WO2019155575A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2019155575A1
WO2019155575A1 PCT/JP2018/004419 JP2018004419W WO2019155575A1 WO 2019155575 A1 WO2019155575 A1 WO 2019155575A1 JP 2018004419 W JP2018004419 W JP 2018004419W WO 2019155575 A1 WO2019155575 A1 WO 2019155575A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
common voltage
display device
value
length
Prior art date
Application number
PCT/JP2018/004419
Other languages
French (fr)
Japanese (ja)
Inventor
三上 浩
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2018/004419 priority Critical patent/WO2019155575A1/en
Publication of WO2019155575A1 publication Critical patent/WO2019155575A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a display device that displays an image.
  • Patent Document 1 discloses a liquid crystal display device that adjusts a common voltage in order to reduce flicker of a display image due to burn-in of a liquid crystal panel.
  • the liquid crystal display device of Patent Document 1 determines a set value of a common voltage to be applied to a common electrode of a liquid crystal panel based on input image data, and drives at least one of a scanning line and a signal line of the liquid crystal panel. Based on the timing, the timing for changing the common voltage to the set value is determined. As a result, the common voltage can be adjusted in the blanking period of the predetermined frame period.
  • An object of the present invention is to provide a display device capable of suppressing flicker when displaying an image with a changed frame rate.
  • the display device includes a plurality of pixels, a voltage source, a source driver, and a controller.
  • the voltage source supplies a common voltage common to the plurality of pixels.
  • the source driving unit outputs a source signal having a positive polarity indicating a voltage higher than the common voltage or a negative polarity indicating a low voltage to each pixel for each frame.
  • the control unit controls display of an image for each frame based on a video signal having a variable frame period.
  • the control unit detects a length of a frame period in which an image for each frame is displayed with a positive polarity and a length of a frame period displayed with a negative polarity.
  • the control unit corrects the common voltage according to the deviation of the length of the frame period detected in each polarity.
  • flickering when displaying an image whose frame rate changes can be suppressed by correcting the common voltage according to the deviation of the length of the frame period.
  • FIG. 1 is a diagram illustrating a configuration of a display device according to a first embodiment.
  • FIG. 7 is a diagram illustrating a circuit configuration of a pixel in a display device.
  • the block diagram which shows the structure of the control part in a display apparatus Block diagram showing the configuration of the common voltage correction processing unit in the control unit
  • the figure which illustrates the correction table in the recording part of a control part Diagram for explaining the problem with variable frame rate 7 is a flowchart for explaining common voltage correction processing in the display device according to the first embodiment. Timing chart for explaining common voltage correction processing in the display device of Embodiment 1
  • FIG. 1 is a diagram illustrating a configuration of a display device 1 according to the present embodiment.
  • the display device 1 constitutes a liquid crystal display device such as a liquid crystal monitor conforming to the HDMI 2.1 standard (“HDMI” is a registered trademark), for example.
  • the display device 1 includes a liquid crystal panel 10, a control unit 2, a gate drive unit 11, a source drive unit 12, a common voltage source 13, and a memory 10a.
  • the liquid crystal panel 10 has a predetermined specification such as 8K, 4K, or 2K, and is configured by an active matrix method. As shown in FIG. 1, the liquid crystal panel 10 includes a plurality of pixels 3, a plurality of gate lines GL, and a plurality of source lines SL.
  • the liquid crystal panel 10 includes, for example, a TFT (thin film transistor) substrate having a pixel electrode, a CF (color filter) substrate having a common electrode, a liquid crystal layer sealed between the two substrates, a polarizing plate, and the like.
  • the plurality of pixels 3 are arranged in a matrix and form a display area for displaying an image.
  • the row direction (x) of the matrix of the pixels 3 is referred to as “horizontal direction”
  • the column direction (y) is referred to as “vertical direction”.
  • the plurality of pixels 3 each include an active element TFT or the like.
  • the gate is connected to the gate line GL, and the source is connected to the source line SL (see FIG. 2).
  • the gate line GL is a signal line wired in the row direction of the matrix of the pixels 3 and connected to the pixels 3 one by one.
  • the source line SL is a signal line wired in the column direction of the matrix of the pixels 3.
  • the memory 10a is a flash ROM, for example, and stores information unique to the liquid crystal panel 10 and the like.
  • the control unit 2 is composed of one or a plurality of semiconductor integrated circuits such as LSIs. As a timing controller, the control unit 2 generates various signals for controlling the operation timing of each unit of the display device 1. The control unit 2 may control the overall operation of the display device 1. Details of the configuration of the control unit 2 will be described later.
  • the gate drive unit 11 generates a gate signal for sequentially selecting the gate lines GL of each row in the matrix of the pixels 3 under the control of the control unit 2, and drives the plurality of gate lines GL at a predetermined frame period.
  • the frame period is dynamically set by the video signal, for example, within a range of 1/120 to 1/30 seconds.
  • the gate drive unit 11 is configured by a drive circuit such as an IC to which a plurality of gate lines GL are connected, for example.
  • the source driver 12 supplies a source signal having a voltage corresponding to the gradation to be displayed for each pixel 3 to the plurality of source lines SL in synchronization with the operation of the gate driver 11 under the control of the controller 2. .
  • the source driving unit 12 is configured by a driving circuit such as an IC to which a plurality of source lines SL are connected, for example.
  • the source driver 12 drives by a frame inversion method that switches the voltage of the source signal between positive polarity and negative polarity for each frame.
  • the common voltage source 13 supplies a common voltage Vcom to the common electrode of the pixel 3 in the liquid crystal panel 10.
  • the common voltage Vcom is a reference for the positive and negative polarities of the source signal.
  • the common voltage Vcom is set, for example, within a range of 5.5 to 8.2V.
  • the common voltage source 13 includes a voltage generation circuit that generates a set voltage. In the present embodiment, the set value of the common voltage Vcom is controlled by the control unit 2.
  • the common voltage source 13 is an example of a voltage source in the display device 1 of the present embodiment.
  • FIG. 2 is a diagram illustrating a circuit configuration of the pixel 3 in the display device 1.
  • FIG. 2 shows an equivalent circuit of the pixel 3 (hereinafter referred to as “pixel circuit” 30).
  • the pixel circuit 30 includes a TFT 31, a pixel capacitor 32, and a storage capacitor 33.
  • the gate is connected to the gate line GL
  • the source is connected to the source line SL
  • the drain is connected to one end of each of the pixel capacitor 32 and the storage capacitor 33.
  • the other ends of the pixel capacitor 32 and the storage capacitor 33 are connected to, for example, a common electrode in the liquid crystal panel 10.
  • a common voltage source 13 is connected to the common electrode, and a common voltage Vcom is supplied.
  • the TFT 31 is turned on when the voltage applied to the gate based on the gate signal from the gate line GL is equal to or higher than a predetermined threshold voltage, and turned off when the voltage is lower than the threshold voltage.
  • the TFT 31 is an example of a transistor connected to the gate line GL.
  • the pixel capacitor 32 includes a liquid crystal layer and a pixel electrode, and changes the alignment state of the liquid crystal layer according to the amount of charge.
  • the pixel capacitor 32 charges or discharges charges based on the voltage of the source signal Sout input from the source line SL while the TFT 31 is on.
  • the pixel capacitor 32 holds the charge amount obtained by charging / discharging before the TFT 31 is switched off during the period in which the TFT 31 is off.
  • the storage capacitor 33 is a capacitive element for holding the charge amount (charge voltage) held by the pixel capacitor 32.
  • the storage capacitor 33 charges and discharges charges at the same timing as the charge and discharge by the pixel capacitor 32.
  • FIG. 3 is a block diagram illustrating a configuration of the control unit 2 in the display device 1.
  • control unit 2 includes a video input unit 21, a gamma conversion unit 22, a gate drive I / F (interface) 23, a source drive I / F 24, a memory I / F 25, and a recording unit. 26, a common voltage correction processing unit 4, and a voltage source control unit 27.
  • the video input unit 21 is an input interface circuit that conforms to a predetermined communication standard such as the HDMI 2.1 standard.
  • the video input unit 21 receives an external video signal and outputs image data indicating an image for each frame in the video signal, a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, and a clock signal Clk.
  • the vertical synchronization signal Vsync indicates the timing at which the operations of the drive units 11 and 12 are synchronized for each frame of image data.
  • the horizontal synchronization signal Hsync indicates a synchronization timing for each horizontal synchronization period 1H in which operations for each row in the frame are performed in synchronization.
  • the clock signal Clk indicates a reference operation cycle of the pixel 3.
  • the gamma conversion unit 22 inputs image data from the video input unit 21 and executes gamma conversion processing for performing gamma correction.
  • the gamma conversion unit 22 includes, for example, an LUT (Look Up Table) in which digital values for gamma correction are stored.
  • the gamma conversion unit 22 outputs the converted image data D (N) to the source drive I / F 24. N indicates a frame number.
  • the image data D (N) is not limited to gamma conversion processing but may be subjected to various conversion processing such as dither processing.
  • the gate drive I / F 23 is an interface circuit connected to the gate drive unit 11.
  • the gate drive I / F 23 receives the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the clock signal Clk from the video input unit 21 and outputs a control signal including various synchronization signals to the gate drive unit 11.
  • the source drive I / F 24 is an interface circuit connected to the source drive unit 12.
  • the source drive I / F 24 receives the image data D (N) after conversion such as gamma conversion, and outputs a control signal for displaying an image indicated by the image data D (N) to the source drive unit 12.
  • the source drive I / F 24 may generate various control signals from the video input unit 21 and generate a control signal for the source drive unit 12. For example, the source drive I / F 24 sets polarity information P (N) indicating the polarity of the voltage of the source signal in the frame inversion method.
  • the memory I / F 25 is an interface circuit that reads data from an external memory, and is connected to the memory 10a of the liquid crystal panel 10, for example.
  • the memory I / F 25 acquires information on the common voltage Vcom in the liquid crystal panel 10 and the like.
  • the recording unit 26 stores information acquired from the memory I / F 25.
  • the recording unit 26 includes a register circuit.
  • the recording unit 26 stores, for example, a standard value V0 of the common voltage Vcom, a correction table 26a (see FIG. 5) described later, and the like.
  • the common voltage correction processing unit 4 executes a common voltage correction process for correcting the common voltage Vcom in the display device 1 of the present embodiment.
  • the common voltage correction processing unit 4 receives various synchronization signals Vsync, Hsync, and Clk from the video input unit 21, receives image data D (N) from the gamma conversion unit 22, and receives from the source driving I / F 24.
  • the polarity information P (N) is acquired, and the information stored in the recording unit 26 is read out. Details of the common voltage correction processing unit 4 will be described later.
  • the voltage source control unit 27 is configured by an external device control circuit and is connected to the common voltage source 13.
  • the voltage source control unit 27 outputs a control signal for setting the common voltage Vcom to the common voltage source 13 based on the processing result of the common voltage correction processing unit 4.
  • the control unit 2 is a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to realize predetermined functions such as the gamma conversion unit 22 and the common voltage correction processing unit 4 described above. Also good.
  • the control unit 2 may include a CPU or the like that realizes various functions as described above in cooperation with software.
  • the control unit 2 may be configured by various semiconductor integrated circuits such as a CPU, MPU, microcomputer, DSP, FPGA, ASIC and the like.
  • FIG. 4 is a block diagram showing the configuration of the common voltage correction processing unit 4.
  • the common voltage correction processing unit 4 includes a frame length detection unit 41, a pixel average calculation unit 42, an accumulation management unit 43, and a common voltage setting unit 44, for example, as a functional configuration of the control unit 2.
  • the frame length detection unit 41 detects the frame length T (N) based on various synchronization signals Vsync, Hsync, and Clk.
  • the frame length is a length of a frame period including a blanking period in one frame.
  • the frame length detection unit 41 includes, for example, a counter that can count the frame length of two frames.
  • the pixel average calculation unit 42 calculates a pixel average value G (N) based on the image data D (N).
  • the pixel average value G (N) indicates the average value of the gradation of each pixel in one frame image.
  • the pixel average calculation unit 42 outputs the pixel average value G (N) in a predetermined range such as 8 bits.
  • the accumulation management unit 43 acquires the frame length T (N), the pixel average value G (N), and the polarity information P (N) for each frame, and sequentially calculates and stores the accumulation value A (N).
  • the accumulated value A (N) indicates a deviation between frame periods having different polarities in a period in which an image is displayed in the past, and is managed for each frame.
  • the common voltage setting unit 44 sets the set value Vcom (N + 1) of the common voltage Vcom of the next frame in the voltage source control unit 27 based on the current accumulated value A (N). Further, the common voltage setting unit 44 outputs the feedback value F (N) regarding the current cumulative value A (N) to the cumulative management unit 43.
  • the common voltage setting unit 44 uses various information such as the correction table 26a and the standard value V0 for calculation of the set value Vcom (N + 1) and the feedback value F (N).
  • the common voltage setting unit 44 may use polarity information P (N).
  • correction Table The correction table 26a stored in the recording unit 26 of the control unit 2 will be described with reference to FIG.
  • FIG. 5 is a diagram illustrating a correction table 26 a in the recording unit 26.
  • the correction table 26 a is a data table that is referred to by the common voltage setting unit 44 of the common voltage correction processing unit 4 in the control unit 2.
  • the correction table 26a is configured by an LUT, for example.
  • FIG. 5 illustrates the correction table 26a when the maximum frame length is 4500 times the horizontal synchronization period 1H (corresponding to 30 Hz) and the pixel average value has 8 bits.
  • the correction table 26a illustrated in FIG. 5 records the range of the accumulated value A (N), the correction value ⁇ V of the common voltage Vcom, and the feedback coefficient Cf corresponding to the feedback value F (N) in association with each other.
  • a video signal generated in an external GPU or the like is input to the display device 1 according to the present embodiment.
  • the length of the frame period in the video signal is set for each frame by adjusting the blanking period of each frame.
  • the control unit 2 of the display device 1 generates each control signal so as to synchronously control the gate driving unit 11 and the source driving unit 12 based on the input video signal.
  • the source driver 12 sequentially outputs source signals while inverting the polarity in the frame inversion method. As a result, a display image for each frame corresponding to the video signal is displayed on the liquid crystal panel 10.
  • FIG. 6 is a diagram for explaining a problem due to a variable frame rate.
  • FIG. 6A is a timing chart illustrating a source signal having a constant frame rate.
  • FIG. 6B is a timing chart showing an example of a source signal whose frame rate changes.
  • FIG. 6C is a timing chart illustrating the correction of the common voltage Vcom during the operation of FIG.
  • FIGS. 6A to 6C illustrate the voltage of the source signal in the frame inversion method.
  • the frame inversion method inverts the polarity of the voltage of the source signal between successive frames in order to extend the life of the liquid crystal.
  • FIGS. 6A to 6C illustrate source signals when an image with a predetermined gradation (the entire image is white or the like) is displayed.
  • the source signal alternately has a positive voltage VH higher than the common voltage Vcom and a negative voltage VL lower than the common voltage Vcom between adjacent frames.
  • FIG. 6A illustrates a case where the frame rate is constant as a normal frame inversion method.
  • the polarity of the source signal changes every time the same period elapses, such as 16.7 milliseconds at 60 Hz.
  • the positive frame period T1 and the negative frame period T2 are equal, liquid crystal burn-in or the like hardly occurs.
  • an image having a predetermined gradation can be displayed as a constant luminance between the positive voltage VH and the negative voltage VL without causing any flicker.
  • FIG. 6B shows an example in which flicker or the like due to a non-uniform frame rate is assumed.
  • FIG. 6B illustrates a source signal when the same image as that in FIG. 6A is displayed while changing the frame rate.
  • the frame rate is changed for each frame, so that the positive frame period T21 after the negative frame period T11 is longer than the negative frame period T11. Further, the positive frame period T22 after the next negative frame period T12 is also longer than the negative frame period T12.
  • the display device 1 of the present embodiment detects the lengths of the frame periods T11 to T22 of each polarity from the input video signal, and has positive frame periods T21 and T22 and negative frame periods T11 and T12.
  • the common voltage Vcom is corrected according to the bias between the two.
  • FIG. 6C shows an example of a method for correcting the common voltage Vcom.
  • FIG. 6C illustrates a case where the common voltage Vcom is corrected with respect to the source signal of FIG.
  • the display device 1 of the present embodiment increases the common voltage Vcom when the positive frame periods T21 and T22 are detected to be longer than the negative frame periods T11 and T12, as in the example of FIG. 6C. To correct. As a result, the effective DC component remaining in the liquid crystal panel 10 can be offset to suppress liquid crystal burn-in, and flicker can be reduced.
  • details of the operation of the display device 1 according to the present embodiment will be described.
  • the common voltage correction process in the display device 1 according to the present embodiment will be described below.
  • the common voltage correction processing according to the present embodiment is a cumulative value A (N) indicating a cumulative total of deviations between a positive frame period and a negative frame period in synchronization with display of an image whose frame rate can change. By managing this, the common voltage Vcom is dynamically corrected. Details of the common voltage correction processing will be described with reference to FIGS.
  • FIG. 7 is a flowchart for explaining the common voltage correction processing in the display device 1 of the present embodiment.
  • FIG. 8 is a timing chart for explaining the common voltage correction processing.
  • FIGS. 8A and 8B show the input timing of the vertical synchronization signal Vsync and the image data D (N) from the outside, respectively.
  • FIG. 8C shows the calculation timing of the accumulated value A (N) in the display device 1.
  • FIG. 8D shows the correction timing of the common voltage Vcom.
  • control unit 2 functions as the frame length detection unit 41 of the common voltage correction processing unit 4 (FIG. 4), and detects the length of the current frame period, that is, the frame length (S1).
  • the frame length detector 41 receives the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the clock signal Clk, and performs the process of step S1.
  • FIG. 8A illustrates the vertical synchronization signal Vsync to be processed in step S1.
  • the frame length detection unit 41 counts the period from the time t1 when the vertical synchronization signal Vsync indicates the start of the (N ⁇ 1) th frame to the time t2 when the start of the Nth frame indicates the horizontal synchronization period 1H.
  • the frame length T (N ⁇ 1) of the (N ⁇ 1) th frame is detected.
  • the control unit 2 calculates the pixel average value G (N ⁇ 1) based on the image data D (N ⁇ 1) of the (N ⁇ 1) th frame as the pixel average calculation unit 42 (S2). For example, as shown in FIG. 8B, the pixel average calculation unit 42 sequentially adds the gradation values of the respective pixels input as the image data D (N ⁇ 1) from time t11 after time t1. Then, the pixel average value G (N ⁇ 1) is calculated by dividing the total value by the number of pixels.
  • control unit 2 functions as the accumulation management unit 43, and acquires the polarity information P (N-1) of the (N-1) th frame from the source drive I / F 24 (S3).
  • the polarity information P (N-1) indicates whether the source signal of the (N-1) th frame is positive or negative.
  • the order of the processes in steps S1 to S3 is not particularly limited, and for example, each process may be executed in parallel.
  • step S4 the control unit 2 as the accumulation management unit 43 calculates the accumulated value A ((N ⁇ 1) th frame) from the past accumulated value A (N ⁇ 2) up to the (N ⁇ 2) th frame.
  • Update to (N-1) is performed (S4).
  • the process of step S4 is based on the current frame length T (N-1), pixel average value G (N-1) and polarity information P (N-1), and a feedback value F (N-2) described later. The calculation is performed by the following equation (1).
  • a (N-1) A (N-2) + B (N-1) -F (N-2) (1)
  • the accumulation management unit 43 adds the current addition value B (N ⁇ 1) to the past accumulation value A (N ⁇ 2), and further the previous feedback value F (N ⁇ ). 2) is subtracted to calculate the updated accumulated value A (N ⁇ 1).
  • the added value B (N ⁇ 1) indicates the amount of the DC component that is estimated to be generated in the liquid crystal panel 10 by, for example, the (N ⁇ 1) th frame image display.
  • the addition value B (N ⁇ 1) is expressed as the following equation (2).
  • B (N ⁇ 1) ⁇ G (N ⁇ 1) ⁇ T (N ⁇ 1) (2)
  • the sign on the right side is “+” when the polarity information P (N ⁇ 1) of the (N ⁇ 1) th frame indicates positive polarity, and “+” when the polarity information P (N ⁇ 1) indicates negative polarity.
  • the added value B (N ⁇ 1) of the above equation (2) is proportional to the frame length T (N ⁇ 1) in the same positive / negative polarity as the polarity of the (N ⁇ 1) th frame, and the pixel average value G (N ⁇ Weighted in 1).
  • control unit 2 functions as the common voltage setting unit 44, and sets the common voltage Vcom of the Nth frame according to the updated accumulated value A (N-1) (S5).
  • the common voltage setting unit 44 reads the correction value ⁇ V associated with the range including the updated cumulative value A (N ⁇ 1) in the correction table 26a (FIG. 5) of the recording unit 26, thereby obtaining the following equation (3 ) Is used to determine the correction value ⁇ V [A (N ⁇ 1)].
  • Vcom (N) V0 + ⁇ V [A (N-1)] (3)
  • the common voltage setting unit 44 corrects the correction value ⁇ V [A (N ⁇ 1)] from the standard value V0 of the common voltage Vcom as shown in the above equation (3), and sets the common voltage Vcom for the Nth frame.
  • the value Vcom (N) is calculated.
  • the common voltage setting unit 44 sets the calculated setting value Vcom (N) in the voltage source control unit 27.
  • the control unit 2 as the common voltage setting unit 44 determines a feedback coefficient Cf [A (N ⁇ 1)] corresponding to the correction value ⁇ V [A (N ⁇ 1)] of the common voltage Vcom of the Nth frame.
  • the feedback value F (N ⁇ 1) is calculated (S6).
  • the control unit 2 reads the feedback coefficient Cf based on the same accumulated value A (N ⁇ 1) as the correction value ⁇ V [A (N ⁇ 1)] of the common voltage Vcom of the Nth frame in the correction table 26a.
  • Expression (4) is performed.
  • the frame length T (N ⁇ 1) detected in step S1 is set to the pixel average value G (N ⁇ 1) calculated in step S2 and the feedback coefficient Cf [A (N ⁇ 1). ] Is weighted to calculate the feedback value F (N-1) (S6).
  • the common voltage setting unit 44 outputs the calculated feedback value F (N ⁇ 1) to the accumulation management unit 43 so as to be used in step S4 in the next control cycle (frame).
  • control unit 2 controls the common voltage source 13 in accordance with the set value Vcom (N) as the voltage source control unit 27, and displays an image of the Nth frame (S7).
  • the voltage source control unit 27 controls the common voltage Vcom to the set value Vcom (N) at time t20 before the start of image display of the Nth frame.
  • the set value Vcom (N) of the common voltage Vcom is used until, for example, the start time t3 of the (N + 1) th frame.
  • the control unit 2 repeats the above steps S1 to S7 for each frame.
  • the frame length T (N ⁇ 1) is detected for each frame of the image display (S1), and the added value corresponding to the length of the frame length T (N ⁇ 1) is the same as the polarity of each frame.
  • a cumulative value A (N-1) obtained by accumulating B (N-1) is obtained (S4). According to such accumulated value A (N ⁇ 1), the effective DC component currently stored in the liquid crystal panel 10 can be estimated, and the common voltage Vcom can be dynamically optimized. The optimization of the common voltage Vcom with the accumulated value A (N ⁇ 1) will be described using FIGS. 8A to 8D.
  • FIG. 8A to 8D illustrate the case where the (N-1) th frame is positive.
  • the accumulated values A (N ⁇ 2) to A (N) are obtained for each frame in which the sign is inverted depending on the frame length and the pixel average value of each frame (S1, S2). It changes sequentially (S3, S4).
  • the control unit 2 increases the common voltage Vcom of the Nth frame by the correction value ⁇ V from the standard value V0 based on the accumulated value A (N ⁇ 1) (S5). As a result, the DC component in the liquid crystal panel 10 is canceled, and the burn-in and flicker of the liquid crystal panel 10 can be suppressed.
  • the common voltage correction processing (FIG. 7) of the present embodiment corrects the feedback value F (N ⁇ 1) so that the accumulated value A (N) of the next frame is reduced by the amount corresponding to the correction of the common voltage Vcom. ) Is used (see S6, S4, equation (1)).
  • the cumulative value A (N) can be appropriately managed without divergence in consideration of the effect of correcting the common voltage Vcom.
  • the common voltage Vcom can be optimized by setting values Vcom (N ⁇ 1) to Vcom (N + 1) of each frame based on the accumulated values A (N ⁇ 2) to A (N).
  • the display device 1 includes the plurality of pixels 3, the common voltage source 13, the source driving unit 12, and the control unit 2.
  • the common voltage source 13 supplies a common voltage Vcom to the plurality of pixels 3.
  • the source driver 12 outputs a source signal having a positive polarity indicating a voltage higher than the common voltage Vcom or a negative polarity indicating a low voltage to each pixel 3 for each frame.
  • the control unit 2 controls display of an image for each frame based on a video signal having a variable frame period.
  • the control unit 2 detects the length of the frame period in which the image for each frame is displayed with the positive polarity and the length of the frame period displayed with the negative polarity (S1).
  • the control unit 2 corrects the common voltage Vcom according to the deviation of the length of the frame period detected in each polarity (S5).
  • flickering when displaying an image with a changed frame rate can be suppressed by correcting the common voltage Vcom according to the deviation of the length of the frame period.
  • control unit 2 increases the common voltage Vcom as the length of the positive frame period is larger than the length of the negative frame period.
  • the control unit 2 decreases the common voltage Vcom as the length of the negative frame period is larger than the length of the positive frame period.
  • control unit 2 manages the accumulated value A (N) indicating the cumulative deviation between the positive frame period and the negative frame period (S4).
  • the controller 2 determines the correction value ⁇ V of the common voltage Vcom based on the accumulated value A (N) (S5). Thereby, the common voltage Vcom can be dynamically corrected according to the accumulated value A (N).
  • control unit 2 feeds back the accumulated value A (N) so as to decrease according to the correction value of the common voltage Vcom (S6, S4).
  • the cumulative value A (N) can be appropriately managed in consideration of the effect of correcting the common voltage Vcom.
  • control unit 2 calculates a pixel average value G (N) that is an average value of gradations of the plurality of pixels 3 in the frame image in each frame, and sets the pixel average value G (N). Based on this, the addition value B (N) for each frame is added to the accumulated value A (N) (S2, S3). As a result, the accumulated value A (N) can be accumulated according to the gradation of the image displayed for each frame, and the common voltage Vcom can be accurately corrected.
  • control unit 2 detects the length of each frame period based on the vertical synchronization signal Vsync that synchronizes the display of the video signal (S1). This makes it possible to easily detect the length of each frame period in a situation where the frame rate can change dynamically.
  • the video signal input to the display device 1 conforms to the HDMI 2.1 standard. According to the display device 1 of the present embodiment, it is possible to solve the problem of flicker that may occur in a video signal of the HDMI 2.1 standard.
  • the feedback value F (N ⁇ 1) is calculated based on the equation (4) in the common voltage correction process (FIG. 7) (S6), but the feedback value F (N) is not limited to this. Absent.
  • the feedback value F (N ⁇ 1) may be calculated based on the following equation (4 ′) instead of the equation (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display device (1) comprises: a plurality of pixels (3); a voltage source (13); a source driving unit (12); and a control unit (2). The voltage source supplies a common voltage (Vcom) to the plurality of pixels. The source driving unit outputs, to each pixel and for every frame, a source signal having a positive polarity and exhibiting a higher voltage than the common voltage, or a source signal having a negative polarity and exhibiting a lower voltage than the common voltage. The control unit controls the display of the image of each frame on the basis of a video signal having a variable frame period length. The control unit detects the lengths of frame periods where the images of the frames are displayed with a positive polarity, and the lengths of frame periods where the images of the frames are displayed with a negative polarity (S1). The control unit corrects the common voltage in accordance with deviations in the lengths of the frame periods detected in each polarity (S5).

Description

表示装置Display device
 本発明は、画像を表示する表示装置に関する。 The present invention relates to a display device that displays an image.
 特許文献1は、液晶パネルの焼き付きによる表示画像のフリッカを低減するために、コモン電圧を調整する液晶表示装置を開示している。特許文献1の液晶表示装置は、入力された画像データに基づいて、液晶パネルの共通電極に印加するコモン電圧の設定値を決定し、液晶パネルの走査線及び信号線のうち少なくとも一方を駆動するタイミングに基づいて、コモン電圧を当該設定値に変更するタイミングを決定している。これにより、所定のフレーム期間のうちのブランキング期間の中で、コモン電圧を調整することを可能にしている。 Patent Document 1 discloses a liquid crystal display device that adjusts a common voltage in order to reduce flicker of a display image due to burn-in of a liquid crystal panel. The liquid crystal display device of Patent Document 1 determines a set value of a common voltage to be applied to a common electrode of a liquid crystal panel based on input image data, and drives at least one of a scanning line and a signal line of the liquid crystal panel. Based on the timing, the timing for changing the common voltage to the set value is determined. As a result, the common voltage can be adjusted in the blanking period of the predetermined frame period.
特開2006-195152号公報JP 2006-195152 A
 本発明の目的は、フレームレートが変化する画像を表示する際のフリッカを抑制することができる表示装置を提供することにある。 An object of the present invention is to provide a display device capable of suppressing flicker when displaying an image with a changed frame rate.
 本発明に係る表示装置は、複数の画素と、電圧源と、ソース駆動部と、制御部とを備える。電圧源は、複数の画素に共通のコモン電圧を供給する。ソース駆動部は、コモン電圧よりも高い電圧を示す正極性又は低い電圧を示す負極性を有するソース信号をフレーム毎に各画素に出力する。制御部は、フレーム期間の長さが可変の映像信号に基づいて、フレーム毎の画像の表示を制御する。制御部は、フレーム毎の画像が正極性で表示されたフレーム期間の長さと、負極性で表示されたフレーム期間の長さとを検出する。制御部は、各極性で検出したフレーム期間の長さの偏りに応じて、コモン電圧を補正する。 The display device according to the present invention includes a plurality of pixels, a voltage source, a source driver, and a controller. The voltage source supplies a common voltage common to the plurality of pixels. The source driving unit outputs a source signal having a positive polarity indicating a voltage higher than the common voltage or a negative polarity indicating a low voltage to each pixel for each frame. The control unit controls display of an image for each frame based on a video signal having a variable frame period. The control unit detects a length of a frame period in which an image for each frame is displayed with a positive polarity and a length of a frame period displayed with a negative polarity. The control unit corrects the common voltage according to the deviation of the length of the frame period detected in each polarity.
 本発明に係る表示装置によると、フレーム期間の長さの偏りに応じてコモン電圧を補正することにより、フレームレートが変化する画像を表示する際のフリッカを抑制することができる。 According to the display device according to the present invention, flickering when displaying an image whose frame rate changes can be suppressed by correcting the common voltage according to the deviation of the length of the frame period.
実施形態1に係る表示装置の構成を示す図1 is a diagram illustrating a configuration of a display device according to a first embodiment. 表示装置における画素の回路構成を示す図FIG. 7 is a diagram illustrating a circuit configuration of a pixel in a display device. 表示装置における制御部の構成を示すブロック図The block diagram which shows the structure of the control part in a display apparatus 制御部におけるコモン電圧補正処理部の構成を示すブロック図Block diagram showing the configuration of the common voltage correction processing unit in the control unit 制御部の記録部における補正テーブルを例示する図The figure which illustrates the correction table in the recording part of a control part 可変のフレームレートによる課題を説明するための図Diagram for explaining the problem with variable frame rate 実施形態1の表示装置におけるコモン電圧補正処理を説明するためのフローチャート7 is a flowchart for explaining common voltage correction processing in the display device according to the first embodiment. 実施形態1の表示装置におけるコモン電圧補正処理を説明するためのタイミングチャートTiming chart for explaining common voltage correction processing in the display device of Embodiment 1
 以下、添付の図面を参照して本発明に係る表示装置の実施の形態を説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Hereinafter, an embodiment of a display device according to the present invention will be described with reference to the accompanying drawings. In addition, in each following embodiment, the same code | symbol is attached | subjected about the same component.
(実施形態1)
1.構成
 実施形態1に係る表示装置の構成を以下に説明する。
(Embodiment 1)
1. Configuration The configuration of the display device according to the first embodiment will be described below.
 実施形態1に係る表示装置の構成について、図1を用いて説明する。図1は、本実施形態に係る表示装置1の構成を示す図である。 The configuration of the display device according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of a display device 1 according to the present embodiment.
 本実施形態に係る表示装置1は、例えばHDMI2.1規格(「HDMI」は登録商標)に準拠した液晶モニタなどの液晶表示装置を構成する。表示装置1は、図1に示すように、液晶パネル10と、制御部2と、ゲート駆動部11と、ソース駆動部12と、コモン電圧源13と、メモリ10aとを備える。 The display device 1 according to the present embodiment constitutes a liquid crystal display device such as a liquid crystal monitor conforming to the HDMI 2.1 standard (“HDMI” is a registered trademark), for example. As shown in FIG. 1, the display device 1 includes a liquid crystal panel 10, a control unit 2, a gate drive unit 11, a source drive unit 12, a common voltage source 13, and a memory 10a.
 液晶パネル10は、例えば8K或いは4K、2Kなどの所定仕様を有し、アクティブマトリクス方式で構成される。液晶パネル10は、図1に示すように、複数の画素3と、複数のゲート線GLと、複数のソース線SLとを備える。また、液晶パネル10は、例えば、画素電極を有するTFT(薄膜トランジスタ)基板、共通電極を有するCF(カラーフィルタ)基板、両基板間に封入された液晶層、及び偏光板などを含む。 The liquid crystal panel 10 has a predetermined specification such as 8K, 4K, or 2K, and is configured by an active matrix method. As shown in FIG. 1, the liquid crystal panel 10 includes a plurality of pixels 3, a plurality of gate lines GL, and a plurality of source lines SL. The liquid crystal panel 10 includes, for example, a TFT (thin film transistor) substrate having a pixel electrode, a CF (color filter) substrate having a common electrode, a liquid crystal layer sealed between the two substrates, a polarizing plate, and the like.
 液晶パネル10において、複数の画素3は、マトリクス状に配置され、画像を表示する表示領域を形成する。以下、画素3のマトリクスの行方向(x)を「水平方向」とし、列方向(y)を「垂直方向」とする。 In the liquid crystal panel 10, the plurality of pixels 3 are arranged in a matrix and form a display area for displaying an image. Hereinafter, the row direction (x) of the matrix of the pixels 3 is referred to as “horizontal direction”, and the column direction (y) is referred to as “vertical direction”.
 複数の画素3は、それぞれアクティブ素子のTFT等を備える。各画素3のTFTにおいては、ゲートがゲート線GLに接続され、ソースがソース線SLに接続される(図2参照)。ゲート線GLは、画素3のマトリクスの行方向に配線され、1行ずつ画素3が接続された信号線である。ソース線SLは、画素3のマトリクスの列方向に配線された信号線である。メモリ10aは、例えばフラッシュROMであり、液晶パネル10の固有の情報等を格納する。 The plurality of pixels 3 each include an active element TFT or the like. In the TFT of each pixel 3, the gate is connected to the gate line GL, and the source is connected to the source line SL (see FIG. 2). The gate line GL is a signal line wired in the row direction of the matrix of the pixels 3 and connected to the pixels 3 one by one. The source line SL is a signal line wired in the column direction of the matrix of the pixels 3. The memory 10a is a flash ROM, for example, and stores information unique to the liquid crystal panel 10 and the like.
 制御部2は、例えばLSIなどの一つ又は複数の半導体集積回路で構成される。制御部2は、タイミングコントローラとして、表示装置1の各部の動作タイミングを制御するための種々の信号を生成する。制御部2は、表示装置1の全体動作を制御してもよい。制御部2の構成の詳細については後述する。 The control unit 2 is composed of one or a plurality of semiconductor integrated circuits such as LSIs. As a timing controller, the control unit 2 generates various signals for controlling the operation timing of each unit of the display device 1. The control unit 2 may control the overall operation of the display device 1. Details of the configuration of the control unit 2 will be described later.
 ゲート駆動部11は、制御部2の制御により、画素3のマトリクスにおいて各行のゲート線GLを順番に選択するためのゲート信号を生成し、所定のフレーム周期で複数のゲート線GLを駆動する。フレーム周期は、例えば1/120~1/30秒の範囲内で、映像信号によって動的に設定される。ゲート駆動部11は、例えば複数のゲート線GLが接続されたIC等の駆動回路で構成される。 The gate drive unit 11 generates a gate signal for sequentially selecting the gate lines GL of each row in the matrix of the pixels 3 under the control of the control unit 2, and drives the plurality of gate lines GL at a predetermined frame period. The frame period is dynamically set by the video signal, for example, within a range of 1/120 to 1/30 seconds. The gate drive unit 11 is configured by a drive circuit such as an IC to which a plurality of gate lines GL are connected, for example.
 ソース駆動部12は、制御部2の制御により、ゲート駆動部11の動作に同期して、複数のソース線SLに、画素3毎に表示する階調に応じた電圧を有するソース信号を供給する。ソース駆動部12は、例えば複数のソース線SLが接続されたIC等の駆動回路で構成される。本実施形態において、ソース駆動部12は、フレーム毎にソース信号の電圧を正極性と負極性とに切り替えるフレーム反転方式で駆動する。 The source driver 12 supplies a source signal having a voltage corresponding to the gradation to be displayed for each pixel 3 to the plurality of source lines SL in synchronization with the operation of the gate driver 11 under the control of the controller 2. . The source driving unit 12 is configured by a driving circuit such as an IC to which a plurality of source lines SL are connected, for example. In the present embodiment, the source driver 12 drives by a frame inversion method that switches the voltage of the source signal between positive polarity and negative polarity for each frame.
 コモン電圧源13は、液晶パネル10中の画素3の共通電極にコモン電圧Vcomを供給する。コモン電圧Vcomは、ソース信号の正極性及び負極性の基準となる。コモン電圧Vcomは、例えば5.5~8.2Vの範囲内で設定される。コモン電圧源13は、設定された電圧を発生させる電圧発生回路などを含む。本実施形態において、コモン電圧Vcomの設定値は、制御部2によって制御される。コモン電圧源13は、本実施形態の表示装置1における電圧源の一例である。 The common voltage source 13 supplies a common voltage Vcom to the common electrode of the pixel 3 in the liquid crystal panel 10. The common voltage Vcom is a reference for the positive and negative polarities of the source signal. The common voltage Vcom is set, for example, within a range of 5.5 to 8.2V. The common voltage source 13 includes a voltage generation circuit that generates a set voltage. In the present embodiment, the set value of the common voltage Vcom is controlled by the control unit 2. The common voltage source 13 is an example of a voltage source in the display device 1 of the present embodiment.
1-1.画素の回路構成
 表示装置1の液晶パネル10における画素3の回路構成について、図2を参照して説明する。図2は、表示装置1における画素3の回路構成を示す図である。
1-1. Circuit Configuration of Pixel A circuit configuration of the pixel 3 in the liquid crystal panel 10 of the display device 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a circuit configuration of the pixel 3 in the display device 1.
 図2では、画素3の等価回路(以下、「画素回路」30という)を示している。画素回路30は、図2に示すように、TFT31と、画素容量32と、蓄積容量33とを備える。 FIG. 2 shows an equivalent circuit of the pixel 3 (hereinafter referred to as “pixel circuit” 30). As shown in FIG. 2, the pixel circuit 30 includes a TFT 31, a pixel capacitor 32, and a storage capacitor 33.
 画素回路30のTFT31において、ゲートはゲート線GLに接続され、ソースはソース線SLに接続され、ドレインは画素容量32及び蓄積容量33のそれぞれの一端に接続される。画素容量32及び蓄積容量33のそれぞれの他端は、例えば液晶パネル10における共通電極に接続される。共通電極には、コモン電圧源13が接続され、コモン電圧Vcomが供給される。 In the TFT 31 of the pixel circuit 30, the gate is connected to the gate line GL, the source is connected to the source line SL, and the drain is connected to one end of each of the pixel capacitor 32 and the storage capacitor 33. The other ends of the pixel capacitor 32 and the storage capacitor 33 are connected to, for example, a common electrode in the liquid crystal panel 10. A common voltage source 13 is connected to the common electrode, and a common voltage Vcom is supplied.
 TFT31は、ゲート線GLからのゲート信号に基づきゲートに印加される電圧が所定のしきい値電圧以上であるときにオンし、しきい値電圧未満であるときにオフする。TFT31は、ゲート線GLに接続されたトランジスタの一例である。 The TFT 31 is turned on when the voltage applied to the gate based on the gate signal from the gate line GL is equal to or higher than a predetermined threshold voltage, and turned off when the voltage is lower than the threshold voltage. The TFT 31 is an example of a transistor connected to the gate line GL.
 画素容量32は、液晶層及び画素電極で構成され、充電量に応じて液晶層の配向状態を変化させる。画素容量32は、TFT31がオンの期間中にソース線SLから入力されるソース信号Soutの電圧に基づき電荷を充電又は放電する。画素容量32は、TFT31がオフの期間中には、TFT31がオフに切り替わる前の充放電によって得られた充電量を保持する。 The pixel capacitor 32 includes a liquid crystal layer and a pixel electrode, and changes the alignment state of the liquid crystal layer according to the amount of charge. The pixel capacitor 32 charges or discharges charges based on the voltage of the source signal Sout input from the source line SL while the TFT 31 is on. The pixel capacitor 32 holds the charge amount obtained by charging / discharging before the TFT 31 is switched off during the period in which the TFT 31 is off.
 蓄積容量33は、画素容量32が保持する充電量(充電電圧)を保持するための容量素子である。蓄積容量33は、画素容量32による充放電と同じタイミングにおいて電荷を充放電する。 The storage capacitor 33 is a capacitive element for holding the charge amount (charge voltage) held by the pixel capacitor 32. The storage capacitor 33 charges and discharges charges at the same timing as the charge and discharge by the pixel capacitor 32.
1-2.制御部について
 制御部2の構成の詳細について、図3を参照して説明する。図3は、表示装置1における制御部2の構成を示すブロック図である。
1-2. About a control part The detail of a structure of the control part 2 is demonstrated with reference to FIG. FIG. 3 is a block diagram illustrating a configuration of the control unit 2 in the display device 1.
 制御部2は、図3に示すように、映像入力部21と、ガンマ変換部22と、ゲート駆動I/F(インタフェース)23と、ソース駆動I/F24と、メモリI/F25と、記録部26と、コモン電圧補正処理部4と、電圧源制御部27とを備える。 As shown in FIG. 3, the control unit 2 includes a video input unit 21, a gamma conversion unit 22, a gate drive I / F (interface) 23, a source drive I / F 24, a memory I / F 25, and a recording unit. 26, a common voltage correction processing unit 4, and a voltage source control unit 27.
 映像入力部21は、HDMI2.1規格などの所定の通信規格に従う入力インタフェース回路である。映像入力部21は、外部からの映像信号を入力し、映像信号におけるフレーム毎の画像を示す画像データ、垂直同期信号Vsync、水平同期信号Hsync及びクロック信号Clkを出力する。 The video input unit 21 is an input interface circuit that conforms to a predetermined communication standard such as the HDMI 2.1 standard. The video input unit 21 receives an external video signal and outputs image data indicating an image for each frame in the video signal, a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, and a clock signal Clk.
 垂直同期信号Vsyncは、画像データのフレーム毎に各駆動部11,12等の動作を同期するタイミングを示す。水平同期信号Hsyncは、フレーム中の1行毎の動作が同期して行われる水平同期期間1H毎の同期タイミングを示す。クロック信号Clkは、画素3の基準の動作周期を示す。 The vertical synchronization signal Vsync indicates the timing at which the operations of the drive units 11 and 12 are synchronized for each frame of image data. The horizontal synchronization signal Hsync indicates a synchronization timing for each horizontal synchronization period 1H in which operations for each row in the frame are performed in synchronization. The clock signal Clk indicates a reference operation cycle of the pixel 3.
 ガンマ変換部22は、映像入力部21から画像データを入力して、ガンマ補正を施すガンマ変換処理を実行する。ガンマ変換部22は、例えばガンマ補正のデジタル値が格納されたLUT(ルックアップテーブル)等を含む。ガンマ変換部22は、例えば変換後の画像データD(N)をソース駆動I/F24に出力する。Nは、フレーム番号を示す。画像データD(N)には、ガンマ変換処理に限らず、例えばディザ処理など各種の変換処理が施されてもよい。 The gamma conversion unit 22 inputs image data from the video input unit 21 and executes gamma conversion processing for performing gamma correction. The gamma conversion unit 22 includes, for example, an LUT (Look Up Table) in which digital values for gamma correction are stored. For example, the gamma conversion unit 22 outputs the converted image data D (N) to the source drive I / F 24. N indicates a frame number. The image data D (N) is not limited to gamma conversion processing but may be subjected to various conversion processing such as dither processing.
 ゲート駆動I/F23は、ゲート駆動部11に接続するインタフェース回路である。ゲート駆動I/F23は、映像入力部21から垂直同期信号Vsync、水平同期信号Hsync及びクロック信号Clkを入力し、各種同期信号を含む制御信号をゲート駆動部11に出力する。 The gate drive I / F 23 is an interface circuit connected to the gate drive unit 11. The gate drive I / F 23 receives the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the clock signal Clk from the video input unit 21 and outputs a control signal including various synchronization signals to the gate drive unit 11.
 ソース駆動I/F24は、ソース駆動部12に接続するインタフェース回路である。ソース駆動I/F24は、ガンマ変換等の変換後の画像データD(N)を入力し、画像データD(N)が示す画像を表示するための制御信号をソース駆動部12に出力する。ソース駆動I/F24は、映像入力部21から各種同期信号を入力して、ソース駆動部12の制御信号を生成してもよい。ソース駆動I/F24は、例えば、フレーム反転方式におけるソース信号の電圧の極性を示す極性情報P(N)を設定する。 The source drive I / F 24 is an interface circuit connected to the source drive unit 12. The source drive I / F 24 receives the image data D (N) after conversion such as gamma conversion, and outputs a control signal for displaying an image indicated by the image data D (N) to the source drive unit 12. The source drive I / F 24 may generate various control signals from the video input unit 21 and generate a control signal for the source drive unit 12. For example, the source drive I / F 24 sets polarity information P (N) indicating the polarity of the voltage of the source signal in the frame inversion method.
 メモリI/F25は、外部のメモリからデータを読み出すインタフェース回路であり、例えば液晶パネル10のメモリ10aに接続される。例えば、メモリI/F25は、液晶パネル10におけるコモン電圧Vcomに関する情報等を取得する。 The memory I / F 25 is an interface circuit that reads data from an external memory, and is connected to the memory 10a of the liquid crystal panel 10, for example. For example, the memory I / F 25 acquires information on the common voltage Vcom in the liquid crystal panel 10 and the like.
 記録部26は、メモリI/F25から取得された情報を格納する。記録部26は、レジスタ回路で構成される。記録部26は、例えばコモン電圧Vcomの標準値V0、及び後述する補正テーブル26a(図5参照)などを格納する。 The recording unit 26 stores information acquired from the memory I / F 25. The recording unit 26 includes a register circuit. The recording unit 26 stores, for example, a standard value V0 of the common voltage Vcom, a correction table 26a (see FIG. 5) described later, and the like.
 コモン電圧補正処理部4は、本実施形態の表示装置1においてコモン電圧Vcomを補正するためのコモン電圧補正処理を実行する。当該処理において、コモン電圧補正処理部4は、映像入力部21から各種同期信号Vsync,Hsync,Clkを入力し、ガンマ変換部22から画像データD(N)を入力し、ソース駆動I/F24から極性情報P(N)を取得し、記録部26に格納された情報を読み出す。コモン電圧補正処理部4の詳細については後述する。 The common voltage correction processing unit 4 executes a common voltage correction process for correcting the common voltage Vcom in the display device 1 of the present embodiment. In this processing, the common voltage correction processing unit 4 receives various synchronization signals Vsync, Hsync, and Clk from the video input unit 21, receives image data D (N) from the gamma conversion unit 22, and receives from the source driving I / F 24. The polarity information P (N) is acquired, and the information stored in the recording unit 26 is read out. Details of the common voltage correction processing unit 4 will be described later.
 電圧源制御部27は、外部デバイスの制御回路で構成され、コモン電圧源13に接続する。電圧源制御部27は、コモン電圧補正処理部4の処理結果に基づいて、コモン電圧Vcomを設定する制御信号をコモン電圧源13に出力する。 The voltage source control unit 27 is configured by an external device control circuit and is connected to the common voltage source 13. The voltage source control unit 27 outputs a control signal for setting the common voltage Vcom to the common voltage source 13 based on the processing result of the common voltage correction processing unit 4.
 制御部2は、上記のガンマ変換部22及びコモン電圧補正処理部4等の所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよい。また、制御部2は、上記のような各種機能をソフトウェアと協働して実現するCPU等を含んでもよい。制御部2は、CPU、MPU、マイコン、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。 The control unit 2 is a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to realize predetermined functions such as the gamma conversion unit 22 and the common voltage correction processing unit 4 described above. Also good. In addition, the control unit 2 may include a CPU or the like that realizes various functions as described above in cooperation with software. The control unit 2 may be configured by various semiconductor integrated circuits such as a CPU, MPU, microcomputer, DSP, FPGA, ASIC and the like.
1-2-1.コモン電圧補正処理部について
 制御部2におけるコモン電圧補正処理部4の詳細について、図4を用いて説明する。
1-2-1. About Common Voltage Correction Processing Unit Details of the common voltage correction processing unit 4 in the control unit 2 will be described with reference to FIG.
 図4は、コモン電圧補正処理部4の構成を示すブロック図である。コモン電圧補正処理部4は、例えば制御部2の機能的構成として、フレーム長検出部41と、画素平均計算部42と、累積管理部43と、コモン電圧設定部44とを備える。 FIG. 4 is a block diagram showing the configuration of the common voltage correction processing unit 4. The common voltage correction processing unit 4 includes a frame length detection unit 41, a pixel average calculation unit 42, an accumulation management unit 43, and a common voltage setting unit 44, for example, as a functional configuration of the control unit 2.
 フレーム長検出部41は、各種同期信号Vsync,Hsync,Clkに基づいて、フレーム長T(N)を検出する。フレーム長は、1フレーム中のブランキング期間を含むフレーム期間の長さである。フレーム長検出部41は、例えば2フレーム分のフレーム長を計数可能なカウンタ等を含む。 The frame length detection unit 41 detects the frame length T (N) based on various synchronization signals Vsync, Hsync, and Clk. The frame length is a length of a frame period including a blanking period in one frame. The frame length detection unit 41 includes, for example, a counter that can count the frame length of two frames.
 画素平均計算部42は、画像データD(N)に基づいて、画素平均値G(N)を算出する。画素平均値G(N)は、1フレームの画像中の各画素の階調の平均値を示す。画素平均計算部42は、8ビット等の所定範囲において画素平均値G(N)を出力する。 The pixel average calculation unit 42 calculates a pixel average value G (N) based on the image data D (N). The pixel average value G (N) indicates the average value of the gradation of each pixel in one frame image. The pixel average calculation unit 42 outputs the pixel average value G (N) in a predetermined range such as 8 bits.
 累積管理部43は、フレーム毎にフレーム長T(N)と画素平均値G(N)と極性情報P(N)を取得し、累積値A(N)を逐次、計算して記憶する。累積値A(N)は、過去に画像の表示が行われた期間において、互いに異なる極性のフレーム期間の間の偏りを示し、フレーム毎に管理される。 The accumulation management unit 43 acquires the frame length T (N), the pixel average value G (N), and the polarity information P (N) for each frame, and sequentially calculates and stores the accumulation value A (N). The accumulated value A (N) indicates a deviation between frame periods having different polarities in a period in which an image is displayed in the past, and is managed for each frame.
 コモン電圧設定部44は、現在の累積値A(N)に基づいて、次のフレームのコモン電圧Vcomの設定値Vcom(N+1)を電圧源制御部27に設定する。また、コモン電圧設定部44は、現在の累積値A(N)に関するフィードバック値F(N)を累積管理部43に出力する。コモン電圧設定部44は、設定値Vcom(N+1)及びフィードバック値F(N)の算出に、補正テーブル26a及び標準値V0等の各種情報を用いる。コモン電圧設定部44は、極性情報P(N)を用いてもよい。 The common voltage setting unit 44 sets the set value Vcom (N + 1) of the common voltage Vcom of the next frame in the voltage source control unit 27 based on the current accumulated value A (N). Further, the common voltage setting unit 44 outputs the feedback value F (N) regarding the current cumulative value A (N) to the cumulative management unit 43. The common voltage setting unit 44 uses various information such as the correction table 26a and the standard value V0 for calculation of the set value Vcom (N + 1) and the feedback value F (N). The common voltage setting unit 44 may use polarity information P (N).
1-2-2.補正テーブルについて
 制御部2の記録部26に格納される補正テーブル26aについて、図5を用いて説明する。
1-2-2. Correction Table The correction table 26a stored in the recording unit 26 of the control unit 2 will be described with reference to FIG.
 図5は、記録部26における補正テーブル26aを例示する図である。補正テーブル26aは、制御部2において、コモン電圧補正処理部4のコモン電圧設定部44に参照されるデータテーブルである。補正テーブル26aは、例えばLUTで構成される。 FIG. 5 is a diagram illustrating a correction table 26 a in the recording unit 26. The correction table 26 a is a data table that is referred to by the common voltage setting unit 44 of the common voltage correction processing unit 4 in the control unit 2. The correction table 26a is configured by an LUT, for example.
 図5では、最大のフレーム長が水平同期期間1Hの4500倍であり(30Hz相当)、画素平均値が8ビットを有する場合の補正テーブル26aを例示している。図5に例示する補正テーブル26aは、累積値A(N)の範囲と、コモン電圧Vcomの補正値ΔVと、フィードバック値F(N)に対応するフィードバック係数Cfとを関連付けて記録する。 FIG. 5 illustrates the correction table 26a when the maximum frame length is 4500 times the horizontal synchronization period 1H (corresponding to 30 Hz) and the pixel average value has 8 bits. The correction table 26a illustrated in FIG. 5 records the range of the accumulated value A (N), the correction value ΔV of the common voltage Vcom, and the feedback coefficient Cf corresponding to the feedback value F (N) in association with each other.
 例えば、図5の補正テーブル26aは、-1M(メガ)以上で且つ1M未満の累積値A(N)に、補正値ΔV=0と、フィードバック係数Cf=0とを関連付けている。また、1M以上の累積値A(N)には「0」よりも大きい補正値ΔV及びフィードバック係数Cfが関連付けられ、-1M未満の累積値A(N)には「0」よりも小さい補正値ΔV及びフィードバック係数Cfが関連付けられている。補正値ΔV及びフィードバック係数Cfの値は、表示装置1の仕様等に応じて適宜、設定可能である。 For example, the correction table 26a in FIG. 5 associates a correction value ΔV = 0 and a feedback coefficient Cf = 0 with a cumulative value A (N) that is greater than or equal to −1M (mega) and less than 1M. Further, a correction value ΔV greater than “0” and a feedback coefficient Cf are associated with an accumulated value A (N) of 1M or more, and a correction value smaller than “0” is associated with an accumulated value A (N) of less than −1M. ΔV and feedback coefficient Cf are associated with each other. The values of the correction value ΔV and the feedback coefficient Cf can be set as appropriate according to the specifications of the display device 1 and the like.
2.動作
 以上のように構成される表示装置1の動作について、以下説明する。
2. Operation The operation of the display device 1 configured as described above will be described below.
 本実施形態に係る表示装置1には、例えば外部のGPU等において生成される映像信号が入力される。例えば映像信号におけるフレーム期間の長さは、各フレームのブランキング期間を調整することによってフレーム毎に設定される。 For example, a video signal generated in an external GPU or the like is input to the display device 1 according to the present embodiment. For example, the length of the frame period in the video signal is set for each frame by adjusting the blanking period of each frame.
 表示装置1の制御部2は、入力された映像信号に基づいて、ゲート駆動部11とソース駆動部12とを同期制御するように各々の制御信号を生成する。ソース駆動部12は、フレーム反転方式においてソース信号を順次、極性を反転させながら出力する。これにより、映像信号に応じたフレーム毎の表示画像が液晶パネル10に表示される。 The control unit 2 of the display device 1 generates each control signal so as to synchronously control the gate driving unit 11 and the source driving unit 12 based on the input video signal. The source driver 12 sequentially outputs source signals while inverting the polarity in the frame inversion method. As a result, a display image for each frame corresponding to the video signal is displayed on the liquid crystal panel 10.
2-1.可変のフレームレートによる課題について
 本実施形態では、以上のように表示装置1に入力される映像信号のフレームレートが、GPU等の制御により動的に変化することを想定している。この場合、下記のように表示画像のフリッカの課題が想定されることから、本実施形態の表示装置1は、本課題を解決するためにコモン電圧Vcomを制御する。フレームレートの変化による課題について、図6を用いて説明する。
2-1. Regarding Problems with Variable Frame Rate In the present embodiment, it is assumed that the frame rate of the video signal input to the display device 1 dynamically changes by controlling the GPU or the like as described above. In this case, since the problem of flicker of the display image is assumed as described below, the display device 1 of the present embodiment controls the common voltage Vcom in order to solve this problem. A problem caused by a change in the frame rate will be described with reference to FIG.
 図6は、可変のフレームレートによる課題を説明するための図である。図6(a)は、一定のフレームレートのソース信号を例示するタイミングチャートである。図6(b)は、フレームレートが変化するソース信号の一例を示すタイミングチャートである。図6(c)は、図6(b)の動作時におけるコモン電圧Vcomの補正を例示するタイミングチャートである。 FIG. 6 is a diagram for explaining a problem due to a variable frame rate. FIG. 6A is a timing chart illustrating a source signal having a constant frame rate. FIG. 6B is a timing chart showing an example of a source signal whose frame rate changes. FIG. 6C is a timing chart illustrating the correction of the common voltage Vcom during the operation of FIG.
 図6(a)~(c)は、フレーム反転方式におけるソース信号の電圧を例示している。フレーム反転方式は、液晶の長寿命化等のために、連続するフレーム間でソース信号の電圧の極性を反転させる。図6(a)~(c)では、所定階調の画像(画像全体が白色など)が表示される場合のソース信号を例示している。当該ソース信号は、隣接するフレーム間において交互に、コモン電圧Vcomよりも高い正電圧VHと、コモン電圧Vcomよりも低い負電圧VLとを有する。 FIGS. 6A to 6C illustrate the voltage of the source signal in the frame inversion method. The frame inversion method inverts the polarity of the voltage of the source signal between successive frames in order to extend the life of the liquid crystal. FIGS. 6A to 6C illustrate source signals when an image with a predetermined gradation (the entire image is white or the like) is displayed. The source signal alternately has a positive voltage VH higher than the common voltage Vcom and a negative voltage VL lower than the common voltage Vcom between adjacent frames.
 図6(a)では、通常のフレーム反転方式として、フレームレートが一定の場合を例示している。例えば60Hzにおいて16.7ミリ秒など、常に同じ期間の経過毎にソース信号の極性が変化する。このように、正極性のフレーム期間T1と負極性のフレーム期間T2とが均等である場合、液晶の焼き付き等は生じにくい。例えば所定階調の画像が、正電圧VHと負電圧VLとの間で一定の輝度として、特にフリッカを生じずに表示可能である。 FIG. 6A illustrates a case where the frame rate is constant as a normal frame inversion method. For example, the polarity of the source signal changes every time the same period elapses, such as 16.7 milliseconds at 60 Hz. Thus, when the positive frame period T1 and the negative frame period T2 are equal, liquid crystal burn-in or the like hardly occurs. For example, an image having a predetermined gradation can be displayed as a constant luminance between the positive voltage VH and the negative voltage VL without causing any flicker.
 一方、例えばHDMI2.1規格のように、映像信号におけるフレームレートが動的に変化する場合、フレームレートの変化に起因して液晶の焼き付き及びフリッカが生じることが想定される。図6(b)に、不均一なフレームレートに依るフリッカ等が想定される一例を示す。 On the other hand, when the frame rate in the video signal changes dynamically as in the HDMI 2.1 standard, for example, it is assumed that liquid crystal burn-in and flicker occur due to the change in the frame rate. FIG. 6B shows an example in which flicker or the like due to a non-uniform frame rate is assumed.
 図6(b)は、図6(a)と同様の画像が、フレームレートを変化させながら表示される場合のソース信号を例示している。図6(b)では、フレーム毎にフレームレートが変化することで、負極性のフレーム期間T11の後の正極性のフレーム期間T21が、負極性のフレーム期間T11よりも長くなっている。さらに、次の負極性のフレーム期間T12の後の正極性のフレーム期間T22も、負極性のフレーム期間T12よりも長くなっている。 FIG. 6B illustrates a source signal when the same image as that in FIG. 6A is displayed while changing the frame rate. In FIG. 6B, the frame rate is changed for each frame, so that the positive frame period T21 after the negative frame period T11 is longer than the negative frame period T11. Further, the positive frame period T22 after the next negative frame period T12 is also longer than the negative frame period T12.
 上記のように長いフレーム期間T21,T22が正極性に偏ると、実効的に正極性のDC成分が、液晶パネル10の液晶層中の不純物等に電気的に残り、液晶の焼き付きが生じることが想定される。この場合、負電圧VLに対する液晶の反応が鈍くなり、負極性のフレーム期間T11,T12中の負電圧VLによる輝度と正極性のフレーム期間T21,T22中の正電圧VH間による輝度との間の輝度差、即ちフリッカが発生してしまう。 When the long frame periods T21 and T22 are biased to the positive polarity as described above, the positive DC component is effectively electrically left in the impurities and the like in the liquid crystal layer of the liquid crystal panel 10, and liquid crystal burn-in occurs. is assumed. In this case, the response of the liquid crystal to the negative voltage VL becomes dull, and between the luminance due to the negative voltage VL during the negative frame periods T11 and T12 and the luminance due to the positive voltage VH during the positive frame periods T21 and T22. A luminance difference, that is, flicker occurs.
 そこで、本実施形態の表示装置1は、入力される映像信号から各極性のフレーム期間T11~T22の長さを検出し、正極性のフレーム期間T21,T22と負極性のフレーム期間T11,T12との間の偏りに応じてコモン電圧Vcomを補正する。図6(c)に、コモン電圧Vcomの補正方法の一例を示す。 Therefore, the display device 1 of the present embodiment detects the lengths of the frame periods T11 to T22 of each polarity from the input video signal, and has positive frame periods T21 and T22 and negative frame periods T11 and T12. The common voltage Vcom is corrected according to the bias between the two. FIG. 6C shows an example of a method for correcting the common voltage Vcom.
 図6(c)は、図6(b)のソース信号に対してコモン電圧Vcomを補正した場合を例示している。本実施形態の表示装置1は、図6(c)の例のように、正極性のフレーム期間T21,T22が負極性のフレーム期間T11,T12よりも長い偏りを検知すると、コモン電圧Vcomを増大させる補正を行う。これにより、液晶パネル10に残存する実効的なDC成分を相殺して液晶の焼き付きを抑制し、フリッカを低減することができる。以下、本実施形態に係る表示装置1の動作の詳細について説明する。 FIG. 6C illustrates a case where the common voltage Vcom is corrected with respect to the source signal of FIG. The display device 1 of the present embodiment increases the common voltage Vcom when the positive frame periods T21 and T22 are detected to be longer than the negative frame periods T11 and T12, as in the example of FIG. 6C. To correct. As a result, the effective DC component remaining in the liquid crystal panel 10 can be offset to suppress liquid crystal burn-in, and flicker can be reduced. Hereinafter, details of the operation of the display device 1 according to the present embodiment will be described.
2-2.コモン電圧補正処理
 本実施形態に係る表示装置1におけるコモン電圧補正処理について、以下説明する。本実施形態のコモン電圧補正処理は、フレームレートが変化し得る画像の表示に同期して、正極性のフレーム期間と負極性のフレーム期間との間の偏りの累計を示す累積値A(N)を管理することにより、コモン電圧Vcomを動的に補正する。コモン電圧補正処理の詳細について、図7,8を用いて説明する。
2-2. Common Voltage Correction Process The common voltage correction process in the display device 1 according to the present embodiment will be described below. The common voltage correction processing according to the present embodiment is a cumulative value A (N) indicating a cumulative total of deviations between a positive frame period and a negative frame period in synchronization with display of an image whose frame rate can change. By managing this, the common voltage Vcom is dynamically corrected. Details of the common voltage correction processing will be described with reference to FIGS.
 図7は、本実施形態の表示装置1におけるコモン電圧補正処理を説明するためのフローチャートである。図8は、コモン電圧補正処理を説明するためのタイミングチャートである。 FIG. 7 is a flowchart for explaining the common voltage correction processing in the display device 1 of the present embodiment. FIG. 8 is a timing chart for explaining the common voltage correction processing.
 図7に示すフローチャートの各処理は、表示装置1の制御部2によって実行される。制御部2は、外部からの映像信号に基づく画像表示の1フレームを制御周期として本フローチャートを実行する。図8(a),(b)は、それぞれ外部からの垂直同期信号Vsync及び画像データD(N)の入力タイミングを示す。図8(c)は、表示装置1における累積値A(N)の計算タイミングを示す。図8(d)は、コモン電圧Vcomの補正タイミングを示す。 7 is executed by the control unit 2 of the display device 1. The control unit 2 executes this flowchart using one frame of image display based on an external video signal as a control cycle. FIGS. 8A and 8B show the input timing of the vertical synchronization signal Vsync and the image data D (N) from the outside, respectively. FIG. 8C shows the calculation timing of the accumulated value A (N) in the display device 1. FIG. 8D shows the correction timing of the common voltage Vcom.
 図7のフローチャートにおいて、制御部2は、コモン電圧補正処理部4(図4)のフレーム長検出部41として機能し、現在のフレーム期間の長さ即ちフレーム長を検出する(S1)。フレーム長検出部41は、垂直同期信号Vsync、水平同期信号Hsync及びクロック信号Clkを入力してステップS1の処理を行う。 7, the control unit 2 functions as the frame length detection unit 41 of the common voltage correction processing unit 4 (FIG. 4), and detects the length of the current frame period, that is, the frame length (S1). The frame length detector 41 receives the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the clock signal Clk, and performs the process of step S1.
 図8(a)に、ステップS1の処理対象の垂直同期信号Vsyncを例示する。例えば、フレーム長検出部41は、垂直同期信号Vsyncが(N-1)フレーム目の開始を示す時刻t1からNフレーム目の開始を示す時刻t2までの期間を水平同期期間1H単位で計数する。これにより、(N-1)フレーム目のフレーム長T(N-1)が検出される。 FIG. 8A illustrates the vertical synchronization signal Vsync to be processed in step S1. For example, the frame length detection unit 41 counts the period from the time t1 when the vertical synchronization signal Vsync indicates the start of the (N−1) th frame to the time t2 when the start of the Nth frame indicates the horizontal synchronization period 1H. As a result, the frame length T (N−1) of the (N−1) th frame is detected.
 図7に戻り、制御部2は、画素平均計算部42として(N-1)フレーム目の画像データD(N-1)に基づく画素平均値G(N-1)を算出する(S2)。画素平均計算部42は、例えば図8(b)に示すように、時刻t1後の時刻t11から順次、画像データD(N-1)として入力される各画素の階調値を合算していき、合算値を画素数で除算することで画素平均値G(N-1)を算出する。 Referring back to FIG. 7, the control unit 2 calculates the pixel average value G (N−1) based on the image data D (N−1) of the (N−1) th frame as the pixel average calculation unit 42 (S2). For example, as shown in FIG. 8B, the pixel average calculation unit 42 sequentially adds the gradation values of the respective pixels input as the image data D (N−1) from time t11 after time t1. Then, the pixel average value G (N−1) is calculated by dividing the total value by the number of pixels.
 また、制御部2は、累積管理部43として機能し、ソース駆動I/F24から(N-1)フレーム目の極性情報P(N-1)を取得する(S3)。極性情報P(N-1)は、(N-1)フレーム目のソース信号が正極性であるか負極性であるかを示す。ステップS1~S3の処理の順序は特に限定されず、例えば各処理が並列的に実行されてもよい。 Further, the control unit 2 functions as the accumulation management unit 43, and acquires the polarity information P (N-1) of the (N-1) th frame from the source drive I / F 24 (S3). The polarity information P (N-1) indicates whether the source signal of the (N-1) th frame is positive or negative. The order of the processes in steps S1 to S3 is not particularly limited, and for example, each process may be executed in parallel.
 次に、累積管理部43としての制御部2は、(N-2)フレーム目までの過去の累積値A(N-2)から、現在((N-1)フレーム目)の累積値A(N-1)への更新を行う(S4)。ステップS4の処理は、現在のフレーム長T(N-1)、画素平均値G(N-1)及び極性情報P(N-1)、並びに後述するフィードバック値F(N-2)に基づき、次式(1)の演算によって行われる。 Next, the control unit 2 as the accumulation management unit 43 calculates the accumulated value A ((N−1) th frame) from the past accumulated value A (N−2) up to the (N−2) th frame. Update to (N-1) is performed (S4). The process of step S4 is based on the current frame length T (N-1), pixel average value G (N-1) and polarity information P (N-1), and a feedback value F (N-2) described later. The calculation is performed by the following equation (1).
A(N-1)=A(N-2)+B(N-1)-F(N-2)     …(1)
 上式(1)のように、累積管理部43は、過去の累積値A(N-2)に、現在の加算値B(N-1)を加算し、更に前回のフィードバック値F(N-2)を減算して、更新後の累積値A(N-1)を算出する。加算値B(N-1)は、例えば(N-1)フレーム目の画像表示によって液晶パネル10に生じることが推定されるDC成分の量を示す。本実施形態において、加算値B(N-1)は、次式(2)のように表される。
A (N-1) = A (N-2) + B (N-1) -F (N-2) (1)
As shown in the above equation (1), the accumulation management unit 43 adds the current addition value B (N−1) to the past accumulation value A (N−2), and further the previous feedback value F (N−). 2) is subtracted to calculate the updated accumulated value A (N−1). The added value B (N−1) indicates the amount of the DC component that is estimated to be generated in the liquid crystal panel 10 by, for example, the (N−1) th frame image display. In the present embodiment, the addition value B (N−1) is expressed as the following equation (2).
B(N-1)=±G(N-1)×T(N-1)           …(2)
 上式(2)において、右辺の符号は、(N-1)フレーム目の極性情報P(N-1)が正極性を示す場合には「+」であり、負極性を示す場合には「-」である。上式(2)の加算値B(N-1)は、(N-1)フレーム目の極性と同じ正負においてフレーム長T(N-1)に比例しており、画素平均値G(N-1)で重み付けされている。
B (N−1) = ± G (N−1) × T (N−1) (2)
In the above equation (2), the sign on the right side is “+” when the polarity information P (N−1) of the (N−1) th frame indicates positive polarity, and “+” when the polarity information P (N−1) indicates negative polarity. -". The added value B (N−1) of the above equation (2) is proportional to the frame length T (N−1) in the same positive / negative polarity as the polarity of the (N−1) th frame, and the pixel average value G (N− Weighted in 1).
 次に、制御部2は、コモン電圧設定部44として機能し、更新後の累積値A(N-1)に応じて、Nフレーム目のコモン電圧Vcomを設定する(S5)。コモン電圧設定部44は、記録部26の補正テーブル26a(図5)において、更新後の累積値A(N-1)を含む範囲に関連付けされた補正値ΔVを読み出すことにより、次式(3)に用いる補正値ΔV[A(N-1)]を決定する。 Next, the control unit 2 functions as the common voltage setting unit 44, and sets the common voltage Vcom of the Nth frame according to the updated accumulated value A (N-1) (S5). The common voltage setting unit 44 reads the correction value ΔV associated with the range including the updated cumulative value A (N−1) in the correction table 26a (FIG. 5) of the recording unit 26, thereby obtaining the following equation (3 ) Is used to determine the correction value ΔV [A (N−1)].
Vcom(N)=V0+ΔV[A(N-1)]           …(3)
 コモン電圧設定部44は、上式(3)のようにコモン電圧Vcomの標準値V0から補正値ΔV[A(N-1)]の分を補正して、Nフレーム目のコモン電圧Vcomの設定値Vcom(N)を算出する。コモン電圧設定部44は、算出した設定値Vcom(N)を電圧源制御部27に設定する。
Vcom (N) = V0 + ΔV [A (N-1)] (3)
The common voltage setting unit 44 corrects the correction value ΔV [A (N−1)] from the standard value V0 of the common voltage Vcom as shown in the above equation (3), and sets the common voltage Vcom for the Nth frame. The value Vcom (N) is calculated. The common voltage setting unit 44 sets the calculated setting value Vcom (N) in the voltage source control unit 27.
 また、コモン電圧設定部44としての制御部2は、Nフレーム目のコモン電圧Vcomの補正値ΔV[A(N-1)]に対応するフィードバック係数Cf[A(N-1)]を決定して、フィードバック値F(N-1)を算出する(S6)。制御部2は、補正テーブル26aにおいて、Nフレーム目のコモン電圧Vcomの補正値ΔV[A(N-1)]と同じ蓄積値A(N-1)に基づくフィードバック係数Cfを読み出して、例えば次式(4)の演算を行う。 The control unit 2 as the common voltage setting unit 44 determines a feedback coefficient Cf [A (N−1)] corresponding to the correction value ΔV [A (N−1)] of the common voltage Vcom of the Nth frame. The feedback value F (N−1) is calculated (S6). The control unit 2 reads the feedback coefficient Cf based on the same accumulated value A (N−1) as the correction value ΔV [A (N−1)] of the common voltage Vcom of the Nth frame in the correction table 26a. The calculation of Expression (4) is performed.
F(N-1)=Cf[A(N-1)]×G(N-1)×T(N-1) …(4)
 上式(4)のように、ステップS1で検出されたフレーム長T(N-1)を、ステップS2で算出された画素平均値G(N-1)とフィードバック係数Cf[A(N-1)]とで重み付けすることにより、フィードバック値F(N-1)が算出される(S6)。コモン電圧設定部44は、算出したフィードバック値F(N-1)を、次の制御周期(フレーム)におけるステップS4で用いられるように、累積管理部43に出力する。
F (N−1) = Cf [A (N−1)] × G (N−1) × T (N−1) (4)
As shown in the above equation (4), the frame length T (N−1) detected in step S1 is set to the pixel average value G (N−1) calculated in step S2 and the feedback coefficient Cf [A (N−1). ] Is weighted to calculate the feedback value F (N-1) (S6). The common voltage setting unit 44 outputs the calculated feedback value F (N−1) to the accumulation management unit 43 so as to be used in step S4 in the next control cycle (frame).
 また、制御部2は、電圧源制御部27として設定値Vcom(N)に従ってコモン電圧源13を制御し、Nフレーム目の画像表示を行う(S7)。電圧源制御部27は、例えば図8(d)に示すように、Nフレーム目の画像表示の開始前の時刻t20にコモン電圧Vcomを設定値Vcom(N)に制御する。 Further, the control unit 2 controls the common voltage source 13 in accordance with the set value Vcom (N) as the voltage source control unit 27, and displays an image of the Nth frame (S7). For example, as illustrated in FIG. 8D, the voltage source control unit 27 controls the common voltage Vcom to the set value Vcom (N) at time t20 before the start of image display of the Nth frame.
 制御部2は、例えば図8(d)に示すように、時刻t20後の時刻t21から、コモン電圧Vcom=Vcom(N)の状態でNフレーム目の画像データD(N)が示す画像を液晶パネル10に表示させる。コモン電圧Vcomの設定値Vcom(N)は、例えば(N+1)フレーム目の開始の時刻t3まで用いられる。 For example, as illustrated in FIG. 8D, the control unit 2 displays the image indicated by the Nth frame image data D (N) in the state of the common voltage Vcom = Vcom (N) from the time t21 after the time t20. Display on the panel 10. The set value Vcom (N) of the common voltage Vcom is used until, for example, the start time t3 of the (N + 1) th frame.
 制御部2は、以上のステップS1~S7の処理をフレーム毎に繰り返す。 The control unit 2 repeats the above steps S1 to S7 for each frame.
 以上の処理によると、画像表示のフレーム毎にフレーム長T(N-1)が検出され(S1)、各フレームの極性と同じ正負でフレーム長T(N-1)の長さ分の加算値B(N-1)を累積した累積値A(N-1)が得られる(S4)。このような累積値A(N-1)によると、液晶パネル10に現在、蓄積された実効的なDC成分を推定して、コモン電圧Vcomを動的に最適化することができる。図8(a)~(d)を用いて、累積値A(N-1)によるコモン電圧Vcomの最適化について説明する。 According to the above processing, the frame length T (N−1) is detected for each frame of the image display (S1), and the added value corresponding to the length of the frame length T (N−1) is the same as the polarity of each frame. A cumulative value A (N-1) obtained by accumulating B (N-1) is obtained (S4). According to such accumulated value A (N−1), the effective DC component currently stored in the liquid crystal panel 10 can be estimated, and the common voltage Vcom can be dynamically optimized. The optimization of the common voltage Vcom with the accumulated value A (N−1) will be described using FIGS. 8A to 8D.
 図8(a)~(d)では、(N-1)フレーム目が正極性である場合を例示している。図8(c)に示すように、累積値A(N-2)~A(N)は、各フレームのフレーム長及び画素平均値に応じて(S1,S2)、正負が反転するフレーム毎に逐次、推移する(S3,S4)。 8A to 8D illustrate the case where the (N-1) th frame is positive. As shown in FIG. 8C, the accumulated values A (N−2) to A (N) are obtained for each frame in which the sign is inverted depending on the frame length and the pixel average value of each frame (S1, S2). It changes sequentially (S3, S4).
 図8(c)の例では、(N-1)フレーム目において累積値A(N-1)がしきい値1Mを超えている。このとき、液晶パネル10には実効的に正のDC成分が蓄積されていると推定される。そこで、制御部2は、当該累積値A(N-1)に基づいて、Nフレーム目のコモン電圧Vcomを、標準値V0よりも補正値ΔV分、増大させる(S5)。これにより、液晶パネル10中のDC成分を相殺して、液晶パネル10の焼き付き及びフリッカを抑制できる。 In the example of FIG. 8C, the accumulated value A (N-1) exceeds the threshold value 1M in the (N-1) th frame. At this time, it is estimated that the positive DC component is effectively accumulated in the liquid crystal panel 10. Therefore, the control unit 2 increases the common voltage Vcom of the Nth frame by the correction value ΔV from the standard value V0 based on the accumulated value A (N−1) (S5). As a result, the DC component in the liquid crystal panel 10 is canceled, and the burn-in and flicker of the liquid crystal panel 10 can be suppressed.
 また、図8(c)の例では、時刻t20からコモン電圧Vcomを補正した影響により、液晶パネル10中のDC成分が変動すると考えられる。そこで、本実施形態のコモン電圧補正処理(図7)は、コモン電圧Vcomを補正した分、次のフレームの累積値A(N)の大きさを小さくするように、フィードバック値F(N-1)を用いたフィードバックを行う(S6,S4,式(1)参照)。 In the example of FIG. 8C, it is considered that the DC component in the liquid crystal panel 10 fluctuates due to the influence of correcting the common voltage Vcom from time t20. Therefore, the common voltage correction processing (FIG. 7) of the present embodiment corrects the feedback value F (N−1) so that the accumulated value A (N) of the next frame is reduced by the amount corresponding to the correction of the common voltage Vcom. ) Is used (see S6, S4, equation (1)).
 フィードバック値F(N-1)によると、コモン電圧Vcomを補正した影響を考慮して、累積値A(N)を発散させず適切に管理することができる。累積値A(N-2)~A(N)に基づく各フレームの設定値Vcom(N-1)~Vcom(N+1)により、コモン電圧Vcomを最適化することができる。 フ ィ ー ド バ ッ ク According to the feedback value F (N−1), the cumulative value A (N) can be appropriately managed without divergence in consideration of the effect of correcting the common voltage Vcom. The common voltage Vcom can be optimized by setting values Vcom (N−1) to Vcom (N + 1) of each frame based on the accumulated values A (N−2) to A (N).
3.まとめ
 以上のように、本実施形態に係る表示装置1は、複数の画素3と、コモン電圧源13と、ソース駆動部12と、制御部2とを備える。コモン電圧源13は、複数の画素3に共通のコモン電圧Vcomを供給する。ソース駆動部12は、コモン電圧Vcomよりも高い電圧を示す正極性又は低い電圧を示す負極性を有するソース信号をフレーム毎に各画素3に出力する。制御部2は、フレーム期間の長さが可変の映像信号に基づいて、フレーム毎の画像の表示を制御する。制御部2は、フレーム毎の画像が正極性で表示されたフレーム期間の長さと、負極性で表示されたフレーム期間の長さとを検出する(S1)。制御部2は、各極性で検出したフレーム期間の長さの偏りに応じて、コモン電圧Vcomを補正する(S5)。
3. Summary As described above, the display device 1 according to the present embodiment includes the plurality of pixels 3, the common voltage source 13, the source driving unit 12, and the control unit 2. The common voltage source 13 supplies a common voltage Vcom to the plurality of pixels 3. The source driver 12 outputs a source signal having a positive polarity indicating a voltage higher than the common voltage Vcom or a negative polarity indicating a low voltage to each pixel 3 for each frame. The control unit 2 controls display of an image for each frame based on a video signal having a variable frame period. The control unit 2 detects the length of the frame period in which the image for each frame is displayed with the positive polarity and the length of the frame period displayed with the negative polarity (S1). The control unit 2 corrects the common voltage Vcom according to the deviation of the length of the frame period detected in each polarity (S5).
 以上の表示装置1によると、フレーム期間の長さの偏りに応じてコモン電圧Vcomを補正することにより、フレームレートが変化する画像を表示する際のフリッカを抑制することができる。 According to the display device 1 described above, flickering when displaying an image with a changed frame rate can be suppressed by correcting the common voltage Vcom according to the deviation of the length of the frame period.
 本実施形態において、制御部2は、正極性のフレーム期間の長さが、負極性のフレーム期間の長さよりも大きいほど、コモン電圧Vcomを増大させる。制御部2は、負極性のフレーム期間の長さが、正極性のフレーム期間の長さよりも大きいほど、コモン電圧Vcomを減少させる。これにより、フレーム期間の長さが正極性と負極性の何れに偏った場合も、液晶パネル10中のDC成分を適切に相殺して、フリッカを抑制できる。 In the present embodiment, the control unit 2 increases the common voltage Vcom as the length of the positive frame period is larger than the length of the negative frame period. The control unit 2 decreases the common voltage Vcom as the length of the negative frame period is larger than the length of the positive frame period. As a result, even when the length of the frame period is biased to be positive or negative, the DC component in the liquid crystal panel 10 can be canceled appropriately and flicker can be suppressed.
 また、本実施形態において、制御部2は、正極性のフレーム期間と負極性のフレーム期間との間の偏りの累計を示す累積値A(N)を管理する(S4)。制御部2は、累積値A(N)に基づいて、コモン電圧Vcomの補正値ΔVを決定する(S5)。これにより、累積値A(N)に応じてコモン電圧Vcomを動的に補正することができる。 Further, in the present embodiment, the control unit 2 manages the accumulated value A (N) indicating the cumulative deviation between the positive frame period and the negative frame period (S4). The controller 2 determines the correction value ΔV of the common voltage Vcom based on the accumulated value A (N) (S5). Thereby, the common voltage Vcom can be dynamically corrected according to the accumulated value A (N).
 また、本実施形態において、制御部2は、コモン電圧Vcomの補正値の大きさに応じて、累積値A(N)を減らすようにフィードバックする(S6,S4)。これにより、コモン電圧Vcomが補正された影響を考慮して、累積値A(N)を適切に管理することができる。 In the present embodiment, the control unit 2 feeds back the accumulated value A (N) so as to decrease according to the correction value of the common voltage Vcom (S6, S4). Thereby, the cumulative value A (N) can be appropriately managed in consideration of the effect of correcting the common voltage Vcom.
 また、本実施形態において、制御部2は、各フレームにおいて、フレーム画像における複数の画素3の階調の平均値である画素平均値G(N)を計算し、画素平均値G(N)に基づきフレーム毎の加算値B(N)を累積値A(N)に加算する(S2,S3)。これにより、フレーム毎に表示された画像の階調に応じて累積値A(N)を蓄積し、コモン電圧Vcomを精度良く補正することができる。 Further, in the present embodiment, the control unit 2 calculates a pixel average value G (N) that is an average value of gradations of the plurality of pixels 3 in the frame image in each frame, and sets the pixel average value G (N). Based on this, the addition value B (N) for each frame is added to the accumulated value A (N) (S2, S3). As a result, the accumulated value A (N) can be accumulated according to the gradation of the image displayed for each frame, and the common voltage Vcom can be accurately corrected.
 また、本実施形態において、制御部2は、映像信号の表示を同期する垂直同期信号Vsyncに基づいて、各フレーム期間の長さを検出する(S1)。これにより、フレームレートが動的に変化し得る状況において各フレーム期間の長さを簡単に検出することができる。 In the present embodiment, the control unit 2 detects the length of each frame period based on the vertical synchronization signal Vsync that synchronizes the display of the video signal (S1). This makes it possible to easily detect the length of each frame period in a situation where the frame rate can change dynamically.
 また、本実施形態において、表示装置1に入力される映像信号は、HDMI2.1規格に準拠する。本実施形態の表示装置1によると、HDMI2.1規格の映像信号において生じ得るフリッカの課題を解決することができる。 In this embodiment, the video signal input to the display device 1 conforms to the HDMI 2.1 standard. According to the display device 1 of the present embodiment, it is possible to solve the problem of flicker that may occur in a video signal of the HDMI 2.1 standard.
(他の実施形態)
 上記の実施形態1では、コモン電圧補正処理(図7)においてフィードバック値F(N-1)が、式(4)に基づき算出されたが(S6)、フィードバック値F(N)はこれに限らない。例えば、フィードバック値F(N-1)は、式(4)の代わりに次式(4’)に基づき算出されてもよい。
(Other embodiments)
In the first embodiment, the feedback value F (N−1) is calculated based on the equation (4) in the common voltage correction process (FIG. 7) (S6), but the feedback value F (N) is not limited to this. Absent. For example, the feedback value F (N−1) may be calculated based on the following equation (4 ′) instead of the equation (4).
F(N-1)=Cf[A(N-1)]×G(N)×T(N)   …(4’)
 上式(4’)によると、フィードバック係数Cf[A(N-1)]に対応する補正値ΔV[A(N-1)]がコモン電圧Vcomに適用されるNフレーム目の画像表示の状態を考慮して、フィードバックを行うことができる。この場合、制御部2は、例えばステップS6でフィードバック係数Cf[A(N-1)]を読み出して、次の制御周期のステップS4で上式(4’)の演算を行うことにより、フィードバック値F(N-1)を算出することができる。
F (N−1) = Cf [A (N−1)] × G (N) × T (N) (4 ′)
According to the above equation (4 ′), the image display state of the Nth frame in which the correction value ΔV [A (N−1)] corresponding to the feedback coefficient Cf [A (N−1)] is applied to the common voltage Vcom. Can be considered in consideration of feedback. In this case, for example, the control unit 2 reads the feedback coefficient Cf [A (N−1)] in step S6 and performs the calculation of the above equation (4 ′) in step S4 of the next control cycle, thereby obtaining the feedback value. F (N-1) can be calculated.
 以上のように、本発明の具体的な実施形態及び変形例について説明したが、本発明は上記形態に限定されるものではなく、本発明の範囲内で種々の変更を行って実施することができる。例えば、上記の個々の実施形態の内容を適宜組み合わせたものを本発明の一実施形態としてもよい。 As described above, specific embodiments and modifications of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. it can. For example, a combination of the contents of the individual embodiments described above may be used as an embodiment of the present invention.
  1  表示装置
  10  液晶パネル
  11  ゲート駆動部
  12  ソース駆動部
  13  コモン電圧源
  2  制御部
  3  画素
DESCRIPTION OF SYMBOLS 1 Display apparatus 10 Liquid crystal panel 11 Gate drive part 12 Source drive part 13 Common voltage source 2 Control part 3 Pixel

Claims (7)

  1.  複数の画素と、
     前記複数の画素に共通のコモン電圧を供給する電圧源と、
     前記コモン電圧よりも高い電圧を示す正極性又は低い電圧を示す負極性を有するソース信号をフレーム毎に各画素に出力するソース駆動部と、
     フレーム期間の長さが可変の映像信号に基づいて、フレーム毎の画像の表示を制御する制御部とを備え、
     前記制御部は、
     前記フレーム毎の画像が前記正極性で表示されたフレーム期間の長さと、前記負極性で表示されたフレーム期間の長さとを検出し、
     各極性で検出したフレーム期間の長さの偏りに応じて、前記コモン電圧を補正する
    表示装置。
    A plurality of pixels;
    A voltage source for supplying a common voltage common to the plurality of pixels;
    A source driver that outputs a source signal having a positive polarity indicating a voltage higher than the common voltage or a negative polarity indicating a low voltage to each pixel for each frame;
    A control unit that controls display of an image for each frame based on a video signal having a variable frame period length;
    The controller is
    Detecting the length of the frame period in which the image for each frame is displayed with the positive polarity and the length of the frame period displayed with the negative polarity;
    A display device that corrects the common voltage according to a deviation in the length of a frame period detected in each polarity.
  2.  前記制御部は、
     前記正極性のフレーム期間の長さが、前記負極性のフレーム期間の長さよりも大きいほど、前記コモン電圧を増大させ、
     前記負極性のフレーム期間の長さが、前記正極性のフレーム期間の長さよりも大きいほど、前記コモン電圧を減少させる
    請求項1に記載の表示装置。
    The controller is
    As the length of the positive polarity frame period is larger than the length of the negative polarity frame period, the common voltage is increased.
    The display device according to claim 1, wherein the common voltage is decreased as the length of the negative frame period is longer than the length of the positive frame period.
  3.  前記制御部は、
     前記正極性のフレーム期間と前記負極性のフレーム期間との間の偏りの累計を示す累積値を管理し、
     前記累積値に基づいて、前記コモン電圧の補正値を決定する
    請求項1又は2に記載の表示装置。
    The controller is
    Managing a cumulative value indicating a cumulative deviation between the positive frame period and the negative frame period;
    The display device according to claim 1, wherein a correction value of the common voltage is determined based on the accumulated value.
  4.  前記制御部は、前記コモン電圧の補正値の大きさに応じて、前記累積値を減らすようにフィードバックする
    請求項3に記載の表示装置。
    The display device according to claim 3, wherein the control unit feeds back the accumulated value in accordance with the correction value of the common voltage.
  5.  前記制御部は、各フレームにおいて、フレーム画像における複数の画素の階調の平均値を計算し、前記平均値に基づきフレーム毎の加算値を前記累積値に加算する
    請求項3又は4に記載の表示装置。
    The said control part calculates the average value of the gradation of the some pixel in a frame image in each flame | frame, and adds the addition value for every flame | frame to the said cumulative value based on the said average value. Display device.
  6.  前記制御部は、前記映像信号の表示を同期する垂直同期信号に基づいて、各フレーム期間の長さを検出する
    請求項1~5のいずれか1項に記載の表示装置。
    6. The display device according to claim 1, wherein the control unit detects a length of each frame period based on a vertical synchronization signal that synchronizes display of the video signal.
  7.  前記映像信号は、HDMI2.1規格に準拠する
    請求項1~6のいずれか1項に記載の表示装置。
    The display device according to any one of claims 1 to 6, wherein the video signal conforms to an HDMI 2.1 standard.
PCT/JP2018/004419 2018-02-08 2018-02-08 Display device WO2019155575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004419 WO2019155575A1 (en) 2018-02-08 2018-02-08 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/004419 WO2019155575A1 (en) 2018-02-08 2018-02-08 Display device

Publications (1)

Publication Number Publication Date
WO2019155575A1 true WO2019155575A1 (en) 2019-08-15

Family

ID=67548970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004419 WO2019155575A1 (en) 2018-02-08 2018-02-08 Display device

Country Status (1)

Country Link
WO (1) WO2019155575A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072393A (en) * 2008-09-19 2010-04-02 Seiko Epson Corp Electrooptical device, driving method thereof, and electronic equipment
JP2011197384A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Liquid crystal driving device, liquid crystal display device, and projector
JP2014164017A (en) * 2013-02-22 2014-09-08 Seiko Epson Corp Drive device of electro-optic device, drive method of electro-optic device, electro-optic device and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072393A (en) * 2008-09-19 2010-04-02 Seiko Epson Corp Electrooptical device, driving method thereof, and electronic equipment
JP2011197384A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Liquid crystal driving device, liquid crystal display device, and projector
JP2014164017A (en) * 2013-02-22 2014-09-08 Seiko Epson Corp Drive device of electro-optic device, drive method of electro-optic device, electro-optic device and electronic equipment

Similar Documents

Publication Publication Date Title
US9311873B2 (en) Polarity inversion driving method for liquid crystal display panel, driving apparatus and display device
KR102080876B1 (en) Display device and driving method thereof
KR102246262B1 (en) Method of driving display panel and display apparatus for performing the method
JP4742017B2 (en) Liquid crystal display device and liquid crystal panel driving method
US9159284B2 (en) Liquid crystal display device using corrected moving picture data
KR20140126148A (en) Display device and driving method thereof
KR101084260B1 (en) Display device and operating method thereof
JP2007304325A (en) Liquid crystal display device and liquid crystal panel driving method
WO2002006885A1 (en) Liquid crystal display comprising ocb cell and method for driving the same
KR102356647B1 (en) Display apparatus and method of driving display panel using the same
US20120268504A1 (en) Liquid crystal display device and method for driving a liquid crystal display device
KR20130123998A (en) Display device and operating method thereof
KR20140147300A (en) Display device and driving method thereof
US20140292627A1 (en) Method of driving a display panel and a display apparatus for performing the method
KR20150082816A (en) Method of driving display panel and display apparatus for performing the method
JP2007225861A (en) Liquid crystal display device
KR102084714B1 (en) Display device and driving method thereof
JPH11231843A (en) Liquid crystal display device
KR101356164B1 (en) Liquid crystal display device including over driving circuit
US9940865B2 (en) Liquid crystal display device
WO2019155575A1 (en) Display device
WO2020012655A1 (en) Control device and liquid crystal display device
US9019325B2 (en) Liquid crystal display device
WO2017164100A1 (en) Liquid crystal display apparatus and method for controlling same
KR20090063689A (en) Driving apparatus for liquid crystal display device and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP