound can be performed. In this case, a solvent may be used to induce a smooth contact reaction between the carrier and the aluminum-based promoter compound, or may be reacted without the solvent. The solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene, benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran 奸; Most organic solvents such as acetone and ethyl acetate can be used. 5 Preferably, nucleic acid, heptane, toluene or dichloromethane may be used as the solvent. In this process, the present invention can provide a silica carrier in which a greater amount of aluminum-based promoter compound penetrates into the inside of the silica carrier and a significant amount of 10 aluminum-based promoter compound is bound to the outside thereof. On the other hand , the method for producing a supported metallocene catalyst according to the present invention includes the step of supporting at least one second metallocene compound on a silica carrier carrying the aluminum-based promoter compound.
1515
본발명은상기 방법으로제 1메탈로센 화합물과알루미늄계 조촉매 화합물이 분할담지된 실리카담체에 1 종 이상의 제 2 메탈로센 화합물을 담지하여 각 메탈로센 화합물의 반응 조건에 따라 기 담지된 조촉매와 상호작용이 최적화되어 촉매 특성이 조절되도록 한다. 이러한 방법으로 20 제조된 담지 메탈로센 촉매는 SEM/EDS 분석법을 이용하여 촉매의 담체내 깊이 프로파일 (depth prof i le)을 살펴봄으로써, 알루미늄계 조촉매 화합물의 실리카내, 외부담지량이 조절됨을확인할수 있다. 상기 제 2메탈로센화합물은, 전술한바와같은화학식 1내지 5로 25 이루어진군에서 선택된 1종이상을사용할수 있다. 상기 단계는용매의 존재 하에 상기 담체와제 2메탈로센 화합물을 혼합하여 교반하면서 반응시키는방법으로수행할수있다. 2019/156482 1»(:1^1{2019/001535 The present invention is supported by the above method according to the reaction conditions of each metallocene compound by supporting at least one second metallocene compound on a silica carrier in which the first metallocene compound and the aluminum-based promoter compound are separately supported. The interaction with the promoter is optimized to allow the catalyst properties to be adjusted. As metallocene catalyst 20 produced supported metal in this way using a SEM / EDS analysis examining the inside depth of the profile carrier of the catalyst (depth prof i le), of silica of an aluminum-based co-catalyst compound, confirmed that the external loading is controlled can do. The second metallocene compound may be used at least one selected from the group consisting of 25 to 25 as described above. The step can be carried out by mixing the carrier and the second metallocene compound in the presence of a solvent and reacting with stirring. 2019/156482 1 »(: 1 ^ 1 {2019/001535
이때, 상기 단계에 의해 실리카 담체에 담지되는 제 2 메탈로센 화합물의 담지량은담체 1요을기준으로약 0.01 11111101/요내지 약 1 ■01/묘, 또는 약 0.1 빼01八 내지 약 1 _01/용 일 수 있다. 즉, 상기 메탈로센 화합물에 의한 촉매 활성의 기여 효과를 감안하여 전술한 담지량 범위에 해당되도록하는것이 바람직하다. 또한, 상기 제 2 메탈로센 화합물의 담지 단계에서 그 온도 조건은 특별히 제한되지 않는다. 한편, 본발명의 혼성 담지 메탈로센 촉매의 제조방법은, 상기 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과 접촉시켜 상기 실리카 담체에 상기 알루미늄계 조촉매 화합물을 담지시킨 다음에, 제 2 메탈로센 화합물을 순차적으로 담지시킴으로서, 겉보기 밀도와 함께 넓은 분자량 분포를 갖는 폴리올레핀을 매우 효과적으로제조할수있다. 특히,상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 혼합몰 비는약 1 :0.5내지 1 :2.5또는약 1 :1 내지 1 :1.5일수 있다. 한편,본발명은제 2조촉매로서,보레이트계 화합물을추가로담지할 수 있다.즉,본발명은 1종이상의 제 1 메탈로센화합물,알루미늄계 조촉매 화합물 1종 이상, 및 1종 이상의 제 2 메탈로센 화합물이 담지된 실리카 담체에, 제 2조촉매로서 보레이트계 화합물을담지시키는 단계를 더 포함할 수 있다. 따라서,발명의 바람직한일 구현예에 따르면,담체에 1종이상의 저 11 메탈로센 화합물, 제 1 조촉매로서 알루미늄계 조촉매 화합물이 담지되고, 제 2 조촉매로서 보레이트 화합물이 담지되고, 1종 이상의 제 2 메탈로센 화합물이 담지될 수 있다.또는, 발명의 바람직한다른 일 구현예에 따르면, 담체에 1종이상의 제 1 메탈로센화합물,제 1 조촉매로서 알루미늄계 조촉매 2019/156482 1»(:1^1{2019/001535 At this time, the supporting amount of the second metallocene compound supported on the silica carrier by the above step is about 0.01 1111110 1 / yaw about 1 ■ 0 1 / seedling, or about 0.1 minus 0 1 八 to about 1 based on the carrier 1 yaw _ 0 1 / can be for. That is, in consideration of the contribution effect of the catalytic activity by the metallocene compound, it is preferable to fall within the above-described supporting amount range. In addition, the temperature condition in the supporting step of the second metallocene compound is not particularly limited. On the other hand, in the method for producing the hybrid supported metallocene catalyst of the present invention, the silica carrier on which the first metallocene compound is supported is brought into contact with at least one aluminum-based promoter compound to contact the silica carrier with the aluminum-based promoter compound. After supporting, the second metallocene compound is sequentially supported, whereby polyolefin having a wide molecular weight distribution with apparent density can be produced very effectively. In particular, the mixed molar ratio of the first metallocene compound and the second metallocene compound may be about 1: 0.5 to 1: 2.5 or about 1: 1 to 1: 1.5. On the other hand, the present invention can further support a borate compound as the second catalyst. That is, the present invention is one or more first metallocene compounds, one or more aluminum-based promoter compounds, and one or more The method may further include supporting a borate compound as a second cocatalyst on a silica carrier on which the second metallocene compound is supported. Therefore, according to one preferred embodiment of the invention, the carrier is supported by at least one low 11 metallocene compound, an aluminum-based promoter as a first promoter, and a borate compound as a second promoter, The second metallocene compound may be supported. Alternatively, according to another preferred embodiment of the present invention, an aluminum-based cocatalyst as one or more first metallocene compounds and a first cocatalyst on a carrier 2019/156482 1 »(: 1 ^ 1 {2019/001535
화합물이 담지되고, 1종 이상의 제 2 메탈로센 화합물이 담지되고, 저 12 조촉매로서 보레이트 화합물이 담지될 수 있다. 상기 담지 메탈로센 촉매에서 제 2 조촉매가 포함되면, 최종 제조된 촉매의 중합 활성이 향상될 수있다. 상기 제 2 조촉매인 보레이트계 화합물은, 삼치환된 암모늄염 형태의 보레이트계 화합물, 디알킬 암모늄염 형태의 보레이트계 화합물 또는 삼치환된 포스포늄염 형태의 보레이트계 화합물을 포함할 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메틸암모늄 테트라페닐보네이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리知- 부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트,
Figure imgf000031_0001
테트라페닐보레이트, 的 디에틸아닐륨 테트라페닐보레이트,
Figure imgf000031_0002
The compound may be supported, at least one second metallocene compound may be supported, and the borate compound may be supported as a low 12 cocatalyst. When the second cocatalyst is included in the supported metallocene catalyst, the polymerization activity of the final prepared catalyst may be improved. The second cocatalyst, the borate compound, may include a borate compound in the form of a trisubstituted ammonium salt, a borate compound in the form of a dialkyl ammonium salt, or a borate compound in the form of a trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimethylammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri-butyl) ammonium tetraphenylborate, Methyltetracyclocyclodecylammonium tetraphenylborate,
Figure imgf000031_0001
Tetraphenylborate, diethylanilium tetraphenylborate,
Figure imgf000031_0002
트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리知-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급- 부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, 刀 -디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, - 디에틸아닐륨테트라키스(펜타플루오로페닐)보레이트,
Figure imgf000031_0003
Trimethylaninium) tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethyl Ammonium Tetrakis (pentafluorophenyl) borate, Tripropylammonium Tetrakis (pentafluorophenyl) borate, Tri-butylammonium Tetrakis (pentafluorophenyl) borate, Tri (tert-butyl) ammoniumtetrakis (Pentafluorophenyl) borate, 刀 -dimethylaninium tetrakis (pentafluorophenyl) borate, -diethylanilium tetrakis (pentafluorophenyl) borate,
Figure imgf000031_0003
트리메틸아닐륨)테트라키스(펜타플루오로페닐)보레이도 트리메틸암모늄 테트라키스(2,3,4, 6 -테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4, 6 -테트라플루오로페닐)보레이트, 트리知-부틸)암모늄 테트라키스(2, 3, 4, 6 -테트라플루오로페닐)보레이트,
Figure imgf000031_0004
Trimethylanilium) tetrakis (pentafluorophenyl) boride trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, triethylammonium tetrakis (2,3,4,6-tetrafluoro Lophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tri-butyl) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate,
Figure imgf000031_0004
테트라키스(2, 3,4, 6 -테트라플루오로페닐)보레이트, N,N -디에틸아닐륨 2019/156482 1»(:1^1{2019/001535 Tetrakis (2,3,4,6-tetrafluorophenyl) borate, N, N-diethylanilium 2019/156482 1 »(: 1 ^ 1 {2019/001535
테트라키스(2,3,4,6 -테트라플루오로페닐)보레이트, 또는 N,N -디메틸-(2,4,6- 트리메틸아닐늄) 테트라키스(2, 3, 4,6 -테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6 -디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물등을들수 있다. 또한,상기 보레이트계 화합물은실리카담체 1용을기준으로 약 0.01 빼01 내지 약 1 11111101 의 함량으로 담지될 수 있다. 또한 본 발명의 방법에서 보레이트계 화합물을제 2조촉매로사용하는경우,그담지 순서가 특별히 한정되지 않는다. 예를들어,본 발명은句 1종 이상의 제 2 메탈로센 화합물의 담지 후에 실리카 담체에 보레이트계 화합물을 마지막에 담지할 수 있다.또한,본발명은선택적으로비알루미늄계 조촉매 화합물을실리카 담체에 담지한 후, 보레이트계 화합물을 담지하고, 그 뒤에 1종 이상의 메탈로센화합물을담지하는순서로따라진행할수 있다. 한편, 본 발명의 다른 구현예에 따라, 상기 담지 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합 반응시키는 단계를 포함하는 폴리올레핀의 제조방법이 제공된다. 상기 폴리올레핀의 제조방법은, 상기 혼성 담지 메탈로센 촉매를 준비하는 단계; 및 상기 촉매의 존재 하에서 올레핀계 단량체를 중합 반응시키는단계를포함하는방법으로수행할수있다. 본 발명에 따른 담지 메탈로센 촉매는 그 자체로서 중합 반응에 사용될 수 있다. 또한, 상기 담지 메탈로센 촉매는올레핀계 단량체와접촉 반응시켜 예비 중합된촉매로 제조하여 사용할수도 있으며 예컨대 촉매를 별도로 에틸렌 프로필렌 1 -부텐, 1-핵센, 1-옥텐 등과 같은 올레핀계 단량체와접촉시켜 예비 중합된촉매로제조하여 사용할수도있다. 또한, 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매(예를 들면 펜탄, 핵산, 헵탄, 노난 데칸 및 이들의 이성질체)와 톨루엔 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등에 희석시켜 반응기에 주입할 수 있다. 이때, 상기 용매에 소량의 알킬알루미늄을 첨가함으로써 촉매 독(catalyst poi son)으로 작용할 수 있는 소량의 물 또는공기 등을제거한후에 사용하는것아바람직하다. 상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기 기상 반응기 또는 용액 반응기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다. Tetrakis (2,3,4,6-tetrafluorophenyl) borate, or N, N-dimethyl- (2,4,6-trimethylaninynium) tetrakis (2,3,4,6-tetrafluoro Borate compounds in the form of trisubstituted ammonium salts such as phenyl) borate; Borate type in the form of dialkyl ammonium salt, such as dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetradecyl ammonium tetrakis (pentafluorophenyl) borate, or dicyclonuclear ammonium tetrakis (pentafluorophenyl) borate compound; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) Borate compounds in the form of trisubstituted phosphonium salts such as borate; and the like. In addition, the borate compound may be supported by a content of about 0 to about 1 11111101 by subtracting about 0.01 based on the use of silica carrier 1. In the case of using a borate compound as a second catalyst in the method of the present invention, the supporting order is not particularly limited. For example, according to the present invention, a borate compound may be finally supported on a silica carrier after supporting one or more second metallocene compounds. In addition, the present invention optionally provides a non-aluminum-based promoter compound to be a silica carrier. After supporting it, it can carry out in order of supporting a borate type compound, and then supporting one or more metallocene compounds. On the other hand, according to another embodiment of the present invention, there is provided a method for producing a polyolefin comprising the step of polymerizing the olefin monomer in the presence of the supported metallocene catalyst. The method for producing the polyolefin may include preparing the hybrid supported metallocene catalyst; And polymerizing the olefinic monomers in the presence of the catalyst. The supported metallocene catalyst according to the present invention itself is subjected to a polymerization reaction. Can be used. In addition, the supported metallocene catalyst may be prepared by using a prepolymerized catalyst by contacting with an olefinic monomer. For example, the supported metallocene catalyst may be separately contacted with an olefinic monomer such as ethylene propylene 1-butene, 1-nuxene, 1-octene, and the like. It can also be prepared by using a prepolymerized catalyst. In addition, the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms (for example, pentane, nucleic acid, heptane, nonanedecane and isomers thereof) and an aromatic hydrocarbon solvent such as toluene benzene, and chlorine such as dichloromethane chlorobenzene. Dilution with an atom substituted hydrocarbon solvent or the like may be carried out to the reactor. At this time, by adding a small amount of alkylaluminum to the solvent, it is preferable to use after removing a small amount of water or air which can act as a catalyst poison (catalyst poi son). The polymerization reaction may be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor gas phase reactor, or a solution reactor.
Figure imgf000033_0001
Figure imgf000033_0001
1¾은/ 에서 수행할수있다. 이때 상기 올레핀계 단량체는제조하고자하는들리올레핀의 종류에 따라선택하여 사용할수 있으며 바람직하게는에틸렌, 프로필렌, 1 -부텐 1 -펜텐 4 -메틸- 1 -펜텐, 1 -핵센 1 -헵텐 1 -옥텐, 1 -데센, 1 -운데센, 1 - 2019/156482 1»(:1^1{2019/001535 1 ¾ can be performed at /. In this case, the olefin monomer may be selected and used according to the type of the deliolefin to be prepared, preferably ethylene, propylene, 1-butene 1-pentene 4 -methyl- 1-pentene, 1 -nucleene 1 -heptene 1 -octene , 1 -Desen , 1 -Undesen , 1- 2019/156482 1 »(: 1 ^ 1 {2019/001535
도데센, 1 -테트라데센, 1 -핵사데센, 1 -아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨 , 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4 - 부타디엔, 1-5 -펜타디엔, 1, 6 -핵사디엔 , 스티렌 , 알파-메틸스티렌 , 디비닐벤젠 및 3 -클로로메틸스티렌으로 이루어진 군에서 선택되는 1 종 이상의올레핀계 단량체를사용할수있다. 구체적으로, 상기 폴리올레핀은 에틸렌 호모 중합체인 폴리에틸렌일 수있으며, 혹은에틸렌- 1 -핵센의 2원공중합체일 수 있다. 상기 방법에 따라제조된폴리올레핀은기존과동등이상의 고활성을 유지하면서 높은겉보기 밀도, 넓은분자량분포, 및 세틀링 효율이 향상된 효과를제공한다. 구체적으로, 상기 폴리올레핀은 겉보기 밀도가 약 0.38 용/1此 이상 또는 약 0.38요/此내지 약 0.8당세 혹은 약 0.4 g/mL 이상또는 약 0.4
Figure imgf000034_0001
Dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene, norbonadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1 One or more olefinic monomers selected from the group consisting of -5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene and 3 -chloromethylstyrene can be used. Specifically, the polyolefin may be polyethylene which is an ethylene homopolymer, or may be a binary copolymer of ethylene-1-nuxene. Polyolefins prepared according to the method provide the effect of high apparent density, broad molecular weight distribution, and settling efficiency while maintaining high activity equal to or higher than the existing. Specifically, the polyolefin has an apparent density of about 0.38 yong / 1 kPa or about 0.38 yo / 此 about 0.8 sugar or about 0.4 g / mL or more or about 0.4
Figure imgf000034_0001
루프 슬러리 반응기에 적용하여 중합 반응을 수행한 경우에는, 상기 폴리올레핀은겉보기 밀도가약 0.47용/此이상또는 약 0.47용/此내지 약 0.8용/!此, 혹은 약 0.49 g/xίL이상또는 약 0.49 g/mL내지 약 0.8궁/此 일 수있다. 상기 폴리올레핀의 겉보기 밀도는, 폴리올레핀의 밀도, 입도, 입도 분포에 따라 달라질 수 있다. 입도 분포는 넓을수록 겉보기 밀도가 높게 나타나게 된다. 하지만, 입도 분포가 넓어진다는 것은 작은 입자(미분)의 양도 많아지는 것이고 이러한 미분은 중합 중 용매 내에서 잘 가라 앉지 안아세틀링 효율을 저하시키게 된다. 따라서, 폴리올레핀의 겉보기 밀도를 비교할때는, 겉보기 밀도의 절대적인 수치만보기보다는 입도분포도 함께 봐야 한다. 또한, 입도 분포가 좁을 경우, 즉, 입도가 균일한 경우에는 입도가클수록 폴리올레핀의 겉보기 밀도가 낮게 나타날수 있다. 그러나, 본 발명의 혼성 담지 촉매는 활성이 동등 이상임에도, 생성된 중합체의 2019/156482 1»(:1^1{2019/001535 When the polymerization reaction is carried out in a loop slurry reactor, the polyolefin has an apparent density of about 0.47 or more or about 0.47 or about 0.8 to about 0.8 or about 0.49 g / x or about 0.49 g or more. / mL to about 0.8 palaces per square foot. The apparent density of the polyolefin may vary depending on the density, particle size, and particle size distribution of the polyolefin. The larger the particle size distribution, the higher the apparent density. However, the larger the particle size distribution, the larger the amount of small particles (fine powders), and the fine powders do not settle well in the solvent during polymerization, thereby lowering the settling efficiency. Therefore, when comparing the apparent densities of polyolefins, the particle size distribution should also be viewed, rather than the absolute value of the apparent density. In addition, when the particle size distribution is narrow, that is, when the particle size is uniform, the apparent density of the polyolefin may appear lower as the particle size is larger. However, the hybrid supported catalyst of the present invention, even if the activity is equal or more, 2019/156482 1 »(: 1 ^ 1 {2019/001535
입도가크고분포가좁으면서 겉보기 밀도가오히려 상승하는장점이 있다. 이는 생성되는 중합체의 입자가 밀도있게 생성되는 것을 의미하며, 이로써 실제 연속 공정에서 공중합을 통해 동일한 밀도의 중합체를 생산하였을 때 세틀링 효율이 좋아지면서 시간당 에틸렌 소모량(중합체 생성량)이 약 15% 이상, 또는 약 17.5% 이상, 또는 약 20% 이상 상승하여 전체 생산성이 증대될수있다. 구체적으로, 상기 폴리올레핀의 입도 분포 분석에서, 입자 크기가 180 ! 이하인 미분 함량이 전체 폴리올레핀 총 중량을 기준으로 약 0.1 % 미만일 수 있고, 바람직하게는 약 0.01 % 이하 또는 전혀 없는 것으로 나타날 수 있다. 또한, 상기 폴리올레핀 중 입자 크기가 300 ^ 이하인 경우는 약 1.2 %이하또는 약 0내지 1.2 %, 혹은 약 1.0 % 이하또는 약 0.2 %내지 1.0 %일 수 있다. 또한, 상기 폴리올레핀 중 입자크기가 300 /께를 초과하여 500쌘! 이하인 경우는 약
Figure imgf000035_0001
약 19.2 , 또는 약 16 ¾ 내지 약 18.5 %일 수 있다. 또한, 상기 폴리올레핀 중 입자 크기가 500 _를 초과하는 경우는 약 75 \vtro 이상, 또는 약 80 % 이상일 수 있다. 또한, 상기 폴리올레핀 중 입자 크기가 850 를초과하는경우는 약 20 %이상, 또는 약 25 %이상일 수 있다. 특히, 상기 폴리올레핀의 입도분포중각 입자크기의 함량범위의 총합은 100 %를초과할수 없다. 상기 폴리에틸렌의 입도 분포 분석은 중합체를 입자크기별로 분리할 수 있는 시브 등을 이용하여 측정할 수 있으며, 구체적인 측정 방법은 후술되는 에틸렌 호모 중합 관련 중합 제조예에 기재된바와같다. 일 예로, 상기 폴리올레핀은 전체 폴리올레핀 총 중량을 기준으로 입자 크기가 180 ^ 이하인 미분 함량이 0이고, 입자 크기가 180 _를 초과하여 300 _이하인 함량이 약 0.4
Figure imgf000035_0002
내지 약 0.9 %이고, 입자 크기가 300 /패를초과하여 500 /패이하인 함량이 약 16.2 %내지 약 18.1 %이고, 입자크기가 500쌘]를초과하여 850쌔!이하인 함량이 약 49.0 % 내지 55.0 %이고, 입자 크기가 850 _를 초과하는 함량이 약 27.9 % 내지 약 32.3 \ %일수 있다. 일 예로, 상기 폴리올레핀의 겉보기 밀도 (BD, bulk density)는 ASTM D 1895 Method A 에 의거하여 측정할 수 있다. 구체적으로, 상기 폴리올레핀의 겉보기 밀도 (BD, bulk density)는부피 100 mL의 용기 (예컨대, SUS 용기)에 폴리올레핀을 채우고 폴리올레핀의 무게 (g)를 측정하여, 이로부터 단위 부피당중량 (g/mL)으로나타낸값이 될수있다. 한편, 상기 폴리올레핀은 상술한 바와 같은 높은 겉보기 밀도와 최적화된 입도분포와함께 넓은분자량분포를가질수 있다. 구체적으로, 상기 폴리올레핀숀 분자량 분포 (Mw/Mn)가 약 4.0이상 또는 약 4.0내지 약 8.0,혹은 약 4.2이상또는 약 4.2내지 약 7.0일 수 있다. 일 예로, 상기 분자량 분포 (MTO, polydispersity index)는 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Water사 제조)를 이용하여 폴리에틸렌의 중량평균 분자량 (Mw)과 수평균 분자량 (Mn)을 측정하고, 중량평균분자량을수평균분자량으로나누어 산측할수있다. 구체적으로,겔투과크로마토그래피 (GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laboratories PLgel MIX-B 300 mm 길이 칼럼을 사용할 수 있다. 이때 측정 온도는 160 °C이며, 1,2, 4 - 트리클로로벤젠 (1,2,4-Trichlorobenzene)을 용매로서 사용할 수 있으며, 유속은 l mL/min로 적용할수 있다.상기 폴리에틸렌 시료는각각 GPC분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠 (1,2,4- Tri chlorobenzene)에서 160 °C , 10시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 uL의 양으로 공급할 수 있다. 폴리스티렌표준시편을 이용하여 형성된 검정 곡선을 이용하여 Mw및 Mn의 값을 유도할 수 있다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 요/11101 , 10000 용/,1 , 30000 용/,1 , 70000 요/11101 , 200000 요/11101, 700000 요/ 1, 2000000요細01, 4000000용/ 1, 10000000용/미이의 9종을사용할 수 있다. 상기 폴리올레핀은 약 50000 g/mol 내지 약 250000 g/mol의 중량평균분자량을나타낼수있다. 상기 폴리올레핀은 또한, ASTM 1505에 의해 측정한 밀도 값이 약 0.920 g/cm3 내지 약 0.950 g/cm3, 바람직하게는 약 0.930 g/cm3 내지 약 0.940 g八: m3일수있다. 또한, 상기 폴리올레핀은 하기 계산식 1로 정의되는 세틀링 효율(sett l ing ef f i ci ency)이 약 65% 내지 약 80%, 혹은 약 67% 내지 약 80%일수있다.
The particle size is large and the distribution is narrow, and the apparent density increases, which has the advantage. This means that the particles of the resulting polymer are densely produced, thereby improving the settling efficiency when copolymers of the same density are produced through copolymerization in actual continuous processes, and the ethylene consumption per hour (polymer production) is about 15% or more, Or about 17.5% or more, or about 20% or more, thereby increasing overall productivity. Specifically, in the particle size distribution analysis of the polyolefin, the particle size is 180! The fine powder content below may be less than about 0.1% based on the total weight of the total polyolefin, and may preferably appear to be about 0.01% or less at all. In addition, when the particle size of the polyolefin is less than 300 ^ may be about 1.2% or less or about 0 to 1.2%, or about 1.0% or less or about 0.2% to 1.0%. In addition, the particle size of the polyolefin in excess of 300 / / 500 쌘! If less than
Figure imgf000035_0001
About 19.2, or about 16 ¾ to about 18.5%. In addition, when the particle size of the polyolefin exceeds 500 _ may be about 75 \ vtro or more, or about 80% or more. In addition, when the particle size of the polyolefin exceeds 850 may be about 20% or more, or about 25% or more. In particular, the sum of the content ranges of the respective particle sizes in the particle size distribution of the polyolefin may not exceed 100%. The particle size distribution analysis of the polyethylene can be measured using a sieve that can separate the polymer by particle size, and the specific measuring method is as described in the ethylene homopolymerization-related polymerization preparation example described below. For example, the polyolefin has a fine powder content of 0 or less with a particle size of 180 ^ or less based on the total weight of total polyolefins, and a particle size of about 0.4 or less for a particle size of more than 180_ and about 0.4.
Figure imgf000035_0002
To about 0.9%, particle size of 300 / over 500 / up to about 18.1% to about 18.1%, particle size above 500] of about 850%! Less than about 49.0 to 55.0 %, Particle size exceeding 850 _ about 27.9% To about 32.3 \ %. As an example, the apparent density (BD) of the polyolefin may be measured based on ASTM D 1895 Method A. Specifically, the bulk density (BD) of the polyolefin is determined by filling a polyolefin in a 100 mL volume (eg, SUS container) and measuring the weight (g) of the polyolefin, from which the weight per unit volume (g / mL) This can be a value. On the other hand, the polyolefin may have a wide molecular weight distribution with the high apparent density and the optimized particle size distribution as described above. Specifically, the polyolefin ions molecular weight distribution (Mw / Mn) may be about 4.0 or more or about 4.0 to about 8.0, or about 4.2 or more or about 4.2 to about 7.0. For example, the molecular weight distribution (MTO, polydispersity index) is measured by gel permeation chromatography (GPC, gel permeation chromatography, Water Company) to measure the weight average molecular weight (Mw) and number average molecular weight (Mn) of polyethylene, The weight average molecular weight can be divided by the number average molecular weight to calculate the weight. Specifically, Water Permeation Chromatography (GPC) apparatus using a Waters PL-GPC220 device, Polymer Laboratories PLgel MIX-B 300 mm length column can be used. At this time, the measurement temperature is 160 ° C, 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) can be used as a solvent, the flow rate can be applied to l mL / min. Preprocessed by dissolving in trichlorobenzene (1,2,4- Tri chlorobenzene) containing BHT 0.0125% for 10 hours using GPC analysis instrument (PL-GP220) for 10 hours, and then prepared at a concentration of 10 mg / 10mL , 200 uL. Assay curves formed using polystyrene standards can be used to derive the values of Mw and Mn. The weight average molecular weight of the polystyrene standard specimen is 2000 / 1110 1, 10000 / / 1, 30000 / / 1, 70000 yo / 1110 1, 200000 yo / 1110 1, 700000 yo / 1, 2000000 yo / 0 1, 4000000 / / 1, 10000000 / Nine kinds are available. The polyolefin may exhibit a weight average molecular weight of about 50000 g / mol to about 250000 g / mol. The polyolefin can also have a density value measured by ASTM 1505 from about 0.920 g / cm 3 to about 0.950 g / cm 3 , preferably from about 0.930 g / cm 3 to about 0.940 g 八: m 3 . In addition, the polyolefin may have a settling efficiency of about 65% to about 80%, or about 67% to about 80%, which is defined by Equation 1 below.
[계산식 1]  [Calculation 1]
세틀링 효율(%) = 에틸렌 사용량八:에틸렌 사용량 + 용매 함량) 父 Settling efficiency (%) = amount of ethylene used 八: amount of ethylene used + solvent content.
100 한편, 본 발명에 따른 혼성 담지 촉매는 상술한 바와 같이 높은 겉보기 밀도, 넓은 분자량 분포, 및 세틀링 효율이 향상된 폴리올레핀을 제조할수있을뿐만아니라, 높은촉매 활성을유지할수 있다. 구체적으로, 폴리올레핀 중합 공정에서 촉매 활성은, 중합 공정을 통해 생성된 폴리에틸렌의 중량 0¾)을 중합 공정에 사용된 담지 촉매의 중량(§)으로 나눈 값으로 측정할 수 있으며, 상기 촉매 활성은 약 10
Figure imgf000037_0001
(폴리올레핀)/ §(촉매) 내지 약 25 (폴리올레핀)/ ¾(촉매), 혹은 약 10.8
Figure imgf000037_0002
(폴리올레핀)/ §(촉매) 이상 (폴리올레핀)/ §(촉매) 내지 약 23
Figure imgf000037_0003
수 있다. 특히, 상술한 바와 같은 혼성 담지 촉매를루프슬러리 반응기에 적용하여 중합반응을수행한경우에는, 상기 촉매 활성은 약 11 (폴리올레핀)/ §(촉매) 이상 또는 약 11
Figure imgf000038_0001
(폴리올레핀)/용(촉매), 혹은 약 11.5
Figure imgf000038_0002
(폴리올레핀)/요(촉매) 내지 약 (폴리올레핀)/ §(촉매)일 수 있다. 상기 촉매 활성의 측정 방법은 후술되는 에틸렌 호모 중합 관련 중합 제조예에 기재된 바와 같으며, 구체적인측정 방법에 대하설명은생략한다.
On the other hand, the hybrid supported catalyst according to the present invention can not only produce a polyolefin with improved apparent density, wide molecular weight distribution, and settling efficiency as described above, but also maintain high catalytic activity. Specifically, in the polyolefin polymerization process, the catalytic activity may be measured by dividing the weight of polyethylene produced through the polymerization process by 0 ¾ ) by the weight of the supported catalyst used in the polymerization process ( § ), wherein the catalytic activity is about 10
Figure imgf000037_0001
(Polyolefin) / § (catalyst) to about 25 (polyolefin) / ¾ (catalyst), or about 10.8
Figure imgf000037_0002
(Polyolefin) / § (catalyst) or more (polyolefin) / § (catalyst) to about 23
Figure imgf000037_0003
Can be. In particular, when the hybrid supported catalyst as described above is applied to the loop slurry reactor to perform the polymerization reaction, Catalytic activity is at least about 11 (polyolefin) / § (catalyst) or about 11
Figure imgf000038_0001
(Polyolefin) / solvent (catalyst), or about 11.5
Figure imgf000038_0002
(Polyolefin) / yo (catalyst) to about (polyolefin) / § (catalyst). The method for measuring the catalytic activity is as described in the ethylene homopolymerization related polymerization preparation example described later, and the description for the specific measurement method is omitted.
【발명의 효과】 【Effects of the Invention】
본발명에 따르면, 담지 촉매 내조촉매 담지율이 향상되었으며 높은 촉매 활성을 유지하면서도 생성된 중합체의 모폴로지(미분 생성 감소) 및 겉보기 밀도가높아지며 세틀링(3 1: 11) 효율이 향상됨과동시에, 분자량 분포가 증가하여 가공성이 향상되는 폴리올레핀을 제조하는 데 매우 효과적으로사용할수 있다. 【발명의 실시를위한형태】 According to the present invention, the supported catalyst co-catalyst loading rate is improved, the morphology (reduced fine powder reduction) and apparent density of the produced polymer is increased while maintaining the high catalytic activity, and the settling ( 3 1: 11 ) efficiency is improved. The molecular weight distribution can be used very effectively to produce a polyolefin with improved processability. [Form for implementation of the invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다. <실시예>  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. <Example>
<메탈로센화합물의 합성예>  <Synthesis example of metallocene compound>
합성예 1: 제 1메탈로센화합물  Synthesis Example 1 First Metallocene Compound
6 -클로로핵사놀(6-chlorohexanol)을사용하여 문헌(Tetrahedron Lett . 2951 (1988))에 제시된 방법으로 t-Butyl-0-(CH26-Cl# 제조하고, 여기에 NaCp를 반응시켜 t-Buty卜 0-(C¾)6-C5H5룰 얻었다(수율 60%, b.p. 80 °C /Using 6-chlorohexanol, Tetrahedron Lett. T-Butyl-0- (CH 2 ) 6- Cl # was prepared by the method described in 2951 (1988)), and Na-Cp was reacted to obtain t-Buty 卜 0- (C¾) 6- C 5 H 5. Yield 60%, bp 80 ° C /
0.1 mmHg) . 또한, -78 °C에서 t-Butyl-0-(CH26-C5H5를 THF에 녹이고, 노르말 부틸리륨(n-BuLi)을 천천히 가한 후, 실온으로 승온시킨 후, 8 시간 반응시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2(1.70g, 4.50_ol )/THF(30m£)의 서스펜젼 (suspension) 용액에 기 합성된 리튬염 ( l i thium sal t) 용액을 천천히 가하고 실온에서 6 시간 동안 더 반응시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저온 (-20 °C )에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 비스 (3-(6-(tert-부톡시)핵실)시클로펜타- 2, 4 -디엔- 1-일)-지르코늄디클로라이드 [(Bis(3-(6-(tert-butoxy)hexyl)cyclopenta-2,4- dien- 1 -yl)-zirconiumdi chloride), tBu-O-CCH^-CsH^ZrCy화합물을 얻었다 (수율0.1 mmHg). In addition, dissolve t-Butyl-0- (CH 2 ) 6 -C 5 H 5 in THF at -78 ° C, add normal butylium (n-BuLi) slowly, and then warm to room temperature, 8 hours Reacted. The solution was again brought to ZrCl 4 (THF) 2 (1.70 g, at -78 ° C, 4.50_ol) / THF (30m £) to the suspension (suspension) solution of the pre-synthesized lithium salt (li thium salt) solution was added slowly and further reacted for 6 hours at room temperature. All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent. The filtered solution was dried in vacuo and nucleic acid was added to induce precipitate at low temperature (-20 ° C). The precipitate obtained was filtered at low temperature to give a bis (3- (6- (tert-butoxy) nucleosil) cyclopenta-2,4-diene-1-yl) -zirconium dichloride [(Bis (3- ( 6- (tert-butoxy) hexyl) cyclopenta-2,4-dien-1 -yl) -zirconiumdi chloride) and tBu-O-CCH ^ -CsH ^ ZrCy compounds were obtained (yield)
92%) .
Figure imgf000039_0001
00013): 6.28 ( I = 2.6 ¾, 2 11), 6. 19 0:, I =
92%).
Figure imgf000039_0001
0001 3) : 6.28 (I = 2.6 ¾, 2 11) , 6. 19 0 :, I =
2.6 ¾, 2비, 3.31 (1;, 6.6 ¾, 2 , 2.62 (1 , 1 = 8 ¾), 1.7 - 1.3 ( 8 11) , 1. 17 ( 9 . 2.6 ¾, 2 ratio, 3.31 (1 ;; 6.6 ¾, 2, 2.62 (1, 1 = 8 ¾), 1.7-1.3 (8 11), 1. 17 (9.
130 ■ (0)이3) : 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. 합성예 2: 제 2메탈로센화합물 13 0 ■ (0) 3): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. Synthesis Example 2 Second Metallocene Compound
상온에서 50 용의 Mg(s)를 10 L 반응기에 가한 후, THF 300 mL을 가하였다. 12 0.5 g 정도를 가한 후, 반응기 온도를 50 °C로 유지하였다. 반응기 온도가 안정화된 후 250 용의 6-t-부톡시핵실 클로라이드 (6-t - buthoxyhexyl chlor ide)를 피딩펌프 ( feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부톡시핵실 클로라이드를 가함에 따라 반응기 온도가 4내지 5 °C 정도상승하는것을관찰하였다. 계속적으로 6 - t_부톡시핵실 클로라이드을가하면서 12시간교반하였다. 반응 12시간후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부톡시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기 6-t-부톡시핵산으로부터 그리냐드 (Gr inganrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chlor ide)를합성하였다. Mg (s) for 50 at room temperature was added to a 10 L reactor, followed by 300 mL of THF. After adding 0.5 g of 1 2 , the reactor temperature was maintained at 50 ° C. After the reactor temperature stabilized, 250 6-t-butoxynuxyl chloride (6-t-buthoxyhexyl chloride) was added to the reactor at a rate of 5 mL / min using a feeding pump. It was observed that the reactor temperature rose about 4 to 5 ° C. with the addition of 6-t-butoxynucleus chloride. The mixture was stirred for 12 hours while adding 6-t_butoxynuxyl chloride. After 12 hours, a black reaction solution was obtained. 2 mL of the resulting black solution was taken and water was added thereto to obtain an organic layer. 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. From the 6-t-butoxynucleic acid, it was found that the Gr inganrd reaction proceeded well. Thus 6-t-butoxynuclear magnesium Chloride (6-t-buthoxyhexyl magnesium chloride) was synthesized.
MeSiCls 500 g과 1 L의 THF를 반응기에 가한 후 반응기 온도를 - 20 °C까지 냉각하였다. 합성한 6-t-부톡시핵실 마그네슘클로라이드중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약 (Gr ignard reagent)의 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상온으로올리면서 12시간교반하였다. 반응 12시간후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 ( l abdor i )을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반응기에 가한 후 70 °C에서 핵산을제거하여 엷은노란색의 액체를 얻었다. 얻은 액체를 1H-500 g of MeSiCls and 1 L of THF were added to the reactor and the reactor temperature was cooled to -20 ° C. 560 g of the synthesized 6-t-butoxynucleosil magnesium chloride was added to the reactor at a rate of 5 mL / min using a feeding pump. After feeding the Grignard reagent, the reaction mixture was stirred for 12 hours while slowly raising the temperature of the reactor. After 12 hours of reaction, white MgCl 2 salt was produced. 4 L of nucleic acid was added to remove the salt through a labyrinth (l abdor i) to obtain a filter solution. After the obtained filter solution was added to the reactor, the nucleic acid was removed at 70 ° C to obtain a pale yellow liquid. Obtained liquid 1H-
NMR을 통해 원하는 메틸 (6-t-부톡시 핵실)디클로로실란 {Methyl (6-t-buthoxy hexyl )di chlorosi l ane}화합물임을확인하였다. NMR confirmed that the desired compound was methyl (6-t-butoxy hexyl) dichlorosilane {Methyl (6-t-buthoxy hexyl) dichlorochloroamine.
1H-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H) , 1.3 (m, 5H) , 1.2 (s, 9H) , 1.1 (m, 2H) , 0.7 (s, 3H) 테트라메틸시클로펜타디엔 (tetramethyl cyc lopentadiene) 1.2 mol1 H-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H) tetramethyl 1.2 mol cyclopentadiene (tetramethyl cyc lopentadiene)
(150 g)와 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20 °C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 반응 12 시간 후, 당량의 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl (6-t-buthoxy hexyl )di chlorosi l ane) (326 g, 350 mL)을빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로올리면서 12 시간 교반한 후 다시 반응기 온도를 0 r로 냉각시킨 후 2당량의 t- BuN¾을 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 반응 12 시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70 °C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6-t-부톡시핵실) (테트라메틸 CpH)t- 부틸아미노실란 (Methyl (6-t -but hoxyhexy 1 ) (tetramethylCpH)t- Butylaminosi lane)화합물임을확인하였다. n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란(150 g) and 2.4 L of THF were added to the reactor and the reactor temperature was cooled to -20 ° C. The reactor was added at a rate of 5 mL / min using an n-BuLi 480 mL feeding pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature of the reactor. After 12 hours of reaction, an equivalent of methyl (6-t-butoxy hexyl) dichlorosilane (326 g, 350 mL) was quickly added to the reactor. After stirring for 12 hours while slowly raising the reactor temperature to room temperature, the reactor temperature was cooled to 0 r again, and then 2 equivalents of t-BuN¾ was added thereto. Stirring for 12 hours while slowly raising the reactor temperature to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salt was removed through labdori. After adding the filter solution to the reactor again, the nucleic acid was removed at 70 ° C to obtain a yellow solution. Obtain the yellow solution through 1H-NMR through methyl (6-t-butoxynuclear) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-but hoxyhexy 1) (tetramethylCpH) t- Butylaminosi lane) compound was confirmed. n-BuLi and ligand dimethyl (tetramethyl CpH) t-butylaminesilane
(Dimethyl (tetramethylCpH)t-Butylaminosi lane)로부터 THF용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반응용액을 천천히 _78 °C에서 상온으로 올리면서 12 시간 교반하였다. 12 시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반응용액에 가한 후 12 시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한후, 1H-NMR로부터 원하는 t- 부톡시핵실메틸실릴 (N-t-부틸아미도) (2, 3, 4, 5 -테트라메틸시클로펜타디에닐)- 티타늄디클로라이드 (t-butoxyhexylme仕 iylsilyl(N-t-bu仕 lylamidoX SAS- te竹 ame仕 iylcyclopentadienyl)-titaniumdichloride, [methyl(6-t-buthoxyhexyl)silyl(ri5- tetrame仕 iylCp)(t-Butylamido)]TiCl2)인 (tBu-0-(CH2)6)(CH3)Si(C5(CH3)4)(tBu- N)TiCl2임을확인하였다. TiCl 3 (THF) 3 (10 mmol) was quickly added to the dilithium salt of a -78 ° C ligand synthesized in THF solution from (Dimethyl (tetramethylCpH) t-Butylaminosi lane). The reaction solution was stirred for 12 hours while slowly raising the temperature to _78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a dark black solution was obtained. After removing THF from the reaction solution, nucleic acid was added to filter the product. After removing the nucleic acid from the resulting filter solution, desired t-butoxynucleosilmethylsilyl (Nt-butylamido) (2, 3, 4, 5-tetramethylcyclopentadienyl) -titanium dichloride (t) from 1H-NMR -butoxyhexylme仕iylsilyl (Nt-bu仕lylamidoX SAS- te竹ame仕iylcyclopentadienyl) -titaniumdichloride, [methyl (6-t-buthoxyhexyl) silyl (ri5- tetrame仕iylCp) (t-Butylamido)] TiCl 2) of (tBu It was confirmed that -0- (CH 2 ) 6 ) (CH 3 ) Si (C 5 (CH 3 ) 4 ) (tBu-N) TiCl 2 .
1H-NMR (CDCls): 3.3 (s, 4H) , 2.2 (s, 6H), 2.1 (s, 抑), 1.8 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H) , 0.7 (s, 3H) <혼성 담지 메탈로센촉매의 제조예> 1 H-NMR (CDCls): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 抑), 1.8 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 ( s, 3H) <Production Example of Hybrid Supported Metallocene Catalyst>
실시예 1: 혼성 담지 메탈로센촉매  Example 1 Hybrid Supported Metallocene Catalyst
(1)담체준비  (1) Carrier Preparation
실리카 (SP 952, Grace Davision사 제조)를 600 °C 온도에서 12 시간 동안진공을가한상태에서 탈수및 건조하였다. Silica (SP 952, manufactured by Grace Davision) was dehydrated and dried under vacuum at a temperature of 600 ° C. for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
20 L의 스테인레스스틸 (sus) 고압반응기에 톨루엔용액·약 3.0 kg를 넣고, 상기 (1) 단계에서 준비된 실리카 담체 약 1000 g을 투입한 후, 반응기 온도를 약 40 °C로 올리면서 교반하였다. 실리카를 약 60 분 동안 충분히 분산시킨 후, 상기 합성예 1에서 준비한 제 1 메탈로센 화합물 약 2019/156482 1»(:1^1{2019/001535 Toluene solution, about 3.0 kg was added to a 20 L stainless steel high pressure reactor, and about 1000 g of the silica carrier prepared in step (1) was added thereto, followed by stirring while raising the reactor temperature to about 40 ° C. After sufficiently dispersing the silica for about 60 minutes, about 1st metallocene compound prepared in Synthesis Example 1 2019/156482 1 »(: 1 ^ 1 {2019/001535
0.1 1^1을 용액 상태로 녹인 후 투입하여 약 2 시간 동안 교반하며 반응시킨 후에, 교반을 중지하고 약 30 분 동안 정치시킨 比요) 후 반응용액을디캔테이션(< 031 1011)하였다 . 이 후, 반응기에 10 '狀% 메틸알루미녹산(■())/톨루엔 용액을 5.4
Figure imgf000042_0001
After dissolving 0.1 1 ^ 1 in a solution state, the mixture was stirred for about 2 hours, the stirring was stopped, and the reaction solution was left to stand for about 30 minutes. Then, the reaction solution was decanted (< 031 1 011 ). Subsequently, the reactor was charged with 10 '8% methylaluminoxane (■ ()) / toluene solution 5.4.
Figure imgf000042_0001
교반하였다. 이 후, 교반을중지하고 약 30분동안정치시킨 니比§) 후 반응용액을디캔테이션(선 크 )])하였다 .
Figure imgf000042_0002
Stirred. Thereafter, the stirring was stopped presentation (line size)]) dikaen the reaction solution after about 30 minutes and was allowed to stand for you比§).
Figure imgf000042_0002
분간 교반한 후, 상기 합성예 2에서 준비한 제 2 메탈로센 화합물 약 0.1 미이을 용액 상태로 녹여 투입한 후 약 2 시간 동안 교반하며 반응시켰다. 이 후, 교반을중지하고 약 30분동안정치시킨 比 후반응용액을
Figure imgf000042_0003
After stirring for about 2 minutes, about 0.1 mi of the second metallocene compound prepared in Synthesis Example 2 was dissolved in a solution state, and reacted with stirring for about 2 hours. After that, stop the stirring and settle for about 30 minutes.
Figure imgf000042_0003
슬러리를 필터 건조기(^ 11아 아)로 이송하고, 핵산 용액을 필터하여 제거하였다. 약 50 ᅤ에서 약 4 시간 동안 감압 하에 건조를 하여 혼성 담지 메탈로센촉매를제조하였다. 실시예 2: 혼성 담지 메탈로센촉매The slurry was transferred to a filter drier (^ 11 a) and the nucleic acid solution was filtered off. Drying under reduced pressure at about 50 kPa for about 4 hours yielded a hybrid supported metallocene catalyst. Example 2 Hybrid Supported Metallocene Catalyst
Figure imgf000042_0004
Figure imgf000042_0004
투입하는 온도를 110 I:가 아닌 130 I:로 올린 것을 제외하고는, 실시예 1과동일한방법으로혼성 담지 메탈로센촉매를제조하였다. 실시예 3: 혼성 담지 메탈로센촉매 A hybrid supported metallocene catalyst was produced in the same manner as in Example 1, except that the temperature to be introduced was raised to 130 I: instead of 110 I :. Example 3 Hybrid Supported Metallocene Catalyst
실시예 2에서 10 % 메틸알루미녹산(^0)/톨루엔 용액 투입시
Figure imgf000042_0005
When adding 10% methylaluminoxane (^ 0) / toluene solution in Example 2
Figure imgf000042_0005
제외하고는, 실시예 2와 동일한 방법으로 혼성 담지 메탈로센 촉매를 제조하였다. 2019/156482 1»(:1^1{2019/001535 Except, a hybrid supported metallocene catalyst was prepared in the same manner as in Example 2. 2019/156482 1 »(: 1 ^ 1 {2019/001535
비교예 1: 혼성 담지 메탈로센촉매 Comparative Example 1 Hybrid Supported Metallocene Catalyst
(1)담체준비  (1) Carrier Preparation
실리카 952, (고 0^^011사 제조)를 600 V 온도에서 12 시간 동안진공을가한상태에서 탈수및 건조하였다.  Silica 952, (manufactured by High 0 ^^ 011), was dehydrated and dried under vacuum at a temperature of 600 V for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of mixed supported metallocene catalyst
20느의 스테인레스스틸(에 고압반응기에 톨루엔용액 약 3.0 1¾를 넣고, 상기 (1) 단계에서 준비된 실리카 담체 약 1000 요을 투입한 후, 반응기 온도를 약 40 (:로 올리면서 교반하였다. 실리카를 약 60 분 동안 충분히 분산시킨 후, 상기 합성예 1에서 준비한 제 1 메탈로센 화합물 약 0.1 1^()1을 용액 상태로 녹인 후 투입하여 약 2 시간 동안 교반하며
Figure imgf000043_0001
Into a stainless steel (20) into a high pressure reactor in about 3.0 1 ¾ toluene solution, about 1000 yaw of the silica carrier prepared in step (1) was added, and stirred while raising the reactor temperature to about 40 (:). After sufficiently dispersing the silica for about 60 minutes, about 0.1 1 ^ () 1 of the first metallocene compound prepared in Synthesis Example 1 was dissolved in a solution state, added thereto, and stirred for about 2 hours.
Figure imgf000043_0001
반응용액을디캔테0}션((16€31 1011)하였다. 이 후, 반응기에 10 % 메틸알루미녹산( ())/톨루엔 용액을 7.4
Figure imgf000043_0002
The reaction solution was decanted 0 (1 6 € 31 1 011 ). Thereafter, 10% methylaluminoxane () / toluene solution was added to the reactor in 7.4.
Figure imgf000043_0002
교반하였다. 그리고나서, 반응기 온도를 다시 40 X:로 낮춘 후, 교반을 중지하고 약 30 분 동안 정치시킨(36 1比§) 후 반응 용액을
Figure imgf000043_0003
Stirred. Then, the reactor temperature was lowered again to 40 X, the stirring was stopped, allowed to stand for about 30 minutes ( 36 1 比§ ), and then the reaction solution was added.
Figure imgf000043_0003
분간 교반한 후, 상기 합성예 2에서 준비한 제 2 메탈로센 화합물 약 0.1 미이을 용액 상태로 녹여 투입한 후 약 2 시간 동안 교반하며 반응시켰다. 이 후, 교반을중지하고 약 30분동안정치시킨 比 후반응용액을
Figure imgf000043_0004
After stirring for about a minute, about 0.1 mi of the second metallocene compound prepared in Synthesis Example 2 was dissolved in a solution state, and reacted with stirring for about 2 hours. After that, stop the stirring and settle for about 30 minutes.
Figure imgf000043_0004
슬러리를 필터 건조기( 11라 라)로 이송하고, 핵산 용액을 필터하여 제거하였다. 약 50 ᅤ에서 약 4 시간 동안 감압 하에 건조를 하여 혼성 담지 메탈로센촉매를제조하였다. 2019/156482 1»(:1^1{2019/001535 The slurry was transferred to a filter drier (11 la) and the nucleic acid solution was filtered off. Drying under reduced pressure at about 50 kPa for about 4 hours yielded a hybrid supported metallocene catalyst. 2019/156482 1 »(: 1 ^ 1 {2019/001535
비교예 2: 혼성 담지 메탈로센촉매Comparative Example 2: Hybrid Supported Metallocene Catalyst
Figure imgf000044_0001
Figure imgf000044_0001
투입하는온도를 110 I:가아닌 60 I:로낮춘것을제외하고는, 실시예 1과 동일한방법으로혼성 담지 메탈로센촉매를제조하였다. 비교예 3: 혼성 담지 메탈로센촉매
Figure imgf000044_0002
A hybrid supported metallocene catalyst was prepared in the same manner as in Example 1, except that the temperature to be charged was lowered to 110 I: rather than 60 I :. Comparative Example 3 Hybrid Supported Metallocene Catalyst
Figure imgf000044_0002
동일한방법으로혼성 담지 메탈로센촉매를제조하였다. 비교예 4: 혼성 담지 메탈로센촉매In the same manner, a hybrid supported metallocene catalyst was prepared. Comparative Example 4 Hybrid Supported Metallocene Catalyst
Figure imgf000044_0003
Figure imgf000044_0003
투입하는온도를 60 。(:가아닌 110 X:로올린 것을제외하고는, 비교예 1과 동일한방법으로혼성 담지 메탈로센촉매를제조하였다. 비교예 5: 혼성 담지 메탈로센촉매 A hybrid supported metallocene catalyst was prepared in the same manner as in Comparative Example 1, except that the temperature to be charged was 60 ° C .:
(1)담체 준비  (1) carrier preparation
실리카 952, ( 0^^011사 제조)를 180 V 온도에서 12 시간 동안진공을가한상태에서 탈수및 건조하였다. Silica 952, ( manufactured by 0 ^^ 011 ), was dehydrated and dried under vacuum at room temperature for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
20느의 스테인레스스틸 ( 고압반응기에 톨루엔용액 약 3.0 1¾를 넣고, 상기 (1) 단계에서 준비된 실리카 담체 약 1000 당을 투입한 후, 20 stainless steels (toluene solution about 3.0 1 ¾ in a high-pressure reactor, about 1000 sugars of the silica carrier prepared in step (1) was added,
Figure imgf000044_0005
Figure imgf000044_0005
올린 후 약 200 제으로 약 12시간동안교반하였다. 그리고나서, 반응기 온도를 다시 40 I:로 낮춘 후, 교반을 중지하고 약 30 분 동안
Figure imgf000044_0004
2019/156482 1»(:1^1{2019/001535
After raising, the mixture was stirred for about 12 hours with about 200 agents. Then lower the reactor temperature to 40 I: and stop the agitation for about 30 minutes
Figure imgf000044_0004
2019/156482 1 »(: 1 ^ 1 {2019/001535
Figure imgf000045_0001
Figure imgf000045_0001
분간 교반한 후, 상기 합성예 1에서 준비한 제 1 메탈로센 화합물 약 0.1 11101을용액 상태로녹인후투입하여 약 2시간동안교반하며 반응시켰다. 이 후에, 상기 합성예 2에서 준비한 제 2 메탈로센 화합물 약 0. 1 111()1을 용액 상태로녹여 투입한후 약 2시간동안교반하며 반응시켰다. 이 후, 교반을 중지하고 약 30 분 동안 정치시킨(36 1 11塔) 후 반응 용액을
Figure imgf000045_0002
반응기에 핵산 약 3.0뇨용을투입하고 핵산 슬러리를 필터 건조기( 아 라)로 이송하고, 핵산 용액을 필터하여
Figure imgf000045_0003
After stirring for about 1 minute, about 0.1 11101 of the first metallocene compound prepared in Synthesis Example 1 was dissolved in a solution state, added, and stirred for about 2 hours to react. Thereafter, about 0.11 111 () 1 of the second metallocene compound prepared in Synthesis Example 2 was dissolved in a solution state, followed by stirring for about 2 hours. After that, the stirring was stopped and allowed to stand for about 30 minutes (36 1 11 塔), and then the reaction solution was
Figure imgf000045_0002
Inject about 3.0 urine nucleic acid into the reactor, transfer the nucleic acid slurry to the filter drier (A), filter the nucleic acid solution
Figure imgf000045_0003
담지 메탈로센촉매를제조하였다. 비교예 6:혼성 담지 메탈로센촉매  A supported metallocene catalyst was prepared. Comparative Example 6: Hybrid Supported Metallocene Catalyst
(1)담체준비  (1) Carrier Preparation
실리카 952, (¾ 6
Figure imgf000045_0005
제조)를 180
Figure imgf000045_0004
온도에서 12 시간 동안진공을가한상태에서 탈수및 건조하였다.
Silica 952, (¾ 6
Figure imgf000045_0005
Manufacturing)
Figure imgf000045_0004
Dehydration and drying were performed under vacuum at temperature for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of mixed supported metallocene catalyst
20느의 스테인레스스틸( 고압반응기에 톨루엔용액 약 3.0 1¾를 넣고, 상기 (1) 단계에서 준비된 실리카 담체 약 1000 당을 투입한 후, 반응기 온도를약 40 X:로올리면서 교반하였다. ' 실리카를 약 60 분 동안 충분히 분산시킨 후, 10 犯
Figure imgf000045_0006
20 stainless steels (about 3.0 1 ¾ of toluene solution was added to a high-pressure reactor, and about 1,000 sugars of the silica carrier prepared in step (1) were added thereto, followed by stirring while raising the reactor temperature to about 40 ×. ' After sufficient dispersion of silica for about 60 minutes,
Figure imgf000045_0006
올린 후 약 200印111으로 약 12 시간동안교반하였다. 그리고나서, 반응기 온도를 다시 40 X:로 낮춘 후, 10 ¾> 메틸알루미녹산(■())/톨루엔 용액을
Figure imgf000045_0007
2019/156482 1»(:1^1{2019/001535
After uploading, it was stirred for about 12 hours at about 200 印111 . Then, the reactor temperature was lowered to 40 X: and 10 ¾ > methylaluminoxane (■ ()) / toluene solution was removed.
Figure imgf000045_0007
2019/156482 1 »(: 1 ^ 1 {2019/001535
이렇게 회수한 반응 용액에, 톨루엔 약 3.0
Figure imgf000046_0001
투입하고 약 10 분간 교반한 후, 상기 합성예 1에서 준비한 제 1 메탈로센 화합물 약 0.1 >1101을용액 상태로녹인후투입하여 약 2시간동안교반하며 반응시켰다. 이 후에, 상기 합성예 2에서 준비한 제 2 메탈로센 화합물 약 0.1 1^이을 용액 상태로녹여 투입한후 약 2시간동안교반하며 반응시켰다. 이 후, 교반을 중지하고 약 30 분 동안 정치시킨 ( 比용) 후 반응 용액을 디캔테이션 하였다. 반응기에 핵산 약 3.0 을투입하고 핵산 슬러리를 필터 건조기 ( 라 라)로 이송하고, 핵산 용액을 필터하여 제거하였다. 약 50 (:에서 약 4 시간 동안 감압 하에 건조를 하여 혼성 담지 메탈로센촉매를제조하였다. 상기 실시예 1 내지 3 및 비교예 1 내지 6에 따른 혼성 담지 촉매 제조공정에서,제 1 메탈로센 화합물과제 2메탈로센 화합물,조촉매의 담지 함량과담지 온도,담지 순서는아래 표 1에 나타낸바와같다.
Toluene about 3.0 in the reaction solution thus recovered
Figure imgf000046_0001
After the solution was added and stirred for about 10 minutes, about 0.1 > 110 1 of the first metallocene compound prepared in Synthesis Example 1 was dissolved in a solution state, and the mixture was stirred and reacted for about 2 hours. Thereafter, about 0.1 1 ^ of the second metallocene compound prepared in Synthesis Example 2 was dissolved in a solution state, followed by stirring for about 2 hours. After this, stirring was stopped and allowed to stand for about 30 minutes (for comparison), and then the reaction solution was decanted. About 3.0 nucleic acids were introduced into the reactor and the nucleic acid slurry was transferred to a filter drier (Lara) and the nucleic acid solution was filtered off. The mixture was dried under reduced pressure for about 4 hours at about 50 to prepare a hybrid supported metallocene catalyst. In the process of preparing the hybrid supported catalyst according to Examples 1 to 3 and Comparative Examples 1 to 6, the first metallocene was prepared. The supported content and supported temperature of the compound and the second metallocene compound and the promoter are shown in Table 1 below.
【표 1】 Table 1
Figure imgf000046_0002
2019/156482 1»(:1^1{2019/001535
Figure imgf000046_0002
2019/156482 1 »(: 1 ^ 1 {2019/001535
Figure imgf000047_0002
상기 표 1에서 담지 촉매 제조시 제 1 메탈로센 화합물(전구체 1)과 제 2 메탈로센 화합물(전구체 2), 조촉매( 쇼0)의 담지 순서에 따라 ’’广로 구분하여 표시하였다.
Figure imgf000047_0002
In the preparation of the supported catalyst in Table 1, the first metallocene compound (precursor 1), the second metallocene compound (precursor 2), and the co-catalyst (show 0) were classified according to the order of '' 广.
<올레핀계 단량체의 중합제조예> <Polymerization Example of Olefin Monomer>
제조예 1내지 3및비교제조예 1내지 6: 에틸렌의 호모중합  Preparation Examples 1 to 3 and Comparative Preparation Examples 1 to 6: Homopolymerization of ethylene
하기 표 2에 나타낸 바와 같은 조건 하에서, 실시예 1 내지 3 및 비교예 1 내지 6의 혼성 담지 메탈로센 촉매를사용하여, 제조예 1 내지 3 및 비교제조예 1 내지 6의 에틸렌호모중합반응을수행하였다. 먼저, 2 의 오토클레이브(쇼1加 句 고압 반응기에 트리에틸알루미늄(1£쇼 2 mL (1 M 111 1¾ 句를 투입하고, 핵산 0.6 ]¾을 투입한후 500 平!!!으로 교반하면서 온도를 80 X:로 승온하였다. 상기 혼성 담지 촉매와 핵산을 에 담아 반응기에 투입하고 추가적으로 핵산 0.2 노은을 투입하였다. 반응기 내부 온도가 80 I:가 되면 에틸렌 압력 30 따 하에서 500 111으로 교반하면서 1 시간 반응시켰다. 반응 종료 후 얻어진
Figure imgf000047_0001
Under the conditions as shown in Table 2, the ethylene homopolymerization reactions of Preparation Examples 1 to 3 and Comparative Preparation Examples 1 to 6 were carried out using the hybrid supported metallocene catalysts of Examples 1 to 3 and Comparative Examples 1 to 6 Was performed. First, add 2 triethylaluminum (1 £ show 2 mL (1 M 111 1¾, to 2 high pressure reactors, show 1 加 句 high pressure reactor, add 0.6 ¾ nucleic acid), and stir at 500 The temperature was raised to 80 X :. The hybrid supported catalyst and the nucleic acid were added to the reactor, followed by addition of 0.2 no silver of the nucleic acid. When the internal temperature of the reactor reached 80 I :, the mixture was reacted for 1 hour with stirring at 500 111 under ethylene pressure 30. Obtained after completion of reaction
Figure imgf000047_0001
건조하였다. 제조예 1 내지 3 및 비교제조예 1 내지 6의 중합 공정에서 촉매의 활성 및 제조된 폴리올레핀의 물성은 다음과 같이 측정하였으며, 측정 결과는하기 표 2에 나타내었다. Dried. In the polymerization process of Preparation Examples 1 to 3 and Comparative Preparation Examples 1 to 6, the activity of the catalyst and the physical properties of the prepared polyolefin were measured as follows. The results are shown in Table 2 below.
( 1) 촉매 활성 (Activity, kgPE/gSi02): 제조예 및 비교제조예의 중합 반응에 이용된 촉매의 중량과 상기 중합 반응으로부터 산출된 고분자의 중량을측정하여 제조예 및 비교제조예의 중합반응에 사용된 각실시예 및 비교예촉매들의 촉매 활성 (act ivi ty)을산출하였다. 구체적으로, 상술한 바와 같이 중합 공정 및 건조 공정을 마치고 얻어진 폴리에틸렌의 중량 (kg)를 측정하여 kgPE 값으로 하고, 상기 중합 공정에 사용된 담지 촉매의 중량 (g)은 gSi<¾으로, 이렇게 얻어진 폴리에틸렌의 중량 (kg)를측정하여 kgPE값을담지 촉매의 중량 (g) gSi02로 나눈값을촉매 활성으로나타내었다. (1) Catalytic activity (Activity, kgPE / gSi0 2 ): The weight of the catalyst used in the polymerization reaction of Preparation Example and Comparative Preparation Example and the weight of the polymer produced from the polymerization reaction were measured to determine the polymerization reaction of Preparation Example and Comparative Preparation Example. The catalytic activity (act ivi ty) of each of the examples and comparative catalysts used was calculated. Specifically, as described above, the weight (kg) of the polyethylene obtained after the polymerization process and the drying process is measured to be a kgPE value, and the weight (g) of the supported catalyst used in the polymerization process is gSi <¾, thus obtained. The weight (kg) of polyethylene was measured and the value obtained by dividing the kgPE value by the weight (g) g Si0 2 of the supported catalyst was shown as catalyst activity.
(2) 중량평균 분자량 (Mw) 및 분자량 분포 (MTO , polydi spers i ty index) : 겔 투과 크로마토그래피 (GPC , gel permeat ion chromatography,(2) Weight average molecular weight (Mw) and molecular weight distribution (MTO, polydi spers i ty index): gel permeation chromatography (GPC, gel permeat ion chromatography,
Water사 제조)를 이용하여 폴리에틸렌의 중량평균 분자량 (Mw)과 수평균 분자량 (Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량분포 (MffD , Mw/Mn)를계산하였다. 구체적으로, 겔투과크로마토그래피 (GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laborator ies PLgel MIX-B 300 _ 길이 칼럼을 사용하였다. 이때 측정 온도는 160 °C이며, 1,2,4 -트리클로로벤젠 (1,2,4- Tr i chlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min로 하였다. 제조예 및 비교제조예에 따른 폴리에틸렌 샘플은 각각 GPC분석 기기 (PL- GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠 (1,2,4-The weight average molecular weight (Mw) and the number average molecular weight (Mn) of polyethylene were measured using the product made by Water Corporation), and the molecular weight distribution (MffD, Mw / Mn) was calculated by dividing the weight average molecular weight by the number average molecular weight. Specifically, Water Permeation Chromatography (GPC) apparatus was used Waters PL-GPC220 instrument, Polymer Laborator ies PLgel MIX-B 300 _ length column was used. At this time, the measurement temperature was 160 ° C, 1,2,4-trichlorobenzene (1,2,4-Tr i chlorobenzene) was used as a solvent, the flow rate was 1 mL / min. Polyethylene samples according to Preparation Examples and Comparative Preparation Examples contained trichlorobenzene (1,2,4-B 0.0125%) using a GPC analysis device (PL-GP220), respectively.
Tr ichlorobenzene)에서 160 °C , 10시간 동안 녹여 전처리하고, 10 mg/10mL의 농도로 조제한 다음, 200 y L의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도하였다. 폴리스티렌 표준시편의 중량평균분자량은 2000 g/mol , 10000 g/mol , 30000 g/mol , 70000 g/mol , 200000 g/mol , 700000 g/mol , 2000000 용/11101, 4000000용/11101, 10000000용/미이의 9종을사용하였다. Tr ichlorobenzene) was dissolved in 160 ° C for 10 hours, pretreated, prepared at a concentration of 10 mg / 10mL, and then supplied in an amount of 200 y L. The calibration curves formed using polystyrene standard specimens were used to derive the values of Mw and Mn. The weight average molecular weight of the polystyrene standard specimens is 2000 g / mol, 10000 g / mol, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 9 types of dragon / 11101, 4000000 dragon / 11101 , 10000000 dragon / MUI were used.
(3)입도분포분석 (PSD):시브 (sieve, size 850 pm, 500 pm, 300 jm, 180 jMn)를사용하여 중합체를입자크기별로분리하였다. 구체적으로, 상술한바와같은시브를사용하여 각각, 중합체의 입자 크기가 850,를 초과하는 경우 0850), 500 _를 초과하여 850, 이하인 경우 (>500), 300 ^■를 초과하여 500 m 이하인 경우 ( ñ300), 180 /페를 초과하여 300 m 이하인 경우 (>300), 180 pm 이하의 미분 상태인 경우 (Fine)에 해당하는 중합체의 중량을 측정한후에, 전체 중합체의 총중량을 기준으로 해당 입자 크기로 분리된 중합체의 중량을 백분율 (wt%)로 표시하였다. 특정 기기를사용한다거나특정한기준에 의거하지 않고,실험실에서 단순히 시브 (sieve)로 분리한 중량 값으로입도 분포 분석 (PSD) 결과를(3) Particle size distribution analysis (PSD): The polymers were separated by particle size using sieve (sieve, size 850 pm, 500 pm, 300 jm, 180 jM n). Specifically, using the sieve as described above, respectively, the particle size of the polymer is more than 850, 0850), more than 500 _ 850, or less (> 500), more than 300 ^ ■ less than 500 m if (ñ300), 180 / if 300 m or less in excess of Fe (> 300), that, based on the, total weight of the total polymer hanhue measuring the weight of the polymer corresponding to the differential case state (Fine) of less than 180 pm particle The weight of polymer separated by size is expressed as percentage (wt%). The results of particle size distribution (PSD) analysis are based on the weight values separated by sieve in the laboratory, without using a specific device or based on specific criteria.
PSD로나타내었다. Shown as PSD.
(4) 겉보기 밀도 (BD): ASTM D 1895 Method A의 방법에 따라 측정하였다.구체적으로,부피 100 mL의 SUS용기에 중합체르 채운 후, 이 때의 중합체무게 (g)를측정하여,단위 부피당중량 (g/mL)으로나타내었다. (4) Apparent Density (BD): Measured according to the method of ASTM D 1895 Method A. Specifically, after filling a 100 mL volume of SUS container with polymer, the polymer weight (g) at this time was measured and measured per unit volume. Expressed in weight (g / mL).
(5) A1 담지율 (%) 측정: 담지 촉매 중 A1 담지율을 유도 결합 플라즈마 분광 (ICP, Inductively Coupled Plasma Spectrometer) 분석 방법으로 측정하였다. 이 때, A1 담지율 (%)은 담지 촉매 제조시 넣어준 조촉매양 (A1)대비 실제 담지된조촉매의 양을백분율값으로나타내었다. 구체적으로, 분석에 사용된 장비는 ICP-OES (Perkin Elmer)로 분석 조건은 Plasma Gas 12 L/min, Auxiliary Gas 0.2 L/min, Nebulizer Gas 0.8 L/min으로설정하였으며, RF Power는 1300 WATTS, Sample flow rate는 1.50 mL/min로 Radial View로측정하였다. 【표 2】 (5) A1 loading rate (%) measurement: The A1 loading rate in the supported catalyst was measured by an Inductively Coupled Plasma Spectrometer (ICP) analysis method. At this time, the A1 loading rate (%) represents the amount of the actually supported promoter relative to the amount of promoter (A1) put in the preparation of the supported catalyst as a percentage value. Specifically, the equipment used for analysis was ICP-OES (Perkin Elmer) and the analysis conditions were set to Plasma Gas 12 L / min, Auxiliary Gas 0.2 L / min, Nebulizer Gas 0.8 L / min, and RF Power was 1300 WATTS, Sample flow rate was measured by Radial View at 1.50 mL / min. Table 2
Figure imgf000050_0002
상기 표 2의 결과로부터, 제조예 1 내지 3은 0.40 용/ 내지 0.41 §/!此 높은 겉보기 밀도와 4.2 내지 4.3의 넓은 분자량 분포를 모두 충족하는폴리에틸렌을제조할수 있음을 알수 있다. 특히, 제조예 1내지 3은 촉매 활성이 9.9
Figure imgf000050_0001
내지 12 1녠¾/§ 02으로 높게 유지하면서도 나타나면서도 입도가크고분포가좁으면서 겉보기 밀도가오히려 상승하는 장점이 있다. 이로써 생성되는 중합체의 입자 하나 하나가 밀도있게 2019/156482 1»(:1^1{2019/001535
Figure imgf000050_0002
We can see that from the results of Table 2, Production Examples 1 to 3 is able to prepare a polyethylene that meets both the 0.40 / 0.41 to § /!此broad molecular weight distribution of a high bulk density and 4.2 to 4.3 for. In particular, Preparation Examples 1 to 3 had a catalytic activity of 9.9
Figure imgf000050_0001
To 12 1 녠 ¾ / § 0 2 while maintaining a high particle size and narrow distribution, the apparent density has the advantage of rising. The resulting polymer particles are dense 2019/156482 1 »(: 1 ^ 1 {2019/001535
생성됩을 알 수 있고, 실제 파일롯 공정이나 연속 공정에 적용시 세틀링 효율을개선하여 생산성을증대시킬수 있음을알수있다. 이러한제조예 1내지 3의 폴리에틸렌 중합공정에 사용된 실시예 1 내지 3의 혼성 담지 촉매는, 제 1 메탈로센 전구체를조촉매 담지에 앞서서 담지시킴으로써, 중합체 !■!)를 넓힐 수 있고 이에 따라 중합체의 가공성이 향상시킬 수 있다. 이와 함께, 실시예 1의 혼성 담지 촉매는 조촉매를 고온에서 순차적으로 분할 담지하여 조촉매를 담체 내부까지 골고루 담지시킴으로써, 생성된중합체의 겉보기 밀도를현저히 증가시킬수 있다. 특히, 실시예 1내지 3의 혼성 담지 촉매에 대하여, 103로 담지촉매 내 시 함량을 분석하였을 때, 비교예 1 내지 6과 모두 동일한 양의 조촉매를투입했음에도불구하고, 조촉매를고온에서 분할담지시킨 실시예 1내지 3이시 담지율이 89%및 90%로현저히 높게 나타남을알수있다. 반면에, 비교제조예 1내지 6은겉보기 밀도어이와분자량분포 1)), 입도분포를동시에 만족시키는중합체를얻지 못하였다.
Figure imgf000051_0001
It can be seen that it can be produced and can increase productivity by improving the settling efficiency when applied to actual pilot process or continuous process. The hybrid supported catalysts of Examples 1 to 3 used in the polyethylene polymerization process of Preparation Examples 1 to 3 can broaden the polymer! ■!) By supporting the first metallocene precursor before the supported catalyst. The processability of the polymer can be improved. In addition, the hybrid supported catalyst of Example 1 can support the splitting of the promoter sequentially at a high temperature to evenly support the promoter to the inside of the carrier, thereby significantly increasing the apparent density of the resulting polymer. In particular, when the contents of the supported catalyst in the catalysts were analyzed as 10 3 with respect to the hybrid supported catalysts of Examples 1 to 3, although the same amount of the promoters were added to Comparative Examples 1 to 6, the promoters were maintained at high temperature. It can be seen that the loading ratios of Example 1 to 3 which were dividedly supported were 89% and 90%. On the other hand, Comparative Production Examples 1 to 6 could not obtain a polymer that satisfies the apparent density and molecular weight distribution 1)) and the particle size distribution at the same time.
Figure imgf000051_0001
80 의 저온에서 한꺼번에 또는 분할 담지한 비교예 1 내지 3의 촉매를 적용함으로써, 제조예 1 내지 3보다 폴리에틸렌의 겉보기 밀도가 낮게 나타났다. 또한, 비교제조예 4에서, 조촉매를 110 X:의 고온에서 담지시킨다고 하여도 분할투입 없이 한번에 담지한 비교예 4의 혼성 담지 촉매를 사용한 경우에도, 폴리에틸렌의 겉보기 밀도가 분할 투입 했을 때보다 낮게 나타남을 알 수 있다. 특히, 비교제조예 1 내지 4에서는 제 1 메탈로센 화합물을 조촉매 담지에 앞서서 담지시켜, 중합체의 분자량분포(■이는 넓게 확보할 수 있었으나 중합체의 입도 분포가 넓고 겉보기 밀도犯£1)가낮아생산성 증대를기대하기 어렵다. 또한, 비교제조예 5 및 6에서는, 조촉매를 먼저 담지하고 촉매 전구체를 담지한 혼성 담지 촉매를 적용함으로써 , 중합체의 분자량분포 (MWD)가크게 떨어지며 좁게 나타났다. 제조예 4및비교제조예 7내지 9: 에틸렌- 1-핵센공중합 The apparent density of polyethylene was lower than that of Preparation Examples 1 to 3 by applying the catalysts of Comparative Examples 1 to 3 all at once or partly supported at a low temperature of 80. In Comparative Production Example 4, even when the promoter was supported at a high temperature of 110 X :, even when the hybrid supported catalyst of Comparative Example 4, which was supported at one time without split injection, was used, the apparent density of polyethylene was lower than that of the split injection. It can be seen that. In particular, in Comparative Examples 1 to 4, the first metallocene compound was supported prior to the support of the promoter, so that the molecular weight distribution of the polymer (which could be widely secured, but the particle size distribution of the polymer was wide and the apparent density 犯 £ 1 ) was low. It is difficult to expect productivity gains. In Comparative Production Examples 5 and 6, the catalyst was first supported and the catalyst By applying the hybrid supported catalyst carrying the precursor, the molecular weight distribution (MWD) of the polymer dropped and appeared narrow. Preparation Example 4 and Comparative Preparation Examples 7 to 9: Ethylene-1-nucleene copolymerization
하기 표 3에 나타낸바와같은조건하에서,실시예 1 및 비교예 1, 4, 5의 혼성 담지 메탈로센 촉매를 사용하여 제조예 4 및 비교제조예 7 내지 9의 에틸렌- 1-핵센공중합반응을수행하였다. 이 때,중합반응기는 isobutane Slurry loop process인 연속중합기,즉, 루프슬러리 반응기이며,반응기 부피는 140 L이며,반응유속은 약 7 m/s로 운전하였다. 중합에 필요한 gas류 (에틸렌, 수소) 및 공단량체인 1-hexene은 일정하게 연속적으로 투입되며, 개별적인 유량은 target 제품에 맞게 조절하였다. 모든 gas류 및 공단량체인 1-hexene의 농도는 on-line gas chromatograph로확인하였다.담지 족매는 isobutane slurry로투입되며,반응기 압력은약 40 bar로유지되며,중합온도는약 93 °C에서 수행하였다. 상기 제조예 4및 비교제조예 7내지 9의 중합공정에서 촉매의 활성 및 제조된 폴리올레핀의 물성 평가 결과를 하기 표 3에 나타내었다. 이 중에서, 촉매 활성 및 Mw, MWD, BD는 전술한 바와 같은 방법으로 측정하였다. Under the conditions as shown in Table 3 below, the ethylene- 1 -nuxene copolymerization reaction of Preparation Example 4 and Comparative Preparation Examples 7 to 9 was carried out using the hybrid supported metallocene catalyst of Example 1 and Comparative Examples 1, 4 and 5. Was performed. At this time, the polymerization reactor was a continuous polymerization reactor, that is, a loop slurry reactor, which is an isobutane Slurry loop process, the reactor volume was 140 L, and the reaction flow rate was operated at about 7 m / s. Gases (ethylene, hydrogen) and comonomer 1-hexene required for polymerization are continuously and continuously injected, and the individual flow rate is adjusted to the target product. The concentration of all gases and comonomers 1-hexene was confirmed by on-line gas chromatograph. Supporting monomers were introduced into isobutane slurry, reactor pressure was maintained at about 40 bar, and polymerization temperature was performed at about 93 ° C. It was. Table 3 shows the results of evaluating the activity of the catalyst and the physical properties of the prepared polyolefin in the polymerization process of Preparation Example 4 and Comparative Preparation Examples 7 to 9. Among these, catalyst activity and Mw, MWD, BD were measured by the method as mentioned above.
(6) 에틸렌 로드 (Ethylene load, C2) 중량 (kg/h) : 상술한바와 같은 중합조건 하에서 에틸렌- 1-핵센 공중합 반응을 수행할 때, 시간당 에틸렌 소모량 (중합체 생성량) , 즉, 단위 시간당 에틸렌 로드 중진량 (kg/h)을 측정하였다. (6) Ethylene load (C2) Weight (kg / h): Ethylene consumption per hour (polymer production amount), ie ethylene per unit time, when the ethylene- 1-nuxene copolymerization reaction is carried out under the polymerization conditions as described above. Load shedding weight (kg / h) was measured.
(7) MI2. i6 및 MFRR(21.6/2.16): 용융 지수 (MI2.16 , Melt Index)는 ASTM D 1238 (조건 E, 190 °C , 2.16 kg하중)규격에 따라측정하였다. 한편, 용융 흐름 지수 이七 ?1 요 근 묘 比, !¾, 21.6/2.16)는 MFR21.6을 MFR2.16으로 나누어 계산하였으며, MFR21.6은 ISO 1133에 따라 190 °C의 온도 및 21.6 kg의 하중 하에서 측정하고, MFR2.16은 ISO 1133에 따라 190 °C의 온도및 2.16 kg의 하중하에서 측정하였다. (8)밀도 (density): ASTM D 1505의 방법에 따라측정하였다. (7) MI 2. i6 and MFRR (21.6 / 2.16): Melt Index (MI 2.16, Melt Index) was measured according to ASTM D 1238 (Condition E, 190 ° C, 2.16 kg load). On the other hand, the melt flow index 七 1 0 ¥ yaw root ratio 比 ,! ¾ , 21.6 / 2.16) MFR 21.6 was calculated by dividing by MFR 2.16 , MFR 21.6 measured under a temperature of 190 ° C and a load of 21.6 kg according to ISO 1133, MFR 2.16 measured under a temperature of 190 ° C and a load of 2.16 kg according to ISO 1133 It was. (8) Density: Measured according to the method of ASTM D 1505.
(9) 슬러리 밀도 (DI, slurry density): 슬러리 루프 (slurry loop) 반응기 내 단위부피당 폴리머의 양을 나타내는 값 (slurry density)으로 방사선을이용하여 측정하였다. (9) Slurry density (DI, slurry density): Slurry density was measured using radiation as a value representing the amount of polymer per unit volume in a slurry loop reactor.
(10)세틀링 효율 (SE, %) :녜틀링 효율 (settling efficiency)은하기 계산식 1로정의되는바에 따라측정하였다. (10) Settling efficiency (SE,%): The settling efficiency was measured as defined by the following formula (1).
[계산식 1]  [Calculation formula 1]
세틀링 효율 (%) = 에틸렌 사용량/ (에틸렌 사용량 + 용매 함량) 父 100  Settling efficiency (%) = amount of ethylene used / (ethylene used + solvent content) 父 100
【표 3】 Table 3
Figure imgf000053_0001
상기 표 3의 결과로부터, 제조예 4는 제 1 메탈로센 전구체를 먼저 담지시킨 후에 조촉매를 분할담지하고 제 2 메탈로센 전구체를 담지한 실시예 1의 혼성 담지 촉매를 사용하여, 높은 겉보기 밀도와 넓은 분자량 분포를갖는폴리올레핀을효과적으로제조할수있음을알수 있다. 특히 , 제조예 4는 조촉매를 110 °C의 고온에서 1차 담지한 후에, 40 °C에서 잔부를 담지하여 순차적으로 분할 담지하여 조촉매를 담체 내부까지 골고루 담지시킴으로써, 동일한 온도, 압력, 슬러리 밀도 (slurry densi ty, DI) 하에서 연속 중합을 실시하였을 때 활성이 높으면서도 세틀링효율 (S.E)과 에틸렌 로드을 큰 폭으로 증가시켰다. 구체적으로, 제조예 4의 세틀링효율 ( 은 비교제조예 7 내지 9와 대비하여 약 7.9% 내지 약 11.5%까지 더 향상되었다. 이로써, 제조예 4의 시간당 에틸렌 로드 (Ethylene load) 중량은, 비교제조예 7 내지 9와 대비하여 약 17.6% 내지 약 25%까지 더 증가하였으며, 이에 따라 파일럿 연속 공정인 슬러리 루프중합공정에서의 생산성을현저히 향상시킬수 있음을알수 있다.
Figure imgf000053_0001
From the results of Table 3, Preparation Example 4 is a high apparent by using the hybrid supported catalyst of Example 1 to carry the first metallocene precursor first, and then to carry a split catalyst and to support the second metallocene precursor It can be seen that it is possible to effectively produce polyolefins having a density and a wide molecular weight distribution. Particularly, in Preparation Example 4, after the primary catalyst was first supported at a high temperature of 110 ° C, the residue was sequentially supported at 40 ° C, and then dividedly supported so as to evenly support the promoter to the inside of the carrier. Continuous polymerization under the density (slurry densi ty, DI) significantly increased the settling efficiency (SE) and ethylene rod while having high activity. Specifically, the settling efficiency of (Example 4) was further improved by about 7.9% to about 11.5% compared to Comparative Preparation Examples 7 to 9. Thus, the ethylene load weight per hour of Preparation Example 4 was compared. Compared to Preparation Examples 7 to 9 further increased by about 17.6% to about 25%, it can be seen that the productivity in the slurry loop polymerization process, which is a pilot continuous process, can be significantly improved.

Claims

2019/156482 1»(:1^1{2019/001535 【청구의 범위】 【청구항 1] 실리카담체에 1종이상의 제 1 메탈로센화합물을담지시키는단계; 상기 제 1 메탈로센 화합물이 담지된 실리카 담체를 1종 이상의 알루미늄계 조촉매 화합물과접촉시켜 ,상기 실리카담체에상기 알루미늄계 조촉매 화합물을담지시키는단계;및 상기 알루미늄계 조촉매 화합물 담지된 실리카 담체에 1종 이상의 제 2메탈로센화합물을담지시키는단계; 를포함하며, 상기 알루미늄계 조촉매 화합물은 전체 투입량중 50중량%내지 90 중량%를 100 X: 내지 150 °(:에서 1차투입하고, 전체투입량중의 잔부를 - 5 X: 내지 40 X:의 온도에서 2차투입하는분할투입 방법에 의해 실리카 담체에 담지되는, 혼성 담지 메탈로센촉매의 제조방법. 【청구항 2] 제 1 항에 있어서, 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물의 담지량은각각실리카담체 1당을 기준으로 0.01 1 빼。 1 /요인 , 혼성 담지 메탈로센촉매의 제조방법. 【청구항 3】 제 1항에 있어서, 상기 제 1 메탈로센 화합물 및 제 2 메탈로센 화합은 각각 하기 화학식 1내지 5중어느하나로표시되는것인, 혼성 담지 메탈로센촉매의 제조방법: 2019/156482 1 »(: 1 ^ 1 {2019/001535 【claims】 【claim 1】 A step of supporting at least one first metallocene compound on a silica carrier; Contacting the silica carrier on which the first metallocene compound is supported with at least one aluminum-based promoter compound to support the aluminum-based promoter compound on the silica carrier; and the silica on which the aluminum-based promoter compound is supported. Supporting at least one second metallocene compound on the carrier; The aluminum-based cocatalyst compound includes 50 wt% to 90 wt% of the total amount of the first dose at 100 X: to 150 ° C, and the remainder of the total dose is -5 X to 40 X: A method for producing a hybrid supported metallocene catalyst, which is supported on a silica carrier by a secondary injection method at a secondary temperature. [Claim 2] The supporting amount of the first metallocene compound and the second metallocene compound is subtracted from 0.01 1 based on the amount of the silica carrier, respectively. Manufacturing method. [Claim 3] The method of claim 1, wherein the first metallocene compound and the second metallocene compound are each represented by any one of the following Chemical Formulas 1 to 5.
[화학식 1][Formula 1]
Figure imgf000055_0002
상기 화학식 1에서, 2019/156482 1»(:1^1{2019/001535
Figure imgf000055_0002
In Chemical Formula 1, 2019/156482 1 »(: 1 ^ 1 {2019/001535
Figure imgf000056_0001
Figure imgf000056_0001
시클로펜타디엔닐, 인데닐, 4, 5, 6, 7 -테트라하이드로 -1 -인데닐, 및 플루오레닐 라디칼로이루어진군으로부터 선택된 어느하나이고,이들은탄소수 1 내자 20의 탄화수소로치환될수있으며; Any one selected from the group consisting of cyclopentadienyl, indenyl, 4, 5, 6, 7-tetrahydro-1 -indenyl, and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
및 0는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 01 내지 020의 알킬, 01 내지 (310의 알콕시, 公1 내지 020의 알콕시알킬, 06 내지 020의 아릴, 06내지 010의 아릴옥시, 02내지 020의 알케닐, 07내지
Figure imgf000056_0002
And 0 are the same as or different from each other, and each independently hydrogen, alkyl of 01 to 020, alkoxy of 310 to 310, alkoxyalkyl of C1 to 020, aryl of 06 to 020, aryloxy of 06 to 010, 02 to 020 Alkenyl, 07-07
Figure imgf000056_0002
아니며; Not;
方은 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 (:10의 알케닐, 07내지 040의 알킬아릴, 01내지 040의 아릴알킬, 06내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 02 내지 020의 알킬알콕시, 또는 07 내지 040의 아릴알콕시이고;  Each independently represents a halogen atom, alkyl of 01 to 020, alkenyl of 02 to (10: 10, alkylaryl of 07 to 040, arylalkyl of 01 to 040, aryl of 06 to 020, substituted or unsubstituted 01 to Alkylidene of 020, substituted or unsubstituted amino group, alkylalkoxy of 02-020, or arylalkoxy of 07-040;
II은 1또는 0이고;  II is 1 or 0;
Figure imgf000056_0004
Figure imgf000056_0004
시클로펜타디에닐, 인데닐, 4, 5,6, 7 -테트라하이드로 -1 -인데닐 및 플루오레닐 라디칼로이루어진 군으로부터 선택된 어느하나이고, 이들은탄소수 1 내지 20의 탄화수소로치환될수있으며;Any one selected from the group consisting of cyclopentadienyl, indenyl, 4, 5,6, 7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms;
Figure imgf000056_0003
Figure imgf000056_0003
내지 020의 알킬, 01 내지 <310의 알콕시, 02 내지 020의 알콕시알킬, 06 내지 020의 아릴, 06내지 (:10의 아릴옥시, 02내지 020의 알케닐,(21내지 2019/156482 1»(:1^1{2019/001535 To 020 alkyl, 01 to <310 alkoxy, 02 to 020 alkoxyalkyl, 06 to 020 aryl, 06 to (: 10 aryloxy, 02 to 020 alkenyl, (21 to 2019/156482 1 »(: 1 ^ 1 {2019/001535
040의 알킬아릴, 07내지 040의 아릴알킬, 08내지 040의 아릴알케닐,또는 02내지 010의 알키닐이고;040 alkylaryl, 07-040 arylalkyl, 08-040 arylalkenyl, or 02-010 alkynyl;
는 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 (:10의 알케닐, 07내지 040의 알킬아릴, 07내지 040의 아릴알킬, 06내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 02 내지 020의 알킬알콕시, 또는 07 내지 040의 아릴알콕시이고;  Each independently represents a halogen atom, alkyl of 01-020, alkenyl of 02-(: 10), alkylaryl of 07-040, arylalkyl of 07-040, aryl of 06-020, substituted or unsubstituted 01-020 Alkylidene of, substituted or unsubstituted amino group, alkylalkoxy of 02-020, or arylalkoxy of 07-040;
1은 。 3!? 고리와
Figure imgf000057_0002
고리를 가교 결합시키거나, 하나의
Figure imgf000057_0001
고리를 2에 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자를 포함하는라디칼중하나이상또는이들의 조합이고;
Tomb 1 is。 3 !? With rings
Figure imgf000057_0002
Crosslink the ring, or
Figure imgf000057_0001
At least one or a combination of radicals comprising carbon, germanium, silicon, phosphorus or nitrogen atoms which crosslink the ring to 2 ;
111은 1또는 0이고;  111 is 1 or 0;
[화학식 3] 서, [Formula 3]
금속이고; Metal;
Figure imgf000057_0003
타디에닐, 인데닐, 4, 5,6, 7 -테트라하이드로 -1 -인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로치환될수있으며;
Figure imgf000057_0003
Tadienyl, indenyl, 4, 5,6, 7-tetrahydro-1-indenyl and fluorenyl radicals, which can be substituted with hydrocarbons having 1 to 20 carbon atoms;
는 수소, 01 내지 020의 알킬, 01 내지 (310의 알콕시, 02 내지 020의 알콕시알킬, 06내지 020의 아릴, 06내지 ( 0의 아릴옥시, 02내지 Is hydrogen, 01-020 alkyl, 01- (310 alkoxy, 02-020 alkoxyalkyl, 06-020 aryl, 06- (aryloxy of 0, 02-
020의 알케닐, 07내지 040의 알킬아릴,(三1내지 040의 아릴알킬, 08 내지020 alkenyl, 07 to 040 alkylaryl, (3- to 040 arylalkyl, 08 to
040의 아릴알케닐,또는 02내지 010의 알키닐이고; 040 arylalkenyl or 02-010 alkynyl;
方은 각각 독립적으로 할로겐 원자, 01 내지 020의 알킬, 02 내지 Each independently represents a halogen atom, alkyl of 01 to 020, and 02 to
(:10의 알케닐, 07내지 040의 알킬아릴, 0,1내지 040의 아릴알킬, 06내지10 alkenyl, 07 to 040 alkylaryl, 0 to 1 to 040 arylalkyl, 06 to
020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 0.2 내지 020의 알킬알콕시, 또는 07 내지 040의 아릴알콕시이고; 020 aryl, substituted or unsubstituted 01-020 alkylidene, substituted or unsubstituted amino group, 0.2-020 alkylalkoxy, or 07-040 arylalkoxy;
:62
Figure imgf000057_0004
고리와 1를 가교 결합시키는 탄소, 게르마늄, 규소, 인 2019/156482 1»(:1^1{2019/001535
: 6 2 is
Figure imgf000057_0004
Carbon, germanium, silicon, phosphorus which crosslinks the ring and 1 2019/156482 1 »(: 1 ^ 1 {2019/001535
또는질소원자를포함하는라디칼중하나이상또는이들의 조합이고;
Figure imgf000058_0001
요로이루어진군에서 선택된 어느하나이고,상기 는각각독립적으로(그1 내지 020의 알킬, 아릴,치환된 알킬 또는치환된 아릴이고,
Or one or more or a combination of radicals containing nitrogen atoms;
Figure imgf000058_0001
Each of which is independently selected from the group consisting of urine, wherein is independently (alkyl of 1 to 020, alkyl substituted, aryl substituted or substituted aryl,
[화학식 4] [Formula 4]
Figure imgf000058_0002
상기 화학식 4에서,
Figure imgf000058_0002
In Chemical Formula 4,
1 내지 ^ 및
Figure imgf000058_0003
내지 요4’은 서로 동일하거나 상이하고, 각각 독립적으로수소, 01 내지 020의 알킬기, 02내지 020의 알케닐기, 06내지 020의 아릴기, 07내지 020의 알킬아릴기, 07내지 020의 아릴알킬기,또는 01 내지 020의 아민기이고,상기 II1 내지 II4및 모1’ 내지 II4’ 중 인접하는 2 개 이상이 서로 연결되어 1 개 이상의 지방족 고리, 방향족 고리, 또는 헤테로고리를형성할수있고;
Mod 1 to ^ and
Figure imgf000058_0003
To 4 ' are the same as or different from each other, and each independently hydrogen, an alkyl group of 01 to 020, an alkenyl group of 02 to 020, an aryl group of 06 to 020, an alkylaryl group of 07 to 020, and an arylalkyl group of 07 to 020 Or an amine group of 01 to 020, and two or more adjacent ones of the II 1 to II 4 and the parent 1 ' to II 4' may be connected to each other to form one or more aliphatic rings, aromatic rings, or heterocycles. ;
및 分는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 01 내지 020의 알킬기, 03내지 020의 시클로알킬기,(그1내지 020의 알콕시기, 06 내지 020 의 아릴기, 06 내지 010 의 아릴옥시기, 01 내지 020 의 알케닐기, 07내지 040의 알킬아릴기,또는 07내지 040의 아릴알킬기이고;  And minutes are the same or different from each other, and each independently hydrogen, an alkyl group of 01 to 020, a cycloalkyl group of 03 to 020, an (alkoxy group of 1 to 020, an aryl group of 06 to 020, an aryloxy group of 06 to 010) , An alkenyl group of 01 to 020, an alkylaryl group of 07 to 040, or an arylalkyl group of 07 to 040;
#는 02내지 020의 알킬렌기, 03내지 020의 시클로알킬렌기, 06 내지 020의 아릴텐기, 07내지 040의 알킬아릴렌기,또는 07내지 040의 아릴알킬텐기이고; # Is 02-020 alkylene group, 03-020 cycloalkylene group, 06-020 aryltene group, 07-040 alkylarylene group, or 07-040 arylalkyltene group;
4는 4족전이금속이며;  4 is a Group 4 transition metal;
냔 및 2:5는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 01 내지 020의 알킬기, 02 내지 020의 알케닐기, 06 내지 020의 아릴기, 2019/156482 1»(:1^1{2019/001535 VII and 2: 5 are the same as or different from each other, and each independently a halogen, an alkyl group of 01 to 020, an alkenyl group of 02 to 020, an aryl group of 06 to 020, 2019/156482 1 »(: 1 ^ 1 {2019/001535
니트로기,아미도기,(:1내지 020의 알킬실릴기,(그1 내지 020의 알콕시기, 02 내지 020의 에스테르기,또는 01 내지 020의 술포네이트기이고; Nitro groups, amido groups, (1 to 020 alkylsilyl groups, (1 to 020 alkoxy groups, 02 to 020 ester groups, or 01 to 020 sulfonate groups);
[화학식 5] [Formula 5]
Figure imgf000059_0001
상기 화학식 5에서,
Figure imgf000059_0001
In Chemical Formula 5,
II5'는각각독립적으로수소,탄소수 1 내지 20의 알킬,탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 II5과 모5' 또는 2개의 II5’가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는알킬리딘에 의해서로연결되어 고리를형성할수 있으며; II 5 and ' are each independently hydrogen, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 20 carbon atoms, aryl of 6 to 20 carbon atoms, silyl of 6 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, 7 to 7 carbon atoms A metalloid of a Group 4 metal substituted with 20 arylalkyl or hydrocarbyl; The II 5 and the parent 5 ′ or two II 5 ′ may be linked to an alkylidine comprising alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
^는 각각독립적으로 수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2내지 20의 알케닐,탄소수 6내지 20의 아릴, 탄소수 7내지 20의 알킬아릴,탄소수 7내지 20의 아릴알킬,탄소수 1 내지 20의 알콕시,탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 요6 중에서 2개 이상의 II6는 서로연결되어 지방족고리 또는방향족고리를형성할수있으며; ^ Is independently hydrogen, halogen atom, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 20 carbon atoms, aryl of 6 to 20 carbon atoms, alkylaryl of 7 to 20 carbon atoms, arylalkyl of 7 to 20 carbon atoms, 1 Alkoxy of 20 to 20, aryloxy or amido of 6 to 20 carbon atoms; The two or more yaw II 6 out of 6 are connected to each other and can form an aliphatic ring or an aromatic ring;
치환또는 치환되지 않은지방족또는 방향족고리이고,상기 에서 치환되는치환기는할로겐 원자, 탄소수 1 내지 20의 알킬,탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴,탄소수 7내지 20의 아릴알킬,탄소수 1 내지 20의 알콕시,탄소수 6내지 20의 아릴옥시,아미도이고;상기 치환기가복수 개일 경우에는상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를형성할수 있으며;  A substituted or unsubstituted aliphatic or aromatic ring, and the substituents substituted in the above are halogen atoms, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, Arylalkyl having 7 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, aryloxy having 6 to 20 carbon atoms, and amido; when the substituents are plural, two or more substituents from the substituents may be linked to each other to form an aliphatic or aromatic ring. Can form;
M5는 4족전이금속이고; 2019/156482 1»(:1^1{2019/001535 3 및 分는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6내지 20의 아릴아미도또는탄소수 1 내지 20의 알킬리덴이다. M 5 is a Group 4 transition metal; 2019/156482 1 »(: 1 ^ 1 {2019/001535 3 and minute are each independently halogen, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 20 carbon atoms, aryl of 6 to 20 carbon atoms, of 7 to 20 carbon atoms Alkylaryl, arylalkyl having 7 to 20 carbon atoms, alkylamido having 1 to 20 carbon atoms, arylamido having 6 to 20 carbon atoms or alkylidene having 1 to 20 carbon atoms.
【청구항 4] [Claim 4]
제 3항에 있어서 ,  The method of claim 3,
상기 화학식 1 로 표시되는 메탈로센 화합물은 하기 구조식들 중 하나인 ,  The metallocene compound represented by Chemical Formula 1 is one of the following structural formulas,
혼성 담지 메탈로센촉매의 제조방법:  Process for preparing hybrid supported metallocene catalyst:
Figure imgf000060_0001
2019/156482 1»(:1/10公019/001535
Figure imgf000061_0001
Figure imgf000060_0001
2019/156482 1 »(: 1/10 公 019/001535
Figure imgf000061_0001
【청구항 5] [Claim 5]
제 3항에 있어서,  The method of claim 3,
상기 화학식 2 로 표시되는 메탈로센 화합물은 하기 구조식들 중 하나인,  The metallocene compound represented by Formula 2 is one of the following structural formulas,
혼성 담자메탈로센촉매의 제조방법.  Method for producing a hybrid haze metallocene catalyst.
Figure imgf000061_0002
2019/156482 1»(:1/10公019/001535
Figure imgf000062_0001
Figure imgf000061_0002
2019/156482 1 »(: 1/10 公 019/001535
Figure imgf000062_0001
【청구항 6] [Claim 6]
제 3항에 있어서,  The method of claim 3,
상기 화학식 3 으로 표시되는 메탈로센 화합물은 하기 구조식들 중 하나인 ,  The metallocene compound represented by Formula 3 is one of the following structural formulas,
혼성 담지 메탈로센촉매의 제조방법.  Method for producing a hybrid supported metallocene catalyst.
Figure imgf000062_0002
2019/156482 1»(:1/10公019/001535
Figure imgf000063_0001
Figure imgf000062_0002
2019/156482 1 »(: 1/10 公 019/001535
Figure imgf000063_0001
: :
【청구항 7】 [Claim 7]
제 3항에 있어서,  The method of claim 3,
상기 화학식 4 로 표시되는 메탈로센 화합물은 하기 구조식들 중 하나인,  The metallocene compound represented by Formula 4 is one of the following structural formulas,
혼성 담지 메탈로센촉매의 제조방법.  Method for producing a hybrid supported metallocene catalyst.
Figure imgf000063_0002
Figure imgf000063_0002
【청구항 8】 [Claim 8]
제 3항에 있어서, 2019/156482 1»(:1/10公019/001535 The method of claim 3, 2019/156482 1 »(: 1/10 公 019/001535
상기 화학식 5 로 표시되는 메탈로센 화합물은 하기 구조식들 중 하나인, The metallocene compound represented by Formula 5 is one of the following structural formulas,
혼성 담지 메탈로센촉매의 제조방법.  Method for producing a hybrid supported metallocene catalyst.
Figure imgf000064_0001
상기 구조식에서, II7은 각각 독립적으로 수소 또는 메틸이며; 55 및 은각각독립적으로메틸,디메틸아미도또는클로라이드이다.
Figure imgf000064_0001
In the above formula, each II 7 is independently hydrogen or methyl; 5 5 and silver are each independently methyl , dimethylamido or chloride .
【청구항 9] [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 알루미늄계 조촉매 화합물은, 전체 투입량중 60중량%내지 90
Figure imgf000064_0002
The aluminum-based promoter compound is 60 to 90% by weight of the total amount
Figure imgf000064_0002
실리카담체에 담지되는, Supported on silica carrier,
혼성 담지 메탈로센촉매의 제조방법 . 2019/156482 1»(:1^1{2019/001535 Method for producing hybrid supported metallocene catalyst. 2019/156482 1 »(: 1 ^ 1 {2019/001535
【청구항 10】 [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 알루미늄계조촉매 화합물은하기 화학식 6으로표시되는것인, 혼성 담지 메탈로센촉매의 제조방법:  The aluminum-based catalyst compound is represented by the following formula (6), a method for producing a hybrid supported metallocene catalyst:
Figure imgf000065_0001
Figure imgf000065_0001
할로겐, 01 내지 020의 하이드로카빌기, 또는 할로겐으로 치환된 €1 내지 020의 하이드로카빌기이고; Halogen, a hydrocarbyl group of 01 to 020, or a hydrocarbyl group of € 1 to 020 substituted with halogen;
1은 0또는 1이며;  1 is 0 or 1;
X는 2이상의 정수이다.  X is an integer of 2 or more.
【청구항 11】 [Claim 11]
저 11항또는제 10항에 있어서,  The method according to claim 11 or 10,
상기 알루미늄계 조촉매 화합물은 메틸알루미녹산 (MAO), 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 이루어진 군에서 선택된 알킬알루미녹산계 화합물; 또는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄 및 이소프레닐알루미늄으로 이루어진 군에서 선택된 트리알킬알루미늄인,  The aluminum-based promoter compound may be an alkylaluminoxane compound selected from the group consisting of methyl aluminoxane (MAO), ethyl aluminoxane, isobutyl aluminoxane and butyl aluminoxane; Or trialkylaluminum selected from the group consisting of trimethylaluminum, triethylaluminum, triisobutylaluminum, trinuclear silaluminum, trioctylaluminum and isoprenylaluminum,
혼성 담지 메탈로센촉매의 제조방법 .  Method for producing hybrid supported metallocene catalyst.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 알루미늄계 조촉매 화합물의 담지량은 실리카 담체 1 용 을 기준으로 5 _01/용내지 15■01/용인, The supported amount of the aluminum-based promoter compound is 5 _ 01 / solvent to 15 ■ 01 / yong, based on the silica carrier 1
혼성 담지 메탈로센촉매의 제조방법. 2019/156482 1»(:1^1{2019/001535 Method for producing a hybrid supported metallocene catalyst. 2019/156482 1 »(: 1 ^ 1 {2019/001535
【청구항 13】 [Claim 13]
제 1항에 있어서 According to claim 1,
상기 실리카 담체는 실리카, 실리카-알루미나, 및 실리카_ 마그네시아로이루어진군에서 선택되는 1종이상인,  The silica carrier is one or more selected from the group consisting of silica, silica-alumina, and silica magnesia,
혼성 담지 메탈로센촉매의 제조방법 .  Method for producing hybrid supported metallocene catalyst.
【청구항 14] [Claim 14]
제 1항에 있어서,  The method of claim 1,
상기 알루미늄계 조촉매 화합물 담지된 실리카담체에, 1 종 이상의 보레이트계조족매 화합물을담지시키는단계를주가로포함하는,  Mainly comprising the step of supporting at least one borate-based co-solvent compound on the aluminum carrier-supported silica carrier,
혼성 담지 메탈로센촉매의 제조방법.  Method for producing a hybrid supported metallocene catalyst.
【청구항 15】 [Claim 15]
제 1항에 있어서,  The method of claim 1,
상기 보레이트계 조촉매 화합물은 삼치환된 암모늄염 형태의 보레이트계 화합물, 디알킬 암모늄염 형태의 보레이트계 화합물, 또는 삼치환된포스포늄염 형태의 보레이트계 화합물인,  The borate cocatalyst compound is a borate compound in the form of a trisubstituted ammonium salt, a borate compound in the form of a dialkyl ammonium salt, or a borate compound in the form of a trisubstituted phosphonium salt,
혼성 담지 메탈로센촉매의 제조방법.  Method for producing a hybrid supported metallocene catalyst.
【청구항 16】 [Claim 16]
제 1 항 내지 제 15 항 중 어느 한 항에 따라 제조된 혼성 담지 메탈로센 촉매의 존재 하에 올레핀계 단량체를 중합 반응시키는 단계를 포함하는, 폴리올레핀의 제조방법 .  A process for producing a polyolefin, comprising polymerizing an olefinic monomer in the presence of a hybrid supported metallocene catalyst prepared according to any one of claims 1 to 15.
【청구항 17] [Claim 17]
제 16항에 있어서 ,  The method of claim 16,
폴리올레핀의 겉보기 밀도가 0.38
Figure imgf000066_0001
이상이고, 분자량 분포(¾細/ )가 3.5이상인,
The apparent density of polyolefin is 0.38
Figure imgf000066_0001
More than, molecular weight distribution (¾ 細 /) is 3.5 or more ,
폴리올레핀의 제조방법 . 2019/156482 1»(:1^1{2019/001535 Method for producing polyolefin. 2019/156482 1 »(: 1 ^ 1 {2019/001535
【청구항 18】 [Claim 18]
제 16항에 있어서,  The method of claim 16,
하기 계산식 1 로 정의되는 세틀링 효율이 65% 내지 80%인, 폴리올레핀의 제조방법 .  A settling efficiency of 65% to 80%, defined by Formula 1 below, a method for producing a polyolefin.
[계산식 1]  [Calculation 1]
세틀링 효율的) = 에틸렌 사용량八에틸렌 사용량 + 용매 함량) 父 Settling efficiency) = Ethylene Consumption 八 Ethylene Consumption + Solvent Content)
100 100
PCT/KR2019/001535 2018-02-08 2019-02-07 Method for preparing supported hybrid metallocene catalyst WO2019156482A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/954,719 US11091569B2 (en) 2018-02-08 2019-02-07 Method for preparing supported hybrid metallocene catalyst
EP19751865.7A EP3714975B1 (en) 2018-02-08 2019-02-07 Method for preparing supported hybrid metallocene catalyst
CN201980006506.4A CN111491734B (en) 2018-02-08 2019-02-07 Method for preparing supported hybrid metallocene catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0015903 2018-02-08
KR20180015903 2018-02-08
KR10-2019-0013833 2019-02-01
KR1020190013833A KR102342780B1 (en) 2018-02-08 2019-02-01 Preparation method of supported hybrid metallocene catalyst

Publications (1)

Publication Number Publication Date
WO2019156482A1 true WO2019156482A1 (en) 2019-08-15

Family

ID=67549504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001535 WO2019156482A1 (en) 2018-02-08 2019-02-07 Method for preparing supported hybrid metallocene catalyst

Country Status (1)

Country Link
WO (1) WO2019156482A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092217A (en) * 2004-12-01 2007-09-12 노볼렌 테크놀로지 홀딩스 씨.브이. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
KR20090103251A (en) * 2008-03-28 2009-10-01 에스케이에너지 주식회사 Metallocene catalyst compositions and process for preparing polyolefines
KR20110043464A (en) * 2009-10-19 2011-04-27 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20120076156A (en) * 2010-12-29 2012-07-09 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20150062145A (en) * 2013-11-28 2015-06-05 주식회사 엘지화학 Method for preparing supported metallocene catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070092217A (en) * 2004-12-01 2007-09-12 노볼렌 테크놀로지 홀딩스 씨.브이. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
KR20090103251A (en) * 2008-03-28 2009-10-01 에스케이에너지 주식회사 Metallocene catalyst compositions and process for preparing polyolefines
KR20110043464A (en) * 2009-10-19 2011-04-27 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20120076156A (en) * 2010-12-29 2012-07-09 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20150062145A (en) * 2013-11-28 2015-06-05 주식회사 엘지화학 Method for preparing supported metallocene catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3714975A4 *
TETRAHEDRON LETT., 1988, pages 2951

Similar Documents

Publication Publication Date Title
KR101617870B1 (en) Olefin based polymer having excellent processibility
KR101726820B1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmental stress crack resistance
KR101644113B1 (en) Supported hybrid metallocene catalyst
KR101631700B1 (en) Method for preparing of supported hybrid metallocene catalyst
KR102342780B1 (en) Preparation method of supported hybrid metallocene catalyst
KR102427755B1 (en) Polyethylene and its chlorinated polyethylene
WO2016036204A1 (en) Olefin-based polymer with excellent processability
KR102431339B1 (en) Polyethylene and its chlorinated polyethylene
KR20190110961A (en) Preparation method of polyolefin using a supported hybrid metallocene catalyst
KR101606825B1 (en) Method for preparing of supported hybrid metallocene catalyst
CN113348321B (en) Crosslinked polyethylene pipe having excellent physical properties
WO2015056975A1 (en) Hybrid-supported metallocene catalyst
US11091571B2 (en) Hybrid supported catalyst
KR20180083247A (en) Olefin polymer and preparation method thereof
US20220135712A1 (en) Polyethylene Having High Pressure Resistance and Crosslinked Polyethylene Pipe Comprising the Same
US20220010110A1 (en) Polyethylene Having High Degree of Crosslinking and Crosslinked Polyethylene Pipe Comprising The Same
US10550207B2 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
WO2019156482A1 (en) Method for preparing supported hybrid metallocene catalyst
KR102564398B1 (en) Hybride supported metallocene catalyst and method for preparing polyethylene copolymer using the same
WO2015056974A1 (en) Method for producing hybrid-supported metallocene catalyst
WO2017155211A1 (en) Supported hybrid catalyst system for slurry polymerization of ethylene, and method for preparing ethylene polymer by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019751865

Country of ref document: EP

Effective date: 20200623

NENP Non-entry into the national phase

Ref country code: DE