WO2019154389A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2019154389A1
WO2019154389A1 PCT/CN2019/074679 CN2019074679W WO2019154389A1 WO 2019154389 A1 WO2019154389 A1 WO 2019154389A1 CN 2019074679 W CN2019074679 W CN 2019074679W WO 2019154389 A1 WO2019154389 A1 WO 2019154389A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
slot
electronic device
time slot
downlink transmission
Prior art date
Application number
PCT/CN2019/074679
Other languages
English (en)
French (fr)
Inventor
崔焘
Original Assignee
索尼公司
崔焘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 崔焘 filed Critical 索尼公司
Priority to US16/758,413 priority Critical patent/US11330608B2/en
Priority to JP2020542987A priority patent/JP7306400B2/ja
Priority to EP22200144.8A priority patent/EP4138331B1/en
Priority to EP19750378.2A priority patent/EP3713145B1/en
Priority to CN201980004825.1A priority patent/CN111164931A/zh
Publication of WO2019154389A1 publication Critical patent/WO2019154389A1/zh
Priority to US17/715,949 priority patent/US11849443B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, wireless communication methods, and computer readable storage media. More particularly, the present disclosure relates to an electronic device as a network side device in a wireless communication system, an electronic device as a user device in a wireless communication system, and a wireless device executed by a network side device in a wireless communication system A communication method, a wireless communication method performed by a user equipment in a wireless communication system, and a computer readable storage medium.
  • a new control channel GC-PDCCH (Group Common-Physical Downlink Control Channel) is introduced in the NR (New Radio) communication system, which is mainly used for a base station device to a group of user equipments.
  • SFI Slot Format related Information
  • the SFI is used to indicate the SFI format adopted by the current time slot and/or the subsequent one or more time slot base stations, that is, the number of uplink and downlink symbols in one time slot.
  • the existing standards do not reach too much consensus on the configuration of the GC-PDCCH.
  • the NR communication system has been greatly improved compared to the LTE (Long Term Evolution) communication system.
  • LTE Long Term Evolution
  • the requirement of channel idle detection poses a challenge to the design of GC-PDCCH.
  • an electronic device comprising processing circuitry configured to transmit in a previous time slot of a time slot in which the GC-PDCCH is located by a group common physical downlink control channel GC-PDCCH Data related control information.
  • an electronic device including processing circuitry configured to: receive information through a group common physical downlink control channel GC-PDCCH; and demodulate the information to obtain The data-related control information in the previous time slot of the time slot in which the GC-PDCCH is located.
  • processing circuitry configured to: receive information through a group common physical downlink control channel GC-PDCCH; and demodulate the information to obtain The data-related control information in the previous time slot of the time slot in which the GC-PDCCH is located.
  • a wireless communication method including: transmitting, by a group common physical downlink control channel GC-PDCCH, data related in a previous time slot of a time slot in which the GC-PDCCH is located Control information.
  • a wireless communication method including: receiving information by a group common physical downlink control channel GC-PDCCH; and demodulating the information to obtain and be located at the GC-PDCCH Data related control information in the previous time slot of the time slot.
  • a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method in accordance with the present disclosure.
  • the GC-PDCCH can be utilized to transmit control information related to data in a previous time slot of a time slot in which the GC-PDCCH is located, thereby causing the user equipment
  • the data in the previous time slot can be correctly decoded, and the channel utilization rate is improved.
  • FIG. 1 is a block diagram showing an example of a configuration of an electronic device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing transmission of a downlink transmission termination location for an unlicensed spectrum by a GC-PDCCH according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing transmission of a downlink transmission termination location for an unlicensed spectrum by a GC-PDCCH and a PDCCH (Physical Downlink Control Channel) according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing a downlink transmission termination position for an unlicensed spectrum by GC-PDCCH transmission of a plurality of slots, according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing transmission of a downlink transmission termination position by a GC-PDCCH of a slot in which a downlink transmission termination location is located, according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing determining a time slot in which a GC-PDCCH for transmitting a downlink transmission termination position is located according to a length of an MCOT (Max Channel Occupy Time) according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing determining a time slot in which a GC-PDCCH for transmitting a downlink transmission termination position is located according to a length of an OFDM (Orthogonal Frequency Division Multiplexing) symbol according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram showing a relationship between an MCOT and a COT (Channel Occupy Time) unit according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram illustrating transmission of control information related to data in a previous time slot by a GC-PDCCH, according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram showing transmission of control information related to data in a previous slot in a next slot without transmitting control information in a previous slot, regardless of a transmission period of the GC-PDCCH, according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing an example of a configuration of an electronic device according to another embodiment of the present disclosure.
  • FIG. 12 is a signaling interaction diagram illustrating transmission of a downlink transmission termination location by a GC-PDCCH according to an embodiment of the present disclosure
  • FIG. 13 is a signaling interaction diagram illustrating at least one of transmitting an MCOT length and a location, whether an LBT and an LBT parameter need to be performed by a GC-PDCCH, according to an embodiment of the present disclosure
  • FIG. 14 is a signaling interaction diagram illustrating data related control information transmitted in a previous time slot by a GC-PDCCH according to an embodiment of the present disclosure
  • 15 is a signaling interaction diagram illustrating transmitting a notification to a user equipment to cause a user equipment to receive a GC-PDCCH in a next time slot, in accordance with an embodiment of the present disclosure
  • FIG. 16 is a flowchart illustrating a wireless communication method according to an embodiment of the present disclosure.
  • FIG. 17 is a flowchart illustrating a wireless communication method according to another embodiment of the present disclosure.
  • FIG. 18 is a flowchart illustrating a wireless communication method according to another embodiment of the present disclosure.
  • FIG. 19 is a flowchart illustrating a wireless communication method according to another embodiment of the present disclosure.
  • FIG. 20 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • 21 is a block diagram showing a second example of a schematic configuration of an eNB
  • 22 is a block diagram showing an example of a schematic configuration of a smartphone
  • 23 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • a new control channel GC-PDCCH is introduced in the NR communication system, and is used by the base station device to indicate downlink control information to a group of user equipments within the coverage of the base station.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method performed by an electronic device in a wireless communication system, and a computer readable storage medium to improve the design of the GC-PDCCH for the characteristics of the NR communication system.
  • the present disclosure can be applied to a wireless communication system, such as an NR communication system of 5G (5th generation communication system).
  • a wireless communication system such as an NR communication system of 5G (5th generation communication system).
  • the network side device may be a base station device, and may be, for example, an eNB or a gNB (a base station in a 5th generation communication system).
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or an in-vehicle terminal such as a car navigation device. ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 1 is a block diagram showing an example of a configuration of an electronic device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 herein may be a network side device in a wireless communication system, and specifically may be a base station device in an NR communication system.
  • the electronic device 100 may include a configuration unit 110 and a communication unit 120.
  • each unit of the electronic device 100 may be included in a processing circuit. It should be noted that the electronic device 100 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the configuration unit 110 may configure downlink information that needs to be sent, including downlink information sent by using a GC-PDCCH, a PDCCH, an ePDCCH (Enhanced Physical Downlink Control Channel), and a high layer signaling.
  • the communication unit 120 can transmit the downlink information to the user equipment within the coverage of the electronic device 100.
  • the electronic device 100 may utilize an unlicensed spectrum to transmit information carried on the GC-PDCCH. Further, the electronic device 100 may also use the licensed spectrum, such as the primary carrier, to transmit information carried on the GC-PDCCH. In this way, the electronic device 100 can ensure the reliability of information transmitted using the GC-PDCCH.
  • the electronic device 100 may transmit a variety of information using a GC-PDCCH, which will be described in detail below. Further, according to an embodiment of the present disclosure, the electronic device 100 may use DCI (Downlink Control Information) to carry one or more of the following information (described in Sections 2.1 to 2.6), but may be It is limited to DCI format 2_x (the DCI format in the NR communication system for carrying information other than uplink scheduling and downlink scheduling).
  • DCI Downlink Control Information
  • the electronic device 100 may further carry the following information (described in part 2.7) through high layer signaling, which may be, but not limited to, RRC (Radio Resource Control) signaling.
  • high layer signaling which may be, but not limited to, RRC (Radio Resource Control) signaling.
  • the configuration unit 110 may configure information for a downlink transmission termination location of an unlicensed spectrum and carry information for a downlink transmission termination location for an unlicensed spectrum through a GC-PDCCH.
  • the electronic device 100 may determine the end position of the downlink transmission before each downlink transmission.
  • the termination position of the downlink transmission indicates the location of the terminated OFDM symbol of the current downlink transmission, including but not limited to the location of the slot in which the terminated OFDM symbol is located and the location of the OFDM symbol in the slot. .
  • the communication unit 120 may transmit information of a downlink transmission termination position for an unlicensed spectrum through a GC-PDCCH.
  • FIG. 2 is a schematic diagram showing transmission of a downlink transmission termination location for an unlicensed spectrum by a GC-PDCCH, according to an embodiment of the present disclosure.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • Figure 2 shows the situation of 3 time slots (time slot 1, time slot 2 and time slot 3).
  • the shaded hatched area represents the area occupied by the PDCCH, such as the first 3 OFDM symbols of each slot.
  • the black solid area indicates the area occupied by the GC-PDCCH.
  • the GC-PDCCH is located in the area of the PDCCH.
  • the GC-PDCCH is located in the OFDM symbol occupied by the PDCCH in time, and is located in the subcarrier occupied by the PDCCH in frequency. 2, exemplarily, the transmission period of the GC-PDCCH is two slots. Therefore, in FIG. 2, the PDCCH region in slot 1 and slot 3 includes the GC-PDCCH.
  • the horizontally shaded area represents the downlink transmission termination location for the unlicensed spectrum, ie the downlink transmission for the unlicensed spectrum is about to end with the OFDM symbol in which the horizontally shaded area is located.
  • the GC-PDCCH may be utilized to transmit information of a downlink transmission termination location for an unlicensed spectrum. As shown in FIG. 2, the GC-PDCCH in slot 1 can be utilized to transmit information on the downlink transmission termination location for the unlicensed spectrum, and the information can include location information of the OFDM symbol in which the downlink transmission termination location is located.
  • the information of the downlink transmission termination position for the unlicensed spectrum can be transmitted using the GC-PDCCH.
  • the GC-PDCCH is targeted to a group of user equipments for the user equipment in the entire cell compared to the common search area of the PDCCH, thereby narrowing the user range to some extent.
  • the GC-PDCCH is targeted to a group of user equipments for a specific user equipment compared to the PDCCH's private (UE-specific) search area, thereby saving signaling overhead.
  • the GC-PDCCH includes only one aggregation level search space
  • using the GC-PDCCH to transmit information about the downlink transmission termination position of the unlicensed spectrum can improve the speed of the user's blind detection.
  • the downlink data may be decoded as early as possible to prepare for channel idle detection, thereby improving the unlicensed spectrum. usage efficiency.
  • the configuration unit 110 may configure information transmitted through the PDCCH to carry information of a downlink transmission termination location for the unlicensed spectrum through the PDCCH.
  • the configuration unit 110 may carry information for a downlink transmission termination location of the unlicensed spectrum through a common search area or a private search area of the PDCCH.
  • the communication unit 120 may retransmit the information of the downlink transmission termination location for the unlicensed spectrum through the PDCCH.
  • the configuration unit 110 may carry information of a downlink transmission termination location for the unlicensed spectrum by using the PDCCH and the GC-PDCCH in the same time slot.
  • FIG. 3 is a diagram illustrating a downlink transmission termination location for an unlicensed spectrum transmitted through a GC-PDCCH and a PDCCH, according to an embodiment of the present disclosure.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • Figure 3 shows the situation of 3 time slots (time slot 1, time slot 2 and time slot 3).
  • the shaded hatched area indicates the area occupied by the PDCCH, for example, the first 3 OFDM symbols of each slot, and the black solid area indicates the area occupied by the GC-PDCCH.
  • the transmission period of the GC-PDCCH is two slots. As shown in FIG.
  • FIG. 3 illustrates a case where information of a downlink transmission termination position is transmitted only through the PDCCH in the slot 1, and the electronic device 100 may also pass only the PDCCH in the slot 2 or through the slot 1
  • the PDCCH and the PDCCH in slot 2 transmit the downlink transmission termination position.
  • information for a downlink transmission termination position of an unlicensed spectrum is transmitted through a GC-PDCCH and a PDCCH.
  • the user equipment can be prevented from receiving the GC-PDCCH or decoding errors of the information carried on the GC-PDCCH.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit a downlink transmission termination position for an unlicensed spectrum through a GC-PDCCH of a plurality of slots. That is, the downlink transmission termination position may be transmitted through a GC-PDCCH located in a plurality of time slots (including a time slot in which the downlink transmission termination position is located) before the downlink transmission termination position.
  • FIG. 4 is a diagram illustrating a downlink transmission termination position for an unlicensed spectrum by GC-PDCCH transmission of a plurality of slots, according to an embodiment of the present disclosure.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • Figure 4 shows the situation of 3 time slots (time slot 1, time slot 2 and time slot 3).
  • the shaded hatched area indicates the area occupied by the PDCCH, for example, the first 3 OFDM symbols of each slot, and the black solid area indicates the area occupied by the GC-PDCCH.
  • the transmission period of the GC-PDCCH is one slot, that is, the PDCCH region of slot 1, slot 2, and slot 3 includes a GC-PDCCH.
  • the downlink transmission termination position is located within the slot 2, and the information of the downlink transmission termination position is transmitted through the GC-PDCCH of the slot 1 and the slot 2.
  • information for a downlink transmission termination position of an unlicensed spectrum may be transmitted through a GC-PDCCH in one or more time slots, thereby increasing a user equipment capable of receiving and correctly demodulating the downlink.
  • the probability of transmitting the termination location may be transmitted through a GC-PDCCH in one or more time slots, thereby increasing a user equipment capable of receiving and correctly demodulating the downlink. The probability of transmitting the termination location.
  • the configuration unit 110 may configure information transmitted by using the GC-PDCCH to transmit information of a downlink transmission termination location by using a GC-PDCCH in a time slot in which a downlink transmission termination location is located, or may be downlinked.
  • the GC-PDCCH in the time slot before the time slot in which the transmission termination location is located transmits the information of the downlink transmission termination position. That is, the electronic device 100 may transmit the downlink transmission termination position by the GC-PDCCH in the Nth slot before the downlink transmission termination position.
  • N is a non-negative integer.
  • the GC-PDCCH in the slot is used to transmit the downlink transmission termination position.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit downlink transmission termination location information through a GC-PDCCH in one or more time slots, the aforementioned value of N may be There are multiple.
  • the electronic device 100 can transmit the information of the downlink transmission termination position by using the GC-PDCCH in the time slot in which the downlink transmission termination location is located, and also the GC in the time slot before the time slot in which the downlink transmission termination location is located.
  • the PDCCH transmits information of a downlink transmission termination position.
  • FIG. 2 and 3 show an example of transmitting information of a downlink transmission termination position by the GC-PDCCH in the slot before the slot in which the downlink transmission termination position is located.
  • the downlink transmission termination position is located in the slot 2
  • the downlink transmission termination position is transmitted through the GC-PDCCH in the slot 1.
  • 4 shows an example of transmitting information of a downlink transmission termination position by a GCPDCCH in a slot in which a downlink transmission termination location is located and a GC-PDCCH in a slot before a slot in which a downlink transmission termination location is located.
  • FIG. 1 shows an example of transmitting information of a downlink transmission termination position by a GCPDCCH in a slot in which a downlink transmission termination location is located and a GC-PDCCH in a slot before a slot in which a downlink transmission termination location is located.
  • FIG. 5 is a diagram illustrating transmission of a downlink transmission termination position by a GC-PDCCH of a slot in which a downlink transmission termination location is located, according to an embodiment of the present disclosure. As shown in FIG. 5, the downlink transmission termination position is located in slot 2, and the downlink transmission termination position is transmitted through the GC-PDCCH in slot 2.
  • the number and location (slots in time) of the GC-PDCCH carrying information for the downlink transmission termination position for the unlicensed spectrum can be flexibly configured. How to determine the time slot in which the GC-PDCCH for carrying the downlink transmission termination position is located will be described below.
  • the configuration unit 110 may determine the value of N (ie, the time slot in which the GC-PDCCH for carrying the downlink transmission termination location is located) according to one or more of the following parameters: the maximum channel of the downlink transmission The length of the occupied time MCOT; the transmission period of the GC-PDCCH; and the length of the OFDM symbol within the MCOT of the downlink transmission.
  • the configuration unit 110 may determine a time slot in which the GC-PDCCH for carrying the downlink transmission termination location is located according to the length of the MCOT. According to the embodiment of the present disclosure, when configuring the time slot in which the GC-PDCCH carrying the downlink transmission termination location is located, the configuration unit 110 must make the time slot located in the MCOT of the current downlink transmission.
  • FIG. 6 is a schematic diagram illustrating determining a time slot in which a GC-PDCCH for transmitting a downlink transmission termination position is located according to a length of an MCOT, according to an embodiment of the present disclosure.
  • the MCOT of the downlink transmission includes slot 2, slot 3, and slot 4. Therefore, the GC-PDCCH using slot 2 is shown in FIG. 6 to carry the downlink transmission termination position.
  • the GC-PDCCH of slot 3 can also be utilized to carry the downlink transmission termination position. That is to say, the time slot of the GC-PDCCH carrying the downlink transmission termination location must be located in the MCOT of the current downlink transmission.
  • the configuration unit 110 may determine a time slot in which the GC-PDCCH for carrying the downlink transmission termination location is located according to a transmission period of the GC-PDCCH.
  • the electronic device 100 may periodically transmit a GC-PDCCH, and may configure a period of the GC-PDCCH, which may be, for example, one or more time slots.
  • a transmission period of a GC-PDCCH determines which GCs of a PDCCH are included in a PDCCH.
  • the slot format information SFI can be transmitted through the GC-PDCCH.
  • a GC-PDCCH in one slot can be used to carry the SFI of the time slot or one or more time slots after the time slot. Therefore, the transmission period of the GC-PDCCH can be used to determine how many time slots of the SC-PDCCH in one slot can be used to carry the SFI after the time slot.
  • the downlink transmission termination position can be determined only by knowing the SFI of the time slot in which the downlink transmission termination position is located. Therefore, according to an embodiment of the present disclosure, when configuring the time slot in which the GC-PDCCH carrying the downlink transmission termination location is located, the configuration unit 110 may select a time slot in which the GC-PDCCH of the time slot carries the downlink transmission termination location at the same time. SFI of the time slot.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit slot format information SFI of a slot in which a downlink transmission termination location is located by using a GC-PDCCH. That is to say, the GC-PDCCH for carrying the information of the downlink transmission termination location also carries the SFI of the time slot in which the downlink transmission termination location is located.
  • the configuration unit 110 may determine a time slot in which the GC-PDCCH for carrying the downlink transmission termination position is located according to the length of the OFDM symbol within the MCOT of the downlink transmission.
  • the length of OFDM symbols in time is different for different subcarrier spacings. Table 1 shows the relationship between the subcarrier spacing and the OFDM symbol length.
  • the larger the subcarrier spacing the shorter the length of the OFDM symbol in time.
  • one slot includes 14 OFDM symbols, the larger the subcarrier spacing, the shorter the absolute length of one slot.
  • the configuration unit 110 may determine a time slot in which the GC-PDCCH for carrying the downlink transmission termination position is located according to the length of the OFDM symbol within the MCOT of the downlink transmission, so that the length of the OFDM symbol is shorter.
  • the value of N is larger.
  • FIG. 7 is a schematic diagram illustrating determining a time slot in which a GC-PDCCH for transmitting a downlink transmission termination position is located according to a length of an OFDM symbol, according to an embodiment of the present disclosure.
  • Fig. 7 shows a case where the subcarrier spacing is 15 kHz and 30 kHz.
  • the information of the downlink transmission termination position is transmitted using the GC-PDCCH in slot 2.
  • the subcarrier spacing is 30 kHz
  • the information of the downlink transmission termination position is transmitted using the GC-PDCCH in the slot 3.
  • the configuration unit 110 may configure the GC-PDCCH in one or more time slots to transmit information of the downlink transmission termination position, the value of N determined as described above may also exist one or more. .
  • the downlink transmission termination may also be transmitted by using the GC-PDCCH in the slot 3.
  • the location information, at this time, N 0; in the case where the subcarrier spacing is 30kHZ, assuming that the transmission period of the GC-PDCCH is two slots, the downlink transmission termination can also be transmitted by using the GC-PDCCH in the slot 5.
  • Location information, N 1 at this time.
  • the configuration unit 110 may separately determine the value of N by considering the following parameters: the length of the MCOT of the downlink transmission; the transmission period of the GC-PDCCH; and the length of the OFDM symbol within the MCOT of the downlink transmission. Further, the configuration unit 110 may also determine the value of N by considering a plurality of the above parameters. Several non-limiting examples are given below.
  • the configuration unit 110 may determine that the following time slot is a time slot carrying information of a downlink transmission termination location: an SFI located within the MCOT of the downlink transmission and carrying the time slot in which the downlink transmission termination location is located.
  • the configuration unit 110 may further select in a slot of the SFI located in the MCOT of the downlink transmission and carrying the slot in which the downlink transmission termination location is located, to determine the value of N according to the length of the OFDM symbol.
  • the (2 n+1 -1) time slots are located in the downlink transmission before the downlink transmission termination position.
  • the configuration unit 110 may determine that one value of N is 2 n+1 -1.
  • the value of N determined in this case may be the minimum of all values of N.
  • the configuration unit may determine that the following timeslots are bearer downlinks.
  • Time slot for transmitting the information of the termination position a time slot located in the MCOT of the downlink transmission and carrying the farthest from the downlink transmission termination position in the slot of the SFI carrying the slot in which the downlink transmission termination position is located.
  • the value of N determined in this case may be the maximum of all values of N. For example, in the example shown in FIG.
  • Time slot time slot 2.
  • N can also be two.
  • time slot 5 is a time slot located in the MCOT of the downlink transmission and carrying the SFI of the time slot 6 which is the farthest from the downlink transmission termination position, and therefore the time slot 5 can be determined as the time slot carrying the downlink transmission termination position.
  • ie N 1.
  • N can also be zero.
  • the above examples are merely exemplary, and the present disclosure is not limited thereto.
  • the electronic device 100 may carry information of a downlink transmission termination position for an unlicensed spectrum through a GC-PDCCH. Further, the electronic device 100 can also configure the number and location of time slots of the GC-PDCCH for carrying information of the downlink transmission termination location, so that the GC-PDCCH is more rationally designed for the characteristics of the NR communication system.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit the length and time domain location of the MCOT of the downlink transmission through the GC-PDCCH, and the MCOT includes one or more time slots.
  • the length of the MCOT may be represented by, for example, the number of slots
  • the time domain location of the MCOT may include, for example, the slot number of all slots included in the MCOT.
  • each time slot in the MCOT may be defined as one COT (Channel Occupy Time) unit. That is, the MCOT includes one or more COT units.
  • FIG. 8 is a schematic diagram showing a relationship between an MCOT and a COT unit, according to an embodiment of the present disclosure. As shown in FIG. 8, the MCOT includes four time slots: time slot 1, time slot 2, time slot 3, and time slot 4, and each time slot can be a COT unit.
  • only one type of subcarrier configuration is included in the MCOT, that is, the absolute lengths of all the slots included in the MCOT are equal, that is, all the OFDM symbols included in the MCOT are equal in length. Therefore, for one MCOT, each of the COT units has the same length.
  • the first transmission within the COT unit may be a downlink transmission procedure. That is to say, the transmissions in the COT unit may all be downlink transmissions (the COT unit has no uplink and downlink switching points); it may be part of downlink transmission, followed by partial uplink transmission (including one uplink and downlink switching point in the COT unit); It may also be a partial downlink transmission, followed by a partial uplink transmission, followed by a partial downlink transmission (including two uplink and downlink switching points in the COT unit). That is, the COT unit includes at least one downlink transmission process. Of course, this is merely an illustrative illustration, and the first transmission in the COT unit can also be an uplink transmission process.
  • the electronic device 100 may further configure an SFI of each COT unit in the MCOT such that the number of switching points between the uplink transmission and the downlink transmission included in each of the COOT units is not Greater than 2. That is, the user equipment is allowed to send uplink feedback in the COT unit. Further, after the user equipment performs uplink feedback, the electronic device 100 may further send downlink data, thereby improving channel utilization. Further, the electronic device 100 may further configure the SFI of each COT unit in the MCOT, so that the number of switching points between the uplink transmission and the downlink transmission included in the MCOT is not greater than a predetermined threshold.
  • the electronic device 100 may determine the size of the predetermined threshold according to the busyness of the channel. As a result, the electronic device 100 can limit the total number of switching points in the MCOT to avoid frequent uplink and downlink switching.
  • the electronic device 100 can carry information of the length and time domain location of the MCOT through the GC-PDCCH, and defines a COT unit to allow the user equipment to perform uplink transmission in the COT unit. In this way, a more flexible uplink and downlink configuration is allowed to improve channel utilization efficiency.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit, by the GC-PDCCH, information about whether a channel detection process needs to be performed before uplink transmission in a COT unit of the MCOT.
  • the user equipment may perform uplink transmission in the COT unit, for example, send uplink feedback, including but not limited to ACK (Acknowledgement)/NACK (Negative Acknowledgment) information.
  • uplink feedback including but not limited to ACK (Acknowledgement)/NACK (Negative Acknowledgment) information.
  • the user equipment needs to perform a channel detection process before performing such uplink transmission, and the uplink transmission can be performed in the COT unit only when the channel detection is idle.
  • the electronic device 100 may configure information for whether the user equipment needs to perform a channel detection process before performing uplink transmission in the COT unit of the MCOT. For example, the electronic device 100 may determine whether the user equipment needs to perform a channel detection process before performing uplink transmission according to the subcarrier spacing of the system.
  • the electronic device 100 may determine that the user equipment does not need to perform a channel detection process before performing uplink transmission; when the subcarrier spacing of the system is less than a certain threshold, the electronic device 100 may determine The user equipment needs to perform a channel detection process before performing uplink transmission.
  • the threshold may be 120 kHz.
  • the configuration unit 110 of the electronic device 100 can utilize the GC-PDCCH to carry information about whether the user equipment needs to perform a channel detection process before performing uplink transmission in the COT unit of the MCOT.
  • the configuration unit 110 may further configure information transmitted through the PDCCH to transmit, by the PDCCH, information about whether a channel detection process needs to be performed before performing uplink transmission in a COT unit of the MCOT.
  • the configuration unit 110 may carry information about whether the channel detection process needs to be performed before the user equipment performs uplink transmission in the COT unit through the private search area of the PDCCH.
  • the communication unit 120 may retransmit information about whether the channel detection process needs to be performed before the user equipment performs uplink transmission in the COT unit through the PDCCH.
  • information about whether a user equipment needs to perform a channel detection process before performing uplink transmission in a COT unit may be transmitted using both the GC-PDCCH and the PDCCH to prevent the user equipment from receiving the GC-
  • the information on the PDCCH or the information on the GC-PDCCH is demodulated incorrectly.
  • the channel detection process may be an LBT (Listen Before Talk) process.
  • the channel detection process may be a Type 2 (Type 2) channel detection process, ie, a channel detection process that does not include a random backoff procedure.
  • the electronic device 100 may configure information for whether the user equipment needs to perform a channel detection process before performing uplink transmission in the COT unit, thereby not performing channel detection process in some cases to save signaling. Overhead.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit parameter information about a channel detection process performed before uplink transmission in a COT of the MCOT through the GC-PDCCH.
  • the user equipment when the electronic device 100 does not transmit information to the user equipment through the GC-PDCCH regarding whether a channel detection process needs to be performed before uplink transmission in the COT unit, the user equipment may be defaulted before each uplink transmission.
  • the channel detection process needs to be performed, so the parameters of the channel detection process performed before the uplink transmission in the COT of the MCOT can be directed to all channel detection processes.
  • the electronic device 100 transmits information about a channel detection process that needs to be performed before performing uplink transmission in the COT unit to the user equipment through the GC-PDCCH, the parameters of the channel detection process performed before the uplink transmission in the COT of the MCOT may be required for The channel detection process performed.
  • the parameters of the channel detection process include, but are not limited to, start time information of the channel detection process, such as the location of the OFDM symbol at which the start time is located.
  • start time information of the channel detection process such as the location of the OFDM symbol at which the start time is located.
  • the parameters of the channel detection process may also include other parameters related to performing the channel detection process.
  • the electronic device 100 may carry parameters related to a channel detection process through a GC-PDCCH.
  • the GC-PDCCH is directed to a group of user equipments, thereby narrowing the user range to some extent.
  • similar information can be sent to a group of user equipments for a specific user equipment, thereby saving signaling overhead.
  • the configuration unit 110 may configure information transmitted through the GC-PDCCH to transmit control information related to data in a previous time slot of a time slot in which the GC-PDCCH is located through the GC-PDCCH.
  • FIG. 9 is a schematic diagram illustrating transmission of control information related to data in a previous time slot by a GC-PDCCH, according to an embodiment of the present disclosure.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • Figure 9 shows the situation of 3 time slots (time slot 1, time slot 2 and time slot 3).
  • the shaded hatched area indicates the area occupied by the PDCCH, for example, the first 3 OFDM symbols of each slot, and the black solid area indicates the area occupied by the GC-PDCCH.
  • the grid area represents the starting position of the downlink transmission for the unlicensed spectrum.
  • the PDCCH is not transmitted in slot 1 for various reasons, so the device cannot decode the data in slot 1.
  • the GC-PDCCH in slot 2 can be utilized to carry control information related to data in slot 1 such that data in slot 1 is not wasted. It should be noted that although not shown in FIG. 9, the GC-PDCCH in slot 2 may carry other information according to any of the foregoing embodiments, such as information of the end position of the downlink transmission, time slot 2 and later. SFI information of the gap and so on.
  • the electronic device 100 may transmit the data related to the data in the previous slot through the GC-PDCCH.
  • Control information may be a time slot in which the GC-PDCCH is transmitted, or may be a time slot in which the GC-PDCCH is not transmitted.
  • the reason why the control information related to the data in the previous slot is not transmitted in the previous slot may be that the channel detection of the electronic device 100 is successful after the PDCCH region of the previous slot. As shown in FIG. 9, the electronic device 100 detects that the channel is idle after the PDCCH region of the slot 1, but has missed the transmission time of the PDCCH, thereby causing no control information related to the data in the slot 1 to be transmitted. It should be noted that the scenario in which the PDCCH region in the slot 1 does not include the GC-PDCCH is shown in FIG. 9 . Of course, the PDCCH in the slot 1 may also include the GC-PDCCH, and the GC-PDCCH is not sent at this time. .
  • a downlink transmission start position for an unlicensed spectrum is located after a PDCCH region of one slot, and control information related to data in the slot is not transmitted in the slot, in which case Since the lower user equipment does not know the control information related to the data in the time slot, the data cannot be decoded, thereby causing waste of resources.
  • the GC-PDCCH of the next slot may be utilized to carry control information related to data in the previous slot, so that the user equipment can decode the part of the data and improve channel utilization.
  • the data in the previous time slot may be part of data of the downlink transmission, that is, the time slot in which the GC-PDCCH is located will continue to transmit downlink data that has not been transmitted in the previous time slot, that is, The data in the previous slot belongs to the same data packet as the data in the slot in which the GC-PDCCH is located. Further, the data in the previous time slot may also be all data of the downlink transmission. That is, the data in the previous time slot includes a complete data packet.
  • control information related to data in a previous time slot may be used to decode data in a previous time slot, ie, information related to decoding data in a previous time slot.
  • the control information may indicate the MCS (Modulation and Coding Scheme) level of the data in the previous time slot.
  • the control information may include an index of the MCS level of the data in the previous time slot. That is to say, both the electronic device 100 and the user equipment store the MCS level and the index correspondence. When the user equipment acquires the index of the MCS level, the MCS level can be determined, so that the data can be decoded.
  • the control information may also indicate the SFI of the data in the previous time slot, so that the user equipment can determine the uplink and downlink configuration information of the previous time slot, thereby decoding the data.
  • the electronic device 100 can transmit data in a previous time slot of the time slot in which the GC-PDCCH is located according to the default slot format information SFI. For example, the electronic device 100 can transmit data in the previous time slot according to the previously agreed SFI between the electronic device 100 and the user equipment, so that the user equipment can receive data in the previous time slot according to the previously agreed SFI.
  • the electronic device 100 may also send the SFI in the previous time slot according to the SFI of the previous time slot set by the electronic device 100 (ie, the same SFI setting in the case where the GC-PDCCH is transmitted in the previous time slot).
  • the data whereby the user equipment can default to the OFDM symbols in the time slot for downlink transmission to receive data for the previous time slot on all OFDM symbols.
  • the GC-PDCCH may carry the SFI in the previous time slot. That is, the GC-PDCCH in one slot can carry one or more of the following information: SFI of the slot; SFI of the slot after the slot; and SFI of the slot before the slot . Further, the GC-PDCCH in one slot can carry the SFI of one or more slots.
  • the communication unit 120 may also transmit a notification to the user equipment to cause the user equipment to receive control information related to data in the previous time slot through the GC-PDCCH.
  • the electronic device 100 may send a notification to the user equipment to inform the user that the device needs to receive the GC-PDCCH of the current time slot to acquire control information related to the data in the previous time slot.
  • the device may send a notification to the user equipment to notify the user equipment to receive the GC-PDCCH on the slot 2.
  • the electronic device 100 may transmit the above notification to the user equipment by authorizing the spectrum. Further, the electronic device 100 can transmit such notification to the user equipment through the licensed spectrum by using high layer signaling (including but not limited to RRC signaling) or low layer signaling (including but not limited to physical layer signaling).
  • high layer signaling including but not limited to RRC signaling
  • low layer signaling including but not limited to physical layer signaling
  • the electronic device 100 may further configure a transmission period of the GC-PDCCH, and may transmit a configured transmission period of the GC-PDCCH to the user equipment.
  • the electronic device 100 may further reconfigure the transmission period of the GC-PDCCH, and may send the re-configured transmission period of the GC-PDCCH to the user equipment.
  • the electronic device 100 may transmit a transmission period of a GC-PDCCH or a transmission period of a reconfigured GC-PDCCH to a user equipment by granting a spectrum. Further, the electronic device 100 may use the high-level signaling (including but not limited to RRC signaling) or low-level signaling (including but not limited to physical layer signaling) to send a GC-PDCCH transmission period or reconfigured to the user equipment through the licensed spectrum. The transmission period of the GC-PDCCH.
  • RRC signaling including but not limited to RRC signaling
  • low-level signaling including but not limited to physical layer signaling
  • control information related to data in a previous slot can be transmitted through a GC-PDCCH of a current slot, so that the user equipment can correctly perform data in the previous slot.
  • Decoding improves channel utilization.
  • control information related to the partial data in the current time slot may be carried by the ePDCCH, and the ePDCCH may use the resources of the Physical Downlink Share Channel (PDSCH) to carry the control information. Therefore, even if the PDCCH is not transmitted, the ePDCCH interspersed in the data can be used to carry the control information, and the user can demodulate the data by demodulating the control information.
  • PDSCH Physical Downlink Share Channel
  • the configuration unit 110 may configure data transmitted through the GC-PDCCH such that the GC-PDCCH is transmitted in the immediately subsequent slot if the GC-PDCCH in the previous slot is not successfully transmitted.
  • the GC-PDCCH transmitted in the immediately subsequent slot may carry control information related to data in the previous slot.
  • the previous time slot is a time slot in which the GC-PDCCH should be transmitted
  • the immediately subsequent time slot may be a time slot in which the GC-PDCCH should be transmitted
  • the time slot may also be a time slot in which the GC-PDCCH should not be transmitted.
  • the electronic device 100 transmits the GC-PDCCH in the immediately subsequent slot regardless of the transmission period of the GC-PDCCH.
  • FIG. 10 is a diagram showing transmission of control information related to data in a previous slot in a next slot without transmitting control information in a previous slot, regardless of a transmission period of the GC-PDCCH, according to an embodiment of the present disclosure.
  • schematic diagram As shown in FIG. 10, the horizontal axis represents time and the vertical axis represents frequency.
  • Fig. 10 shows the case of 4 time slots (time slot 1, time slot 2, time slot 3, and time slot 4).
  • the shaded hatched area indicates the area occupied by the PDCCH, for example, the first 3 OFDM symbols of each slot, and the black solid area indicates the area occupied by the GC-PDCCH.
  • the grid area represents the starting position of the downlink transmission for the unlicensed spectrum. In FIG.
  • the transmission period of the GC-PDCCH is two slots, that is, the GC-PDCCH should be transmitted in slot 1 and slot 3.
  • the electronic device 100 The GC-PDCCH can be transmitted in slot 2.
  • slot 2 is not a slot in which the GC-PDCCH should be transmitted, the electronic device 100 can utilize slot 2 to transmit control information related to the data in slot 1.
  • the electronic device 100 may transmit the GC-PDCCH in the immediately subsequent slot. In this way, since the electronic device 100 already occupies the channel in the immediately following time slot, the possibility of transmitting the GC-PDCCH in the immediately subsequent time slot to be correctly received and decoded by the user equipment is greatly improved.
  • the electronic device 100 may transmit a notification to the user equipment to cause the user equipment to receive data in the previous time slot through the GC-PDCCH. Related control information. Further, the electronic device 100 can send a notification to the user equipment by authorizing the spectrum. According to an embodiment of the present disclosure, the electronic device 100 may also not send a notification to the user equipment, so that the GC-PDCCH is automatically received in the slot 2 when the user equipment does not receive the GC-PDCCH in the slot 1.
  • the electronic device 100 may also change the transmission period of the GC-PDCCH by this, and may reconfigure the transmission period of the GC-PDCCH to the user equipment. For example, the electronic device 100 may send a re-configured GC-PDCCH transmission period to the user equipment by granting a spectrum.
  • the GC-PDCCH may be transmitted using the immediately subsequent time slot, regardless of the transmission cycle of the GC-PDCCH temporarily. So that the user equipment can successfully demodulate the data in the previous time slot, improving channel utilization.
  • the electronic device 100 may transmit one or more of the following information through a GC-PDCCH: information about a downlink transmission termination location for an unlicensed spectrum; a length of a downlink transmission MCOT And time domain location information; information about whether a channel detection process needs to be performed before uplink transmission in the COT unit; parameter information of the channel detection process; and data related to a previous time slot of a time slot in which the GC-PDCCH is located Control information.
  • the electronic device 100 may separately transmit any of the above information, or may transmit a plurality of types of information in combination.
  • the GC-PDCCH is directed to a group of user equipments, thereby narrowing the user range to some extent.
  • similar information can be sent to a group of user equipment for a particular user equipment, thereby saving signaling overhead. It can be seen that the present disclosure designs the GC-PDCCH more reasonably for the characteristics of the NR communication system.
  • the configuration unit 110 may configure information of a starting location of downlink transmission for an unlicensed spectrum, and the communication unit 120 may transmit information of a starting location of downlink transmission for an unlicensed spectrum.
  • information of a starting location of a downlink transmission for an unlicensed spectrum may be carried by higher layer signaling, including but not limited to RRC signaling.
  • the information about the start location of the downlink transmission of the unlicensed spectrum may include one or more of the following: indication information of the subframe corresponding to the start location of the downlink transmission, and the downlink transmission The indication information of the slot corresponding to the start position and the indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • a start position of a downlink transmission for an unlicensed spectrum may include a possible start position of a downlink transmission for an unlicensed spectrum, and thus information of a start position of a downlink transmission for an unlicensed spectrum may be Includes one or more starting locations.
  • the configuration unit 110 may configure information of a start position of a downlink transmission for an unlicensed spectrum according to a length of an OFDM symbol (or a size of a subcarrier interval) included in an MCOT of a downlink transmission.
  • a length of an OFDM symbol or a size of a subcarrier interval
  • the information of the start position of the downlink transmission for the unlicensed spectrum may include indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information may include an index of the OFDM symbol within the subframe.
  • OFDM symbols within one subframe may be ordered and numbered in order in the time domain to determine an index of each OFDM symbol.
  • the configuration unit 110 may configure an index of the OFDM symbol corresponding to the one or more starting positions as a starting position of the downlink transmission for the unlicensed spectrum. Information and such information is transmitted through the communication unit 120.
  • a start position of a downlink transmission for an unlicensed spectrum may be located at a start position and an intermediate position of one slot. That is, for a time slot including 14 OFDM symbols (numbered #0, #1, ..., #13, respectively), the starting position of the downlink transmission for the unlicensed spectrum may be located at number #0 and #7 OFDM symbol, which can simplify the design of signaling and save overhead.
  • n subframes are included in each subframe.
  • Each slot includes 2 OFDM symbols that can serve as the starting position for the downlink transmission for the unlicensed spectrum, so each subframe includes 2n OFDM symbols that can serve as the starting position for the downlink transmission for the unlicensed spectrum.
  • the information about the start position of the downlink transmission of the unlicensed spectrum may include indication information of the time slot corresponding to the start position of the downlink transmission and an indication of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information may include an index of a slot within a subframe and an index of an OFDM symbol within a slot.
  • time slots within one subframe may be ordered and numbered in order in the time domain to determine an index of each time slot within the subframe.
  • OFDM symbols within one slot can be ordered and numbered in order in the time domain to determine the index of each OFDM within the slot.
  • the configuration unit 110 may set the index of the time slot corresponding to the one or more starting positions in the subframe and the OFDM symbol corresponding to the starting position at the time
  • the index within the slot is configured as information for the starting location of the downlink transmission of the unlicensed spectrum, and such information is transmitted through the communication unit 120.
  • n slots are included in each subframe.
  • n 32 slots are included in each subframe, so 5 bits are needed to indicate the index of the slot in the subframe.
  • the start position of the downlink transmission can be located in the OFDM symbols numbered #0 and #7 in one slot, each slot includes two start positions that can serve as downlink transmissions for the unlicensed spectrum.
  • the OFDM symbol therefore 1 bit is required to indicate the index of the OFDM symbol within the slot. That is to say, a total of 6 bits are required to indicate the index of the slot corresponding to the start position in the subframe and the index of the OFDM symbol corresponding to the start position in the slot corresponding to the start position.
  • the start position of the downlink transmission for the unlicensed spectrum may include one or more of the following positions: a boundary position of the subframe; a boundary position of the slot; and an intermediate position of the slot.
  • the boundary position of the subframe refers to the start position of each subframe; the boundary position of the slot refers to the start position of each slot, and when the slot is the first slot in the subframe, the slot The boundary position is actually the boundary position of the subframe; the middle position of the time slot refers to the midpoint of a time slot in the time domain, for one including 14 OFDM symbols (numbered as #0, #1,..., respectively). For the time slot of #13), the middle position of the time slot refers to the OFDM symbol numbered #7.
  • the information of the start position of the downlink transmission for the unlicensed spectrum may include information indicating the kind of the start position for indicating which of the following positions the start position of the downlink transmission is or Which kinds are: the boundary position of the subframe; the boundary position of the slot; and the middle position of the slot.
  • category information can be represented by a category index.
  • the following exemplarily shows a combination of the above several kinds of information: a boundary position of a subframe; a boundary position of a time slot; a boundary position of a subframe or a boundary position of a time slot; a boundary position of a time slot or an intermediate position of a time slot; The boundary position of the frame or the boundary position of the time slot or the intermediate position of the time slot.
  • the electronic device 100 can indicate the index of the above combination with 3-bit information, as shown in Table 2.
  • the start position of the downlink transmission may be located at a boundary position of the subframe, a boundary position of the slot, a boundary position of the subframe or a boundary position of the slot, a boundary position of the slot, or a middle of the slot
  • the downlink transmission can also be scheduled in units of half the length of the time slot, so that the unlicensed frequency band has more downlink transmission opportunities, and the utilization efficiency of the unlicensed spectrum is improved.
  • the present disclosure describes the configuration of information for the start position of the downlink transmission of the unlicensed spectrum by several non-limiting examples, and of course the start of the downlink transmission for the unlicensed spectrum can be configured by other means.
  • the location information can be as long as it can indicate the starting position of the downlink transmission for the unlicensed spectrum.
  • the electronic device 100 can carry the start position of the downlink transmission for the unlicensed spectrum by, for example, higher layer signaling.
  • the unlicensed frequency band has more downlink transmission opportunities in the NR communication system, which improves the utilization efficiency of the unlicensed spectrum.
  • FIG. 11 is a block diagram showing a structure of an electronic device 1100 serving as a user device in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 1100 herein can function as a user equipment in an NR communication system.
  • the electronic device 1100 may include a demodulation unit 1110 and a communication unit 1120.
  • each unit of the electronic device 1100 may be included in a processing circuit. It should be noted that the electronic device 1100 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 1120 may receive downlink information from a network side device that provides service to the electronic device 1100, including downlink information transmitted through the GC-PDCCH and the PDCCH. Further, the demodulation unit 1110 can demodulate the downlink information.
  • the electronic device 1100 may utilize an unlicensed spectrum to receive information transmitted through the GC-PDCCH. Further, the electronic device 1100 can also receive information transmitted through the GC-PDCCH by using the licensed spectrum. In this way, the electronic device 1100 can guarantee the reliability of receiving information carried on the GC-PDCCH.
  • the communication unit 1120 may receive information through a GC-PDCCH. Further, the demodulation unit 1110 may demodulate information received through the GC-PDCCH to obtain a downlink transmission termination position for the unlicensed spectrum.
  • the demodulation unit 1110 may further demodulate information received through the GC-PDCCH to acquire slot format information SFI of a slot in which a downlink transmission termination position is located.
  • the network side device carries the information of the downlink transmission termination location and the SFI of the time slot in which the downlink transmission termination location is located through the GC-PDCCH in the same time slot. Therefore, the demodulation unit 1110 can demodulate information received through the GC-PDCCH in the same slot to obtain the SFI of the slot in which the downlink transmission termination position and the downlink transmission termination position are located.
  • the communication unit 1120 may also receive information through the PDCCH. Further, the demodulation unit 1110 may also demodulate information received through the PDCCH to obtain a downlink transmission termination position for the unlicensed spectrum. As mentioned in the foregoing, the network side device can transmit information about the downlink transmission termination location of the unlicensed spectrum through both the GC-PDCCH and the PDCCH. Therefore, the demodulation unit 1110 can demodulate the common search area or the private search area of the PDCCH to acquire a downlink transmission termination position for the unlicensed spectrum.
  • the demodulation unit 1110 may demodulate information received through the GC-PDCCH to obtain a downlink transmission termination position for an unlicensed spectrum, and may also demodulate information received through the PDCCH to obtain an unlicensed spectrum.
  • the demodulation unit 1110 may take the downlink transmission termination position for the unlicensed spectrum obtained by demodulating the information received through the PDCCH, that is, the downlink transmission termination position obtained by demodulating the information received through the PDCCH as the downlink transmission termination position.
  • the downlink transmission termination position can be acquired by both the GC-PDCCH and the PDCCH.
  • the user equipment can be prevented from receiving the GC-PDCCH or decoding errors of the information carried on the GC-PDCCH.
  • FIG. 12 is a signaling interaction diagram illustrating transmission of a downlink transmission termination location by a GC-PDCCH, according to an embodiment of the present disclosure.
  • the base station in step S1201, the base station carries a downlink transmission termination position for the unlicensed spectrum through the GC-PDCCH.
  • the UE User Equipment
  • step S1202 the UE (User Equipment) acquires a downlink transmission termination location for the unlicensed spectrum by demodulating the GC-PDCCH.
  • the electronic device 1100 can acquire a downlink transmission termination location for the unlicensed spectrum through the GC-PDCCH.
  • the electronic device 1100 needs to try blind detection under two aggregation levels, and the GC-PDCCH only contains one aggregation level search space, thus reducing the blindness of the electronic device 1100.
  • the foregoing information is carried by the GC-PDCCH, so that the electronic device 1100 can acquire the downlink transmission termination position earlier, thereby preparing for uplink feedback or uplink data transmission. .
  • the demodulation unit 1110 may further demodulate information received through the GC-PDCCH to obtain a length and a time domain position of a maximum channel occupation time MCOT of the downlink transmission, and the MCOT includes one or more time slots.
  • each time slot in the MCOT can be defined as one COT unit. That is, the MCOT includes one or more COT units.
  • the length of the MCOT may be represented by, for example, a slot or a number of COT units, and the time domain position of the MCOT may include, for example, all slots included in the MCOT or slot numbers of the COT unit, and the like.
  • the length and time domain location of the MCOT are only known by the network side device, and the user equipment does not know the length and time domain location of the MCOT, so that the user equipment may not have time to perform uplink feedback.
  • the electronic device 1100 may acquire the length and time domain location of the MCOT through the GC-PDCCH, thereby being ready for uplink feedback.
  • the number of switching points between the uplink transmission and the downlink transmission included in each of the COT units in the MCOT is not more than 2. That is, the electronic device 1100 can perform uplink transmission in the COT unit, for example, send uplink feedback information. Further, after the electronic device 1100 performs uplink feedback, the network side device may further send downlink data, thereby improving channel utilization. Further, the number of switching points between the uplink transmission and the downlink transmission included in the MCOT may not be greater than a predetermined threshold, thereby avoiding frequent uplink and downlink handover.
  • a COT unit within an MCOT is defined for an NR communication system, and each COT unit is similar to an MCOT in an LTE communication system.
  • the electronic device 1100 is allowed to perform feedback of uplink data in each COT unit.
  • the network side device is allowed to continue to transmit downlink data after the electronic device 1100 performs feedback of the uplink data.
  • the configuration of the NR communication system is made more flexible.
  • the demodulation unit 1110 may demodulate information received through the GC-PDCCH to determine whether a channel detection process needs to be performed before performing uplink transmission in the COT unit of the MCOT.
  • the electronic device 1100 when the information demodulated by the demodulation unit 1110 indicates that a channel detection process needs to be performed before performing uplink transmission in the COT unit of the MCOT, the electronic device 1100 needs to perform a channel detection process only when channel detection is idle. Upstream transmission is performed in the COT unit. Further, when the information demodulated by the demodulation unit 1110 indicates that the channel detection process does not need to be performed before the uplink transmission in the COT unit of the MCOT, the electronic device 1100 does not need to perform the channel detection process, and can directly perform uplink in the COT unit of the MCOT. transmission.
  • the uplink transmission may include uplink feedback to downlink data from the network side device, such as ACK/NACK.
  • the channel detection process may also be an LBT process, such as a Type 2 channel detection process.
  • the communication unit 1120 may also receive information through the PDCCH. Further, the demodulation unit 1110 may further demodulate the information received through the PDCCH to determine whether a channel detection process needs to be performed before performing uplink transmission in the COT unit of the MCOT.
  • the demodulation unit 1110 may demodulate information received through the GC-PDCCH to determine whether a channel detection process needs to be performed before performing uplink transmission in a COT unit of the MCOT, and may also perform information received through the PDCCH. Demodulation determines whether a channel detection process needs to be performed before performing uplink transmission in the COT unit of the MCOT. Further, when the foregoing two conflicts, that is, demodulation of information received by the GC-PDCCH, it is determined that a channel detection process needs to be performed before performing uplink transmission in a COT unit of the MCOT, and demodulation of information received through the PDCCH is determined.
  • the channel detection process does not need to be performed before the uplink transmission in the COT unit of the MCOT, or the information received through the GC-PDCCH is demodulated to determine that the channel detection process does not need to be performed before the uplink transmission in the COT unit of the MCOT, and is received by the PDCCH. If the channel detection process needs to be performed before performing uplink transmission in the COT unit of the MCOT, the demodulation unit may perform uplink transmission in the COT unit of the MCOT by demodulating the information received through the PDCCH. Whether the channel detection process needs to be performed is subject to change.
  • the electronic device 1100 may receive, by both the GC-PDCCH and the PDCCH, information about whether the channel detection process needs to be performed before the electronic device 1100 performs uplink transmission in the COT unit to prevent the electronic device 1100.
  • the information on the GC-PDCCH is not received or the information on the GC-PDCCH is demodulated incorrectly.
  • the network side device may configure whether the electronic device 1100 needs to perform a channel detection process before performing uplink transmission in the COT unit. That is to say, the electronic device 1100 may perform uplink transmission directly in the COT unit without performing a channel detection process in some cases, thereby saving signaling overhead.
  • the demodulation unit 1100 may demodulate information received through the GC-PDCCH to acquire parameters of a channel detection process performed before uplink transmission in a COT unit of the MCOT.
  • the electronic device 1100 when the electronic device 1100 does not receive information about whether it is necessary to perform a channel detection process before performing uplink transmission in the COT unit from the network side device, the electronic device 1100 may be required to default before each uplink transmission.
  • the channel detection process is performed, so the parameters of the channel detection process performed before the uplink transmission in the COT of the MCOT can be directed to all channel detection processes.
  • the electronic device 1100 receives information about a channel detection process that needs to be performed before performing uplink transmission in the COT unit from the network side device, parameters regarding a channel detection process performed before uplink transmission in the COT of the MCOT may be performed for the need to perform Channel detection process.
  • the parameters of the channel detection process include, but are not limited to, start time information of the channel detection process, such as the location of the OFDM symbol at which the start time is located.
  • start time information of the channel detection process such as the location of the OFDM symbol at which the start time is located.
  • the parameters of the channel detection process may also include other parameters related to performing the channel detection process.
  • the electronic device 1100 can acquire parameters related to a channel detecting process through a GC-PDCCH.
  • the GC-PDCCH contains only one aggregation level of search space, thus reducing the blind inspection workload of user equipment. Further, the foregoing information is carried by the GC-PDCCH, so that the electronic device 1100 can acquire parameters related to the channel detection process earlier, thereby preparing for uplink feedback or uplink data transmission.
  • FIG. 13 is a signaling interaction diagram illustrating at least one of transmitting MCOT length and location, whether LBT needs to be performed, and LBT parameters by GC-PDCCH, according to an embodiment of the present disclosure.
  • the base station in step S1301, the base station carries at least one of a length and a time domain position of the MCOT, whether an LBT process needs to be performed before uplink transmission in the COT unit, and parameters related to the LBT process, by using the GC-PDCCH.
  • the UE acquires the above information by demodulating the GC-PDCCH.
  • step S1304 when channel detection is idle, the UE transmits ACK/NACK information in the COT unit. Assuming that the information acquired by the UE in step S1302 regarding whether the LBT procedure needs to be performed indicates that the LBT procedure does not need to be performed, the UE directly transmits the ACK/NACK information in the COT unit in step S1304. Only the channel detection process is shown as an LBT process, and the uplink transmission is an example of ACK/NACK information. Of course, the channel detection process can also be other types of channel detection processes, and the uplink transmission can also be other uplink information.
  • the demodulation unit 1110 may demodulate information received through the GC-PDCCH to acquire control information related to data in a previous slot of a slot in which the GC-PDCCH is located.
  • the data in the previous time slot may be part of data of the downlink transmission, that is, the time slot in which the GC-PDCCH is located will continue to transmit downlink data that has not been transmitted in the previous time slot, that is, The data in the previous slot belongs to the same data packet as the data in the slot in which the GC-PDCCH is located. Further, the data in the previous time slot may also be all data of the downlink transmission. That is, the data in the previous time slot includes a complete data packet.
  • control information may be used to demodulate data in a previous time slot. That is, the control information is related to the demodulation of the data in the previous time slot.
  • the electronic device 1100 may determine an MCS level of data in a previous time slot based on the control information.
  • the control information may include an index of the MCS level of the data in the previous time slot. That is to say, both the network side device and the electronic device 1100 store the MCS level and the index correspondence.
  • the electronic device 1100 acquires the index of the MCS level, the MCS level can be determined, so that the data can be decoded.
  • the electronic device 1100 can determine the SFI of the data in the previous time slot according to the control information, so that the uplink and downlink configuration information of the previous time slot can be determined, and the data in the previous time slot is decoded.
  • the electronic device 1100 can receive data in a previous time slot of the time slot in which the GC-PDCCH is located according to the default slot format information SFI. For example, the electronic device 1100 can receive data in the previous time slot according to a previously agreed SFI with the network side device. Further, the electronic device 1100 may also default that the OFDM symbols in the time slot are used for downlink transmission to receive data of the previous time slot on all OFDM symbols.
  • the electronic device 1100 may store data received in a previous time slot and demodulate data in a previous time slot according to the control information. For example, the electronic device 1100 may determine the slot format of the data in the previous slot according to the SFI in the control information, and determine the MCS level of the data in the previous slot according to the MCS level in the control information, and then the previous time. The data in the slot is demodulated.
  • FIG. 14 is a signaling interaction diagram illustrating data related control information transmitted in a previous slot by a GC-PDCCH, according to an embodiment of the present disclosure.
  • the base station transmits data in the previous time slot to the UE, and the UE receives and stores the data in the previous time slot.
  • the base station carries control information related to data in the previous slot through the GC-PDCCH of the current slot.
  • the UE demodulates the GC-PDCCH to acquire control information related to data in the previous slot.
  • step S1404 the UE demodulates the data in the previous slot according to the control information.
  • the electronic device 1100 may receive control information related to data in a previous time slot through a GC-PDCCH in response to a notification received from a network side device. That is, when the network side device does not transmit the control information related to the data in the previous time slot in the previous time slot, the data in the previous time slot may be transmitted through the GC-PDCCH in the current time slot.
  • the associated control information is sent to the electronic device 1100, such that the electronic device 1100 can receive control information related to data in the previous time slot through the GC-PDCCH of the current time slot in response to such notification.
  • the electronic device 1100 can receive such notification from the network side device by authorizing the spectrum. For example, the electronic device 1100 can receive such notification from the network side device through the licensed spectrum through high layer signaling (including but not limited to RRC signaling) or low layer signaling (including but not limited to physical layer signaling).
  • FIG. 15 is a signaling interaction diagram illustrating transmitting a notification to a user equipment such that the user equipment receives a GC-PDCCH in a next slot, according to an embodiment of the present disclosure.
  • the base station transmits data in the previous time slot to the UE, and the UE receives and stores the data in the previous time slot.
  • the base station sends a notification to the UE to inform the UE to receive the GC-PDCCH in the next slot of the previous slot.
  • step S1501 and step S1502 can exchange positions, that is, the base station can send a notification to the UE as long as it finds that the control data of the previous time slot is not transmitted.
  • step S1503 the base station carries control information related to data in the previous time slot through the GC-PDCCH of the current time slot.
  • step S1504 the UE demodulates the GC-PDCCH to acquire control information related to data in the previous slot.
  • step S1505 the UE demodulates the data in the previous slot according to the control information.
  • the electronic device 1100 may also pass the GC-PDCCH in the immediately subsequent slot if the GC-PDCCH is not received in the previous slot, and the previous slot should issue the GC-PDCCH.
  • the PDCCH receives control information related to data in a previous time slot.
  • the electronic device 1100 may determine that the network side device does not issue the GC-PDCCH of the previous slot for some reason, thereby receiving the GC-PDCCH in the current slot, and temporarily disregarding the transmission period of the GC-PDCCH. In this case, the electronic device 1100 does not need to receive a notification from the network side device.
  • the communication unit 1120 may receive a transmission period of the configured or reconfigured GC-PDCCH from the network side device. Further, the communication unit 1120 may receive the configured or reconfigured transmission period of the GC-PDCCH from the network side device by granting the spectrum. For example, the electronic device 1100 may receive the configured or reconfigured GC-PDCCH from the network side device through the licensed spectrum through high layer signaling (including but not limited to RRC signaling) or low layer signaling (including but not limited to physical layer signaling). Send cycle.
  • high layer signaling including but not limited to RRC signaling
  • low layer signaling including but not limited to physical layer signaling
  • the demodulation unit 1110 may also demodulate information received through the ePDCCH to acquire control information related to data in a slot in which the ePDCCH is located.
  • the electronic device 1100 can acquire control information related to data in a previous time slot through a GC-PDCCH. In some cases, the electronic device 1100 does not receive control information related to the data in the time slot in the previous time slot, and thus cannot decode the data, thereby causing waste of resources.
  • the GC-PDCCH of the next slot may be utilized to carry control information related to data in the previous slot, thereby enabling the electronic device 1100 to decode data in the previous slot, improving Channel utilization.
  • the electronic device 1100 can receive and demodulate one or more of the following information by using a GC-PDCCH: information about a downlink transmission termination location for an unlicensed spectrum; Length and time domain location information of the MCOT; information about whether a channel detection process needs to be performed before uplink transmission in the COT unit; parameter information of the channel detection process; and in a previous time slot of the time slot in which the GC-PDCCH is located Data related control information.
  • the user equipment needs to perform blind detection under two aggregation levels, and the GC-PDCCH only contains one aggregation level search space, thus reducing the blind detection workload of the user equipment.
  • the foregoing information is carried by the GC-PDCCH, so that the user equipment acquires the foregoing information earlier, thereby preparing for uplink feedback or uplink data transmission. It can be seen that the present disclosure designs the GC-PDCCH more reasonably for the characteristics of the NR communication system.
  • the communication unit 1120 may receive information of a start position of downlink transmission for an unlicensed spectrum, and the demodulation unit 1110 may solve information of the received start position of downlink transmission for the unlicensed spectrum. Tuning to obtain the starting position of the downlink transmission for the unlicensed spectrum.
  • the electronic device 1100 may receive information of a starting location of a downlink transmission for an unlicensed spectrum through higher layer signaling, including but not limited to RRC signaling.
  • the demodulation unit 1110 may demodulate the received information of the start position of the downlink transmission for the unlicensed spectrum to obtain one or more of the following information: the start position of the downlink transmission corresponds to The indication information of the subframe, the indication information of the slot corresponding to the start position of the downlink transmission, and the indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the demodulation unit 1110 may acquire one or more start positions of downlink transmissions for unlicensed spectrum.
  • the demodulation unit 1110 may acquire indication information of an OFDM symbol corresponding to a start position of a downlink transmission.
  • the indication information may include an index of the OFDM symbol within the subframe. For example, OFDM symbols within one subframe may be ordered and numbered in order in the time domain. After the demodulation unit 1110 obtains the index of the OFDM symbol corresponding to the start position of the downlink transmission in the subframe, the position of the OFDM symbol corresponding to the start position of the downlink transmission in the subframe may be determined according to the index.
  • the demodulation unit 1110 may acquire indication information of a slot corresponding to a start position of the downlink transmission and indication information of an OFDM symbol corresponding to a start position of the downlink transmission.
  • the indication information may include an index of a time slot corresponding to a start position of the downlink transmission in a subframe corresponding to a start position of the downlink transmission and an initial position of the OFDM symbol corresponding to a start position of the downlink transmission at a downlink transmission start position.
  • the index within the corresponding time slot For example, the time slots in one subframe may be sorted and numbered in the order of the time domain.
  • the demodulation unit 1110 After the demodulation unit 1110 obtains the index of the time slot corresponding to the start position of the downlink transmission in the subframe, the The index determines the position of the time slot corresponding to the start position of the downlink transmission in the subframe.
  • the OFDM symbols in one time slot may be ordered and numbered in the time domain.
  • the index determines the position of the OFDM symbol corresponding to the start position of the downlink transmission in the slot corresponding to the start position of the downlink transmission. Thereby, the demodulation unit 1110 can determine the position of the slot corresponding to the start position of the downlink transmission and the position of the OFDM symbol corresponding to the start position of the downlink transmission in the slot corresponding to the start position of the downlink transmission.
  • the demodulation unit 1110 may acquire information on the kind of the start position of the downlink transmission of the unlicensed spectrum, for example, an index of the acquisition category. Further, the demodulation unit 1110 may determine, according to the index, which one or more of the following information is the starting position of the downlink transmission: the boundary position of the subframe; the boundary position of the time slot; and the intermediate position of the time slot. Specifically, the demodulation unit 1110 may determine that the start position of the downlink transmission is located at a boundary position of the subframe, a boundary position of the time slot, a boundary position of the subframe or a boundary position of the time slot, a boundary position of the time slot, or a middle of the time slot. The position is also the boundary position of the subframe or the boundary position of the time slot or the intermediate position of the time slot.
  • the start position of the downlink transmission for the unlicensed spectrum can be acquired by, for example, higher layer signaling.
  • the unlicensed frequency band has more downlink transmission opportunities in the NR communication system, which improves the utilization efficiency of the unlicensed spectrum.
  • the electronic device 100 may function as a network side device, and the electronic device 1100 may serve as a user device, that is, the electronic device 100 may provide a service to the electronic device 1100, and thus all embodiments related to the electronic device 100 described in the foregoing Both apply to this.
  • FIG. 16 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a network side device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1610 information on a downlink transmission termination position for an unlicensed spectrum is transmitted through a group common physical downlink control channel GC-PDCCH.
  • the method further comprises: transmitting the slot format information SFI of the time slot in which the downlink transmission termination location is located by using the GC-PDCCH.
  • the method further comprises: transmitting, by using a physical downlink control channel PDCCH, information about a downlink transmission termination location of the unlicensed spectrum.
  • PDCCH physical downlink control channel
  • the method further comprises: transmitting a downlink transmission termination position by a GC-PDCCH in an Nth time slot before the downlink transmission termination position, where N is a non-negative integer.
  • the method further comprises: determining a value of N according to one or more of the following parameters: a length of a maximum channel occupation time MCOT of the downlink transmission; a transmission period of the GC-PDCCH; and an OFDM symbol in the MCOT of the downlink transmission length.
  • the method further comprises: transmitting, by using a GC-PDCCH, a length and a time domain position of a maximum channel occupation time MCOT of the downlink transmission, where the MCOT includes one or more time slots.
  • the method further includes: configuring the slot format information SFI such that: the number of switching points between the uplink transmission and the downlink transmission included in each slot in the MCOT is not greater than 2; and/or the uplink included in the MCOT The number of switching points between the transmission and the downlink transmission is not greater than a predetermined threshold.
  • the method further comprises: transmitting, by the GC-PDCCH, information about whether a channel detection process needs to be performed before performing uplink transmission in a time slot of the MCOT.
  • the method further comprises: transmitting, by using the physical downlink control channel PDCCH, information about whether a channel detection process needs to be performed before performing uplink transmission in a time slot of the MCOT.
  • the method further comprises: transmitting, by the GC-PDCCH, parameter information about a channel detection process performed before uplink transmission in a time slot of the MCOT.
  • the method further comprises: configuring information about a starting location of the downlink transmission of the unlicensed spectrum, and transmitting information of a starting location of the downlink transmission for the unlicensed spectrum.
  • the method further comprises: carrying information of a starting location of the downlink transmission for the unlicensed spectrum by higher layer signaling.
  • the information about the start position of the downlink transmission of the unlicensed spectrum includes one or more of the following: the indication information of the subframe corresponding to the start position of the downlink transmission, and the start location of the downlink transmission.
  • the indication information of the time slot and the indication information of the OFDM symbol corresponding to the start position of the downlink transmission includes one or more of the following: the indication information of the subframe corresponding to the start position of the downlink transmission, and the start location of the downlink transmission.
  • the information of the starting position of the downlink transmission for the unlicensed spectrum includes one or more starting positions.
  • the method further comprises: configuring information of a starting position of the downlink transmission for the unlicensed spectrum according to the length of the OFDM symbol (or the size of the subcarrier spacing) included in the MCOT of the downlink transmission.
  • the method further comprises: the smaller the length of the OFDM symbol included in the MCOT, that is, the larger the subcarrier spacing, the more the starting position of the downlink transmission for the unlicensed spectrum is configured.
  • the information about the start position of the downlink transmission of the unlicensed spectrum includes indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information may include an index of the OFDM symbol within the subframe.
  • the starting position of the downlink transmission for the unlicensed spectrum is located at the beginning and intermediate positions of one slot.
  • the information about the start position of the downlink transmission of the unlicensed spectrum includes the indication information of the time slot corresponding to the start position of the downlink transmission and the indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information may include an index of a slot within a subframe and an index of an OFDM symbol within a slot.
  • the starting position of the downlink transmission for the unlicensed spectrum may include one or more of the following positions: a boundary position of the subframe; a boundary position of the time slot; and an intermediate position of the time slot.
  • the starting position of the downlink transmission for the unlicensed spectrum may include information indicating the kind of the starting position, the type of the starting position includes: a boundary position of the subframe; a boundary position of the time slot; a boundary position of the subframe or The boundary position of the time slot; the boundary position of the time slot or the intermediate position of the time slot; and the boundary position of the subframe or the boundary position of the time slot or the intermediate position of the time slot.
  • the main body performing the above method may be the electronic device 100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 100 are applicable thereto.
  • FIG. 17 is a flowchart illustrating a wireless communication method performed by the electronic device 100 as a network side device in a wireless communication system, according to another embodiment of the present disclosure.
  • step S1710 control information related to data in a previous slot of a slot in which the GC-PDCCH is located is transmitted through the group common physical downlink control channel GC-PDCCH.
  • control information is used to indicate at least one of a modulation coding scheme MCS level of data and slot format information SFI of data.
  • the method further comprises: transmitting data in a previous time slot of the time slot in which the GC-PDCCH is located according to the default slot format information SFI.
  • the method further comprises: transmitting control information related to data in the previous time slot by the GC-PDCCH when the control information related to the data in the previous time slot is not transmitted in the previous time slot.
  • the method further comprises: transmitting a notification to the user equipment to cause the user equipment to receive control information related to data in the previous time slot through the GC-PDCCH.
  • the method further comprises: transmitting the notification to the user equipment by authorizing the spectrum.
  • the method further comprises: reconfiguring a transmission period of the GC-PDCCH to the user equipment.
  • the method further comprises: sending, by the licensed spectrum, a transmission period of the reconfigured GC-PDCCH to the user equipment.
  • the main body performing the above method may be the electronic device 100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 100 are applicable thereto.
  • a wireless communication method performed by the electronic device 1100 as a user device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
  • FIG. 18 is a flowchart illustrating a wireless communication method performed by the electronic device 1100 as a user device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S1810 information is received through the group common physical downlink control channel GC-PDCCH.
  • step S1820 the information received through the GC-PDCCH is demodulated to obtain a downlink transmission termination position for the unlicensed spectrum.
  • the method further comprises: demodulating the information received by the GC-PDCCH to obtain slot format information SFI of the time slot in which the downlink transmission termination position is located.
  • the method further comprises: receiving information by using a physical downlink control channel PDCCH; and demodulating information received through the PDCCH to obtain a downlink transmission termination location for the unlicensed spectrum.
  • PDCCH physical downlink control channel
  • the method further comprises: terminating a downlink transmission termination location for the unlicensed spectrum obtained by demodulating the information received through the GC-PDCCH and downlink transmission for the unlicensed spectrum obtained by demodulating the information received through the PDCCH
  • the downlink transmission termination position for the unlicensed spectrum obtained by demodulating the information received through the PDCCH is taken as the standard.
  • the method further comprises: demodulating information received by the GC-PDCCH to obtain a length and a time domain position of a maximum channel occupation time MCOT of the downlink transmission, where the MCOT includes one or more time slots.
  • the method further comprises: demodulating the information received by the GC-PDCCH to determine whether a channel detection process needs to be performed before performing the uplink transmission in the time slot of the MCOT.
  • the method further comprises: receiving information by using a physical downlink control channel PDCCH; and demodulating information received through the PDCCH to determine whether a channel detection process needs to be performed before performing uplink transmission in a time slot of the MCOT.
  • PDCCH physical downlink control channel
  • the method further comprises: determining whether to perform a channel detection process and demodulating the information received through the PDCCH before uplink transmission in a time slot of the MCOT determined by demodulating the information received through the GC-PDCCH Whether the channel detection process conflict needs to be performed before the uplink transmission in the time slot of the MCOT determined by demodulating the information received through the PDCCH is determined by the MCOT in the slot of the MCOT. .
  • the method further comprises: demodulating the information received by the GC-PDCCH to obtain parameters of a channel detection process performed before uplink transmission in a time slot of the MCOT.
  • the method further comprises: receiving information about a starting location of the downlink transmission of the unlicensed spectrum, and demodulating the received information of the starting location of the downlink transmission for the unlicensed spectrum to obtain a downlink for the unlicensed spectrum The starting position of the transfer.
  • the information of the starting position of the downlink transmission for the unlicensed spectrum is received by higher layer signaling.
  • the method further comprises: demodulating the received information of the starting position of the downlink transmission for the unlicensed spectrum to obtain one or more of the following information: an indication of the subframe corresponding to the starting position of the downlink transmission The information, the indication information of the time slot corresponding to the start position of the downlink transmission, and the indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the method further comprises: the obtained starting position of the downlink transmission for the unlicensed spectrum includes one or more starting positions of the downlink transmission for the unlicensed spectrum.
  • the method further includes: obtaining indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information includes an index of the OFDM symbol within the subframe.
  • the method further comprises: determining, according to an index of the OFDM symbol in the subframe, a position of the OFDM symbol corresponding to the start position of the downlink transmission in the subframe.
  • the method further includes: obtaining indication information of the time slot corresponding to the start position of the downlink transmission and indication information of the OFDM symbol corresponding to the start position of the downlink transmission.
  • the indication information includes that the time slot corresponding to the start position of the downlink transmission is in the subframe corresponding to the start position of the downlink transmission, and the OFDM symbol corresponding to the start position of the downlink transmission corresponds to the start position of the downlink transmission. The index within the time slot.
  • the method further comprises: determining, according to an index of the time slot corresponding to the start position of the downlink transmission in the subframe, a position of the time slot corresponding to the start position of the downlink transmission in the subframe; and according to the starting position of the downlink transmission
  • the index of the corresponding OFDM symbol in the slot determines the position of the OFDM symbol corresponding to the start position of the downlink transmission in the slot corresponding to the start position of the downlink transmission.
  • the method further comprises: acquiring information about a kind of a starting position of the downlink transmission of the unlicensed spectrum; and determining, according to the type information, which one or which of the following positions the starting position of the downlink transmission is located : the boundary position of the subframe; the boundary position of the slot; the middle position of the slot.
  • the method may further include: determining, according to the information of the category, a starting position of the downlink transmission, a boundary position of the subframe, a boundary position of the time slot, a boundary position of the subframe, or a boundary position of the time slot, and a boundary position of the time slot. Or the intermediate position of the time slot, or the boundary position of the subframe or the boundary position of the time slot or the intermediate position of the time slot.
  • the main body performing the above method may be the electronic device 1100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1100 are applicable thereto.
  • FIG. 19 is a flowchart illustrating a wireless communication method performed by the electronic device 1100 as a user device in a wireless communication system, according to another embodiment of the present disclosure.
  • step S1910 information is received through the group common physical downlink control channel GC-PDCCH.
  • step S1920 the information is demodulated to acquire control information related to data in a previous slot of the slot in which the GC-PDCCH is located.
  • the method further comprises: determining at least one of a modulation coding scheme MCS level of the data and slot format information SFI of the data according to the control information.
  • the method further comprises: storing the data received in the previous time slot; and demodulating the data in the previous time slot based on the control information.
  • the method further comprises: receiving data in a previous time slot of the time slot in which the GC-PDCCH is located according to the default slot format information SFI.
  • the method further comprises: receiving, in response to the notification received from the network side device, control information related to data in the previous time slot through the GC-PDCCH.
  • the method further comprises: receiving the notification from the network side device by granting the spectrum.
  • the method further comprises: receiving, from the network side device, a transmission period of the reconfigured GC-PDCCH.
  • the method further comprises: receiving, by the licensed spectrum, a transmission period of the reconfigured GC-PDCCH from the network side device.
  • the main body performing the above method may be the electronic device 1100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1100 are applicable thereto.
  • the technology of the present disclosure can be applied to various products.
  • the network side device can be implemented as any type of base station device, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the user equipments described above.
  • the eNB 2000 includes one or more antennas 2010 and a base station device 2020.
  • the base station device 2020 and each antenna 2010 may be connected to each other via an RF cable.
  • Each of the antennas 2010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 2020 to transmit and receive wireless signals.
  • the eNB 2000 may include multiple antennas 2010.
  • multiple antennas 2010 may be compatible with multiple frequency bands used by eNB 2000.
  • FIG. 20 illustrates an example in which the eNB 2000 includes multiple antennas 2010, the eNB 2000 may also include a single antenna 2010.
  • the base station device 2020 includes a controller 2021, a memory 2022, a network interface 2023, and a wireless communication interface 2025.
  • the controller 2021 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2020. For example, controller 2021 generates data packets based on data in signals processed by wireless communication interface 2025 and communicates the generated packets via network interface 2023. The controller 2021 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2021 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 2022 includes a RAM and a ROM, and stores programs executed by the controller 2021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 2023 is a communication interface for connecting base station device 2020 to core network 2024. Controller 2021 can communicate with a core network node or another eNB via network interface 2023. In this case, the eNB 2000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 2023 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2023 is a wireless communication interface, the network interface 2023 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2025.
  • the wireless communication interface 2025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 2000 via the antenna 2010.
  • Wireless communication interface 2025 may typically include, for example, baseband (BB) processor 2026 and RF circuitry 2027.
  • the BB processor 2026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2026 may have some or all of the above described logic functions.
  • the BB processor 2026 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 2026 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 2020. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2027 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2010.
  • the wireless communication interface 2025 can include a plurality of BB processors 2026.
  • multiple BB processors 2026 can be compatible with multiple frequency bands used by eNB 2000.
  • the wireless communication interface 2025 can include a plurality of RF circuits 2027.
  • multiple RF circuits 2027 can be compatible with multiple antenna elements.
  • FIG. 20 illustrates an example in which the wireless communication interface 2025 includes a plurality of BB processors 2026 and a plurality of RF circuits 2027, the wireless communication interface 2025 may also include a single BB processor 2026 or a single RF circuit 2027.
  • the eNB 21 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 2130 includes one or more antennas 2140, base station devices 2150, and RRHs 2160.
  • the RRH 2160 and each antenna 2140 may be connected to each other via an RF cable.
  • the base station device 2150 and the RRH 2160 may be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 2140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 2160 to transmit and receive wireless signals.
  • the eNB 2130 may include a plurality of antennas 2140.
  • multiple antennas 2140 can be compatible with multiple frequency bands used by eNB 2130.
  • FIG. 21 illustrates an example in which the eNB 2130 includes a plurality of antennas 2140, the eNB 2130 may also include a single antenna 2140.
  • the base station device 2150 includes a controller 2151, a memory 2152, a network interface 2153, a wireless communication interface 2155, and a connection interface 2157.
  • the controller 2151, the memory 2152, and the network interface 2153 are the same as the controller 2021, the memory 2022, and the network interface 2023 described with reference to FIG.
  • the wireless communication interface 2155 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 2160 via the RRH 2160 and the antenna 2140.
  • Wireless communication interface 2155 can typically include, for example, BB processor 2156.
  • the BB processor 2156 is identical to the BB processor 2026 described with reference to FIG. 20 except that the BB processor 2156 is connected to the RF circuit 2164 of the RRH 2160 via the connection interface 2157.
  • the wireless communication interface 2155 can include a plurality of BB processors 2156.
  • multiple BB processors 2156 can be compatible with multiple frequency bands used by eNB 2130.
  • FIG. 21 illustrates an example in which the wireless communication interface 2155 includes a plurality of BB processors 2156, the wireless communication interface 2155 may also include a single BB processor 2156.
  • connection interface 2157 is an interface for connecting the base station device 2150 (wireless communication interface 2155) to the RRH 2160.
  • the connection interface 2157 may also be a communication module for connecting the base station device 2150 (wireless communication interface 2155) to the communication in the above-described high speed line of the RRH 2160.
  • the RRH 2160 includes a connection interface 2161 and a wireless communication interface 1963.
  • connection interface 2161 is an interface for connecting the RRH 2160 (wireless communication interface 1963) to the base station device 2150.
  • the connection interface 2161 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 2163 transmits and receives wireless signals via the antenna 2140.
  • Wireless communication interface 2163 may generally include, for example, RF circuitry 2164.
  • the RF circuit 2164 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2140.
  • the wireless communication interface 2163 can include a plurality of RF circuits 2164.
  • multiple RF circuits 2164 can support multiple antenna elements.
  • FIG. 21 illustrates an example in which the wireless communication interface 2163 includes a plurality of RF circuits 2164, the wireless communication interface 2163 may also include a single RF circuit 2164.
  • the configuration unit 110 described by using FIG. 1 can be implemented by the controller 2021 and/or the controller 2151. At least a portion of the functionality can also be implemented by controller 2021 and controller 2151.
  • the controller 2021 and/or the controller 2151 may perform a function of configuring a GC-PDCCH and a PDCCH by executing an instruction stored in a corresponding memory.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a smartphone 2200 to which the technology of the present disclosure can be applied.
  • the smart phone 2200 includes a processor 2201, a memory 2202, a storage device 2203, an external connection interface 2204, an imaging device 2206, a sensor 2207, a microphone 2208, an input device 2209, a display device 2210, a speaker 2211, a wireless communication interface 2212, and one or more An antenna switch 2215, one or more antennas 2216, a bus 2217, a battery 2218, and an auxiliary controller 2219.
  • the processor 2201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2200.
  • the memory 2202 includes a RAM and a ROM, and stores data and programs executed by the processor 2201.
  • the storage device 2203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2200.
  • USB universal serial bus
  • the imaging device 2206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2208 converts the sound input to the smartphone 2200 into an audio signal.
  • the input device 2209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2210, and receives an operation or information input from a user.
  • the display device 2210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2200.
  • the speaker 2211 converts the audio signal output from the smartphone 2200 into a sound.
  • the wireless communication interface 2212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2212 may generally include, for example, BB processor 2213 and RF circuitry 2214.
  • the BB processor 2213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2214 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2216.
  • the wireless communication interface 2212 can be a chip module on which the BB processor 2213 and the RF circuit 2214 are integrated. As shown in FIG.
  • the wireless communication interface 2212 can include a plurality of BB processors 2213 and a plurality of RF circuits 2214.
  • FIG. 22 illustrates an example in which the wireless communication interface 2212 includes a plurality of BB processors 2213 and a plurality of RF circuits 2214, the wireless communication interface 2212 may also include a single BB processor 2213 or a single RF circuit 2214.
  • wireless communication interface 2212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2212 can include a BB processor 2213 and RF circuitry 2214 for each wireless communication scheme.
  • Each of the antenna switches 2215 switches the connection destination of the antenna 2216 between a plurality of circuits included in the wireless communication interface 2212, such as circuits for different wireless communication schemes.
  • Each of the antennas 2216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2212 to transmit and receive wireless signals.
  • the smartphone 2200 can include a plurality of antennas 2216.
  • FIG. 22 shows an example in which the smartphone 2200 includes a plurality of antennas 2216, the smartphone 2200 may also include a single antenna 2216.
  • smart phone 2200 can include an antenna 2216 for each wireless communication scheme.
  • the antenna switch 2215 can be omitted from the configuration of the smartphone 2200.
  • the bus 2217 has a processor 2201, a memory 2202, a storage device 2203, an external connection interface 2204, an imaging device 2206, a sensor 2207, a microphone 2208, an input device 2209, a display device 2210, a speaker 2211, a wireless communication interface 2212, and an auxiliary controller 2219. connection.
  • Battery 2218 provides power to various blocks of smart phone 2200 shown in FIG. 22 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 2219 operates the minimum required function of the smartphone 2200, for example, in a sleep mode.
  • the demodulation unit 1110 described by using FIG. 11 can be realized by the processor 2201 or the auxiliary controller 2219. At least a portion of the functionality can also be implemented by processor 2201 or secondary controller 2219.
  • the processor 2201 or the auxiliary controller 2219 can perform the function of demodulating the downlink information by executing the instructions stored in the memory 2202 or the storage device 2203.
  • the car navigation device 2320 includes a processor 2321, a memory 2322, a global positioning system (GPS) module 2324, a sensor 2325, a data interface 2326, a content player 2327, a storage medium interface 2328, an input device 2329, a display device 2330, a speaker 2331, and a wireless device.
  • the processor 2321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 2320.
  • the memory 2322 includes a RAM and a ROM, and stores data and programs executed by the processor 2321.
  • the GPS module 2324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2320 using GPS signals received from GPS satellites.
  • Sensor 2325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2326 is connected to, for example, the in-vehicle network 2341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 2328.
  • the input device 2329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 2330, and receives an operation or information input from a user.
  • the display device 2330 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 2331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2333 may typically include, for example, BB processor 2334 and RF circuitry 2335.
  • the BB processor 2334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2337.
  • the wireless communication interface 2333 can also be a chip module on which the BB processor 2334 and the RF circuit 2335 are integrated. As shown in FIG.
  • the wireless communication interface 2333 can include a plurality of BB processors 2334 and a plurality of RF circuits 2335.
  • FIG. 23 illustrates an example in which the wireless communication interface 2333 includes a plurality of BB processors 2334 and a plurality of RF circuits 2335, the wireless communication interface 2333 may also include a single BB processor 2334 or a single RF circuit 2335.
  • the wireless communication interface 2333 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2333 may include a BB processor 2334 and an RF circuit 2335 for each wireless communication scheme.
  • Each of the antenna switches 2336 switches the connection destination of the antenna 2337 between a plurality of circuits included in the wireless communication interface 2333, such as circuits for different wireless communication schemes.
  • Each of the antennas 2337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2333 to transmit and receive wireless signals.
  • car navigation device 2320 can include a plurality of antennas 2337.
  • FIG. 23 shows an example in which the car navigation device 2320 includes a plurality of antennas 2337, the car navigation device 2320 may also include a single antenna 2337.
  • car navigation device 2320 can include an antenna 2337 for each wireless communication scheme.
  • the antenna switch 2336 can be omitted from the configuration of the car navigation device 2320.
  • Battery 2338 provides power to various blocks of car navigation device 2320 shown in FIG. 23 via a feeder, which is partially shown as a dashed line in the figure. Battery 2338 accumulates power supplied from the vehicle.
  • the demodulation unit 1110 described by using FIG. 11 can be realized by the processor 2321. At least a portion of the functionality can also be implemented by the processor 2321. For example, the processor 2321 can perform the function of demodulating the downlink information by executing an instruction stored in the memory 2322.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 2340 that includes one or more of the car navigation device 2320, the in-vehicle network 2341, and the vehicle module 2342.
  • vehicle module 2342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2341.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种电子设备、无线通信方法和计算机可读存储介质。电子设备包括处理电路,被配置为:通过组公共物理下行控制信道GC-PDCCH来传输与GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息,从而可以根据NR通信系统的特点更好地设计GC-PDCCH。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2018年2月11日提交中国专利局、申请号为201810140933.9、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信系统中的网络侧设备的电子设备、一种作为无线通信系统中的用户设备的电子设备、一种由无线通信系统中的网络侧设备执行的无线通信方法、一种由无线通信系统中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
在NR(New Radio,新无线)通信系统中引入了一个新的控制信道GC-PDCCH(Group Common-Physical Downlink Control Channel,组公共物理下行控制信道),其主要用于基站设备向一组用户设备指示下行控制信息,例如SFI(Slot Format related Information,时隙格式信息)。SFI用于指示当前时隙和/或后续一个或多个时隙基站所采用的SFI格式,即一个时隙内的上下行符号的个数配比。但是现有的标准并未对GC-PDCCH的配置达成过多的共识。
相比于LTE(Long Term Evolution,长期演进)通信系统,NR通信系统有很大的改进。例如,在NR通信系统中,存在不同的子载波间隔并支持符号级的上下行传输。此外,对于非授权频谱,信道空闲检测的要求,对GC-PDCCH的设计形成了挑战。
因此,有必要提出一种技术方案,以针对NR通信系统的特点对GC-PDCCH的设计进行改进。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以根据NR通信系统的特点更好地设计GC-PDCCH。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:通过组公共物理下行控制信道GC-PDCCH来传输与所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:通过组公共物理下行控制信道GC-PDCCH来接收信息;以及对所述信息进行解调以获取与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
根据本公开的另一方面,提供了一种无线通信方法,包括:通过组公共物理下行控制信道GC-PDCCH来传输与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
根据本公开的另一方面,提供了一种无线通信方法,包括:通过组公共物理下行控制信道GC-PDCCH来接收信息;以及对所述信息进行解调以获取与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以利用GC-PDCCH来传输与GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息,从而使得用户设备可以对前一个时隙中的数据进行正确解码,提高了信道的利用率。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的 实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的电子设备的配置的示例的框图;
图2是示出根据本公开的实施例的通过GC-PDCCH传输针对非授权频谱的下行传输终止位置的示意图;
图3是示出根据本公开的实施例的通过GC-PDCCH和PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输针对非授权频谱的下行传输终止位置的示意图;
图4是示出根据本公开的实施例的通过多个时隙的GC-PDCCH传输针对非授权频谱的下行传输终止位置的示意图;
图5是示出根据本公开的实施例的通过下行传输终止位置所在的时隙的GC-PDCCH来传输该下行传输终止位置的示意图;
图6是示出根据本公开的实施例的根据MCOT(Max Channel Occupy Time,最大信道占用时间)的长度来确定用于传输下行传输终止位置的GC-PDCCH所在的时隙的示意图;
图7是示出根据本公开的实施例的根据OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号的长度来确定用于传输下行传输终止位置的GC-PDCCH所在的时隙的示意图;
图8是示出根据本公开的实施例的MCOT与COT(Channel Occupy Time,信道占用时间)单元之间的关系的示意图;
图9是示出根据本公开的实施例的通过GC-PDCCH来传输与前一个时隙中的数据相关的控制信息的示意图;
图10是示出根据本公开的实施例的在前一个时隙没有发送控制信息的情况下在下一个时隙发送与前一个时隙中的数据相关的控制信息而不管GC-PDCCH的发送周期的示意图;
图11是示出根据本公开的另一个实施例的电子设备的配置的示例的框图;
图12是示出根据本公开的实施例的通过GC-PDCCH传输下行传输终止位置的信令交互图;
图13是示出根据本公开的实施例的通过GC-PDCCH传输MCOT长度和位置、是否需要执行LBT以及LBT参数中的至少一种的信令交互图;
图14是示出根据本公开的实施例的通过GC-PDCCH传输于前一个时隙中的数据相关的控制信息的信令交互图;
图15是示出根据本公开的实施例的向用户设备发送通知以使得用户设备在下一个时隙接收GC-PDCCH的信令交互图;
图16是示出根据本公开的实施例的无线通信方法的流程图;
图17是示出根据本公开的另一个实施例的无线通信方法的流程图;
图18是示出根据本公开的另一个实施例的无线通信方法的流程图;
图19是示出根据本公开的另一个实施例的无线通信方法的流程图;
图20是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图21是示出eNB的示意性配置的第二示例的框图;
图22是示出智能电话的示意性配置的示例的框图;以及
图23是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.网络侧设备的配置示例;
2.1通过GC-PDCCH承载下行传输终止位置
2.2通过GC-PDCCH承载MCOT的长度和时域位置
2.3通过GC-PDCCH承载在MCOT内进行上行传输前是否需要执行信道检测过程的信息
2.4通过GC-PDCCH承载信道检测过程的参数信息
2.5通过GC-PDCCH承载与前一个时隙中的数据相关的控制信息
2.6在前一个时隙中没有发送GC-PDCCH的情况下在紧接着的时隙发送GC-PDCCH
2.7下行传输起始位置的承载
3.用户设备的配置示例;
3.1通过GC-PDCCH接收下行传输终止位置
3.2通过GC-PDCCH接收MCOT的长度和时域位置
3.3通过GC-PDCCH接收在MCOT内进行上行传输前是否需要执行信道检测过程的信息
3.4通过GC-PDCCH接收信道检测过程的参数信息
3.5通过GC-PDCCH接收与前一个时隙中的数据相关的控制信息
3.6接收下行传输起始位置
4.方法实施例;
5.应用示例。
<1.场景的描述>
在NR通信系统中引入了一个新的控制信道GC-PDCCH,用于基站设备向该基站覆盖范围内的一组用户设备指示下行控制信息。本公开提出了一种无线通信系统中的电子设备、由无线通信系统中的电子设备执行的无线通信方法以及计算机可读存储介质,以针对NR通信系统的特点对GC-PDCCH的设计进行改进。
本公开可以用于无线通信系统,例如5G(第5代通信系统)的NR通信系统。
根据本公开的网络侧设备可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图1是示出根据本公开的实施例的电子设备100的配置的示例的框图。这里的电子设备100可以作为无线通信系统中的网络侧设备,具体地可以作为NR通信系统中的基站设备。
如图1所示,电子设备100可以包括配置单元110和通信单元120。
这里,电子设备100的各个单元都可以包括在处理电路中。需要说明的是,电子设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,配置单元110可以对需要发送的下行信息,包括通过GC-PDCCH、PDCCH、ePDCCH(Enhanced Physical Downlink Control Channel,增强物理下行控制信道)以及高层信令发送的下行信息进行配置,并且通信单元120可以将下行信息发送至电子设备100覆盖范围内的用户设备。
根据本公开的实施例,电子设备100可以利用非授权频谱来发送GC-PDCCH上承载的信息。进一步,电子设备100也可以利用授权频谱,如主载波来发送GC-PDCCH上承载的信息。这样一来,电子设备100可以保证利用GC-PDCCH发送的信息的可靠性。
根据本公开的实施例,电子设备100可以利用GC-PDCCH来发送多 种信息,这将在下文中详细介绍。进一步,根据本公开的实施例,电子设备100可以利用DCI(Downlink Control Information,下行控制信息)来承载(2.1至2.6部分所描述的)下述信息中的一种或多种,可以为但不限于DCI format 2_x(NR通信系统中的DCI格式,用于承载除上行调度和下行调度之外的其它信息)。
根据本公开的实施例,电子设备100还可以通过高层信令来携带(2.7部分所描述的)下述信息,可以为但不限于RRC(Radio Resource Control,无线资源控制)信令。
<2.1通过GC-PDCCH承载下行传输终止位置>
根据本公开的实施例,配置单元110可以配置针对非授权频谱的下行传输终止位置的信息,并通过GC-PDCCH来承载针对非授权频谱的下行传输终止位置的信息。这里,电子设备100可以在每次下行传输之前确定下行传输的终止位置。根据本公开的实施例,下行传输的终止位置表示本次下行传输的终止的OFDM符号的位置,包括但不限于终止的OFDM符号所在的时隙的位置以及该OFDM符号在该时隙中的位置。
根据本公开的实施例,通信单元120可以通过GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息。
图2是示出根据本公开的实施例的通过GC-PDCCH传输针对非授权频谱的下行传输终止位置的示意图。如图2所示,横轴表示时间,纵轴表示频率。图2示出了3个时隙(时隙1、时隙2和时隙3)的情形。斜线阴影区域表示PDCCH所占区域,例如每个时隙的前3个OFDM符号。黑色实心区域表示GC-PDCCH所占的区域。如图2所示,GC-PDCCH位于PDCCH的区域内。也就是说,GC-PDCCH在时间上位于PDCCH所占用的OFDM符号内,在频率上位于PDCCH所占用的子载波内。图2,示例性地,GC-PDCCH的发送周期为两个时隙。因此,在图2中,在时隙1和时隙3中的PDCCH区域包括了GC-PDCCH。横线阴影区域表示针对非授权频谱的下行传输终止位置,即针对非授权频谱的下行传输即将终止于横线阴影区域所在的OFDM符号。根据本公开的实施例,可以利用GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息。如图2所示,可以利用时隙1中的GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息,该信息可以包括下行传输终止位置所在的OFDM符 号的位置信息。
如上所述,根据本公开的实施例,可以利用GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息。这样一来,相比于PDCCH的公共搜索区针对整个小区中的用户设备来说,GC-PDCCH针对一组用户设备,从而在一定程度上缩小了用户范围。而相比于PDCCH的私有(UE-specific)搜索区针对特定的用户设备来说,GC-PDCCH针对一组用户设备,从而节约了信令开销。进一步,由于GC-PDCCH只包含一种聚合等级的搜索空间,因此利用GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息可以提高用户盲检的速度。另外,用户设备获取到下行传输终止位置的信息后,当用户设备复用下行所采用的未授权频谱进行上行传输时,可以尽早地解码下行数据以准备信道空闲的检测,从而提高未授权频谱的利用效率。
根据本公开的实施例,配置单元110可以对通过PDCCH发送的信息进行配置,以通过PDCCH来承载针对非授权频谱的下行传输终止位置的信息。例如,配置单元110可以通过PDCCH的公共搜索区或者私有搜索区来承载针对非授权频谱的下行传输终止位置的信息。进一步,通信单元120可以通过PDCCH来再次传输针对非授权频谱的下行传输终止位置的信息。进一步,配置单元110可以通过同一个时隙中PDCCH和GC-PDCCH来承载针对非授权频谱的下行传输终止位置的信息。
图3是示出根据本公开的实施例的通过GC-PDCCH和PDCCH传输针对非授权频谱的下行传输终止位置的示意图。在图3中,横轴表示时间,纵轴表示频率。图3示出了3个时隙(时隙1、时隙2和时隙3)的情形。斜线阴影区域表示PDCCH所占区域,例如每个时隙的前3个OFDM符号,黑色实心区域表示GC-PDCCH所占的区域。此外,示例性地,GC-PDCCH的发送周期为两个时隙。如图3所示,不仅利用时隙1中的GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息,还利用PDCCH再次传输针对非授权频谱的下行传输终止位置的信息。值得注意的是,图3示出了仅通过时隙1中的PDCCH来传输下行传输终止位置的信息的情形,电子设备100还可以仅通过时隙2中的PDCCH,或者通过时隙1中的PDCCH和时隙2中的PDCCH来传输下行传输终止位置。
如上所述,根据本公开的实施例,通过GC-PDCCH和PDCCH来传输针对非授权频谱的下行传输终止位置的信息。这样一来,可以防止用户设备没有收到GC-PDCCH或者对GC-PDCCH上承载的信息的解码错误。
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过多个时隙的GC-PDCCH来传输针对非授权频谱的下行传输终止位置。也就是说,可以通过位于该下行传输终止位置之前的多个时隙(包括下行传输终止位置所在的时隙)的GC-PDCCH来传输该下行传输终止位置。
图4是示出根据本公开的实施例的通过多个时隙的GC-PDCCH传输针对非授权频谱的下行传输终止位置的示意图。在图4中,横轴表示时间,纵轴表示频率。图4示出了3个时隙(时隙1、时隙2和时隙3)的情形。斜线阴影区域表示PDCCH所占区域,例如每个时隙的前3个OFDM符号,黑色实心区域表示GC-PDCCH所占的区域。此外,示例性地,GC-PDCCH的发送周期为一个时隙,即在时隙1、时隙2和时隙3的PDCCH区域包括了GC-PDCCH。如图4所示,下行传输终止位置位于时隙2以内,通过时隙1和时隙2的GC-PDCCH来传输该下行传输终止位置的信息。
如上所述,根据本公开的实施例,可以通过一个或多个时隙中的GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息,从而增大用户设备能够接收并正确解调下行传输终止位置的概率。
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过下行传输终止位置所在的时隙中的GC-PDCCH来传输下行传输终止位置的信息,也可以通过下行传输终止位置所在的时隙之前的时隙中的GC-PDCCH来传输下行传输终止位置的信息。也就是说,电子设备100可以通过下行传输终止位置之前第N个时隙中的GC-PDCCH来传输下行传输终止位置。这里,N为非负整数。当N为正整数时表示电子设备100通过下行传输终止位置所在的时隙之前的时隙中的GC-PDCCH来传输下行传输终止位置;当N=0时表示电子设备100通过下行传输终止位置所在的时隙中的GC-PDCCH来传输下行传输终止位置。
根据本公开的实施例,由于配置单元110可以对通过GC-PDCCH发送的信息进行配置以通过一个或多个时隙中的GC-PDCCH来传输下行传输终止位置信息,因此前述的N的值可能有多个。换句话说,电子设备100可以既通过下行传输终止位置所在的时隙中的GC-PDCCH来传输下行传输终止位置的信息,也通过下行传输终止位置所在的时隙之前的时隙中的GC-PDCCH来传输下行传输终止位置的信息。
图2和图3示出了仅通过下行传输终止位置所在的时隙之前的时隙 中的GC-PDCCH来传输下行传输终止位置的信息的示例。如图2和图3所示,下行传输终止位置位于时隙2,通过时隙1中的GC-PDCCH来传输下行传输终止位置。图4示出了通过下行传输终止位置所在的时隙中的GCPDCCH以及下行传输终止位置所在的时隙之前的时隙中的GC-PDCCH来传输下行传输终止位置的信息的示例。如图4所示,下行传输终止位置位于时隙2,通过时隙2中的GC-PDCCH和时隙1中的GC-PDCCH来传输下行传输终止位置。图5是示出根据本公开的实施例的仅通过下行传输终止位置所在的时隙的GC-PDCCH来传输该下行传输终止位置的示意图。如图5所示,下行传输终止位置位于时隙2,通过时隙2中的GC-PDCCH来传输下行传输终止位置。
如上所述,根据本公开的实施例,可以灵活地配置承载针对非授权频谱的下行传输终止位置的信息的GC-PDCCH的数量和位置(所在的时隙)。下面将描述如何确定用于承载下行传输终止位置的GC-PDCCH所在的时隙。
根据本公开的实施例,配置单元110可以根据以下参数中的一种或多种来确定N的值(即用于承载下行传输终止位置的GC-PDCCH所在的时隙):下行传输的最大信道占用时间MCOT的长度;GC-PDCCH的发送周期;以及下行传输的MCOT内的OFDM符号的长度。
根据本公开的实施例,配置单元110可以根据MCOT的长度来确定用于承载下行传输终止位置的GC-PDCCH所在的时隙。根据本公开的实施例,配置单元110在配置承载下行传输终止位置的GC-PDCCH所在的时隙时,必须使得该时隙位于本次下行传输的MCOT内。
图6是示出根据本公开的实施例的根据MCOT的长度来确定用于传输下行传输终止位置的GC-PDCCH所在的时隙的示意图。如图6所示,本次下行传输的MCOT包括时隙2、时隙3和时隙4。因此,图6中示出了利用时隙2的GC-PDCCH来承载下行传输终止位置。当然,也可以利用时隙3的GC-PDCCH来承载下行传输终止位置。也就是说,承载下行传输终止位置的GC-PDCCH的时隙必须位于本次下行传输的MCOT内。
根据本公开的实施例,配置单元110可以根据GC-PDCCH的发送周期来确定用于承载下行传输终止位置的GC-PDCCH所在的时隙。根据本公开的实施例,电子设备100可以周期性发送GC-PDCCH,并可以配置GC-PDCCH的周期,该周期例如可以为一个或多个时隙。
一方面,根据本公开的实施例,GC-PDCCH的发送周期决定了在哪些时隙的PDCCH中包括GC-PDCCH。另一方面,根据本公开的实施例,可以通过GC-PDCCH来传输时隙格式信息SFI。例如,一个时隙中的GC-PDCCH可以用于承载该时隙或者该时隙之后的一个或多个时隙的SFI。因此,GC-PDCCH的发送周期可以用于确定一个时隙中的GC-PDCCH可以用于承载该时隙之后的多少个时隙的SFI。这里,只有知晓下行传输终止位置所在的时隙的SFI,才能够确定该下行传输终止位置。因此,根据本公开的实施例,配置单元110在配置承载下行传输终止位置的GC-PDCCH所在的时隙时,可以选取如下时隙:该时隙的GC-PDCCH同时承载了下行传输终止位置所在的时隙的SFI。
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过GC-PDCCH来传输下行传输终止位置所在的时隙的时隙格式信息SFI。也就是说,用于承载下行传输终止位置的信息的GC-PDCCH也同时承载下行传输终止位置所在的时隙的SFI。
根据本公开的实施例,配置单元110可以根据下行传输的MCOT内的OFDM符号的长度来确定用于承载下行传输终止位置的GC-PDCCH所在的时隙。在NR通信系统中,针对不同的子载波间隔,OFDM符号在时间上的长度是不同的。表1示出了子载波间隔与OFDM符号长度之间的关系。
表1
Figure PCTCN2019074679-appb-000001
由此可见,子载波间隔越大,OFDM符号在时间上的长度越短。又由于在NR通信系统中,一个时隙包括14个OFDM符号,因此子载波间隔越大,一个时隙的绝对长度就会越短。表1只示出了子载波间隔为15kHZ、30kHZ、60kHZ和120kHZ的情形,在NR系统中子载波间隔还可以为240kHZ和480kHZ。因此,当子载波间隔比较大时,一个时隙的绝对长度非常短,如果N的值较小,例如N=0或者1,那么用户设备获取下行传输终止位置的时间距离下行传输终止位置很近,使得用户设备没有充足的时间准备上行反馈或上行传输。
因此,根据本公开的实施例,配置单元110可以根据下行传输的MCOT内的OFDM符号的长度来确定用于承载下行传输终止位置的GC-PDCCH所在的时隙,以使得OFDM符号的长度越短,N的值越大。这样一来,针对不同的子载波配置,即不同的OFDM符号长度,尽量使得发送下行传输终止位置的提前量,即绝对提前时间一致,保证用户设备有充足的时间准备上行反馈或上行传输。
图7是示出根据本公开的实施例的根据OFDM符号的长度来确定用于传输下行传输终止位置的GC-PDCCH所在的时隙的示意图。图7示出了子载波间隔为15kHZ和30kHZ的情形。如图7所示,在子载波间隔为15kHZ的情况下,利用时隙2中的GC-PDCCH来发送下行传输终止位置的信息。下行传输终止位置位于时隙3中,也就是说,N=1。在子载波间隔为30kHZ的情况下,利用时隙3中的GC-PDCCH来发送下行传输终止位置的信息。下行传输终止位置位于时隙6中,也就是说,N=3。由此可见,相比于子载波间隔为15kHZ的情况,子载波间隔为30kHZ的N值要大一些,但是两者的绝对提前时间是差不多的。
根据本公开的实施例,由于配置单元110可以配置一个或多个时隙中的GC-PDCCH来发送下行传输终止位置的信息,因此如上所述确定出的N的值也可能存在一个或多个。例如,在图7所示的示例中,在子载波间隔为15kHZ的情形下,假定GC-PDCCH的发送周期为一个时隙,则还可以利用时隙3中的GC-PDCCH来发送下行传输终止位置的信息,此时N=0;在子载波间隔为30kHZ的情形下,假定GC-PDCCH的发送周期为两个时隙,则还可以利用时隙5中的GC-PDCCH来发送下行传输终止位置的信息,此时N=1。
根据本公开的实施例,配置单元110可以单独考虑以下参数来确定N的值:下行传输的MCOT的长度;GC-PDCCH的发送周期;以及下行传 输的MCOT内的OFDM符号的长度。进一步,配置单元110也可以综合考虑上述参数中的多种来确定N的值。下面将给出几个非限制性的示例。
例如,配置单元110可以确定以下时隙为承载下行传输终止位置的信息的时隙:位于下行传输的MCOT内并且承载了下行传输终止位置所在的时隙的SFI。
又如,配置单元110还可以在位于下行传输的MCOT内并且承载了下行传输终止位置所在的时隙的SFI的时隙中进一步挑选,以根据OFDM符号的长度来确定N的值。针对子载波间隔为15×2 nkHZ的配置(n=0,1,2,3,4,5),当下行传输终止位置之前第(2 n+1-1)个时隙位于下行传输的MCOT内并且承载了下行传输终止位置所在的时隙的SFI时,配置单元110可以确定N的一个值为2 n+1-1。在这种情况下下确定出的N的值可以为N的所有值中的最小值。当下行传输终止位置之前第(2 n+1-1)个时隙没有位于下行传输的MCOT内或者没有承载下行传输终止位置所在的时隙的SFI时,配置单元可以确定以下时隙为承载下行传输终止位置的信息的时隙:位于下行传输的MCOT内并且承载了下行传输终止位置所在的时隙的SFI的时隙中距离下行传输终止位置最远的时隙。在这种情况下确定出的N的值可以为N的所有值中的最大值。例如,在图7所示的示例中,针对子载波间隔为15kHZ的情形,n=0,下行传输终止位置之前第(2 n+1-1)个时隙为下行传输终止位置之前第1个时隙,即时隙2。如图7所示,时隙2位于下行传输的MCOT内,假定时隙2中的GC-PDCCH承载了时隙3的SFI,则可以确定N=2 n+1-1=1。假定时隙1也位于MCOT内并且承载了时隙3的SFI,则N还可以为2。又如,在图7所示的示例中,针对子载波间隔为30kHZ的情形,n=1,下行传输终止位置之前第(2 n+1-1)个时隙为下行传输终止位置之前第3个时隙,即时隙3。如图7所示,时隙3位于下行传输的MCOT内,假定时隙3中的GC-PDCCH没有承载时隙6的SFI,而时隙5中的GC-PDCCH承载了时隙6的SFI,因此,时隙5为位于下行传输的MCOT内并且承载了时隙6的SFI的时隙中距离下行传输终止位置最远的时隙,因此可以确定时隙5为承载下行传输终止位置的时隙,即N=1。假定时隙6也包括了GC-PDCCH并承载时隙6的SFI,则N还可以为0。当然,上述示例仅仅是示例性的,本公开并不限于此。
如上所述,根据本公开的实施例,电子设备100可以通过GC-PDCCH来承载针对非授权频谱的下行传输终止位置的信息。进一步,电子设备 100还可以配置用于承载下行传输终止位置的信息的GC-PDCCH的时隙的数目和位置,以使得针对NR通信系统的特点更加合理地设计GC-PDCCH。
<2.2通过GC-PDCCH承载MCOT的长度和时域位置>
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过GC-PDCCH来传输下行传输的MCOT的长度和时域位置,MCOT包括一个或多个时隙。这里,MCOT的长度例如可以用时隙的个数来表示,而MCOT的时域位置例如可以包括MCOT中包括的所有时隙的时隙编号等。
根据本公开的实施例,可以定义MCOT中的每个时隙为一个COT(Channel Occupy Time,信道占用时间)单元。也就是说,MCOT包括一个或多个COT单元。图8是示出根据本公开的实施例的MCOT与COT单元之间的关系的示意图。如图8所示,MCOT包括四个时隙:时隙1、时隙2、时隙3和时隙4,每个时隙都可以为一个COT单元。
根据本公开的实施例,MCOT中只包括一种子载波配置,也就是说,MCOT内包括的所有时隙的绝对长度都相等,即MCOT内包括的所有OFDM符号的长度都相等。因此,针对一个MCOT,其中的每个COT单元的长度相同。
根据本公开的实施例,COT单元内的首次传输可以是下行传输过程。也就是说,COT单元内的传输可以全部是下行传输(COT单元没有上下行切换点);可以是部分的下行传输,接着是部分的上行传输(COT单元内包括1个上下行切换点);也可以是部分的下行传输,接着是部分的上行传输,再接着是部分的下行传输(COT单元内包括2个上下行切换点)。也就是说,COT单元包括至少一次下行传输过程。当然,这仅仅是示例性的说明,COT单元内的首次传输也可以是上行传输过程。
根据本公开的实施例,电子设备100还可以对MCOT中的每个COT单元的SFI进行配置,以使得MCOT中的每个COT单元包括的上行传输与下行传输之间的切换点的个数不大于2。也就是说,允许用户设备在COT单元内发送上行反馈。进一步,在用户设备进行上行反馈之后,电子设备100还可以接着发送下行数据,由此提高了信道的利用率。进一步,电子设备100还可以对MCOT中的每个COT单元的SFI进行配置,以使 得:MCOT包括的上行传输与下行传输之间的切换点的个数不大于预定阈值。这里,电子设备100可以根据信道的繁忙程度来确定预定阈值的大小。由此一来,电子设备100可以对MCOT内的总切换点个数进行限定,以避免频繁的上下行切换。
如上所述,电子设备100可以通过GC-PDCCH来承载MCOT的长度和时域位置的信息,并定义了COT单元,以允许用户设备在COT单元内进行上行传输。这样一来,允许更加灵活的上下行配置,以提高信道的利用效率。
<2.3通过GC-PDCCH承载在MCOT内进行上行传输前是否需要执行信道检测过程的信息>
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过GC-PDCCH来传输关于在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程的信息。
如上所述,用户设备可以在COT单元内进行上行传输,例如发送上行反馈,包括但不限于ACK(Acknowledgement,确认)/NACK(Negative Acknowledgment,非确认)信息。在LTE系统中,用户设备在进行这样的上行传输之前,需要进行信道检测过程,只有当信道检测空闲时才可以在COT单元内进行上行传输。
在NR通信系统中,子载波间隔越大,一个时隙的绝对长度就会越短。当子载波间隔比较大时,一个时隙的绝对长度非常短。在这种情况下,用户设备在进行上行传输之前执行信道检测过程可能是毫无意义的。因此,根据本公开的实施例,电子设备100可以为用户设备配置在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程的信息。例如,电子设备100可以根据系统的子载波间隔来确定用户设备在进行上行传输前是否需要执行信道检测过程。具体地,当系统的子载波间隔大于等于一定阈值时,电子设备100可以确定用户设备在进行上行传输前不需要执行信道检测过程;当系统的子载波间隔小于一定阈值时,电子设备100可以确定用户设备在进行上行传输前需要执行信道检测过程。优选地,该阈值可以为120kHZ。
进一步,电子设备100的配置单元110可以利用GC-PDCCH来承载关于用户设备在MCOT的COT单元内进行上行传输前是否需要执行信道 检测过程的信息。
根据本公开的实施例,配置单元110还可以对通过PDCCH发送的信息进行配置,以通过PDCCH来传输关于在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程的信息。例如,配置单元110可以通过PDCCH的私有搜索区来承载关于用户设备在COT单元内进行上行传输前是否需要执行信道检测过程的信息。进一步,通信单元120可以通过PDCCH来再次传输关于用户设备在COT单元内进行上行传输前是否需要执行信道检测过程的信息。
如上所述,根据本公开的实施例,可以利用GC-PDCCH和PDCCH两者发送关于用户设备在COT单元内进行上行传输前是否需要执行信道检测过程的信息,以防止用户设备没有接收到GC-PDCCH上的信息或者对GC-PDCCH上的信息解调不正确。
根据本公开的实施例,信道检测过程可以为LBT(Listen Before Talk,先听后说)过程。例如,信道检测过程可以为Type 2(类型2)的信道检测过程,即不包括随机退避过程的信道检测过程。
如上所述,根据本公开的实施例,电子设备100可以为用户设备配置在COT单元内进行上行传输前是否需要执行信道检测过程的信息,从而在一些情况下不执行信道检测过程从而节约信令开销。
<2.4通过GC-PDCCH承载信道检测过程的参数信息>
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过GC-PDCCH来传输关于在MCOT的COT内进行上行传输前执行的信道检测过程的参数信息。
根据本公开的实施例,当电子设备100没有通过GC-PDCCH向用户设备发送关于在COT单元内进行上行传输前是否需要执行信道检测过程的信息时,可以默认用户设备在每次上行传输前都需要执行信道检测过程,因此关于在MCOT的COT内进行上行传输前执行的信道检测过程的参数可以针对所有信道检测过程。当电子设备100通过GC-PDCCH向用户设备发送关于在COT单元内进行上行传输前需要执行信道检测过程的信息时,关于在MCOT的COT内进行上行传输前执行的信道检测过程的参数可以针对需要执行的信道检测过程。
根据本公开的实施例,信道检测过程的参数包括但不限于信道检测 过程的开始时间信息,例如开始时间所在的OFDM符号的位置。当然,信道检测过程的参数还可以包括其它与执行信道检测过程相关的参数。
如上所述,根据本公开的实施例,电子设备100可以通过GC-PDCCH来承载与信道检测过程相关的参数。相比于PDCCH的公共搜索区针对整个小区中的用户设备来说,GC-PDCCH针对一组用户设备,从而在一定程度上缩小了用户范围。相比于PDCCH的私有搜索区针对特定的用户设备来说,可以将相似的信息发送至一组用户设备,从而节约信令开销。
<2.5通过GC-PDCCH承载与前一个时隙中的数据相关的控制信息>
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的信息进行配置,以通过GC-PDCCH来传输与GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
图9是示出根据本公开的实施例的通过GC-PDCCH来传输与前一个时隙中的数据相关的控制信息的示意图。在图9中,横轴表示时间,纵轴表示频率。图9示出了3个时隙(时隙1、时隙2和时隙3)的情形。斜线阴影区域表示PDCCH所占区域,例如每个时隙的前3个OFDM符号,黑色实心区域表示GC-PDCCH所占的区域。网格区域表示针对非授权频谱的下行传输的开始位置。如图9所示,由于各种原因在时隙1中没有发送PDCCH,因此用于设备无法对时隙1中的数据进行解码。根据本公开的实施例,可以利用时隙2中的GC-PDCCH来承载与时隙1中的数据相关的控制信息,从而使得时隙1中的数据没有浪费。值得注意的是,虽然图9中没有示出,但是时隙2中的GC-PDCCH可以根据前述的任意实施方式来承载其它信息,例如下行传输的终止位置的信息、时隙2及以后的时隙的SFI信息等等。
根据本公开的实施例,当在前一个时隙中没有发送与前一个时隙中的数据相关的控制信息时,电子设备100可以通过GC-PDCCH来传输与前一个时隙中的数据相关的控制信息。这里,前一个时隙可以为发送GC-PDCCH的时隙,也可以为不发送GC-PDCCH的时隙。
根据本公开的实施例,在前一个时隙中没有发送与前一个时隙中的数据相关的控制信息的原因可以是在前一个时隙的PDCCH区域之后,电子设备100的信道检测才成功。如图9所示,在时隙1的PDCCH区域之后电子设备100才检测到信道空闲,但是已经错过了PDCCH的发送时间, 从而导致没有发送与时隙1中的数据相关的控制信息。值得注意的是,图9中示出了时隙1中的PDCCH区域不包括GC-PDCCH的情形,当然时隙1中的PDCCH也可以包括GC-PDCCH,此时GC-PDCCH也没有被发送出来。
根据本公开的实施例,假定针对非授权频谱的下行传输开始位置位于一个时隙的PDCCH区域之后,而在该时隙中没有发送与该时隙中的数据相关的控制信息,在这种情况下用户设备由于不知道与该时隙中的数据相关的控制信息,因此无法对这部分数据进行解码,从而造成资源的浪费。根据本公开的实施例,可以利用下一个时隙的GC-PDCCH来承载与前一个时隙中的数据相关的控制信息,从而使得用户设备可以对这部分数据进行解码,提高信道的利用率。
根据本公开的实施例,前一个时隙中的数据可以是下行传输的一部分数据,也就是说,该GC-PDCCH所在的时隙将继续发送前一个时隙中没有发送完的下行数据,即前一个时隙中的数据与该GC-PDCCH所在的时隙中的数据属于同一个数据包。进一步,前一个时隙中的数据也可以是下行传输的全部数据。也就是说,前一个时隙中的数据包括一个完整的数据包。
根据本公开的实施例,与前一个时隙中的数据相关的控制信息可以用于对前一个时隙中的数据进行解码,即与对前一个时隙中的数据进行解码相关的信息。例如,控制信息可以指示前一个时隙中的数据的MCS(Modulation and Coding Scheme,调制和编码策略)等级。具体地,控制信息可以包括前一个时隙中的数据的MCS等级的索引。也就是说,电子设备100与用户设备都存储有MCS等级以及索引的对应关系,当用户设备获取了MCS等级的索引时可以确定MCS等级,从而可以对数据进行解码。进一步,控制信息也可以指示前一个时隙中的数据的SFI,以使得用户设备可以确定前一个时隙的上下行配置信息,从而对数据进行解码。
根据本公开的实施例,由于在前一个时隙中没有发送控制信息,假定前一个时隙是发送GC-PDCCH的时隙,那么前一个时隙的GC-PDCCH也没有发送出来,因此用户设备很有可能不知道前一个时隙的SFI。因此,电子设备100可以根据默认的时隙格式信息SFI来发送在GC-PDCCH所在的时隙的前一个时隙中的数据。例如,电子设备100可以根据电子设备100与用户设备之间事先约定好的SFI来发送前一个时隙中的数据,从而用户设备可以根据事先约定好的SFI来接收前一个时隙中的数据。进一步, 电子设备100也可以根据电子设备100设置好的前一个时隙的SFI(即与在前一个时隙中发送了GC-PDCCH的情况下的SFI设置相同)来发送前一个时隙中的数据,从而用户设备可以默认该时隙中的OFDM符号都用于下行传输从而在全部的OFDM符号上接收前一个时隙的数据。
根据本公开的实施例,GC-PDCCH可以承载前一个时隙中的SFI。也就是说,一个时隙中的GC-PDCCH可以承载以下信息中的一种或多种:本时隙的SFI;本时隙之后的时隙的SFI;以及本时隙之前的时隙的SFI。进一步,一个时隙中的GC-PDCCH可以承载一个或多个时隙的SFI。
根据本公开的实施例,通信单元120还可以向用户设备发送通知以使得用户设备通过GC-PDCCH来接收与前一个时隙中的数据相关的控制信息。
根据本公开的实施例,由于GC-PDCCH有一定的周期,因此假定当前时隙并不是发送GC-PDCCH的时隙,电子设备需要利用当前时隙的GC-PDCCH来承载与前一个时隙的数据相关的控制信息,而用户设备则按照原有的GC-PDCCH接收周期接收GC-PDCCH,因此并不会在当前时隙接收GC-PDCCH。在这种情况下,电子设备100可以向用户设备发送通知,以通知用户设备需要接收当前时隙的GC-PDCCH以获取与前一个时隙中的数据相关的控制信息。以图9为例,当电子设备100发现下行数据开始位置已经错过了时隙1的PDCCH区域后,可以向用户设备发送通知,以通知用户设备在时隙2上接收GC-PDCCH。
根据本公开的实施例,电子设备100可以通过授权频谱向用户设备发送上述通知。进一步,电子设备100可以利用高层信令(包括但不限于RRC信令)或者低层信令(包括但不限于物理层信令)通过授权频谱向用户设备发送这样的通知。
根据本公开的实施例,电子设备100还可以配置GC-PDCCH的发送周期,并可以将配置的GC-PDCCH的发送周期发送至用户设备。此外,电子设备100还可以对GC-PDCCH的发送周期进行重配置,并可以将重新配置的GC-PDCCH的发送周期发送至用户设备。
根据本公开的实施例,电子设备100可以通过授权频谱向用户设备发送GC-PDCCH的发送周期或重新配置的GC-PDCCH的发送周期。进一步,电子设备100可以利用高层信令(包括但不限于RRC信令)或者低层信令(包括但不限于物理层信令)通过授权频谱向用户设备发送 GC-PDCCH的发送周期或重新配置的GC-PDCCH的发送周期。
如上所述,根据本公开的实施例,可以通过当前时隙的GC-PDCCH来传输与前一个时隙中的数据相关的控制信息,从而使得用户设备可以对前一个时隙中的数据进行正确解码,提高了信道的利用率。
此外,也可以通过ePDCCH来承载与当前时隙中的部分数据相关的控制信息,ePDCCH可以利用PDSCH(Physical Downlink Share Channel,物理下行共享信道)的资源来承载控制信息。因此,即便没有发送PDCCH,仍然可以利用穿插在数据中的ePDCCH来承载控制信息,用户可以通过解调该控制信息来解调数据。
<2.6在前一个时隙中没有发送GC-PDCCH的情况下在紧接着的时隙发送GC-PDCCH>
根据本公开的实施例,配置单元110可以对通过GC-PDCCH发送的数据进行配置,以使得在前一个时隙中的GC-PDCCH没有发送成功的情况下在紧接着的时隙发送GC-PDCCH。
根据本公开的实施例,如前文所述,在紧接着的时隙发送的GC-PDCCH可以承载与前一个时隙中的数据相关的控制信息。
根据本公开的实施例,根据GC-PDCCH的发送周期的设置,假定前一个时隙为应当发送GC-PDCCH的时隙,紧接着的时隙可以为应当发送GC-PDCCH的时隙,紧接着的时隙也可以为不应当发送GC-PDCCH的时隙。根据本公开的实施例,在前一个时隙中的GC-PDCCH没有发送成功的情况下,电子设备100在紧接着的时隙发送GC-PDCCH,而不管GC-PDCCH的发送周期。
图10是示出根据本公开的实施例的在前一个时隙没有发送控制信息的情况下在下一个时隙发送与前一个时隙中的数据相关的控制信息而不管GC-PDCCH的发送周期的示意图。如图10所示,横轴表示时间,纵轴表示频率。图10示出了4个时隙(时隙1、时隙2、时隙3和时隙4)的情形。斜线阴影区域表示PDCCH所占区域,例如每个时隙的前3个OFDM符号,黑色实心区域表示GC-PDCCH所占的区域。网格区域表示针对非授权频谱的下行传输的开始位置。在图10中,GC-PDCCH的发送周期为两个时隙,即应当在时隙1和时隙3中发送GC-PDCCH。如图10所示,由于各种原因,例如前文中所述的信道检测没有成功等,时隙1中的 PDCCH区域并未发送,即时隙1中的GC-PDCCH没有发送成功,则电子设备100可以在时隙2发送GC-PDCCH。这里,由于时隙2并不是应当发送GC-PDCCH的时隙,而电子设备100可以利用时隙2来发送与时隙1中的数据相关的控制信息。
如上所述,根据本公开的实施例,在前一个时隙中的GC-PDCCH没有发送成功的情况下,电子设备100可以在紧接着的时隙发送GC-PDCCH。这样一来,由于在紧接着的时隙,电子设备100已经占用了信道,因此在紧接着的时隙发送GC-PDCCH从而被用户设备正确接收并解码的可能性大大提高。
根据本公开的实施例,由于时隙2并不是应当发送GC-PDCCH的时隙,因此电子设备100可以向用户设备发送通知以使得用户设备通过GC-PDCCH来接收与前一个时隙中的数据相关的控制信息。进一步,电子设备100可以通过授权频谱向用户设备发送通知。根据本公开的实施例,电子设备100也可以不向用户设备发送通知,从而当用户设备在时隙1中没有接收到GC-PDCCH时自动在时隙2中接收GC-PDCCH。
根据本公开的实施例,电子设备100也可以由此改变GC-PDCCH的发送周期,并可以向用户设备重新配置GC-PDCCH的发送周期。例如,电子设备100可以通过授权频谱向用户设备发送重新配置的GC-PDCCH的发送周期。
如上所述,根据本公开的实施例,当电子设备100在前一个时隙没有发送成功GC-PDCCH时,可以利用紧接着的时隙来发送GC-PDCCH,而暂时不管GC-PDCCH的发送周期,从而使得用户设备可以对前一个时隙中的数据成功解调,提高信道利用率。
由此可见,根据本公开的实施例的电子设备100,可以通过GC-PDCCH来传输以下信息中的一种或多种:针对非授权频谱的下行传输终止位置的信息;下行传输的MCOT的长度和时域位置信息;关于在COT单元内进行上行传输前是否需要执行信道检测过程的信息;信道检测过程的参数信息;以及与GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。根据本公开的实施例,电子设备100可以单独发送上述信息中的任一种,也可以组合发送多种信息。相比于PDCCH的公共搜索区针对整个小区中的用户设备来说,GC-PDCCH针对一组用户设备,从而在一定程度上缩小了用户范围。相比于PDCCH的私有搜索区针对特定的用户设备来说,可以将相似的信息发送至一组用户设备,从而节约信 令开销。由此可见,本公开针对NR通信系统的特点更加合理地设计了GC-PDCCH。
<2.7下行传输起始位置的承载>
根据本公开的实施例,配置单元110可以配置针对非授权频谱的下行传输的起始位置的信息,并且通信单元120可以发送针对非授权频谱的下行传输的起始位置的信息。
根据本公开的实施例,可以通过高层信令,包括但不限于RRC信令来承载针对非授权频谱的下行传输的起始位置的信息。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置的信息可以包括以下中的一种或多种:该下行传输的起始位置对应的子帧的指示信息、该下行传输的起始位置对应的时隙的指示信息、该下行传输的起始位置对应的OFDM符号的指示信息。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置可以包括针对非授权频谱的下行传输的可能的起始位置,因此针对非授权频谱的下行传输的起始位置的信息中可以包括一个或多个起始位置。
根据本公开的实施例,配置单元110可以根据下行传输的MCOT内包括的OFDM符号的长度(或者说子载波间隔的大小)来配置针对非授权频谱的下行传输的起始位置的信息。具体地,当MCOT内包括的OFDM符号的长度越小,即子载波间隔越大,可以配置针对非授权频谱的下行传输的起始位置越多。也就是说,MCOT内包括的OFDM符号的长度越小,一个子帧内包括的时隙数目越多,因此可选的下行传输的起始位置越多。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置的信息可以包括该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括OFDM符号在子帧内的索引。例如,可以将一个子帧内的OFDM符号按照在时域上的顺序排序并编号,从而确定每个OFDM符号的索引。进一步,当确定了下行传输的一个或多个起始位置后,配置单元110可以将这一个或多个起始位置对应的OFDM符号的索引配置为针对非授权频谱的下行传输的起始位置的信息,并通过通信单元120发送这样的信息。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置可以位于一个时隙的起始位置和中间位置。也就是说,对于一个包括14个OFDM符号(分别编号为#0,#1,…,#13)的时隙来说,针对非授权频 谱的下行传输的起始位置可以位于编号为#0和#7的OFDM符号,由此可以简化信令的设计,节约开销。在这种情况下,对于上述的实施例,针对子载波为15×n(kHZ)的配置(n=1,2,4,8,16,32),每个子帧中包括n个时隙,每个时隙包括2个可以作为针对非授权频谱的下行传输的起始位置的OFDM符号,因此每个子帧中包括2n个可以作为针对非授权频谱的下行传输的起始位置的OFDM符号。对于n=32的情形,每个子帧中包括64个可以作为针对非授权频谱的下行传输的起始位置的OFDM符号,因此最多需要6个比特的信息来指示OFDM符号在子帧内的索引。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置的信息可以包括该下行传输的起始位置对应的时隙的指示信息以及该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括时隙在子帧内的索引和OFDM符号在时隙内的索引。例如,可以将一个子帧内的时隙按照在时域上的顺序排序并编号,从而确定每个时隙在子帧内的索引。此外,可以将一个时隙内的OFDM符号按照在时域上的顺序排序并编号,从而确定每个OFDM在时隙内的索引。进一步,当确定了下行传输的一个或多个起始位置后,配置单元110可以将这一个或多个起始位置对应的时隙在子帧内的索引以及起始位置对应的OFDM符号在时隙内的索引配置为针对非授权频谱的下行传输的起始位置的信息,并通过通信单元120发送这样的信息。
针对子载波为15×n(kHZ)的配置(n=1,2,4,8,16,32),每个子帧中包括n个时隙。当n=32时,每个子帧中包括32个时隙,因此需要5比特来指示时隙在子帧中的索引。类似地,针对下行传输的起始位置可以位于一个时隙内编号为#0和#7的OFDM符号的情形,每个时隙内包括2个可以作为针对非授权频谱的下行传输的起始位置的OFDM符号,因此需要1比特来指示OFDM符号在时隙内的索引。也就是说,总共需要6比特来指示起始位置对应的时隙在子帧内的索引和起始位置对应的OFDM符号在起始位置对应的时隙内的索引。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置可以包括以下位置中的一种或多种:子帧的边界位置;时隙的边界位置;以及时隙的中间位置。
这里,子帧的边界位置指的是每个子帧的开始位置;时隙的边界位置指的是每个时隙的开始位置,当时隙是子帧中的第一个时隙时,该时隙的边界位置实际上也是子帧的边界位置;时隙的中间位置指的是一个时隙 在时域上的中点,对于一个包括14个OFDM符号(分别编号为#0,#1,…,#13)的时隙来说,时隙的中间位置指的是编号为#7的OFDM符号。
根据本公开的实施例,针对非授权频谱的下行传输的起始位置的信息可以包括指示起始位置的种类的信息,以用于指示下行传输的起始位置是以下位置中的哪一种或哪几种:子帧的边界位置;时隙的边界位置;以及时隙的中间位置。示例性地,可以用种类索引来表示这样的种类信息。
下面示例性示出上述几种信息的组合:子帧的边界位置;时隙的边界位置;子帧的边界位置或时隙的边界位置;时隙的边界位置或时隙的中间位置;以及子帧的边界位置或时隙的边界位置或时隙的中间位置。例如,电子设备100可以用3比特信息来指示上述组合的索引,如表2所示。
表2
Figure PCTCN2019074679-appb-000002
根据本公开的实施例,由于下行传输的起始位置可以位于子帧的边界位置、时隙的边界位置、子帧的边界位置或时隙的边界位置、时隙的边界位置或时隙的中间位置、或者子帧的边界位置、时隙的边界位置或时隙的中间位置,因此电子设备100可以以子帧为单位对下行传输进行调度,也可以以时隙为单位对下行传输进行调度,还可以以时隙的一半长度为单位对下行传输进行调度,从而非授权频段有更多的下行传输机会,提高了非授权频谱的利用效率。
如上所述,本公开通过几个非限制性的示例描述了针对非授权频谱的下行传输的起始位置的信息的配置,当然还可以通过其它方式来配置针对非授权频谱的下行传输的起始位置的信息,只要能指示出针对非授权频谱的下行传输的起始位置即可。
如上所述,根据本公开的实施例的电子设备100,可以通过例如高层信令来承载针对非授权频谱的下行传输的起始位置。这样一来,相较于LTE LAA(Licensed Assisted Access,授权辅助接入)系统,在NR通信系统中非授权频段有更多的下行传输机会,提高了非授权频谱的利用效率。
<3.用户设备的配置示例>
图11是示出根据本公开的实施例的无线通信系统中的用作用户设备的电子设备1100的结构的框图。这里的电子设备1100可以作为NR通信系统中的用户设备。
如图11所示,电子设备1100可以包括解调单元1110和通信单元1120。
这里,电子设备1100的各个单元都可以包括在处理电路中。需要说明的是,电子设备1100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元1120可以从为电子设备1100提供服务的网络侧设备接收下行信息,包括通过GC-PDCCH和PDCCH发送的下行信息。进一步,解调单元1110可以对下行信息进行解调。
根据本公开的实施例,电子设备1100可以利用非授权频谱来接收通过GC-PDCCH发送的信息。进一步,电子设备1100也可以利用授权频谱接收通过GC-PDCCH发送的信息。这样一来,电子设备1100可以保证接收GC-PDCCH上承载的信息的可靠性。
<3.1通过GC-PDCCH接收下行传输终止位置>
根据本公开的实施例,通信单元1120可以通过GC-PDCCH来接收信息。进一步,解调单元1110可以对通过GC-PDCCH接收的信息进行解调以获取针对非授权频谱的下行传输终止位置。
根据本公开的实施例,解调单元1110还可以对通过GC-PDCCH接收的信息进行解调以获取下行传输终止位置所在的时隙的时隙格式信息 SFI。如前文中所述,网络侧设备通过同一个时隙中的GC-PDCCH来承载下行传输终止位置的信息以及下行传输终止位置所在的时隙的SFI。因此,解调单元1110可以对通过同一个时隙中的GC-PDCCH接收的信息进行解调以获取下行传输终止位置以及下行传输终止位置所在的时隙的SFI。
根据本公开的实施例,通信单元1120还可以通过PDCCH来接收信息。进一步,解调单元1110还可以对通过PDCCH接收的信息进行解调以获取针对非授权频谱的下行传输终止位置。前文中提到,网络侧设备可以通过GC-PDCCH和PDCCH两者来传输针对非授权频谱的下行传输终止位置的信息。因此,解调单元1110可以对PDCCH的公共搜索区或者私有搜索区进行解调以获取针对非授权频谱的下行传输终止位置。
根据本公开的实施例,解调单元1110可以对通过GC-PDCCH接收的信息进行解调获取针对非授权频谱的下行传输终止位置,也可以对通过PDCCH接收的信息进行解调获取针对非授权频谱的下行传输终止位置,当这两者冲突时,即对通过GC-PDCCH接收的信息进行解调获取的下行传输终止位置与对通过PDCCH接收的信息进行解调获取的下行传输终止位置不同时,解调单元1110可以以对通过PDCCH接收的信息进行解调获取的针对非授权频谱的下行传输终止位置为准,即将对通过PDCCH接收的信息进行解调获取的下行传输终止位置作为下行传输终止位置。
如上所述,根据本公开的实施例的电子设备1100,可以通过GC-PDCCH和PDCCH两者来获取下行传输终止位置。这样一来,可以防止用户设备没有收到GC-PDCCH或者对GC-PDCCH上承载的信息的解码错误。
图12是示出根据本公开的实施例的通过GC-PDCCH传输下行传输终止位置的信令交互图。如图12所示,在步骤S1201中,基站通过GC-PDCCH来承载针对非授权频谱的下行传输终止位置。接下来,在步骤S1202中,UE(User Equipment,用户设备)通过解调GC-PDCCH来获取针对非授权频谱的下行传输终止位置。
如上所述,电子设备1100可以通过GC-PDCCH来获取针对非授权频谱的下行传输终止位置。这样一来,针对在PDCCH公共搜索区的信息,电子设备1100需要在两种聚合等级下尝试进行盲检,而GC-PDCCH只包含一种聚合等级的搜索空间,因此减少了电子设备1100的盲检工作量。进一步,相比于通过PDCCH私有搜索区来承载上述信息,通过GC-PDCCH来承载上述信息,使得电子设备1100能够更早地获取下行传 输终止位置,从而为上行反馈或上行数据的发送做好准备。
<3.2通过GC-PDCCH接收MCOT的长度和时域位置>
根据本公开的实施例,解调单元1110还可以对通过GC-PDCCH接收的信息进行解调以获取下行传输的最大信道占用时间MCOT的长度和时域位置,MCOT包括一个或多个时隙。
如前文所述,可以定义MCOT中的每个时隙为一个COT单元。也就是说,MCOT包括一个或多个COT单元。这里,MCOT的长度例如可以用时隙或者COT单元的个数来表示,而MCOT的时域位置例如可以包括MCOT中包括的所有时隙或者COT单元的时隙编号等。
在LTE通信系统中,MCOT的长度和时域位置只有网络侧设备知晓,而用户设备并不知道MCOT的长度和时域位置,这样用户设备可能来不及进行上行反馈。根据本公开的实施例,电子设备1100可以通过GC-PDCCH来获取MCOT的长度和时域位置,从而可以为上行反馈做好准备。
根据本公开的实施例,MCOT中的每个COT单元包括的上行传输与下行传输之间的切换点的个数不大于2。也就是说,电子设备1100可以在COT单元内进行上行传输,例如发送上行反馈信息。进一步,在电子设备1100进行上行反馈之后,网络侧设备还可以接着发送下行数据,由此提高了信道的利用率。进一步,MCOT包括的上行传输与下行传输之间的切换点的个数可以不大于预定阈值,由此避免频繁的上下行切换。
如上所示,根据本公开的实施例,针对NR通信系统定了MCOT内的COT单元,而每个COT单元类似于LTE通信系统中的MCOT。换句话说,在每个COT单元内允许电子设备1100进行上行数据的反馈。此外,在电子设备1100进行上行数据的反馈之后允许网络侧设备继续发送下行数据。由此一来,使得NR通信系统的配置更加灵活。
<3.3通过GC-PDCCH接收在MCOT内进行上行传输前是否需要执行信道检测过程的信息>
根据本公开的实施例,解调单元1110可以对通过GC-PDCCH接收的信息进行解调以确定在MCOT的COT单元内进行上行传输前是否需要 执行信道检测过程。
根据本公开的实施例,当解调单元1110解调出的信息表示在MCOT的COT单元内进行上行传输前需要执行信道检测过程时,电子设备1100需要执行信道检测过程,只有当信道检测空闲时才在COT单元内进行上行传输。进一步,当解调单元1110解调出的信息表示在MCOT的COT单元内进行上行传输前不需要执行信道检测过程时,电子设备1100无需执行信道检测过程,可以直接在MCOT的COT单元内进行上行传输。
根据本公开的实施例,上行传输可以包括对来自网络侧设备的下行数据的上行反馈,例如ACK/NACK。此外,信道检测过程也可以是LBT过程,例如Type 2的信道检测过程。
根据本公开的实施例,通信单元1120还可以通过PDCCH来接收信息。进一步,解调单元1110还可以对通过PDCCH接收的信息进行解调以确定在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程。
根据本公开的实施例,解调单元1110可以对通过GC-PDCCH接收的信息进行解调确定在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程,也可以对通过PDCCH接收的信息进行解调确定在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程。进一步,当前述两者冲突时,即对通过GC-PDCCH接收的信息进行解调确定在MCOT的COT单元内进行上行传输前需要执行信道检测过程,对通过PDCCH接收的信息进行解调确定的在MCOT的COT单元内进行上行传输前不需要执行信道检测过程,或者对通过GC-PDCCH接收的信息进行解调确定在MCOT的COT单元内进行上行传输前不需要执行信道检测过程,对通过PDCCH接收的信息进行解调确定的在MCOT的COT单元内进行上行传输前需要执行信道检测过程时,解调单元可以以对通过PDCCH接收的信息进行解调确定的在MCOT的COT单元内进行上行传输前是否需要执行信道检测过程为准。
如上所述,根据本公开的实施例,电子设备1100可以通过GC-PDCCH和PDCCH两者接收关于电子设备1100在COT单元内进行上行传输前是否需要执行信道检测过程的信息,以防止电子设备1100没有接收到GC-PDCCH上的信息或者对GC-PDCCH上的信息解调不正确。进一步,网络侧设备可以为电子设备1100配置在COT单元内进行上行传输前是否需要执行信道检测过程。也就是说,电子设备1100在一些情形下 可以不需要执行信道检测过程而直接在COT单元内进行上行传输,从而节约信令开销。
<3.4通过GC-PDCCH接收信道检测过程的参数信息>
根据本公开的实施例,解调单元1100可以对通过GC-PDCCH接收的信息进行解调以获取在MCOT的COT单元内进行上行传输前执行的信道检测过程的参数。
根据本公开的实施例,当电子设备1100没有从网络侧设备接收到关于在COT单元内进行上行传输前是否需要执行信道检测过程的信息时,可以默认电子设备1100在每次上行传输前都需要执行信道检测过程,因此关于在MCOT的COT内进行上行传输前执行的信道检测过程的参数可以针对所有信道检测过程。当电子设备1100从网络侧设备接收到关于在COT单元内进行上行传输前需要执行信道检测过程的信息时,关于在MCOT的COT内进行上行传输前执行的信道检测过程的参数可以针对需要执行的信道检测过程。
根据本公开的实施例,信道检测过程的参数包括但不限于信道检测过程的开始时间信息,例如开始时间所在的OFDM符号的位置。当然,信道检测过程的参数还可以包括其它与执行信道检测过程相关的参数。
如上所述,根据本公开的实施例,电子设备1100可以通过GC-PDCCH获取与信道检测过程相关的参数。GC-PDCCH只包含一种聚合等级的搜索空间,因此减少了用户设备的盲检工作量。进一步,通过GC-PDCCH来承载上述信息,使得电子设备1100可以更早地获取与信道检测过程相关的参数,从而为上行反馈或上行数据的发送做好准备。
图13是示出根据本公开的实施例的通过GC-PDCCH传输MCOT长度和位置、是否需要执行LBT以及LBT参数中的至少一种的信令交互图。如图13所示,在步骤S1301中,基站通过GC-PDCCH来承载MCOT的长度和时域位置、在COT单元内进行上行传输前是否需要执行LBT过程以及与LBT过程相关的参数中的至少一种信息。接下来,在步骤S1302中,UE通过解调GC-PDCCH来获取上述信息。假定UE获取的关于是否需要执行LBT过程的信息表明需要执行LBT过程,或者UE没有接收到关于是否需要执行LBT过程的信息,则在步骤S1303中,UE在上行传输前执行LBT过程。接下来,在步骤S1304中,当信道检测空闲时,UE在 COT单元内发送ACK/NACK信息。假定在步骤S1302中UE获取的关于是否需要执行LBT过程的信息表明不需要执行LBT过程,则在步骤S1304中,UE直接在COT单元内发送ACK/NACK信息。图13中仅示出了信道检测过程为LBT过程,并且上行传输为ACK/NACK信息的示例,当然信道检测过程也可以为其它类型的信道检测过程,并且上行传输也可以为其它上行信息。
<3.5通过GC-PDCCH接收与前一个时隙中的数据相关的控制信息>
根据本公开的实施例,解调单元1110可以对通过GC-PDCCH接收的信息进行解调以获取与在GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
根据本公开的实施例,前一个时隙中的数据可以是下行传输的一部分数据,也就是说,该GC-PDCCH所在的时隙将继续发送前一个时隙中没有发送完的下行数据,即前一个时隙中的数据与该GC-PDCCH所在的时隙中的数据属于同一个数据包。进一步,前一个时隙中的数据也可以是下行传输的全部数据。也就是说,前一个时隙中的数据包括一个完整的数据包。
根据本公开的实施例,控制信息可以用于解调前一个时隙中的数据。也就是说,控制信息与前一个时隙中的数据的解调相关。
根据本公开的实施例,电子设备1100可以根据控制信息确定前一个时隙中的数据的MCS等级。具体地,控制信息可以包括前一个时隙中的数据的MCS等级的索引。也就是说,网络侧设备与电子设备1100都存储有MCS等级以及索引的对应关系,当电子设备1100获取了MCS等级的索引时可以确定MCS等级,从而可以对数据进行解码。
进一步,电子设备1100可以根据控制信息确定前一个时隙中的数据的SFI,从而可以确定前一个时隙的上下行配置信息,对前一个时隙中的数据进行解码。
根据本公开的实施例,由于在前一个时隙中没有发送控制信息,假定前一个时隙是发送GC-PDCCH的时隙,那么前一个时隙的GC-PDCCH也没有发送出来,因此电子设备1100很有可能不知道前一个时隙的SFI。因此,电子设备1100可以根据默认的时隙格式信息SFI来接收在GC-PDCCH所在的时隙的前一个时隙中的数据。例如,电子设备1100可 以根据与网络侧设备之间事先约定好的SFI来接收前一个时隙中的数据。进一步,电子设备1100也可以默认该时隙中的OFDM符号都用于下行传输从而在全部的OFDM符号上接收前一个时隙的数据。
根据本公开的实施例,电子设备1100可以对前一个时隙中接收到的数据进行存储,并根据控制信息对前一个时隙中的数据进行解调。例如,电子设备1100可以根据控制信息中的SFI确定前一个时隙中的数据的时隙格式,并根据控制信息中的MCS等级确定前一个时隙中的数据的MCS等级,进而对前一个时隙中的数据进行解调。
图14是示出根据本公开的实施例的通过GC-PDCCH传输于前一个时隙中的数据相关的控制信息的信令交互图。如图14所示,在步骤S1401中,基站向UE发送前一个时隙中的数据,UE对前一个时隙中的数据进行接收并存储。接下来,在步骤S1402中,基站通过当前时隙的GC-PDCCH承载与前一个时隙中的数据相关的控制信息。接下来,在步骤S1403中,UE对GC-PDCCH进行解调以获取与前一个时隙中的数据相关的控制信息。接下来,在步骤S1404中,UE根据控制信息对前一个时隙中的数据进行解调。
根据本公开的实施例,电子设备1100可以响应于从网络侧设备接收的通知,通过GC-PDCCH来接收与在前一个时隙中的数据相关的控制信息。也就是说,当网络侧设备在前一个时隙中没有发送与前一个时隙中的数据相关的控制信息时,可以通过当前时隙中的GC-PDCCH来发送与前一个时隙中的数据相关的控制信息,并向电子设备1100发送通知,从而电子设备1100可以响应于这样的通知,通过当前时隙的GC-PDCCH来接收与前一个时隙中的数据相关的控制信息。进一步,电子设备1100可以通过授权频谱从网络侧设备接收这样的通知。例如,电子设备1100可以通过高层信令(包括但不限于RRC信令)或者低层信令(包括但不限于物理层信令)通过授权频谱从网络侧设备接收这样的通知。
图15是示出根据本公开的实施例的向用户设备发送通知以使得用户设备在下一个时隙接收GC-PDCCH的信令交互图。如图15所示,在步骤S1501中,基站向UE发送前一个时隙中的数据,UE对前一个时隙中的数据进行接收并存储。接下来,在步骤S1502中,基站向UE发送通知以通知UE在前一个时隙的下一个时隙接收GC-PDCCH。这里,步骤S1501和步骤S1502可以交换位置,即基站只要发现前一个时隙的控制数据没有发送即可以向UE发送通知。接下来,在步骤S1503中,基站通过当前时 隙的GC-PDCCH承载与前一个时隙中的数据相关的控制信息。接下来,在步骤S1504中,UE对GC-PDCCH进行解调以获取与前一个时隙中的数据相关的控制信息。接下来,在步骤S1505中,UE根据控制信息对前一个时隙中的数据进行解调。
根据本公开的实施例,电子设备1100也可以在没有在前一个时隙中接收到GC-PDCCH,而前一个时隙应当发出GC-PDCCH的情况下,通过紧接着的时隙中的GC-PDCCH来接收与在前一个时隙中的数据相关的控制信息。也就是说,根据电子设备1100与网络侧设备之间设置的GC-PDCCH的发送周期,前一个时隙应当发送GC-PDCCH,而电子设备1100没有接收到前一个时隙的GC-PDCCH,电子设备1100可以确定网络侧设备由于一些原因没有发出前一个时隙的GC-PDCCH,从而在当前时隙接收GC-PDCCH,而暂时不管GC-PDCCH的发送周期。在这种情况下,电子设备1100无需从网络侧设备接收通知。
根据本公开的实施例,通信单元1120可以从网络侧设备接收配置的或者重新配置的GC-PDCCH的发送周期。进一步,通信单元1120可以通过授权频谱从网络侧设备接收配置的或者重新配置的GC-PDCCH的发送周期。例如,电子设备1100可以通过高层信令(包括但不限于RRC信令)或者低层信令(包括但不限于物理层信令)通过授权频谱从网络侧设备接收配置或者重新配置的GC-PDCCH的发送周期。
此外,解调单元1110也可以对通过ePDCCH接收的信息进行解调以获取与在ePDCCH所在的时隙的中的数据相关的控制信息。
如上所述,根据本公开的实施例,电子设备1100可以通过GC-PDCCH获取与前一个时隙中的数据相关的控制信息。在一些情况下,电子设备1100在前一个时隙中没有接收到与该时隙中的数据相关的控制信息,因此无法对这部分数据进行解码,从而造成资源的浪费。根据本公开的实施例,可以利用下一个时隙的GC-PDCCH来承载与前一个时隙中的数据相关的控制信息,从而使得电子设备1100可以对前一个时隙中的数据进行解码,提高信道的利用率。
由此可见,根据本公开的实施例的电子设备1100,可以通过GC-PDCCH来接收并解调以下信息中的一种或多种:针对非授权频谱的下行传输终止位置的信息;下行传输的MCOT的长度和时域位置信息;关于在COT单元内进行上行传输前是否需要执行信道检测过程的信息;信道检测过程的参数信息;以及与GC-PDCCH所在的时隙的前一个时隙 中的数据相关的控制信息。针对在PDCCH公共搜索区的信息,用户设备需要在两种聚合等级下尝试进行盲检,而GC-PDCCH只包含一种聚合等级的搜索空间,因此减少了用户设备的盲检工作量。进一步,相比于通过PDCCH私有搜索区来承载上述信息,通过GC-PDCCH来承载上述信息,使得用户设备更早地获取上述信息,从而为上行反馈或上行数据的发送做好准备。由此可见,本公开针对NR通信系统的特点更加合理地设计了GC-PDCCH。
<3.6接收下行传输起始位置>
根据本公开的实施例,通信单元1120可以接收针对非授权频谱的下行传输的起始位置的信息,并且解调单元1110可以对接收的针对非授权频谱的下行传输的起始位置的信息进行解调从而获取针对非授权频谱的下行传输的起始位置。
根据本公开的实施例,电子设备1100可以通过高层信令,包括但不限于RRC信令来接收针对非授权频谱的下行传输的起始位置的信息。
根据本公开的实施例,解调单元1110可以对接收的针对非授权频谱的下行传输的起始位置的信息进行解调从而获取以下信息中的一种或多种:下行传输的起始位置对应的子帧的指示信息、下行传输的起始位置对应的时隙的指示信息、下行传输的起始位置对应的OFDM符号的指示信息。
根据本公开的实施例,解调单元1110可以获取一个或多个针对非授权频谱的下行传输的起始位置。
根据本公开的实施例,下行传输的MCOT内包括的OFDM符号的长度越小,即子载波间隔越大,解调单元1110获取的针对非授权频谱的下行传输的起始位置越多。
根据本公开的实施例,解调单元1110可以获取下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括OFDM符号在子帧内的索引。例如,可以将一个子帧内的OFDM符号按照在时域上的顺序排序并编号。当解调单元1110获取了下行传输的起始位置对应的OFDM符号在子帧内的索引后,可以根据该索引确定下行传输的起始位置对应的OFDM符号在子帧中的位置。
根据本公开的实施例,解调单元1110可以获取下行传输的起始位置 对应的时隙的指示信息以及该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括下行传输的起始位置对应的时隙在下行传输的起始位置对应的子帧内的索引和下行传输的起始位置对应的OFDM符号在下行传输的起始位置对应的时隙内的索引。例如,可以将一个子帧内的时隙按照在时域上的顺序排序并编号,当解调单元1110获取了下行传输的起始位置对应的时隙在子帧内的索引后,可以根据该索引确定下行传输的起始位置对应的时隙在子帧中的位置。此外,可以将一个时隙内的OFDM符号按照在时域上的顺序排序并编号,当解调单元1110获取了下行传输的起始位置对应的OFDM符号在时隙内的索引后,可以根据该索引确定下行传输的起始位置对应的OFDM符号在下行传输的起始位置对应的时隙中的位置。由此,解调单元1110可以确定出下行传输的起始位置对应的时隙的位置以及下行传输的起始位置对应的OFDM符号在下行传输的起始位置对应的时隙中的位置。
根据本公开的实施例,解调单元1110可以获取针对非授权频谱的下行传输的起始位置的种类的信息,例如获取种类的索引。进一步,解调单元1110可以根据索引来确定下行传输的起始位置位于下述信息中的哪一种或者哪几种:子帧的边界位置;时隙的边界位置;时隙的中间位置。具体地,解调单元1110可以确定下行传输的起始位置位于子帧的边界位置、时隙的边界位置、子帧的边界位置或时隙的边界位置、时隙的边界位置或时隙的中间位置、还是子帧的边界位置或时隙的边界位置或时隙的中间位置。
如上所述,根据本公开的实施例的电子设备1100,可以通过例如高层信令来获取针对非授权频谱的下行传输的起始位置。这样一来,相较于LTE LAA(Licensed Assisted Access,授权辅助接入)系统,在NR通信系统中非授权频段有更多的下行传输机会,提高了非授权频谱的利用效率。
根据本公开的实施例的电子设备100可以作为网络侧设备,电子设备1100可以作为用户设备,即电子设备100可以为电子设备1100提供服务,因此在前文中描述的关于电子设备100的全部实施例都适用于此。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网 络侧设备的电子设备100执行的无线通信方法。
图16是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备100执行的无线通信方法的流程图。
如图16所示,在步骤S1610中,通过组公共物理下行控制信道GC-PDCCH来传输针对非授权频谱的下行传输终止位置的信息。
优选地,方法还包括:通过该GC-PDCCH来传输下行传输终止位置所在的时隙的时隙格式信息SFI。
优选地,方法还包括:通过物理下行控制信道PDCCH来传输针对非授权频谱的下行传输终止位置的信息。
优选地,方法还包括:通过下行传输终止位置之前第N个时隙中的GC-PDCCH来传输下行传输终止位置,其中,N为非负整数。
优选地,方法还包括:当N=0时通过下行传输终止位置所在的时隙中的GC-PDCCH来传输下行传输终止位置。
优选地,方法还包括:根据以下参数中的一种或多种来确定N的值:下行传输的最大信道占用时间MCOT的长度;GC-PDCCH的发送周期;以及下行传输的MCOT内的OFDM符号的长度。
优选地,方法还包括:通过GC-PDCCH来传输下行传输的最大信道占用时间MCOT的长度和时域位置,MCOT包括一个或多个时隙。
优选地,方法还包括:配置时隙格式信息SFI,以使得:MCOT中的每个时隙包括的上行传输与下行传输之间的切换点的个数不大于2;和/或MCOT包括的上行传输与下行传输之间的切换点的个数不大于预定阈值。
优选地,方法还包括:通过GC-PDCCH来传输关于在MCOT的时隙内进行上行传输前是否需要执行信道检测过程的信息。
优选地,方法还包括:通过物理下行控制信道PDCCH来传输关于在MCOT的时隙内进行上行传输前是否需要执行信道检测过程的信息。
优选地,方法还包括:通过GC-PDCCH来传输关于在MCOT的时隙内进行上行传输前执行的信道检测过程的参数信息。
优选地,方法还包括:配置针对非授权频谱的下行传输的起始位置的信息,并发送针对非授权频谱的下行传输的起始位置的信息。
优选地,方法还包括:通过高层信令来承载针对非授权频谱的下行传输的起始位置的信息。
优选地,针对非授权频谱的下行传输的起始位置的信息包括以下中的一种或多种:该下行传输的起始位置对应的子帧的指示信息、该下行传输的起始位置对应的时隙的指示信息、该下行传输的起始位置对应的OFDM符号的指示信息。
优选地,针对非授权频谱的下行传输的起始位置的信息中包括一个或多个起始位置。
优选地,方法还包括:根据下行传输的MCOT内包括的OFDM符号的长度(或者说子载波间隔的大小)来配置针对非授权频谱的下行传输的起始位置的信息。
优选地,方法还包括:当MCOT内包括的OFDM符号的长度越小,即子载波间隔越大,配置针对非授权频谱的下行传输的起始位置越多。
优选地,针对非授权频谱的下行传输的起始位置的信息包括该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括OFDM符号在子帧内的索引。
优选地,针对非授权频谱的下行传输的起始位置位于一个时隙的起始位置和中间位置。
优选地,针对非授权频谱的下行传输的起始位置的信息包括该下行传输的起始位置对应的时隙的指示信息以及该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息可以包括时隙在子帧内的索引和OFDM符号在时隙内的索引。
优选地,针对非授权频谱的下行传输的起始位置可以包括以下位置中的一种或多种:子帧的边界位置;时隙的边界位置;以及时隙的中间位置。
优选地,针对非授权频谱的下行传输的起始位置可以包括指示起始位置的种类的信息,起始位置的种类包括:子帧的边界位置;时隙的边界位置;子帧的边界位置或时隙的边界位置;时隙的边界位置或时隙的中间位置;以及子帧的边界位置或时隙的边界位置或时隙的中间位置。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备100,因此前文中关于电子设备100的全部实施例均适用 于此。
图17是示出根据本公开的另一个实施例的由无线通信系统中的作为网络侧设备的电子设备100执行的无线通信方法的流程图。
如图17所示,在步骤S1710中,通过组公共物理下行控制信道GC-PDCCH来传输与GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
优选地,控制信息用于指示数据的调制编码方案MCS等级和数据的时隙格式信息SFI中的至少一种。
优选地,方法还包括:根据默认的时隙格式信息SFI来发送在GC-PDCCH所在的时隙的前一个时隙中的数据。
优选地,方法还包括:当在前一个时隙中没有发送与前一个时隙中的数据相关的控制信息时,通过GC-PDCCH来传输与前一个时隙中的数据相关的控制信息。
优选地,方法还包括:向用户设备发送通知以使得用户设备通过GC-PDCCH来接收与前一个时隙中的数据相关的控制信息。
优选地,方法还包括:通过授权频谱向用户设备发送所述通知。
优选地,方法还包括:向用户设备重新配置GC-PDCCH的发送周期。
优选地,方法还包括:通过授权频谱向用户设备发送重新配置的GC-PDCCH的发送周期。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备100,因此前文中关于电子设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为用户设备的电子设备1100执行的无线通信方法。
图18是示出根据本公开的实施例的由无线通信系统中的作为用户设备的电子设备1100执行的无线通信方法的流程图。
如图18所示,在步骤S1810中,通过组公共物理下行控制信道GC-PDCCH来接收信息。
接下来,在步骤S1820中,对通过GC-PDCCH接收的信息进行解调以获取针对非授权频谱的下行传输终止位置。
优选地,方法还包括:对通过GC-PDCCH接收的信息进行解调以获取下行传输终止位置所在的时隙的时隙格式信息SFI。
优选地,方法还包括:通过物理下行控制信道PDCCH来接收信息;以及对通过PDCCH接收的信息进行解调以获取针对非授权频谱的下行传输终止位置。
优选地,方法还包括:当对通过GC-PDCCH接收的信息进行解调获取的针对非授权频谱的下行传输终止位置与对通过PDCCH接收的信息进行解调获取的针对非授权频谱的下行传输终止位置冲突时,以对通过PDCCH接收的信息进行解调获取的针对非授权频谱的下行传输终止位置为准。
优选地,方法还包括:对通过GC-PDCCH接收的信息进行解调以获取下行传输的最大信道占用时间MCOT的长度和时域位置,MCOT包括一个或多个时隙。
优选地,方法还包括:对通过GC-PDCCH接收的信息进行解调以确定在MCOT的时隙内进行上行传输前是否需要执行信道检测过程。
优选地,方法还包括:通过物理下行控制信道PDCCH来接收信息;以及对通过PDCCH接收的信息进行解调以确定在MCOT的时隙内进行上行传输前是否需要执行信道检测过程。
优选地,方法还包括:当对通过GC-PDCCH接收的信息进行解调确定的在MCOT的时隙内进行上行传输前是否需要执行信道检测过程和对通过PDCCH接收的信息进行解调确定的在MCOT的时隙内进行上行传输前是否需要执行信道检测过程冲突时,以对通过PDCCH接收的信息进行解调确定的在所述MCOT的时隙内进行上行传输前是否需要执行信道检测过程为准。
优选地,方法还包括:对通过GC-PDCCH接收的信息进行解调以获取在MCOT的时隙内进行上行传输前执行的信道检测过程的参数。
优选地,方法还包括:接收针对非授权频谱的下行传输的起始位置的信息,并且对接收的针对非授权频谱的下行传输的起始位置的信息进行解调从而获取针对非授权频谱的下行传输的起始位置。
优选地,通过高层信令来接收针对非授权频谱的下行传输的起始位置的信息。
优选地,方法还包括:对接收的针对非授权频谱的下行传输的起始位置的信息进行解调从而获取以下信息中的一种或多种:下行传输的起始位置对应的子帧的指示信息、下行传输的起始位置对应的时隙的指示信息、下行传输的起始位置对应的OFDM符号的指示信息。
优选地,方法还包括:获取的针对非授权频谱的下行传输的起始位置包括一个或多个针对非授权频谱的下行传输的起始位置。
优选地,下行传输的MCOT内包括的OFDM符号的长度越小,即子载波间隔越大,获取的针对非授权频谱的下行传输的起始位置越多。
优选地,方法还包括:获取下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息包括OFDM符号在子帧内的索引。
优选地,方法还包括:根据OFDM符号在子帧内的索引确定下行传输的起始位置对应的OFDM符号在子帧中的位置。
优选地,方法还包括:获取下行传输的起始位置对应的时隙的指示信息以及该下行传输的起始位置对应的OFDM符号的指示信息。具体地,该指示信息包括下行传输的起始位置对应的时隙在下行传输的起始位置对应的子帧内的索引和下行传输的起始位置对应的OFDM符号在下行传输的起始位置对应的时隙内的索引。
优选地,方法还包括:根据下行传输的起始位置对应的时隙在子帧内的索引确定下行传输的起始位置对应的时隙在子帧中的位置;以及根据下行传输的起始位置对应的OFDM符号在时隙内的索引确定下行传输的起始位置对应的OFDM符号在下行传输的起始位置对应的时隙中的位置。
优选地,方法还包括:获取针对非授权频谱的下行传输的起始位置的种类的信息;以及根据种类的信息来确定下行传输的起始位置位于下述位置中的哪一种或哪几种:子帧的边界位置;时隙的边界位置;时隙的中间位置。具体地,方法可以还包括:根据种类的信息来确定下行传输的起始位置位于子帧的边界位置、时隙的边界位置、子帧的边界位置或时隙的边界位置、时隙的边界位置或时隙的中间位置、还是子帧的边界位置或时隙的边界位置或时隙的中间位置。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1100,因此前文中关于电子设备1100的全部实施例均适 用于此。
图19是示出根据本公开的另一个实施例的由无线通信系统中的作为用户设备的电子设备1100执行的无线通信方法的流程图。
如图19所示,在步骤S1910中,通过组公共物理下行控制信道GC-PDCCH来接收信息。
接下来,在步骤S1920中,对信息进行解调以获取与在GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
优选地,方法还包括:根据控制信息确定数据的调制编码方案MCS等级和数据的时隙格式信息SFI中的至少一种。
优选地,方法还包括:存储在前一个时隙中接收到的数据;以及根据控制信息对前一个时隙中的数据进行解调。
优选地,方法还包括:根据默认的时隙格式信息SFI来接收在GC-PDCCH所在的时隙的前一个时隙中的数据。
优选地,方法还包括:响应于从网络侧设备接收的通知,通过GC-PDCCH来接收与在前一个时隙中的数据相关的控制信息。
优选地,方法还包括:通过授权频谱从网络侧设备接收通知。
优选地,方法还包括:从网络侧设备接收重新配置的GC-PDCCH的发送周期。
优选地,方法还包括:通过授权频谱从网络侧设备接收重新配置的GC-PDCCH的发送周期。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1100,因此前文中关于电子设备1100的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫 微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图20是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 2000包括一个或多个天线2010以及基站设备2020。基站设备2020和每个天线2010可以经由RF线缆彼此连接。
天线2010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2020发送和接收无线信号。如图20所示,eNB 2000可以包括多个天线2010。例如,多个天线2010可以与eNB 2000使用的多个频带兼容。虽然图20示出其中eNB 2000包括多个天线2010的示例,但是eNB 2000也可以包括单个天线2010。
基站设备2020包括控制器2021、存储器2022、网络接口2023以及无线通信接口2025。
控制器2021可以为例如CPU或DSP,并且操作基站设备2020的较高层的各种功能。例如,控制器2021根据由无线通信接口2025处理的信号中的数据来生成数据分组,并经由网络接口2023来传递所生成的分组。控制器2021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器2022包括RAM和ROM,并且存储由控制器2021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2023为用于将基站设备2020连接至核心网2024的通信接口。控制器2021可以经由网络接口2023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 2000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2023为无线通信接口,则与由无线通信接口2025使用的频带相比,网络接口2023可以使用较高频带用于无线通信。
无线通信接口2025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2010来提供到位于eNB 2000的小区中的终端的无线连接。无线通信接口2025通常可以包括例如基带(BB)处理器2026和RF电路2027。BB处理器2026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2021,BB处理器2026可以具有上述逻辑功能的一部分或全部。BB处理器2026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2026的功能改变。该模块可以为插入到基站设备2020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2027可以包括例如混频器、滤波器和放大器,并且经由天线2010来传送和接收无线信号。
如图20所示,无线通信接口2025可以包括多个BB处理器2026。例如,多个BB处理器2026可以与eNB 2000使用的多个频带兼容。如图20所示,无线通信接口2025可以包括多个RF电路2027。例如,多个RF电路2027可以与多个天线元件兼容。虽然图20示出其中无线通信接口2025包括多个BB处理器2026和多个RF电路2027的示例,但是无线通信接口2025也可以包括单个BB处理器2026或单个RF电路2027。
(第二应用示例)
图21是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 2130包括一个或多个天线2140、基站设备2150和RRH 2160。RRH 2160和每个天线2140可以经由RF线缆而彼此连接。基站设备2150和RRH 2160可以经由诸如光纤线缆的高速线路而彼此连接。
天线2140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 2160发送和接收无线信号。 如图21所示,eNB 2130可以包括多个天线2140。例如,多个天线2140可以与eNB 2130使用的多个频带兼容。虽然图21示出其中eNB 2130包括多个天线2140的示例,但是eNB 2130也可以包括单个天线2140。
基站设备2150包括控制器2151、存储器2152、网络接口2153、无线通信接口2155以及连接接口2157。控制器2151、存储器2152和网络接口2153与参照图20描述的控制器2021、存储器2022和网络接口2023相同。
无线通信接口2155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 2160和天线2140来提供到位于与RRH 2160对应的扇区中的终端的无线通信。无线通信接口2155通常可以包括例如BB处理器2156。除了BB处理器2156经由连接接口2157连接到RRH 2160的RF电路2164之外,BB处理器2156与参照图20描述的BB处理器2026相同。如图21所示,无线通信接口2155可以包括多个BB处理器2156。例如,多个BB处理器2156可以与eNB 2130使用的多个频带兼容。虽然图21示出其中无线通信接口2155包括多个BB处理器2156的示例,但是无线通信接口2155也可以包括单个BB处理器2156。
连接接口2157为用于将基站设备2150(无线通信接口2155)连接至RRH 2160的接口。连接接口2157还可以为用于将基站设备2150(无线通信接口2155)连接至RRH 2160的上述高速线路中的通信的通信模块。
RRH 2160包括连接接口2161和无线通信接口1963。
连接接口2161为用于将RRH 2160(无线通信接口1963)连接至基站设备2150的接口。连接接口2161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2163经由天线2140来传送和接收无线信号。无线通信接口2163通常可以包括例如RF电路2164。RF电路2164可以包括例如混频器、滤波器和放大器,并且经由天线2140来传送和接收无线信号。如图21所示,无线通信接口2163可以包括多个RF电路2164。例如,多个RF电路2164可以支持多个天线元件。虽然图21示出其中无线通信接口2163包括多个RF电路2164的示例,但是无线通信接口2163也可以包括单个RF电路2164。
在图20和图21所示的eNB 2000和eNB 2130中,通过使用图1所描述的配置单元110可以由控制器2021和/或控制器2151实现。功能的 至少一部分也可以由控制器2021和控制器2151实现。例如,控制器2021和/或控制器2151可以通过执行相应的存储器中存储的指令而执行配置GC-PDCCH和PDCCH的功能。
[关于终端设备的应用示例]
(第一应用示例)
图22是示出可以应用本公开内容的技术的智能电话2200的示意性配置的示例的框图。智能电话2200包括处理器2201、存储器2202、存储装置2203、外部连接接口2204、摄像装置2206、传感器2207、麦克风2208、输入装置2209、显示装置2210、扬声器2211、无线通信接口2212、一个或多个天线开关2215、一个或多个天线2216、总线2217、电池2218以及辅助控制器2219。
处理器2201可以为例如CPU或片上系统(SoC),并且控制智能电话2200的应用层和另外层的功能。存储器2202包括RAM和ROM,并且存储数据和由处理器2201执行的程序。存储装置2203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2200的接口。
摄像装置2206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2208将输入到智能电话2200的声音转换为音频信号。输入装置2209包括例如被配置为检测显示装置2210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2200的输出图像。扬声器2211将从智能电话2200输出的音频信号转换为声音。
无线通信接口2212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2212通常可以包括例如BB处理器2213和RF电路2214。BB处理器2213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2214可以包括例如混频器、滤波器和放大器,并且经由天线2216来传送和接收无线信号。无线通信接口2212可以为其上集成有BB处理 器2213和RF电路2214的一个芯片模块。如图22所示,无线通信接口2212可以包括多个BB处理器2213和多个RF电路2214。虽然图22示出其中无线通信接口2212包括多个BB处理器2213和多个RF电路2214的示例,但是无线通信接口2212也可以包括单个BB处理器2213或单个RF电路2214。
此外,除了蜂窝通信方案之外,无线通信接口2212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2212可以包括针对每种无线通信方案的BB处理器2213和RF电路2214。
天线开关2215中的每一个在包括在无线通信接口2212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2216的连接目的地。
天线2216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2212传送和接收无线信号。如图22所示,智能电话2200可以包括多个天线2216。虽然图22示出其中智能电话2200包括多个天线2216的示例,但是智能电话2200也可以包括单个天线2216。
此外,智能电话2200可以包括针对每种无线通信方案的天线2216。在此情况下,天线开关2215可以从智能电话2200的配置中省略。
总线2217将处理器2201、存储器2202、存储装置2203、外部连接接口2204、摄像装置2206、传感器2207、麦克风2208、输入装置2209、显示装置2210、扬声器2211、无线通信接口2212以及辅助控制器2219彼此连接。电池2218经由馈线向图22所示的智能电话2200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2219例如在睡眠模式下操作智能电话2200的最小必需功能。
在图22所示的智能电话2200中,通过使用图11所描述的解调单元1110可以由由处理器2201或辅助控制器2219实现。功能的至少一部分也可以由处理器2201或辅助控制器2219实现。例如,处理器2201或辅助控制器2219可以通过执行存储器2202或存储装置2203中存储的指令而执行解调下行信息的功能。
(第二应用示例)
图23是示出可以应用本公开内容的技术的汽车导航设备2320的示 意性配置的示例的框图。汽车导航设备2320包括处理器2321、存储器2322、全球定位系统(GPS)模块2324、传感器2325、数据接口2326、内容播放器2327、存储介质接口2328、输入装置2329、显示装置2330、扬声器2331、无线通信接口2333、一个或多个天线开关2336、一个或多个天线2337以及电池2338。
处理器2321可以为例如CPU或SoC,并且控制汽车导航设备2320的导航功能和另外的功能。存储器2322包括RAM和ROM,并且存储数据和由处理器2321执行的程序。
GPS模块2324使用从GPS卫星接收的GPS信号来测量汽车导航设备2320的位置(诸如纬度、经度和高度)。传感器2325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2326经由未示出的终端而连接到例如车载网络2341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2328中。输入装置2329包括例如被配置为检测显示装置2330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2331输出导航功能的声音或再现的内容。
无线通信接口2333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2333通常可以包括例如BB处理器2334和RF电路2335。BB处理器2334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2335可以包括例如混频器、滤波器和放大器,并且经由天线2337来传送和接收无线信号。无线通信接口2333还可以为其上集成有BB处理器2334和RF电路2335的一个芯片模块。如图23所示,无线通信接口2333可以包括多个BB处理器2334和多个RF电路2335。虽然图23示出其中无线通信接口2333包括多个BB处理器2334和多个RF电路2335的示例,但是无线通信接口2333也可以包括单个BB处理器2334或单个RF电路2335。
此外,除了蜂窝通信方案之外,无线通信接口2333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2333可以包 括BB处理器2334和RF电路2335。
天线开关2336中的每一个在包括在无线通信接口2333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2337的连接目的地。
天线2337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2333传送和接收无线信号。如图23所示,汽车导航设备2320可以包括多个天线2337。虽然图23示出其中汽车导航设备2320包括多个天线2337的示例,但是汽车导航设备2320也可以包括单个天线2337。
此外,汽车导航设备2320可以包括针对每种无线通信方案的天线2337。在此情况下,天线开关2336可以从汽车导航设备2320的配置中省略。
电池2338经由馈线向图23所示的汽车导航设备2320的各个块提供电力,馈线在图中被部分地示为虚线。电池2338累积从车辆提供的电力。
在图23示出的汽车导航设备2320中,通过使用图11所描述的解调单元1110可以由处理器2321实现。功能的至少一部分也可以由处理器2321实现。例如,处理器2321可以通过执行存储器2322中存储的指令而执行解调下行信息的功能。
本公开内容的技术也可以被实现为包括汽车导航设备2320、车载网络2341以及车辆模块2342中的一个或多个块的车载系统(或车辆)2340。车辆模块2342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2341。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (21)

  1. 一种电子设备,包括处理电路,被配置为:
    通过组公共物理下行控制信道GC-PDCCH来传输与所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
  2. 根据权利要求1所述的电子设备,其中,所述控制信息用于指示所述数据的调制编码方案MCS等级和所述数据的时隙格式信息SFI中的至少一种。
  3. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据默认的时隙格式信息SFI来发送在所述GC-PDCCH所在的时隙的前一个时隙中的数据。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    当在所述前一个时隙中没有发送与所述前一个时隙中的数据相关的控制信息时,通过所述GC-PDCCH来传输与所述前一个时隙中的数据相关的控制信息。
  5. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向用户设备发送通知以使得用户设备通过所述GC-PDCCH来接收与所述前一个时隙中的数据相关的控制信息。
  6. 根据权利要求5所述的电子设备,其中,所述处理电路还被配置为:
    通过授权频谱向所述用户设备发送所述通知。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    向用户设备重新配置GC-PDCCH的发送周期。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    通过授权频谱向用户设备发送重新配置的GC-PDCCH的发送周期。
  9. 根据权利要求1-8中任一项所述的电子设备,其中,所述电子设备为新无线NR通信系统中的网络侧设备。
  10. 一种电子设备,包括处理电路,被配置为:
    通过组公共物理下行控制信道GC-PDCCH来接收信息;以及
    对所述信息进行解调以获取与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    根据所述控制信息确定所述数据的调制编码方案MCS等级和所述数据的时隙格式信息SFI中的至少一种。
  12. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    存储在所述前一个时隙中接收到的数据;以及
    根据所述控制信息对所述前一个时隙中的数据进行解调。
  13. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    根据默认的时隙格式信息SFI来接收在所述GC-PDCCH所在的时隙的前一个时隙中的数据。
  14. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    响应于从网络侧设备接收的通知,通过所述GC-PDCCH来接收与在所述前一个时隙中的数据相关的控制信息。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    通过授权频谱从所述网络侧设备接收所述通知。
  16. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    从网络侧设备接收重新配置的GC-PDCCH的发送周期。
  17. 根据权利要求16所述的电子设备,其中,所述处理电路还被配 置为:
    通过授权频谱从所述网络侧设备接收重新配置的GC-PDCCH的发送周期。
  18. 根据权利要求10-17中任一项所述的电子设备,其中,所述电子设备为新无线NR通信系统中的用户侧设备。
  19. 一种无线通信方法,包括:
    通过组公共物理下行控制信道GC-PDCCH来传输与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
  20. 一种无线通信方法,包括:
    通过组公共物理下行控制信道GC-PDCCH来接收信息;以及
    对所述信息进行解调以获取与在所述GC-PDCCH所在的时隙的前一个时隙中的数据相关的控制信息。
  21. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求19或20所述的无线通信方法。
PCT/CN2019/074679 2018-02-11 2019-02-03 电子设备、无线通信方法和计算机可读存储介质 WO2019154389A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/758,413 US11330608B2 (en) 2018-02-11 2019-02-03 Electronic device, radio communication method, and computer readable storage medium
JP2020542987A JP7306400B2 (ja) 2018-02-11 2019-02-03 電子機器及び無線通信方法
EP22200144.8A EP4138331B1 (en) 2018-02-11 2019-02-03 Electronic device, radio communication method, and computer readable storage medium
EP19750378.2A EP3713145B1 (en) 2018-02-11 2019-02-03 Electronic device and radio communication method
CN201980004825.1A CN111164931A (zh) 2018-02-11 2019-02-03 电子设备、无线通信方法和计算机可读存储介质
US17/715,949 US11849443B2 (en) 2018-02-11 2022-04-08 Electronic device, radio communication method, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810140933.9A CN110166189A (zh) 2018-02-11 2018-02-11 电子设备、无线通信方法和计算机可读存储介质
CN201810140933.9 2018-02-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/758,413 A-371-Of-International US11330608B2 (en) 2018-02-11 2019-02-03 Electronic device, radio communication method, and computer readable storage medium
US17/715,949 Continuation US11849443B2 (en) 2018-02-11 2022-04-08 Electronic device, radio communication method, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019154389A1 true WO2019154389A1 (zh) 2019-08-15

Family

ID=67547864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074679 WO2019154389A1 (zh) 2018-02-11 2019-02-03 电子设备、无线通信方法和计算机可读存储介质

Country Status (5)

Country Link
US (2) US11330608B2 (zh)
EP (2) EP3713145B1 (zh)
JP (1) JP7306400B2 (zh)
CN (2) CN110166189A (zh)
WO (1) WO2019154389A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886789B (zh) * 2018-06-15 2021-10-26 北京小米移动软件有限公司 确定上下行切换点的方法及装置
WO2020146502A1 (en) * 2019-01-10 2020-07-16 Apple Inc. Controlling the number of downlink-to-uplink and uplink-to-downlink switching points within a shared channel occupancy time in new radio systems operating on unlicensed spectrum
WO2020155109A1 (zh) * 2019-02-01 2020-08-06 北京小米移动软件有限公司 调度混合自动重传的方法及装置
US20210022181A1 (en) * 2019-10-07 2021-01-21 Yongjun KWAK Mechanisms to operate downlink wideband carrier in unlicensed band
KR20220104544A (ko) * 2021-01-18 2022-07-26 삼성전자주식회사 통신 시스템에서 멀티캐스팅 및 브로드캐스팅을 제공하는 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941724A (zh) * 2017-05-09 2017-07-11 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060209970A1 (en) * 2005-01-11 2006-09-21 Emmanuel Kanterakis Adaptive transmission rate communication system
EP2415313A1 (en) * 2009-04-03 2012-02-08 Nokia Siemens Networks OY Communication resource allocation strategy
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CA2956396C (en) * 2014-11-15 2021-08-10 Panasonic Intellectual Property Corporation Of America Resource scheduling method, resource determining method, enodeb and user equipment
GB2550200B (en) * 2016-05-13 2021-08-04 Tcl Communication Ltd Methods and devices for supporting access to unlicensed radio resources in wireless communication systems
US20180227934A1 (en) * 2017-02-06 2018-08-09 Mediatek Inc. Group Common Physical Downlink Control Channel Design In Mobile Communications
US10506586B2 (en) * 2017-03-24 2019-12-10 Qualcomm Incorporated Slot format indicator (SFI) and slot aggregation level indication in group common PDCCH and SFI conflict handling
EP3636023B1 (en) * 2017-05-05 2021-08-18 Samsung Electronics Co., Ltd. Method and apparatus for receiving downlink control channel in wireless communication system
CN109479294B (zh) * 2017-06-02 2023-06-27 Lg电子株式会社 在无线通信系统中发送或接收信号的方法及其设备
US10660090B2 (en) * 2017-06-26 2020-05-19 Qualcomm Incorporated Slot format indicator signaling in wireless communication systems
CN110167143A (zh) * 2018-02-11 2019-08-23 索尼公司 电子设备、无线通信方法和计算机可读存储介质
US11102817B2 (en) * 2018-08-09 2021-08-24 Huawei Technologies Co., Ltd. System and method for supporting bursty communications in wireless communications systems
EP3681086A1 (en) * 2019-01-09 2020-07-15 Comcast Cable Communications, LLC Methods, systems, and apparatuses for beam management
WO2020144401A1 (en) * 2019-01-10 2020-07-16 Nokia Technologies Oy New physical downlink control channel design
US11477820B2 (en) * 2019-07-10 2022-10-18 Ofinno, Llc Cell resource status information
US11737135B2 (en) * 2019-09-13 2023-08-22 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmissions in frame-based equipment NR unlicensed
US20210022181A1 (en) * 2019-10-07 2021-01-21 Yongjun KWAK Mechanisms to operate downlink wideband carrier in unlicensed band
US20210195579A1 (en) * 2019-12-23 2021-06-24 Qualcomm Incorporated Pdcch monitoring reduction for reduced-capability user equipments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941724A (zh) * 2017-05-09 2017-07-11 宇龙计算机通信科技(深圳)有限公司 数据处理方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AT &T.: "Design of the Group Common PDCCH", 3GPP TSG RAN WG1 MEETING #88, R1-1702273, 7 February 2017 (2017-02-07), pages 1 - 5, XP051221178 *
CATT: "Further details of group-common control", 3GPP TSG RAN WG1 MEETING #88BIS, R1-1704572, 25 March 2017 (2017-03-25), pages 1 - 5, XP051251342 *
OPPO: "Remaining issues on GC-PDCCH", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800496, 13 January 2018 (2018-01-13), pages 1 - 7, XP051384898 *
See also references of EP3713145A4

Also Published As

Publication number Publication date
EP3713145B1 (en) 2022-10-19
CN110166189A (zh) 2019-08-23
JP7306400B2 (ja) 2023-07-11
US11330608B2 (en) 2022-05-10
EP3713145A4 (en) 2020-12-09
EP4138331A1 (en) 2023-02-22
JP2021513791A (ja) 2021-05-27
US20200252948A1 (en) 2020-08-06
EP3713145A1 (en) 2020-09-23
US11849443B2 (en) 2023-12-19
US20220232577A1 (en) 2022-07-21
EP4138331B1 (en) 2024-09-18
CN111164931A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2019154387A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2019096206A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
EP3328141B1 (en) Electronic device for wireless communications and wireless communications method
CA2955113C (en) Apparatus and method in wireless communication system
US11102705B2 (en) Communication device, communication method, and program
WO2019154389A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2015064679A1 (ja) 移動通信システム及びユーザ端末
WO2017167024A1 (zh) 无线通信系统中的电子设备和无线通信方法
CN110447199B (zh) 电子装置和无线通信方法
WO2019019964A1 (zh) 电子装置、信息处理设备和信息处理方法
WO2019138847A1 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019750378

Country of ref document: EP

Effective date: 20200616

ENP Entry into the national phase

Ref document number: 2020542987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE