WO2019154267A1 - 波束失败恢复的方法和设备 - Google Patents

波束失败恢复的方法和设备 Download PDF

Info

Publication number
WO2019154267A1
WO2019154267A1 PCT/CN2019/074175 CN2019074175W WO2019154267A1 WO 2019154267 A1 WO2019154267 A1 WO 2019154267A1 CN 2019074175 W CN2019074175 W CN 2019074175W WO 2019154267 A1 WO2019154267 A1 WO 2019154267A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure recovery
beam failure
random access
coreset
candidate
Prior art date
Application number
PCT/CN2019/074175
Other languages
English (en)
French (fr)
Inventor
陈力
吴昱民
梁敬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/969,512 priority Critical patent/US11483833B2/en
Publication of WO2019154267A1 publication Critical patent/WO2019154267A1/zh
Priority to US17/945,991 priority patent/US20230007646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and an apparatus for beam failure recovery.
  • the user equipment does not continue to monitor the candidate beam or the reference signal corresponding to the candidate beam after the Beam failure trigger (Reference).
  • Signal RS
  • Other Radio Beams or other Cell-based Radio Channel Temporary Identifiers C-RNTIs
  • CORESET Control Channel Resource Set
  • a method for beam failure recovery including:
  • the wireless network temporarily identifies the scrambled physical downlink control channel
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • a user equipment including:
  • a first monitoring module configured to monitor, on a first control channel resource set CORESET of the beam failure recovery, a physical downlink control channel that is scrambled by the cell radio network temporary identifier after the triggering beam failure event or the beam failure recovery event;
  • a second monitoring module configured to monitor, on the second CORESET, a physical downlink control channel that is scrambled by the cell radio network temporary identifier after the triggering beam failure event or the beam failure recovery event;
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • a user equipment comprising: a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor The steps of the method of beam failure recovery as described above.
  • a computer readable storage medium having stored thereon a computer program, the processor implementing the beam failure recovery as described above when executed by a processor The steps of the method.
  • the cell wireless network temporary identifier is monitored on the first control channel resource set CORESET of the beam failure recovery.
  • FIG. 1 is a schematic diagram of a related UE beam failure recovery method
  • FIG. 2 is a schematic structural diagram of a wireless communication system according to some embodiments of the present disclosure.
  • FIG. 3 is a flow chart of a method for beam failure recovery of some embodiments of the present disclosure.
  • FIG. 5 is a third flowchart of a method for beam failure recovery according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a UE according to some embodiments of the present disclosure.
  • FIG. 7 is a second schematic structural diagram of a UE according to some embodiments of the present disclosure.
  • FIG. 8 is a third schematic structural diagram of a UE according to some embodiments of the present disclosure.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in some embodiments of the present disclosure should not be construed as being more optional or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • High-frequency communication can provide a wider system bandwidth, and the antenna size can also be smaller, which is more conducive to large-scale antenna deployment in base stations and UEs.
  • High-frequency communication has the disadvantages of large path loss, easy interference, and weak link.
  • Large-scale antenna technology can provide large antenna gain. Therefore, the combination of high-frequency communication and large-scale antenna is the future 5G mobile communication system. The inevitable trend.
  • the use of large-scale antenna technology cannot solve all the problems of high-frequency communication, such as link fragility.
  • the beam failure recovery mechanism can quickly switch the beam, switch the communication link from the poorer beam to the better beam, avoid the failure of the wireless link, and effectively improve the robustness of the link.
  • Step 101 beam failure detection
  • Step 102 new candidate beam identification
  • Step 103 Send a beam failure recovery request.
  • Step 104 The UE monitors a beam failure recovery request gNB response.
  • the new candidate beam identification may be located before the beam failure detection or after the beam failure detection.
  • the 3GPP RAN1 conference reached the following conclusion regarding the UE beam failure recovery request transmission:
  • the PRACH used for beam failure recovery request transmission is orthogonal to the normal PRACH resource, and at least supports orthogonal frequency division multiplexing:
  • the competing PRACH resources are from a traditional Random Access Channel (RACH) resource pool;
  • RACH Random Access Channel
  • the wireless communication system may be a system using a fifth generation (5th generation, 5G) mobile communication technology (hereinafter referred to as a 5G system for short), or an Evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • a 5G system for short a fifth generation (5th generation, 5G) mobile communication technology
  • eLTE Evolved Long Term Evolution
  • . 2 is a schematic structural diagram of a wireless communication system according to some embodiments of the present disclosure.
  • the wireless communication system may include: a network side device 20 and a user equipment, for example, the user equipment is referred to as the UE 21, and the UE 21 may communicate with the network side device 20.
  • the connection between the foregoing devices may be a wireless connection.
  • a solid line is illustrated in FIG. 2 .
  • the foregoing communication system may include multiple UEs, network side devices, and may communicate with multiple UEs (transmit signaling or transmit data).
  • the network side device may be a base station, where the network side device may be a commonly used base station, or an evolved node base station (eNB), or may be a network side in a 5G system.
  • Equipment such as a next generation node base station (gNB) or a transmission and reception point (TRP)).
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • the execution body of the method is a UE, and the specific steps are as follows:
  • Step 301 After the trigger beam failure event or the beam failure recovery event, monitor the physical downlink control channel scrambled by the cell radio network temporary identifier on the first CORESET of the beam failure recovery; and/or monitor the cell radio on the second CORESET.
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • the beam failure event may also be referred to as a beam failure
  • the beam failure recovery event may also be referred to as a beam failure recovery time.
  • the first CORESET may be referred to as a CORESET in which the preset resource corresponds to beam failure recovery
  • the second CORESET may be referred to as a CORESET corresponding to a resource other than the preset resource.
  • the preset resource includes: a part or all of a candidate beam or a RS resource corresponding to the candidate beam or a candidate reference signal (candidate RS) resource.
  • the cell wireless network temporary identifier when the cell wireless network temporary identifier is monitored on the first CORESET, stopping monitoring the physical downlink control channel of the cell wireless network temporary identifier scrambled on the second CORESET; or When the second CORESET monitors the cell radio network temporary identifier, stopping monitoring the physical downlink control channel scrambled by the cell radio network temporary identifier on the first CORESET.
  • the resource corresponding to the first CORESET includes at least one item:
  • Candidate reference signal resources corresponding to candidate beams are candidate reference signal resources corresponding to candidate beams.
  • an indication of a beam failure of the physical layer is indicated by the medium access control layer.
  • a random access preamble is sent to the network side device by using a random access procedure, where the random access preamble is used as a beam failure recovery request; or,
  • the physical layer indicates a resource or a candidate resource corresponding to the medium access control layer candidate beam or the candidate beam, and the resource includes: a reference signal resource or a candidate reference signal resource.
  • the method further includes at least one of: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; and stopping sending the random access preamble to the network side device.
  • the method further includes at least one of: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; stopping sending the random access preamble to the network side device; Indicates that the beam failure recovery is successful to the network side device.
  • the method further includes at least one of: continuing the beam failure recovery process; continuing the beam failure a random access procedure in the recovery process; and indicating, by the physical layer, a new candidate beam or candidate reference signal resource of the medium access control layer.
  • the new candidate beam is a beam that listens to the temporary identifier of the cell radio network on the second CORESET; or the new candidate reference signal resource is a reference signal resource that monitors the temporary identifier of the cell radio network on the second CORESET.
  • the method further includes at least one of: stopping the beam failure recovery process; and stopping the random access procedure in the beam failure recovery process.
  • step 301 when the cell wireless network temporary identifier is monitored on the first CORESET, the method further includes at least one item:
  • the MAC layer indicates to the upper layer and/or the physical layer that the beam failure recovery is successful
  • the execution body of the method is a UE, and the specific steps are as follows:
  • Step 401 After triggering a beam failure event or a beam failure recovery event, monitoring a physical downlink control channel scrambled by a cell radio network temporary identifier on a first CORESET of beam failure recovery; and/or monitoring a cell radio on a second CORESET The physical temporary control channel scrambled by the network temporary identifier;
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • Step 402 When the cell radio network temporary identifier is monitored on the first CORESET, discard the cell radio network temporary identifier, continue to monitor the cell radio network temporary identifier on the second CORESET, or monitor the second CORESET.
  • the cell radio network temporary identifier discards the cell radio network temporary identifier, and continues to monitor the cell radio network temporary identifier on the first CORESET.
  • the physical downlink control channel that is monitored by the cell radio network temporary identifier on the second CORESET is stopped, or when When the second CORESET monitors the cell radio network temporary identifier, stopping monitoring the physical downlink control channel scrambled by the cell radio network temporary identifier on the first CORESET.
  • the resource corresponding to the first CORESET includes at least one item:
  • Candidate reference signal resources corresponding to candidate beams are candidate reference signal resources corresponding to candidate beams.
  • an indication of a beam failure of the physical layer is indicated by the medium access control layer.
  • a random access preamble is sent to the network side device by using a random access procedure, where the random access preamble is used as a beam failure recovery request; or,
  • the physical layer indicates a resource or a candidate resource corresponding to the medium access control layer candidate beam or the candidate beam, and the resource includes: a reference signal resource or a candidate reference signal resource.
  • the method further includes at least one of: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; and stopping sending the random access preamble to the network side device.
  • the method further includes at least one of: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; stopping sending the random access preamble to the network side device; Indicates that the beam failure recovery is successful to the network side device.
  • the method further includes at least one of: continuing the beam failure recovery process; continuing the beam failure a random access procedure in the recovery process; and indicating, by the physical layer, a new candidate beam or candidate reference signal resource of the medium access control layer.
  • the new candidate beam is a beam that listens to the temporary identifier of the cell radio network on the second CORESET; or the new candidate reference signal resource is a reference signal resource that monitors the temporary identifier of the cell radio network on the second CORESET.
  • the method further includes at least one of: stopping the beam failure recovery process; and stopping the random access procedure in the beam failure recovery process.
  • step 401 when the cell wireless network temporary identifier is monitored on the first CORESET, the method further includes at least one item:
  • the MAC layer indicates to the upper layer and/or the physical layer that the beam failure recovery is successful
  • the execution body of the method is a UE, and the specific steps are as follows:
  • Step 501 After the trigger beam failure event or the beam failure recovery event, monitor the physical downlink control channel scrambled by the cell radio network temporary identifier on the first CORESET of the beam failure recovery; and/or monitor the cell radio on the second CORESET.
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • Step 502 In the process of beam failure recovery, when the non-contention random access fails, the declare beam failure recovery fails, or the contention-based random access (CBRA) is used to continue the beam failure recovery. Random access procedure;
  • Step 503 During the beam failure recovery process, when the non-contention random access fails, and the indication of the candidate beam and/or the candidate resource of the physical layer is not received, the beam failure recovery failure is declared, or the contention-based random access is used. CBRA continues the random access process of beam failure recovery;
  • Step 504 In the beam failure recovery process, after the preamble transmission or the beam failure recovery request transmission counter counts to the maximum value in the beam failure recovery timer timeout and/or beam failure recovery, the beam failure recovery failure is declared.
  • execution order of 501, 502, 503, 504 is not limited in some embodiments of the present disclosure.
  • the method further includes initiating at least one of:
  • Beam failure recovery timer based on non-contention random access
  • Beam failure recovery timer based on contention random access
  • the method further includes:
  • the declaring beam failure recovery fails.
  • the method further includes:
  • the cell radio network temporary identifier is monitored on the first CORESET or the second CORESET, and the beam failure recovery is determined to be successful.
  • the method further includes: indicating a physical layer and/or a high layer when the beam failure recovery failure or the beam failure recovery is successful.
  • the method further includes:
  • the RRC layer When the media access control layer determines that the beam failure recovery is successful or the beam failure recovery fails, the RRC layer indicates indication information that the beam failure recovery is successful or the beam failure recovery fails, and the indication information is used by the RRC layer to indicate the RRC layer to adjust the wireless chain.
  • Radio Link Monitoring (RLM) Radio Link Monitoring
  • Example 1 Listening to two cell radio network temporary identifiers, one can be discarded later.
  • the UE behavior After triggering a beam failure event or beam failure recovery, the UE behavior includes at least one item:
  • the Media Access Control (MAC) layer indicates an indication that the physical (PHY) layer fails one beam. After receiving the indication, the PHY layer performs the above actions (1) and (2).
  • MAC Media Access Control
  • the UE sends a beam failure recovery request to the base station by using a random access procedure at the MAC layer, and the UE sends a random access preamble (preamble) in the random access procedure. Thereafter, after the PHY layer indicates a MAC layer candidate beam or a reference signal (Reference Signal, RS) resource or a candidate RS resource corresponding to the candidate beam, the above behaviors (1) and (2) are performed.
  • RS Reference Signal
  • the cell wireless network temporary identifier is discarded.
  • the cell radio network temporary identifier is discarded.
  • Example 2 Listening to two C-RNTIs, further, not transmitting a preamble code to a network side device, or listening to two C-RNTIs after a preamble.
  • the UE behavior After triggering a beam failure event or beam failure recovery, the UE behavior includes at least one item:
  • Scenario 1 When the cell radio network temporary identifier is monitored on the second CORESET, the UE behavior includes at least one item:
  • the UE continues (does not stop) the beam failure recovery process
  • the UE continues (does not stop) the random access procedure in the beam failure recovery process
  • the PHY layer indicates a new candidate beam or candidate RS resource of the MAC layer.
  • the new candidate beam is a beam that listens to the temporary identification of the cell radio network on the second CORESET; or the new candidate reference signal resource is a reference signal resource that listens to the temporary identifier of the cell radio network on the second CORESET.
  • Scenario 2 monitoring the cell radio network temporary identifier on the second CORESET, or monitoring the cell radio network temporary identifier on the first CORESET or the second CORESET, after the PHY layer determines that the beam failure recovery is successful, the UE
  • the behavior includes at least one item:
  • the PHY layer indicates that the high-level beam failure recovery is successful.
  • the MAC layer stops the beam failure recovery process, and/or stops the random access procedure in the beam failure recovery process.
  • the UE behavior also includes at least one item:
  • the UE behavior includes at least one item:
  • the UE behavior includes at least one item:
  • the MAC layer indicates to the upper layer and/or the physical layer that the beam failure recovery is successful
  • the UE behavior includes at least one item:
  • Non-contention random access failures include: timer out timeout for Contention-free random access (CFRA) and/or CFRA counter count to maximum value. That is, when the random access procedure of the beam failure recovery is continued using Contention-based random access (CBRA), if the CBRA timer expires and/or the CBRA counter counts to the maximum value, the statement is directly stated. Beam failure recovery failed.
  • CBRA Contention-based random access
  • the beam failure recovery failure is directly declared.
  • the PHY layer and/or the upper layer are notified.
  • Example 2 In all of the above-mentioned Example 1, Example 2 and Example 3, after the MAC layer determines that the beam failure recovery is successful or failed, indicating to the RRC layer, the RRC layer influences the RLM according to this indication.
  • the RRC layer After the RRC layer obtains an indication that the MAC layer or the MAC layer successfully recovers the beam failure indicated by the PHY layer, the RRC layer regards the indication as an In-sync indication, or if the T310 timer is running running, Stop this timer or restart this timer.
  • the RRC layer After the RRC layer obtains an indication that the MAC layer or the MAC layer fails the beam failure recovery indicated by the PHY layer, the RRC layer regards the indication as an out-of-sync indication or triggers the radio link failure Radio Link. Failure, or start the T310 timer.
  • a user equipment 600 including:
  • the first monitoring module 601 is configured to monitor, after the triggering beam failure event or the beam failure recovery event, the physical downlink control channel that is scrambled by the cell radio network temporary identifier on the first control channel resource set CORESET of the beam failure recovery;
  • the second monitoring module 602 is configured to monitor, on the second CORESET, a physical downlink control channel that is scrambled by the cell radio network temporary identifier after the triggering beam failure event or the beam failure recovery event;
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • some embodiments of the present disclosure provide another user equipment 700, including:
  • the first monitoring module 601 is configured to monitor, after the triggering beam failure event or the beam failure recovery event, the physical downlink control channel that is scrambled by the cell radio network temporary identifier on the first control channel resource set CORESET of the beam failure recovery;
  • the second monitoring module 602 is configured to monitor, on the second CORESET, a physical downlink control channel that is scrambled by the cell radio network temporary identifier after the triggering beam failure event or the beam failure recovery event;
  • the resource corresponding to the first CORESET is different from the resource corresponding to the second CORESET.
  • the user equipment 700 further includes:
  • the first discarding module 701 is configured to: when the cell radio network temporary identifier is monitored on the first CORESET, discard the cell radio network temporary identifier, and continue to monitor the cell radio network temporary identifier on the second CORESET;
  • the second discarding module 702 is configured to discard the cell radio network temporary identifier when the cell radio network temporary identifier is monitored on the second CORESET, and continue to monitor the cell radio network temporary identifier on the first CORESET.
  • the user setting 700 further includes:
  • the first processing module 703 is configured to stop monitoring the physical downlink control channel of the cell wireless network temporary identifier scrambled on the second CORESET when the cell wireless network temporary identifier is monitored on the first CORESET; or
  • the physical downlink control channel that is scrambled by the cell radio network temporary identifier is monitored on the first CORESET.
  • the resource corresponding to the first CORESET includes at least one of: all candidate beams; reference signal resources corresponding to all candidate beams; partial candidate beams; reference signal resources corresponding to partial candidate beams; candidate reference signal resources; and candidate beam corresponding Candidate reference signal resources;
  • the user equipment 700 further includes:
  • the first indication module 704 is configured to indicate, by the medium access control layer, an indication that the physical layer fails one beam.
  • the user equipment 700 further includes:
  • the first sending module 705 is configured to send a random access preamble to the network side device by using a random access procedure, and use a random access preamble as a beam failure recovery request;
  • the second indication module 706 is configured to: indicate, by the physical layer, a resource or a candidate resource corresponding to the medium access control layer candidate beam or the candidate beam, where the resource includes: a reference signal resource or a candidate reference signal resource.
  • the user equipment 700 further includes:
  • the second processing module 707 is configured to continue the beam failure recovery process when the cell wireless network temporary identifier is monitored on the second CORESET; and/or to continue the random access process in the beam failure recovery process;
  • And/or the third indication module 708 is configured to indicate, by the physical layer, a new candidate beam or a candidate reference signal resource of the medium access control layer when the cell radio network temporary identifier is monitored on the second CORESET.
  • the new candidate beam is a beam that monitors the temporary identification of the cell radio network on the second CORESET; or the new candidate reference signal resource is a reference signal resource that listens to the temporary identification of the cell radio network on the second CORESET.
  • the user equipment 700 further includes:
  • the third processing module 709 is configured to: monitor the cell radio network temporary identifier on the second CORESET, or monitor the cell radio network temporary identifier on the first CORESET or the second CORESET, when the physical layer determines the beam failure After the recovery is successful, the beam failure recovery process is stopped, and/or the random access process in the beam failure recovery process is stopped;
  • the fourth indication module 710 is configured to indicate, by the physical layer, that the high-layer beam failure recovery succeeds after the UE monitors the cell radio network temporary identifier or the physical layer determines that the beam failure recovery is successful.
  • the user equipment 700 further includes:
  • the fourth processing module 711 is configured to stop the beam failure recovery process after receiving the indication of the physical layer by the upper layer, and/or stop the random access process in the beam failure recovery process.
  • the user equipment 700 further includes:
  • the fifth processing module 712 is configured to: before sending the random access preamble to the network side device by using the random access procedure; or before indicating, by the physical layer, the media access control layer candidate beam or the candidate beam corresponding resource or candidate resource And processing at least one of the following: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; and stopping sending the random access preamble to the network side device.
  • the user equipment 700 further includes:
  • a sixth processing module 713 configured to: after sending a random access preamble to the network side device by using a random access procedure, to send a beam failure recovery request; or, by using a physical layer, to indicate a medium access control layer candidate beam or candidate beam After the corresponding resource or the candidate resource, perform at least one of: stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; stopping sending the random access preamble to the network side device; and indicating to the network side device that the beam failure recovery is successful.
  • the user equipment 700 further includes:
  • the seventh processing module 714 is configured to stop the beam failure recovery process when the cell wireless network temporary identifier is monitored on the first CORESET, and/or to stop the random access process in the beam failure recovery process, and process at least one of the following Determining that the beam failure recovery is successful; the MAC layer indicates to the upper layer and/or the physical layer that the beam failure recovery is successful; stopping the beam failure recovery timer; stopping the beam failure recovery request transmission counter; and stopping transmitting the random access preamble to the network side device.
  • the user equipment 700 further includes:
  • the eighth processing module 715 is configured to: when determining that the non-contention random access fails, declare that the beam failure recovery fails, or use the contention-based random access CBRA to continue the beam failure recovery random access procedure;
  • the beam failure recovery failure is declared, or the randomization of the contention-based random access CBRA is continued.
  • the beam failure recovery failure is declared.
  • the user equipment 700 further includes:
  • the ninth processing module 716 is configured to: when a beam failure event occurs, and/or receive an indication of a candidate beam and/or a candidate resource of the physical layer, start at least one of the following: a beam failure recovery timer; a beam failure recovery request transmission Counter; beam failure recovery timer based on non-contention random access; beam failure recovery request transmission counter based on non-contention random access; beam failure recovery timer based on contention random access; beam failure recovery based on contention random access Request a transfer counter.
  • the user equipment 700 further includes:
  • the tenth processing module 717 is configured to: when the CBRA continues the beam failure recovery random access procedure, if the CBRA timer expires, and/or the CBRA preamble transmission or the beam failure recovery request transmission counter counts to the maximum value, Declare beam failure recovery failed.
  • the user equipment 700 further includes:
  • the eleventh processing module 718 is configured to: when the timer of the beam failure recovery is timed out, monitor the temporary identifier of the cell radio network on the first CORESET or the second CORESET, and determine that the beam failure recovery is successful;
  • the cell radio network temporary identifier is monitored on the first CORESET or the second CORESET, and the beam failure recovery is determined. success;
  • the user equipment 700 further includes:
  • the fifth indication module 719 is configured to indicate a physical layer and/or a high layer when the beam failure recovery fails or the beam failure recovery succeeds;
  • the user equipment 700 further includes:
  • the sixth indication module 720 is configured to: when the media access control layer determines that the beam failure recovery is successful or the beam failure recovery fails, indicating to the RRC layer that the beam failure recovery succeeds or the beam failure recovery fails, the indication information is in the radio resource.
  • the control layer is configured to instruct the radio resource control layer to adjust radio link monitoring.
  • some embodiments of the present disclosure provide another UE 800, including: at least one processor 801, a memory 802, a user interface 803, and at least one network interface 804.
  • the various components in UE 800 are coupled together by a bus system 805.
  • bus system 805 is used to implement connection communication between these components.
  • the bus system 805 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 805 in FIG.
  • the user interface 803 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • memory 802 in some embodiments of the present disclosure can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 802 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 8021 and application 8022.
  • the operating system 8021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 8022 includes various applications, such as a media player, a browser, etc., for implementing various application services. Programs that implement some of the embodiment methods of the present disclosure may be included in the application 8022.
  • the UE 800 may also include a computer program stored on the memory 802 and operable on the processor 801, the processor executing some of the present disclosure when executed by the processor 801 The steps of the method provided by the examples.
  • Processor 801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in a form of software.
  • the processor 801 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in some embodiments of the present disclosure may be implemented or performed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with some embodiments of the present disclosure may be directly embodied by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory 802, and the processor 801 reads the information in the memory 802 and, in conjunction with its hardware, performs the steps of the above method.
  • a computer program is stored on the computer readable storage medium.
  • the processing unit can be implemented in one or more ASICs, DSPs, digital signal processing devices (DSP devices, DSPDs), programmable logic devices (PLDs), FPGAs, general purpose processors, controllers, micro A controller, a microprocessor, other electronic units for performing the functions described herein, or a combination thereof.
  • the techniques described in some embodiments of the present disclosure may be implemented by modules (e.g., procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, removable hard disk, read-only optical disk, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in this disclosure can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • some embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, some embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, some embodiments of the present disclosure may employ computer program products embodied on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer usable program code embodied therein. form.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种波束失败恢复的方法和设备,该方法包括:在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;其中,第一CORESET对应的资源与所述第二CORESET对应的资源不相同。

Description

波束失败恢复的方法和设备
相关申请的交叉引用
本申请主张在2018年2月12日在中国提交的中国专利申请号No.201810147514.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,具体涉及一种波束失败恢复的方法和设备。
背景技术
在相关技术中,用户设备((User Equipment,UE)在波束失败触发(Beam failure trigger)后,就不会继续监听(monitor)除候选波束(candidate beam),或者候选波束对应的参考信号(Reference Signal,RS)资源外的其它波束或者其它波束对应的RS的控制信道资源集合(Control Channel Resource Set,CORESET)上的小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)。
发明内容
本公开的一些实施例的一个目的在于提供一种波束失败恢复的方法和设备,解决在波束失败恢复过程中,用户设备是否需要在指定的CORESET监听C-RNTI加扰的PDCCH的问题。
第一方面,提供了一种波束失败恢复的方法,包括:
在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
第二方面,还提供了一种用户设备,包括:
第一监听模块,用于在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,
第二监听模块,用于在触发波束失败事件或者波束失败恢复事件后,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
第三方面,还提供了一种用户设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的波束失败恢复的方法的步骤。
第四方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现如上所述的波束失败恢复的方法的步骤。
这样,在触发波束失败(beam failure)或波束失败事件(beam failure event)或者波束失败恢复或波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。解决在波束失败恢复过程中,用户设备是否需要在指定的CORESET监听C-RNTI加扰的PDCCH的问题。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为相关的UE波束失败恢复方法的示意图;
图2为本公开的一些实施例的无线通信系统的架构示意图;
图3为本公开的一些实施例的波束失败恢复的方法的流程图之一;
图4为本公开的一些实施例的波束失败恢复的方法的流程图之二;
图5为本公开的一些实施例的波束失败恢复的方法的流程图之三;
图6为本公开的一些实施例的UE的结构示意图之一;
图7为本公开的一些实施例的UE的结构示意图之二;
图8为本公开的一些实施例的UE的结构示意图之三。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开的一些实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开的一些实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
未来第五代(5Generation,5G)移动通信系统中,为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频通信和大规模天线技术将会被引入。高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在基站和UE中部署。高频通信存在路径损耗较大、容易受干扰、链路较脆弱的缺点,而大规模天线技术可提供较大天线增益,因此,高频通信与大规模天线的结合是未来5G移动通信系统的必然趋势。然而,采用大规模天线技术不能解决全部高频通信的问题,如链路的脆弱性。 当高频通信中遇到遮挡时,波束失败恢复机制可快速切换波束,将通信链路从较差的波束切换至较佳的波束,避免无线链路失败,有效提高链路的健壮性。
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)无线接入网(Radio Access Network,RAN)1的会议上,关于UE波束失败恢复机制达成如下结论:
参见图1,图中示出UE波束失败恢复机制,具体步骤如下:
步骤101、波束失败检测;
步骤102、新候选波束识别;
步骤103、波束失败恢复请求发送;
步骤104、UE监测波束失败恢复请求gNB响应。
需要说明的是,新的候选波束识别可能位于波束失败检测之前或波束失败检测之后。
3GPP RAN1的会议上关于UE波束失败恢复请求发送达成如下结论:
支持基于非竞争物理随机接入信道(Physical Random Access Channel,PRACH)发送波束失败恢复请求。用于波束失败恢复请求发送的PRACH与普通PRACH资源正交,至少支持频分复用方式正交:
研究其他的正交方式,如时分复用或码分复用;
研究是否采用不同的序列或PRACH格式;
研究波束失败恢复请求重传与普通PRACH重传是否类似。
支持基于物理上行控制信信道(Physical Uplink Control Channel,PUCCH)发送波束失败恢复请求:
研究PUCCH是否采用波束扫描方式发送;
研究基于竞争PRACH作为非竞争PRACH的补充发送波束失败恢复请求;
竞争PRACH资源来自传统随机接入信道(Random Access Channel,RACH)资源池;
使用四步RACH过程。
下面结合附图介绍本公开的实施例。本公开的一些实施例提供的波束失败恢复的和设备可以应用于无线通信系统中。该无线通信系统可以为采用第 五代(5th Generation,5G)移动通信技术的系统(以下均简称为5G系统),或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。参考图2,为本公开的一些实施例提供的一种无线通信系统的架构示意图。如图2所示,该无线通信系统可以包括:网络侧设备20和用户设备,例如用户设备记做UE21,UE 21可以与网络侧设备20通信。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图2中采用实线示意。
需要说明的是,上述通信系统可以包括多个UE,网络侧设备和可以与多个UE通信(传输信令或传输数据)。
本公开的一些实施例提供的网络侧设备可以为基站,该网络侧设备可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))等设备。
本公开的一些实施例提供的用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
参见图3,图中示出根据本公开的一些实施例的波束失败恢复的方法的流程,该方法的执行主体为UE,具体步骤如下:
步骤301、在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
需要说明的是,波束失败事件也可称为波束失败,波束失败恢复事件也可称为波束失败恢复时间。
在本公开的一些实施例中,第一CORESET可称为预设资源对应为波束失败恢复的CORESET,第二CORESET可称为预设资源外的资源对应的 CORESET。该预设资源包括:部分或者全部候选波束(candidate beam)或候选波束对应的RS资源或者候选参考信号(candidate RS)资源。
在本公开的一些实施例中,可选地,当在第一CORESET上监听小区无线网络临时标识时,停止在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;或者当在所述第二CORESET上监听小区无线网络临时标识时,停止在所述第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
在本公开的一些实施例中,可选地,第一CORESET对应的资源包括至少一项:
全部候选波束;
全部候选波束对应的参考信号资源;
部分候选波束;
部分候选波束对应的参考信号资源;
候选参考信号资源;以及
候选波束对应的候选参考信号资源。
在本公开的一些实施例中,可选地,在步骤301之前,通过媒体接入控制层指示物理层一个波束失败的指示。
在本公开的一些实施例中,可选地,在步骤301之前,通过随机接入过程向网络侧设备发送随机接入前导码,所述随机接入前导码作为波束失败恢复请求;或者,通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源,所述资源包括:参考信号资源或者候选参考信号资源。
在本公开的一些实施例中,可选地,在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之前,所述方法还包括至少一项:停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;以及停止向网络侧设备发送随机接入前导码。
在本公开的一些实施例中,可选地,在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,所 述方法还包括至少一项:停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;停止向网络侧设备发送随机接入前导码;以及向网络侧设备指示波束失败恢复成功。
在本公开的一些实施例中,可选地,当在步骤301中,在第二CORESET上监听到小区无线网络临时标识时,该方法还包括至少一项:继续波束失败恢复过程;继续波束失败恢复过程中的随机接入过程;以及通过物理层指示媒体接入控制层新的候选波束或者候选参考信号资源。
其中,该新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;或者该新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
在本公开的一些实施例中,可选地,当通过物理层指示高层时,该方法还包括至少一项:停止波束失败恢复过程;以及停止波束失败恢复过程中的随机接入过程。
在本公开的一些实施例中,可选地,在步骤301中,当在所述第一CORESET上监听到小区无线网络临时标识时,所述方法还包括至少一项:
停止波束失败恢复过程;
停止波束失败恢复过程中的随机接入过程;
确定波束失败恢复成功;
MAC层向高层和/或物理层指示波束失败恢复成功;
停止波束失败恢复定时器;
停止波束失败恢复请求传输计数器;以及
停止向网络侧设备发送随机接入前导码。
参见图4,图中示出根据本公开的一些实施例的波束失败恢复的方法的流程,该方法的执行主体为UE,具体步骤如下:
步骤401、在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
步骤402、当在第一CORESET上监听到小区无线网络临时标识,则丢弃所述小区无线网络临时标识,继续在第二CORESET上监听到小区无线网络临时标识;或者当在第二CORESET上监听到小区无线网络临时标识,则丢弃所述小区无线网络临时标识,继续在第一CORESET上监听到小区无线网络临时标识。
在本公开的一些实施例中,可选地,当在第一CORESET上监听小区无线网络临时标识时,停止在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道,或者当在所述第二CORESET上监听小区无线网络临时标识时,停止在所述第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
在本公开的一些实施例中,可选地,第一CORESET对应的资源包括至少一项:
全部候选波束;
全部候选波束对应的参考信号资源;
部分候选波束;
部分候选波束对应的参考信号资源;
候选参考信号资源;以及
候选波束对应的候选参考信号资源。
在本公开的一些实施例中,可选地,在步骤401之前,通过媒体接入控制层指示物理层一个波束失败的指示。
在本公开的一些实施例中,可选地,在步骤401之前,通过随机接入过程向网络侧设备发送随机接入前导码,所述随机接入前导码作为波束失败恢复请求;或者,通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源,所述资源包括:参考信号资源或者候选参考信号资源。
在本公开的一些实施例中,可选地,在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之前,所述方法还包括至少一项:停 止波束失败恢复定时器;停止波束失败恢复请求传输计数器;以及停止向网络侧设备发送随机接入前导码。
在本公开的一些实施例中,可选地,在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,所述方法还包括至少一项:停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;停止向网络侧设备发送随机接入前导码;以及向网络侧设备指示波束失败恢复成功。
在本公开的一些实施例中,可选地,当在步骤401中,在第二CORESET上监听到小区无线网络临时标识时,该方法还包括至少一项:继续波束失败恢复过程;继续波束失败恢复过程中的随机接入过程;以及通过物理层指示媒体接入控制层新的候选波束或者候选参考信号资源。
其中,该新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;或者该新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
在本公开的一些实施例中,可选地,当通过物理层指示高层时,该方法还包括至少一项:停止波束失败恢复过程;以及停止波束失败恢复过程中的随机接入过程。
在本公开的一些实施例中,可选地,在步骤401中,当在所述第一CORESET上监听到小区无线网络临时标识时,所述方法还包括至少一项:
停止波束失败恢复过程;
停止波束失败恢复过程中的随机接入过程;
确定波束失败恢复成功;
MAC层向高层和/或物理层指示波束失败恢复成功;
停止波束失败恢复定时器;
停止波束失败恢复请求传输计数器;以及
停止向网络侧设备发送随机接入前导码。
参见图5,图5中示出根据本公开的一些实施例的波束失败恢复的方法的流程,该方法的执行主体为UE,具体步骤如下:
步骤501、在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
步骤502、在波束失败恢复过程中,当非竞争随机接入失败,声明(declare)波束失败恢复失败,或者,使用基于竞争的随机接入(Contention-based random access,CBRA)继续波束失败恢复的随机接入过程;
步骤503、在波束失败恢复过程中,当非竞争随机接入失败,且没有收到物理层的候选波束和/或候选资源的指示,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;
步骤504、在波束失败恢复过程中,当波束失败恢复定时器超时和/或者波束失败恢复中前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败。
需要说明的是,在本公开的一些实施例中并不限定501、502、503、504的执行先后顺序。
在本公开的一些实施例中,可选地,当确定波束失败恢复失败后,和/或收到物理层的候选波束和/或候选资源的指示,所述方法还包括启动至少一项:
波束失败恢复定时器;
波束失败恢复请求传输计数器;
基于非竞争随机接入的波束失败恢复定时器;
基于非竞争随机接入的波束失败恢复请求传输计数器;
基于竞争随机接入的波束失败恢复定时器;
基于竞争随机接入的波束失败恢复请求传输计数器;
在本公开的一些实施例中,可选地,所述方法还包括:
当使用CBRA继续波束失败恢复的随机接入过程时,如果CBRA的定时器超时,和/或CBRA的前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败。
在本公开的一些实施例中,可选地,所述方法还包括:
当在波束失败恢复定时器超时前,在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,则确定波束失败恢复成功;
和/或,
当在波束失败恢复中前导码传输计数器之前或波束失败恢复请求传输计数器计数到最大值之前,在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,确定波束失败恢复成功。
在本公开的一些实施例中,可选地,所述方法还包括:当波束失败恢复失败或波束失败恢复成功时,指示物理层和/或高层。
在本公开的一些实施例中,可选地,所述方法还包括:
当媒体接入控制层确定波束失败恢复成功或者波束失败恢复失败时,向RRC层指示波束失败恢复成功或者波束失败恢复失败的指示信息,所述指示信息在RRC层用于指示RRC层调整无线链路监测(Radio Link Monitoring,RLM)。
示例1:监听两个小区无线网络临时标识,进一步后续可以丢弃一个。
在触发波束失败事件或者波束失败恢复后,UE行为包括至少一项:
(1)在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
(2)在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
进一步地,UE发生上述行为(1)和(2)之前,媒体接入控制(Media Access Control,MAC)层指示物理(Physical,PHY)层一个波束失败的指示。PHY层在收到该指示后,再执行上述行为(1)和(2)。
进一步地,UE发生上述行为(1)和(2)之前,UE在MAC层通过随机接入过程向基站发送波束失败恢复请求,在UE在该随机接入过程发送随机接入前导码(preamble)之后,或者在PHY层指示MAC层候选波束(candidate beam)或候选波束对应的参考信号(Reference Signal,RS)资源或者候选RS资源之后,再执行上述行为(1)和(2)。
进一步地,UE发生上述行为(1)或(2)之后:
当在第一CORESET上监听到小区无线网络临时标识,丢弃(discard)所述小区无线网络临时标识。
当在第二CORESET上监听到小区无线网络临时标识,丢弃所述小区无线网络临时标识。
示例2:监听两个C-RNTI,进一步地,不向网络侧设备发送preamble码,或者preamble后监听两个C-RNTI。
在触发波束失败事件或者波束失败恢复后,UE行为包括至少一项:
(1)在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
(2)在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
场景1:当在第二CORESET上监听到小区无线网络临时标识,UE行为包括至少一项:
UE继续(不停止)波束失败恢复过程;
UE继续(不停止)波束失败恢复过程中的随机接入过程;
PHY层指示MAC层新的候选波束或者候选RS资源。
进一步地,新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;或者所述新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
场景2:在第二CORESET上监听到小区无线网络临时标识,或者在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标识过程中,当PHY层判定波束失败恢复成功后,UE行为包括至少一项:
(1)停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程;
(2)PHY层指示高层波束失败恢复成功。
进一步地,在MAC层在收到PHY的指示后,停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程。
对于上述(1)和(2)中,在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选 波束对应的资源或者候选资源之前,UE行为还包括至少一项:
停止波束失败恢复定时器;
停止波束失败恢复请求传输计数器;以及
停止向网络侧设备发送随机接入前导码。
对于(1)和(2),在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,UE行为至少包括一项:
停止波束失败恢复定时器;
停止波束失败恢复请求传输计数器;
停止向网络侧设备发送随机接入前导码;以及
向网络侧设备指示波束失败恢复成功。
场景3:当在第一CORESET上监听到小区无线网络临时标识时,UE行为包括至少一项:
停止波束失败恢复过程;
停止波束失败恢复过程中的随机接入过程;
确定波束失败恢复成功;
MAC层向高层和/或物理层指示波束失败恢复成功;
停止波束失败恢复定时器;
停止波束失败恢复请求传输计数器;以及
停止向网络侧设备发送随机接入前导码。
示例3:
在波束失败恢复过程中的RACH过程中,UE行为包括至少一项:
(1)当非竞争随机接入失败时,直接声明波束失败恢复失败,或者,使用CBRA继续波束失败恢复的随机接入过程。
非竞争随机接入失败包括:非竞争随机接入(Contention-free random access,CFRA)的定时器超时和/或者CFRA的计数器计数到最大值。即,当使用基于竞争的随机接入(Contention-based random access,CBRA)继续波束失败恢复的随机接入过程时,如果CBRA的定时器超时和/或者CBRA 的计数器计数到最大值之后,直接声明波束失败恢复失败。
(2)当非竞争随机接入失败,且没有收到物理层的候选波束和/或候选资源的指示,声明波束失败恢复失败,或者,使用CBRA继续波束失败恢复的随机接入过程
(3)波束失败恢复过程中,当波束失败恢复定时器超时和/或者波束失败恢复中前导码传输或波束失败恢复请求传输计数器计数到最大值之后,直接声明波束失败恢复失败。
进一步地,对于上述(1)、(2)和(3)中的波束失败恢复失败或成功后,通知PHY层和/或高层。
示例4:
所有上述示例1、示例2和示例3中,当MAC层确定beam failure recovery成功或者失败后,指示到RRC层,RRC层根据此指示影响RLM。
当RRC层获得MAC层或者MAC层通过PHY层指示的波束失败恢复成功的指示后,RRC层将此指示当作一个同步指示(In-sync indication),或者如果有T310计时器正在运行running,则停止此计时器,或者重启此计时器。
当RRC层获得MAC层或者MAC层通过PHY层指示的波束失败恢复失败的指示后,RRC层将此指示当作一个失步指示(out-of-sync indication),或者触发无线链路失败Radio Link Failure,或者启动T310计时器。
参见图6,本公开的一些实施例提供了一种用户设备600,包括:
第一监听模块601,用于在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
和/或,第二监听模块602,用于在触发波束失败事件或者波束失败恢复事件后,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,第一CORESET对应的资源与第二CORESET对应的资源不相同。
参见图7,本公开的一些实施例提供了另一种用户设备700,包括:
第一监听模块601,用于在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
和/或,第二监听模块602,用于在触发波束失败事件或者波束失败恢复事件后,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
其中,第一CORESET对应的资源与第二CORESET对应的资源不相同。
可选地,用户设备700还包括:
第一丢弃模块701,用于当在第一CORESET上监听到小区无线网络临时标识时,丢弃小区无线网络临时标识,继续在第二CORESET上监听到小区无线网络临时标识;
和/或,第二丢弃模块702,用于当在第二CORESET上监听到小区无线网络临时标识时,丢弃小区无线网络临时标识,继续在第一CORESET上监听到小区无线网络临时标识。
可选地,用户设别700还包括:
第一处理模块703,用于当在第一CORESET上监听小区无线网络临时标识时,停止在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;或者
当在所述第二CORESET上监听小区无线网络临时标识时,停止在所述第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
进一步地,第一CORESET对应的资源包括以下至少一项:全部候选波束;全部候选波束对应的参考信号资源;部分候选波束;部分候选波束对应的参考信号资源;候选参考信号资源;以及候选波束对应的候选参考信号资源;
可选地,用户设备700还包括:
第一指示模块704,用于通过媒体接入控制层指示物理层一个波束失败的指示。
可选地,用户设备700还包括:
第一发送模块705,用于通过随机接入过程向网络侧设备发送随机接入前导码,随机接入前导码作为波束失败恢复请求;
或者,第二指示模块706,用于通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源,资源包括:参考信号资源或者候选参考信号资源。
可选地,用户设备700还包括:
第二处理模块707,用于在第二CORESET上监听到小区无线网络临时标识时,继续波束失败恢复过程;和/或,继续波束失败恢复过程中的随机接入过程;
和/或,第三指示模块708,用于在第二CORESET上监听到小区无线网络临时标识时,通过物理层指示媒体接入控制层新的候选波束或者候选参考信号资源。
进一步地,新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;或者新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
可选地,用户设备700还包括:
第三处理模块709,用于在第二CORESET上监听到小区无线网络临时标识,或者在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标识过程中,当物理层确定波束失败恢复成功后,停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程;
和/或,第四指示模块710,用于当UE监听到小区无线网络临时标识或物理层确定波束失败恢复成功后,通过物理层指示高层波束失败恢复成功。
可选地,用户设备700还包括:
第四处理模块711,用于在高层收到物理层的指示后,停止波束失败恢复过程,和/或停止波束失败恢复过程中的随机接入过程。
可选地,用户设备700还包括:
第五处理模块712,用于在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之前,处理以下至少一项:停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;以及停止向网络侧设备发送随机接入前导码。
可选地,用户设备700还包括:
第六处理模块713,用于在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,进行至少一项:停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;停止向网络侧设备发送随机接入前导码;以及向网络侧设备指示波束失败恢复成功。
可选地,用户设备700还包括:
第七处理模块714,用于当在第一CORESET上监听到小区无线网络临时标识时停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程时,处理以下至少一项:确定波束失败恢复成功;MAC层向高层和/或物理层指示波束失败恢复成功;停止波束失败恢复定时器;停止波束失败恢复请求传输计数器;以及停止向网络侧设备发送随机接入前导码。
可选地,在波束失败恢复过程中,用户设备700还包括:
第八处理模块715,用于当确定非竞争随机接入失败,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;
或者,当确定非竞争随机接入失败,且没有收到物理层的候选波束和/或候选资源的指示,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;
或者,在波束失败恢复过程中,如果波束失败恢复的定时器超时和/或者波束失败恢复中前导码传输或波束失败恢复请求传输的计数器计数到最大值之后,声明波束失败恢复失败。
可选地,用户设备700还包括:
第九处理模块716,用于当波束失败事件后,和/或收到物理层的候选波束和/或候选资源的指示时,启动以下至少一项:波束失败恢复定时器;波束失败恢复请求传输计数器;基于非竞争随机接入的波束失败恢复定时器;基于非竞争随机接入的波束失败恢复请求传输计数器;基于竞争随机接入的波束失败恢复定时器;基于竞争随机接入的波束失败恢复请求传输计数器。
可选地,用户设备700还包括:
第十处理模块717,用于当使用CBRA继续波束失败恢复的随机接入过程时,如果CBRA的定时器超时,和/或者CBRA的前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败。
可选地,用户设备700还包括:
第十一处理模块718,用于当在波束失败恢复的定时器超时前,在第一CORESET或第二CORESET上监听到小区无线网络临时标识,则确定波束失败恢复成功;
和/或,当在波束失败恢复中前导码传输计数器之前或波束失败恢复请求传输的计数器计数到最大值之前,在第一CORESET或第二CORESET上监听到小区无线网络临时标识,确定波束失败恢复成功;
可选地,用户设备700还包括:
第五指示模块719,用于当波束失败恢复失败或波束失败恢复成功时,指示物理层和/或高层;
可选地,用户设备700还包括:
第六指示模块720,用于当媒体接入控制层确定波束失败恢复成功或者波束失败恢复失败时,向RRC层指示波束失败恢复成功或者波束失败恢复失败的指示信息,所述指示信息在无线资源控制层用于指示无线资源控制层调整无线链路监测。
参见图8,本公开的一些实施例提供了另一种UE 800,包括:至少一个处理器801、存储器802、用户接口803和至少一个网络接口804。UE 800中的各个组件通过总线系统805耦合在一起。
可以理解的是,总线系统805用于实现这些组件之间的连接通信。总线系统805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统805。
其中,用户接口803可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球、触感板或者触摸屏等)。
可以理解的是,本公开的一些实施例中的存储器802可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储 器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccess Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开的一些实施例描述的存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器802存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统8021和应用程序8022。
其中,操作系统8021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包含各种应用程序,例如媒体播放器、浏览器等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应用程序8022中。
在本公开的一些实施例中,UE 800还可以包括:存储在存储器802上并可在处理器801上运行的计算机程序,该计算机程序被处理器801执行时所述处理器实现本公开的一些实施例提供的方法的步骤。
上述本公开的一些实施例揭示的方法可以应用于处理器801中,或者由处理器801实现。处理器801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器801可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立 硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个ASIC、DSP、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、FPGA、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
结合本公开公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质 上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。
本领域内的技术人员应明白,本公开的一些实施例可提供为方法、系统、或计算机程序产品。因此,本公开的一些实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开的一些实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开的一些实施例是参照根据本公开的一些实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开的一些实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的一些实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (39)

  1. 一种波束失败恢复的方法,包括:
    在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
    其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
  2. 根据权利要求1所述的方法,还包括:
    当在第一CORESET上监听到小区无线网络临时标识,丢弃所述小区无线网络临时标识,继续在第二CORESET上监听到小区无线网络临时标识;或者
    当在第二CORESET上监听到小区无线网络临时标识,丢弃所述小区无线网络临时标识,继续在第一CORESET上监听到小区无线网络临时标识。
  3. 根据权利要求1所述的方法,还包括:
    当在所述第一CORESET上监听小区无线网络临时标识时,停止在所述第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
    或者,
    当在所述第二CORESET上监听小区无线网络临时标识时,停止在所述第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
  4. 根据权利要求1所述的方法,其中,在波束失败恢复的第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道之前;和/或,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道之前,所述方法还包括:
    通过媒体接入控制层指示物理层一个波束失败的指示;
    或者,
    通过随机接入过程向网络侧设备发送随机接入前导码,所述随机接入前导码作为波束失败恢复请求;
    或者,
    通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源。
  5. 根据权利要求4所述的方法,其中,在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之前,所述方法还包括至少一项:
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;以及
    停止向网络侧设备发送随机接入前导码。
  6. 根据权利要求4所述的方法,其中,在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,所述方法还包括至少一项:
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;
    停止向网络侧设备发送随机接入前导码;以及
    向网络侧设备指示波束失败恢复成功。
  7. 根据权利要求1所述的方法,其中,当在第二CORESET上监听到小区无线网络临时标识时,所述方法还包括至少一项:
    继续波束失败恢复过程;
    继续波束失败恢复过程中的随机接入过程;以及
    通过物理层指示媒体接入控制层新的候选波束或者候选参考信号资源。
  8. 根据权利要求7所述的方法,其中,
    所述新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;
    或者,
    所述新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
  9. 根据权利要求1所述的方法,其中,
    当在第二CORESET上监听到小区无线网络临时标识,或者在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标识过程中,当物理层确定波束失败恢复成功时,所述方法还包括至少一项:
    停止波束失败恢复过程;
    停止波束失败恢复过程中的随机接入过程;以及
    通过物理层指示高层波束失败恢复成功。
  10. 根据权利要求9所述的方法,其中,当通过物理层指示高层波束失败恢复成功时,所述方法还包括至少一项:
    停止波束失败恢复过程;以及
    停止波束失败恢复过程中的随机接入过程。
  11. 根据权利要求1所述的方法,其中,当在所述第一CORESET上监听到小区无线网络临时标识时,所述方法还包括至少一项:
    停止波束失败恢复过程;
    停止波束失败恢复过程中的随机接入过程;
    确定波束失败恢复成功;
    媒体接入控制层向高层和/或物理层指示波束失败恢复成功;
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;以及
    停止向网络侧设备发送随机接入前导码。
  12. 根据权利要求1所述的方法,其中,在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标识过程,所述方法还包括:
    当非竞争随机接入失败,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;或者
    当非竞争随机接入失败,且没有收到物理层的候选波束和/或候选资源的指示,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;或者
    在波束失败恢复过程中波束失败恢复定时器超时和/或者波束失败恢复中前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败;
    所述非竞争随机接入失败包括至少一项:
    非竞争随机接入CFRA的定时器超时;
    非竞争随机接入CFRA的前导码传输计数器达到最大值时。
  13. 根据权利要求12所述的方法,其中,当触发波束失败事件或者波束失败恢复事件后,和/或在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标识过程中,收到物理层的候选波束和/或候选资源的指示,所述方法还包括启动至少一项:
    波束失败恢复定时器;
    波束失败恢复请求传输计数器;
    基于非竞争随机接入的波束失败恢复定时器;
    基于非竞争随机接入的波束失败恢复请求传输计数器;
    基于竞争随机接入的波束失败恢复定时器;
    基于竞争随机接入的波束失败恢复请求传输计数器。
  14. 根据权利要求12所述的方法,还包括:
    当使用CBRA继续波束失败恢复的随机接入过程时,如果CBRA的定时器超时,和/或者CBRA的前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败。
  15. 根据权利要求1所述的方法,还包括:
    在波束失败恢复定时器、基于非竞争随机接入的波束失败恢复定时器或者基于竞争随机接入的波束失败恢复定时器超时前,当在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,则确定波束失败恢复成功;
    和/或,
    当在波束失败恢复中前导码传输计数器或波束失败恢复请求传输计数器、基于非竞争随机接入的波束失败恢复请求传输计数器或基于非竞争随机接入的波束失败恢复请求传输计数器计数到最大值之前,在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,确定波束失败恢复成功。
  16. 根据权利要求12、14或15所述的方法,其中,所述方法还包括:
    当波束失败恢复失败或波束失败恢复成功时,指示物理层和/或高层波束失败恢复失败或波束失败恢复成功。
  17. 根据权利要求1~16任一项所述的方法,还包括:
    当媒体接入控制层确定波束失败恢复成功或者波束失败恢复失败时,向无线资源控制层发送波束失败恢复成功或者波束失败恢复失败的指示信息,所述指示信息在无线资源控制层用于指示无线资源控制层调整无线链路监测。
  18. 根据权利要求1~17任一项所述的方法,其中,所述第一CORESET对应的资源包括以下至少一项:
    全部候选波束;
    全部候选波束对应的参考信号资源;
    部分候选波束;
    部分候选波束对应的参考信号资源;
    候选参考信号资源;以及
    候选波束对应的候选参考信号资源。
  19. 一种用户设备,包括:
    第一监听模块,用于在触发波束失败事件或者波束失败恢复事件后,在波束失败恢复的第一控制信道资源集合CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;和/或,
    第二监听模块,用于在触发波束失败事件或者波束失败恢复事件后,在第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;
    其中,所述第一CORESET对应的资源与所述第二CORESET对应的资源不相同。
  20. 根据权利要求19所述的用户设备,还包括:
    第一丢弃模块,用于当在第一CORESET上监听到小区无线网络临时标识时,丢弃所述小区无线网络临时标识,继续在第二CORESET上监听到小区无线网络临时标识;和/或
    第二丢弃模块,用于当在第二CORESET上监听到小区无线网络临时标识时,丢弃所述小区无线网络临时标识,继续在第一CORESET上监听到小区无线网络临时标识。
  21. 根据权利要求19所述的用户设备,还包括:
    第一处理模块,用于当在所述第一CORESET上监听小区无线网络临时标识时,停止在所述第二CORESET上监听小区无线网络临时标识加扰的物理下行控制信道;或者
    当在所述第二CORESET上监听小区无线网络临时标识时,停止在所述第一CORESET上监听小区无线网络临时标识加扰的物理下行控制信道。
  22. 根据权利要求19所述的用户设备,还包括:
    第一指示模块,用于通过媒体接入控制层指示物理层一个波束失败的指示。
  23. 根据权利要求19所述的用户设备,还包括:
    第一发送模块,用于通过随机接入过程向网络侧设备发送随机接入前导码,所述随机接入前导码作为波束失败恢复请求;或者,
    第二指示模块,用于通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源。
  24. 根据权利要求19所述的用户设备,还包括:
    第二处理模块,用于在第二CORESET上监听到小区无线网络临时标识时,继续波束失败恢复过程;和/或,继续波束失败恢复过程中的随机接入过程;和/或,
    第三指示模块,用于在第二CORESET上监听到小区无线网络临时标识时,通过物理层指示媒体接入控制层新的候选波束或者候选参考信号资源。
  25. 根据权利要求24所述的用户设备,其中,
    所述新的候选波束是在第二CORESET上监听到小区无线网络临时标识的波束;或者,
    所述新的候选参考信号资源是在第二CORESET上监听到小区无线网络临时标识的参考信号资源。
  26. 根据权利要求19所述的用户设备,其中,
    第三处理模块,用于在第二CORESET上监听到小区无线网络临时标识,或者在所述第一CORESET或所述第二CORESET上监听小区无线网络临时标 识过程中,当物理层确定波束失败恢复成功后,停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程;
    和/或,
    第四指示模块,用于当UE监听到所述小区无线网络临时标识或物理层确定波束失败恢复成功后,通过物理层指示高层波束失败恢复成功。
  27. 根据权利要求26所述的用户设备,还包括:
    第四处理模块,用于在所述高层收到所述物理层的指示后,停止波束失败恢复过程,和/或停止波束失败恢复过程中的随机接入过程。
  28. 根据权利要求23所述的用户设备,还包括:
    第五处理模块,用于在通过随机接入过程向网络侧设备发送随机接入前导码之前;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之前,进行至少一项:
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;以及
    停止向网络侧设备发送随机接入前导码。
  29. 根据权利要求23所述的用户设备,还包括:
    第六处理模块,用于在通过随机接入过程向网络侧设备发送随机接入前导码用于发送波束失败恢复请求之后;或者,在通过物理层指示媒体接入控制层候选波束或候选波束对应的资源或者候选资源之后,进行至少一项:
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;
    停止向网络侧设备发送随机接入前导码;以及
    向网络侧设备指示波束失败恢复成功。
  30. 根据权利要求19所述的用户设备,还包括:
    第七处理模块,用于当在所述第一CORESET上监听到小区无线网络临时标识时停止波束失败恢复过程,和/或,停止波束失败恢复过程中的随机接入过程时,进行至少一项:
    确定波束失败恢复成功;
    MAC层向高层和/或物理层指示波束失败恢复成功;
    停止波束失败恢复定时器;
    停止波束失败恢复请求传输计数器;以及
    停止向网络侧设备发送随机接入前导码。
  31. 根据权利要求19所述的用户设备,还包括:
    第八处理模块,用于当非竞争随机接入失败,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;或者
    当非竞争随机接入失败,且没有收到物理层的候选波束和/或候选资源的指示,声明波束失败恢复失败,或者,使用基于竞争的随机接入CBRA继续波束失败恢复的随机接入过程;或者
    在波束失败恢复过程中,如果波束失败恢复定时器超时和/或者波束失败恢复中前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败;
    所述非竞争随机接入失败包括至少一项:
    非竞争随机接入CFRA的定时器超时;
    非竞争随机接入CFRA的前导码传输计数器达到最大值时。
  32. 根据权利要求31所述的用户设备,还包括:
    第九处理模块,用于当波束失败事件后,和/或收到物理层的候选波束和/或候选资源的指示时,启动至少一项:
    波束失败恢复定时器;
    波束失败恢复请求传输计数器;
    基于非竞争随机接入的波束失败恢复定时器;
    基于非竞争随机接入的波束失败恢复请求传输计数器;
    基于竞争随机接入的波束失败恢复定时器;
    基于竞争随机接入的波束失败恢复请求传输计数器。
  33. 根据权利要求31所述的用户设备,还包括:
    第十处理模块,用于当使用CBRA继续波束失败恢复的随机接入过程时,如果CBRA的定时器超时,和/或者CBRA的前导码传输或波束失败恢复请求传输计数器计数到最大值之后,声明波束失败恢复失败。
  34. 根据权利要求19所述的用户设备,还包括:
    第十一处理模块,用于当在波束失败恢复定时器、基于非竞争随机接入的波束失败恢复定时器或者基于竞争随机接入的波束失败恢复定时器超时前,在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,则确定波束失败恢复成功;
    和/或,
    当在波束失败恢复中前导码传输计数器之前或波束失败恢复请求传输计数器、基于非竞争随机接入的波束失败恢复请求传输计数器或基于非竞争随机接入的波束失败恢复请求传输计数器计数到最大值之前,在所述第一CORESET或所述第二CORESET上监听到小区无线网络临时标识,确定波束失败恢复成功。
  35. 根据权利要求31、33或34所述的用户设备,还包括:
    第五指示模块,用于当波束失败恢复失败或波束失败恢复成功时,指示物理层和/或高层波束失败恢复失败或波束失败恢复成功。
  36. 根据权利要求19~35任一项所述的用户设备,还包括:
    第六指示信息,用于当媒体接入控制层确定波束失败恢复成功或者波束失败恢复失败时,向RRC层发送波束失败恢复成功或者波束失败恢复失败的指示信息,所述指示信息在无线资源控制层用于指示无线资源控制层调整无线链路监测。
  37. 根据权利要求19所述的用户设备,其中,所述第一CORESET对应的资源包括以下至少一项:
    全部候选波束;
    全部候选波束对应的参考信号资源;
    部分候选波束;
    部分候选波束对应的参考信号资源;
    候选参考信号资源;以及
    候选波束对应的候选参考信号资源。
  38. 一种用户设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求1至19中任一项所述的波束失败恢复的方法的步骤。
  39. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时所述处理器实现如权利要求1至19中任一项所述的波束失败恢复的方法的步骤。
PCT/CN2019/074175 2018-02-12 2019-01-31 波束失败恢复的方法和设备 WO2019154267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/969,512 US11483833B2 (en) 2018-02-12 2019-01-31 Beam failure recovery method and device
US17/945,991 US20230007646A1 (en) 2018-02-12 2022-09-15 Beam failure recovery method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147514.8 2018-02-12
CN201810147514.8A CN110149179B (zh) 2018-02-12 2018-02-12 一种波束失败恢复的方法和设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/969,512 A-371-Of-International US11483833B2 (en) 2018-02-12 2019-01-31 Beam failure recovery method and device
US17/945,991 Continuation US20230007646A1 (en) 2018-02-12 2022-09-15 Beam failure recovery method and device

Publications (1)

Publication Number Publication Date
WO2019154267A1 true WO2019154267A1 (zh) 2019-08-15

Family

ID=67548777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074175 WO2019154267A1 (zh) 2018-02-12 2019-01-31 波束失败恢复的方法和设备

Country Status (3)

Country Link
US (2) US11483833B2 (zh)
CN (1) CN110149179B (zh)
WO (1) WO2019154267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022241626B2 (en) * 2018-08-07 2024-03-07 Zte Corporation Link recovery in wireless communications

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10805148B2 (en) * 2018-02-05 2020-10-13 Ofinno, Llc Beam failure recovery request procedure
CN111226491A (zh) 2018-02-07 2020-06-02 Oppo广东移动通信有限公司 链路重新配置的方法和终端设备
CN110149179B (zh) * 2018-02-12 2021-01-15 维沃移动通信有限公司 一种波束失败恢复的方法和设备
EP3554179B1 (en) * 2018-02-14 2021-06-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN110324119B (zh) * 2018-03-28 2020-10-27 维沃移动通信有限公司 针对波束失败的配置方法和终端
US11665767B2 (en) * 2018-04-18 2023-05-30 Ntt Docomo, Inc. Terminal, radio communication method, and base station
US11202319B2 (en) * 2018-05-09 2021-12-14 Qualcomm Incorporated Random access response window ambiguity for multiple message1 transmissions
EP3836670A4 (en) * 2018-08-10 2022-03-30 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN112567843B (zh) * 2018-09-14 2023-04-28 Oppo广东移动通信有限公司 一种链路恢复过程的处理方法及装置、终端
EP3900444B1 (en) * 2019-02-18 2023-09-27 Samsung Electronics Co., Ltd. Controlling transmission power of user equipment in a mmwave wireless network
CN111836279B (zh) * 2019-08-23 2022-07-15 维沃移动通信有限公司 一种发生波束失败的处理方法和终端
US11431396B2 (en) * 2019-08-26 2022-08-30 Qualcomm Incorporated Beam failure recovery in a secondary cell
US11310833B2 (en) * 2019-08-29 2022-04-19 Qualcomm, Incorporated RACH procedure with timing alignment
CN113225839B (zh) * 2020-01-21 2023-06-30 维沃移动通信有限公司 一种无线链路恢复方法及设备
US11589394B2 (en) * 2020-02-13 2023-02-21 Qualcomm Incorporated Managing beam failure recovery random access
US20220006505A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Sidelink beam failure recovery
CN114585008A (zh) * 2020-12-01 2022-06-03 夏普株式会社 由用户设备执行的方法以及用户设备
CN114599113B (zh) * 2020-12-07 2024-07-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022120750A1 (en) * 2020-12-10 2022-06-16 Nec Corporation Methods, devices and computer storage media for communication
KR20240024238A (ko) * 2021-06-24 2024-02-23 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 물리 업링크 제어 채널 빔 회복 방법 및 그의 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
CN110731112B (zh) * 2017-06-15 2024-04-09 华为技术有限公司 用于可靠通信的多发送接收点协作的方法和设备
CN116033557A (zh) * 2017-08-18 2023-04-28 瑞典爱立信有限公司 用于波束故障恢复的随机接入的方法和设备
CN107612602B (zh) * 2017-08-28 2020-04-21 清华大学 毫米波通信系统的波束恢复方法及装置
ES2853487T3 (es) * 2017-11-17 2021-09-16 Asustek Comp Inc Método y aparato para el comportamiento de monitoreo del equipo de usuario (UE) para la recuperación del haz en un sistema de comunicación inalámbrico
CN109982442A (zh) * 2017-12-27 2019-07-05 夏普株式会社 一种在用户设备上运行的方法及用户设备
US11172385B2 (en) * 2017-12-27 2021-11-09 Lenovo (Singapore) Pte. Ltd. Beam recovery procedure
EP3718334A4 (en) * 2018-01-05 2021-08-25 Samsung Electronics Co., Ltd. SECONDARY CELL BEAM RECOVERY APPARATUS AND METHOD
CN110149179B (zh) * 2018-02-12 2021-01-15 维沃移动通信有限公司 一种波束失败恢复的方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Offline summary on remaining issues on Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #91, RL-1721645, 1 December 2017 (2017-12-01), Reno, USA, XP051370667 *
SAMSUNG: "Issues on beam failure recovery", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800434, 13 January 2018 (2018-01-13), Vancouver, Canada, XP051384867 *
ZTE: "Discussion on beam recovery", 3GPP TSG RAN WG1 MEETING #91, RL-1719534, 22 November 2017 (2017-11-22), Reno, USA, XP051369348 *
ZTE: "Remaining details on beam recovery", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800111, 13 January 2018 (2018-01-13), Vancouver, Canada, XP051384606 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022241626B2 (en) * 2018-08-07 2024-03-07 Zte Corporation Link recovery in wireless communications

Also Published As

Publication number Publication date
US11483833B2 (en) 2022-10-25
US20200413395A1 (en) 2020-12-31
CN110149179B (zh) 2021-01-15
CN110149179A (zh) 2019-08-20
US20230007646A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2019154267A1 (zh) 波束失败恢复的方法和设备
RU2741560C1 (ru) Способ и устройство для произвольного доступа для восстановления сбоя луча
US11395362B2 (en) Beam failure event handling method and apparatus and terminal
WO2018166331A1 (zh) 一种资源分配方法和装置以及终端设备
WO2020061866A1 (zh) Lbt监测失败的处理方法、装置和系统
WO2019192476A1 (zh) 用户设备以及波束故障恢复方法
JP2009201114A (ja) ハンドオーバーのランダムアクセスプロセスを改善する方法及び通信装置
US20210029745A1 (en) Method operating on user equipment and user equipment
US11051333B2 (en) Data transmission method, network device, and terminal device
TW201251369A (en) Method for detecting radio link failure for transmission over enhanced dedicated channel in a CELL_FACH state
WO2020024803A1 (zh) 用于波束失败恢复的方法和终端设备
EP3735088A1 (en) Method for operating on ue and ue
EP4048004A1 (en) Random access method and apparatus
EP2807893A1 (en) Radio resource control connection release for user devices out of up link time
US11224092B2 (en) Method and apparatus for resetting medium access control layer
WO2020083182A1 (zh) 由用户设备执行的方法及用户设备
WO2020098591A1 (zh) 波束失败恢复方法、装置及终端
WO2024103320A1 (zh) 无线通信方法、终端设备以及网络设备
WO2021249466A1 (zh) 发送或接收过程中的处理方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750853

Country of ref document: EP

Kind code of ref document: A1