WO2019156313A1 - Ceramic oxygen separator module and manufacturing method therefor - Google Patents

Ceramic oxygen separator module and manufacturing method therefor Download PDF

Info

Publication number
WO2019156313A1
WO2019156313A1 PCT/KR2018/013446 KR2018013446W WO2019156313A1 WO 2019156313 A1 WO2019156313 A1 WO 2019156313A1 KR 2018013446 W KR2018013446 W KR 2018013446W WO 2019156313 A1 WO2019156313 A1 WO 2019156313A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
module
layer
ceramic
ion conductive
Prior art date
Application number
PCT/KR2018/013446
Other languages
French (fr)
Korean (ko)
Inventor
유지행
윤경식
이대근
김현진
나범탁
박종혁
강은정
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2019156313A1 publication Critical patent/WO2019156313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/05Cermet materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/206Specific housing characterised by the material
    • B01D2313/2062Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/34Energy carriers
    • B01D2313/345Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties

Definitions

  • the present invention relates to a gas separation membrane module and a method for manufacturing the same, and more particularly, to a module including a thin ceramic oxygen separation membrane layer having improved durability using a dense support layer having a plurality of flow paths vertically formed and a method of manufacturing the same. .
  • Oxygen separation using a separation membrane includes a separation method using a ceramic separation membrane and a polymer separation membrane.
  • the hollow fiber membrane (HFM) using polysulfone and polyimide-based polymers has low oxygen production cost, but the concentration of oxygen produced is 30 to The disadvantage is as low as 40%.
  • the polymer membrane separation membrane cannot be applied to separate oxygen from the hot mixed gas due to the low thermal durability.
  • oxygen is selectively bound to the oxygen separator to separate oxygen ions and electrons.
  • the separated oxygen ions and the electrons are moved through the oxygen separation membrane, respectively, and the transferred oxygen ions and the electrons are combined again with oxygen molecules so that the oxygen molecules are released to the outside of the oxygen separation membrane.
  • the ceramic separator can be driven at high temperatures, making it particularly suitable for high temperature processes.
  • Ceramic membranes are classified into pure gas ion conductive membranes and mixed ionic-electronic conducting (MIEC) membranes.
  • Pure gas ion conductive membranes require an external power source and electrodes to supply current, and the gas ion permeation rate is precisely controlled by the current supply, and the gas can move in any direction regardless of the partial pressure of oxygen located in both directions of the membrane. have.
  • the ion-electron mixed conductive film transmits gas ions and electrons by the pressure difference of the gas without supplying external power.
  • the ion-electron mixed conductive film mainly consists of a Perovskite single phase, which transmits both gas ions and electrons, and two different electron and gas ions.
  • the dual phase ion-electron mixed conducting film which respectively transmits into a phase
  • the dual phase ion-electron mixed conducting film has an electron conducting oxide material or a metal phase and a fluorite structure or fluorite which transmits electrons. It includes a fluorite phase.
  • the perovskite which is an electron conductive phase
  • an oxygen separation membrane was manufactured by mechanically mixing and sintering at least 15-30 vol% or more of perovskite powder with fluorite powder to make an electrical short.
  • This method has a problem in that when the mechanically mixed perovskite / fluorite powder is sintered at a high temperature, the fluorite phase reacts with the perovskite phase to produce a secondary phase that lowers oxygen permeability, and the perovskite phase is fluorite phase.
  • U.S. Patent No. 7726767 discloses a configuration in which a porous support layer is formed on an outer side of an ion conductive membrane, a flow path of slits is formed under the ion conductive membrane, and oxygen is collected through a long flow path crossing the slits under the ion conductive membrane.
  • the slit can be easily damaged due to the concentration of stress at the end of the flow path, and in order to overcome this problem, the thickness is increased, so that an efficient oxygen separation membrane cannot be manufactured.
  • Patent Document 1 US 7279027
  • the present invention is to provide a thin ceramic oxygen separator with improved durability by using a dense support layer having a plurality of flow paths vertically formed.
  • the present invention provides a ceramic oxygen separator module, wherein the module includes an ion conductive membrane frame having an electrode active layer coated on both surfaces of an upper surface and a lower surface thereof, and having a space therein; A dense support layer having a plurality of holes at upper and lower parts positioned symmetrically with each other in contact with the electrode active layer coated on the inner surface of the ion conductive membrane frame at the top and the bottom of the inner space of the frame; A gas channel layer forming a gas flow space between the upper and lower dense support layers having a plurality of holes; And an oxygen trap penetrating up and down the upper and lower surfaces of the module and connected to the gas flow space of the gas channel layer.
  • the present invention also provides a ceramic oxygen separation membrane module, wherein the gas channel layer further includes a support column supporting between the dense support layer having a plurality of upper and lower holes located symmetrically with each other.
  • the ion conductive membrane frame is made of a ceramic oxygen separator, ion-conductive material, ion-electron mixed conductive material, a mixture of an electron conductive material and an ion conductive material or a mixture of an ion-electron mixed conductive material and an ion conductive material, ceramic oxygen separator Provide a module.
  • the ion conductive material is yttria-stabilized zirconia (YSZ), Scandia-stabilized zirconia (ScZ), gadolinia doped-ceria (GDC), Sama Smaria doped-Ceria (SDC), strontium and magnesium-injected lanthanum gallates (LSGM), and bismuth oxide (Bisuth oxide, Bi 2 O 3 ) and perovskite materials strontium and magnesium-injected lanthanum gallium
  • a ceramic oxygen separator module which is at least one selected from the group consisting of latent gallates (LSGM).
  • the ion-electron mixed conductive material is strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), lanthanum strontium coblatite (LSC), strontium cobalt ferrite (Strontium cobalt ferrite (SFC), barium strontium cobalt ferrite (BSCF), lanthanum strontium cobalt ferrite (LSCF), and lanthanum nickelate (LNO)
  • STF strontium titanium ferrite
  • LSF lanthanum strontium ferrite
  • LSC lanthanum strontium coblatite
  • strontium cobalt ferrite strontium cobalt ferrite
  • SFC strontium cobalt ferrite
  • BSCF barium strontium cobalt ferrite
  • LSCF lanthanum strontium cobalt ferrite
  • LNO lanthanum nickelate
  • the present invention also provides a conductive material is lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), manganese ferrite (MnFe 2 O 4 ), and nickel ferrite (NiFe 2 O 4 ). 4 ) at least one selected from the group consisting of, provides a ceramic oxygen separator module.
  • LSM lanthanum strontium manganite
  • LSCr lanthanum strontium chromite
  • MnFe 2 O 4 manganese ferrite
  • NiFe 2 O 4 nickel ferrite
  • the present invention also provides a ceramic oxygen separator module, wherein the dense support layer is made of Y 2 O 3 -doped Zirconia.
  • the present invention also provides a ceramic oxygen separator module, the gas channel layer is 0.1 mm to 1.0 mm thick.
  • the present invention also stacks a plurality of ceramic oxygen separator modules so that the oxygen collecting ports of each module are connected to each other, the upper oxygen collecting port of the uppermost module is sealed with a cap, and the lower oxygen collecting hole of the uppermost module is the The process of sealing connection with the upper oxygen collecting port is repeated, and the lower oxygen collecting hole of the lowermost module is sealingly connected to the manifold or the metal frame, and the sealing connection uses a glass sealing material, ceramic paste or brazing material, and the ceramic oxygen separator stack module To provide.
  • the present invention also provides a method for manufacturing a plurality of ion conductive ceramic green sheets using a tape casting process; Preparing an ion conductive membrane layer by coating a porous conductive active layer on both sides of the green sheet; Manufacturing a dense support layer having a plurality of holes by drilling a plurality of holes in the green sheet; Manufacturing a gas channel layer by punching a central portion of the green sheet; Preparing a laminate by laminating the ion conductive membrane layer, the dense support layer, the gas channel layer, the dense support layer, and the ion conductive membrane layer in order; Forming an oxygen collecting hole connected to the gas channel layer while vertically penetrating the green sheet of the stack so as not to be connected to the plurality of holes; And forming a heat treatment at 900 ° C to 1500 ° C after forming the oxygen trap.
  • the present invention also provides a method for manufacturing a ceramic oxygen separator module, wherein the porous conductive active layer is manufactured by a tape casting process or coated on the green sheet.
  • the present invention also provides a method of manufacturing a ceramic oxygen separator module, wherein the preparing of the gas channel layer further includes inserting a support column into a portion of the punched central portion.
  • the ceramic oxygen separator module of the present invention can effectively support an oxygen permeable membrane composed of a thin ion conductive membrane frame and a conductive active layer by using a dense support layer having a plurality of flow paths vertically formed therein, and oxygen flow using an oxygen trapping space therein. It is possible to capture the permeated oxygen effectively without disturbing.
  • the durability of the module can be improved by inserting the support structure into the inner space of the gas channel layer.
  • FIG. 1 is a schematic diagram showing a cross section of a ceramic oxygen separator module according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a cross section of the ceramic oxygen separator module with a support pillar further in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating a cross section of a ceramic oxygen separator module using a dense support layer, a gas channel layer, and a support pillar ion conductive membrane frame material different from each other according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a cross section of a ceramic oxygen separator stack module in which a ceramic oxygen separator module is laminated according to an embodiment of the present invention.
  • Figure 5a is a schematic diagram showing a sheet of each layer for producing a ceramic oxygen separator module according to an embodiment of the present invention.
  • Figure 5b is a schematic diagram showing a gas channel layer having a support pillar according to an embodiment of the present invention.
  • FIG. 5C is a schematic diagram showing a sheet of each layer using a dense support layer, a gas channel layer, and a support pillar ion conductive membrane frame material according to one embodiment of the present invention.
  • the present invention provides a ceramic oxygen separation membrane module, the module comprising: an ion conductive membrane frame having an electrode active layer coated on both surfaces of an upper surface and a lower surface thereof, and having a space therein; A dense support layer having a plurality of holes at upper and lower parts positioned symmetrically with each other in contact with the electrode active layer coated on the inner surface of the ion conductive membrane frame at the top and the bottom of the inner space of the frame; A gas channel layer forming a gas flow space between the upper and lower dense support layers having a plurality of holes; And an oxygen collecting port penetrating up and down the upper and lower surfaces of the module and connected to the gas flow space of the gas channel layer.
  • the separator may be defined as an interphase of a material having a function of selectively restricting the movement of a material between two phases.
  • Gas separation using membranes is driven by the selective gas permeation principle to the membranes. That is, when the gas mixture comes into contact with the membrane surface, the gas component dissolves and diffuses into the membrane, where the solubility and permeability of each gas component are different for the membrane material.
  • the driving force for gas separation in the present invention is the partial pressure difference for the oxygen gas component applied across the membrane.
  • the module 1 is a schematic diagram showing a cross section of a ceramic oxygen separation membrane module 1 according to one embodiment of the invention.
  • the cross section is a cross section obtained by cutting the side surface including the oxygen collecting port 40.
  • the module 1 has a dense support layer 20 inside the dense ion conductive membrane frame 101, in which the electrode active layers 11 are coated on both sides of the upper and lower surfaces, respectively, and spaces are formed therein. And a gas channel layer 30.
  • the dense support layer 20 having the electrode active layer 11 of the uppermost surface of the inner space of the frame and the plurality of holes abuts, and symmetrically with the electrode active layer 11 of the lowermost surface of the inner space of the frame and the plurality of holes
  • the dense support layer 20 is in contact with each other.
  • a gas channel layer 30 is formed between the dense support layer 20 and oxygen moves through the gas channel layer 30.
  • the gas channel layer 30 may have a space connected to the oxygen collecting port 40, and oxygen flowing through the oxygen collecting hole may collect oxygen by being connected to, for example, a manifold or a metal frame from the outside of the module.
  • the module has a dense support layer 20 having a plurality of holes around the gas channel layer 30-a dense separator layer coated on both sides of the conductive active layer and forms a symmetrical structure on both sides of the gas channel layer 30.
  • the ion conductive membrane frame is a dense ceramic densified through sintering, for example, and the preferred thickness of the frame of the ion conductive membrane on the top and bottom surfaces of the module is 10 ⁇ m to 100 ⁇ m.
  • the thickness may be less than 10 ⁇ m, the thickness is preferably 10 ⁇ m or more in consideration of the ease of manufacturing process and the mechanical strength of the prepared oxygen separation membrane, and preferably not more than 100 ⁇ m in consideration of the oxygen permeability.
  • the ion conductive membrane frame consists of an ion conductive material, an ion-electron mixed conductive material, a mixture of an electron conductive material and an ion conductive material or a mixture of an ion-electron mixed conductive material and an ion conductive material.
  • the material of the ion conductive membrane frame exhibits excellent oxygen permeability when an electron conductive-ion conductive composite separator is used.
  • the ion conductive material may be, for example, yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (ScZ), gadolinia doped-ceria (GDC), samarium Smaria doped-Ceria (SDC), strontium and magnesium injected lanthanum gallates (LSGM), and bismuth oxide (Bismuth oxide, Bi 2 O 3 ) and perovskite materials strontium, magnesium injected lanthanum gallate (Lanthanum gallates, LSGM) is one or more selected from the group consisting of, ion-electron mixed conductive material is, for example, strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), lanthanum Lanthanum strontium coblatite (LSC), Strontium cobalt ferrite (SFC), barium strontium cobalt One or more selected from the group consisting of barium strontium cobal
  • LSM lanthanum strontium manganite
  • LSCr lanthanum strontium chromite
  • MnFe 2 O 4 manganese ferrite
  • NiFe 2 O 4 nickel ferrite
  • the electrode active layer 11 is coated on both sides of the inner and outer surfaces of the top and bottom surfaces of the dense ion conductive membrane frame of the module, and the electrode active layer 11 having a thickness of 1 to 100 ⁇ m in a symmetrical or asymmetrical shape on both sides.
  • the oxygen can reduce the rate of reaction. If the thickness is less than 1 ⁇ m, the coating layer may be easily peeled off from the separator and if the thickness is more than 100 ⁇ m, the diffusion rate of gas molecules may not be sufficient in the coating layer.
  • the thickness of this coating layer is preferably maintained at 13 to 134% with respect to the top and bottom dense ion conductive membrane frame.
  • the thickness of the coating layer is less than 13%, there may be a problem that the increase of oxygen permeability by coating on the surface of the separator is not sufficient, and when the coating layer exceeds 134%, the diffusion rate of gas molecules is not sufficient in the coating layer. May occur.
  • the electrode active layer 11 serves as a catalyst for the ionization of oxygen and the gasification reaction of oxygen ions, in one embodiment the electrode active layer 11 is a porous electron conductive metal oxide, porous cermet, porous metal and
  • the electron conductive metal oxide may be selected from a complex of an electron conductive metal oxide and an ion conductive electrolyte material, and the electron conductive metal oxide may include strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), and lanthanum strontium manganite (LSF).
  • LSM Lanthanum strontium Manganite
  • LSC Lanthanum strontium Cobatite
  • LSCr Lanthanum strontium Chromite
  • LES Lanthanum strontium cobalt ferrite
  • NiFe 2 O 4 nickel ferrite
  • the cermet is a composite of an ion conductive electrolyte material with one selected from nickel, nickel alloys, and iron-based alloys, and the ion conductive electrolyte material is yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia , ScSZ), Gd doped-ceria (GDC), Samarium-infused Ceria (Sm doped-Ceria), Lanthanum gallates, SrCeO 3 , BaCeO 3 , BaZrO 3 , CaZrO 3 , SrZrO 3 , At least one selected from La 2 Zr 2 O 7 , and La 2 Ce 2 O 7 .
  • the porous metal is also nickel or inconel.
  • the composite of the electron conductive metal oxide and the ion conductive electrolyte material is composed of the electron conductive metal oxide and the ion conductive electrolyte material, the volume ratio of the ion conductive electrolyte material in the composite is 20 to 80%, the ion conductive electrolyte material is , Yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (SCSZ), gd doped-ceria (GDC), samarium infused ceria (Sm doped-Ceria), lanthanum Lanthanum gallates, SrCeO 3 , BaCeO 3 , BaZrO 3 , CaZrO 3 , SrZrO 3 , La 2 Zr 2 O 7 , and La 2 Ce 2 O 7 .
  • the ion conductive electrolyte material included in the ion conductive electrolyte material-electroconductive metal oxide composite may adopt the same material as the oxygen separation
  • the dense support layer 20 is provided to maximize the durability while minimizing the thickness of the module, and is a dense ceramic layer having a plurality of holes penetrating up and down, and is the top and bottom layers of the module.
  • An ion conductive membrane frame coated with the electrode active layer 11 may be supported up and down, and the gas channel layer 30 between the dense support layer 20 may also be supported.
  • the plurality of holes are passages through which oxygen can flow into the gas channel layer 30, and in one embodiment, the holes may have a diameter of 0.01 mm to 1 mm or less.
  • the gas channel layer 30 is a passage through which oxygen is collected from the outside of the module by collecting oxygen into the module through the ion conductive membrane frame and the collected oxygen flows.
  • the dense support layer 20 is in contact with the upper and lower portions of the gas channel layer 30 to support the gas channel layer 30.
  • the gas channel layer 30 is an empty space at the center of the module having a vertical thickness of 10.1 mm to 1.0 mm, and a space in which oxygen supplied through the dense support layer 20 flows.
  • the space thickness of the gas channel layer 30 may be further provided with a support pillar 31 as shown in FIG. If it is in the form of not limited to any one, the diameter of the pillar can be formed, for example 1mm to 1cm. Oxygen collected in the gas channel layer 30 is collected through an oxygen collecting port penetrating up and down the module of the present invention.
  • the dense support layer 20, the gas channel layer 30, and the support pillar 31 use different materials from those of the ion conductive membrane frame 101.
  • a schematic is shown.
  • the dense support layer 20, the gas channel layer 30, and the support pillar 31 may be formed of different materials, for example, the dense support layer 20 and the gas.
  • Y 2 O 3 -doped Zirconia (YSZ) may be used as the material of the channel layer 30 and the support pillar 31, and preferably 3 mol% to 8 mol% Y 2 O 3 -doped Zirconia may be used.
  • FIG. 4 is a stack according to another embodiment of the present invention, in which a plurality of ceramic oxygen separator modules are stacked such that oxygen collecting holes of each module are connected to each other, the upper oxygen collecting holes of the uppermost module are sealed with a cap 100, and the uppermost module of the
  • the lower oxygen collecting port repeats the sealing connection with the upper oxygen collecting hole of the module located below, and the lower oxygen collecting hole of the lowermost module is sealingly connected to the manifold or the metal frame, and the sealing connection is a glass sealing material, ceramic paste or brazing material.
  • the stack module of the present invention when oxygen-containing gas is supplied from the outside under a constant pressure, only oxygen is permeated through the ion conductive membrane frame into each module and collected in the gas channel layer 30 of each module. Oxygen trapped by the gas channel layer 30 of each module may trap only pure oxygen gas through an oxygen collecting hole penetrating up and down the upper and lower surfaces of the module.
  • the present invention is a method of manufacturing a ceramic oxygen separator module.
  • the manufacturing method may include the steps of manufacturing a plurality of ion conductive ceramic green sheets using a tape casting process with reference to FIGS. Preparing an ion conductive membrane layer 10 by coating a porous conductive active layer 11 on both sides of the green sheet; Manufacturing a dense support layer 20 having a plurality of holes by drilling a plurality of holes in the green sheet; Manufacturing a gas channel layer 30 by punching a central portion of the green sheet; Preparing a laminate by laminating the ion conductive membrane layer 10, the dense support layer 20, the gas channel layer 30, the dense support layer 20, and the ion conductive membrane layer 10 in order; Forming an oxygen collecting hole connected to the gas channel layer 30 while vertically penetrating the green sheet of the laminate not to be connected to a plurality of holes of the dense support layer; And heat treating at 900 ° C.
  • FIG. 5a shows the configuration of the ceramic oxygen separation membrane of the present invention can be produced by the tape casting method of each layer.
  • a plurality of green sheets may be manufactured by a tape casting method using the ion conductive membrane layer material constituting the frame of the module of the present invention, and the modules may be manufactured by processing and laminating them into respective constituent layers of the present ceramic oxygen separator.
  • a slurry is prepared using a composite conductive material such as powder raw material LSCF-GDC, LSM-GDC, or a mixed conductive material of perovskite material, and ceramics using a tape casting method.
  • a slurry may be prepared by mixing a conductive material and a powder raw material (carbon black, graphite, etc.) powder, and may be laminated by, for example, manufacturing a green sheet having a thickness of 10 to 100 ⁇ m by a tape casting method.
  • two green sheets may be prepared by coating a raw material of constituting an electrode active layer on both sides of a thickness of 1 to 10 ⁇ m.
  • Another two sheets of the dense support layer 20 are prepared by punching each of the two green sheets with a plurality of holes therethrough.
  • a gas channel layer 30 penetrating the center of one green sheet is manufactured to be connected to the plurality of holes of the dense support layer 20.
  • Ion-conductive membrane layer 10-density support layer 20-gas channel layer 30-density support layer 20-porous electrode active layer 11 coated porous electrode active layer 11 Oxygen collecting port connected to the gas channel layer while forming a stack by stacking layers 10 and penetrating the green sheet of the stack upward and downward so as not to be connected to a plurality of holes of the dense support layer 20.
  • the laminate in which the oxygen collecting port is formed is densified by heat treatment at 900 ° C.
  • FIG. 5B illustrates a layer in which the support pillar is inserted into a portion of the punched center portion of the gas channel layer in one embodiment of the present invention, which may further improve durability of the ceramic oxygen separator module or stack of the present invention.
  • Separation membrane can be implemented.
  • 5C is a ceramic oxygen separation membrane module according to one embodiment, wherein the dense support layer 20, the gas channel layer 30, and the support pillar 31 are fabricated using materials different from those of the ion conductive membrane layer. Indicates.
  • the dense support layer 20, the gas channel layer 30, and the support pillar 31 may be formed of different materials, for example, the dense support layer 20 and Y 2 O 3 -doped Zirconia (YSZ) may be used as the material of the gas channel layer 30 and the support pillar 31, and the dense support layer may be preferably formed by using 3 mol% to 8 mol% Y 2 O 3 -doped Zirconia. 20 and the green sheet of the gas channel layer can be produced and used.
  • YSZ Y 2 O 3 -doped Zirconia

Abstract

The present invention relates to a thin ceramic oxygen separator having enhanced durability by using a compact support layer in which a plurality of flow channels are formed vertically. A ceramic oxygen separator module of the present invention can effectively support an oxygen permeable membrane composed of a thin membrane layer and an active layer by using the compact support layer in which a plurality of flow channels are formed vertically, and can effectively collect the permeated oxygen without the interruption of oxygen flow by utilizing an oxygen collection space inside. Furthermore, a support structure is inserted into an inner space of a gas channel layer, thereby enhancing the durability of the module.

Description

세라믹 산소 분리막 모듈 및 그 제조방법Ceramic Oxygen Membrane Module and Manufacturing Method Thereof
본 발명은 기체 분리막 모듈 및 그 제조방법에 관한 것으로, 보다 구체적으로는 다수의 유로가 수직으로 형성된 치밀질 지지층을 이용하여 내구도가 향상된 얇은 세라믹 산소 분리막층을 포함하는 모듈 및 그 제조방법에 관한 것이다.The present invention relates to a gas separation membrane module and a method for manufacturing the same, and more particularly, to a module including a thin ceramic oxygen separation membrane layer having improved durability using a dense support layer having a plurality of flow paths vertically formed and a method of manufacturing the same. .
최근 환경과 에너지에 대한 관심이 높아짐에 따라 산소분리막에 대한 연구가 활발히 이루어지고 있다. 산소분리막은 공기 중에서 순수한 산소만을 추출해내는 것으로, 암모니아 합성이나 그 밖의 합성 화학 공업, 야금, 금속의 용접, 절단 등의 분야에서 널리 사용되고 있다. 분리막을 이용한 산소분리법에는 세라믹 분리막과 고분자 분리막을 이용한 분리법이 있다. 고분자막 분리법 중 특히 폴리설폰, 폴리이미드 계열의 폴리머(Journal of Membrane Science, 1, 99108, 1976)를 이용한 중공사막(HHollow Fiber Membrane:HFM)은 산소 제조 단가가 낮으나, 제조된 산소의 농도가 30~40% 정도로 낮다는 단점이 있다. 일반적으로 고분자막 분리막은 낮은 열 내구성으로 인해 고온의 혼합가스로부터 산소를 분리하는 데는 적용할 수 없다. 세라믹 분리막을 이용한 산소 분리법은 공기의 성분 중 산소가 선택적으로 산소분리막에 결합하여 산소이온과 전자로 분리된다. 분리된 산소이온과 전자는 각각 산소분리막을 투과하여 이동되고, 상기 이동된 산소이온과 전자는 다시 산소분자로 결합하여 결국 산소분자가 상기 산소분리막의 외부로 빠져나오게 된다. 세라믹분리막 고온에서도 구동 가능하므로 고온 공정에 특히 적합하다. Recently, as interest in the environment and energy has increased, research on oxygen separation membranes has been actively conducted. The oxygen separation membrane extracts only pure oxygen from the air, and is widely used in ammonia synthesis, other synthetic chemical industries, metallurgy, metal welding and cutting. Oxygen separation using a separation membrane includes a separation method using a ceramic separation membrane and a polymer separation membrane. Among the membrane separation methods, the hollow fiber membrane (HFM) using polysulfone and polyimide-based polymers (Journal of Membrane Science, 1, 99108, 1976) has low oxygen production cost, but the concentration of oxygen produced is 30 to The disadvantage is as low as 40%. In general, the polymer membrane separation membrane cannot be applied to separate oxygen from the hot mixed gas due to the low thermal durability. In the oxygen separation method using a ceramic separator, oxygen is selectively bound to the oxygen separator to separate oxygen ions and electrons. The separated oxygen ions and the electrons are moved through the oxygen separation membrane, respectively, and the transferred oxygen ions and the electrons are combined again with oxygen molecules so that the oxygen molecules are released to the outside of the oxygen separation membrane. The ceramic separator can be driven at high temperatures, making it particularly suitable for high temperature processes.
세라믹 분리막은 크게 순수 기체 이온 전도성 막과 이온-전자 혼합 전도(MIEC, mixed ionic-electronic conducting)막으로 구별된다. 순수 기체 이온 전도성막은 전류를 공급하기 위한 외부 전원과 전극이 필요하며, 기체이온의 투과량은 전류 공급에 의해 정밀하게 조절되고, 기체는 막의 양방향에 위치한 산소의 분압에 무관하게 어느 방향으로도 이동할 수 있다. 이에 비해 이온-전자 혼합 전도막은 외부전력 공급없이 기체의 압력차에 의해 기체이온과 전자를 투과시킨다. 이온-전자 혼합 전도막에는 주로 페롭스카이트(Perovskite) 단일상(single phase)으로 구성되어 기체이온과 전자를 모두 투과시키는 단일상 이온-전자 혼합 전도막과, 전자와 기체이온을 서로 다른 두개의 상으로 각각 투과시키는 이중상(dual phase) 이온-전자 혼합 전도막이 있으며, 상기 이중상 이온-전자 혼합 전도막은 전자를 투과시키는 전자 전도성 산화물 재료 또는 금속 상(metal phase) 및 이온을 투과시키는 형석구조 내지 형석 상(fluorite phase)을 포함한다. Ceramic membranes are classified into pure gas ion conductive membranes and mixed ionic-electronic conducting (MIEC) membranes. Pure gas ion conductive membranes require an external power source and electrodes to supply current, and the gas ion permeation rate is precisely controlled by the current supply, and the gas can move in any direction regardless of the partial pressure of oxygen located in both directions of the membrane. have. In contrast, the ion-electron mixed conductive film transmits gas ions and electrons by the pressure difference of the gas without supplying external power. The ion-electron mixed conductive film mainly consists of a Perovskite single phase, which transmits both gas ions and electrons, and two different electron and gas ions. There is a dual phase ion-electron mixed conducting film which respectively transmits into a phase, and the dual phase ion-electron mixed conducting film has an electron conducting oxide material or a metal phase and a fluorite structure or fluorite which transmits electrons. It includes a fluorite phase.
상기 페롭스카이트/형석 구조의 이중상 혼합 전도막은 막의 양단이 전기적으로 단락되어 있어야 하므로 전자 전도상인 페롭스카이트가 분리막 내에서 서로 연결되어야 한다. 종래 방식에서는 전기적 단락을 만들기 위해 최소 15 ~ 30vol% 이상의 페롭스카이트 분말을 형석 분말과 기계적으로 혼합하고 소결하여 산소분리막을 제조하였다. 이러한 제조법은 기계적으로 혼합한 페롭스카이트/형석 분말을 높은 온도에서 소결할 때 형석 상이 페롭스카이트 상과 서로 반응하여 산소 투과도를 저하하는 2차상을 생성하는 문제가 있고, 페롭스카이트 상은 형석 상에 비해서 화학적 및 기계적 안정성이 현저히 낮아서 결과적으로 산소 분리막의 내구성이 떨어지는 문제점이 있다. 또한 기체분리막을 모듈 또는 스택으로 제조하여 기체분리에 사용할 경우, 기체를 주입하면서 압력이 가해지는데 이러한 압력조건을 극복할 수 있어야 한다.Since the two-phase mixed conductive film of the perovskite / fluorite structure has to be electrically shorted at both ends of the membrane, the perovskite, which is an electron conductive phase, should be connected to each other in the separator. In the conventional method, an oxygen separation membrane was manufactured by mechanically mixing and sintering at least 15-30 vol% or more of perovskite powder with fluorite powder to make an electrical short. This method has a problem in that when the mechanically mixed perovskite / fluorite powder is sintered at a high temperature, the fluorite phase reacts with the perovskite phase to produce a secondary phase that lowers oxygen permeability, and the perovskite phase is fluorite phase. Compared with the chemical and mechanical stability is significantly low compared to the result that there is a problem that the durability of the oxygen separation membrane. In addition, when the gas separation membrane is manufactured as a module or a stack and used for gas separation, a pressure is applied while injecting gas, and this pressure condition must be overcome.
미국 등록특허 제7279027호는 이온전도 멤브레인의 외부에 다공성 지지층을 형성하며, 이온전도 멤브레인 하부에 슬릿의 유로를 형성하고, 그 아래에 슬릿을 가로 지르는 긴 유로를 통해 산소가 포집되는 구성을 개시한다. 그러나 이러한 슬릿은 유로 끝부분에 응력이 집중되어 쉽게 손상될 수 있으며, 이러한 문제점을 극복하기 위해서는 두께를 증가시키게 되어 효율적인 산소 분리막을 제조할 수 없다.U.S. Patent No. 7726767 discloses a configuration in which a porous support layer is formed on an outer side of an ion conductive membrane, a flow path of slits is formed under the ion conductive membrane, and oxygen is collected through a long flow path crossing the slits under the ion conductive membrane. . However, the slit can be easily damaged due to the concentration of stress at the end of the flow path, and in order to overcome this problem, the thickness is increased, so that an efficient oxygen separation membrane cannot be manufactured.
따라서, 적절한 산소투과도를 유지하면서 분리막의 기계적 안정성을 향상시키기 위한 산소분리막 구조가 요구된다.Therefore, there is a need for an oxygen separation membrane structure for improving the mechanical stability of the separation membrane while maintaining an appropriate oxygen permeability.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) US 7279027(Patent Document 1) US 7279027
본 발명은 다수의 유로가 수직으로 형성된 치밀질 지지층을 이용하여 내구도가 향상된 얇은 세라믹 산소 분리막을 제공하고자 한다.The present invention is to provide a thin ceramic oxygen separator with improved durability by using a dense support layer having a plurality of flow paths vertically formed.
상기 과제를 해결하기 위하여 본 발명은, 세라믹 산소 분리막 모듈로, 상기 모듈은 상부면 및 하부면 각각 양면에 전극활성층이 코팅되고 내부에 공간이 형성된 이온전도성 멤브레인 프레임; 상기 프레임 내부 공간 최상부 및 최하부에 이온전도성 멤브레인 프레임 내부면에 코팅된 전극활성층과 각각 접하여 서로 대칭형상으로 위치하는, 상부 및 하부의 다수개 홀이 있는 치밀질 지지층; 상기 상부 및 하부의 다수개 홀이 있는 치밀질 지지층 사이에서 기체흐름 공간을 형성하는 가스 채널층; 및 상기 모듈의 상부면과 하부면을 상하로 관통하며, 상기 가스 채널층의 기체흐름 공간과 연결되는 산소포집구를 포함하는, 세라믹 산소 분리막 모듈을 제공한다.In order to solve the above problems, the present invention provides a ceramic oxygen separator module, wherein the module includes an ion conductive membrane frame having an electrode active layer coated on both surfaces of an upper surface and a lower surface thereof, and having a space therein; A dense support layer having a plurality of holes at upper and lower parts positioned symmetrically with each other in contact with the electrode active layer coated on the inner surface of the ion conductive membrane frame at the top and the bottom of the inner space of the frame; A gas channel layer forming a gas flow space between the upper and lower dense support layers having a plurality of holes; And an oxygen trap penetrating up and down the upper and lower surfaces of the module and connected to the gas flow space of the gas channel layer.
본 발명은 또한, 상기 가스 채널층은, 상기 서로 대칭형상으로 위치하는 상부 및 하부 다수개 홀이 있는 치밀질 지지층 사이를 지지하는 지지기둥을 더 포함하는, 세라믹 산소 분리막 모듈을 제공한다.The present invention also provides a ceramic oxygen separation membrane module, wherein the gas channel layer further includes a support column supporting between the dense support layer having a plurality of upper and lower holes located symmetrically with each other.
본 발명은 또한, 상기 이온전도성 멤브레인 프레임은 이온전도성 물질, 이온-전자 혼합전도성 물질, 전자 전도성 물질과 이온전도성 물질의 혼합물 또는 이온-전자 혼합전도성 물질과 이온전도성 물질의 혼합물로 이루어진, 세라믹 산소 분리막 모듈을 제공한다.The present invention, the ion conductive membrane frame is made of a ceramic oxygen separator, ion-conductive material, ion-electron mixed conductive material, a mixture of an electron conductive material and an ion conductive material or a mixture of an ion-electron mixed conductive material and an ion conductive material, ceramic oxygen separator Provide a module.
본 발명은 또한, 상기 이온전도성 물질은 이트리아 안정화 지르코니아(yttria-stabilized zirconia, YSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, ScSZ), 가돌리니아 주입 세리아(gadolinia doped-ceria, GDC), 사마리움 주입 세리아(Smaria doped-Ceria, SDC), 스트론튬과 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM), 및 비스무스 산화물(Bismuth oxide, Bi2O3) 및 페롭스카이트계 물질인 스트론튬, 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM)로 이루어진 군에서 선택되는 하나 이상인, 세라믹 산소 분리막 모듈을 제공한다.The present invention, the ion conductive material is yttria-stabilized zirconia (YSZ), Scandia-stabilized zirconia (ScZ), gadolinia doped-ceria (GDC), Sama Smaria doped-Ceria (SDC), strontium and magnesium-injected lanthanum gallates (LSGM), and bismuth oxide (Bisuth oxide, Bi 2 O 3 ) and perovskite materials strontium and magnesium-injected lanthanum gallium Provided is a ceramic oxygen separator module, which is at least one selected from the group consisting of latent gallates (LSGM).
본 발명은 또한, 상기 이온-전자 혼합전도성 물질은 스트론튬 타이타늄 페라이트(Strontium titanium ferrite, STF), 란타늄 스트론튬 페라이트(Lanthanum strontium ferrite, LSF), 란타늄 스트론튬 코발타이트(Lanthanum strontium coblatite, LSC), 스트론튬 코발트 페라이트(Strontium cobalt ferrite, SFC), 바륨 스트론튬 코발트 페라이트(barium strontium cobalt ferrite, BSCF), 란타늄 스트론튬 코발트 페라이트(Lanthanum strontium cobalt ferrite, LSCF), 및 란타늄 니켈(lanthanum nickelate, LNO)로 이루어진 군에서 선택되는 하나 이상인, 세라믹 산소 분리막 모듈을 제공한다.The present invention, the ion-electron mixed conductive material is strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), lanthanum strontium coblatite (LSC), strontium cobalt ferrite (Strontium cobalt ferrite (SFC), barium strontium cobalt ferrite (BSCF), lanthanum strontium cobalt ferrite (LSCF), and lanthanum nickelate (LNO) The above, the ceramic oxygen separation membrane module is provided.
본 발명은 또한, 상기 전자전도성 물질은 란타늄 스트론튬 망가나이트(Lanthanum strontium Manganite, LSM), 란타늄 스트론튬 크로마이트(Lanthanum strontium Chromite, LSCr), 망간 페라이트(MnFe2O4), 및 니켈 페라이트(NiFe2O4)로 이루어진 군에서 선택되는 하나 이상인, 세라믹 산소 분리막 모듈을 제공한다.The present invention also provides a conductive material is lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), manganese ferrite (MnFe 2 O 4 ), and nickel ferrite (NiFe 2 O 4 ). 4 ) at least one selected from the group consisting of, provides a ceramic oxygen separator module.
본 발명은 또한, 상기 치밀질 지지층은 재료는 Y2O3-doped Zirconia로 이루어지는, 세라믹 산소 분리막 모듈을 제공한다.The present invention also provides a ceramic oxygen separator module, wherein the dense support layer is made of Y 2 O 3 -doped Zirconia.
본 발명은 또한, 상기 가스 채널층은 0.1 mm 내지 1.0 mm 두께인, 세라믹 산소 분리막 모듈을 제공한다.The present invention also provides a ceramic oxygen separator module, the gas channel layer is 0.1 mm to 1.0 mm thick.
본 발명은 또한, 상기 세라믹 산소 분리막 모듈 복수개를 각 모듈의 산소 포집구가 서로 연결되도록 적층하되, 최상층 모듈의 상부 산소 포집구는 캡으로 봉쇄하고, 상기 최상층 모듈의 하부 산소 포집구는 그 아래 위치한 모듈의 상부 산소 포집구와 밀봉 연결되는 과정을 반복하며, 최하층 모듈의 하부 산소 포집구는 매니폴드 또는 금속 프레임에 밀봉 연결되고, 상기 밀봉 연결은 유리밀봉재, 세라믹 페이스트 또는 브레이징재를 사용하는, 세라믹 산소 분리막 스택 모듈을 제공한다.The present invention also stacks a plurality of ceramic oxygen separator modules so that the oxygen collecting ports of each module are connected to each other, the upper oxygen collecting port of the uppermost module is sealed with a cap, and the lower oxygen collecting hole of the uppermost module is the The process of sealing connection with the upper oxygen collecting port is repeated, and the lower oxygen collecting hole of the lowermost module is sealingly connected to the manifold or the metal frame, and the sealing connection uses a glass sealing material, ceramic paste or brazing material, and the ceramic oxygen separator stack module To provide.
본 발명은 또한, 테이프 캐스팅(Tape Casting) 공정을 이용하여 복수개의 이온전도성 세라믹 그린시트를 제조하는 단계; 상기 그린시트 양면에 다공질 전도성 활성층을 코팅하여 이온전도성 멤브레인층을 제조하는 단계; 상기 그린시트에 다수개의 홀을 뚫어 다수개 홀이 있는 치밀질 지지층을 제조하는 단계; 상기 그린시트의 중앙부를 펀칭하여 가스 채널층을 제조하는 단계; 상기 이온전도성 멤브레인층, 치밀질 지지층, 가스 채널층, 치밀질 지지층, 이온전도성 멤브레인층을 순서대로 적층하여 적층물을 제조하는 단계; 상기 적층물의 상기 그린시트를 상기 다수개의 홀과 연결되지 않도록 상하로 관통하면서, 상기 가스 채널층과 연결되는 산소 포집구를 형성하는 단계; 및 상기 산소 포집구 형성 후 900℃ 내지 1500℃에서 열처리하는 단계를 포함하는, 세라믹 산소 분리막 모듈 제조방법을 제공한다.The present invention also provides a method for manufacturing a plurality of ion conductive ceramic green sheets using a tape casting process; Preparing an ion conductive membrane layer by coating a porous conductive active layer on both sides of the green sheet; Manufacturing a dense support layer having a plurality of holes by drilling a plurality of holes in the green sheet; Manufacturing a gas channel layer by punching a central portion of the green sheet; Preparing a laminate by laminating the ion conductive membrane layer, the dense support layer, the gas channel layer, the dense support layer, and the ion conductive membrane layer in order; Forming an oxygen collecting hole connected to the gas channel layer while vertically penetrating the green sheet of the stack so as not to be connected to the plurality of holes; And forming a heat treatment at 900 ° C to 1500 ° C after forming the oxygen trap.
본 발명은 또한, 상기 다공질 전도성 활성층은 테이프캐스팅 공정으로 제조하거나 또는 상기 그린시트에 코팅하는, 세라믹 산소 분리막 모듈 제조방법을 제공한다.The present invention also provides a method for manufacturing a ceramic oxygen separator module, wherein the porous conductive active layer is manufactured by a tape casting process or coated on the green sheet.
본 발명은 또한, 상기 가스 채널층을 제조하는 단계는 지지기둥을 상기 펀칭된 중앙부의 일부에 삽입하는 단계를 더 포함하는, 세라믹 산소 분리막 모듈 제조방법을 제공한다.The present invention also provides a method of manufacturing a ceramic oxygen separator module, wherein the preparing of the gas channel layer further includes inserting a support column into a portion of the punched central portion.
본 발명의 세라믹 산소 분리막 모듈은 다수의 유로가 수직으로 형성된 치밀질 지지층을 이용하여 얇은 이온전도성 멤브레인 프레임과 전도성활성층으로 구성된 산소투과막을 효과적으로 지지할 수 있으며, 내부에 산소포집공간을 활용하여 산소흐름의 방해없이 효과적으로 투과된 산소를 포집할 수 있다. 또한 가스 채널층의 내부공간에 지지구조물을 삽입함으로써 모듈의 내구성을 향상시킬 수 있다.The ceramic oxygen separator module of the present invention can effectively support an oxygen permeable membrane composed of a thin ion conductive membrane frame and a conductive active layer by using a dense support layer having a plurality of flow paths vertically formed therein, and oxygen flow using an oxygen trapping space therein. It is possible to capture the permeated oxygen effectively without disturbing. In addition, the durability of the module can be improved by inserting the support structure into the inner space of the gas channel layer.
도 1은 본 발명의 한 구현예에 따라 세라믹 산소 분리막 모듈의 단면을 나타내는 모식도이다.1 is a schematic diagram showing a cross section of a ceramic oxygen separator module according to an embodiment of the present invention.
도 2는 본 발명의 한 구현예에 따라 추가로 지지기둥을 구비한 세라믹 산소 분리막 모듈의 단면을 나타내는 모식도이다.Figure 2 is a schematic diagram showing a cross section of the ceramic oxygen separator module with a support pillar further in accordance with an embodiment of the present invention.
도 3은 본 발명의 한 구현예에 따른 세라믹 산소 분리막 모듈로, 치밀질 지지층과 가스 채널층 및 지지기둥이 이온전도성 멤브레인 프레임 재료와 다른 재료를 사용한 세라믹 산소 분리막 모듈의 단면을 모식도이다.FIG. 3 is a schematic diagram illustrating a cross section of a ceramic oxygen separator module using a dense support layer, a gas channel layer, and a support pillar ion conductive membrane frame material different from each other according to an embodiment of the present invention.
도 4는 본 발명의 한 구현예에 따른 세라믹 산소 분리막 모듈을 적층한 세라믹 산소 분리막 스택모듈의 단면을 나타내는 모식도이다.4 is a schematic diagram showing a cross section of a ceramic oxygen separator stack module in which a ceramic oxygen separator module is laminated according to an embodiment of the present invention.
도 5a는 본 발명의 한 구현예에 따른 세라믹 산소 분리막 모듈을 제조하기 위한 각 층의 시트를 나타내는 모식도이다.Figure 5a is a schematic diagram showing a sheet of each layer for producing a ceramic oxygen separator module according to an embodiment of the present invention.
도 5b는 본 발명의 한 구현예에 따른 지지기둥이 구비된 가스채널층을 나타내는 모식도이다.Figure 5b is a schematic diagram showing a gas channel layer having a support pillar according to an embodiment of the present invention.
도 5c는 본 발명의 한 구현예에 따른 치밀질 지지층과 가스 채널층 및 지지기둥이 이온전도성 멤브레인 프레임 재료와 다른 재료를 사용한 각 층의 시트를 나타내는 모식도이다.FIG. 5C is a schematic diagram showing a sheet of each layer using a dense support layer, a gas channel layer, and a support pillar ion conductive membrane frame material according to one embodiment of the present invention.
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 여기서, 본 발명의 실시 형태를 설명하기 위한 전체 도면에 있어서, 동일한 기능을 갖는 것은 동일한 부호를 붙이고, 그에 대한 상세한 설명은 생략하기로 한다. Prior to the description of the invention, the terms or words used in the specification and claims described below should not be construed as limiting in their usual or dictionary meanings. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations. Here, in the whole drawings for explaining embodiment of this invention, the thing which has the same function is attached | subjected with the same code | symbol, and detailed description is abbreviate | omitted.
한 양태에서 본 발명은 세라믹 산소 분리막 모듈로, 상기 모듈은 상부면 및 하부면 각각 양면에 전극활성층이 코팅되고 내부에 공간이 형성된 이온전도성 멤브레인 프레임; 상기 프레임 내부 공간 최상부 및 최하부에 이온전도성 멤브레인 프레임 내부면에 코팅된 전극활성층과 각각 접하여 서로 대칭형상으로 위치하는, 상부 및 하부의 다수개 홀이 있는 치밀질 지지층; 상기 상부 및 하부의 다수개 홀이 있는 치밀질 지지층 사이에서 기체흐름 공간을 형성하는 가스 채널층; 및 상기 모듈의 상부면과 하부면을 상하로 관통하며, 상기 가스 채널층의 기체흐름 공간과 연결되는 산소포집구를 포함한다.In one aspect, the present invention provides a ceramic oxygen separation membrane module, the module comprising: an ion conductive membrane frame having an electrode active layer coated on both surfaces of an upper surface and a lower surface thereof, and having a space therein; A dense support layer having a plurality of holes at upper and lower parts positioned symmetrically with each other in contact with the electrode active layer coated on the inner surface of the ion conductive membrane frame at the top and the bottom of the inner space of the frame; A gas channel layer forming a gas flow space between the upper and lower dense support layers having a plurality of holes; And an oxygen collecting port penetrating up and down the upper and lower surfaces of the module and connected to the gas flow space of the gas channel layer.
분리막이란 2상 사이에서 물질의 이동을 선택적으로 제한하는 기능을 갖는 재질의 계면(Interphase)이라고 정의될 수 있다. 막을 이용한 기체분리는 막에 대한 선택적인 가스투과원리에 의하여 진행된다. 즉 기체혼합물이 막표면에 접촉하였을때 기체성분은 막속으로 용해, 확산하게 되는데 이때 각각의 기체성분의 용해도와 투과도는 막물질에 대하여 서로 다르게 나타나게 된다. 본 발명에서 기체분리에 대한 추진력은 막 양단에 가해지는 산소 기체성분에 대한 분압차이다. The separator may be defined as an interphase of a material having a function of selectively restricting the movement of a material between two phases. Gas separation using membranes is driven by the selective gas permeation principle to the membranes. That is, when the gas mixture comes into contact with the membrane surface, the gas component dissolves and diffuses into the membrane, where the solubility and permeability of each gas component are different for the membrane material. The driving force for gas separation in the present invention is the partial pressure difference for the oxygen gas component applied across the membrane.
도 1은 본 발명의 한 구현예에 따라 세라믹 산소 분리막 모듈(1)의 단면을 나타내는 모식도이다. 상기 단면은 산소포집구(40)를 포함하는 측면을 절단한 단면이다. 상기 모듈(1)은 상부면 및 하부면의 내부와 외부에 각각 전극 활성층(11)이 양면에 코팅되고 내부에 공간이 형성된, 치밀질 이온전도성 멤브레인 프레임(101) 내부에 치밀질 지지층(20) 및 가스 채널층(30)이 위치한다. 프레임의 내부 공간의 최상부면의 전극 활성층(11)과 다수의 홀이 있는 치밀질 지지층(20)이 접하고, 이와 대칭으로 프레임의 내부 공간의 최하부면의 전극 활성층(11)과 다수개의 홀이 있는 치밀질 지지층(20)이 접하며 위치한다. 상기 치밀질 지지층(20)의 사이에는 가스 채널층(30)이 형성되어 있으며, 가스 채널층(30)을 통해 산소가 이동한다. 상기 가스 채널층(30)은 공간은 산소포집구(40)와 연결되며, 상기 산소포집구로 흐르는 산소는 상기 모듈의 외부에서 예를 들면, 매니폴드나 금속 프레임에 연결하여 산소를 포집할 수 있다. 상기 모듈은 가스 채널층(30)을 중심으로 다수의 홀이 있는 치밀질 지지층(20) - 전도성 활성층이 양면 코팅된 치밀질 분리막층이 가스 채널층(30) 양면에 대칭적인 구조를 이룬다.1 is a schematic diagram showing a cross section of a ceramic oxygen separation membrane module 1 according to one embodiment of the invention. The cross section is a cross section obtained by cutting the side surface including the oxygen collecting port 40. The module 1 has a dense support layer 20 inside the dense ion conductive membrane frame 101, in which the electrode active layers 11 are coated on both sides of the upper and lower surfaces, respectively, and spaces are formed therein. And a gas channel layer 30. The dense support layer 20 having the electrode active layer 11 of the uppermost surface of the inner space of the frame and the plurality of holes abuts, and symmetrically with the electrode active layer 11 of the lowermost surface of the inner space of the frame and the plurality of holes The dense support layer 20 is in contact with each other. A gas channel layer 30 is formed between the dense support layer 20 and oxygen moves through the gas channel layer 30. The gas channel layer 30 may have a space connected to the oxygen collecting port 40, and oxygen flowing through the oxygen collecting hole may collect oxygen by being connected to, for example, a manifold or a metal frame from the outside of the module. . The module has a dense support layer 20 having a plurality of holes around the gas channel layer 30-a dense separator layer coated on both sides of the conductive active layer and forms a symmetrical structure on both sides of the gas channel layer 30.
본 발명에서 상기 이온전도성 멤브레인 프레임은 예를 들면 소결을 통해 치밀화한 치밀질 세라믹이며, 상기 모듈의 최상부면 및 최하부면의 이온전도성 멤브레인의 프레임의 바람직한 두께는 10㎛ 내지 100㎛이다. 두께가 10㎛ 미만도 가능하나, 제조 공정상의 용이성 및 제조된 산소 분리막의 기계적 강도 등을 고려하면 10㎛ 이상인 것이 바람직하고, 산소 투과도 등을 고려하면 100㎛를 초과하지 않는 것이 바람직하다. 한 구현예에서 상기 이온전도성 멤브레인 프레임은 이온전도성 물질, 이온-전자 혼합전도성 물질, 전자 전도성 물질과 이온전도성 물질의 혼합물 또는 이온-전자 혼합전도성 물질과 이온전도성 물질의 혼합물로 이루어진다. 바람직하게 상기 이온전도성 멤브레인 프레임의 재료를 전자전도성-이온전도성 복합체 분리막을 사용할 경우 우수한 산소투과도를 나타낸다. 상기 이온전도성 물질은 예를 들면, 이트리아 안정화 지르코니아(yttria-stabilized zirconia, YSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, ScSZ), 가돌리니아 주입 세리아(gadolinia doped-ceria, GDC), 사마리움 주입 세리아(Smaria doped-Ceria, SDC), 스트론튬과 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM), 및 비스무스 산화물(Bismuth oxide, Bi2O3) 및 페롭스카이트계 물질인 스트론튬, 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM)로 이루어진 군에서 선택되는 하나 이상이고, 이온-전자 혼합전도성 물질은 예를 들면, 스트론튬 타이타늄 페라이트(Strontium titanium ferrite, STF), 란타늄 스트론튬 페라이트(Lanthanum strontium ferrite, LSF), 란타늄 스트론튬 코발타이트(Lanthanum strontium coblatite, LSC), 스트론튬 코발트 페라이트(Strontium cobalt ferrite, SFC), 바륨 스트론튬 코발트 페라이트(barium strontium cobalt ferrite, BSCF), 란타늄 스트론튬 코발트 페라이트(Lanthanum strontium cobalt ferrite, LSCF), 및 란타늄 니켈(lanthanum nickelate, LNO)로 이루어진 군에서 선택되는 하나 이상이며, 상기 전자전도성 물질은 예를 들면, 란타늄 스트론튬 망가나이트(Lanthanum strontium Manganite, LSM), 란타늄 스트론튬 크로마이트(Lanthanum strontium Chromite, LSCr), 망간 페라이트(MnFe2O4), 및 니켈 페라이트(NiFe2O4)로 이루어진 군에서 선택되는 하나 이상이다.In the present invention, the ion conductive membrane frame is a dense ceramic densified through sintering, for example, and the preferred thickness of the frame of the ion conductive membrane on the top and bottom surfaces of the module is 10 μm to 100 μm. Although the thickness may be less than 10 μm, the thickness is preferably 10 μm or more in consideration of the ease of manufacturing process and the mechanical strength of the prepared oxygen separation membrane, and preferably not more than 100 μm in consideration of the oxygen permeability. In one embodiment, the ion conductive membrane frame consists of an ion conductive material, an ion-electron mixed conductive material, a mixture of an electron conductive material and an ion conductive material or a mixture of an ion-electron mixed conductive material and an ion conductive material. Preferably, the material of the ion conductive membrane frame exhibits excellent oxygen permeability when an electron conductive-ion conductive composite separator is used. The ion conductive material may be, for example, yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (ScZ), gadolinia doped-ceria (GDC), samarium Smaria doped-Ceria (SDC), strontium and magnesium injected lanthanum gallates (LSGM), and bismuth oxide (Bismuth oxide, Bi 2 O 3 ) and perovskite materials strontium, magnesium injected lanthanum gallate (Lanthanum gallates, LSGM) is one or more selected from the group consisting of, ion-electron mixed conductive material is, for example, strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), lanthanum Lanthanum strontium coblatite (LSC), Strontium cobalt ferrite (SFC), barium strontium cobalt One or more selected from the group consisting of barium strontium cobalt ferrite (BSCF), lanthanum strontium cobalt ferrite (LSCF), and lanthanum nickelate (LNO). For example, lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), manganese ferrite (MnFe 2 O 4 ), and nickel ferrite (NiFe 2 O 4 ) are selected. More than one.
상기 모듈의 최상부면 및 최하부면 치밀질 이온전도성 멤브레인 프레임의 내부면과 외부면의 양면에는 전극 활성층(11)이 코팅되며, 양면에 대칭 또는 비대칭 형태로 두께 1 내지 100㎛로 전극 활성층(11)을 코팅함에 따라 산소의 환원반응 속도를 높일 수 있다. 두께가 1㎛ 미만이면 코팅층이 분리막에서 쉽게 박리되고 100㎛를 초과하는 경우에는 기체 분자의 확산 속도가 코팅층 내에서 충분하지 않은 문제가 발생할 수 있다. 이러한 코팅층의 두께는 최상부면 및 최하부면 치밀질 이온전도성 멤브레인 프레임에 대하여 13 내지 134%를 유지하는 것이 바람직하다. 상기 코팅층의 두께가 13% 미만이면 분리막의 표면에 코팅에 의한 산소투과도의 증가가 충분하지 않은 문제가 발생할 수 있고 134%를 초과하는 경우에는 기체분자의 확산 속도가 코팅층 내에서 충분하지 않은 문제가 발생할 수 있다. 상기 전극 활성층(11)은 산소의 이온화 및 산소이온의 기체화 반응에 대한 촉매 역할을 하며, 한 구현예에서 상기 전극 활성층(11)은 다공성 전자전도성 금속산화물, 다공성 서멧(Cermet), 다공성 금속 및 상기 전자전도성 금속산화물과 이온전도성 전해질 재료의 복합체 중에서 선택되고, 상기 전자전도성 금속산화물은, 스트론튬 타이타늄 페라이트(Strontium titanium ferrite, STF), 란타늄 스트론튬 페라이트(Lanthanum strontium ferrite, LSF), 란타늄 스트론튬 망가나이트(Lanthanum strontium Manganite, LSM), 란타늄 스트론튬 코발타이트(Lanthanum strontium Cobatite, LSC), 란타늄 스트론튬 크로마이트(Lanthanum strontium Chromite, LSCr), 란타늄 스트론튬 코발트 페라이트(Lanthanum strontium cobalt ferrite, LSCF), 망간 페라이트(MnFe2O4), 및 니켈 페라이트(NiFe2O4)중에서 선택되는 하나 이상이다. 상기 서멧은 니켈, 니켈 합금, 및 철계 합금 중에서 선택된 하나와 이온전도성 전해질 재료의 복합체이고, 상기 이온전도성 전해질 재료는 이트리아 안정화 지르코니아(yttria-stabilized zirconia, YSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, ScSZ), 가돌리늄 주입 세리아(Gd doped-ceria, GDC), 사마리움 주입 세리아(Sm doped-Ceria), 란타늄 갈레이트(Lanthanum gallates), SrCeO3, BaCeO3, BaZrO3, CaZrO3, SrZrO3, La2Zr2O7, 및 La2Ce2O7 중에서 선택되는 하나 이상이다. 또한 상기 다공성 금속은 니켈 또는 인코넬이다. The electrode active layer 11 is coated on both sides of the inner and outer surfaces of the top and bottom surfaces of the dense ion conductive membrane frame of the module, and the electrode active layer 11 having a thickness of 1 to 100 μm in a symmetrical or asymmetrical shape on both sides. By coating the oxygen can reduce the rate of reaction. If the thickness is less than 1 μm, the coating layer may be easily peeled off from the separator and if the thickness is more than 100 μm, the diffusion rate of gas molecules may not be sufficient in the coating layer. The thickness of this coating layer is preferably maintained at 13 to 134% with respect to the top and bottom dense ion conductive membrane frame. If the thickness of the coating layer is less than 13%, there may be a problem that the increase of oxygen permeability by coating on the surface of the separator is not sufficient, and when the coating layer exceeds 134%, the diffusion rate of gas molecules is not sufficient in the coating layer. May occur. The electrode active layer 11 serves as a catalyst for the ionization of oxygen and the gasification reaction of oxygen ions, in one embodiment the electrode active layer 11 is a porous electron conductive metal oxide, porous cermet, porous metal and The electron conductive metal oxide may be selected from a complex of an electron conductive metal oxide and an ion conductive electrolyte material, and the electron conductive metal oxide may include strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), and lanthanum strontium manganite (LSF). Lanthanum strontium Manganite (LSM), Lanthanum strontium Cobatite (LSC), Lanthanum strontium Chromite (LSCr), Lanthanum strontium cobalt ferrite (Lanthanum strontium LS) CobalM ferrite 2 OFC 4 ) and nickel ferrite (NiFe 2 O 4 ). The cermet is a composite of an ion conductive electrolyte material with one selected from nickel, nickel alloys, and iron-based alloys, and the ion conductive electrolyte material is yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia , ScSZ), Gd doped-ceria (GDC), Samarium-infused Ceria (Sm doped-Ceria), Lanthanum gallates, SrCeO 3 , BaCeO 3 , BaZrO 3 , CaZrO 3 , SrZrO 3 , At least one selected from La 2 Zr 2 O 7 , and La 2 Ce 2 O 7 . The porous metal is also nickel or inconel.
상기 전자전도성 금속산화물과 이온전도성 전해질 재료의 복합체는 상기 전자전도성 금속산화물과 이온전도성 전해질 재료로 구성되고, 상기 복합체에서 상기 이온전도성 전해질 재료의 부피비는 20 내지 80%이며, 상기 이온전도성 전해질 재료는, 이트리아 안정화 지르코니아(yttria-stabilized zirconia, YSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, ScSZ), 가돌리늄 주입 세리아(Gd doped-ceria, GDC), 사마리움 주입 세리아(Sm doped-Ceria), 란타늄 갈레이트(Lanthanum gallates), SrCeO3, BaCeO3, BaZrO3, CaZrO3, SrZrO3, La2Zr2O7, 및 La2Ce2O7 중에서 선택되는 하나 이상이다. 상기 이온전도성 전해질 재료-전자전도성 금속산화물 복합체에 포함되는 이온전도성 전해질 재료는, 본 발명의 산소 분리막과 동일한 재료를 채택하여 동시 소결시 열팽창 계수 차이를 최소화할 수 있다. The composite of the electron conductive metal oxide and the ion conductive electrolyte material is composed of the electron conductive metal oxide and the ion conductive electrolyte material, the volume ratio of the ion conductive electrolyte material in the composite is 20 to 80%, the ion conductive electrolyte material is , Yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (SCSZ), gd doped-ceria (GDC), samarium infused ceria (Sm doped-Ceria), lanthanum Lanthanum gallates, SrCeO 3 , BaCeO 3 , BaZrO 3 , CaZrO 3 , SrZrO 3 , La 2 Zr 2 O 7 , and La 2 Ce 2 O 7 . The ion conductive electrolyte material included in the ion conductive electrolyte material-electroconductive metal oxide composite may adopt the same material as the oxygen separation membrane of the present invention to minimize the difference in coefficient of thermal expansion during simultaneous sintering.
본 발명에서 상기 치밀질 지지층(20)은 상기 모듈의 두께를 최소화하면서도 내구도를 최대화 하기 위해 구비하는 것으로, 상하로 관통되는 다수의 홀을 구비하는 치밀질 세라믹층이며 상기 모듈의 최상부 및 최하부층인 전극 활성층(11)이 코팅된 이온전도성 멤브레인 프레임을 상하로 지지하며, 치밀질 지지층(20) 사이의 가스 채널층(30) 또한 지지할 수 있다. 상기 다수의 홀은 산소가 가스 채널층(30)으로 흐를 수 있는 통로이며, 한 구현예에서 상기 홀은 0.01mm 내지 1mm 이하의 직경을 가질 수 있다. 상기 가스 채널층(30)은 모듈 외부에서 공급된 산소함유 가스가 이온전도성 멤브레인 프레임을 통해 모듈 내부로 산소가 포집되고, 포집된 산소가 흐르는 통로이다. 상기 가스 채널층(30)을 중심으로 상부 및 하부에 치밀질 지지층(20)이 접하며 가스 채널층(30)을 지지한다. 상기 가스 채널층(30)은 한 구현예에서 상하 폭이 10.1mm 내지 1.0mm 공간두께로 모듈 중앙부에 비어있는 공간이며, 상기 치밀질 지지층(20)을 통해 공급된 산소가 흐르는 공간이다. 상기 가스 채널층(30)의 공간 두께에 따라 모듈 외부에서 공급되는 기체의 압력 하중을 견디기 위해 도 2와 같이 추가로 지지기둥(31)을 구비할 수 있고 이는 원기둥, 사각기둥, 육각기둥 등 기둥의 형태이면 어느 것으로 한정하지 않으며, 기둥의 직경은 예를 들면 1mm 내지 1cm로 형성할 수 있다. 상기 가스 채널층(30)에 포집된 산소는 본 발명의 모듈을 상하로 관통하는 산소포집구를 통해 포집된다.In the present invention, the dense support layer 20 is provided to maximize the durability while minimizing the thickness of the module, and is a dense ceramic layer having a plurality of holes penetrating up and down, and is the top and bottom layers of the module. An ion conductive membrane frame coated with the electrode active layer 11 may be supported up and down, and the gas channel layer 30 between the dense support layer 20 may also be supported. The plurality of holes are passages through which oxygen can flow into the gas channel layer 30, and in one embodiment, the holes may have a diameter of 0.01 mm to 1 mm or less. The gas channel layer 30 is a passage through which oxygen is collected from the outside of the module by collecting oxygen into the module through the ion conductive membrane frame and the collected oxygen flows. The dense support layer 20 is in contact with the upper and lower portions of the gas channel layer 30 to support the gas channel layer 30. In one embodiment, the gas channel layer 30 is an empty space at the center of the module having a vertical thickness of 10.1 mm to 1.0 mm, and a space in which oxygen supplied through the dense support layer 20 flows. In order to withstand the pressure load of the gas supplied from the outside of the module according to the space thickness of the gas channel layer 30 may be further provided with a support pillar 31 as shown in FIG. If it is in the form of not limited to any one, the diameter of the pillar can be formed, for example 1mm to 1cm. Oxygen collected in the gas channel layer 30 is collected through an oxygen collecting port penetrating up and down the module of the present invention.
도 3은 본 발명의 한 구현예에 따른 세라믹 산소 분리막 모듈로, 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)이 이온전도성 멤브레인 프레임(101) 재료와 다른 재료를 사용한 모식도를 나타낸다. 세라믹 산소 분리막의 기계적 내구성을 향상시키기 위해 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)를 서로 다른 재료로 구성할 수 있으며, 예를 들면 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)의 재료를 Y2O3-doped Zirconia(YSZ)를 사용할 수 있으며, 바람직하게 3mol% 내지 8mol% Y2O3-doped Zirconia를 사용할 수 있다. 3 is a ceramic oxygen separation membrane module according to an embodiment of the present invention, wherein the dense support layer 20, the gas channel layer 30, and the support pillar 31 use different materials from those of the ion conductive membrane frame 101. A schematic is shown. In order to improve mechanical durability of the ceramic oxygen separation membrane, the dense support layer 20, the gas channel layer 30, and the support pillar 31 may be formed of different materials, for example, the dense support layer 20 and the gas. Y 2 O 3 -doped Zirconia (YSZ) may be used as the material of the channel layer 30 and the support pillar 31, and preferably 3 mol% to 8 mol% Y 2 O 3 -doped Zirconia may be used.
도 4는 본 발명의 또 다른 구현예로 상기 세라믹 산소 분리막 모듈 복수개를 각 모듈의 산소 포집구가 서로 연결되도록 적층하되, 최상층 모듈의 상부 산소 포집구는 캡(100)으로 봉쇄하고, 상기 최상층 모듈의 하부 산소 포집구는 그 아래 위치한 모듈의 상부 산소 포집구와 밀봉 연결되는 과정을 반복하며, 최하층 모듈의 하부 산소 포집구는 매니폴드 또는 금속 프레임에 밀봉 연결되고, 상기 밀봉 연결은 유리밀봉재, 세라믹 페이스트 또는 브레이징재를 사용하는, 세라믹 산소 분리막 스택 모듈이다. 본 발명의 스택 모듈은 외부에서 산소함유 가스를 일정 압력하에 공급하면, 각 모듈내로 산소만 이온전도성 멤브레인 프레임을 통해 투과되어 각 모듈의 가스 채널층(30)으로 포집된다. 각 모듈의 가스 채널층(30)으로 포집된 산소는 모듈 의 상부면과 하부면을 상하로 관통하는 산소 포집구로 통하여 순산소 기체만을 포집할 수 있다.4 is a stack according to another embodiment of the present invention, in which a plurality of ceramic oxygen separator modules are stacked such that oxygen collecting holes of each module are connected to each other, the upper oxygen collecting holes of the uppermost module are sealed with a cap 100, and the uppermost module of the The lower oxygen collecting port repeats the sealing connection with the upper oxygen collecting hole of the module located below, and the lower oxygen collecting hole of the lowermost module is sealingly connected to the manifold or the metal frame, and the sealing connection is a glass sealing material, ceramic paste or brazing material. Using, a ceramic oxygen separator stack module. In the stack module of the present invention, when oxygen-containing gas is supplied from the outside under a constant pressure, only oxygen is permeated through the ion conductive membrane frame into each module and collected in the gas channel layer 30 of each module. Oxygen trapped by the gas channel layer 30 of each module may trap only pure oxygen gas through an oxygen collecting hole penetrating up and down the upper and lower surfaces of the module.
또 다른 측면에서 본 발명은 세라믹 산소 분리막 모듈의 제조방법이다. 상기 제조방법은 도 5 a 내지 c를 참조하면 테이프 캐스팅(Tape Casting) 공정을 이용하여 복수개의 이온전도성 세라믹 그린시트를 제조하는 단계; 상기 그린시트 양면에 다공질 전도성 활성층(11)을 코팅하여 이온전도성 멤브레인층(10)을 제조하는 단계; 상기 그린시트에 다수개의 홀을 뚫어 다수개 홀이 있는 치밀질 지지층(20)을 제조하는 단계; 상기 그린시트의 중앙부를 펀칭하여 가스 채널층(30)을 제조하는 단계; 상기 이온전도성 멤브레인층(10), 치밀질 지지층(20), 가스 채널층(30), 치밀질 지지층(20), 이온전도성 멤브레인층(10)을 순서대로 적층하여 적층물을 제조하는 단계; 상기 적층물의 상기 그린시트를 상기 치밀질 지지층의 다수개의 홀과 연결되지 않도록 상하로 관통하면서, 상기 가스 채널층(30)과 연결되는 산소 포집구를 형성하는 단계; 및 상기 산소 포집구 형성 후 900℃ 내지 1500℃에서 열처리하는 단계를 포함한다. 도 5a는 본 발명의 세라믹 산소분리막의 구성을 나타내는 것으로 각 층을 테이프 캐스팅 방법으로 제조할 수 있다. 본 발명의 모듈의 프레임을 구성하는 이온전도성 멤브레인층 재료를 이용하여 테이프 캐스팅 방법으로 복수개의 그린시트를 제조하고, 이를 본 세라믹 산소 분리막의 각 구성층으로 가공하고 적층하여 모듈을 제조할 수 있다. 상기 모듈을 제조하기 위해서는 예를 들면, 분말원료 LSCF-GDC, LSM-GDC와 같은 복합체 소재 혹은 페롭스카이트(perovskite) 소재의 혼합전도성 물질을 이용하여 슬러리를 제조하고, 테이프 캐스팅 법을 이용하여 세라믹 그린시트 5장을 준비하고, 상기 그린시트 2장에 각각 양면에 예를 들면, 다공성 전극 활성층(11)을 구성할 분말원료 LSCF-GDC, LSM-GDC와 같은 복합체 소재 혹은 페롭스카이트 소재의 혼합전도성 물질과 기공형성제(carbon black, graphite 등) 분말원료를 혼합하여 슬러리를 제조하고, 테이프 캐스팅법으로 예를 들면 10 내지 100um 두께로 그린시트를 제조하여 적층 할 수 있다. 또는 보다 얇은 분리막 구현을 위해 상기 그린시트 2장에 각각 양면에 전극활성층을 구성할 원료를 1 내지 10um의 두께로 코팅하여 제조할 수 있다. 또 다른 상기 그린시트 2장에 각각 관통된 복수개의 홀을 구비하도록 펀칭하여 치밀질 지지층(20) 2장을 준비한다. 그리고 상기 치밀질 지지층(20)의 복수개의 홀과 연결되도록 1장의 그린시트의 중앙을 관통하는 가스 채널층(30)을 제조한다. 다공성 전극 활성층(11)을 코팅한 이온전도성 멤브레인층(10)-치밀질지지층(20)-가스 채널층(30)-치밀질지지층(20)-다공성 전극 활성층(11)을 코팅한 이온전도성 멤브레인층(10) 순으로 적층하여 적층물을 형성하고 상기 적층물의 상기 그린시트를 상기 치밀질 지지층(20)의 다수개의 홀과 연결되지 않도록 상하로 관통하면서, 상기 가스 채널층과 연결되는 산소 포집구를 형성한다. 상기 산소 포집구가 형성된 적층물은 900℃ 내지 1500℃에서 열처리하여 치밀화하며, 세라믹 산소 분리막 모듈을 제조한다. 도 5b는 본 발명의 한 구현예에서 상기 지지기둥을 상기 가스 채널층의 펀칭된 중앙부의 일부에 삽입한 층을 나타내며, 이는 본 발명의 세라믹 산소분리막 모듈 또는 스택의 내구성을 더욱 향상시킬 수 있는 산소분리막을 구현할 수 있다. 도 5c는 한 구현예에 따른 세라믹 산소 분리막 모듈로, 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)이 이온전도성 멤브레인층의 재료와 다른 재료를 사용하여 제조한 각 층을 나타낸다. 세라믹 산소 분리막의 기계적 내구성을 더욱 향상시키기 위해 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)를 서로 다른 재료로 구성할 수 있으며, 예를 들면 치밀질 지지층(20)과 가스 채널층(30) 및 지지기둥(31)의 재료를 Y2O3-doped Zirconia(YSZ)를 사용할 수 있으며, 바람직하게 3mol% 내지 8mol% Y2O3-doped Zirconia를 사용하여 치밀질 지지층(20) 및 가스 채널층의 그린시트를 제조하여 사용할 수 있다.In another aspect, the present invention is a method of manufacturing a ceramic oxygen separator module. The manufacturing method may include the steps of manufacturing a plurality of ion conductive ceramic green sheets using a tape casting process with reference to FIGS. Preparing an ion conductive membrane layer 10 by coating a porous conductive active layer 11 on both sides of the green sheet; Manufacturing a dense support layer 20 having a plurality of holes by drilling a plurality of holes in the green sheet; Manufacturing a gas channel layer 30 by punching a central portion of the green sheet; Preparing a laminate by laminating the ion conductive membrane layer 10, the dense support layer 20, the gas channel layer 30, the dense support layer 20, and the ion conductive membrane layer 10 in order; Forming an oxygen collecting hole connected to the gas channel layer 30 while vertically penetrating the green sheet of the laminate not to be connected to a plurality of holes of the dense support layer; And heat treating at 900 ° C. to 1500 ° C. after forming the oxygen trap. Figure 5a shows the configuration of the ceramic oxygen separation membrane of the present invention can be produced by the tape casting method of each layer. A plurality of green sheets may be manufactured by a tape casting method using the ion conductive membrane layer material constituting the frame of the module of the present invention, and the modules may be manufactured by processing and laminating them into respective constituent layers of the present ceramic oxygen separator. In order to manufacture the module, for example, a slurry is prepared using a composite conductive material such as powder raw material LSCF-GDC, LSM-GDC, or a mixed conductive material of perovskite material, and ceramics using a tape casting method. Five green sheets are prepared, and on each of the two green sheets, a composite material such as powder raw material LSCF-GDC, LSM-GDC, or perovskite material, which will form the porous electrode active layer 11 on both sides, respectively. A slurry may be prepared by mixing a conductive material and a powder raw material (carbon black, graphite, etc.) powder, and may be laminated by, for example, manufacturing a green sheet having a thickness of 10 to 100 μm by a tape casting method. Alternatively, in order to implement a thinner membrane, two green sheets may be prepared by coating a raw material of constituting an electrode active layer on both sides of a thickness of 1 to 10 μm. Another two sheets of the dense support layer 20 are prepared by punching each of the two green sheets with a plurality of holes therethrough. In addition, a gas channel layer 30 penetrating the center of one green sheet is manufactured to be connected to the plurality of holes of the dense support layer 20. Ion-conductive membrane layer 10-density support layer 20-gas channel layer 30-density support layer 20-porous electrode active layer 11 coated porous electrode active layer 11 Oxygen collecting port connected to the gas channel layer while forming a stack by stacking layers 10 and penetrating the green sheet of the stack upward and downward so as not to be connected to a plurality of holes of the dense support layer 20. To form. The laminate in which the oxygen collecting port is formed is densified by heat treatment at 900 ° C. to 1500 ° C. to prepare a ceramic oxygen separator module. FIG. 5B illustrates a layer in which the support pillar is inserted into a portion of the punched center portion of the gas channel layer in one embodiment of the present invention, which may further improve durability of the ceramic oxygen separator module or stack of the present invention. Separation membrane can be implemented. 5C is a ceramic oxygen separation membrane module according to one embodiment, wherein the dense support layer 20, the gas channel layer 30, and the support pillar 31 are fabricated using materials different from those of the ion conductive membrane layer. Indicates. In order to further improve the mechanical durability of the ceramic oxygen separation membrane, the dense support layer 20, the gas channel layer 30, and the support pillar 31 may be formed of different materials, for example, the dense support layer 20 and Y 2 O 3 -doped Zirconia (YSZ) may be used as the material of the gas channel layer 30 and the support pillar 31, and the dense support layer may be preferably formed by using 3 mol% to 8 mol% Y 2 O 3 -doped Zirconia. 20 and the green sheet of the gas channel layer can be produced and used.
이상에서 본 발명의 예시적인 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the exemplary embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless defined otherwise, are used in the meaning as commonly understood by those skilled in the art in the related field of the present invention. The contents of all publications described herein by reference are incorporated into the present invention.
[부호의 설명][Description of the code]
1. 세라믹 산소 분리막 모듈1. Ceramic Oxygen Membrane Module
2. 세라믹 산소 분리막 스택모듈2. Ceramic Oxygen Membrane Stack Module
10. 이온전도성 멤브레인층10. Ion conductive membrane layer
11. 전극 활성층11. Electrode active layer
20. 치밀질 지지층20. Dense support layer
30. 가스 채널층30. Gas channel layer
31.지지 기둥31.support pillar
40. 산소 포집구40. Oxygen Collector
100. 캡100. Cap
101. 이온전도성 멤프레인 프레임101. Ion Conductive Membrane Frame
200. 밀봉재200. Sealants

Claims (12)

  1. 세라믹 산소 분리막 모듈로, Ceramic oxygen separator module,
    상기 모듈은 상부면 및 하부면 각각 양면에 전극활성층이 코팅되고 내부에 공간이 형성된 이온전도성 멤브레인 프레임;The module includes an ion conductive membrane frame coated with an electrode active layer on both sides of the upper and lower surfaces, respectively, and having a space therein;
    상기 프레임 내부 공간 최상부 및 최하부에 이온전도성 멤브레인 프레임 내부면에 코팅된 전극활성층과 각각 접하여 서로 대칭형상으로 위치하는, 상부 및 하부의 다수개 홀이 있는 치밀질 지지층;A dense support layer having a plurality of holes at upper and lower parts positioned symmetrically with each other in contact with the electrode active layer coated on the inner surface of the ion conductive membrane frame at the top and the bottom of the inner space of the frame;
    상기 상부 및 하부의 다수개 홀이 있는 치밀질 지지층 사이에서 기체흐름 공간을 형성하는 가스 채널층; 및A gas channel layer forming a gas flow space between the upper and lower dense support layers having a plurality of holes; And
    상기 모듈의 상부면과 하부면을 상하로 관통하며, 상기 가스 채널층의 기체흐름 공간과 연결되는 산소포집구를 포함하는,An oxygen collecting port penetrates the upper and lower surfaces of the module up and down, and is connected to the gas flow space of the gas channel layer.
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 가스 채널층은, 상기 서로 대칭형상으로 위치하는 상부 및 하부 다수개 홀이 있는 치밀질 지지층 사이를 지지하는 지지기둥을 더 포함하는,The gas channel layer further includes a support column supporting between the dense support layer having a plurality of upper and lower holes located symmetrically with each other.
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 이온전도성 멤브레인 프레임은 이온전도성 물질, 이온-전자 혼합전도성 물질, 전자 전도성 물질과 이온전도성 물질의 혼합물 또는 이온-전자 혼합전도성 물질과 이온전도성 물질의 혼합물로 이루어진,The ion conductive membrane frame is composed of an ion conductive material, an ion-electron mixed conductive material, a mixture of an electron conductive material and an ion conductive material or a mixture of an ion-electron mixed conductive material and an ion conductive material,
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 이온전도성 물질은 이트리아 안정화 지르코니아(yttria-stabilized zirconia, YSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, ScSZ), 가돌리니아 주입 세리아(gadolinia doped-ceria, GDC), 사마리움 주입 세리아(Smaria doped-Ceria, SDC), 스트론튬과 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM), 및 비스무스 산화물(Bismuth oxide, Bi2O3) 및 페롭스카이트계 물질인 스트론튬, 마그네슘 주입 란타늄 갈레이트(Lanthanum gallates, LSGM)로 이루어진 군에서 선택되는 하나 이상인, The ion conductive material is yttria-stabilized zirconia (YSZ), scandia-stabilized zirconia (SCSZ), gadolinia doped-ceria (GDC), samaria injection ceria (Smaria). doped-Ceria (SDC), strontium and magnesium-injected lanthanum gallates (LSGM), bismuth oxide (Bismuth oxide, Bi 2 O 3 ) and perovskite materials strontium, magnesium-injected lanthanum gallates, LSGM), one or more selected from the group consisting of
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 이온-전자 혼합전도성 물질은 스트론튬 타이타늄 페라이트(Strontium titanium ferrite, STF), 란타늄 스트론튬 페라이트(Lanthanum strontium ferrite, LSF), 란타늄 스트론튬 코발타이트(Lanthanum strontium coblatite, LSC), 스트론튬 코발트 페라이트(Strontium cobalt ferrite, SFC), 바륨 스트론튬 코발트 페라이트(barium strontium cobalt ferrite, BSCF), 란타늄 스트론튬 코발트 페라이트(Lanthanum strontium cobalt ferrite, LSCF), 및 란타늄 니켈(lanthanum nickelate, LNO)로 이루어진 군에서 선택되는 하나 이상인,The ion-electron mixed conductive material is strontium titanium ferrite (STF), lanthanum strontium ferrite (LSF), lanthanum strontium cobaltite (LSC), strontium cobalt ferrite (Strontium ferrite) SFC), barium strontium cobalt ferrite (BSCF), lanthanum strontium cobalt ferrite (LSCF), and lanthanum nickelate (LNO), one or more selected from the group consisting of
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 전자전도성 물질은 란타늄 스트론튬 망가나이트(Lanthanum strontium Manganite, LSM), 란타늄 스트론튬 크로마이트(Lanthanum strontium Chromite, LSCr), 망간 페라이트(MnFe2O4), 및 니켈 페라이트(NiFe2O4)로 이루어진 군에서 선택되는 하나 이상인, The electron conductive material is composed of lanthanum strontium manganite (LSM), lanthanum strontium chromite (LSCr), manganese ferrite (MnFe 2 O 4 ), and nickel ferrite (NiFe 2 O 4 ). One or more selected from
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 치밀질 지지층은 재료는 Y2O3-doped Zirconia로 이루어지는,The dense support layer is made of Y 2 O 3 -doped Zirconia,
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 가스 채널층은 0.1 mm 내지 1.0 mm 두께인,The gas channel layer is 0.1 mm to 1.0 mm thick,
    세라믹 산소 분리막 모듈.Ceramic oxygen separator module.
  9. 제 1 항 내지 제 8 항 중 어느 한 항의 세라믹 산소 분리막 모듈 복수개를 각 모듈의 산소 포집구가 서로 연결되도록 적층하되,A plurality of ceramic oxygen separation membrane modules of any one of claims 1 to 8 are laminated so that the oxygen collecting port of each module are connected to each other,
    최상층 모듈의 상부 산소 포집구는 캡으로 봉쇄하고,The upper oxygen trap of the uppermost module is sealed with a cap,
    상기 최상층 모듈의 하부 산소 포집구는 그 아래 위치한 모듈의 상부 산소 포집구와 밀봉 연결되는 과정을 반복하며,The lower oxygen collecting port of the uppermost module repeats the process of sealingly connecting with the upper oxygen collecting port of the module located below,
    최하층 모듈의 하부 산소 포집구는 매니폴드 또는 금속 프레임에 밀봉 연결되고, The lower oxygen trap of the lowermost module is hermetically connected to the manifold or the metal frame,
    상기 밀봉 연결은 유리밀봉재, 세라믹 페이스트 또는 브레이징재를 사용하는,The sealing connection uses glass sealing material, ceramic paste or brazing material,
    세라믹 산소 분리막 스택 모듈.Ceramic Oxygen Membrane Stack Module.
  10. 테이프 캐스팅(Tape Casting) 공정을 이용하여 복수개의 이온전도성 세라믹 그린시트를 제조하는 단계; Manufacturing a plurality of ion conductive ceramic green sheets using a tape casting process;
    상기 그린시트 양면에 접하도록 다공질 전도성 활성층을 준비하여 이온전도성 멤브레인층을 제조하는 단계;Preparing an ion conductive membrane layer by preparing a porous conductive active layer in contact with both sides of the green sheet;
    상기 그린시트에 다수개의 홀을 뚫어 다수개 홀이 있는 치밀질 지지층을 제조하는 단계;Manufacturing a dense support layer having a plurality of holes by drilling a plurality of holes in the green sheet;
    상기 그린시트의 중앙부를 펀칭하여 가스 채널층을 제조하는 단계;Manufacturing a gas channel layer by punching a central portion of the green sheet;
    상기 이온전도성 멤브레인층, 치밀질 지지층, 가스 채널층, 치밀질 지지층, 이온전도성 멤브레인층을 순서대로 적층하여 적층물을 제조하는 단계;Preparing a laminate by laminating the ion conductive membrane layer, the dense support layer, the gas channel layer, the dense support layer, and the ion conductive membrane layer in order;
    상기 적층물의 상기 그린시트를 상기 다수개의 홀과 연결되지 않도록 상하로 관통하면서, 상기 가스 채널층과 연결되는 산소 포집구를 형성하는 단계; 및Forming an oxygen collecting hole connected to the gas channel layer while vertically penetrating the green sheet of the stack so as not to be connected to the plurality of holes; And
    상기 산소 포집구 형성 후 900℃ 내지 1500℃에서 열처리하는 단계를 포함하는,After the oxygen trap is formed, comprising the step of heat treatment at 900 ℃ to 1500 ℃,
    세라믹 산소 분리막 모듈 제조방법.Ceramic Oxygen Membrane Module Manufacturing Method.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 다공질 전도성 활성층은 테이프캐스팅 공정으로 제조하거나 또는 상기 그린시트에 코팅하는, The porous conductive active layer is manufactured by a tape casting process or coated on the green sheet,
    세라믹 산소 분리막 모듈 제조방법.Ceramic Oxygen Membrane Module Manufacturing Method.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 가스 채널층을 제조하는 단계는 지지기둥을 상기 펀칭된 중앙부의 일부에 삽입하는 단계를 더 포함하는,Manufacturing the gas channel layer further comprises inserting a support column into a portion of the punched center portion;
    세라믹 산소 분리막 모듈 제조방법.Ceramic Oxygen Membrane Module Manufacturing Method.
PCT/KR2018/013446 2018-02-12 2018-11-07 Ceramic oxygen separator module and manufacturing method therefor WO2019156313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180016666A KR102020778B1 (en) 2018-02-12 2018-02-12 Ceramic Oxygen Separator Module and Manufacturing Method Thereof
KR10-2018-0016666 2018-02-12

Publications (1)

Publication Number Publication Date
WO2019156313A1 true WO2019156313A1 (en) 2019-08-15

Family

ID=67548480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013446 WO2019156313A1 (en) 2018-02-12 2018-11-07 Ceramic oxygen separator module and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102020778B1 (en)
WO (1) WO2019156313A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016165A (en) * 2003-08-06 2005-02-21 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Ion transport membrane module and vessel system
KR20060101860A (en) * 2005-03-21 2006-09-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Solid-state membrane module
JP2014046229A (en) * 2012-08-29 2014-03-17 Ngk Spark Plug Co Ltd Hydrogen separator
KR101536154B1 (en) * 2013-07-24 2015-07-13 한국에너지기술연구원 Self supporting gas separation membrane planar module and fabrication method thereof
KR101806365B1 (en) * 2016-08-31 2017-12-07 한국에너지기술연구원 High permeability membrane for oxygen separation and fabrication method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681373A (en) * 1995-03-13 1997-10-28 Air Products And Chemicals, Inc. Planar solid-state membrane module
US7279027B2 (en) 2003-03-21 2007-10-09 Air Products And Chemicals, Inc. Planar ceramic membrane assembly and oxidation reactor system
EP2877269B1 (en) * 2012-07-25 2020-12-23 Koninklijke Philips N.V. Oxygen separation device for a pressure swing adsorption system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016165A (en) * 2003-08-06 2005-02-21 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Ion transport membrane module and vessel system
KR20060101860A (en) * 2005-03-21 2006-09-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Solid-state membrane module
JP2014046229A (en) * 2012-08-29 2014-03-17 Ngk Spark Plug Co Ltd Hydrogen separator
KR101536154B1 (en) * 2013-07-24 2015-07-13 한국에너지기술연구원 Self supporting gas separation membrane planar module and fabrication method thereof
KR101806365B1 (en) * 2016-08-31 2017-12-07 한국에너지기술연구원 High permeability membrane for oxygen separation and fabrication method thereof

Also Published As

Publication number Publication date
KR20190097357A (en) 2019-08-21
KR102020778B1 (en) 2019-11-04

Similar Documents

Publication Publication Date Title
US7901837B2 (en) Structures for dense, crack free thin films
EP1228546B1 (en) Structures and fabrication techniques for solid state electrochemical devices
US6767662B2 (en) Electrochemical device and process of making
US7553573B2 (en) Solid state electrochemical composite
WO2014077531A1 (en) Electrode-support type of gas-separation membrane module, tubular structure of same, production method for tubular structure, and hydrocarbon reforming method using same
EP1455952B1 (en) A process for making dense thin films
US6740441B2 (en) Metal current collect protected by oxide film
US8715886B1 (en) Method for making a fuel cell
US20110189066A1 (en) Robust mixed conducting membrane structure
EP1261060A2 (en) Fuel cell and multi-element stack therefor
WO2019156313A1 (en) Ceramic oxygen separator module and manufacturing method therefor
KR101778574B1 (en) High permeability membrane coated electroactive layer on both sides for oxygen separation and fabrication method thereof
KR101491522B1 (en) Band shaped Ion Transmitter Support Type Gas Separation Membrane Module, Fabrication Method and Reforming of Hydrocarbon using the Same
WO2014168377A1 (en) Plate-type module of gas separation film and method for manufacturing same
Jacobson et al. Structures for dense, crack free thin films
Jacobson et al. Process for making dense thin films
Hendriksen et al. Cheap Thin Film Oxygen Membranes
KR20140142931A (en) Ion Transmitter Support Type Gas Separation Membrane Module and Fabrication Method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904538

Country of ref document: EP

Kind code of ref document: A1