WO2019154187A1 - 具有i角检测功能的新型水准仪 - Google Patents

具有i角检测功能的新型水准仪 Download PDF

Info

Publication number
WO2019154187A1
WO2019154187A1 PCT/CN2019/073679 CN2019073679W WO2019154187A1 WO 2019154187 A1 WO2019154187 A1 WO 2019154187A1 CN 2019073679 W CN2019073679 W CN 2019073679W WO 2019154187 A1 WO2019154187 A1 WO 2019154187A1
Authority
WO
WIPO (PCT)
Prior art keywords
center line
lens
objective lens
casing
disposed
Prior art date
Application number
PCT/CN2019/073679
Other languages
English (en)
French (fr)
Inventor
刘尧
吴祥华
孟强
刘雁春
Original Assignee
大连圣博尔测绘仪器科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连圣博尔测绘仪器科技有限公司 filed Critical 大连圣博尔测绘仪器科技有限公司
Publication of WO2019154187A1 publication Critical patent/WO2019154187A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/04Hydrostatic levelling, i.e. by flexibly interconnected liquid containers at separated points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites
    • G01C1/06Arrangements for reading scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Definitions

  • the invention relates to a level measuring device in the field of geodesy and engineering measurement, in particular to a new leveling instrument with i-angle detecting function which can improve the accuracy, reliability and efficiency of leveling.
  • the traditional leveling device consists of a level and two leveling scales.
  • the level consists of an objective lens, a focusing lens, a horizontal line of sight automatic compensator, a beam splitter, a crosshair reticle, an eyepiece, an electronic reader, and a display terminal.
  • When measuring first place two leveling rods vertically on the ground at points A and B, and then set the level at the middle of the two points A and B, and use the leveling telescope to align the axis (ie, the intersection of the crosshairs and The horizontal line of sight provided by the objective lens is aligned to read the elevation values of the two leveling scales.
  • the difference between the measured height values is the level difference between the ground points A and B.
  • the height of another point can be derived from the height difference. Due to factors such as the manufacturing process of the instrument and the atmospheric environment, there is an angle between the collimating axis of the telescope and the horizontal plane during observation.
  • the measurement field is commonly called i-angle.
  • the size of the i angle directly affects the accuracy, stability and reliability of the leveling measurement.
  • Level measurement level tolerance for example, Chinese standard: 1st and 2nd level measurement i angle tolerance is 15 seconds; 3rd and 4th level measurement i angle tolerance is 20 seconds
  • Leveling distance to two levels when measuring The horizontal distances of the scales are equal or approximately equal to eliminate or attenuate the effects of the i-angle.
  • the existing measures have the problems of low measurement efficiency and low measurement accuracy: the i-angle is measured and adjusted before the level measurement every day, which often consumes a lot of energy and time of the measurement personnel, and the measurement work efficiency is low; The change of the i angle cannot be found in time, resulting in a decrease in the accuracy of the measurement result. If the measurement accuracy is low and the measurement accuracy is to be ensured, the measured result can only be discarded, the i angle is re-measured and adjusted, and the level retest is performed from the start point to the end point. This makes the measurement work efficiency lower.
  • real-time dynamic monitoring of i-angle changes is a major problem that plagues the human leveling industry, and it is also a major technical barrier to intelligent leveling.
  • Patent No. 201620816622.6 Chinese utility model patent, discloses a “level gauge i-angle monitoring device”, which is equipped with a leveling sight axis attitude signal sensor and a horizontal line of sight automatic compensator free pendulum displacement signal sensor, the output and data processing and The controller is connected, the data processing and the output of the controller are connected with the alarm device.
  • a level gauge i-angle monitoring device which is equipped with a leveling sight axis attitude signal sensor and a horizontal line of sight automatic compensator free pendulum displacement signal sensor, the output and data processing and The controller is connected, the data processing and the output of the controller are connected with the alarm device.
  • the threshold is automatically alarmed.
  • the patented technology has the following deficiencies: (1) the implementation of the technology is complicated, the manufacturing cost is high; (2) the direct real-time dynamic detection is not the i-angle change of the optical axis of the collimation axis, and It is to detect the displacement signal of the free compensator of the automatic compensator. It is necessary to further convert the pendulum displacement signal into the i-angle change of the optical path, which involves the calibration and conversion of the pendulum displacement, which affects the detection accuracy and efficiency of the i-angle variation.
  • the present invention is to solve the above-mentioned technical problems existing in the prior art, and to provide a novel leveling instrument having an i-angle detecting function capable of improving leveling accuracy, reliability, and efficiency.
  • the technical solution of the invention is: a novel leveling instrument with i-angle detection function, having a casing, and an objective lens, a focusing lens, an automatic horizontal line-of-sight compensator, and a beam splitting are provided in the casing from the inside to the outside.
  • the mirror, the cross-wire reticle and the eyepiece are further provided with an electronic reader, a display terminal and a first power source on the housing, and a leveling device is arranged on the outer side of the housing, and the other side of the objective lens is far away Arranging a built-in light source having the same center line, a scattering glass, a vertical transparent micro-coded scale, and a convex lens, and the built-in light source, the scattering glass, the vertical transparent micro-coded scale, and the convex lens form the same optical path with the objective lens and the eyepiece,
  • the display terminal is connected with an alarm device.
  • the housing is formed by the left housing and the right housing being movably connected, the objective lens, the focusing lens, the automatic horizontal line of sight compensator, the beam splitter, the cross wire reticle, the eyepiece, the electronic reader, and the display terminal
  • the first power source is disposed in the right housing, the level is disposed on the outer side of the right housing; the built-in light source, the scattering glass, the vertical transparent micro-coded scale and the convex lens are disposed in the left housing, in the left housing)
  • the center line of the built-in light source, the scattering glass, the vertical transparent micro-coded scale and the convex lens is perpendicular to the center line of the objective lens, and a beam splitter is disposed at a center line of the objective lens and a center line of the convex lens, and the splitting of the inside of the beam splitter
  • the beam illuminates the objective lens, and an optical path switching device is disposed outside the beam splitter.
  • the center line of the built-in light source, the scattering glass, the vertical transparent micro-coded scale and the convex lens is parallel to the center line of the objective lens, and a mirror is disposed on the center line of the convex lens, and the light is split on the reflected light path of the mirror.
  • the mirror, the spectroscopic beam on the inner side of the spectroscope aligns the objective lens, and an optical path switching device is disposed outside the beam splitter.
  • the invention provides a built-in light source, a scattering glass, a vertical transparent micro-coded scale and a convex lens, and can form the same optical path with the objective lens and the eyepiece, and can directly detect the change of the i-angle, thereby improving the detection precision and efficiency.
  • the alarm is automatically generated, and the surveyor can stop the measurement according to the warning and re-measure and adjust the i angle to ensure the measurement accuracy of the level measurement.
  • the invention avoids the re-measurement from the starting point to the end point due to the change of the i angle, saves manpower and material resources, greatly improves the working precision and working efficiency of the leveling measurement, and also improves the intelligence level of the leveling instrument.
  • FIG. 1 and 2 are schematic views showing the structure of a first embodiment of the present invention.
  • Fig. 3 is a schematic view showing the use of the embodiment 1 of the present invention.
  • 4 and 5 are schematic views showing the structure of a second embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of a third embodiment of the present invention.
  • a housing 1 is provided.
  • an objective lens 2 having the same center line, a focus lens 3, an automatic horizontal line-of-sight compensator 4, a beam splitter 5, and a cross are disposed.
  • the wire reticle 6, the eyepiece 7, the electronic reader 8 (ie, the CCD image decoding reading device used in conjunction with the coding level scale), the display terminal 9 and the power source 10 are provided with a leveler 11 on the outer side of the casing 1,
  • the leveling device 11 of the first embodiment uses a circular level bubble.
  • the housing 1 is formed by the movable connection of the left housing 1-1 and the right housing 1-2, and can be screwed or plugged, etc., and should be easy to install and disassemble.
  • the objective lens 2, the focus lens 3, the automatic horizontal line of sight compensator 4, the beam splitter 5, the crosshair reticle 6, the eyepiece 7, the electronic reader 8, the display terminal 9 and the first power source 10 are disposed in the right casing.
  • the leveling device 11 is disposed on the outer side of the right casing 1-2, and the alarm terminal 18 is connected to the display terminal 9; the distance objective lens 2 is disposed in the left casing 1-1.
  • the built-in light source 13 and the scattering glass 14 and the vertical transparent micro-coded scale 15 (that is, the micro-coded scale obtained by scaling the leveling scale) and the convex lens 16, the left casing 1-1 and After the right housing 1-2 is connected, the center line of the built-in light source 13, the scattering glass 14, the vertical transparent micro-coded scale 15 and the convex lens 16 and the objective lens 2, the focus lens 3, the automatic horizontal line-of-sight compensator 4, the beam splitter 5, The cross-hair reticle 6 and the center line of the eyepiece 7 are coincident, so that the built-in light source 13, the scattering glass 14, the vertical transparent micro-coded scale 15 and the convex lens 16 form the same optical path with the objective lens 2 and the eyepiece 7, in the left casing 1-1.
  • a second power source 17 is also provided to provide electrical energy to the built-in light source 13.
  • the left casing 1-1 is connected to the right casing 1-2, the bubble of the leveling device 11 is accurately centered, the built-in light source 13 is turned on, and the light of the built-in light source 13 is made by the scattering glass 14.
  • the angular size is calibrated on the vertical transparent micro-coded scale 15;
  • the i-angle change can be detected at any time as needed.
  • the left casing 1-1 is connected to the right casing 1-2 as in step 2, so that the bubble of the leveling device 11 is accurately centered, and the vertical transparent micro-coded scale 15 is observed and controlled by the eyepiece 8 through the eyepiece.
  • Reading outputting the reading to the display terminal 9, and comparing with the stored calibration data to obtain a change value. If the change value exceeds a preset threshold, indicating that the i angle has changed, the alarm device 18 is activated to alarm, and the time is Adjust the i angle.
  • a housing 1 is provided.
  • an objective lens 2 having the same center line, a focus lens 3, an automatic horizontal line-of-sight compensator 4, a beam splitter 5, and a cross are disposed.
  • the wire reticle 6, the eyepiece 7, the electronic reader 8 (i.e., the CCD image decoding reading device used in conjunction with the coding level scale), the display terminal 9 and the power source 10 are provided with a level 11 on the outer side of the casing 1 ( Tube level).
  • the leveling device 11 of the second embodiment employs a tube level bubble.
  • an alarm 18 is connected to the display terminal 9, and the built-in light source 13 with the center line perpendicular to the center line of the objective lens 2, the scattering glass 14, and the vertical transparent micronization are arranged in order from the top to the bottom of the objective lens 2.
  • the coded scale 15 and the convex lens 16 (or a composite lens having a positive refractive power) are provided with a beam splitter 19 at a center line of the objective lens 2 and a center line of the convex lens 16.
  • the beam splitting beam inside the beam splitter 19 illuminates the objective lens 2, and is split.
  • An optical path switching device 20 is provided outside the mirror 19.
  • the optical path switching device 20 may be a lens cover or an electronic fog mirror (transparent when energized, fogging to block light when power is off or vice versa), etc., and the optical path between the eyepiece 7 and the leveling scale and the eyepiece 7 and vertical transparency can be realized.
  • the optical path between the leveling scale and the built-in light source 13 is turned on by the optical path switching device 20, and the entire device can perform leveling measurement;
  • the i-angle change can be detected at any time as needed.
  • the detection is performed as in step 2...
  • the eyepiece is observed and controlled by the electronic reader 8 to read the vertical transparent micro-coded scale 15, the reading is output to the display terminal 9, and compared with the stored calibration data to obtain a change. Value, if the change value exceeds the preset threshold, indicating that the i angle has changed, the alarm device 18 is activated to alarm and adjust the i angle in time.
  • the structure is basically the same as that of the embodiment 2, except that the level 11 adopts electronic bubbles, and the center line of the built-in light source 13 , the scattering glass 14 , the vertical transparent micro-coded scale 15 and the convex lens 16 are parallel to the objective lens 2 .
  • the center line is provided with a mirror 21 on the center line of the convex lens 16, and a beam splitter 19 is disposed on the reflected light path of the mirror 21.
  • the beam splitting beam inside the beam splitter 19 aligns the objective lens 2, and is disposed outside the beam splitter 19.
  • Optical path switching device 20 is provided with a mirror 21 on the center line of the convex lens 16, and a beam splitter 19 is disposed on the reflected light path of the mirror 21.
  • the working process is the same as in the second embodiment.

Abstract

一种可提高水准测量精度、可靠性及效率的具有i角检测功能的水准仪,有壳体(1),在壳体(1)内由内至外依次设有中心线同一的物镜(2)、调焦透镜(3)、自动水平视线补偿器(4)、分光镜(5)、十字丝分划板(6)及目镜(7),在壳体(1)上还设有电子读数器(8)、显控终端(9)和第一电源(10),在壳体(1)的外部侧面设有水准器(11),在物镜(2)的另一侧由远至近依次排列有中心线同一的内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16),内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16)与物镜(2)和目镜(7)形成同一光路,与显控终端(9)相接有报警装置(18)。

Description

具有i角检测功能的新型水准仪 技术领域
本发明涉及大地测量及工程测量领域的水准测量装置,尤其是一种可提高水准测量精度、可靠性及效率的具有i角检测功能的新型水准仪。
背景技术
传统的水准测量装置是由一个水准仪和两个水准标尺组成。水准仪由物镜、调焦透镜、水平视线自动补偿器、分光镜、十字丝分划板、目镜、电子读数器和显控终端组成。测量时先将两个水准标尺分别垂直安置于地面上的A、B两点,再将水准仪设置在A、B两点的中间位置,利用整平后水准仪望远镜视准轴(即十字丝交点与物镜光心的连线)提供的水平视线分别照准读取两个水准标尺的标高数值,所测标高数值之差即为地面A、B两点的水准高差,若已知其中一点的高程,即可由高差推算出另一点的高程。由于受仪器制造工艺及大气环境等因素影响,使得观测时的望远镜视准轴与水平面之间存在一个夹角,测量领域俗称为i角。i角的大小直接影响到水准测量的精度、稳定性和可靠性,目前为保证水准测量精度,通常采用如下措施:(1)每天水准测量前需测定并调整i角,使水准仪的i角小于水准测量等级限差(例如中国标准:一、二等水准测量i角限差为15秒;三、四等水准测量i角限差为20秒);(2)测量时使水准仪距两个水准标尺的水平距离相等或大致相等、以消除或减弱i角的影响。但是现有措施存在着测量工作效率低及测量精度低的问题:每天水准测量前测定并调整i角,往往耗费测量人员大量的精力和时间,测量工作效率较低;每天的水准测量过程中并不能及时发现i角的变化,导致测量结果精度降低;如发现测量精度低且要保证测量精度,只能放弃已测成果,重新测定并调整i角后,再从起点至终点进行水准重测,使得测量工作效率降低。事实上,实时动态监测i角的变化是困扰人类水准测量界的一大难题,同时也是制约智能化水准测量的一大技术障碍。
专利号为201620816622.6中国实用新型专利,公开了一种“水准仪i角监测装置”,设有水准仪视准轴姿态信号传感器及水平视线自动补偿器自由摆体位移信号传感器,其输出均与数据处理及控制器相接,数据处理及控制器的输出与报警装置相接,通过对水平视线自动补偿器进行动态检测,实现了对水准仪i角变化的实时监测,当监测水准仪的i角变化超出预定的阈值,则自动报警。然而,在实际制造及使用过程中发现,该专利技术还存在以下不足:(1)实现技术复杂,制造成本高;(2)直接实时动态检测的不是视准轴光路的i角变化本身,而是检测自动补偿器自由摆体的位 移信号,需要进一步将摆体位移信号转换成光路的i角变化,涉及到摆体位移的标定及转换问题,影响了i角变化的检测精度和效率。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可提高水准测量精度、可靠性及效率的具有i角检测功能的新型水准仪。
本发明的技术解决方案是:一种具有i角检测功能的新型水准仪,有壳体,在壳体内由内至外依次设有中心线同一的物镜、调焦透镜、自动水平视线补偿器、分光镜、十字丝分划板及目镜,在壳体上还设有电子读数器、显控终端和第一电源,在壳体的外部侧面设有水准器,在所述物镜的另一侧由远至近依次排列有中心线同一的内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜,所述内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜与物镜和目镜形成同一光路,与所述显控终端相接有报警装置。
所述壳体由左壳体和右壳体活动相接而成,所述物镜、调焦透镜、自动水平视线补偿器、分光镜、十字丝分划板、目镜、电子读数器、显控终端和第一电源设置在右壳体内,所述水准器设置在右壳体的外部侧面;所述内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜设置在左壳体内,在左壳体)内还设有第二电源。
所述内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜)的中心线垂直于物镜中心线,在所述物镜中心线与凸透镜中心线相交处设有分光镜,所述分光镜内侧的分光光束照准物镜,在分光镜的外侧设有光路切换装置。
所述内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜的中心线平行于物镜中心线,在所述凸透镜的中心线上设有反射镜,在所述反射镜的反射光路上设有分光镜,所述分光镜内侧的分光光束照准物镜,在分光镜的外侧设有光路切换装置。
本发明设置了内置光源、散射玻璃、竖向透明缩微编码标尺及凸透镜等,可与物镜和目镜形成同一光路,能直接对i角的变化进行检测,提高了检测精度和效率。当检测的水准仪i角变化超出预定的阈值,则自动报警,测量员根据警示可停止测量并重新测定、调整i角,保证了水准测量的测量精度。本发明避免了因i角变化而导致从起点至终点进行的重测,节省了人力、物力,极大地提高了水准测量的作业精度和工作效率,同时也提升了水准仪的智能化水平。
附图说明
图1、2是本发明实施例1的结构示意图。
图3是本发明实施例1的使用示意图。
图4、5是本发明实施例2的结构示意图。
图6是本发明实施例3的结构示意图。
具体实施方式
实施例1:
如图1、2所示:如现有技术,设有壳体1,在壳体1内设有中心线同一的物镜2、调焦透镜3、自动水平视线补偿器4、分光镜5、十字丝分划板6、目镜7、电子读数器8(即与编码水准标尺配套使用的CCD图像解码读数装置)、显控终端9和电源10,在壳体1的外部侧面设有水准器11,本实施例1的水准器11采用圆水准气泡。与现有技术不同的是,壳体1由左壳体1-1和右壳体1-2活动相接而成,可采用螺纹连接或插接等,总之应便于安装、拆卸。所述物镜2、调焦透镜3、自动水平视线补偿器4、分光镜5、十字丝分划板6、目镜7、电子读数器8、显控终端9和第一电源10设置在右壳体1-2内,所述水准器11设置在右壳体1-2的外部侧面,与所述显控终端9相接有报警装置18;在左壳体1-1内设置有距离物镜2由远至近依次排列且中心线同一的内置光源13、散射玻璃14、竖向透明缩微编码标尺15(即将编码水准标尺按比例缩微后得到的微型编码标尺)及凸透镜16,左壳体1-1和右壳体1-2连接后,内置光源13、散射玻璃14、竖向透明缩微编码标尺15及凸透镜16的中心线与物镜2、调焦透镜3、自动水平视线补偿器4、分光镜5、十字丝分划板6和目镜7的中心线重合,使内置光源13、散射玻璃14、竖向透明缩微编码标尺15及凸透镜16与物镜2和目镜7形成同一光路,在左壳体1-1内还设有第二电源17,为内置光源13提供电能。
工作过程:
(1)首先按现行方法对i角大小进行测定与调整;
(2)然后如图3所示将左壳体1-1与右壳体1-2相接,使水准器11的气泡精确居中,打开内置光源13,通过散射玻璃14使内置光源13的光散射在竖向透明缩微编码标尺15并通过凸透镜16,通过目镜观测并控制电子读数器8对竖向透明缩微编码标尺15进行读数,将读数输出至显控终端9显示并储存,作为对目前i角大小在竖向透明缩微编码标尺15上的标定;
(3)标定后,将左壳体1-1拆卸下来,右壳体1-2可单独进行水准测量;
(4)可根据需要随时对i角变化进行检测。检测时再如步骤2将左壳体1-1与右壳体1-2相接,使水准器11的气泡精确居中,通过目镜观测并控制电子读数器8对竖向透明缩微编码标尺15进行读数,将读数输出至显控终端9,并与已储存的标定数据进行对比得出变化值,若变化值超出预先设定的阈值,说明i角已变化,则启动报警装置18报警,以及时调整i角。
实施例2:
如图4、5所示:如现有技术,设有壳体1,在壳体1内设有中心线同一的物镜2、调焦透镜3、自动水平视线补偿器4、分光镜5、十字丝分划板6、目镜7、电子读数器8(即与编码水准标尺配套使用的CCD图像解码读数装置)、显控终端9和电源10,在壳体1的外部侧面设有水准器11(管水准器)。本实施例2的水准器11采用管水准气泡。与现有技术不同的是与显控终端9相接有报警18,在物镜2的由上至下依次排列有中心线垂直于物镜2中心线的内置光源13、散射玻璃14、竖向透明缩微编码标尺15及凸透镜16(或光焦度为正的复合透镜),在物镜2中心线与凸透镜16中心线相交处设有分光镜19,分光镜19内侧的分光光束照准物镜2,在分光镜19的外侧设有光路切换装置20。光路切换装置20可以是镜头盖,也可以是电子雾镜(通电时透明,断电时成雾阻挡光线或反之)等,可实现目镜7与水准标尺之间的光路及目镜7与竖向透明缩微编码标尺15之间的光路转换。
工作过程如下:
(1)首先按现行方法对i角大小进行测定与调整;
(2)使水准器11的气泡精确居中,通过光路切换装置20阻断与水准标尺之间的光路,打开内置光源13,通过散射玻璃14使内置光源13的光散射在竖向透明缩微编码标尺15并通过凸透镜16,通过目镜观测并控制电子读数器8对竖向透明缩微编码标尺15进行读数,将读数输出至显控终端9显示并储存,作为对目前i角大小在竖向透明缩微编码标尺15上的标定;
(3)标定后,通过光路切换装置20打开与水准标尺之间的光路并关闭内置光源13,整个装置可进行水准测量;
(4)可根据需要随时对i角变化进行检测。检测时再如步骤2进行……通过目镜观测并控制电子读数器8对竖向透明缩微编码标尺15进行读数,将读数输出至显控终端9,并与已储存的标定数据进行对比得出变化值,若变化值超出预先设定的阈值,说明i角已变化,则启动报警装置18报警,及时调整i角。
实施例3:
如图6所示:与实施例2结构基本相同,所不同的是水准器11采用电子气泡,内置光源13、散射玻璃14、竖向透明缩微编码标尺15及凸透镜16的中心线平行于物镜2中心线,在凸透镜16的中心线上设有反射镜21,在反射镜21的反射光路上设有分光镜19,分光镜19内侧的分光光束照准物镜2,在分光镜19的外侧设有光路切换装置20。
工作过程同实施例2。

Claims (4)

  1. 一种具有i角检测功能的新型水准仪,有壳体(1),在壳体(1)内由内至外依次设有中心线同一的物镜(2)、调焦透镜(3)、自动水平视线补偿器(4)、分光镜(5)、十字丝分划板(6)及目镜(7),在壳体(1)上还设有电子读数器(8)、显控终端(9)和第一电源(10),在壳体(1)的外部侧面设有水准器(11),其特征在于:在所述物镜(2)的另一侧由远至近依次排列有中心线同一的内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16),所述内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16)与物镜(2)和目镜(7)形成同一光路,与所述显控终端(9)相接有报警装置(18)。
  2. 根据权利要求1所述的具有i角检测功能的新型水准仪,其特征在于:所述壳体(1)由左壳体(1-1)和右壳体(1-2)活动相接而成,所述物镜(2)、调焦透镜(3)、自动水平视线补偿器(4)、分光镜(5)、十字丝分划板(6)、目镜(7)、电子读数器(8)、显控终端(9)和第一电源(10)设置在右壳体(1-2)内,所述水准器(11)设置在右壳体(1-2)的外部侧面;所述内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16)设置在左壳体(1-1)内,在左壳体(1-1)内还设有第二电源(17)。
  3. 根据权利要求1所述具有i角检测功能的新型水准仪,其特征在于:所述内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16)的中心线垂直于物镜(2)中心线,在所述物镜(2)中心线与凸透镜(16)中心线相交处设有分光镜(19),所述分光镜(19)内侧的分光光束照准物镜(2),在分光镜(19)的外侧设有光路切换装置(20)。
  4. 根据权利要求1所述具有i角检测功能的新型水准仪,其特征在于:所述内置光源(13)、散射玻璃(14)、竖向透明缩微编码标尺(15)及凸透镜(16)的中心线平行于物镜(2)中心线,在所述凸透镜(16)的中心线上设有反射镜(21),在所述反射镜(21)的反射光路上设有分光镜(19),所述分光镜(19)内侧的分光光束照准物镜(2),在分光镜(19)的外侧设有光路切换装置(20)。
PCT/CN2019/073679 2018-02-07 2019-01-29 具有i角检测功能的新型水准仪 WO2019154187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810121506.6 2018-02-07
CN201810121506.6A CN108168514B (zh) 2018-02-07 2018-02-07 具有i角检测功能的新型水准仪

Publications (1)

Publication Number Publication Date
WO2019154187A1 true WO2019154187A1 (zh) 2019-08-15

Family

ID=62513645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073679 WO2019154187A1 (zh) 2018-02-07 2019-01-29 具有i角检测功能的新型水准仪

Country Status (2)

Country Link
CN (1) CN108168514B (zh)
WO (1) WO2019154187A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168514B (zh) * 2018-02-07 2020-01-21 大连圣博尔测绘仪器科技有限公司 具有i角检测功能的新型水准仪
CN109405796A (zh) * 2018-12-03 2019-03-01 大连圣博尔测绘仪器科技有限公司 新型电子水准仪
CN109579875B (zh) * 2018-12-19 2022-08-02 大连圣博尔测绘仪器科技有限公司 电子水准仪照准竖线偏移测定标定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2088235U (zh) * 1991-01-30 1991-11-06 上海机械学院 数字式i角检测仪
US5087125A (en) * 1987-04-08 1992-02-11 Optec Co., Ltd. Equipment for measuring a difference in elevation
CN2116889U (zh) * 1992-04-25 1992-09-23 国家技术监督局北京计量仪器厂 水平视准轴测量装置
CN2314345Y (zh) * 1997-11-12 1999-04-14 谭自成 测绘仪器全能检定仪
CN1544882A (zh) * 2003-11-18 2004-11-10 武汉大学 一种数字水准仪
CN1619258A (zh) * 2004-12-03 2005-05-25 中国地震局第二监测中心 数字水准仪和光学水准仪室内检定装置
CN203587119U (zh) * 2013-12-11 2014-05-07 黑龙江工程学院 道路工程测量仪器检校装置
CN204007589U (zh) * 2014-07-11 2014-12-10 刘雁春 可方便调整观测距离的水准测量装置
CN108168514A (zh) * 2018-02-07 2018-06-15 大连圣博尔测绘仪器科技有限公司 具有i角检测功能的新型水准仪
CN207946085U (zh) * 2018-02-07 2018-10-09 大连圣博尔测绘仪器科技有限公司 具有i角检测功能的新型水准仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2831045Y (zh) * 2005-04-04 2006-10-25 武汉大学 一种数字电子水准仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087125A (en) * 1987-04-08 1992-02-11 Optec Co., Ltd. Equipment for measuring a difference in elevation
CN2088235U (zh) * 1991-01-30 1991-11-06 上海机械学院 数字式i角检测仪
CN2116889U (zh) * 1992-04-25 1992-09-23 国家技术监督局北京计量仪器厂 水平视准轴测量装置
CN2314345Y (zh) * 1997-11-12 1999-04-14 谭自成 测绘仪器全能检定仪
CN1544882A (zh) * 2003-11-18 2004-11-10 武汉大学 一种数字水准仪
CN1619258A (zh) * 2004-12-03 2005-05-25 中国地震局第二监测中心 数字水准仪和光学水准仪室内检定装置
CN203587119U (zh) * 2013-12-11 2014-05-07 黑龙江工程学院 道路工程测量仪器检校装置
CN204007589U (zh) * 2014-07-11 2014-12-10 刘雁春 可方便调整观测距离的水准测量装置
CN108168514A (zh) * 2018-02-07 2018-06-15 大连圣博尔测绘仪器科技有限公司 具有i角检测功能的新型水准仪
CN207946085U (zh) * 2018-02-07 2018-10-09 大连圣博尔测绘仪器科技有限公司 具有i角检测功能的新型水准仪

Also Published As

Publication number Publication date
CN108168514B (zh) 2020-01-21
CN108168514A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019154187A1 (zh) 具有i角检测功能的新型水准仪
CN102679952B (zh) 风力机组塔架倾斜度测量方法
CN103093676B (zh) 分光计数字化读数装置
CN101408478B (zh) 共焦组合超长焦距测量方法与装置
CN101929852A (zh) 光学仪器检测大型容器同轴度和垂直度的方法
CN205449447U (zh) 一种光学镜头分光束平行度检测装置
CN103542912A (zh) 一种基于激光测距的激光水位计
CN105547198A (zh) 一种镜头分光束光电测角装置及其检测方法
CN207946085U (zh) 具有i角检测功能的新型水准仪
CN202599266U (zh) 多功能钢卷尺
CN105180827A (zh) 一种检测起重机主梁上拱曲线的装置
CN206362310U (zh) 一种非球面检测光路中光学间隔测量系统
RU108602U1 (ru) Система контроля технического состояния строительных сооружений
CN206514844U (zh) 具有仪器高实时精确测量功能的电子水准仪
CN105203036A (zh) 非接触法测量透镜中心厚的装置和方法
CN210664473U (zh) 一种房间方正度测量工具
CN211147651U (zh) 用于建筑物倾斜度测量的装置
CN209085599U (zh) 方便调节i角的水准仪
CN106017416B (zh) 水准仪i角监测装置
CN203298974U (zh) 数字式白光瞄准镜综合校正仪
US23294A (en) Instrument for ascertaining the distance between itself and the target
US3520621A (en) Remote levelling measurement
CN206601126U (zh) 一种具有仪器高实时精确测量功能的电子水准仪
CN203587178U (zh) 一种基于激光测距的激光水位计
CN109579875B (zh) 电子水准仪照准竖线偏移测定标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750356

Country of ref document: EP

Kind code of ref document: A1