WO2019156475A1 - Mutant cell-free dna isolation kit and mutant cell-free dna isolation method using same - Google Patents

Mutant cell-free dna isolation kit and mutant cell-free dna isolation method using same Download PDF

Info

Publication number
WO2019156475A1
WO2019156475A1 PCT/KR2019/001518 KR2019001518W WO2019156475A1 WO 2019156475 A1 WO2019156475 A1 WO 2019156475A1 KR 2019001518 W KR2019001518 W KR 2019001518W WO 2019156475 A1 WO2019156475 A1 WO 2019156475A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell free
gene
dna
mutant cell
cancer
Prior art date
Application number
PCT/KR2019/001518
Other languages
French (fr)
Korean (ko)
Inventor
예성혁
Original Assignee
주식회사 진씨커
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190013912A external-priority patent/KR102086689B1/en
Application filed by 주식회사 진씨커 filed Critical 주식회사 진씨커
Priority to CN201980004080.9A priority Critical patent/CN111065747B/en
Priority to US16/637,412 priority patent/US11613776B2/en
Priority to ES19751556T priority patent/ES2962531T3/en
Priority to EP19751556.2A priority patent/EP3653730B1/en
Priority to JP2020530411A priority patent/JP7006873B2/en
Publication of WO2019156475A1 publication Critical patent/WO2019156475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Definitions

  • the present invention relates to a mutant cell free DNA separation kit and a method for mutant cell free gene separation using the same. More specifically, the present invention relates to mutant cell free gene isolation kits and methods of isolation comprising a CRISPR / Cas system and exonuclease, for detecting mutant genes in trace cell free gene samples.
  • the diagnosis of cancer mainly consists of invasive methods such as tissue sample collection and endoscopy. Existing methods are performed by extracting a part of the suspected area under a microscope, so that the patient feels less discomfort, scars remain, and recovery takes time.
  • liquid biopsies use a non-invasive method, test results are faster and, unlike tissue samples that were able to analyze only a fraction of the disease, body fluids, or liquid biosamples, provide a multifaceted analysis of the disease. Can be done.
  • liquid biopsies are expected to exert an excellent utility in the diagnosis of cancer, and it is possible to analyze cancer-derived DNA present in blood by body parts only by examining body fluids such as blood and urine for detailed observation of cancer occurrence and metastasis. It is predicted.
  • RNA-guided CRISPR clustered regularly interspaced short palindrome repeats
  • sgRNA ie crRNA-tracrRNA fusion transcript
  • the CRISPR-Cas system consists of guide RNA (gRNA) having a sequence complementary to the target gene or nucleic acid and CRISPR enzyme, a nuclease capable of cleaving the target gene or nucleic acid, and the gRNA and CRISPR enzyme form a CRISPR complex.
  • the target gene or nucleic acid is cleaved or modified by the formed CRISPR complex.
  • the CRISPR system is an immune system of prokaryotes and archaea. Recently, research on the utility of the CRISPR system has been rapidly increasing (Non Patent Literature 1 and Non Patent Literature 2), but the sequence capture method and disease used in genome sequencing. No attempt was made to utilize the diagnosis.
  • the present inventors have diligently tried to find a method for separating mutant genes on cfDNA, and as a result, the technique of specifically cleaving a small amount of cfDNA normal genes with the CRISPR / Cas system and amplifying the uncut mutant genes specifically By using the present invention was completed.
  • Patent Document 1 Korean Unexamined Patent 10-2016-0129523
  • Non-Patent Document 1 Jinek et al. Science, 2012, 337, 816-821
  • Non-Patent Document 2 Zalatan et al. Cell, 2015, 160, 339-350
  • Non-Patent Document 3 Tian J, Ma K, Saaem I., Mol Biosyst, 2009, 5 (7), 714-722
  • Non-Patent Document 4 Michael, L .. Metzker, Nature Reviews Genetics, 2010, 11, 31-46
  • An object of the present invention is to provide a kit for mutant cell free gene isolation.
  • Another object of the present invention is to provide a mutant genotyping method.
  • the present invention provides a kit for isolating a mutant cell-derived gene comprising:
  • Said wild type cell free gene specific guide RNA Said wild type cell free gene specific guide RNA
  • the mutant cell free gene may be DNA comprising a cancer specific mutation.
  • cfDNA cell-free DNA
  • biological samples such as blood, plasma, or urine derived from cancer patients due to tumor cells.
  • Urine, cerebrospinal fluid (CSF), plasma, blood, or bodily fluids are readily available samples, and repetitive sampling enables the collection of large quantities of simple, non-invasive samples.
  • CRISPR / Cas system consists of a guide RNA (gRNA) having a sequence complementary to a gene or nucleic acid and a CRISPR enzyme, a nuclease capable of cleaving a target gene or nucleic acid, and gRNA and CRISPR enzyme. Forms a CRISPR complex and cleaves or modifies the target gene or nucleic acid by the formed CRISPR complex.
  • gRNA guide RNA
  • Cas protein refers to an essential protein element in the CRISPR / Cas system, which forms an active endonuclease when complexed with two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). Form.
  • Cas protein gene and protein information can be obtained from GenBank of the National Center for Biotechnology Information (NCBI), but is not limited thereto.
  • guide RNA refers to RNA specific for a target DNA, which is expressed through transcription of a linear double-stranded DNA delivered into a cell to recognize a target gene sequence and form a complex with a Cas protein. It is RNA that is brought to the target DNA.
  • the “target gene sequence” is a nucleotide sequence existing in a target gene or nucleic acid, specifically, a nucleotide sequence of a target region in the target gene or nucleic acid, wherein the “target region” is a guide nucleic acid-editor in the target gene or nucleic acid. It is a site that can be modified by protein.
  • the term “PAM sequence” refers to a target sequence recognized by the CRISPR-Cas complex as a sequence of about 3bp to 6bp located next to a target sequence, and the CRISPR-Cas complex recognizes a PAM sequence. After that, the specific position is cut.
  • the kit may be for separating mutant cell free genes from wild type cell free genes and mutant cell free genes contained in liquid samples (blood, plasma or urine samples, etc.) isolated from suspected cancer.
  • the Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), But may not be limited to Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
  • the Cas protein or gene information may be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI), but is not limited thereto.
  • the guide RNA may be a dual RNA (single-chain RNA) or a sgRNA (sgRNA) including crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
  • sgRNA single-chain RNA
  • CRISPR RNA crRNA
  • tracrRNA trans-activating crRNA
  • the guide RNA may include two or more types of guide RNAs specific for a plurality of wild type cell free genes. That is, the kit of the present invention is a kit capable of multiplexing.
  • the primer protected by the 5 'end may be the 5' end of the primer protected by a phosphothioate bond.
  • the gene amplification composition may be a PCR composition.
  • the term "amplification reaction” means a reaction for amplifying a target nucleic acid sequence, it can be carried out by polymerase chain reaction (PCR).
  • the PCR may be reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR, real-time PCR, assembly PCR, fusion PCR, ligase chain reaction ( Ligase chain reaction (LCR), but is not limited thereto.
  • the term "primer" is one of single stranded oligonucleotides, which may also include ribonucleotides, preferably deoxyribonucleotides.
  • the primers hybridize or anneal to one site of the template to form a double stranded structure.
  • the primer may be hybridized or annealed to the NGS sequencing adapter sequence.
  • Annealing refers to the placement of oligonucleotides or nucleic acids into a template nucleic acid, which condition causes the polymerase to polymerize the nucleotides to form a nucleic acid molecule that is complementary to the template nucleic acid or portion thereof.
  • Hybridization means that two single-stranded nucleic acids form a duplex structure by pairing complementary sequences.
  • the primer can serve as a starting point for synthesis under conditions that result in the synthesis of a primer extension product complementary to the template.
  • the PCR composition may include components well known in the art, in addition to the 5′-end protected primers specific for each of the wild type cell free gene and the mutant cell free gene. Specifically, it may include a PCR buffer (PCR buffer), dNTP, DNA polymerase (DNA Polymerase) and the like.
  • PCR buffer PCR buffer
  • dNTP PCR buffer
  • DNA Polymerase DNA Polymerase
  • exonuclease refers to an enzyme that sequentially degrades nucleotides from the 3′-end or 5′-end of a polynucleotide chain in a DNA sequence.
  • 3'-5 'exonuclease is an enzyme that breaks down a phospho-diester bond at the 3'-end, and 5'-3' exonuclease is a phosphoester at the 5'-end. diester) An enzyme that breaks down bonds.
  • the exonuclease can be used any exonuclease known in the art.
  • the exonuclease may include 3 ' ⁇ 5' exonuclease and / or 5 ' ⁇ 3' exonuclease.
  • it may be, but is not necessarily limited to, exonuclease T7 and exonuclease T (single strand specific nuclease).
  • wt KRAS satisfying the 5'-NGG-3 'PAM sequence was selectively cut by Cas9.
  • T7 Exonuclease and Exonuclease T it was confirmed by electrophoresis that wt KRAS DNA cut by Cas9 was completely removed.
  • the present invention provides a mutant genotyping method comprising the following steps:
  • the isolated sample containing at least one wild-type cell-free gene and at least one mutant cell free gene may be a liquid sample (blood, plasma or urine sample) isolated from a suspected cancer.
  • the mutant cell free gene may be DNA comprising a cancer specific mutation.
  • the mutant cell free gene analysis may be for providing information for diagnosis of cancer.
  • diagnosis refers to determining the susceptibility of an object to a particular disease or condition, to determining whether an object currently has a particular disease or condition, or to a particular disease or condition. Determining the prognosis of one object at hand, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
  • the diagnosis may include confirming whether the cancer develops and / or confirming the prognosis of the cancer.
  • the cancer may be early cancer.
  • Such cancers include, for example, squamous cell cancer (e.g., squamous cell cancer of the epithelium), small cell lung cancer, non-small cell lung cancer, lung cancer, peritoneal cancer, colon cancer, biliary tract tumors, nasopharyngeal cancer, laryngeal cancer, bronchial cancer , Oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma, brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer, liver cancer, bone marrow cancer, esophageal cancer, colon cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, Head and neck cancer and rectal cancer may be one or more selected from the group consisting of, but is not limited thereto.
  • squamous cell cancer e.g., squamous cell cancer of the epithelium
  • small cell lung cancer e.g., non-small cell lung
  • the primer protected by the 5 'end may be the 5' end of the primer protected by a phosphothioate bond.
  • the Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), But may not be limited to Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
  • the guide RNA may be a dual RNA (single-chain RNA) or a sgRNA (sgRNA), including crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
  • sgRNA single-chain RNA
  • CRISPR RNA crRNA
  • tracrRNA trans-activating crRNA
  • the amplification may be performed by PCR, and PCR conditions may be set based on methods well known in the art.
  • the kit for mutant cell free gene isolation and mutant cell free gene isolation method of the present invention is a CRISPR / Cas system and exonuclease, and selects the normal somatic cell-derived gene (> 99.9%), which accounts for most of cfDNA in the blood. Can be removed with As a result, only mutant cell free genes (genes derived from cancer cells) can be analyzed on cfDNA, which can be useful for early cancer diagnosis.
  • the kit for mutant cell free gene isolation and mutant cell free gene separation method of the present invention by removing a gene derived from normal cells in the sample, a very small amount corresponding to the ratio of the mutant cell free gene (cancer cell derived gene) present in cfDNA Provides the effect of analyzing genes.
  • the present invention can use a plurality of normal gene-specific guideRNA, it is possible to simultaneously detect two or more oncogenic genes at the same time by a multiplexing system (multiplexing system).
  • FIG. 1 is a schematic diagram of a process of amplifying only mtDNA (mutant cell free DNA) by selectively removing the wtDNA (wild type cell free DNA) in the sample in the present invention.
  • Figure 2 relates to the results of selective cleavage of wtDNA only in the sample using the CRISPR-Cas system according to the present invention.
  • Figure 4 relates to the results of the analysis of the sample removed KRAS wtDNA by treatment of Cas protein and exonuclease according to the present invention through the next generation sequencing.
  • Figure 5 relates to the results of analyzing the sample by removing the KRAS wtDNA by treatment with Cas protein and exonuclease according to the present invention through Sanger sequencing.
  • FIG. 6 is a specific schematic diagram illustrating a process of amplifying several cancer-derived genes at once by treating Cas proteins and exonucleases according to the present invention and removing several target genes by multiplexing.
  • Figure 7 relates to the results proved through agarose gel electrophoresis that can only selectively remove the Mokpo gene (wt DNA) by using the Cas protein and exonuclease and multiplexing system according to the present invention.
  • Figure 8 relates to the results of the analysis of the next step sequence analysis of the samples treated with Cas protein and exonuclease according to the present invention and removed KRAS wtDNA and EGFR wtDNA using a multiplexing system.
  • FIG. 9 is a schematic diagram showing a gene removal method grafted with a multiplexing system utilizing Cas9 ortholog in the present invention.
  • the design was largely based on two criteria. If the nucleotide sequence before the substitution occurs in the PAM site, the guide RNA was designed based on the PAM site, and if it does not correspond to the PAM site, the guide RNA was added by adding a mismatch to the seed region. Was designed. The seed region of Cas9 is sensitive to the mismatch between the guide RNA and the target gene when the target gene is recognized. If there is a 1 to 2 nt mismatch in the seed region, the target gene is not clearly recognized.
  • the guide RNA used in the present invention is designed to selectively recognize wild-type genes.
  • the wild type cell free DNA cut by Cas9 was less amplified than the mutant cell free DNA.
  • a simple method of cutting wild-type DNA with Cas9 and PCR for mutant DNA did not reach the detection limit to identify trace mutant genes. Since the wild-type DNA fragment cleaved by Cas9 may serve as a primer in the PCR process, the wild-type-derived gene sequence may be included in the finally amplified PCR product.
  • the present invention by removing the truncated fragments of the wild-type DNA, which generate a background signal during the PCR process, it has sufficient detectability even for a small amount of the target gene.
  • the 5 'end is amplified using a primer protected with a phosphothioate bond, or amplified PCR amplicon Ligation of the adapter (adatpor) containing a phosphothioate bond at both ends of the (ligation). If phosphodiester bonds linking nucleotides are replaced with phosphothioate bonds, the nuclease will not be able to cleave between the nucleotides in which the bond exists.
  • the gene cutting and elimination techniques underlying the present invention play a complementary role, enabling a clear detection of cancer-derived genes in trace amounts of cf DNA that was previously impossible.
  • the isolated and purified SpCas9 protein and the guide RNA complex precisely cause the cleavage only at the gene target point that satisfies the PAM sequence of 5'-NGG-3 '.
  • the mutation of the KRAS gene is one of the major mutations of the cancer gene, and is an important biomarker on cfDNA.
  • the mutation of KRAS mainly occurs when the 35th nucleic acid on the cDNA is replaced with G by T, so that the 12th amino acid is replaced with valine from aspartic acid (asparatate) on the protein.
  • the 35th guanosine (guanosine) is replaced with thymidine mtDNA is the base sequence corresponding to the PAM of Cas9 on the target gene is changed to NGT.
  • SpCas9 which specifically recognizes NGG as a PAM sequence, cleaves DNA by specifically recognizing only wt KRAS among wt KRAS and mt KRAS (35G> T) (FIG. 2).
  • SpCas9 genetic information (the entire sequence of the protein including His x 6, SEQ ID NO: 1) for protein expression of the recombinant purulent Streptococcus Cas9 (spCas9) containing a His x 6 tag at the N-terminus)
  • the plasmid containing plasmid was transformed into BL21-DE3 species, which are sensitized cells, and treated with IPTG (Isopropyl bD-ThioGalactoside) in a liquid medium in which the transformed BL21-DE3 was growing. The cells were then incubated for 16 hours at 18 ° C.
  • the cells were centrifuged at 5000 ⁇ g for 15 minutes, followed by NaH 2 PO 4 50 mM (pH 8), NaCl 400 mM, imidazole 10 mM, PMSF 1 mM, DTT 1 mM, Triton X-100 1%, The cells were lysed with a lysis buffer containing 1 mg / ml of lysozyme, and the cells were crushed using an ultrasonic crusher, followed by centrifugation at 15000 ⁇ g for 30 minutes to separate the supernatant and cell debris.
  • Ni-NTA resin Invitrogen, Carlsbad, CA
  • NaH 2 PO 4 50mM pH 8.
  • NaCl 400mM wash buffer of imidazole 20mM (wash buffer)
  • wash buffer of imidazole 20mM
  • spCas9 was added to Ni-NTA by adding elution buffer of NaH 2 PO 4 50 mM (pH 8), NaCl 400 mM, and imidazole 250 mM.
  • the buffer containing spCas9 was replaced with a buffer containing 20 mM HEPES (pH 7.5), 400 mM NaCl, 1 mM DTT, and 40% glycerol using an amicon ultra centrifugal filter.
  • DNA template containing T7 promoter and guide RNA information and T7 RNA polymerase were prepared in buffer containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl 2 , 10 mM DTT, 10 mM NaCl, 2 mM spermidine, NTP and Rnase inhibitors.
  • Tris-HCl pH 7.9
  • 6 mM MgCl 2 6 mM MgCl 2
  • 10 mM DTT 10 mM NaCl
  • 2 spermidine mM spermidine
  • NTP and Rnase inhibitors By reacting for 18 hours at °C, guide RNA was synthesized in vitro (SEQ ID NOs: 2 and 3). The synthesized guide RNA was purified using an RNA purification kit.
  • SpCas9 500ng SpCas9 isolated and purified according to Example 1 and 100ng guide RNA prepared according to Example 2 were combined at 37 ° C. for 5 minutes, Potassum acetate 50 mM (pH 7.9), Tris-acetate In a buffer consisting of 20 mM, Magnesium acetate 10 mM, and 1 mM DTT, 150 ng double-stranded DNA (dsDNA) was reacted with wild type KRAS gene (SEQ ID NO: 4) and mutant KRAS gene (KRAS D12V, SEQ ID NO: 6) at 37 ° C for 60 minutes. KRAS gene and amino acid sequence information is shown in Table 1 below.
  • DNA fragments cleaved by Cas9 were confirmed by electrophoresis on 1.5% agarose gel and stained with EtBr.
  • the isolated purified Cas9 protein and the guide RNA complex were confirmed to precisely cut only the gene target point satisfying the PAM sequence of 5'-NGG-3 '(see Fig. 2).
  • KRAS gene is an important biomarker that can be detected on cfDNA.
  • the variation of KRAS is important in that the 35th nucleic acid on cDNA is replaced with T by G, so that the 12th amino acid in KRAS protein is replaced by glycine (G) with valine (V) (SEQ ID NO: 5 and sequence). Number 7).
  • the mtDNA in which the 35th guanosine is substituted with thymidine changes the nucleotide sequence corresponding to the PAM of Cas9 to NGT on the target gene.
  • Cas9 which specifically recognizes NGG as a PAM sequence, cleaves DNA by specifically recognizing only wt KRAS among wt KRAS and mt KRAS (35G> T) (SEQ ID NO: 8).
  • the guide RNA has a target sequence corresponding to position 1572nt on 2787nt DNA containing the wild type KRAS gene (SEQ ID NO: 4). Cas9 coupled with guide RNA cleaved the KRAS gene on 2787nt of DNA to make 1572nt long fragment and 1215nt short fragment in the electrophoresis results (see top of FIG. 2b and top of FIG. 3b). However, even when using the guide RNA, it was confirmed that the mtKRAS gene whose PAM sequence was changed to 5'-NGT-3 'was not cleaved by Cas9 (see FIG. 2b bottom and 3b bottom).
  • Target genes wild type cell free DNA and cancer specific cell derived DNA isolated from cancer patient blood
  • wtDNA wild type DNA
  • mutant DNA mutant DNA
  • PCR purification kit Quiagen Cat ID: 28104
  • the wtDNA and mtDNA were 90:10 (wtDNA ratio 90%; mtDNA ratio 10%), 99 : 1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9: 0.1 (wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99: 0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999: 0.001 (wtDNA ratio A DNA sample was prepared by mixing at a ratio of 99.999%; mtDNA ratio 0.001%).
  • exonuclease T7 and exonuclease T were added to carry out additional reaction at 37 ° C. for 60 minutes.
  • DNA fragments treated with Cas9 and exonuclease were identified by electrophoresis on a 1.5% agarose gel, or sequenced by Sanger sequencing and next generation sequencing by PCR amplification.
  • the experiment was performed by mixing wt DNA and mt DNA in different ratios. 90% (wtDNA ratio 90%; mtDNA ratio 10%), 99: 1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9: 0.1 wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99: 0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999: 0.001 (wtDNA ratio 99.999%; mtDNA ratio 0.001%), mix with Cas and exonuclease After processing, sequencing was performed on the finally obtained sample (see FIG. 4).
  • the ratio of mt DNA also increased in the Cas9-only sample.
  • the rate of mtDNA finally detected is significantly lowered.
  • the ratio of mt DNA in cfDNA is generally 0.01% or less, it is not easy to confirm the result of the presence or absence of mtDNA when only the target gene is cleaved with Cas9. Therefore, the inventors carried out the confirmation of the detection limit of the target gene as follows.
  • the detection limit was extended to at least 100 times as compared to the method of cleaving the target gene using only the Cas9 system.
  • PCR amplification of several target genes was performed using primers (Table 2) protected by 5 'terminus by phosphothioate linkages and phusion polymerase.
  • a target DNA sample was prepared by mixing 1: 1 purified KRAS DNA and EGFR DNA using a PCR purification kit. 50 ng of 500 ng Cas9 and guide RNA (SEQ ID NO: 3) targeting KRAS and EGFR were mixed for 5 min. Subsequently, 100 ng target DNA samples purified in a buffer consisting of 50 mM of Potassium acetate (pH 7.9), 20 mM of Tris-acetate, 10 mM of Magnesium acetate, and 1 mM of DTT were reacted at 37 ° C. for 60 minutes.
  • exonuclease T7 and exonuclease T were added to react 37 [deg.] C for 60 minutes.
  • DNA fragments treated with Cas9 and exonuclease were identified by electrophoresis on a 1.5% agarose gel or by PCR amplification to confirm sequencing by Sanger sequencing and next-generation sequencing.
  • the detection limit of the multiplexing system was confirmed by NGS analysis using a DNA sample in which wt DNA and mt DNA corresponding to KRAS gene and EGFR gene were mixed at different ratios.
  • 90% KRAS mtDNA ratio: 10%, EGFR mtDNA ratio: 10%, wt KRAS DNA ratio and 90% wt KRAS DNA, wt EGFR DNA, mt KEG DNA and mt EGFR DNA protected at both ends by phosphothioate bonds
  • wt EGFR DNA ratio 90% 99: 1 (KRAS mtDNA ratio: 1%, EGFR mtDNA ratio: 1%, wt KRAS DNA ratio and wt EGFR DNA ratio respectively 99%), 99.9: 0.1 (KRAS mtDNA ratio : 0.1%, EGFR mtDNA ratio: 0.1%, wt KRAS DNA ratio and wt EGFR DNA ratio are 99.9% respectively, 99.99: 0.01 (KRAS mtDNA
  • Cas9 orthologs recognize PAMs of different sequences.
  • spCas9 only a gene having a sequence of 5′-NGG-3 ′ adjacent to the target gene 3 ′ can be cut, and the corresponding NGG sequence on the gene is called the PAM sequence of sp Cas9.
  • PAM sequences of nmCas9, saCas9, cjCas9, AsCpf1, and FnCpf1 are 5'-NNNGMTT-3 ', 5'-NNGRRT-3', 5'-NNNVRYAC-3 ', 5'-TTTN-3', 5'-KYTV Perceived as -3 '.
  • This different kind of Cas9 ortholog has a PAM sequence and must meet the PAM sequence, but can function normally. Multiplexing the orthologs of Cas9 can overcome the limitations of the diversity of targetable genes resulting from constraints of PAM sequences. Genetic diagnostics using various Cas9 orthologs, as shown in the diagram, can detect various types of cancer mutations beyond the limits of target genes with spCsa9.

Abstract

The present invention relates to a mutant cell-free DNA isolation kit and a mutant cell-free DNA analysis method, both using a CRISPR/Cas system and an exonuclease.

Description

돌연변이 세포 유리 유전자 분리 키트 및 이를 이용한 돌연변이 세포 유리 유전자 분리 방법 Mutant Cell Free Gene Isolation Kit and Method for Isolating Mutant Cell Free Gene
본 발명은 돌연변이 세포 유리 유전자(mutant cell free DNA) 분리 키트 및 이를 이용한 돌연변이 세포 유리 유전자 분리 방법에 대한 것이다. 보다 구체적으로, 본 발명은 CRISPR/Cas 시스템 및 엑소뉴클레아제를 포함하는 돌연변이 세포 유리 유전자 분리 키트 및 분리 방법에 관한 것으로, 미량의 세포 유리 유전자 시료 내에서 돌연변이 유전자를 검출하기 위한 것이다.The present invention relates to a mutant cell free DNA separation kit and a method for mutant cell free gene separation using the same. More specifically, the present invention relates to mutant cell free gene isolation kits and methods of isolation comprising a CRISPR / Cas system and exonuclease, for detecting mutant genes in trace cell free gene samples.
최근 전 세계적으로 암 질환의 조기 진단 중요성이 크게 부각되고 있으며, 따라서 암 조기 진단 방법에 대한 연구 비중이 증가하고 있는 추세이다. 그러나, 현재까지 암 진단 방법은 조직 샘플의 채취 및 내시경 검사 등의 침습적인 방법이 주를 이루고 있다. 기존 방법은 질병이 의심되는 부위의 일부를 적출해 현미경으로 관찰하는 방식으로 이뤄지기 때문에, 환자가 느끼는 불편함이 적지 않고, 흉터가 남으며, 회복에도 시간이 걸린다. Recently, the importance of early diagnosis of cancer disease has been highlighted all over the world, and thus the importance of research on early cancer diagnosis methods is increasing. However, until now, the diagnosis of cancer mainly consists of invasive methods such as tissue sample collection and endoscopy. Existing methods are performed by extracting a part of the suspected area under a microscope, so that the patient feels less discomfort, scars remain, and recovery takes time.
이러한 기존의 침습적인 진단 및 검사 방법의 대안으로 액체 생체 검사(Liquid Biopsy)를 이용한 분자진단법이 주목을 받고 있다. 액체 생체 검사는 비침습적인(non-invasive) 방법을 사용하기 때문에, 검사 결과 도출 속도가 빠르며, 질병의 일부분만 분석할 수 있었던 조직 샘플과 달리, 체액 즉 액체 생체 샘플은 질병에 대해 다각적 분석을 수행할 수 있다. 특히, 액체 생체 검사는 암의 진단에 탁월한 효용성을 발휘할 것으로 전망되며, 혈액, 소변 등의 체액 검사만으로 신체 부위별 혈액 내에 존재하는 암세포 유래 DNA를 분석하여 암 발생 및 전이 등에 대한 상세한 관찰이 가능할 것으로 예측된다.Molecular diagnostics using liquid biopsy has attracted attention as an alternative to such invasive diagnostic and test methods. Because liquid biopsies use a non-invasive method, test results are faster and, unlike tissue samples that were able to analyze only a fraction of the disease, body fluids, or liquid biosamples, provide a multifaceted analysis of the disease. Can be done. In particular, liquid biopsies are expected to exert an excellent utility in the diagnosis of cancer, and it is possible to analyze cancer-derived DNA present in blood by body parts only by examining body fluids such as blood and urine for detailed observation of cancer occurrence and metastasis. It is predicted.
최근에 액체-생체검사와 관련하여 종양으로부터 혈류로 방출되어, 체내 혈액 내 존재하는 세포 유리 DNA(cell-free DNA, cf DNA)에 대한 연구가 활발히 진행되고 있다. 혈액, 혈장 또는 소변 등의 다양한 생물학적 시료에서 유래된 cfDNA를 분리하고 검출하는 기술이 발전함에 따라, 액체 생체 검사가 암 위험군 환자의 모니터링에 있어서 보다 효과적이고 신뢰할 수 있는 도구가 될 것이다. 진행성 췌장암, 난소 암, 대장 암, 방광암, 위 식도암, 유방암, 흑색종, 간세포 암, 두경부 암을 가진 환자의 75%이상 그리고 신장, 전립선 암 또는 갑상선 암 환자의 50% 이상에서 cf DNA상의 암 유래 유전자가 확인되었다. 전이성 대장암 환자를 대상으로 한 유전자 임상진단에서 KRAS 유전자 변이 검출에 대한 cf DNA의 민감도는 87.2%였고 특이도는 99.2%였다.      Recently, studies on cell-free DNA (cf DNA) released from the tumor into the bloodstream and present in the blood in association with the liquid-biopsy have been actively conducted. As technology advances in the isolation and detection of cfDNAs from various biological samples such as blood, plasma or urine, liquid biopsies will become more effective and reliable tools for monitoring cancer risk patients. Cancer origin on cf DNA in more than 75% of patients with advanced pancreatic cancer, ovarian cancer, colon cancer, bladder cancer, gastric esophageal cancer, breast cancer, melanoma, hepatocellular carcinoma, head and neck cancer, and in more than 50% of kidney, prostate cancer or thyroid cancer patients The gene was identified. In the clinical diagnosis of metastatic colorectal cancer patients, the sensitivity of cf DNA to the detection of KRAS mutation was 87.2% and the specificity was 99.2%.
이와 같은 연구들은 cf DNA 분석을 통한 암 진단의 가능성을 보여줌으로써, cf DNA 내 암 유래 유전자는 차세대 바이오 마커로 각광받고 있다. 암 환자 유래의 cf DNA로부터 종양 특이적인 유전자 돌연변이를 확인함으로, 초기 단계 종양의 진단을 시도하고 있다. 그러나, 혈액, 소변 등 액체 시료 내 cfDNA를 분석하고 유전자에서 발생하는 변이를 발견하여 암을 조기 진단하는 방법에는 현재의 기술로는 많은 한계가 있다(특허문헌 1). 특히, 소변, 뇌척수액, 혈장, 혈액, 또는 체액의 시료 내에 cfDNA가 매우 적은 농도로 존재하며, cfDNA는 노화 과정에서 자연스러운 유전자 변이가 발생할 수 있는데, 환자 혈장 내에 존재하는 cf DNA의 대부분은 정상 체세포 유래의 야생형(wild type, wt)의 유전자이므로, 현재의 시퀀싱 기술로는 cf DNA에서 암세포 유래 유전자의 유무를 정확하게 진단하는 것은 불가능에 가깝다. 그러므로 초기단계의 암을 미량의 cf DNA로 진단하기 위해서는, 정상 유전자를 제거하고 암세포 유래 유전자를 특이적으로 증폭시킬 필요가 있다. 이에, 검출 민감도의 향상 및 정확한 암 조기 진단을 위한 방법이 절실하게 요구되고 있는 실정이다.      These studies show the possibility of cancer diagnosis through cf DNA analysis, and cancer-derived genes in cf DNA are spotlighted as next generation biomarkers. By identifying tumor specific gene mutations from cf DNA from cancer patients, early stage tumors are being diagnosed. However, there are many limitations in the current technique for analyzing cfDNA in a liquid sample such as blood and urine and detecting a mutation occurring in a gene to diagnose cancer early (Patent Document 1). In particular, very low concentrations of cfDNA are present in samples of urine, cerebrospinal fluid, plasma, blood, or body fluids, and cfDNA may cause natural genetic mutations in the aging process. Most of the cf DNA in patient plasma is derived from normal somatic cells. Because of the wild type (wt) of the gene, current sequencing technology is almost impossible to accurately diagnose the presence of cancer cell-derived genes in the cf DNA. Therefore, in order to diagnose early stage cancer with trace amounts of cf DNA, it is necessary to remove normal genes and specifically amplify cancer cell-derived genes. Accordingly, there is an urgent need for a method for improving detection sensitivity and accurate early diagnosis of cancer.
한편, 최근에 개발된 유전자가위(RNA-guided CRISPR)(clustered regularly interspaced short palindrome repeats)-연관된 뉴클레아제 Cas 단백질에 기반된 유전체 교정(genome editing)은 표적 넉-아웃, 전사 활성화 및 single guide RNA(sgRNA)(즉, crRNA-tracrRNA 융합 전사체)를 이용한 억제에 대한 획기적인 기술을 제공하며, 이 기술은 수많은 유전자 위치를 표적함으로써 확장성을 입증하였다. CRISPR-Cas 시스템은 표적하는 유전자 또는 핵산에 상보적인 서열을 가지는 guide RNA(gRNA)와 표적하는 유전자 또는 핵산을 절단할 수 있는 뉴클레아제인 CRISPR 효소로 구성되며, gRNA와 CRISPR 효소는 CRISPR 복합체를 형성하고, 형성된 CRISPR 복합체에 의해 표적하는 유전자 또는 핵산을 절단 또는 변형시킨다. CRISPR 시스템은 원핵 생물, 고세균의 면역 시스템으로서 최근 유전자 가위의 하나로 그 활용성에 대한 연구가 급증하고 있으나(비특허문헌 1, 비특허문헌 2), 이를 게놈 시퀀싱에 있어서 사용되는 염기서열 포획 방법 및 질병 진단에 활용하고자 하는 시도는 없었다.       On the other hand, genome editing based on recently developed clustered regularly interspaced short palindrome repeats (RNA-guided CRISPR) -associated nuclease Cas proteins provides target knock-out, transcriptional activation and single guide RNA. It provides a breakthrough technique for inhibition with (sgRNA) (ie crRNA-tracrRNA fusion transcript), which demonstrated scalability by targeting numerous gene positions. The CRISPR-Cas system consists of guide RNA (gRNA) having a sequence complementary to the target gene or nucleic acid and CRISPR enzyme, a nuclease capable of cleaving the target gene or nucleic acid, and the gRNA and CRISPR enzyme form a CRISPR complex. And the target gene or nucleic acid is cleaved or modified by the formed CRISPR complex. The CRISPR system is an immune system of prokaryotes and archaea. Recently, research on the utility of the CRISPR system has been rapidly increasing (Non Patent Literature 1 and Non Patent Literature 2), but the sequence capture method and disease used in genome sequencing. No attempt was made to utilize the diagnosis.
이에, 본 발명자들은 cfDNA 상에서 돌연변이 유전자를 분리하는 방법을 찾고자 예의 노력한 결과, CRISPR/Cas system으로 미량의 cfDNA의 정상 유전자를 특이적으로 절단시키는 기술과 절단되지 않은 돌연변이 유전자를 특이적으로 증폭시키는 기술을 이용하여 본 발명을 완성하였다.Therefore, the present inventors have diligently tried to find a method for separating mutant genes on cfDNA, and as a result, the technique of specifically cleaving a small amount of cfDNA normal genes with the CRISPR / Cas system and amplifying the uncut mutant genes specifically By using the present invention was completed.
(특허문헌 1) 한국 공개 특허 10-2016-0129523(Patent Document 1) Korean Unexamined Patent 10-2016-0129523
(비특허문헌 1) Jinek et al. Science, 2012, 337, 816-821(Non-Patent Document 1) Jinek et al. Science, 2012, 337, 816-821
(비특허문헌 2) Zalatan et al. Cell, 2015, 160, 339-350(Non-Patent Document 2) Zalatan et al. Cell, 2015, 160, 339-350
(비특허문헌 3) Tian J, Ma K, Saaem I., Mol Biosyst, 2009, 5(7), 714-722(Non-Patent Document 3) Tian J, Ma K, Saaem I., Mol Biosyst, 2009, 5 (7), 714-722
(비특허문헌 4 Michael, L.. Metzker, Nature Reviews Genetics, 2010, 11, 31-46(Non-Patent Document 4 Michael, L .. Metzker, Nature Reviews Genetics, 2010, 11, 31-46
본 발명의 목적은 돌연변이 세포 유리 유전자 분리용 키트를 제공하기 위한 것이다.An object of the present invention is to provide a kit for mutant cell free gene isolation.
본 발명의 다른 목적은 돌연변이 유전자형 분석 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a mutant genotyping method.
본 발명은 다음을 포함하는 돌연변이 세포 유래 유전자 분리용 키트를 제공한다: The present invention provides a kit for isolating a mutant cell-derived gene comprising:
5' 말단이 보호된 프라이머를 포함하는, 야생형 세포 유리 유전자(wt cell free DNA) 및 돌연변이 세포 유리 유전자(mutant cell free DNA) 증폭용 조성물;A composition for amplifying a wt cell free DNA and a mutant cell free DNA, comprising a primer protected at the 5 'end;
상기 야생형 세포 유리 유전자 특이적 가이드 RNA;Said wild type cell free gene specific guide RNA;
상기 야생형 세포 유리 유전자를 절단하기 위한 Cas 단백질; 및 Cas protein for cleaving said wild type cell free gene; And
상기 야생형 세포 유리 유전자를 제거하기 위한 엑소뉴클라아제.Exonucleases to remove the wild type cell free gene.
상기 돌연변이 세포 유리 유전자는 암 특이적인 돌연변이를 포함하는 DNA일 수 있다.The mutant cell free gene may be DNA comprising a cancer specific mutation.
본 발명에서 용어, “세포 유리 유전자(cell-free DNA; cfDNA)”는 종양 세포에서 기인하여 암 환자로부터 유래된 혈액, 혈장 또는 소변 등의 생물학적 시료에서 발견될 수 있는 암 세포 유래 유전자를 의미하며, 괴사, 세포 사멸 또는 비뇨기관의 정상세포 및/또는 암세포에서 활성화되어, 다양한 세포 생리학적 과정을 통해 소변, 혈액 등으로 방출된다. 소변, 뇌척수액 (cerebrospinal fluid; CSF), 혈장, 혈액, 또는 체액은 쉽게 얻을 수 있는 시료이므로, 반복적인 샘플링을 통해 대량의 단순하고 비-침습적인 검체의 수집이 가능하다. As used herein, the term “cell-free DNA (cfDNA)” refers to a gene derived from cancer cells that can be found in biological samples such as blood, plasma, or urine derived from cancer patients due to tumor cells. , Necrosis, apoptosis or activation in normal and / or cancer cells of the urinary tract and released into urine, blood and the like through various cellular physiological processes. Urine, cerebrospinal fluid (CSF), plasma, blood, or bodily fluids are readily available samples, and repetitive sampling enables the collection of large quantities of simple, non-invasive samples.
본 발명에서 용어, “CRISPR/Cas 시스템”은 유전자 또는 핵산에 상보적인 서열을 가지는 가이드 RNA(gRNA)와 표적하는 유전자 또는 핵산을 절단할 수 있는 뉴클레아제인 CRISPR 효소로 구성되며, gRNA와 CRISPR 효소는 CRISPR 복합체를 형성하고, 형성된 CRISPR 복합체에 의해 표적하는 유전자 또는 핵산을 절단 또는 변형시킨다. As used herein, the term “CRISPR / Cas system” consists of a guide RNA (gRNA) having a sequence complementary to a gene or nucleic acid and a CRISPR enzyme, a nuclease capable of cleaving a target gene or nucleic acid, and gRNA and CRISPR enzyme. Forms a CRISPR complex and cleaves or modifies the target gene or nucleic acid by the formed CRISPR complex.
Cas 단백질은 CRISPR/Cas 시스템에서 필수적인 단백질 요소를 의미하고, CRISPR RNA(crRNA) 및 트랜스-활성화 crRNA(trans-activating crRNA, tracrRNA)로 불리는 두 RNA와 복합체를 형성할 때, 활성 엔도뉴클레아제를 형성한다. Cas 단백질 유전자 및 단백질의 정보는 국립생명공학정보센터(national center for biotechnology information, NCBI)의 GenBank에서 구할 수 있으나, 이에 제한되지 않는다.Cas protein refers to an essential protein element in the CRISPR / Cas system, which forms an active endonuclease when complexed with two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). Form. Cas protein gene and protein information can be obtained from GenBank of the National Center for Biotechnology Information (NCBI), but is not limited thereto.
본 발명에서 용어, “가이드 RNA”는 표적 DNA에 특이적인 RNA로, 세포 내로 전달된 선형 이중가닥 DNA의 전사를 통해 발현되어 표적 유전자 서열을 인식하고 Cas 단백질과 복합체를 형성할 수 있고 Cas 단백질을 표적 DNA에 가져오는 RNA이다. 상기 “표적 유전자서열”은 표적 유전자 또는 핵산 내에 존재하는 뉴클레오타이드 서열로, 구체적으로는 표적 유전자 또는 핵산 내에 표적 영역의 일부 뉴클레오타이드 서열이며, 이 때 “표적 영역”은 표적 유전자 또는 핵산 내에 가이드핵산-에디터단 백질에 의해 변형될 수 있는 부위이다.As used herein, the term “guide RNA” refers to RNA specific for a target DNA, which is expressed through transcription of a linear double-stranded DNA delivered into a cell to recognize a target gene sequence and form a complex with a Cas protein. It is RNA that is brought to the target DNA. The “target gene sequence” is a nucleotide sequence existing in a target gene or nucleic acid, specifically, a nucleotide sequence of a target region in the target gene or nucleic acid, wherein the “target region” is a guide nucleic acid-editor in the target gene or nucleic acid. It is a site that can be modified by protein.
본 발명에서 용어, “PAM 서열(sequence)”은 목표 서열 옆에 위치하는 3bp~6bp 정도 크기의 서열로서 CRISPR-Cas 복합체가 인식하는 타겟 서열을 의미하며, CRISPR-Cas 복합체는 PAM 서열을 인식한 후 특정 위치를 절단하게 된다. As used herein, the term “PAM sequence” refers to a target sequence recognized by the CRISPR-Cas complex as a sequence of about 3bp to 6bp located next to a target sequence, and the CRISPR-Cas complex recognizes a PAM sequence. After that, the specific position is cut.
상기 키트는 암 의심 개체로부터 분리된 액체 시료(혈액, 혈장 또는 소변 시료 등)에 포함된 야생형 세포 유리 유전자 및 돌연변이 세포 유리 유전자로부터 돌연변이 세포 유리 유전자를 분리하기 위한 것일 수 있다.The kit may be for separating mutant cell free genes from wild type cell free genes and mutant cell free genes contained in liquid samples (blood, plasma or urine samples, etc.) isolated from suspected cancer.
상기 Cas단백질은, Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9), Francisella novicida Cas9 (FnCas9), Neisseria cinerea Cas9 (NcCas9), Neisseria meningitis Cas9 (NmCas9) Prevotella 또는 Francisella 1(Cpf1)일 수 있으나, 반드시 이로 제한되는 것은 아니다.The Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), But may not be limited to Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
상기 Cas 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있으나, 이에 제한되지 않는다.The Cas protein or gene information may be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI), but is not limited thereto.
상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 포함하는 이중 RNA (dualRNA) 또는 sgRNA (single-chain RNA)일 수 있다.The guide RNA may be a dual RNA (single-chain RNA) or a sgRNA (sgRNA) including crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
상기 가이드 RNA는, 복수개의 야생형 세포 유리 유전자 특이적인 2 종류 이상의 가이드 RNA를 포함할 수 있다. 즉, 본 발명의 키트는 멀티플렉싱이 가능한 키트이다.The guide RNA may include two or more types of guide RNAs specific for a plurality of wild type cell free genes. That is, the kit of the present invention is a kit capable of multiplexing.
상기 가이드 RNA 제작 방법은 이 기술분야에 널리 알려져 있다.Such guide RNA production methods are well known in the art.
상기 5' 말단이 보호된 프라이머는 상기 프라이머의 5' 말단이 포스포티오에이트 결합(phosphothioate bond)으로 보호된 것일 수 있다.The primer protected by the 5 'end may be the 5' end of the primer protected by a phosphothioate bond.
상기 유전자 증폭용 조성물은 PCR 조성물일 수 있다. The gene amplification composition may be a PCR composition.
본 발명에서, 용어 "증폭 반응"은 타겟 핵산 서열을 증폭하는 반응을 의미하며, PCR(polymerase chain reaction, 중합효소연쇄반응)에 의하여 실시될 수 있다. 상기 PCR은 역전사(reverse transcription) 중합효소 연쇄반응(RT-PCR), 멀티플렉스(multiplex) PCR, 실시간(real-time) PCR, 어셈블리(Assembly) PCR, 퓨전(Fusion) PCR, 리가아제 연쇄 반응(Ligase chain reaction; LCR)을 포함하지만, 이에 제한되지는 않는다. In the present invention, the term "amplification reaction" means a reaction for amplifying a target nucleic acid sequence, it can be carried out by polymerase chain reaction (PCR). The PCR may be reverse transcription polymerase chain reaction (RT-PCR), multiplex PCR, real-time PCR, assembly PCR, fusion PCR, ligase chain reaction ( Ligase chain reaction (LCR), but is not limited thereto.
본 명세서에서, 용어 "프라이머(primer)"는 단일가닥의 올리고뉴클레오티드 중 하나로, 리보뉴클레오티드도 포함할 수 있으며 바람직하게는 디옥시리보뉴클레오티드 일 수 있다. 상기 프라이머는 주형(template)의 한 부위에 혼성화 또는 어닐링되어, 이중가닥 구조를 형성한다. 본 발명에서 프라이머는 NGS 시퀀싱 아답터 서열에 혼성화(hybridization) 또는 어닐링(annealing)될 수 있다. 어닐링(annealing)은 주형 핵산에 올리고뉴클레오티드 또는 핵산이 병치(apposition)되는 것을 의미하며, 상기 병치는 중합효소(polymerase)가 뉴클레오티드를 중합시켜 주형 핵산 또는 그의 일부분에 상보적인 핵산 분자를 형성하게 한다. 혼성화(hybridization)는 2개의 단일가닥 핵산이 상보적인 염기서열들의 페어링(pairing)에 의하여 이합체 구조(duplex structure)를 형성하는 것을 의미한다. 상기 프라이머는 주형에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건에서 합성의 개시점으로 작용할 수 있다.As used herein, the term "primer" is one of single stranded oligonucleotides, which may also include ribonucleotides, preferably deoxyribonucleotides. The primers hybridize or anneal to one site of the template to form a double stranded structure. In the present invention, the primer may be hybridized or annealed to the NGS sequencing adapter sequence. Annealing refers to the placement of oligonucleotides or nucleic acids into a template nucleic acid, which condition causes the polymerase to polymerize the nucleotides to form a nucleic acid molecule that is complementary to the template nucleic acid or portion thereof. Hybridization means that two single-stranded nucleic acids form a duplex structure by pairing complementary sequences. The primer can serve as a starting point for synthesis under conditions that result in the synthesis of a primer extension product complementary to the template.
상기 PCR 조성물은 야생형 세포 유리 유전자 및 돌연변이 세포 유리 유전자 각각에 특이적인 5‘ 말단이 보호된 프라이머 이외에, 이 기술분야에 널리 알려진 성분을 포함할 수 있다. 구체적으로, PCR 버퍼(PCR buffer), dNTP, DNA 폴리머라아제(DNA Polymerase) 등을 포함할 수 있다.The PCR composition may include components well known in the art, in addition to the 5′-end protected primers specific for each of the wild type cell free gene and the mutant cell free gene. Specifically, it may include a PCR buffer (PCR buffer), dNTP, DNA polymerase (DNA Polymerase) and the like.
본 발명에서 용어, “엑소뉴클레아제(exonuclease)”는 DNA 시퀀스에서 폴리뉴클레오티드 체인의 3´-말단 또는 5´-말단으로부터 뉴클레오티드를 순차적으로 분해하는 효소이다. 3´- 5´ 엑소뉴클레아제는 3´-말단에서 포스포디에스테르(phospho- diester) 결합을 분해하는 효소이고, 5´- 3´ 엑소뉴클레아제는 5´-말단에서 포스포디에스테르(phospho- diester) 결합을 분해하는 효소이다.As used herein, the term “exonuclease” refers to an enzyme that sequentially degrades nucleotides from the 3′-end or 5′-end of a polynucleotide chain in a DNA sequence. 3'-5 'exonuclease is an enzyme that breaks down a phospho-diester bond at the 3'-end, and 5'-3' exonuclease is a phosphoester at the 5'-end. diester) An enzyme that breaks down bonds.
상기 엑소뉴클라아제는 이 기술분야에 알려진 엑소뉴클라아제라면 어느 것이나 사용할 수 있다. 구체적으로 엑소뉴클레아제는 3’→5’ 엑소뉴클레아제 및/또는 5’→3’ 엑소뉴클레아제를 포함할 수 있다. 구체적으로, 엑소뉴클라아제 III, 엑소뉴클라아제 I, T5 엑소뉴클라아제, T7 엑소뉴클라아제, 엑소뉴클라아제 T, 엑소뉴클라아제 V, Lambda 엑소뉴클라아제, 및 엑소뉴클라아제 VII 등을 포함할 수 있다. 바람직하게는, 엑소뉴클라아제 T7 및 엑소뉴클라아제 T(단일가닥 특이적 뉴클라아제)를 일 수 있으나, 반드시 이로 제한되는 것은 아니다. The exonuclease can be used any exonuclease known in the art. Specifically, the exonuclease may include 3 '→ 5' exonuclease and / or 5 '→ 3' exonuclease. Specifically, exonuclease III, exonuclease I, T5 exonuclease, T7 exonuclease, exonuclease T, exonuclease V, Lambda exonuclease, and exonuclease VII, and the like. Preferably, it may be, but is not necessarily limited to, exonuclease T7 and exonuclease T (single strand specific nuclease).
5‘ 말단이 보호되고 있는 프라이머를 포함하는 유전자 증폭용 조성물로 야생형 세포 유리 유전자 및 돌연변이 세포 유리 유전자가 포함된 시료를 반응시키면, 야생형 세포 유리 유전자 및 돌연변이 세포 유리 유전자 말단이 포스포티오에이트로 보호된다. 이 보호되고 있는 DNA들은 엑소뉴클라아제를 처리하더라도 포스포티오에이트 결합 때문에 분해가 되지 않는다. When a sample containing a wild type cell free gene and a mutant cell free gene is reacted with a gene amplification composition comprising a primer having a 5 'end protected, the wild type cell free gene and the mutant cell free gene ends are protected by phosphothioate. do. These protected DNAs are not degraded due to phosphothioate linkages even when treated with exonucleases.
야생형 세포 유리 유전자 특이적 가이드 RNA 및 Cas 단백질에 의해 야생형 세포 유리 DNA지에 의해 의해서 해당 DNA가 절단되면, 보호되지 않은 핵산 말단이 엑소뉴클라아제에 노출되고, 이로 인해 야생형 세포 유리 유전자 DNA는 분해되어 제거되고, 돌연변이 세포 유리 유전자만 분리된다(도 1).When the DNA is cleaved by wild type cell free DNA by wild type cell free gene specific guide RNA and Cas protein, the unprotected nucleic acid ends are exposed to exonuclease, which degrades the wild type cell free gene DNA. Removed and only mutant cell free genes are isolated (FIG. 1).
본 발명의 일 실시예에서는 KRAS 유전자를 목표로 하는 가이드RNA를 사용하였을 때, 5’-NGG-3’ PAM 시퀀스를 만족하는 wt KRAS만 선택적으로 Cas9에 의해서 잘려졌다. 이때 T7 Exonuclease 과 Exonuclease T를 처리함으로써 Cas9에 의해 잘려진 wt KRAS DNA가 완전히 제거되는 것을 전기영동을 통해서 확인 할 수 있었다.In one embodiment of the present invention, when using the guideRNA targeting the KRAS gene, only wt KRAS satisfying the 5'-NGG-3 'PAM sequence was selectively cut by Cas9. At this time, by treating T7 Exonuclease and Exonuclease T, it was confirmed by electrophoresis that wt KRAS DNA cut by Cas9 was completely removed.
다른 측면에서 본 발명은, 다음 단계를 포함하는 돌연변이 유전자형 분석 방법을 제공한다:In another aspect, the present invention provides a mutant genotyping method comprising the following steps:
i) 적어도 하나의 야생형 세포-유리 유전자(wt cell free DNA) 및 적어도 하나의 돌연변이 세포 유리 유전자(mutant cell free DNA)가 포함된 분리된 시료 내의, 상기 야생형 세포 유리 유전자와 돌연변이 세포 유리 유전자를 5' 말단이 보호된 프라이머를 이용하여 증폭하는 단계;i) the wild type cell free gene and the mutant cell free gene in an isolated sample containing at least one wild type cell-free gene and at least one mutant cell free DNA. Amplifying using a primer protected at the end;
ii) 상기 야생형 세포 유리 유전자에 특이적으로 결합하는 가이드 RNA 및 Cas 단백질을 처리하여 상기 증폭된 야생형 세포 유리 유전자만을 절단하는 단계;ii) treating only the amplified wild type cell free gene by treating guide RNA and Cas protein that specifically binds to the wild type cell free gene;
iii) 상기 돌연변이 세포 유리 유전자와, 상기 절단된 세포 유리 유전자가 존재하는 시료에 엑소뉴클라아제를 처리하여 상기 절단된 야생형 세포 유리 유전자만을 제거하는 단계; iii) removing only the truncated wild-type cell free gene by treating an mutant cell free gene and a sample containing the truncated cell free gene with an exonuclease;
iv) 상기 시료 내에 남아있는 돌연변이 세포 유리 유전자를 증폭하는 단계; 및iv) amplifying the mutant cell free gene remaining in the sample; And
v) 상기 증폭된 돌연변이 세포 유리 유전자를 분석하는 단계.v) analyzing the amplified mutant cell free genes.
상기 i) 적어도 하나의 야생형 세포-유리 유전자 및 적어도 하나의 돌연변이 세포 유리 유전자가 포함된 분리된 시료는, 암 의심 개체로부터 분리된 액체 시료(혈액, 혈장 또는 소변 시료)일 수 있다.I) The isolated sample containing at least one wild-type cell-free gene and at least one mutant cell free gene may be a liquid sample (blood, plasma or urine sample) isolated from a suspected cancer.
상기 돌연변이 세포 유리 유전자는 암 특이적인 돌연변이를 포함하는 DNA일 수 있다. The mutant cell free gene may be DNA comprising a cancer specific mutation.
상기 돌연변이 세포 유리 유전자 분석은, 암의 진단을 위한 정보를 제공하기 위한 것일 수 있다.The mutant cell free gene analysis may be for providing information for diagnosis of cancer.
본 발명에서 용어, “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다. As used herein, the term “diagnosis” refers to determining the susceptibility of an object to a particular disease or condition, to determining whether an object currently has a particular disease or condition, or to a particular disease or condition. Determining the prognosis of one object at hand, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
본 발명에 있어서 상기 진단은 암의 발병 여부를 확인하는 것 및/또는 암의 예후를 확인하는 것을 포함할 수 있다.In the present invention, the diagnosis may include confirming whether the cancer develops and / or confirming the prognosis of the cancer.
상기 암은 초기 암일 수 있다.The cancer may be early cancer.
상기 암은 예컨대 편평세포 암(squamous cell cancer, 예를 들어, 상피의 편평세포 암), 소형 세포 폐암, 비-소형 세포 폐암, 폐암, 복막암, 결장암, 담도 종양, 비인두암, 후두암, 기관지암, 구강암, 골육종, 담낭암, 신장암, 백혈병, 방광암, 흑색종, 뇌암, 신경 교종, 뇌종양, 피부암, 췌장암, 유방암, 간암, 골수암, 식도암, 대장암, 위암, 자궁경부암, 전립선암, 난소암, 두경부암 및 직장암으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. Such cancers include, for example, squamous cell cancer (e.g., squamous cell cancer of the epithelium), small cell lung cancer, non-small cell lung cancer, lung cancer, peritoneal cancer, colon cancer, biliary tract tumors, nasopharyngeal cancer, laryngeal cancer, bronchial cancer , Oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma, brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer, liver cancer, bone marrow cancer, esophageal cancer, colon cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, Head and neck cancer and rectal cancer may be one or more selected from the group consisting of, but is not limited thereto.
상기 5'말단이 보호된 프라이머는 상기 프라이머의 5' 말단이 포스포티오에이트 결합으로 보호된 것일 수 있다.The primer protected by the 5 'end may be the 5' end of the primer protected by a phosphothioate bond.
상기 Cas단백질은, Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9), Francisella novicida Cas9 (FnCas9), Neisseria cinerea Cas9 (NcCas9), Neisseria meningitis Cas9 (NmCas9) Prevotella 또는 Francisella 1(Cpf1)일 수 있으나, 반드시 이로 제한되는 것은 아니다.The Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), But may not be limited to Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
상기 가이드 RNA 는 crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 포함하는 이중 RNA (dualRNA) 또는 sgRNA (single-chain RNA)일 수 있다.The guide RNA may be a dual RNA (single-chain RNA) or a sgRNA (sgRNA), including crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
상기 증폭은 PCR로 수행될 수 있으며, PCR 조건은 이 기술분야에 널리 알려진 방법을 기초로 설정할 수 있다.The amplification may be performed by PCR, and PCR conditions may be set based on methods well known in the art.
본 발명의 돌연변이 세포 유리 유전자 분리용 키트 및 돌연변이 세포 유리 유전자 분리방법은 CRISPR/Cas 시스템 및 엑소뉴클라에제를 이용한 것으로, 혈액 내의 cfDNA에서 대부분을 차지하는 정상체세포 유래 유전자(>99.9%)를 선택적으로 제거할 수 있다. 그 결과 cfDNA 상에서 돌연변이 세포 유리 유전자(암 세포 유래 유전자)만을 분석할 수 있어, 초기 암 진단에 유용하게 사용될 수 있다.The kit for mutant cell free gene isolation and mutant cell free gene isolation method of the present invention is a CRISPR / Cas system and exonuclease, and selects the normal somatic cell-derived gene (> 99.9%), which accounts for most of cfDNA in the blood. Can be removed with As a result, only mutant cell free genes (genes derived from cancer cells) can be analyzed on cfDNA, which can be useful for early cancer diagnosis.
또한 본 발명의 돌연변이 세포 유리 유전자 분리용 키트 및 돌연변이 세포 유리 유전자 분리방법은, 시료 내 정상세포 유래의 유전자를 제거하여 cfDNA에 존재하는 돌연변이 세포 유리 유전자(암 세포 유래 유전자) 비율에 상응하는 극미량의 유전자를 분석할 수 있는 효과를 제공한다.        In addition, the kit for mutant cell free gene isolation and mutant cell free gene separation method of the present invention, by removing a gene derived from normal cells in the sample, a very small amount corresponding to the ratio of the mutant cell free gene (cancer cell derived gene) present in cfDNA Provides the effect of analyzing genes.
더욱이 본 발명은 복수 개의 정상 유래 유전자 특이적인 가이드RNA를 이용할 수 있으므로 다중화 시스템(multiplexing system)에 의해 동시에 2가지 이상의 발암 유전자에 대한 동시 검출이 가능하다.In addition, the present invention can use a plurality of normal gene-specific guideRNA, it is possible to simultaneously detect two or more oncogenic genes at the same time by a multiplexing system (multiplexing system).
도 1은 본 발명에서 시료 내 wtDNA(wild type cell free DNA)를 선택적으로 제거함으로 mtDNA(mutant cell free DNA)만을 증폭시키는 과정의 모식도에 관한 것이다.1 is a schematic diagram of a process of amplifying only mtDNA (mutant cell free DNA) by selectively removing the wtDNA (wild type cell free DNA) in the sample in the present invention.
도 2는 본 발명에 따른 CRISPR-Cas 시스템을 이용하여 시료 내 wtDNA만을 선택적으로 절단한 결과에 관한 것이다.Figure 2 relates to the results of selective cleavage of wtDNA only in the sample using the CRISPR-Cas system according to the present invention.
도 3은 본 발명에 따른 CRISPR-Cas 시스템에 의해서 절단된 DNA가 선택적으로 엑소뉴클라아제에 의해 분해되는 결과에 관한 것이다.Figure 3 relates to the results of the DNA cleaved by the CRISPR-Cas system according to the invention is selectively degraded by exonuclease.
도 4는 본 발명에 따른 Cas 단백질 및 엑소뉴클라아제를 처리하여 KRAS wtDNA를 제거한 샘플을 차세대 염기서열분석을 통해 분석한 결과에 관한 것이다.Figure 4 relates to the results of the analysis of the sample removed KRAS wtDNA by treatment of Cas protein and exonuclease according to the present invention through the next generation sequencing.
도 5는 본 발명에 따른 Cas 단백질 및 엑소뉴클라아제를 처리하여 KRAS wtDNA를 제거한 샘플을 생거 시퀀싱을 통해 분석한 결과에 관한 것이다.Figure 5 relates to the results of analyzing the sample by removing the KRAS wtDNA by treatment with Cas protein and exonuclease according to the present invention through Sanger sequencing.
도 6은 본 발명에 따른 Cas 단백질 및 엑소뉴클라아제를 처리하여 여러 목표 유전자를 멀티플렉싱 방법으로 제거함으로써, 여러 암 유래 유전자를 한번에 증폭시키는 과정을 나타내는 구체적인 모식도에 관한 것이다.6 is a specific schematic diagram illustrating a process of amplifying several cancer-derived genes at once by treating Cas proteins and exonucleases according to the present invention and removing several target genes by multiplexing.
도 7은 본 발명에 따른 Cas 단백질 및 엑소뉴클라아제를 처리하고 멀티플렉싱 시스템을 이용하여 목포 유전자(wt DNA)만 선택적으로 제거할 수 있음을 아가로스 겔 전기영동을 통해 입증한 결과에 관한 것이다. Figure 7 relates to the results proved through agarose gel electrophoresis that can only selectively remove the Mokpo gene (wt DNA) by using the Cas protein and exonuclease and multiplexing system according to the present invention.
도 8은 본 발명에 따른 Cas 단백질 및 엑소뉴클라아제를 처리하고 멀티플렉싱 시스템을 이용하여 KRAS wtDNA와 EGFR wtDNA를 제거한 샘플을 차세대염기서열 분석을 통해 분석한 결과에 관한 것이다. Figure 8 relates to the results of the analysis of the next step sequence analysis of the samples treated with Cas protein and exonuclease according to the present invention and removed KRAS wtDNA and EGFR wtDNA using a multiplexing system.
도 9는 본 발명에서 Cas9 오르토로그(othologue)를 활용한 멀티플렉싱 시스템이 접목된 유전자 제거방법을 나타내는 모식도에 관한 것이다. 9 is a schematic diagram showing a gene removal method grafted with a multiplexing system utilizing Cas9 ortholog in the present invention.
목표유전자를 선택적으로 절단시킬 수 있는 CRISPR/Cas시스템은 매우 높은 정확도를 가진 엔도뉴클레아제(endonuclease)로서, Cas9 오르토로그(othologue)들은 각기 다른 PAM 영역 서열을 가지고 있다. PAM 시퀀스는 Cas9 단백질이 목표유전자를 인식할 때 필수적인 유전자 시퀀스로, 목표유전자와 완벽하게 상보적인 가이드 RNA(guide RNA)와 결합하고 있더라도 PAM 서열이 만족되지 않으면, CRISPR Cas 시스템은 작동하지 않는다. 또한 가이드 RNA가 표적 유전자와 비상보적인 유전자 서열이 많으면, CRISPR/Cas는 표적 유전자를 정상적으로 인식하지 못하게 된다. 뉴클레오타이드 치환(nucleotide substitution)에 위해 발생한 암 유전자를 확인하기 위해서, 야생형 유전자에 상보적인 가이드 RNA를 디자인하였다. 가이드 RNA의 목표를 선정할 때 크게 두 가지 기준으로 디자인하였다. 치환이 일어나기 전의 염기서열이 PAM 사이트에 해당할 경우, PAM 사이트를 기준으로 가이드 RNA를 설계하였고, PAM 사이트에 해당하지 않는 경우에는 시드 영역(seed region)에 미스매치(mismatch)를 추가하여 가이드 RNA를 설계하였다. Cas9의 시드 영역은 표적 유전자를 인식할 때 가이드 RNA와 표적 유전자 간의 미스매치에 민감하게 반응하는 위치로, 시드 영역에 1~2nt 미스매치가 있는 경우에는 목표유전자를 명확하게 인지하지 못하게 된다. The CRISPR / Cas system, which can selectively cleave target genes, is a highly accurate endonuclease, and Cas9 orthologes have different PAM region sequences. The PAM sequence is an essential gene sequence when the Cas9 protein recognizes a target gene. Even if the PAM sequence is not satisfied even if it binds with guide RNA, which is perfectly complementary to the target gene, the CRISPR Cas system does not work. In addition, if the guide RNA has a large number of target genes and non-complementary gene sequences, CRISPR / Cas may not recognize the target genes normally. In order to identify cancer genes generated for nucleotide substitution, guide RNAs complementary to wild-type genes were designed. When selecting the target of the guide RNA, the design was largely based on two criteria. If the nucleotide sequence before the substitution occurs in the PAM site, the guide RNA was designed based on the PAM site, and if it does not correspond to the PAM site, the guide RNA was added by adding a mismatch to the seed region. Was designed. The seed region of Cas9 is sensitive to the mismatch between the guide RNA and the target gene when the target gene is recognized. If there is a 1 to 2 nt mismatch in the seed region, the target gene is not clearly recognized.
본 발명에서 사용되는 가이드 RNA는 야생형의 유전자를 선택적으로 인식할 수 있게 설계되어 있다.       The guide RNA used in the present invention is designed to selectively recognize wild-type genes.
본 발명에서, Cas9으로 표적유전자를 절단한 후 PCR 증폭을 하면, Cas9에 의해서 잘려진 야생형 세포 유리 DNA는 돌연변이 세포 유리 DNA보다 증폭된 양이 적었다. 그러나 Cas9으로 야생형 DNA를 자르고 돌연변이 DNA에 대한 PCR을 하는 단순한 방식으로는 극미량의 돌연변이 유전자를 확인하기 위한 검출한계에 도달하지 못하였다. 이는 Cas9에 의해서 절단되는 야생형 DNA 조각이 PCR되는 과정에서 프라이머 역할을 할 수 있기 때문에, 최종적으로 증폭된 PCR 산물에 야생형 유래의 유전자 서열이 포함될 수 있다. Cas9의 정확도를 빌려 야생형 유전자를 선택적으로 절단시키더라도, 잘려진 DNA 조각들이 배경 신호를 상승시켜, 극미량 존재하는 암 유래 유전자를 검출할 수 있는 검출 한계에 도달할 수 없게 하였다(도 1의 하단 왼쪽 박스 그림 참고).       In the present invention, when PCR amplification after cleavage of the target gene with Cas9, the wild type cell free DNA cut by Cas9 was less amplified than the mutant cell free DNA. However, a simple method of cutting wild-type DNA with Cas9 and PCR for mutant DNA did not reach the detection limit to identify trace mutant genes. Since the wild-type DNA fragment cleaved by Cas9 may serve as a primer in the PCR process, the wild-type-derived gene sequence may be included in the finally amplified PCR product. Even with the cleavage of Cas9's accuracy and selective cleavage of the wild-type gene, the truncated DNA fragments raised the background signal, making it impossible to reach the limit of detection for detecting trace amounts of cancer-derived genes (bottom left box in FIG. 1). See picture).
하지만, 본 발명에서는 PCR과정에서 배경 신호를 생성하는, 야생형 DNA의 잘려진 조각들을 제거함으로써, 미량의 표적 유전자에 대해서도 충분한 검출능을 가지게 하였다. 미량의 cf DNA 유전자 분석의 최종 과정에서 분석 대상 유전자를 PCR을 통해 증폭할 때 5‘ 말단이 포스포티오에이트 결합( phosphothioate bond)으로 보호된 프라이머를 사용해서 증폭을 하거나, 이미 증폭된 PCR 앰플리콘의 양 말단에 포스포티오에이트 결합을 포함하고 있는 어댑터(adatpor)를 라이게이션(ligation)시켜준다. 뉴클레오티드를 연결하는 포스포다이에스테르 결합(phophodiester bond)을 포스포티오에이트 결합으로 교체하면, 뉴클라아제는 해당 결합이 존재하는 뉴클레오타이드 사이를 절단할 수 없게 된다.       However, in the present invention, by removing the truncated fragments of the wild-type DNA, which generate a background signal during the PCR process, it has sufficient detectability even for a small amount of the target gene. When amplifying the gene to be analyzed by PCR in the final process of trace cf DNA gene analysis, the 5 'end is amplified using a primer protected with a phosphothioate bond, or amplified PCR amplicon Ligation of the adapter (adatpor) containing a phosphothioate bond at both ends of the (ligation). If phosphodiester bonds linking nucleotides are replaced with phosphothioate bonds, the nuclease will not be able to cleave between the nucleotides in which the bond exists.
표적유전자가 양 말단이 포스포티오에이트 결합으로 보호되고 있을 때, 엑소뉴클라아제를 저리하게 되면 해당 표적유전자는 엑소뉴클라아제에 의해 분해되지 않는다. 하지만 Cas9에 의해서 목표유전자가 절단되면, 포스포티오에이트로 보호되지 않은 새로운 DNA 말단들이 엑소뉴클라아제에 노출되어, Cas9에 의해 잘려진 DNA는 엑소뉴클라아제에 의해 제거된다.      When a target gene is protected at both ends by phosphothioate bonds, the exonuclease will not be cleaved by the exonuclease. However, when the target gene is cleaved by Cas9, new DNA ends not protected by phosphothioate are exposed to exonuclease, so that the DNA cut by Cas9 is removed by exonuclease.
따라서, 본 발명의 기반이 되는 유전자 절단과 제거 기술은 상호보완적인 역할을 하여, 기존에는 불가능했던 미량의 cf DNA 내 암 유래 유전자의 명확한 검출이 가능하였다.      Therefore, the gene cutting and elimination techniques underlying the present invention play a complementary role, enabling a clear detection of cancer-derived genes in trace amounts of cf DNA that was previously impossible.
본 발명의 일 양태에서는, 분리 정제된 SpCas9 단백질과 가이드 RNA 복합체는 5’-NGG-3’의 PAM 시퀀스를 만족한 유전자 목표 지점만을 정확하게 절단을 일으키는 것을 확인하였다.      In one embodiment of the present invention, it was confirmed that the isolated and purified SpCas9 protein and the guide RNA complex precisely cause the cleavage only at the gene target point that satisfies the PAM sequence of 5'-NGG-3 '.
본 발명에서, KRAS 유전자의 변이는 암 유전자의 주요변이 중 하나로, cfDNA상에서 중요한 바이오 마커이다. 특히 KRAS의 변이는 cDNA 상의 35번째 핵산이 G가 T로 치환되어 단백질 상에서 12번째 아미노산이 아스파르트산( asparatate)에서 발린(valine)으로 교체되는 변이가 주로 발생한다. 이렇게 35번째의 구아노신(guanosine)이 티민(thymidine)으로 치환된 mtDNA는 타겟 유전자 상에서 Cas9의 PAM에 해당하는 염기서열이 NGT로 바뀌게 된다. PAM 시퀀스로 NGG를 특이적으로 인식하는 SpCas9은 wt KRAS와 mt KRAS(35G>T) 중 wt KRAS만을 특이적으로 인식하여 DNA를 절단하였다(도 2).       In the present invention, the mutation of the KRAS gene is one of the major mutations of the cancer gene, and is an important biomarker on cfDNA. In particular, the mutation of KRAS mainly occurs when the 35th nucleic acid on the cDNA is replaced with G by T, so that the 12th amino acid is replaced with valine from aspartic acid (asparatate) on the protein. The 35th guanosine (guanosine) is replaced with thymidine mtDNA is the base sequence corresponding to the PAM of Cas9 on the target gene is changed to NGT. SpCas9, which specifically recognizes NGG as a PAM sequence, cleaves DNA by specifically recognizing only wt KRAS among wt KRAS and mt KRAS (35G> T) (FIG. 2).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: SpCas9의 분리 및 정제Example 1 Isolation and Purification of SpCas9
N 말단에 His x 6 표지(tag)을 포함하고 있는 재조합 화농성 연쇄상구균 Cas9(streptococcus pyogenes Cas9, spCas9)의 단백질 발현을 위해 spCas9 유전정보 ((His x 6를 포함한 단백질의 전체 서열, 서열번호 1)를 가지고 있는 플라스미드(plasmid)를 감응세포(Competent cell)인 BL21-DE3 종에 형질전환을 실시하였다. 상기 형질전환된 BL21-DE3가 증식하고 있는 액체배지에 IPTG(Isopropyl b-D-ThioGalactoside)를 처리한 후 18℃에서 16시간 동안 배양하였다. 세포들을 5000xg에서 15분 동안 원심분리 한 후 NaH2PO4 50mM (pH 8), NaCl 400mM, imidazole 10mM, PMSF 1mM, DTT 1mM, Triton X-100 1%, 라이소자임(lysozyme) 1mg/ml를 포함한 용해 완충액(lysis buffer)으로 세포를 융해시켰다. 초음파분쇄기를 이용하여 세포를 분쇄한 후, 15000xg 30분 동안 원심 분리하여 상등액과 세포찌꺼기를 분리하였다. 상등액에 니켈-나이트릴로트라이아세트산 레진(Ni-NTA resin, Invitrogen, Carlsbad, CA)을 첨가하여 4℃에서 1시간동안 반응시킨 후, NaH2PO4 50mM (pH 8), NaCl 400mM, imidazole 20mM의 세척 완충액(wash buffer)으로 Ni-NTA 레진을 2번 반복하여 세척하였다. 마지막으로 해당 레진에 NaH2PO4 50mM (pH 8), NaCl 400mM, imidazole 250mM의 용출 완충액(elution buffer)을 첨가해줌으로써, spCas9을 Ni-NTA 레진으로부터 분리하였다. spCas9이 포함된 완충액을 amicon ultra centrifugal filter를 이용하여 HEPES 20mM (pH 7.5), NaCl 400mM, DTT 1mM, glycerol 40%를 포함하는 완충액으로 교체하였다.SpCas9 genetic information ((the entire sequence of the protein including His x 6, SEQ ID NO: 1) for protein expression of the recombinant purulent Streptococcus Cas9 (spCas9) containing a His x 6 tag at the N-terminus) The plasmid containing plasmid was transformed into BL21-DE3 species, which are sensitized cells, and treated with IPTG (Isopropyl bD-ThioGalactoside) in a liquid medium in which the transformed BL21-DE3 was growing. The cells were then incubated for 16 hours at 18 ° C. The cells were centrifuged at 5000 × g for 15 minutes, followed by NaH 2 PO 4 50 mM (pH 8), NaCl 400 mM, imidazole 10 mM, PMSF 1 mM, DTT 1 mM, Triton X-100 1%, The cells were lysed with a lysis buffer containing 1 mg / ml of lysozyme, and the cells were crushed using an ultrasonic crusher, followed by centrifugation at 15000 × g for 30 minutes to separate the supernatant and cell debris. -Nitrilo Tri Set acid resin (Ni-NTA resin, Invitrogen, Carlsbad, CA) was added and after reaction for one hour at 4 ℃, NaH 2 PO 4 50mM (pH 8), NaCl 400mM, wash buffer of imidazole 20mM (wash buffer) The Ni-NTA resin was washed twice, and finally, spCas9 was added to Ni-NTA by adding elution buffer of NaH 2 PO 4 50 mM (pH 8), NaCl 400 mM, and imidazole 250 mM. The buffer containing spCas9 was replaced with a buffer containing 20 mM HEPES (pH 7.5), 400 mM NaCl, 1 mM DTT, and 40% glycerol using an amicon ultra centrifugal filter.
실시예 2. 인-비트로 전사에 의한 가이드 RNA의 합성Example 2. Synthesis of Guide RNA by In-vitro Transcription
T7 프로모터 및 가이드 RNA 정보가 포함되어 있는 DNA 주형과 T7 RNA 중합효소를 40mM Tris-HCl(pH 7.9), 6mM MgCl2, 10mM DTT, 10mM NaCl, 2mM spermidine, NTP 그리고 Rnase 저해제가 포함된 완충액에서 37℃에서 18시간 동안 반응시킴으로, in vitro에서 가이드 RNA를 합성하였다(서열번호 2 및 3). 합성된 가이드 RNA는 RNA 정제 키트를 사용하여 정제하였다.DNA template containing T7 promoter and guide RNA information and T7 RNA polymerase were prepared in buffer containing 40 mM Tris-HCl (pH 7.9), 6 mM MgCl 2 , 10 mM DTT, 10 mM NaCl, 2 mM spermidine, NTP and Rnase inhibitors. By reacting for 18 hours at ℃, guide RNA was synthesized in vitro (SEQ ID NOs: 2 and 3). The synthesized guide RNA was purified using an RNA purification kit.
실시예 3. 인 비트로 절단(In vitro Cleavage)Example 3. In vitro Cleavage
상기 실시예 1에 따라 분리정제된 500ng SpCas9(이하 Cas9으로 표시)과 상기 실시예 2에 따라 제조된 100ng 가이드 RNA를 37℃에서 5분 동안 결합시키고, Potassum acetate 50mM (pH 7.9), Tris-acetate 20mM, Magnesium acetate 10mM, DTT 1mM로 구성된 완충액에서 150ng 이중가닥 DNA (dsDNA)인 야생형 KRAS 유전자(서열번호 4) 및 돌연변이 KRAS 유전자(KRAS D12V, 서열번호 6)와 37℃에서 60분 동안 반응시켰다. KRAS 유전자 및 아미노산 서열 정보는 다음 표 1과 같다.       500ng SpCas9 (hereinafter referred to as Cas9) isolated and purified according to Example 1 and 100ng guide RNA prepared according to Example 2 were combined at 37 ° C. for 5 minutes, Potassum acetate 50 mM (pH 7.9), Tris-acetate In a buffer consisting of 20 mM, Magnesium acetate 10 mM, and 1 mM DTT, 150 ng double-stranded DNA (dsDNA) was reacted with wild type KRAS gene (SEQ ID NO: 4) and mutant KRAS gene (KRAS D12V, SEQ ID NO: 6) at 37 ° C for 60 minutes. KRAS gene and amino acid sequence information is shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2019001518-appb-I000001
Figure PCTKR2019001518-appb-I000001
Figure PCTKR2019001518-appb-I000002
Figure PCTKR2019001518-appb-I000002
Cas9에 의해 절단된 DNA 조각은 1.5% 아가로즈 젤(agarose gel)에서 전기영동을 한 후, EtBr로 염색하여 확인하였다. 실험 결과, 분리 정제된 Cas9 단백질과 가이드 RNA 복합체는 5’-NGG-3’의 PAM 시퀀스를 만족한 유전자 목표 지점만을 정확하게 절단을 일으키는 것을 확인하였다(도 2 참조).DNA fragments cleaved by Cas9 were confirmed by electrophoresis on 1.5% agarose gel and stained with EtBr. As a result, the isolated purified Cas9 protein and the guide RNA complex were confirmed to precisely cut only the gene target point satisfying the PAM sequence of 5'-NGG-3 '(see Fig. 2).
암 유전자의 주요 변이 중 하나인 KRAS 유전자의 변이는 cfDNA상에서 검출할 수 있는 중요한 바이오 마커이다. 특히 KRAS의 변이는 cDNA 상의 35번째 핵산이 G가 T로 치환되어 KRAS 단백질 내 12번째 아미노산이 글라이신(glycine, G)에서 발린(valine, V)으로 교체되는 변이가 중요하다(서열번호 5 및 서열번호 7). 이렇게 35번째의 구아노신(guanosine)이 티미딘(thymidine)으로 치환된 mtDNA는 타겟 유전자 상에서 Cas9의 PAM에 해당하는 염기서열이 NGT로 바뀌게 된다. PAM 시퀀스로서 NGG를 특이적으로 인식하는 Cas9은 wt KRAS와 mt KRAS(35G>T) 중 wt KRAS만을 특이적으로 인식하여 DNA를 절단한다(서열번호 8).      One of the major mutations in cancer genes, the KRAS gene, is an important biomarker that can be detected on cfDNA. In particular, the variation of KRAS is important in that the 35th nucleic acid on cDNA is replaced with T by G, so that the 12th amino acid in KRAS protein is replaced by glycine (G) with valine (V) (SEQ ID NO: 5 and sequence). Number 7). In this way, the mtDNA in which the 35th guanosine is substituted with thymidine changes the nucleotide sequence corresponding to the PAM of Cas9 to NGT on the target gene. Cas9, which specifically recognizes NGG as a PAM sequence, cleaves DNA by specifically recognizing only wt KRAS among wt KRAS and mt KRAS (35G> T) (SEQ ID NO: 8).
가이드 RNA는 야생형 KRAS 유전자(서열번호 4)를 포함한 2787nt의 DNA상에서 1572nt 위치에 상응하는 목표시퀀스를 가지고 있다. 가이드 RNA와 결합한 Cas9은 2787nt의 DNA상에서 KRAS 유전자를 절단시켜, 1572nt의 긴 절편과, 1215nt의 짧은 절편을 만드는 것을 전기영동 결과에서 확인하였다(도 2b 상단 및 도 3b 상단 참조). 하지만 해당 가이드 RNA를 사용하더라도 PAM 시퀀스가 5‘-NGT-3’로 바뀐 mtKRAS유전자는 Cas9에 의해 절단이 되지 않는 것을 확인하였다(도 2b 하단 및 도 3b 하단 참조).   The guide RNA has a target sequence corresponding to position 1572nt on 2787nt DNA containing the wild type KRAS gene (SEQ ID NO: 4). Cas9 coupled with guide RNA cleaved the KRAS gene on 2787nt of DNA to make 1572nt long fragment and 1215nt short fragment in the electrophoresis results (see top of FIG. 2b and top of FIG. 3b). However, even when using the guide RNA, it was confirmed that the mtKRAS gene whose PAM sequence was changed to 5'-NGT-3 'was not cleaved by Cas9 (see FIG. 2b bottom and 3b bottom).
실시예 4. 야생형 세포 유리 DNA만의 선택적 제거Example 4 Selective Removal of Wild-type Cell Free DNA Only
야생형 세포 유리 유전자가 선택적으로 절단되고, 이러한 선택적 절단이 엑소뉴클레아제에 의해 선택적으로 진행되는 것을 확인하기 위한 실험을 실시하였다.       Experiments were conducted to confirm that wild-type cell free genes were selectively cleaved and that such cleavage was selectively progressed by exonuclease.
포스포티오에이트 결합을 사용하여 5’ 말단이 보호된 프라이머(표 2)와 phusion 폴리머라아제를 사용하여, 표적 유전자(암 환자 혈액에서 분리한 야생형 세포 유리 DNA 및 암 특이적인 세포 유래 DNA)를 PCR 증폭시킨다. PCR 정제 키트(Quiagen Cat ID: 28104)를 사용하여 야생형 DNA(wtDNA)와 돌연변이 DNA(mtDNA)를 분리정제한 후, wtDNA와 mtDNA를 90:10 (wtDNA ratio 90%; mtDNA ratio 10%), 99:1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9:0.1 (wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99:0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999:0.001 (wtDNA ratio 99.999%; mtDNA ratio 0.001%) 비율로 섞어서 DNA 시료(sample)를 준비하였다. 500ng SpCas9과 100ng guide RNA를 37℃에서 5분 동안 결합시키고, 아세트산 칼륨(Potassium acetate) 50mM(pH 7.9), 트리스-아세트산염(Tris-acetate) 20mM, 아세트산 마그네슘(Magnesium acetate) 10mM, DTT(DiThioThreitol, 환원제) 1mM로 구성된 완충액에서 정제된 100ng double strand DNA(dsDNA)와 37℃에서 60분 동안 반응시켰다.        Target genes (wild type cell free DNA and cancer specific cell derived DNA isolated from cancer patient blood) were identified using primers protected at 5 ′ ends using phosphothioate binding (Table 2) and phusion polymerase. PCR amplification. After purifying wild type DNA (wtDNA) and mutant DNA (mtDNA) using a PCR purification kit (Quiagen Cat ID: 28104), the wtDNA and mtDNA were 90:10 (wtDNA ratio 90%; mtDNA ratio 10%), 99 : 1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9: 0.1 (wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99: 0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999: 0.001 (wtDNA ratio A DNA sample was prepared by mixing at a ratio of 99.999%; mtDNA ratio 0.001%). 500 ng SpCas9 and 100 ng guide RNA were combined at 37 ° C. for 5 minutes, Potassium acetate 50 mM (pH 7.9), Tris-acetate 20 mM, Magnesium acetate 10 mM, DiThioThreitol , Reducing agent) was reacted with 100ng double strand DNA (dsDNA) purified in a buffer consisting of 1mM for 60 minutes at 37 ℃.
[표 2]TABLE 2
Figure PCTKR2019001518-appb-I000003
Figure PCTKR2019001518-appb-I000003
반응 후에, 엑소뉴클라아제 T7, 엑소뉴클라아제 T를 첨가하여 37℃에서 60분 동안 추가적으로 반응을 실시하였다. Cas9과 엑소뉴클라아제가 처리된 DNA 조각은 1.5% 아가로스 겔에서 전기영동으로 확인하거나, PCR 증폭을 하여 생거 시퀀싱(sanger sequencing)과 차세대 시퀀싱(next generation sequencing)으로 염기서열을 확인하였다.After the reaction, exonuclease T7 and exonuclease T were added to carry out additional reaction at 37 ° C. for 60 minutes. DNA fragments treated with Cas9 and exonuclease were identified by electrophoresis on a 1.5% agarose gel, or sequenced by Sanger sequencing and next generation sequencing by PCR amplification.
KRAS 유전자를 포함하고 있는 2787nt DNA는 양 말단이 포스포티오에이트 결합으로 보호되어 있다(도 3a 단계 1 참조). 양 말단이 포스포티오에이트 결합에 의해 보호되고 있는 DNA는 엑소뉴클라아제를 처리하더라도 분해되지 않는다. 하지만 cas9에 의해서 해당 DNA가 절단되면, 보호되지 않은 핵산 말단이 엑소뉴클라아제에 노출되고, 이로 인해 DNA는 분해되었다(도 3a 단계 2 및 단계 3 참조). KRAS 유전자를 표적으로 하는 가이드 RNA를 사용하였을 때, 5’-NGG-3’ PAM 시퀀스를 만족하는 wt KRAS 유전자만이 선택적으로 Cas9에 의해서 잘려진다. 이 때, 소뉴클라아제 T7과 소뉴클라아제 T를 처리함으로써 Cas9에 의해 잘려진 wt KRAS DNA가 완전히 제거되는 것을 전기영동을 통해서 확인하였다(도 3b 상단 최우측 라인 참조). 하지만, Cas9에 의해서 잘려지지 않은 mt KRAS DNA는 소뉴클라아제가 처리가 되어 있음에도 불구하고, 양 말단의 스포티오에이트 결합 때문에 보호되어 분해되지 않는 것을 확인하였다(도 3b 하단 최우측 라인 참조).       2787nt DNA containing the KRAS gene is protected at both ends by phosphothioate bonds (see FIG. 3A step 1). DNA whose both ends are protected by phosphothioate bonds is not degraded by treatment with exonuclease. However, when the DNA was cleaved by cas9, the unprotected nucleic acid ends were exposed to exonuclease, which resulted in the degradation of the DNA (see FIG. 3A steps 2 and 3). When using guide RNAs targeting the KRAS gene, only wt KRAS genes that satisfy the 5'-NGG-3 'PAM sequence are selectively truncated by Cas9. At this time, it was confirmed by electrophoresis that the wt KRAS DNA cut by Cas9 was completely removed by treating sonuclease T7 and sonuclease T (see FIG. 3b top right line). However, it was confirmed that mt KRAS DNA not cut by Cas9 was protected and decomposed due to sportioate binding at both ends, even though sonuclease was treated (see the rightmost bottom line in FIG. 3b).
실시예 5. 표적 DNA에 대한 검출한계의 확인Example 5. Confirmation of detection limit for target DNA
표적 DNA만을 선택적으로 제거하였을 때, 미량으로 존재하는 유전자를 시퀀싱 결과로 확인하였다. 이 때, 미량 유전자에 대한 검출한계를 확인하기 위해서 wt DNA와 mt DNA를 서로 다른 비율로 섞어서 실험을 진행하였다. 양 끝단이 phosphothioate bond로 보호된 wt KRAS DNA와 mt KRAS DNA를 90:10 (wtDNA ratio 90%; mtDNA ratio 10%), 99:1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9:0.1 (wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99:0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999:0.001 (wtDNA ratio 99.999%; mtDNA ratio 0.001%) 비율로 섞고, Cas와 엑소뉴클라아제를 처리한 후 최종적으로 얻은 샘플에 대한 시퀀싱을 실시하였다(도 4 참조).        When only the target DNA was selectively removed, the gene present in the trace was confirmed by the sequencing result. At this time, in order to confirm the detection limit for the trace gene, the experiment was performed by mixing wt DNA and mt DNA in different ratios. 90% (wtDNA ratio 90%; mtDNA ratio 10%), 99: 1 (wtDNA ratio 99%; mtDNA ratio 1%), 99.9: 0.1 wtDNA ratio 99.9%; mtDNA ratio 0.1%), 99.99: 0.01 (wtDNA ratio 99.99%; mtDNA ratio 0.01%), 99.999: 0.001 (wtDNA ratio 99.999%; mtDNA ratio 0.001%), mix with Cas and exonuclease After processing, sequencing was performed on the finally obtained sample (see FIG. 4).
도 4에 나타낸 바와 같이, Cas9만 처리한 샘플에서도 mt DNA의 비율이 상승하는 것을 NGS 시퀀싱 결과에서 확인할 수 있었다. 하지만 최초 분석 샘플에서의 mtDNA의 비율이 1% 이하로 내려갈 경우, 최종적으로 검출되어지는 mtDNA 비율이 현저히 낮아진다. 일반적으로 cfDNA에서의 mt DNA의 비율은 0.01% 이하인 점을 고려하였을 때, Cas9으로 표적 유전자만 절단하는 경우 mtDNA의 존재유무에 대한 결과를 확인하는 것은 용이하지 않다. 이에 본 발명자들은 표적 유전자의 검출 한계에 대한 확인을 하기와 같이 실시하였다.      As shown in FIG. 4, it was confirmed in the NGS sequencing results that the ratio of mt DNA also increased in the Cas9-only sample. However, if the percentage of mtDNA in the initial analysis sample falls below 1%, the rate of mtDNA finally detected is significantly lowered. Considering that the ratio of mt DNA in cfDNA is generally 0.01% or less, it is not easy to confirm the result of the presence or absence of mtDNA when only the target gene is cleaved with Cas9. Therefore, the inventors carried out the confirmation of the detection limit of the target gene as follows.
Cas9과 엑소뉴클라아제를 처리한 샘플을 생거 시퀀싱을 통해 분석했을 때, KRAS c.35 구아노신에 해당하는 부분이 티민으로 읽히는 것을 확인하였다. Cas9만 처리한 경우 최초 mtDNA의 비율이 1%이였던 샘플(NGS result mtDNA : 44%)에서 35번째 핵산에 해당하는 부분에서 구아노신과 티민의 히스토그램이 동시에 관측되는 것을 확인하였고, mtDNA의 비율이 1%이하의 샘플에서는 mtDNA의 시퀀스를 관측할 수 없었다(도 5 좌측, Cas_treatment 참조). 하지만 Cas9, 엑소뉴클라아제 T, 엑소뉴클라아제 T7가 처리된 경우 mtDNA의 비율이 0.01%였던 샘플에서도, 돌연변이 시퀀스를 생거 시퀀싱 결과상에서 확인하였다(도 5 우측, Cas+ExoT+ExoT7_treatment 참조).      When the samples treated with Cas9 and exonuclease were analyzed by Sanger sequencing, it was confirmed that the portion corresponding to KRAS c.35 guanosine was read as thymine. When only Cas9 was treated, the histograms of guanosine and thymine were observed simultaneously in the portion corresponding to the 35th nucleic acid in the sample (NGS result mtDNA: 44%) where the ratio of the first mtDNA was 1%, and the ratio of mtDNA was 1 Sequences of mtDNA could not be observed in samples below% (see Cas_treatment on the left in FIG. 5). However, even in a sample in which the ratio of mtDNA was 0.01% when Cas9, exonuclease T, and exonuclease T7 were treated, the mutant sequence was confirmed on Sanger sequencing results (see FIG. 5 right, Cas + ExoT + ExoT7_treatment).
도 5에서 확인한 바와 같이, 본 발명에서 Cas9과 엑소뉴클라아제 T7, 엑소뉴클라아제 T를 같이 처리한 샘플의 경우, 최초의 mtDNA의 비율이 0.01% 이하의 샘플에서도 NGS 결과에서 mtDNA의 존재 유무를 명확하게 확인하였다(Cas9만을 사용하여 검출 가능한 시료의 mtDNA 비율은 1%). 따라서, 본 발명에서는 Cas9 시스템만을 이용하여 표적유전자를 절단하는 방법에 비하여, 최소 100배 이상으로 검출한계를 확장하였다.       As shown in FIG. 5, in the present invention, in the case of a sample treated with Cas9, exonuclease T7, and exonuclease T, the presence of mtDNA was present in the NGS result even in a sample having an initial ratio of mtDNA of 0.01% or less. Was clearly confirmed (the ratio of mtDNA of the sample detectable using only Cas9 was 1%). Therefore, in the present invention, the detection limit was extended to at least 100 times as compared to the method of cleaving the target gene using only the Cas9 system.
실시예 6. 멀티플렉스 시스템을 이용한 다양한 표적 DNA의 제거Example 6 Removal of Various Target DNA Using Multiplex System
하기 방법에 따라, 멀티플렉스 시스템을 이용한 다양한 표적 DNA의 제거를 확인하였다. EGFR 서열은 다음 표 3과 같다.       According to the following method, the removal of various target DNAs using the multiplex system was confirmed. EGFR sequences are shown in Table 3 below.
[표 3]TABLE 3
Figure PCTKR2019001518-appb-I000004
Figure PCTKR2019001518-appb-I000004
Figure PCTKR2019001518-appb-I000005
Figure PCTKR2019001518-appb-I000005
Figure PCTKR2019001518-appb-I000006
Figure PCTKR2019001518-appb-I000006
포스포티오에이트 결합으로 5’ 말단이 보호된 프라이머(표 2)와 phusion 폴리머라아제를 사용하여, 여러 개의 표적 유전자에 대한 PCR 증폭을 실시하였다. PCR 정제 키트를 사용하여 분리 정제된 KRAS DNA와 EGFR DNA를 1:1로 섞어서 표적 DNA 시료를 준비하였다. 500ng Cas9과 KRAS와 EGFR을 표적으로 하는 가이드 RNA(서열번호 3)를 각각 50ng씩 섞어서 5분 동안 결합시켰다. 이후에, Potassium acetate 50mM (pH 7.9), Tris-acetate 20mM, Magnesium acetate 10mM, DTT 1mM로 구성된 완충액에서 정제된 100ng 표적 DNA 샘플과 37℃에서 60분 동안 반응시켰다. PCR amplification of several target genes was performed using primers (Table 2) protected by 5 'terminus by phosphothioate linkages and phusion polymerase. A target DNA sample was prepared by mixing 1: 1 purified KRAS DNA and EGFR DNA using a PCR purification kit. 50 ng of 500 ng Cas9 and guide RNA (SEQ ID NO: 3) targeting KRAS and EGFR were mixed for 5 min. Subsequently, 100 ng target DNA samples purified in a buffer consisting of 50 mM of Potassium acetate (pH 7.9), 20 mM of Tris-acetate, 10 mM of Magnesium acetate, and 1 mM of DTT were reacted at 37 ° C. for 60 minutes.
Cas9과 반응 시킨 후, 엑소뉴클라아제 T7, 엑소뉴클라아제 T를 첨가하여 37‘C, 60분 동안 추가적으로 반응시켰다. Cas9과 엑소뉴클라아제가 처리된 DNA 조각은 1.5% 아가로스 겔에서 전기영동으로 확인하거나, PCR 증폭을 하여 생거 시퀀싱과 차세대 시퀀싱으로 염기서열을 확인하였다.    After reacting with Cas9, exonuclease T7 and exonuclease T were added to react 37 [deg.] C for 60 minutes. DNA fragments treated with Cas9 and exonuclease were identified by electrophoresis on a 1.5% agarose gel or by PCR amplification to confirm sequencing by Sanger sequencing and next-generation sequencing.
KRAS DNA를 표적으로 하는 가이드 RNA와 EGFR DNA를 표적으로 하는 가이드 RNA를 혼합하여 Cas9과 결합시킨 후, wt KRAS DNA(2787nt)와 wt EGFR DNA(2813nt)가 1:1로 혼합된 DNA를 잘랐을 때, 각각의 표적 유전자는 해당 가이드 RNA에 의해서 잘리는 것을 확인하였고, 잘려진 유전자만 엑소뉴클라아제에 의해서 완전히 분해되는 것을 전기영동을 통해 검증하였다(도 7b 중단 참조). 이와 반대로 mt KRAS와 mt EGFR이 1:1로 섞인 DNA 샘플은 Cas9에 의해서 절단되지 않으며, 엑소뉴클라아제에 의해서 분해되지 않음을 확인하였다(도 7b 하단 참조).When a guide RNA targeting KRAS DNA and a guide RNA targeting EGFR DNA were mixed and combined with Cas9, the DNA in which wt KRAS DNA (2787nt) and wt EGFR DNA (2813nt) were mixed in a 1: 1 ratio was cut. Each target gene was confirmed to be truncated by the corresponding guide RNA, and electrophoresis confirmed that only the truncated gene was completely degraded by exonuclease (see FIG. 7B). On the contrary, it was confirmed that the DNA sample mixed with mt KRAS and mt EGFR in a 1: 1 ratio was not cleaved by Cas9 and was not degraded by exonuclease (see bottom of FIG. 7B).
상기와 같이, 각기 다른 유전자를 표적으로 하는 가이드 RNA를 함께 사용하는 멀티플렉싱 시스템을 적용하여, 여러 개의 표적 유전자를 동시에 제거할 수 있음을 전기영동을 통해 확인하였다. 또한 여러 유전자를 동시에 제거함으로써, 여러 종류의 극미량 유전자를 NGS 결과상에서 한 번에 확인하였다.        As described above, it was confirmed by electrophoresis that by applying a multiplexing system using a guide RNA targeting different genes together, it is possible to remove several target genes at the same time. By removing several genes simultaneously, several trace genes were identified at once on the NGS results.
실시예 7. 멀티플렉싱 시스템을 이용한 다양한 표적 DNA에 대한 검출 한계의 확인Example 7 Identification of Limits of Detection for Various Target DNAs Using Multiplexing Systems
KRAS 유전자와 EGFR 유전자에 해당하는 wt DNA와 mt DNA를 서로 다른 비율로 섞은 DNA 샘플을 이용하여 멀티플렉싱 시스템의 검출한계를 NGS 분석을 통해 확인하였다. 양 끝단이 포스포티오에이트 결합으로 보호된 wt KRAS DNA, wt EGFR DNA와 mt KRAS DNA, mt EGFR DNA를 90:10 (KRAS mtDNA ratio : 10%, EGFR mtDNA ratio : 10%, wt KRAS DNA ratio 및 wt EGFR DNA ratio는 각각 90%), 99:1 (KRAS mtDNA ratio : 1%, EGFR mtDNA ratio : 1%, wt KRAS DNA ratio 및 wt EGFR DNA ratio는 각각 99%), 99.9:0.1 (KRAS mtDNA ratio : 0.1%, EGFR mtDNA ration : 0.1%, wt KRAS DNA ratio 및 wt EGFR DNA ratio는 각각 99.9%), 99.99:0.01 (KRAS mtDNA ratio : 0.01%, EGFR mtDNA ratio : 0.01%, wt KRAS DNA ratio 및 wt EGFR DNA ratio는 각각 99.99%), 99.999:0.001 (KRAS mtDNA ratio : 0.001%, EGFR mtDNA ratio : 0.001%, wt KRAS DNA ratio 및 wt EGFR DNA ratio는 각각 99.999%) 비율로 섞고, Cas9와 엑소뉴클라아제를 처리한 후 최종적으로 얻은 샘플을 시퀀싱하였다.        The detection limit of the multiplexing system was confirmed by NGS analysis using a DNA sample in which wt DNA and mt DNA corresponding to KRAS gene and EGFR gene were mixed at different ratios. 90% (KRAS mtDNA ratio: 10%, EGFR mtDNA ratio: 10%, wt KRAS DNA ratio and 90% wt KRAS DNA, wt EGFR DNA, mt KEG DNA and mt EGFR DNA protected at both ends by phosphothioate bonds) wt EGFR DNA ratio 90%), 99: 1 (KRAS mtDNA ratio: 1%, EGFR mtDNA ratio: 1%, wt KRAS DNA ratio and wt EGFR DNA ratio respectively 99%), 99.9: 0.1 (KRAS mtDNA ratio : 0.1%, EGFR mtDNA ratio: 0.1%, wt KRAS DNA ratio and wt EGFR DNA ratio are 99.9% respectively, 99.99: 0.01 (KRAS mtDNA ratio: 0.01%, EGFR mtDNA ratio: 0.01%, wt KRAS DNA ratio and wt EGFR DNA ratio is 99.99%), 99.999: 0.001 (KRAS mtDNA ratio: 0.001%, EGFR mtDNA ratio: 0.001%, wt KRAS DNA ratio and wt EGFR DNA ratio are respectively 99.999%) The final sample obtained was sequenced after the aze treatment.
KRAS에 해당하는 가이드 RNA만을 이용한 실험(단독 표적 DNA에 대한 실험)과 같이, 멀티플렉싱 시스템을 도입했을 때 Cas9만을 사용한 경우 1%이하의 mt DNA가 존재하는 샘플에서 정상적으로 돌연변이 시퀀스를 검출할 수 없었다. 하지만 Cas9과 엑소뉴클라아제가 같이 처리된 경우 멀티플렉싱 시스템에서도 mtDNA를 효과적으로 검출해내는 것을 확인 할 수 있었다(도 8 및 도 9 참조). As with experiments using only guide RNAs corresponding to KRAS (tests on single target DNA), when the multiplexing system was used, only mutations were detected in the samples containing less than 1% of mt DNA using Cas9 alone. However, when Cas9 and exonuclease were treated together, it was confirmed that mtDNA was effectively detected even in the multiplexing system (see FIGS. 8 and 9).
도 9에 대해 설명하면 다음과 같다. Cas9 오르토로그는 서로다른 서열의 PAM을 인식한다. spCas9의 경우 표적유전자 3‘ 인접부분에 5’-NGG-3‘의 시퀀스를 보유한 유전자만을 절단시킬 수 있으며, 유전자 상의 해당 NGG 염기서열부분을 sp Cas9의 PAM 서열이라 부른다. nmCas9, saCas9, cjCas9, AsCpf1, FnCpf1의 PAM 서열은 각각 5’-NNNGMTT-3’, 5’-NNGRRT-3’, 5’-NNNVRYAC-3’, 5’-TTTN-3’, 5’-KYTV-3’로 인지된다. 이처럼 다른 종류의 Cas9 오르토로그는 PAM 서열을 보유하고 있으며, PAM 서열을 만족하여야지만, 정상적으로 작동할 수 있다. Cas9의 오르토로그를 멀티플랙싱으로 사용할 경우, PAM 서열의 제약에서 비롯된 표적 가능 유전자의 다양성의 한계를 뛰어 넘을 수 있다. 해당 도식에 나타난 것처럼 다양한 Cas9 오르토로그를 사용하여 유전자 진단을 시도하면, spCsa9으로 표적 가능한 유전자의 한계를 벗어나서 다양한 종류의 암 돌연변이를 검출해낼 수 있다.9 is as follows. Cas9 orthologs recognize PAMs of different sequences. In the case of spCas9, only a gene having a sequence of 5′-NGG-3 ′ adjacent to the target gene 3 ′ can be cut, and the corresponding NGG sequence on the gene is called the PAM sequence of sp Cas9. PAM sequences of nmCas9, saCas9, cjCas9, AsCpf1, and FnCpf1 are 5'-NNNGMTT-3 ', 5'-NNGRRT-3', 5'-NNNVRYAC-3 ', 5'-TTTN-3', 5'-KYTV Perceived as -3 '. This different kind of Cas9 ortholog has a PAM sequence and must meet the PAM sequence, but can function normally. Multiplexing the orthologs of Cas9 can overcome the limitations of the diversity of targetable genes resulting from constraints of PAM sequences. Genetic diagnostics using various Cas9 orthologs, as shown in the diagram, can detect various types of cancer mutations beyond the limits of target genes with spCsa9.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 이 기술분야의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As mentioned above, the specific part of the content of the present invention has been described in detail. For those skilled in the art, this specific technology is merely a preferred embodiment, and it is obvious that the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (13)

  1. 5' 말단이 보호된 프라이머를 포함하는, 야생형 세포 유리 유전자(wild type cell free DNA) 및 돌연변이 세포 유리 유전자(mutant cell free DNA) 증폭용 조성물;A composition for amplifying a wild type cell free gene and a mutant cell free DNA, comprising a primer protected at the 5 'end;
    상기 야생형 세포 유리 유전자 특이적 가이드 RNA;Said wild type cell free gene specific guide RNA;
    상기 야생형 세포 유리 유전자를 절단하기 위한 Cas 단백질; 및 Cas protein for cleaving said wild type cell free gene; And
    상기 야생형 세포 유리 유전자를 제거하기 위한 엑소뉴클라아제; Exonucleases to remove the wild type cell free gene;
    를 포함하는, 돌연변이 세포 유리 유전자 분리용 키트.Including, mutant cell free gene separation kit.
  2. 제1항에 있어서, The method of claim 1,
    상기 돌연변이 세포 유리 유전자는 암 특이적인 돌연변이를 포함하는 DNA이고, The mutant cell free gene is DNA comprising a cancer specific mutation,
    상기 키트는 암 의심 개체로부터 분리된 혈액, 혈장 또는 소변 시료에 포함된 야생형 세포 유리 유전자 및 돌연변이 세포 유리 유전자로부터 돌연변이 세포 유리 유전자를 분리하기 위한 것인, The kit is for separating mutant cell free genes from wild type cell free genes and mutant cell free genes contained in blood, plasma or urine samples isolated from cancer suspected subjects.
    돌연변이 세포 유리 유전자 분리용 키트.Kit for mutant cell free gene isolation.
  3. 제1항에 있어서,The method of claim 1,
    상기 Cas단백질은, Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9), Francisella novicida Cas9 (FnCas9), Neisseria cinerea Cas9 (NcCas9), Neisseria meningitis Cas9 (NmCas9) Prevotella 또는 Francisella 1(Cpf1)인, 돌연변이 세포 유리 유전자 분리용 키트. The Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), Kit for isolating mutant cell free genes, which is Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
  4. 제1항에 있어서,The method of claim 1,
    상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 포함하는 이중 RNA (dualRNA) 또는 sgRNA (single-chain RNA)인 돌연변이 세포 유리 유전자 분리용 키트.The guide RNA is a mutant cell free gene separation kit is a dual RNA (dualRNA) or sgRNA (single-chain RNA) comprising crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
  5. 제1항에 있어서, The method of claim 1,
    상기 가이드 RNA는, 복수개의 야생형 세포 유리 유전자 특이적인 2 종류 이상의 가이드 RNA를 포함하는 것인, 돌연변이 세포 유리 유전자 분리용 키트.The guide RNA is a kit for isolating mutant cell free genes comprising two or more types of guide RNAs specific for a plurality of wild type cell free genes.
  6. 제1항에 있어서, The method of claim 1,
    상기 5' 말단이 보호된 프라이머는 상기 프라이머의 5' 말단이 포스포티오에이트 결합으로 보호된 것이고, 상기 유전자 증폭용 조성물은 PCR 조성물인, 돌연변이 세포 유리 유전자 분리용 키트.The 5 'end of the protected primer is a 5' end of the primer is protected by phosphothioate bond, the gene amplification composition is a PCR composition, mutant cell free gene separation kit.
  7. i) 적어도 하나의 야생형 세포 유리 유전자(wild type cell free DNA) 및 적어도 하나의 돌연변이 세포 유리 유전자(mutant cell free DNA)가 포함된 분리된 시료 내의, 상기 야생형 세포 유리 유전자와 돌연변이 세포 유리 유전자를 5' 말단이 보호된 프라이머를 이용하여 증폭하는 단계;i) the wild type cell free gene and the mutant cell free gene in an isolated sample containing at least one wild type cell free DNA and at least one mutant cell free DNA. Amplifying using a primer protected at the end;
    ii) 상기 야생형 세포 유리 유전자에 특이적으로 결합하는 가이드 RNA 및 Cas 단백질을 처리하여 상기 증폭된 야생형 세포 유리 유전자만을 절단하는 단계;ii) treating only the amplified wild type cell free gene by treating guide RNA and Cas protein that specifically binds to the wild type cell free gene;
    iii) 상기 돌연변이 세포 유리 유전자와, 상기 절단된 세포 유리 유전자가 존재하는 시료에 엑소뉴클라아제를 처리하여 상기 절단된 야생형 세포 유리 유전자만을 제거하는 단계; iii) removing only the truncated wild-type cell free gene by treating an mutant cell free gene and a sample containing the truncated cell free gene with an exonuclease;
    iv) 상기 시료 내에 남아있는 돌연변이 세포 유리 유전자를 증폭하는 단계; 및iv) amplifying the mutant cell free gene remaining in the sample; And
    v) 상기 증폭된 돌연변이 세포 유리 유전자를 분석하는 단계;v) analyzing the amplified mutant cell free genes;
    를 포함하는, 돌연변이 유전자형 분석 방법.Including, mutant genotyping method.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 i) 적어도 하나의 야생형 세포 유리 유전자 및 적어도 하나의 돌연변이 세포 유리 유전자가 포함된 분리된 시료는, 암 의심 개체로부터 분리된 혈액, 혈장 또는 소변 시료인, 돌연변이 유전자형 분석 방법.I) The isolated sample comprising at least one wild type cell free gene and at least one mutant cell free gene is a blood, plasma or urine sample isolated from a suspected cancer.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 돌연변이 세포 유리 유전자는 암 특이적인 돌연변이를 포함하는 DNA이고, The mutant cell free gene is DNA comprising a cancer specific mutation,
    상기 돌연변이 세포 유리 유전자 분석은, 암의 진단을 위한 정보를 제공하기 위한 것인, 돌연변이 유전자형 분석 방법.The mutant cell free gene analysis is to provide information for diagnosis of cancer, mutant genotyping method.
  10. 제7항에 있어서, The method of claim 7, wherein
    상기 5'말단이 보호된 프라이머는 상기 프라이머의 5' 말단이 포스포티오에이트 결합으로 보호된 것인, 돌연변이 유전자형 분석 방법.The 5 'end protected primer is a mutation genotyping method, wherein the 5' end of the primer is protected by phosphothioate bonds.
  11. 제7항에 있어서, The method of claim 7, wherein
    상기 Cas단백질은, Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9), Francisella novicida Cas9 (FnCas9), Neisseria cinerea Cas9 (NcCas9), Neisseria meningitis Cas9 (NmCas9) Prevotella 또는 Francisella 1(Cpf1)인, 돌연변이 유전자형 분석 방법.The Cas protein is Streptococcus pyogenes Cas9 (SpCas9), Streptococcus thermophilus Cas9 (StCas9), Streptococcus pasteurianus (SpaCas9), Campylobacter jejuni Cas9 (CjCas9), Staphylococcus aureus (SaCas9as Cas9a 9), Francisella ), Neisseria meningitis Cas9 (NmCas9) Prevotella or Francisella 1 (Cpf1).
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 가이드 RNA 는 crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)를 포함하는 이중 RNA (dualRNA) 또는 sgRNA (single-chain RNA)인 돌연변이 유전자형 분석 방법.Wherein said guide RNA is a dual RNA (dualRNA) or sgRNA (single-chain RNA) comprising crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
  13. 제7항에 있어서,The method of claim 7, wherein
    상기 증폭은 PCR로 수행되는 것인, 돌연변이 유전자형 분석 방법. Wherein said amplification is carried out by PCR.
PCT/KR2019/001518 2018-02-06 2019-02-07 Mutant cell-free dna isolation kit and mutant cell-free dna isolation method using same WO2019156475A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980004080.9A CN111065747B (en) 2018-02-06 2019-02-07 Mutant cell episome separation kit and mutant cell episome separation method using same
US16/637,412 US11613776B2 (en) 2018-02-06 2019-02-07 Mutant cell-free DNA isolation kit and mutant cell-free DNA isolation method using the same
ES19751556T ES2962531T3 (en) 2018-02-06 2019-02-07 Cell-free mutant DNA isolation method and kit
EP19751556.2A EP3653730B1 (en) 2018-02-06 2019-02-07 Mutant cell-free dna isolation method and kit
JP2020530411A JP7006873B2 (en) 2018-02-06 2019-02-07 Mutant cell free gene separation kit and mutant cell free gene separation method using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0014478 2018-02-06
KR20180014478 2018-02-06
KR1020190013912A KR102086689B1 (en) 2018-02-06 2019-02-01 Kit for isolation of mutant cell free DNA and method for isolation of mutant cell free DNA using the same
KR10-2019-0013912 2019-02-01

Publications (1)

Publication Number Publication Date
WO2019156475A1 true WO2019156475A1 (en) 2019-08-15

Family

ID=67548376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001518 WO2019156475A1 (en) 2018-02-06 2019-02-07 Mutant cell-free dna isolation kit and mutant cell-free dna isolation method using same

Country Status (1)

Country Link
WO (1) WO2019156475A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101446A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
JP2016520317A (en) * 2013-05-29 2016-07-14 セレクティスCellectis Method for producing precise DNA cleavage using CAS9 nickase activity
KR20160129523A (en) 2015-04-30 2016-11-09 주식회사 넥스바이오 Use of Cell-Free DNA for Diagnosing Gastric Cancer
US20170211142A1 (en) * 2015-10-22 2017-07-27 The Broad Institute, Inc. Novel crispr enzymes and systems
JP2017538427A (en) * 2014-12-18 2017-12-28 インテグレイテッド ディーエヌエイ テクノロジーズ インコーポレイテッド CRISPR composition and method of use
KR101815695B1 (en) * 2014-05-28 2018-01-08 기초과학연구원 A sensitive method for detecting target DNA using site-specific nuclease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101446A (en) * 2012-10-23 2015-09-03 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
JP2016520317A (en) * 2013-05-29 2016-07-14 セレクティスCellectis Method for producing precise DNA cleavage using CAS9 nickase activity
KR101815695B1 (en) * 2014-05-28 2018-01-08 기초과학연구원 A sensitive method for detecting target DNA using site-specific nuclease
JP2017538427A (en) * 2014-12-18 2017-12-28 インテグレイテッド ディーエヌエイ テクノロジーズ インコーポレイテッド CRISPR composition and method of use
KR20160129523A (en) 2015-04-30 2016-11-09 주식회사 넥스바이오 Use of Cell-Free DNA for Diagnosing Gastric Cancer
US20170211142A1 (en) * 2015-10-22 2017-07-27 The Broad Institute, Inc. Novel crispr enzymes and systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
MICHAEL, L. METZKER, NATURE REVIEWS GENETICS, vol. 11, 2010, pages 31 - 46
TIAN JMA KSAAEM I., MOL BIOSYST, vol. 5, no. 7, 2009, pages 714 - 722
ZALATAN ET AL., CELL, vol. 160, 2015, pages 339 - 350

Similar Documents

Publication Publication Date Title
KR101815695B1 (en) A sensitive method for detecting target DNA using site-specific nuclease
EP2906715B1 (en) Compositions, methods, systems and kits for target nucleic acid enrichment
US11613776B2 (en) Mutant cell-free DNA isolation kit and mutant cell-free DNA isolation method using the same
US9365902B2 (en) Detection of bisulfite converted nucleotide sequences
US10752943B2 (en) Means and methods for amplifying nucleotide sequences
WO2018174318A1 (en) Method for melting curves analysis using bifunctional pna probe, and method for diagnosing microsatellite instability and kit for diagnosing microsatellite instability using same
CN110267744A (en) The purifying and measurement and mutation and/or the common measurement of mRNA expression of the integration of DNA methylation in automation reaction box
JP2022513124A (en) Methods for Forming Targeted Nucleic Acid Libraries
EP3950945A1 (en) Methylation modification-based tumor marker stamp-ep4
EP4047091A1 (en) Method for detecting target nucleic acid, method for detecting nucleic acid-binding molecule, and method for evaluating nucleic acid-binding ability
CN113493835A (en) Method and kit for screening large intestine tumor by detecting methylation state of BCAN gene region
WO2019156475A1 (en) Mutant cell-free dna isolation kit and mutant cell-free dna isolation method using same
EP1829978B1 (en) Method of detecting gene methylation and method of examining neoplasm by detecting methylation
EP0989192A2 (en) Method for synthesis of nucleic acids
WO2020096247A1 (en) Method for preparing probe for detecting mutation derived from cells in tissues of breast cancer and detection method
CN110396540B (en) Method for detecting hemophilia gene mutation site
WO2023104136A1 (en) Methylation marker in diagnosis of benign and malignant nodules of thyroid cancer and applications thereof
EP4345171A2 (en) Methods for 3' overhang repair
CN112522377A (en) Application of PNA in detection of DNA cleavage fragments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530411

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019751556

Country of ref document: EP

Effective date: 20200210

NENP Non-entry into the national phase

Ref country code: DE