WO2019154308A1 - Wss通道衰减量的控制方法及装置、存储介质、处理器 - Google Patents

Wss通道衰减量的控制方法及装置、存储介质、处理器 Download PDF

Info

Publication number
WO2019154308A1
WO2019154308A1 PCT/CN2019/074371 CN2019074371W WO2019154308A1 WO 2019154308 A1 WO2019154308 A1 WO 2019154308A1 CN 2019074371 W CN2019074371 W CN 2019074371W WO 2019154308 A1 WO2019154308 A1 WO 2019154308A1
Authority
WO
WIPO (PCT)
Prior art keywords
wss
attenuation
channel
slice
slices
Prior art date
Application number
PCT/CN2019/074371
Other languages
English (en)
French (fr)
Inventor
施鹄
尚文东
张红宇
龚雅栋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19751450.8A priority Critical patent/EP3751759A4/en
Publication of WO2019154308A1 publication Critical patent/WO2019154308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25073Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using spectral equalisation, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]

Definitions

  • the present invention relates to the field of communications, and in particular to a wavelength selection switch (Wavelength-Selective Switch, abbreviated as WSS) channel attenuation amount control method and device, a storage medium, and a processor.
  • WSS wavelength selection switch
  • the Dense Wavelength Division Multiping (DWDM) system uses a 50 GHz or 100 GHz channel spacing, which is a Wavelength Division Multiping (WDM) system.
  • WDM Wavelength Division Multiping
  • technologies such as the ultra-high-speed 100G/B100G WDM transmission network and the Automatically Swithced Optical Network (ASON)/Software Defined Optical Network (SDON)
  • ASON Automatically Swithced Optical Network
  • SDON Software Defined Optical Network
  • the traditional WDM system is Challenges in spectrum utilization, flexibility, etc., flexible application of flexible grid WDM systems that support different channel spacing, different transmission rates, and dynamically set channel spacing as needed.
  • the flexible grid technology was first standardized in 2011 by the International Telecommunication Union-T (ITU-T) G.694.1 standard.
  • the standard frequency gap of the standard is 193.1 THz. +n x 6.25 GHz.
  • Current mainstream WSS manufacturers have introduced WSS modules with a frequency interval of 12.5G or 6.25GHz, which makes it possible to have a higher spectral efficiency of the Nyquist WDM transmission scheme, such as a baud rate of about 34GBaud (including The 25% forward error correction code (Forward Error Correction, referred to as FEC overhead) 100G polarization multiplexing quadrature phase shift keying (PM-QPSK) service optical signal is placed in the channel spacing Transmission in a 37.5 GHz channel.
  • the method can further reduce the channel spacing of the WDM system, thereby improving the spectral efficiency of the C-band in the fiber system and expanding the system transmission capacity.
  • ROADM Reconfigurable ADD Drop Multiplexer
  • Figure 1 There is a multi-level ROADM site punch-through scenario in the transmission link.
  • both the direct service light and the uplink and downlink service light at the ROADM site need to use WSS to perform cross-scheduling control of the service light, and a typical two-dimensional ROADM site structure.
  • the WSS in the through-direction of the ROADM station will cause filtering damage to the punched-through optical signal.
  • the signal spectral bandwidth is close to the WSS channel bandwidth.
  • the received spectrum is filtered by multi-stage WSS.
  • Receive performance can be severely cracked. This is mainly because the high-frequency components of the spectrum are significantly suppressed after multi-stage WSS filtering, which causes a large error in the phase-detection of the clock extraction algorithm in the receiver, and then the clock jitter or extraction failure causes the data recovery to be deviated. As a result, the transmission service is interrupted.
  • the embodiment of the invention provides a method and a device for controlling the attenuation of a WSS channel, a storage medium and a processor, so as to at least solve the problem that the multi-level WSS generates filtering damage to the optical signal, and then the filtered optical signal enters and receives the signal. Problems such as deterioration of the performance of the receiver after the machine.
  • a method for controlling a WSS channel attenuation amount comprising: inputting white noise into a channel of a WSS module for each WSS module in a multi-stage wavelength selection switch WSS system, according to a predetermined The rule adjusts the attenuation parameter of all the fragments of the channel, so that the flatness of the output spectrum of the white noise is less than the first threshold; and the attenuation parameters of the corresponding fragments of the adjusted multiple WSS modules are averaged According to the obtained average value, the WSS channel attenuation amount of each WSS module in the WSS system is controlled.
  • a WSS channel attenuation amount control device comprising: an input module configured to input white noise to WSS for each WSS module in the multi-stage wavelength selection switch WSS system In the channel of the module; the adjustment module is configured to adjust the attenuation parameters of all the segments of the channel according to a predetermined rule, so that the flatness of the output spectrum of the white noise is less than the first threshold; and the control module is set to adjust The attenuation parameters of the corresponding slices of the multiple WSS modules are averaged, and the WSS channel attenuation of each WSS module in the WSS system is controlled according to the obtained average value.
  • a storage medium comprising a stored program, wherein the program is executed to perform the power processing method according to any of the above.
  • a processor configured to execute a program, wherein the program is executed to perform the power processing method of any of the above.
  • each WSS module in the multi-level WSS system input white noise into the channel of the WSS module, and adjust the attenuation parameters of all the fragments of the channel according to a predetermined rule. So that the flatness of the output spectrum of the white noise is less than the first threshold, and then the attenuation parameters of the corresponding slices of the plurality of WSS modules are averaged, and then the WSS of each WSS module is averaged according to the average result.
  • the channel attenuation is controlled, and the above technical solution is adopted to solve the problem that the multi-stage WSS generates filter damage to the optical signal, and then the filtered optical signal enters the receiver to deteriorate the performance of the receiver, thereby effectively reducing the problem.
  • the filter damage when the optical signal passes through the multi-stage WSS also improves the performance of the receiver.
  • FIG. 1 is a block diagram of a DWDM Flex ROADM unidirectional networking in the related art
  • FIG. 2 is a block diagram showing the internal structure of a ROADM site in the related art
  • FIG. 3 is a flow chart of a method for controlling a WSS channel attenuation amount according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of pre-emphasis of an optical transmitter according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a control device for a WSS channel attenuation amount according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing the structure of an adjustment module 52 of a control device for a WSS channel attenuation amount according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of an adjustment module 52 of a control device for a WSS channel attenuation amount according to an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of attenuation parameter adjustment according to a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram of WSS Slice level spectral shaping in accordance with an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for controlling the attenuation amount of the WSS channel according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 for each WSS module in the multi-level WSS system, input white noise into the channel of the WSS module, and adjust the attenuation parameters of all the fragments of the channel according to a predetermined rule to make the output spectrum of the white noise flat. Degree is less than the first threshold;
  • Step S304 averaging the attenuation parameters of the corresponding pieces of the adjusted plurality of WSS modules, and controlling the WSS channel attenuation amount of each WSS module in the WSS system according to the obtained average value.
  • each WSS module in the multi-level WSS system input white noise into the channel of the WSS module, and adjust the attenuation parameters of all the fragments of the channel according to a predetermined rule, so as to make The flatness of the output spectrum of the white noise is less than the first threshold, and then the attenuation parameters of the corresponding slices of the plurality of WSS modules are averaged, and then the WSS channel attenuation of each WSS module is performed according to the average result.
  • Control using the above technical solution, solves the problem that the multi-stage WSS generates filter damage to the optical signal, and then the filtered optical signal enters the receiver to deteriorate the performance of the receiver, thereby effectively reducing the optical signal.
  • the filter damage after multi-level WSS also improves the performance of the receiver.
  • step S302 has multiple implementation manners in the actual operation process.
  • the embodiment of the present invention provides an implementation manner, as follows:
  • the second adjustment result is adjusted for all the segments except the secondary edge segment and the other segment of the central segment, that is, in the embodiment of the present invention, the secondary edge segmentation and the center segment of all the segments may be sequentially performed.
  • the slice, as well as the attenuation parameters of the other slices of all the slices, are adjusted.
  • the embodiment of the present invention further provides how to adjust the secondary edge fragmentation, the central fragmentation, and other fragments of all the fragments.
  • the detailed scheme is as follows:
  • adjusting the attenuation parameter of the secondary edge slice such that the difference between the spectral height of the lowest spectral point corresponding to the secondary edge slice and the spectral height of f c -B/2 is less than the second threshold, or the secondary edge is sliced
  • the difference between the spectral height of the corresponding lowest point of the spectrum and the spectral height of f c +B/2 is less than a second threshold, where f c is the center frequency of the channel and B is the baud rate of the traffic signal.
  • the attenuation parameter of one or more center slices of the channel to the attenuation parameter of the secondary edge slice such that white noise is in the f c -B/2 to f c segment, or in f c to f c -B/
  • the flatness of the output spectrum of the two segments is smaller than the first threshold. It can be understood that in the embodiment of the present invention, the attenuation parameter of the adjusted one or more center slices matches the attenuation parameter of the secondary edge slice, so that the channel B In the spectrum of the length, the flatness of the left half or the right half is smaller than the first threshold.
  • the attenuation parameters of the other segments are symmetrically adjusted, and the other segments are
  • the adjustment process is actually based on the above adjustments to the secondary edge slice and the center slice. For example, there are currently 6 slices in sequence, and the numbers are 1, 2, 3, 4, 5, and 6
  • the sub-edge slice 2 performs the adjustment of the attenuation parameter, and then adjusts the attenuation parameter of the center slice 3, and the attenuation parameter of the slice 2 can be symmetrically mapped to the slice 5 for the slice 4, 5 on the right side.
  • the attenuation parameter of the slice 3 corresponds to the slice 4, which can be understood as being symmetrical from the left side to the right side.
  • the right side can be selected to be symmetrical to the left side, which is not limited in the embodiment of the present invention.
  • the embodiment of the present invention further provides a processing manner:
  • the attenuation parameters of the second fragment to the Nth fragment in all the WSS modules are sequentially obtained, and the attenuation parameters of the second fragment to the Nth fragment in all the WSS modules are averaged respectively, wherein all the fragments include N. Fragments, N is an integer greater than 2.
  • the first slice, the second slice, the ... Nth slice of each WSS module are sequentially processed, and then averaged according to the obtained average value in the multi-level WSS system.
  • the first slice, the second slice, ... the attenuation parameter of the Nth slice of the WSS module is adjusted.
  • the present invention is an example of a method and system for improving the long-distance transmission performance of 100G/B100G quasi-Nyquist WDM in a multi-stage Flex ROADM system for the long-distance transmission system, wherein: the frequency interval between the system channels and the service light
  • the baud rate is close, that is, the quasi-Nyquist WDM transmission, such as transmitting 100G PM-QPSK and 200G PM-16QAM service signals with a baud rate of about 34 GHz in a 37.5 GHz channel interval, or a 50 GHz channel interval.
  • the 200G PM-8QAM service signal with a baud rate of about 45 GHz is transmitted; the service transceiver in the system adopts a coherent receiving optical module, and the DSP clock synchronization algorithm of the optical module receiving end extracts the clock component from the signal light; the end of the service light in the system
  • WSS includes WSS units for uplink multiplexing, WSS units for downlink splitting, and WSS units for direct direction of ROADM stations; frequency adjustment supported by WSS units of the system
  • the granularity is significantly smaller than the channel frequency spacing, and the corresponding minimum frequency adjustable grid is 12.5 GHz or 6.25 GHz or 3.125 GHz.
  • the present invention further provides an in-band attenuation adjustable WSS spectral shaping unit, which uses a slice attenuation control method for a plurality of slices in the channel (which can be understood as the fragments in the above embodiment).
  • the method mainly includes the following steps:
  • the WSS channel attenuation of all slices in the channel bandwidth is set to zero.
  • the output spectrum is the adjustment starting point of the channel shape, and the WSS channel attenuation of the sub-edge Slice is gradually adjusted so that the spectral height of the slice corresponding to the lowest point of the spectrum is close to the spectral height at f c ⁇ B/2, where f c is the channel
  • the center frequency, B is the baud rate of the traffic signal.
  • the slice in the middle of the channel (which can contain multiple slices) performs the same attenuation synchronization adjustment.
  • the WSS channel attenuation is adapted to the WSS channel attenuation of the secondary edge slice to ensure the spectrum is f c -B/2 ⁇ f c
  • the spectrum in the interval tends to be flat.
  • the channel shaping parameters of the WSS unit through the service configuration (that is, the attenuation parameters adjusted in the first step, the second step and the third step) can be obtained.
  • the multi-level WSS system can use the network management or the ASON according to the service type.
  • the channel shaping parameter is configured in the transmission link, the optical multiplexed wave, the optical splitting, and the WSS unit at the ROADM punch-through point, and the shaping of the service spectrum is implemented at each level of the WSS unit.
  • the spectrum white noise is connected at the input end of the WSS unit (can be understood as the white noise of the above embodiment), and the spectrum analyzer is used at the WSS output.
  • the shape of the shaped spectral shape of the output is monitored and used as a feedback adjustment for the amount of attenuation of the WSS channel.
  • the example of the present invention adopts the spectral shaping method of WSS fragment attenuation control, and performs additional attenuation adjustment on the spectral center spectral component of the WSS unit (the specific effect can be seen in FIG. 9), and the center frequency and the edge frequency component caused by WSS filtering are reduced.
  • the difference ensures that the receiving clock synchronization algorithm effectively extracts the clock from the high-frequency components of the signal, thereby improving the reliable reception performance of the 100G/B100G coherent receiver after multi-level WSS cascading.
  • the filtering effect of the WSS of the current stage is suppressed by spectral shaping at each WSS unit on the optical link, and overcome The problem that the number of WSS punch-through stages is still limited due to insufficient pre-emphasis capability of the optical transceiver itself significantly improves the punch-through capability of the multi-level WSS of the optical transceiver.
  • the shaping parameter configuration of the example of the present invention ensures that each WSS adopts the same shaping.
  • Parameters, and the parameters are not dynamically adjusted with the number of stages of the optical path WSS unit, reducing end-to-end link detection (such as WSS cascading number and channel bandwidth) and optical transceiver pre-emphasis parameters of the network control layer facing the service light.
  • the feedback control while the invention example only needs to perform the SLICE level software control adjustment of the WSS bandwidth attenuation adjustable unit, does not need to add additional optical devices in the transmission link, and the implementation method is simple and the cost is low.
  • WSS channels and channels mentioned in the embodiments and examples of the present invention may refer to the same meaning, for example, may be WSS channels or channels, of course, WSS channels and channels may also refer to different channels.
  • the meaning of the embodiment of the present invention is not limited thereto.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a control device for the attenuation amount of the WSS channel is also provided, and the device is used to implement the above-mentioned embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 5 is a structural block diagram of a control device for a WSS channel attenuation amount according to an embodiment of the present invention. As shown in FIG. 5, the device includes:
  • the input module 50 is configured to input white noise into the channel of the WSS module for each of the WSS modules of the multi-level wavelength selection switch WSS system;
  • the adjusting module 52 is configured to adjust the attenuation parameters of all the segments of the channel according to a predetermined rule, so that the flatness of the output spectrum of the white noise is less than the first threshold;
  • the control module 54 is configured to average the attenuation parameters of all the slices of the adjusted WSS module, and control the WSS channel attenuation amount of each WSS module in the WSS system according to the obtained average value.
  • each WSS module in the multi-level WSS system can be processed as follows: white noise is input into the channel of the WSS module, and the attenuation parameters of all the fragments of the channel are adjusted according to a predetermined rule to The flatness of the output spectrum of the white noise is made smaller than the first threshold, and then the attenuation parameters of all the fragments of the adjusted WSS modules are averaged, and then the WSS channel attenuation amount of each WSS module is averaged according to the average result.
  • Controlling using the above technical solution, solves the problem that the multi-stage WSS generates filter damage to the optical signal, and then the filtered optical signal enters the receiver to deteriorate the performance of the receiver, thereby effectively reducing the optical signal. Filtering damage through multi-level WSS also improves receiver performance.
  • FIG. 6 is a structural block diagram of an adjustment module 52 of a WSS channel attenuation amount control device according to an embodiment of the present invention. As shown in FIG. 6, the adjustment module 52 includes:
  • the first adjusting unit 520 is configured to adjust the attenuation parameters of the secondary edge fragments of all the fragments to obtain a first adjustment result
  • the second adjusting unit 522 is configured to adjust the attenuation parameter of the center slice of the channel according to the first adjustment result to obtain a second adjustment result;
  • the third adjusting unit 524 is configured to adjust, according to the first adjustment result and the second adjustment result, the other segments of the all the segments except the secondary edge segment and the center segment, that is, in the embodiment of the present invention, The attenuation parameters of the secondary edge slices, the center slice, and the other slices of all slices can be adjusted in turn.
  • the first adjusting unit 520 is further configured to acquire a baud rate of a service signal of the channel, and adjust an attenuation parameter of a secondary edge slice of all the fragments according to a baud rate.
  • the first adjusting unit 520 is further configured to adjust the attenuation parameter of the secondary edge slice such that the difference between the spectral height of the lowest spectral point corresponding to the secondary edge segment and the spectral height of f c ⁇ B/2 is smaller than the second The threshold, or the difference between the spectral height of the lowest point of the spectrum corresponding to the sub-edge fragment and the spectral height of f c + B/2 is less than a second threshold, where f c is the center frequency of the channel, and B is the wave of the traffic signal Special rate.
  • the second adjusting unit 522 is further configured to match the attenuation parameter of the one or more center slices of the channel with the attenuation parameter of the secondary edge slice to make the white noise be f c -B/2 to f
  • the flatness of the output spectrum of segment c , or segment f c to f c -B/2 is less than the first threshold.
  • the third adjusting unit 524 is configured to symmetrically adjust according to the center frequency f c of the channel, according to the attenuation parameter of the secondary edge slice in the first adjustment result and the attenuation parameter of the center slice in the second adjustment result. Attenuation parameters for other slices.
  • FIG. 7 is a structural block diagram of an adjustment module 52 of a control device for a WSS channel attenuation amount according to an embodiment of the present invention.
  • the control module 54 includes:
  • the first processing unit 540 is configured to separately acquire attenuation parameters of the first slice of all the WSS modules, and average the attenuation parameters of the first slice of all the WSS modules;
  • the second processing unit 542 is configured to sequentially acquire the attenuation parameters of the second to the Nth slices of all the WSS modules, and average the attenuation parameters of the second to the Nth slices of all the WSS modules, wherein, The slice includes N slices, and N is an integer greater than 2.
  • the first slice, the second slice, the ... Nth slice of each WSS module are sequentially processed, and then averaged according to the obtained average value in the multi-level WSS system.
  • the first slice, the second slice, ... the attenuation parameter of the Nth slice of the WSS module is adjusted.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiment 1 - Embodiment 2 may be used in combination, or may be used separately.
  • a preferred embodiment of the present invention provides a WSS-based channel bandwidth attenuation adjustment method, which is applied to a 100G QPSK/200G 16 Quadrature Amplitude Modulation (QAM) optical signal through a multi-stage WSS cascade.
  • the channel bandwidth is 37.5 GHz.
  • the 6 ⁇ 6.25 GHz Slice (which can be understood as a slice) WSS channel attenuation adjustment step is as shown in FIG. 8 and includes:
  • Step 1 Input the broad spectrum white noise into a single WSS unit, set the WSS center frequency and channel bandwidth, and connect the output of the WSS unit to the spectrum analyzer.
  • the bandwidth of the WSS channel is set to 37.5 GHz, and the attenuation amounts of the WSS channels of the corresponding six 6.25 GHz slices are all set to be the same.
  • the output spectral shape at this time is as shown in FIG.
  • Step 2 Find the output spectrum of the center frequency f c, the baud rate according to the service transceiver module B 1, such as 25% FEC overhead 100G PM-QPSK baud rate B 200G PM-16QAM service module was about 1 34GBaud about. Adjust the two lateral frequency calibration lines of the spectrometer at the frequencies f c -B 1 /2, f c +B 1 /2.
  • Step 3 Adjust the WSS channel attenuation of the secondary edge Slice 2 within the WSS channel bandwidth so that the spectral height is close to f c -B 1 / at the lowest frequency f 2 in the frequency f c -B 1 /2 to f c interval
  • the spectrum at 2 points is high, and the adjusted output spectrum is shown in Fig. 8.
  • Step 4 Adjust the WSS channel attenuation of the intermediate slice 3 in the WSS channel bandwidth so that the spectrum in the frequency f c -B 1 /2 to f c is flat, ensuring that the channel flatness of the interval does not exceed 0.4 dB.
  • the adjusted output spectrum is shown in Figure 8.
  • Step 5 Symmetrically adjust the attenuation of the Slice4 and Slice5WSS channels in the bandwidth of the WSS channel with the center of the channel as the boundary, that is, set the attenuation of the WSS channel of Slice 4 and Slice 5 to be the same as that of Slice 2 and Slice 3 respectively, and adjust the 6 6.25 GHz.
  • the WSS channel attenuation of Slice is symmetric on both sides with the center frequency f c , and the output spectrum of the corresponding output spectrum is also symmetrically adjusted as shown in Figure 5. At this time, the attenuation adjustment parameters of the WSS unit are obtained.
  • Step 6 Consider the small difference between the individual WSS devices, select N WSS modules, N is not less than 3. Repeat steps 3 to 5 above for the selected N modules, and sequentially obtain the attenuation adjustment parameters of each slice of each WSS module, and average the N attenuation values of each slice, and finally use the average value as the corresponding slice in the WSS channel bandwidth. The amount of attenuation configuration.
  • the preferred embodiment of the present invention provides a shaping method for the bandwidth of the 37.5 GHz WSS channel. It is worth noting that the above steps are to sequentially adjust the attenuation of the WSS channel according to the Slice number, and the symmetry adjustment in step 5 may be advanced. Execution, that is, first adjust the secondary edge Slice 2 and Slice 5, and then adjust the middle of the channel Slice3 and Slice4, the final channel attenuation parameters obtained by the two adjustment sequences are the same.
  • the shaping method in the 37.5 GHz channel bandwidth is applied to the 100G QPSK/200G 16QAM signal passing through the multi-stage WSS cascading through-pass scenario.
  • the system configures the WSS channel attenuation in the channel to the 37.5 GHz channel bandwidth WSS.
  • the method is based on the spectral shaping method of attenuation control in the WSS bandwidth, which suppresses the difference between the center frequency and the edge frequency component caused by the multi-stage WSS cascade filtering, and ensures that the clock synchronization algorithm of the receiving end effectively extracts the clock component, thereby improving the optical transceiver.
  • Multi-level WSS reception performance is based on the spectral shaping method of attenuation control in the WSS bandwidth, which suppresses the difference between the center frequency and the edge frequency component caused by the multi-stage WSS cascade filtering, and ensures that the clock synchronization algorithm of the receiving end effectively extracts the clock component, thereby improving the optical transceiver. Multi-level WSS reception performance.
  • the preferred embodiment 2 of the present invention provides a method for adjusting the attenuation spectrum based on the WSS channel, which is applied to a scene in which a 200G PM-8QAM optical signal is cascaded through a multi-stage WSS and has a channel bandwidth of 50 GHz, corresponding to a bandwidth of the WSS channel.
  • ⁇ 6.25GHz SliceWSS channel attenuation adjustment steps include:
  • Step 1 Input the broad spectrum white noise into a single WSS unit, set the WSS center frequency and channel bandwidth, and connect the output of the WSS unit to the spectrum analyzer.
  • the bandwidth of the WSS channel is set to 50 GHz, and the attenuation of the corresponding WSS channels of the eight slices is set to be the same.
  • the numbers of the eight slices in the bandwidth of the 50 GHz WSS channel are sequentially Slice1 to Slice8.
  • Step 2 Find the center frequency f c of the output spectrum.
  • the service transceiver module baud rate B2 the baud rate B 2 of the 200G PM-8QAM service module such as 25% FEC overhead is about 45 GBaud. Adjust the two lateral frequency calibration lines of the spectrometer at the frequencies f c -B 2 /2, f c +B 2 /2.
  • Step 3 Adjust the WSS channel attenuation of the secondary edge Slice 2 within the WSS channel bandwidth such that the spectral height at the lowest frequency in the frequency f c -B 2 /2 to f c is close to f c -B 2 /2 The score is high.
  • Step 4 Adjust the WSS channel attenuation of the middle Slice 3 and Slice 4 in the WSS channel bandwidth, and do the same attenuation adjustment for the two slices in the middle of the channel, so that in the interval f c -B 2 /2 ⁇ f c
  • the spectrum tends to be flat, ensuring that the channel flatness of this interval does not exceed 0.4 dB.
  • Step 5 Symmetrically adjust the attenuation of the Slice 5, Slice 6, and Slice 7WSS channels in the bandwidth of the WSS channel with the center of the channel as the boundary.
  • the attenuation of the WSS channel of the adjusted 8 slices is symmetric with the center frequency f c . At this time, the WSS is obtained.
  • the attenuation adjustment parameters of the unit are symmetric with the center frequency f c .
  • Step 6 Select N WSS modules, and sequentially obtain the slice attenuation adjustment parameters of each WSS module, and average the N attenuation values of each slice, and use the average value as the attenuation configuration amount of the corresponding slice in the WSS channel bandwidth.
  • the preferred embodiment of the present invention provides a method for shaping a bandwidth of a 50 GHz WSS channel.
  • the above steps are to sequentially adjust the attenuation of the WSS channel according to the Slice number, or perform the symmetric adjustment in step 5 in advance, that is, adjust the time first.
  • Edge Slice 2 and Slice 7 then adjust the channel between Slice 3 and Slice 6.
  • the final channel attenuation parameters obtained by the two adjustment sequences are the same.
  • the shaping method in the bandwidth of the 50 GHz channel is applied to the through-pass scene of the 200G 8QAM signal passing through the multi-level WSS cascading.
  • the system attenuates the channel into eight 6.25 GHz slices of the 50 GHz channel bandwidth WSS unit.
  • the method is based on the spectral shaping method of attenuation control within the WSS bandwidth, which can improve the receiving performance of the optical transceiver in multi-level WSS.
  • a preferred embodiment 3 of the present invention provides a WSS-based channel bandwidth attenuation adjustment method, which is applied to a scenario in which a 200G PM-QPSK optical signal passes through a multi-stage WSS cascade and a channel bandwidth of 75 GHz, corresponding to a WSS channel bandwidth.
  • the 12 ⁇ 6.25GHz SliceWSS channel attenuation adjustment steps include:
  • Step 1 Input the broad spectrum white noise into a single WSS unit, set the WSS center frequency and channel bandwidth, and connect the output of the WSS unit to the spectrum analyzer.
  • the bandwidth of the WSS channel is set to 75 GHz, and the attenuation of the WSS channels of the corresponding 12 slices are set to be the same.
  • the number of 12 slices in the bandwidth of the 75 GHz WSS channel is Slice 1 to Slice 12.
  • Step 2 Find the output spectrum of the center frequency f c, B 3 baud rate according to the service transceiver module, such as baud rate 25% FEC overhead 200G PM-QPSK service module B 3 about 68GBaud. Adjust the two lateral frequency calibration lines of the spectrometer at f c -B 3 /2, f c +B 3 /2.
  • Step 3 Adjust the WSS channel attenuation of the secondary edge Slice 2 within the WSS channel bandwidth so that the spectral height at the lowest frequency in the frequency f c -B 3 /2 to f c is close to f c -B 3 /2 The score is high.
  • Step 4 Adjust the WSS channel attenuation of the middle Slice 3, Slice 4, Slice 5, and Slice 6 in the WSS channel bandwidth, and do the same attenuation adjustment for the four slices in the middle of the channel, so that the frequency f c -B 3 /2 ⁇ f
  • the spectrum in the c interval tends to be flat, ensuring that the channel flatness of the interval does not exceed 0.4 dB.
  • Step 5 symmetrically adjust the attenuation of the Slice 7, Slice 8, Slice 9, Slice 10, and Slice 11 WSS channels in the bandwidth of the WSS channel with the center of the channel as the boundary.
  • the adjusted WSS channel attenuation of the 12 slices is symmetric with the center frequency f c .
  • the attenuation adjustment parameters of the WSS unit are obtained.
  • Step 6 Select N WSS modules, and sequentially obtain the slice attenuation adjustment parameters of each WSS module, and average the N attenuation values of each slice, and use the average value as the attenuation configuration amount of the corresponding slice in the WSS channel bandwidth.
  • the preferred embodiment 3 of the present invention provides a shaping method for the bandwidth of the 75 GHz WSS channel.
  • the above steps are to sequentially adjust the attenuation of the WSS channel according to the Slice number, or perform the symmetrical adjustment in step 5 in advance, that is, adjust first.
  • the secondary edge Slice 2 and Slice 11 adjust the channel middle Slice 3 to Slice 10, and the final channel attenuation parameters obtained by the two adjustment sequences are the same.
  • the shaping method in the bandwidth of the 75 GHz channel is applied to the pass-through scenario of the 200G PM-QPSK signal passing through the multi-level WSS cascade.
  • the system is configured to attenuate the above-mentioned channel in 12 6.25 GHz of the 75 GHz channel bandwidth WSS unit.
  • Slice is based on the spectral shaping method of attenuation control within the WSS bandwidth, which can improve the receiving performance of the optical transceiver in multi-level WSS.
  • a preferred embodiment 4 of the present invention provides a filtering performance optimization method based on WSS fragmentation control, which adopts a WSS fragmentation control method with a finer spectral granularity, such as a minimum spectrum tunable granularity of 3.125 GHz.
  • a finer spectral granularity such as a minimum spectrum tunable granularity of 3.125 GHz.
  • the spectral flatness can be further improved, and the receiving performance of the optical transceiver after multi-stage WSS cascading can be improved.
  • the SliceWSS corresponding to the 12 ⁇ 3.125 GHz in the WSS channel bandwidth is now described by 100G PM-QPSK.
  • Channel attenuation adjustment steps including:
  • Step 1 Input the broad spectrum white noise into a single WSS unit, set the WSS center frequency and channel bandwidth, and connect the output of the WSS unit to the spectrum analyzer.
  • the bandwidth of the WSS channel is set to 37.5 GHz, and the attenuation of the WSS channels of the corresponding 12 slices is set to be the same.
  • the number of 12 slices in the bandwidth of the 37.5 GHz WSS channel is Slice 1 to Slice 12.
  • Step 2 Find the center frequency f c of the output spectrum, and adjust the two lateral frequency calibration lines of the spectrometer according to the baud rate B1 of the service transceiver module, respectively set at f c -B 1 /2, f c +B 1 / 2 frequency.
  • Step 3 Adjust the WSS channel attenuation of the secondary edge Slice 2 within the WSS channel bandwidth so that the frequency f c -B 1 / 2.
  • the spectral height at the lowest point in the ⁇ f c interval is close to the spectral height at f c -B 1 /2.
  • Step 4 Adjust the WSS channel attenuation of the middle Slice 3, Slice 4, Slice 5, and Slice 6 in the WSS channel bandwidth, and do the same attenuation adjustment for the 4 slices in the middle of the channel, so that the frequency f c -B 1 /2 ⁇ f
  • the spectrum in the c interval tends to be flat, ensuring that the channel flatness of the interval does not exceed 0.4 dB.
  • Step 5 symmetrically adjust the attenuation of the Slice 7, Slice 8, Slice 9, Slice 10, and Slice 11 WSS channels in the bandwidth of the WSS channel with the center of the channel as the boundary.
  • the adjusted WSS channel attenuation of the 12 slices is symmetric with the center frequency f c .
  • the attenuation adjustment parameters of the WSS unit are obtained.
  • Step 6 Select N WSS modules, and sequentially obtain the slice attenuation adjustment parameters of each WSS module, and average the N attenuation values of each slice, and use the average value as the attenuation configuration amount of the corresponding slice in the WSS channel bandwidth.
  • the preferred embodiment 4 of the present invention provides a finer shaping method for the bandwidth of the 37.5 GHz WSS channel.
  • the above steps are to sequentially adjust the attenuation of the WSS channel according to the Slice number, or perform the symmetric adjustment in step 5 in advance. That is, the secondary edge Slice 2 and Slice 11 are adjusted first, and then the channel middle slice 3 to Slice 10 is adjusted, and the final channel attenuation parameters obtained by the two adjustment sequences are the same.
  • the shaping method in the 37.5 GHz channel bandwidth is applied to the multi-stage WSS cascading through-passage scenario of the 200G PM-QPSK signal.
  • the system modulates the attenuation in the channel to 12 channels of the 37.5 GHz channel bandwidth WSS unit.
  • the spectral shaping method based on the WSS of the smaller frequency adjustable granularity can make the flatness in the WSS channel better, thereby further improving the receiving performance of the optical transceiver in the multi-level WSS.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S2 averaging the attenuation parameters of the corresponding pieces of the adjusted multiple WSS modules, and controlling the WSS channel attenuation amount of each WSS module in the WSS system according to the obtained average value.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method and device for controlling the attenuation of the WSS channel provided by the embodiment of the present invention, the storage medium, and the processor have the following beneficial effects: in the related art, since the multi-stage WSS generates filtering damage to the optical signal, Furthermore, the filtered optical signal may degrade the performance of the receiver.
  • the embodiment of the present invention can effectively reduce the filtering damage when the optical signal passes through the multi-stage WSS, thereby improving the performance of the receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例中提供了一种WSS通道衰减量的控制方法及装置、存储介质、处理器,上述方法包括:对于多级波长选择开关WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制,通过本发明中的实施例,解决了相关技术中,由于多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题,进而有效减少了光信号通过多级WSS时的滤波损伤,同时也提高了接收机的性能。

Description

WSS通道衰减量的控制方法及装置、存储介质、处理器 技术领域
本发明涉及通信领域,具体而言,涉及一种波长选择开关(Wavelength–Selective Switch,简称为WSS)通道衰减量的控制方法及装置、存储介质、处理器。
背景技术
现有密集型光波复用(Dense Wavelength Division Multiping,简称为DWDM)系统多采用50GHz或100GHz通道间隔,即为固定栅格光波复用Wavelength Division Multiping,简称为WDM)系统。随着超高速100G/B100G WDM传输组网以及自动交换光网络(Automatically Swithced Optical Network,简称为ASON)/软件定义光网络(Software Defined Optical Network,简称为SDON)等技术的发展,传统WDM系统在频谱利用率、灵活性等方面出现挑战,支持不同通路间隔、不同传输速率并可按需动态设置通路间隔的灵活栅格WDM系统出现应用需求。
灵活栅格技术最早于2011年由国际电信联盟(International Telecommunication Union-T,简称为ITU-T)的G.694.1标准对其进行了初步的标准化,标准中规范频隙标称中心频率为193.1THz+n×6.25GHz。当前的主流WSS厂家均推出频率间隔宽度为12.5G或6.25GHz的WSS模块,因而使得具有更高频谱效率的准奈奎斯特WDM的传输方案变为可能,如将波特率约34GBaud(含25%前向纠错码Forward Error Correction,简称为FEC开销)的100G偏振复用正交相移键控(Polarization-Multiplexed Quadrature Phase Shift Keying,简称为PM-QPSK)业务光信号置于波道间隔为37.5GHz的信道中传输。该方法可将WDM系统波道间隔的进一步缩减,从而提高光纤系统中C波段的光谱效率,扩展系统传输容量。
而工程实际应用中,网络中会存在多个Flex可重构光分插复用器(Reconfigurable ADD Drop Multiplexer,简称为ROADM)站点的组网结 构,如图1所示,对于长跨段的端到端业务信号光,传输链路中就存在多级ROADM站点穿通场景。如图2所示,在ROADM站点的直通业务光和上下路业务光都需要使用WSS对业务光进行交叉调度控制,典型二维ROADM站点结构。ROADM站点中的直通方向的WSS会对穿通的光信号产生滤波损伤,尤其在准奈奎斯特WDM方案中,信号光谱带宽接近WSS的通道带宽,此时接收光谱在经过多级WSS滤波后,接收性能会严重裂化。这主要是由于光谱高频分量在多级WSS滤波后被显著抑制,会导致接收机中的时钟提取算法中鉴相产生较大误差,继而该时钟抖动或提取失效会导致数据恢复出现位置偏离,以至引起传输业务中断。
针对相关技术中,由于多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题,尚未提出有效的技术方案。
发明内容
本发明实施例提供了一种WSS通道衰减量的控制方法及装置、存储介质、处理器,以至少解决相关技术中由于多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题。
根据本发明的一个实施例,提供了一种WSS通道衰减量的控制方法,包括:对于多级波长选择开关WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中,按照预定规则对所述通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
根据本发明的另一个实施例,还提供了一种WSS通道衰减量的控制装置,包括:输入模块,设置为对于多级波长选择开关WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中;调整模块,设置为按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;控制模块,设置为对调整后的多个WSS 模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
根据本发明的另一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行以上任一项所述的功率处理方法。
根据本发明的另一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行以上任一项所述的功率处理方法。
通过本发明中的实施例,能够对多级WSS系统中的每一个WSS模块做出如下处理:将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值,进而对调整后的多个WSS模块的对应分片的衰减参数取平均值,进而根据平均值结果对每个WSS模块的WSS通道衰减量进行控制,采用上述技术方案,解决了相关技术中,多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题,进而有效减少了光信号通过多级WSS时的滤波损伤,同时也提高了接收机的性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中DWDM Flex ROADM单向组网框图;
图2是相关技术中ROADM站点的内部结构框图;
图3是根据本发明实施例的WSS通道衰减量的控制方法的流程图;
图4是根据本发明实施例的光发送机的预加重示意图;
图5是根据本发明实施例的WSS通道衰减量的控制装置的结构框图;
图6是根据本发明实施例的WSS通道衰减量的控制装置的调整模块 52的结构框图;
图7是根据本发明实施例的WSS通道衰减量的控制装置的调整模块52的结构框图;
图8是根据本发明优选实施例的衰减参数调节流程示意图;
图9是根据本发明实施例的WSS Slice级光谱整形示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种WSS通道衰减量的控制方法,图3是根据本发明实施例的WSS通道衰减量的控制方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,对于多级WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使白噪声的输出光谱的平坦度小于第一阈值;
步骤S304,对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
通过上述步骤,能够对多级WSS系统中的每一个WSS模块做出如下处理:将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值,进而对调整后的多个WSS模块的对应分片的衰减参数取平均值,进而根据平均值结果对每个WSS模块的WSS通道衰减量进行控制,采用 上述技术方案,解决了相关技术中,多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题,进而有效地减少了光信号经过多级WSS后的滤波损伤,同时也提高了接收机的性能。
上述步骤S302在实际操作过程中有多种实现方式,本发明实施例提供了一种实现方式,如下所示:
可以采用以下技术方案按照预定规则对通道的所有分片的衰减参数进行调整:
对所有分片的次边缘分片的衰减参数进行调整,得到第一调整结果;根据第一调整结果对通道的中心分片的衰减参数进行调整,得到第二调整结果;根据第一调整结果和第二调整结果对所有分片中除次边缘分片和中心分片的其他分片进行调整,也就是说,在本发明实施例中,可以依次对所有分片的次边缘分片、中心分片,以及所有分片的其他分片的衰减参数进行调整。
基于上述技术方案,本发明实施例还具体提供了如何对次边缘分片、中心分片,以及所有分片的其他分片进行调整,详细方案如下:
1)对所有分片的次边缘分片的衰减参数进行调整,可以优先考虑根据通道的业务信号的波特率来进行:获取通道的业务信号的波特率;根据波特率对所有分片的次边缘分片的衰减参数进行调整。
进一步地,调整次边缘分片的衰减参数,以使次边缘分片对应的光谱最低点的频谱高度与f c-B/2的频谱高度的差小于第二阈值,或以使次边缘分片对应的光谱最低点的频谱高度与f c+B/2的频谱高度的差小于第二阈值,其中,f c为通道的中心频率,B为业务信号的波特率。
2)根据次边缘分片的衰减参数的第一调整结果对通道的中心分片的衰减参数进行调整,可以通过以下技术方案实现:
将通道的一个或多个中心分片的衰减参数与次边缘分片的衰减参数进行匹配,以使白噪声在f c-B/2至f c段,或在f c至f c-B/2段的输出光谱的 平坦度小于第一阈值,可以理解为在本发明实施例中,调整的一个或多个中心分片的衰减参数与次边缘分片的衰减参数进行匹配,使得通道的B长度的频谱上,左半侧或者右半侧的平坦度小于第一阈值。
3)根据第一调整结果和第二调整结果对所有分片中除次边缘分片和中心分片的其他分片进行调整,包括:
以通道的中心频率f c为轴,根据第一调整结果中次边缘分片的衰减参数和第二调整结果中中心分片的衰减参数,对称调整其他分片的衰减参数,对其他分片的调整流程实际是依据上述对次边缘分片和中心分片的调整进行的,举例来说,当前依次有6个分片,并编号为1,2,3,4,5,6,首先可以对次边缘分片2进行衰减参数的调整,然后对中心分片3进行衰减参数的调整,针对右侧的分片4,5可以对称的将分片2的衰减参数对应到分片5上,分片3的衰减参数对应到分片4上,上述可以理解为是从左侧向右侧对称,实际操作过程中,也可以选择右侧向左侧对称,本发明实施例对此不作限定。
此外,对于上述步骤S304中取平均值的处理方式,本发明实施例还提供了一种处理方式:
分别获取所有WSS模块中的第一分片的衰减参数,对所有WSS模块中的第一分片的衰减参数取平均值;
依次获取所有WSS模块中的第二分片至第N分片的衰减参数,分别对所有WSS模块中的第二分片至第N分片的衰减参数取平均值,其中,所有分片包括N个分片,N为大于2的整数。
即在本发明实施例中,依次对每个WSS模块的第一分片,第二分片,……第N分片进行平均值的处理,然后根据得到的平均值依次对多级WSS系统中WSS模块的第一分片,第二分片,……第N分片的衰减参数进行调整。
以下结合一示例对上述WSS通道衰减量的控制进一步的说明,但不用于限定本发明实施例的技术方案。
本发明示例以多级Flex ROADM系统中100G/B100G准奈奎斯特WDM长距离传输性能改进的方法和系统为例,针对该长距离传输系统,其中:系统波道间的频率间隔与业务光波特率相接近,即准奈奎斯特WDM传输,如在37.5GHz波道间隔中传输波特率约为34GHz的100G PM-QPSK与200G PM-16QAM业务信号,或50GHz的波道间隔中传输波特率约为45GHz的200G PM-8QAM业务信号;系统中的业务收发机采用是相干接收光模块,且光模块接收端DSP时钟同步算法从信号光里提取时钟分量;系统中业务光的端到端传输链路中存在多级WSS级联穿通,其中WSS包括用于上路合波的WSS单元、下路分波的WSS单元以及ROADM站点直通方向的WSS单元;系统的WSS单元支持的频率调整粒度明显小于通道频率间隔,对应的最小频率可调栅格为12.5GHz或6.25GHz或3.125GHz。
基于上述方案,本发明示例还提供了一种带宽内衰减可调WSS光谱整形单元,该单元对通道内的多个Slice(可以理解为上述实施例中的分片)采用分片衰减控制方法,该方法主要包括以下步骤:
一、首先根据业务信号的波特率,调节通道次边缘Slice的WSS通道衰减量;
在本步骤中,在通道次边缘Slice的WSS通道衰减量参数调节前,将该通道带宽内所有Slice的WSS通道衰减量均设置为零。以此输出光谱为通道形状的调整起点,逐步调节次边缘Slice的WSS通道衰减量,使得该Slice对应光谱最低点的频谱高度与f c±B/2处频谱高度相接近,其中f c为通道的中心频率,B为业务信号的波特率。
二、然后根据通道的平坦度,调节通道中心Slice的WSS通道衰减量;
通道中间的Slice处(可含多个Slice)做相同的衰减同步调整,调节过程中WSS通道衰减量适配次边缘Slice的WSS通道衰减量,来保证光谱在f c-B/2~f c区间中的光谱趋于平坦。
三、最后以通道中心为界对称调节通道内各Slice的WSS通道衰减量;
在本步骤中,以通道中心为轴对称,各SliceWSS通道衰减量对称调 节的后,通道最边缘Slice保持零衰减,调节后的通道谱形依然保持对称,且光谱在f c-B/2~f c+B/2区间的光谱趋于平坦,即在整个通道内的中心频率与边缘频率分量的差异相对减小。
依此可获取该业务配置下所穿通WSS单元的通道整形参数(即上述步骤一,二,三所调节的衰减参数),多级WSS系统在建立业务时,可通过网管或ASON根据业务类型将该通道整形参数配置于传输链路中光合波、光分波、ROADM穿通点处的WSS单元,在每级WSS单元处实现对业务光谱的整形。
在上述步骤执行之前,在调节通道内各Slice的WSS通道衰减量时,在WSS单元的输入端接宽谱白噪声(可以理解为上述实施例的白噪声),在WSS输出端用光谱分析仪对输出的整形光谱形状做监测,用作WSS通道衰减量的反馈调节。
综上,本发明示例采用了WSS分片衰减控制的光谱整形方式,对WSS单元的光谱中心频谱分量做附加衰减调整(具体效果可见图9),缩小了WSS滤波导致的中心频率与边缘频率分量的差异,保证了接收端时钟同步算法从信号高频分量处有效的提取时钟,从而提高了100G/B100G相干接收机在多级WSS级联后的可靠接收性能。
此外,如图4所示,与现有光收发机的预加重光谱整形法相比,本发明实施例中在光链路上每个WSS单元处通过光谱整形抑制了本级WSS的滤波效应,克服了光收发机本身预加重能力不足导致的WSS穿通级数仍受限的问题,显著提升了光收发机的多级WSS的穿通能力,本发明示例的整形参数配置保证每个WSS采用相同的整形参数,且该参数不随光路WSS单元的级数变化做动态调节,减少了网络控制层面对业务光的端到端链路检测(如WSS的级联数与通道带宽)与光收发机预加重参数的反馈控制,同时本发明示例仅需要对WSS带宽衰减可调单元进行SLICE级的软件控制调整,不需要在传输链路中添加额外的光器件,实现方法简单且成本低。
需要说明的是,本发明实施例以及示例中提及的WSS通道和通道可以指代相同的含义,例如可以都是WSS通道,也可以都是通道,当然,WSS通道和通道也可以指代不同的含义,本发明实施例对此不作限定。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种WSS通道衰减量的控制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的WSS通道衰减量的控制装置的结构框图,如图5所示,该装置包括:
输入模块50,设置为对于多级波长选择开关WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中;
调整模块52,设置为按照预定规则对通道的所有分片的衰减参数进行调整,以使白噪声的输出光谱的平坦度小于第一阈值;
控制模块54,设置为对调整后的WSS模块的所有片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
通过上述模块的应用,能够对多级WSS系统中的每一个WSS模块做 出如下处理:将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值,进而对调整后的所有WSS模块的所有分片的衰减参数取平均值,进而根据平均值结果对每个WSS模块的WSS通道衰减量进行控制,采用上述技术方案,解决了相关技术中,多级WSS会对光信号产生滤波损伤,进而滤波后的光信号进入接收机后使得接收机的性能劣化等问题,进而有效减少了光信号通过多级WSS时的滤波损伤,同时也提高了接收机的性能。
图6是根据本发明实施例的WSS通道衰减量的控制装置的调整模块52的结构框图,如图6所示,调整模块52,包括:
第一调整单元520,设置为对所有分片的次边缘分片的衰减参数进行调整,得到第一调整结果;
第二调整单元522,设置为根据第一调整结果对通道的中心分片的衰减参数进行调整,得到第二调整结果;
第三调整单元524,设置为根据第一调整结果和第二调整结果对所有分片中除次边缘分片和中心分片的其他分片进行调整,也就是说,在本发明实施例中,可以依次对所有分片的次边缘分片、中心分片,以及所有分片的其他分片的衰减参数进行调整。
如图6所示,第一调整单元520进一步设置为,获取通道的业务信号的波特率,以及根据波特率对所有分片的次边缘分片的衰减参数进行调整。
可选地,第一调整单元520还设置为调整次边缘分片的衰减参数,以使次边缘分片对应的光谱最低点的频谱高度与f c-B/2的频谱高度的差小于第二阈值,或以使次边缘分片对应的光谱最低点的频谱高度与f c+B/2的频谱高度的差小于第二阈值,其中,f c为通道的中心频率,B为业务信号的波特率。
可选地,第二调整单元522,还设置为将通道的一个或多个中心分片的衰减参数与次边缘分片的衰减参数进行匹配,以使白噪声在f c-B/2至f c 段,或在f c至f c-B/2段的输出光谱的平坦度小于第一阈值。
可选地,第三调整单元524,设置为以通道的中心频率f c为轴,根据第一调整结果中次边缘分片的衰减参数和第二调整结果中中心分片的衰减参数,对称调整其他分片的衰减参数。
图7是根据本发明实施例的WSS通道衰减量的控制装置的调整模块52的结构框图,如图7所示,控制模块54,包括:
第一处理单元540,设置为分别获取所有WSS模块中的第一片的衰减参数,对所有WSS模块中的第一片的衰减参数取平均值;
第二处理单元542,设置为依次获取所有WSS模块中的第二片至第N片的衰减参数,分别对所有WSS模块中的第二片至第N片的衰减参数取平均值,其中,所有片包括N片,N为大于2的整数。
即在本发明实施例中,依次对每个WSS模块的第一分片,第二分片,……第N分片进行平均值的处理,然后根据得到的平均值依次对多级WSS系统中WSS模块的第一分片,第二分片,……第N分片的衰减参数进行调整。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
需要说明的是,上述实施例1-实施例2的技术方案可以结合使用,也可以单独使用,本发明实施例对此不作限定。
以下结合多个优选实施例对上述WSS通道衰减量的控制过程进行说明,但不用于限定本发明实施例的技术方案。
优选实施例一:
本发明优选实施例一提供了一种基于WSS的通道带宽内衰减调节方法,该方法应用于100G QPSK/200G 16正交幅度调制(Quadrature Amplitude Modulation,简称为QAM)光信号经过多级WSS级联且通道 带宽为37.5GHz的场景。对应WSS通道(可以理解为上述实施例中提及的通道)带宽内6×6.25GHz的Slice(可以理解为片)WSS通道衰减量调节步骤如图8所示,包括:
步骤1:将宽谱白噪声输入到单个WSS单元中,设定WSS中心频率以及通道带宽,将WSS单元的输出端接入到光谱分析仪。其中WSS通道带宽为设置为37.5GHz,对应的6个6.25GHz Slice的WSS通道衰减量均设置相同,此时的输出光谱形状如附图8所示。
步骤2:找到输出光谱的中心频率f c,根据业务收发机模块波特率B 1,如25%FEC开销的100G PM-QPSK与200G PM-16QAM业务模块的波特率B 1均约为34GBaud左右。调整光谱仪的两条横向频率定标线,分别设在f c-B 1/2,f c+B 1/2频率处。
步骤3:调节WSS通道带宽内的次边缘Slice 2的WSS通道衰减量,使得在频率f c-B 1/2~f c区间中的频率最低点f 2处谱高接近f c-B 1/2处谱高,调节后的输出光谱如附图8所示。
步骤4:调节WSS通道带宽内的中间Slice 3的WSS通道衰减量,使得在频率f c-B 1/2~f c区间中的光谱趋于平坦,保证该区间的通道平坦度不超过0.4dB,调节后的输出光谱如附图8所示。
步骤5:以通道中心为界对称调节WSS通道带宽内的Slice4与Slice5WSS通道衰减量,即设置Slice 4和Slice 5的WSS通道衰减量分别与Slice 2和Slice 3相同,调节后的6个6.25GHz Slice的WSS通道衰减量以中心频率f c呈两边对称,对应的输出光谱也对称调节后的输出光谱如附图5所示,此时则获取了WSS单元的衰减调节参数。
步骤6:考虑WSS器件个体间较小差异,选取N个WSS模块,N不小于3。对所选的N个模块重复上述步骤3~5,依次获取每个WSS模块各Slice的衰减调节参数,分别每个Slice的N个衰减值取平均,最终以该均值作为WSS通道带宽内相应Slice的衰减配置量。
综上,本发明优选实施例一提供了一种针对37.5GHz WSS通道带宽 内的整形方法,值得注意的是上述步骤是根据Slice序号依次调节WSS通道衰减量,也可将步骤5中对称调节提前执行,即先调整次边缘Slice 2与Slice 5,再调整通道中间Slice3与Slice4,两种调节次序得到的最终通道衰减参数相同即可。该37.5GHz通道带宽内的整形方法应用于100G QPSK/200G 16QAM信号经过多级WSS级联的穿通场景,系统在该类型业务发起时,将上述通道内WSS通道衰减量配置于37.5GHz通道带宽WSS单元的6个6.25GHz Slice。该方法基于WSS带宽内衰减控制的光谱整形法,抑制了多级WSS级联滤波导致的中心频率与边缘频率分量差异,保证了接收端时钟同步算法有效提取时钟分量,从而提高了光收发机在多级WSS的接收性能。
优选实施例二
本发明优选实施例二提供了一种基于WSS通道内衰减谱调节方法,该方法应用于200G PM-8QAM光信号在经过多级WSS级联且通道带宽为50GHz的场景,对应WSS通道带宽内8×6.25GHz的SliceWSS通道衰减量调节步骤包括:
步骤1:将宽谱白噪声输入到单个WSS单元中,设定WSS中心频率以及通道带宽,将WSS单元的输出端接入到光谱分析仪。其中WSS通道带宽为设置为50GHz,对应的8个Slice的WSS通道衰减量均设置相同。为便于说明,假设该50GHz WSS通道带宽内8个Slice的编号依次为Slice1~Slice8。
步骤2:找到输出光谱的中心频率f c,根据业务收发机模块波特率B2,如25%FEC开销的200G PM-8QAM业务模块的波特率B 2约为45GBaud。调整光谱仪的两条横向频率定标线,分别设在f c-B 2/2,f c+B 2/2频率处。
步骤3:调节WSS通道带宽内的次边缘Slice 2的WSS通道衰减量,使得在频率f c-B 2/2~f c区间中的频率最低点处的谱高接近f c-B 2/2处谱高。
步骤4:调节WSS通道带宽内的中间Slice 3与Slice4的WSS通道衰减量,且对通道中间的2个Slice做相同的衰减调整,使得在频率f c-B 2/2~f c区间中的光谱趋于平坦,保证该区间的通道平坦度不超过0.4dB。
步骤5:以通道中心为界对称调节WSS通道带宽内Slice 5、Slice 6、Slice 7WSS通道衰减量,调节后的8个Slice的WSS通道衰减量以中心频率f c对称,此时则获取了WSS单元的衰减调节参数。
步骤6:选取N个WSS模块,依次获取每个WSS模块各Slice衰减调节参数,分别每个Slice的N个衰减值取平均,并以该均值作为WSS通道带宽内相应Slice的衰减配置量。
综上,本发明优选实施例提供了一种针对50GHz WSS通道带宽内的整形方法,上述步骤是根据Slice序号依次调节WSS通道衰减量,也可将步骤5中对称调节提前执行,即先调整次边缘Slice 2与Slice 7,再调整通道中间Slice 3~Slice 6,两种调节次序得到的最终通道衰减参数相同即可。该50GHz通道带宽内的整形方法应用于200G 8QAM信号经过多级WSS级联的穿通场景,系统在该类型业务发起时,将上述通道内衰减配置于50GHz通道带宽WSS单元的8个6.25GHz Slice。该方法基于WSS带宽内衰减控制的光谱整形法,可提高了光收发机在多级WSS的接收性能。
优选实施例三:
本发明优选实施例三提供了一种基于WSS的通道带宽内衰减调节方法,该方法应用于200G PM-QPSK光信号在经过多级WSS级联且通道带宽为75GHz的场景,对应WSS通道带宽内12×6.25GHz的SliceWSS通道衰减量调节步骤包括:
步骤1:将宽谱白噪声输入到单个WSS单元中,设定WSS中心频率以及通道带宽,将WSS单元的输出端接入到光谱分析仪。其中WSS通道带宽为设置为75GHz,对应的12个Slice的WSS通道衰减量均设置相同。为便于说明,假设该75GHz WSS通道带宽内12个Slice的编号依次为Slice 1~Slice12。
步骤2:找到输出光谱的中心频率f c,根据业务收发机模块波特率B 3,如25%FEC开销的200G PM-QPSK业务模块的波特率B 3约为68GBaud。调整光谱仪的两条横向频率定标线,分别设在f c-B 3/2,f c+B 3/2频率处。
步骤3:调节WSS通道带宽内的次边缘Slice 2的WSS通道衰减量,使得在频率f c-B 3/2~f c区间中的频率最低点处的谱高接近f c-B 3/2处谱高。
步骤4:调节WSS通道带宽内的中间Slice 3、Slice4、Slice5、Slice6的WSS通道衰减量,且对这通道中间4个Slice做相同的衰减调整,使得在频率f c-B 3/2~f c区间中的光谱趋于平坦,保证该区间的通道平坦度不超过0.4dB。
步骤5:以通道中心为界对称调节WSS通道带宽内Slice 7、Slice 8、Slice 9、Slice 10、Slice 11WSS通道衰减量,调节后的12个Slice的WSS通道衰减量以中心频率f c对称,此时则获取了WSS单元的衰减调节参数。
步骤6:选取N个WSS模块,依次获取每个WSS模块各Slice衰减调节参数,分别每个Slice的N个衰减值取平均,并以该均值作为WSS通道带宽内相应Slice的衰减配置量。
综上,本发明优选实施例三提供了一种针对75GHz WSS通道带宽内的整形方法,上述步骤是根据Slice序号依次调节WSS通道衰减量,也可将步骤5中对称调节提前执行,即先调整次边缘Slice 2与Slice 11,再调整通道中间Slice 3~Slice 10,两种调节次序得到的最终通道衰减参数相同即可。该75GHz通道带宽内的整形方法应用于200G PM-QPSK信号经过多级WSS级联的穿通场景,系统在该类型业务发起时,将上述通道内衰减配置于75GHz通道带宽WSS单元的12个6.25GHz Slice。该方法基于WSS带宽内衰减控制的光谱整形法,可提高了光收发机在多级WSS的接收性能。
优选实施例四:
本发明优选实施例四提供了一种基于WSS分片控制的滤波性能优化方法,该方法采用更细频谱粒度的WSS分片控制方法,如最小频谱可调粒度为3.125GHz。可在上述三种优选实施例的基础上进一步改善光谱平坦度,提升光收发机经过多级WSS级联后的接收性能,现以100G PM-QPSK说明对应WSS通道带宽内12×3.125GHz的SliceWSS通道衰减量调节步骤,包括:
步骤1:将宽谱白噪声输入到单个WSS单元中,设定WSS中心频率以及通道带宽,将WSS单元的输出端接入到光谱分析仪。其中WSS通道带宽为设置为37.5GHz,对应的12个Slice的WSS通道衰减量均设置相同。为便于说明,假设该37.5GHz WSS通道带宽内12个Slice的编号依次为Slice 1~Slice12。
步骤2:找到输出光谱的中心频率f c,根据业务收发机模块波特率B1,调整光谱仪的两条横向频率定标线,分别设在f c-B 1/2,f c+B 1/2频率处。
步骤3:调节WSS通道带宽内的次边缘Slice 2的WSS通道衰减量,使得在频率f c-B 1/2。
~f c区间中的频率最低点处的谱高接近f c-B 1/2处谱高。
步骤4:调节WSS通道带宽内的中间Slice 3、Slice4、Slice5、Slice6的WSS通道衰减量,且对这通道中间4个Slice做相同的衰减调整,使得在频率f c-B 1/2~f c区间中的光谱趋于平坦,保证该区间的通道平坦度不超过0.4dB。
步骤5:以通道中心为界对称调节WSS通道带宽内Slice 7、Slice 8、Slice 9、Slice 10、Slice 11WSS通道衰减量,调节后的12个Slice的WSS通道衰减量以中心频率f c对称,此时则获取了WSS单元的衰减调节参数。
步骤6:选取N个WSS模块,依次获取每个WSS模块各Slice衰减调节参数,分别每个Slice的N个衰减值取平均,并以该均值作为WSS通道带宽内相应Slice的衰减配置量。
综上,本发明优选实施例四提供了一种针对37.5GHz WSS通道带宽内的更精细整形方法,上述步骤是根据Slice序号依次调节WSS通道衰减量,也可将步骤5中对称调节提前执行,即先调整次边缘Slice 2与Slice 11,再调整通道中间Slice 3~Slice 10,两种调节次序得到的最终通道衰减参数相同即可。该37.5GHz通道带宽内的整形方法应用于200G PM-QPSK信号经过多级WSS级联的穿通场景,系统在该类型业务发起时,将上述通道内衰减配置于37.5GHz通道带宽WSS单元的12个3.125GHz Slice。对于其它几种不同波特率带宽的业务类型,对应带宽内可调Slice数目也相应变化,涉及到衰减调整方法与上书类同,此处不再赘述。该基于更小频率可调粒度的WSS实现的光谱整形法,可使得WSS通道内的平坦度更优,从而进一步提升光收发机在多级WSS的接收性能。
实施例3
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,对于多级WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中,按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;
S2,对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,对所述所有分片的次边缘分片的衰减参数进行调整,得到第一调整结果;
S4,根据所述第一调整结果对所述通道的中心分片的衰减参数进行调 整,得到第二调整结果;
S5,根据所述第一调整结果和所述第二调整结果对所述所有分片中除所述次边缘分片和所述中心分片的其他分片进行调整。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种WSS通道衰减量的控制方法及装置、存储介质、处理器具有以下有益效果:解决了相关技术中,由于多级WSS会对光信号产生滤波损伤,进而滤波后的光信号会使得接收机的性能劣化等问题,本发明中的实施例可以有效减少光信号通过多级WSS时的滤波损伤,从而提高了接收机的性能。

Claims (16)

  1. 一种波长选择开关WSS通道衰减量的控制方法,包括:
    对于多级WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中,按照预定规则对所述通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;
    对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的WSS通道衰减量进行控制。
  2. 根据权利要求1所述的方法,其中,按照预定规则对所述通道的所有分片的衰减参数进行调整,包括:
    对所述所有分片的次边缘分片的衰减参数进行调整,得到第一调整结果;
    根据所述第一调整结果对所述通道的中心分片的衰减参数进行调整,得到第二调整结果;
    根据所述第一调整结果和所述第二调整结果对所述所有分片中除所述次边缘分片和所述中心分片的其他分片进行调整。
  3. 根据权利要求2所述的方法,其中,对所述所有分片的次边缘分片的衰减参数进行调整,包括:
    获取所述通道的业务信号的波特率;
    根据所述波特率对所述所有分片的次边缘分片的衰减参数进行调整。
  4. 根据权利要求3所述的方法,其中,根据所述波特率对所述所有分片的次边缘分片的衰减参数进行调整,包括:
    调整所述次边缘分片的衰减参数,以使所述次边缘分片对应的光谱最低点的频谱高度与f c-B/2的频谱高度的差小于第二阈值,或以使所述次边缘分片对应的光谱最低点的频谱高度与f c+B/2的频谱高度的差小于第二阈值,其中,f c为所述通道的中心频率,B为所述业务信 号的波特率。
  5. 根据权利要求2所述的方法,其中,根据所述第一调整结果对所述通道的中心分片的衰减参数进行调整,包括:
    将所述通道的一个或多个中心分片的衰减参数与所述次边缘分片的衰减参数进行匹配,以使所述白噪声在f c-B/2至f c段,或在f c至f c-B/2段的输出光谱的平坦度小于第一阈值。
  6. 根据权利要求2所述的方法,其中,根据所述第一调整结果和所述第二调整结果对所述所有分片中除所述次边缘分片和所述中心分片的其他分片进行调整,包括:
    以通道的中心频率f c为轴,根据所述第一调整结果中次边缘分片的衰减参数和所述第二调整结果中中心分片的衰减参数,对称调整所述其他分片的衰减参数。
  7. 根据权利要求1所述的方法,其中,对调整后的多个WSS模块的对应分片的衰减参数取平均值,包括:
    分别获取多个WSS模块中的第一分片的衰减参数,对所述所有WSS模块中的第一分片的衰减参数取平均值;
    依次获取多个WSS模块中的第二分片至第N分片的衰减参数,分别对所有WSS模块中的第二分片至第N分片的衰减参数取平均值,其中,所述所有分片包括N个分片,N为大于2的整数。
  8. 一种WSS通道衰减量的控制装置,包括:
    输入模块,设置为对于多级WSS系统中的每一个WSS模块,将白噪声输入到WSS模块的通道中;
    调整模块,设置为按照预定规则对通道的所有分片的衰减参数进行调整,以使所述白噪声的输出光谱的平坦度小于第一阈值;
    控制模块,设置为对调整后的多个WSS模块的对应分片的衰减参数取平均值,根据取得的平均值对WSS系统中的每个WSS模块的 WSS通道衰减量进行控制。
  9. 根据权利要求8所述的装置,其中,所述调整模块,包括:
    第一调整单元,设置为对所述所有分片的次边缘分片的衰减参数进行调整,得到第一调整结果;
    第二调整单元,设置为根据所述第一调整结果对所述通道的中心分片的衰减参数进行调整,得到第二调整结果;
    第三调整单元,设置为根据所述第一调整结果和所述第二调整结果对所述所有分片中除所述次边缘分片和所述中心分片的其他分片进行调整。
  10. 根据权利要求9所述的装置,其中,所述第一调整单元,包括:
    获取子单元,设置为获取所述通道的业务信号的波特率;
    第一调整子单元,设置为根据所述波特率对所述所有分片的次边缘分片的衰减参数进行调整。
  11. 根据权利要求10所述的装置,其中,所述第一调整子单元,还设置为调整所述次边缘分片的衰减参数,以使所述次边缘分片对应的光谱最低点的频谱高度与f c-B/2的频谱高度的差小于第二阈值,或以使所述次边缘分片对应的光谱最低点的频谱高度与f c+B/2的频谱高度的差小于第二阈值,其中,f c为通道的中心频率,B为所述业务信号的波特率。
  12. 根据权利要求10所述的装置,其中,第二调整单元,还设置为将所述通道的一个或多个中心分片的衰减参数与所述次边缘分片的衰减参数进行匹配,以使所述白噪声在f c-B/2至f c段,或在f c至f c-B/2段的输出光谱的平坦度小于第一阈值。
  13. 根据权利要求9所述的装置,其中,所述第三调整单元,设置为以通道的中心频率f c为轴,根据所述第一调整结果中次边缘分片 的衰减参数和所述第二调整结果中中心分片的衰减参数,对称调整所述其他分片的衰减参数。
  14. 根据权利要求8所述的装置,其中,所述控制模块,包括:
    第一处理单元,设置为分别获取多个WSS模块中的第一分片的衰减参数,对所述所有WSS模块中的第一分片的衰减参数取平均值;
    第二处理单元,设置为依次获取多个WSS模块中的第二分片至第N分片的衰减参数,分别对所有WSS模块中的第二分片至第N分片的衰减参数取平均值,其中,所述所有分片包括N个分片,N为大于2的整数。
  15. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
  16. 一种处理器,所述处理器设置为运行程序,其中,所述程序运行时执行权利要求1至7中任一项所述的方法。
PCT/CN2019/074371 2018-02-07 2019-02-01 Wss通道衰减量的控制方法及装置、存储介质、处理器 WO2019154308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19751450.8A EP3751759A4 (en) 2018-02-07 2019-02-01 METHOD AND DEVICE FOR CONTROLLING THE WSS CHANNEL DAMPING, STORAGE MEDIUM, PROCESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810124688.2A CN110120839B (zh) 2018-02-07 2018-02-07 Wss通道衰减量的控制方法及装置、存储介质、处理器
CN201810124688.2 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019154308A1 true WO2019154308A1 (zh) 2019-08-15

Family

ID=67519594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074371 WO2019154308A1 (zh) 2018-02-07 2019-02-01 Wss通道衰减量的控制方法及装置、存储介质、处理器

Country Status (3)

Country Link
EP (1) EP3751759A4 (zh)
CN (1) CN110120839B (zh)
WO (1) WO2019154308A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014353A (zh) * 2019-12-20 2021-06-22 中兴通讯股份有限公司 光域补偿方法、装置、网管设备、光传输系统及介质
CN114355514A (zh) * 2020-10-13 2022-04-15 华为技术有限公司 光交换的方法和装置、硅基液晶和波长选择开关
CN115118340A (zh) * 2021-03-22 2022-09-27 华为技术有限公司 功率补偿方法、装置及通信系统
CN115704956A (zh) * 2021-08-03 2023-02-17 中兴通讯股份有限公司 一种波长选择开关的通道衰减调整方法、装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222277A (zh) * 2008-02-02 2008-07-16 烽火通信科技股份有限公司 一种wss型roadm节点设备中光通道功率自动均衡的方法
CN102932065A (zh) * 2012-11-12 2013-02-13 武汉邮电科学研究院 一种多子信道的增益平坦装置及方法
WO2017154454A1 (ja) * 2016-03-10 2017-09-14 日本電気株式会社 光伝送システム、波長選択スイッチの制御装置、及び挿入損失補正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8280257B2 (en) * 2007-03-23 2012-10-02 Ciena Corporation Systems and methods for side-lobe compensation in reconfigurable optical add-drop multiplexers
CN102696194B (zh) * 2011-07-22 2014-12-10 华为技术有限公司 可重构的光分插复用器及波长交叉连接器
CN102281110B (zh) * 2011-07-29 2014-04-16 华为技术有限公司 光功率调节方法和装置
US9276696B2 (en) * 2012-10-19 2016-03-01 Ciena Corporation Systems and methods for channel additions over multiple cascaded optical nodes
US9312914B2 (en) * 2013-04-22 2016-04-12 Fujitsu Limited Crosstalk reduction in optical networks using variable subcarrier power levels
JP6369262B2 (ja) * 2014-09-24 2018-08-08 富士通株式会社 伝送装置及び伝送方法
US9806842B2 (en) * 2015-07-14 2017-10-31 Infinera Corporation Wavelength selective switch (WSS) for shaping optical signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222277A (zh) * 2008-02-02 2008-07-16 烽火通信科技股份有限公司 一种wss型roadm节点设备中光通道功率自动均衡的方法
CN102932065A (zh) * 2012-11-12 2013-02-13 武汉邮电科学研究院 一种多子信道的增益平坦装置及方法
WO2017154454A1 (ja) * 2016-03-10 2017-09-14 日本電気株式会社 光伝送システム、波長選択スイッチの制御装置、及び挿入損失補正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751759A4 *

Also Published As

Publication number Publication date
EP3751759A4 (en) 2021-11-10
CN110120839B (zh) 2021-11-02
CN110120839A (zh) 2019-08-13
EP3751759A1 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2019154308A1 (zh) Wss通道衰减量的控制方法及装置、存储介质、处理器
KR101449977B1 (ko) 광 통신 네트워크들의 용량을 최적화하기 위한 방법
US20030223751A1 (en) Optical transmission system
US9699074B2 (en) Efficient utilization of transceivers for shared restoration in flexible grid optical networks
US20160352449A1 (en) Optical transmission device that transmits wavelength division multiplexed optical signal
US9467244B2 (en) Transmission apparatus and transmission system
EP2958251A1 (en) Method and node for detecting subframe sequence error in inverse multiplexing
US20160105252A1 (en) Span-wise spectrum management system and method
CN102439994B (zh) 光器件滤波带宽的调整方法及装置
US9264788B2 (en) Inter-channel spectral shaping in optical ring networks
JP2016066910A (ja) 光伝送装置および光伝送制御方法
JP2013531909A (ja) トランスポンダアグリゲータシステムおよび動作方法
EP3119017A1 (en) Optical comb based roadm uplink/downlink transceiving system, method and terminal
Pan et al. Filtering and crosstalk penalties for PDM-8QAM/16QAM super-channels in DWDM networks using broadcast-and-select and route-and-select ROADMs
WO2022199277A1 (zh) 功率补偿方法、装置及通信系统
Saito et al. Adaptive bandwidth allocation algorithm for WDM/OFDM-PON-based Elastic Lambda Aggregation Network
US20180048394A1 (en) Optical receiving apparatus
Yang et al. Traffic-aware non-uniform passband assignment in elastic optical networks
Borkowski et al. Experimental demonstration of mixed formats and bit rates signal allocation for spectrum-flexible optical networking
CN112995797A (zh) Otn业务管理方法、装置、网络设备和可读存储介质
Fresi et al. First field trial demonstration of hitless defragmentation with signals overlap in elastic optical networks
Zami et al. Is mixing 50 GHz-spaced 32 GBaud channels and 75GHz-spaced 64 GBaud ones useful in a WDM elastic network?
JP7081679B2 (ja) 光送信機及び光受信機
Zhou et al. Field trial demonstration of real-time 400gbe optical transport over both conventional and non-contiguous superchannels using configurable modulation formats
Shi et al. Optical filtering tolerant and spectrally efficient 200Gbps real-time transmission using flex-shaping algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019751450

Country of ref document: EP

Effective date: 20200907