WO2019154118A1 - 可空中实时重构的涵道飞行器、对接分离方法及系统 - Google Patents

可空中实时重构的涵道飞行器、对接分离方法及系统 Download PDF

Info

Publication number
WO2019154118A1
WO2019154118A1 PCT/CN2019/073143 CN2019073143W WO2019154118A1 WO 2019154118 A1 WO2019154118 A1 WO 2019154118A1 CN 2019073143 W CN2019073143 W CN 2019073143W WO 2019154118 A1 WO2019154118 A1 WO 2019154118A1
Authority
WO
WIPO (PCT)
Prior art keywords
ducted aircraft
ducted
aircraft
preset
real
Prior art date
Application number
PCT/CN2019/073143
Other languages
English (en)
French (fr)
Inventor
徐彬
项昌乐
张一博
樊伟
马罡
苏圣
Original Assignee
酷黑科技(北京)有限公司
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 酷黑科技(北京)有限公司, 北京理工大学 filed Critical 酷黑科技(北京)有限公司
Publication of WO2019154118A1 publication Critical patent/WO2019154118A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • B64C37/02Flying units formed by separate aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/102UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations

Definitions

  • the present invention relates to the field of aircraft technology, and in particular to a ducted aircraft, docking separation method and system capable of real-time reconstruction in the air.
  • unmanned aerial vehicles In highly complex urban environments and mountainous environments, unmanned aerial vehicles, as airborne platforms for detection equipment and operating equipment, often emphasize the performance of low-altitude, low-speed stable flight.
  • the ducted aircraft can take off and land vertically and hover, and the space for take-off space and safe flight space is small. It is especially suitable for various complex environments such as urban buildings, post-disaster ruins and narrow alleys.
  • Capability due to the ring expansion of ducted ducts, the margin of flight safety of ducted aircraft is significantly reduced, can be close to buildings or even close to the wall, suitable for environmental interactive tasks; in addition, ducted aircraft have lower The noise is thus better concealed.
  • the vertical hoisting and landing UAV platforms include helicopter type, multi-rotor type, ducted type, etc.
  • the structure is monolithic.
  • drone platforms In order to meet the mobility in complex environments, drone platforms often need to have a small structural size, but this will inevitably lead to a significant reduction in system load capacity, limiting its practicality; in order to have more operational capabilities, drones The platform must have a larger structural size, making it impossible to use in complex environments.
  • the load arrangement of the monolithic aircraft is restricted by the center of gravity of the whole machine and cannot meet the operational requirements in some special environments.
  • ground splicing that is, after the ground is combined into a circular or rectangular flight platform, and then lifted off to complete the work task
  • the disadvantage of this method is that the docking and separation must be completed on the ground.
  • the ground operation is inefficient and must be artificially involved; on the other hand, the docked aircraft no longer has good passability in the air.
  • the invention provides a ducted aircraft, docking separation method and system capable of real-time reconstruction in the air, overcomes the contradiction between the mobility and the load capacity of the traditional aircraft field, and aims to solve the problem that the current combinable aircraft must return to the ground butt separation.
  • the problems caused by inefficient work and limited application environment.
  • the present invention provides a ducted aircraft that can be reconstructed in real time over the air, the ducted aircraft comprising: a first ducted aircraft, a second ducted aircraft, and a reconstruction controller; wherein the first duct The aircraft is provided with a first connecting mechanism, the second ducted aircraft is provided with a second connecting mechanism for connecting with the first connecting mechanism; a reconstruction controller for The first ducting mechanism and the second ducted aircraft are controlled to be in contact or separated when the first ducted aircraft and the second ducted aircraft are in flight.
  • the ducted aircraft further includes: a first detecting mechanism disposed on the first ducted aircraft for detecting a first preset parameter of the first ducted aircraft; and a second detecting mechanism disposed at the a second ducted aircraft for detecting a second preset parameter of the second ducted aircraft; the reconfiguration controller being coupled to the first detecting mechanism and the second detecting mechanism for receiving The first preset parameter and the second preset parameter, and controlling the first connection mechanism and the second when the first preset parameter and the second preset parameter satisfy a preset condition
  • the connecting mechanisms are connected or separated.
  • a first communication connector is disposed in the first connection mechanism; a second communication connector is disposed in the second connection mechanism; the first communication connector and the first The second communication connector is conductive when the first connection mechanism and the second connection are connected to enable energy sharing and transmission of signal data by the first ducted aircraft and the second ducted aircraft.
  • the first connecting mechanism is a connecting shaft
  • the second connecting mechanism is a connecting hole
  • the connecting shaft is inserted into the connecting hole and locked by a locking mechanism
  • the first connecting mechanism is a connecting hole
  • the second connecting mechanism is a connecting shaft, and the connecting shaft is inserted into the connecting hole and locked by a locking mechanism.
  • the present invention also provides a docking method for a ducted aircraft capable of real-time reconstruction in the air, the method comprising the steps of: acquiring preset parameters of the first ducted aircraft and the second ducted aircraft during flight; When the preset parameter meets the preset condition, the first ducted aircraft and the second ducted aircraft are controlled to be opposite to each other.
  • the preset parameters include a flying height and a flying position.
  • the docking method of the above-mentioned ducted aircraft further includes: after the first ducted aircraft and the second ducted aircraft are docked, the flight controller of the first ducted aircraft takes over control of the two ducted aircraft after docking, The onboard flight controller of the second ducted aircraft enters the standby control state.
  • the present invention also provides a docking system for a ducted aircraft that can be reconstructed in real time in the air.
  • the system includes: a first acquisition module for acquiring a first ducted aircraft and a second ducted aircraft during flight
  • the preset parameter of the docking module is configured to control the first ducted aircraft and the second ducted aircraft to be connected when the preset parameter meets the preset condition.
  • the present invention also provides a method for separating a ducted aircraft capable of real-time reconstruction in the air, the method comprising the steps of: acquiring a first ducted aircraft and a second ducted aircraft in a connected state during flight a preset parameter; controlling the first ducted aircraft and the second ducted aircraft to be separated when the preset parameter satisfies a preset condition.
  • the present invention also provides a separation system for a ducted aircraft that can be reconstructed in real time over the air, the system comprising: a second acquisition module for acquiring the first ducted aircraft and the second ducted aircraft in a connected state a preset parameter during flight; a separation module, configured to control phase separation between the first ducted aircraft and the second ducted aircraft when the preset parameter satisfies a preset condition.
  • the reconfigurable controller can control the first ducted aircraft and the second ducted aircraft in flight in real time in the ducted aircraft, docking and separating method and system provided by the present invention.
  • the docking is refactored into an integrated mode.
  • the design of real-time air reconfiguration allows two independent ducted aircrafts to have the ability to reconfigure into an integrated mode for cooperative operation under airborne conditions, by carrying different sensors and operating instruments.
  • the recombination of the first ducted aircraft and the second ducted aircraft in the air can work together to perform more complicated work.
  • the reconfiguration controller can also control the docked first ducted aircraft and the second ducted aircraft in flight to be separated into two independent ducted aircrafts in real time, which can be separated in the air so that the ducted aircraft has more complex environments.
  • Good adaptability for example, the structural dimensions of the two ducted aircraft after docking will increase. For narrow working spaces, two docked ducted aircrafts can be separated and entered into a narrow space for operation. A wider range.
  • the detachable and reconfigurable features make it easier to carry and transport and mass-produce, modularize production and assembly of ducted aircraft.
  • FIG. 1 is a schematic structural diagram of a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a single ducted aircraft provided in an embodiment of the present invention.
  • Figure 3 is a side elevational view of a single ducted aircraft provided in an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a movement direction of a single ducted aircraft provided in an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for docking a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention
  • FIG. 6 is still another flowchart of a method for docking a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram of a docking system of a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for separating a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention
  • FIG. 9 is a structural block diagram of a separation system of a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention.
  • the ducted aircraft includes: a first ducted aircraft 1, a second ducted aircraft 2, and a reconstruction controller.
  • the first ducted aircraft 1 and the second ducted aircraft 2 are all well-known structures by those skilled in the art. The specific structure will be described in detail below by taking the first ducted aircraft as an example in conjunction with FIG. 2 .
  • the first ducted aircraft 1 generally includes a ducted body 4, a propeller 5, a motor 6, an onboard equipment bay 7, and a pitch servo 8.
  • the propeller 5 is disposed in the duct body, the motor 6 is connected to the propeller 5 to provide lift for the propeller 5, and the pitch servo 8 changes the total pitch of the propeller 5 to change the lift of the first ducted aircraft 1, by changing the pitch adjustment
  • the manner of lifting can avoid the problem of slow response due to excessive inertia of the propeller 5, and improve the operational performance of the first ducted aircraft 1.
  • the front and rear propellers 5 are turned oppositely to counteract the counter torque generated by the rotation of the propeller 5.
  • a rudder surface 9, a rocker arm 10, and a rudder servo 11 are provided at the bottom of the first ducted aircraft 1.
  • the rudder surface steering gear 11 is connected to the rudder surface 9 via the rocker arm 10, and the rudder surface steering gear 11 drives the rudder surface 9 to tilt by the rocker arm 10, thereby controlling the steering of the downwash flow under the duct to control the roll of the first ducted aircraft 1.
  • yaw The roll, yaw and pitch of the above-mentioned ducted aircraft are respectively rotated by the ducted aircraft around the x-axis, the y-axis and the z-axis of the body coordinate system shown in FIG.
  • an organic equipment bay 7 should also be provided on the first ducted aircraft 1.
  • first ducted aircraft 1 and the second ducted aircraft 2 mentioned in this embodiment may be a single ducted aircraft or a double-ducted aircraft. Of course, it may also be a multi-ducted aircraft. This embodiment does not impose any restrictions on the specific number and form of the ducts provided on a single ducted aircraft.
  • the first ducted aircraft 1 is provided with a first connecting mechanism
  • the second ducted aircraft 2 is provided with a second connecting mechanism for detachably connecting with the first connecting mechanism.
  • the reconstruction controller is configured to control the first connection mechanism and the second connection mechanism to be connected or separated when the first ducted aircraft 1 and the second ducted aircraft 2 are in a flight state.
  • the reconstruction controller may be a separately set controller, or may be implemented by using a flight controller in the airborne flight control system on the first ducted aircraft 1 or the second ducted aircraft 2, and this embodiment is The specific implementation form of the controller is not limited.
  • the first connecting mechanism may be disposed on the outer side wall of the first ducted aircraft 1, and the second connecting mechanism may be disposed on the outer side wall of the second ducted aircraft 2, wherein the first connecting mechanism and the second connecting mechanism are embodied in various forms This embodiment does not limit it.
  • the reconstruction controller can control the first ducted aircraft 1 and the second ducted aircraft 2 in flight in real time to perform docking and reconstruction into an integrated mode, and it can be seen that the design of real-time air reconstruction can be Two independent ducted aircrafts have the ability to be reconfigured into an integrated mode for cooperative operation under airborne flight conditions, through first ducted aircraft 1 and second ducted aircraft 2 that will carry different sensors and operating instruments. Recombination in the air can work together to accomplish more complex tasks.
  • the reconfiguration controller can also control the docked first ducted aircraft 1 and the second ducted aircraft 2 in flight to be separated into two independent ducted vehicles in real time, which can be separated in the air to make the ducted aircraft to a complex environment. It has better adaptability.
  • the structural dimensions of the two ducted aircraft after docking will increase.
  • two docked ducted vehicles can be separated into narrow spaces. Work to improve applicability.
  • the detachable and reconfigurable features make it easier to carry and transport and mass-produce, modularize production and assembly of ducted aircraft.
  • the ducted aircraft in the separated state has the ability to pass through a small and complex space, and the mobility and the passage are high; the ducted aircraft in the engaged state can significantly improve the anti-interference ability and the system stability, and has a larger
  • the payload can do more complicated work.
  • the ducted aircraft that can be reconfigured in real time in the air can be freely docked and separated in flight state according to actual working conditions, and can be operated independently or cooperatively, thereby overcoming the contradiction between the maneuverability and the load capacity of the traditional aircraft field, and having both advantages. Significantly enhances the adaptability of ducted aircraft to complex environments.
  • the above embodiment may further include: the first detecting mechanism (not shown in the figure) and a second detecting mechanism (not shown).
  • the first detecting mechanism is disposed on the first ducted aircraft 1 for detecting the first preset parameter of the first ducted aircraft 1.
  • the second detecting mechanism is disposed on the second ducted aircraft 2 for detecting the second preset parameter of the second ducted aircraft.
  • the reconfiguration controller is connected to the first detecting mechanism and the second detecting mechanism, and configured to receive the first preset parameter and the second preset parameter, and when the first preset parameter and the second preset parameter meet the preset condition
  • the first connection mechanism and the second connection mechanism are controlled to be opposite or separated.
  • the first preset parameter may be the height, orientation, and the like of the first ducted aircraft 1
  • the second preset parameter may also be the height, orientation, and the like of the second ducted aircraft 2.
  • the preset condition may be determined according to actual conditions, for example, when the height difference between the first ducted aircraft 1 and the second ducted aircraft 2 is within a preset range, and the azimuth angle difference is also within a preset range.
  • the preset range of the height difference and the preset range of the azimuth angle difference may be determined according to actual conditions, and the embodiment does not limit it.
  • a first communication connector is disposed in the first connection mechanism
  • a second communication connector is disposed in the second connection mechanism
  • the first communication connector and the second communication connector are in the first connection mechanism and the second
  • the connecting mechanisms are connected when connected to enable the first ducted aircraft 1 and the second ducted aircraft 2 to achieve energy sharing and transmission of signal data.
  • two ducted aircraft can share electrical energy through current transmission.
  • the power supply system can be connected in parallel by the joint to share the electric energy of the second ducted aircraft 2, that is, the first ducted aircraft is powered by the second ducted aircraft.
  • the second ducted aircraft can be powered by the first ducted aircraft.
  • the first connecting mechanism may be the connecting shaft 12, and the second connecting mechanism may be the connecting hole 13, and the connecting shaft 12 is inserted into the connecting hole 13 and locked by the locking mechanism.
  • an electromagnet may be disposed on the connecting shaft 12 and the connecting hole 13 to assist in the positioning connection of the two.
  • Both the connecting shaft 12 and the connecting hole 13 include a conductive core and a communication cable, and the two are connected by a contact piece disposed on the ring wall, thereby realizing energy sharing, signal communication and data transmission of the two ducted aircrafts.
  • the connecting hole 13 can be rotated by the actuating mechanism to mechanically lock the connecting shaft to prevent the disengagement of the two.
  • a limiting block may be protruded on the outer wall of the connecting shaft 12 and the inner wall of the connecting hole 13 .
  • the connecting shaft 12 rotates by an angle in the connecting hole 13
  • the limiting hole 13 and the limiting position on the connecting shaft 12 The blocks are in the same axial position and are pressed against each other to axially limit the two.
  • the connecting hole 13 and the connecting shaft 12 can also adopt other locking mechanisms known to those skilled in the art, and the specific form of the embodiment is not limited.
  • the first connecting mechanism is the connecting hole 13
  • the second connecting mechanism is the connecting shaft 12
  • the connecting shaft 12 is inserted into the connecting hole 13 and locked by the locking mechanism.
  • the first connecting mechanism may also be a combination of the connecting hole 13 and the connecting shaft 12.
  • the second connecting mechanism may also be a combination of the connecting hole 13 and the connecting shaft 12, the first connecting mechanism and the second.
  • the connecting mechanism is connected by the joint of the connecting hole 13 and the connecting shaft 12.
  • the specific arrangement form of the connecting hole 13 and the connecting shaft 12 is not limited in this embodiment.
  • the above embodiment is described by taking the docking and separation of two single-body ducted aircraft as an example. In specific implementation, it may be two or three or more, and the ducted aircraft may be used. The specific number can be determined according to the actual situation, and the embodiment does not limit it.
  • the present embodiment can combine two individual ducted aircrafts in real time in the air to work together, and at the same time, real-time separation of the two combined ducted aircrafts can be realized, so that two ducted aircrafts can be carried out.
  • Independent operation effectively expands the application scenarios of drones.
  • FIG. 5 is a flowchart of a method for docking a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention. As shown, the method includes the following steps:
  • Step S510 acquiring preset parameters of the first ducted aircraft and the second ducted aircraft during flight.
  • the preset parameters may include a flying height, a flying position, and the like.
  • the docking posture of the first ducted aircraft and the second ducted aircraft is prepared, and after the docking procedure is started, the ground station collects flight data of the first ducted aircraft and the second ducted aircraft, and is judged by GPS data.
  • the position of the two ducted aircraft is adjusted by the data collected by sensors such as barometers and ultrasonic modules to adjust the height of the two ducted aircraft.
  • the sensors such as vision and laser radar begin to collect data and the controller solves the identification of the markers located on the body, adjusts the attitude of the two ducted aircrafts, and performs two ducts.
  • Directional alignment of the connecting mechanism of the aircraft When the number of ducted aircrafts is plural, the direction alignment of the connecting mechanisms of the adjacent two ducted aircrafts is similar to the direction calibration of the connecting mechanisms of the two ducted walkers. To save space, no further details are provided herein.
  • Step S520 controlling the first ducted aircraft and the second ducted aircraft to be oppositely connected when the preset parameter satisfies the preset condition.
  • the reconstruction controller solves the theoretical spacing of the two ducted aircrafts according to the data collected by the distance sensor and the distance sensor, and controls the two ducted aircrafts to be continuously approached, and within the effective working range of the connecting mechanism, the two ducted aircrafts
  • the electromagnet on the connecting mechanism is activated, and the auxiliary connecting shaft is docked with the connecting hole.
  • the system determines that the energy and communication connection of the two ducted aircraft is successful, and the mechanical structure on the rotating connecting hole of the actuating mechanism is locked. Connect the shaft.
  • the reconstruction controller can control the first ducted aircraft and the second ducted aircraft in flight in real time to perform docking and reconstruction into an integrated mode, and it can be seen that the real-time air reconstruction design enables two
  • the independent ducted aircraft has the ability to reconfigure into an integrated mode for cooperative operation under air flight conditions, by re-airing the first ducted aircraft and the second ducted aircraft carrying different sensors and operating instruments in the air. Combinations can work together to perform more complex tasks.
  • FIG. 6 is still another flowchart of a method for docking a ducted aircraft according to an embodiment of the present invention. As shown, the method includes the following steps:
  • Step S610 acquiring preset parameters of the first ducted aircraft and the second ducted aircraft during flight.
  • Step S620 controlling the first ducted aircraft and the second ducted aircraft to be oppositely connected when the preset parameter satisfies the preset condition.
  • step S610 and step S620 refer to steps S510 and S520 in the foregoing embodiment, and details are not described herein again.
  • Step S630 after the first ducted aircraft and the second ducted aircraft are docked, the flight controller of the first ducted aircraft takes over control of the two ducted aircrafts after docking, and the control system is switched from the single mode to the multi-body mode. .
  • the flight controller of the second ducted aircraft enters the standby control state.
  • the energy of the two ducted aircrafts is connected with the communication, and the flight controller of the second ducted aircraft disconnects from the ground station.
  • the control information of the power, the sensor, the working machine, etc. is handed over to the flight controller of the first ducted aircraft, and the flight controller of the second ducted aircraft enters the auxiliary control state, and the flight controller of the first ducted aircraft Take over the main control of the entire reconstructed ducted aircraft.
  • the flight controller of the second ducted aircraft is in a standby state, or an auxiliary control state, in which the flight controller of the first ducted aircraft is controlled to run the main program, and the flight controller of the second ducted aircraft is used.
  • the control program is no longer running, but when the operational requirements of the flight controller of the first ducted aircraft are large, the flight controller hardware of the second ducted aircraft can also provide additional computing power to assist the main controller (ie, the first The calculation of the flight controller of the ducted aircraft improves the computing power of the system.
  • the auxiliary control state in this example refers to the assistance in computing power, rather than the assistance in the control content.
  • control rights of the reconstructed two ducted aircrafts are placed on the first ducted aircraft, which avoids the interference control of the flight controllers of the two ducted aircrafts, causing system confusion.
  • FIG. 7 is a structural block diagram of a docking system of a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention. As shown, the system includes:
  • the first obtaining module 710 is configured to acquire preset parameters of the first ducted aircraft and the second ducted aircraft during flight. For the specific implementation process of the module, refer to step S510, and details are not described herein again.
  • the docking module 720 is configured to control the first ducted aircraft and the second ducted aircraft to be connected when the preset parameter meets a preset condition.
  • the specific implementation process of the module refer to step S520, and details are not described herein again.
  • FIG. 8 is a flowchart of a method for separating a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention. As shown, the method includes the following steps:
  • Step S810 acquiring preset parameters of the first ducted aircraft and the second ducted aircraft in the connected state during flight.
  • the preset parameters of the first ducted aircraft and the second ducted aircraft may be referred to the embodiment of the docking method, and the details are not described herein again.
  • Step S820 controlling the first ducted aircraft and the second ducted aircraft to be separated when the preset parameter satisfies the preset condition.
  • the preset conditions that are satisfied by the first ducted aircraft and the second ducted aircraft may be the same as those of the docking.
  • the specific implementation process may be referred to the above description, and details are not described herein again.
  • the reconfiguration controller can also control the docked first ducted aircraft and the second ducted aircraft in flight to be separated into two independent ducted aircrafts in real time, which can be separated in the air to make the aircraft better for complex environments.
  • Adaptability for example, the structural size of the two ducted aircraft after docking will increase.
  • two docked ducted aircrafts can be separated and entered into a narrow space for operation, effectively improving Environmental adaptability.
  • the detachable and reconfigurable features make it easier to carry and transport and mass-produce, modularize production and assembly of ducted aircraft.
  • FIG. 9 is a structural block diagram of a separation system of a ducted aircraft capable of real-time reconstruction in the air according to an embodiment of the present invention. As shown in the figure, the system includes:
  • the second obtaining module 910 acquires preset parameters of the first ducted aircraft and the second ducted aircraft in the connected state during flight.
  • the specific implementation process of the second obtaining module 910 may be performed in the foregoing step S810, and details are not described herein again.
  • the separating module 920 is configured to control the first ducted aircraft and the second ducted aircraft to be separated when the preset parameter meets a preset condition.
  • the specific implementation process of the separation module 920 may be performed in the above step S820, and details are not described herein again.

Abstract

一种可空中实时重构的涵道飞行器、对接分离方法及系统。其中,涵道飞行器包括:第一涵道飞行器(1)、第二涵道飞行器(2)和重构控制器。第一涵道飞行器设置有第一连接机构,第二涵道飞行器设置有第二连接机构;重构控制器用于在第一涵道飞行器和第二涵道飞行器处于飞行状态时控制第一连接机构和第二连接机构相对接或分离。可空中实时重构的涵道飞行器使两架独立的涵道飞行器具有在空中飞行工况下重构为一体模式进行协同作业的能力。此外,重构控制器也可以实时控制处于飞行状态的已对接的第一涵道飞行器和第二涵道飞行器分离成两架独立的涵道飞行器。

Description

可空中实时重构的涵道飞行器、对接分离方法及系统
本申请要求于2018年02月06日提交中国专利局、申请号为201810118279.1、发明名称为“可空中实时重构的涵道飞行器、对接分离方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及飞行器技术领域,具体而言,涉及一种可空中实时重构的涵道飞行器、对接分离方法及系统。
背景技术
在高度复杂的城市环境、山区环境下,无人飞行器作为侦测设备和作业设备的机载平台,往往强调的是低空、低速稳定飞行的性能。相较于传统的开放式旋翼飞行器,涵道式飞行器可以垂直起降和悬停,且起飞空间与安全飞行空间需求小,特别适用于城市楼群、灾后废墟、狭窄小巷等各类复杂环境中的飞行作业;涵道的增升效应在低空、低速飞行时效果显著,使得涵道式飞行器在相同桨盘直径与相同升力下所需功率更小,具有长时间悬停监控目标和定点作业的能力;由于涵道的环扩作用,涵道式飞行器飞行安全边际显著减小,可以抵近建筑物甚至贴壁飞行,适用于完成环境交互式作业任务;此外,涵道式飞行器具有更低的噪音,从而具有更好的隐蔽性。
目前已有的可垂直起降无人机平台包括直升机式、多旋翼式、涵道式等,无论采用哪种结构形式,其结构均为单体式。为了满足复杂环境下的机动性,无人机平台往往需要具备较小的结构尺寸,然而这必然带来系统载荷能力的大幅降低,限制其实用性;为了具备更强的作业能力,无人机平台又必须具备更大的结构尺寸,导致其无法在复杂环境下使用。另一方面,单体式飞行器的载荷布置受整机重心约束限制性强,无法满足某些特殊环境下的作业要求。目前,一种较为常规的多体式飞行器拼接思路是地 面拼接式,即在地面组合成环形或矩形的飞行平台后,再升空完成作业任务,这种方法的弊端在于必须在地面完成对接与分离,一方面,地面操作效率低下,且必须人为参与;另一方面,对接后的飞行器在空中不再具备良好的通过性。
发明内容
本发明提出了一种可空中实时重构的涵道飞行器、对接分离方法及系统,克服了传统飞行器领域机动性与载荷能力的矛盾,旨在解决目前的可组合式飞行器必须返回地面对接分离而带来的作业效率低下以及适用环境有限的问题。
一个方面,本发明提出了一种可空中实时重构的涵道飞行器,该涵道飞行器包括:第一涵道飞行器、第二涵道飞行器和重构控制器;其中,所述第一涵道飞行器设置有第一连接机构,所述第二涵道飞行器设置有第二连接机构,所述第二连接机构用于与所述第一连接机构相连接;重构控制器,用于在所述第一涵道飞行器和所述第二涵道飞行器处于飞行状态时控制所述第一连接机构和所述第二连接机构相对接或分离。
进一步地,上述涵道飞行器还包括:第一检测机构,设置于所述第一涵道飞行器,用于检测所述第一涵道飞行器的第一预设参数;第二检测机构,设置于所述第二涵道飞行器,用于检测所述第二涵道飞行器的第二预设参数;所述重构控制器与所述第一检测机构和所述第二检测机构相连接,用于接收所述第一预设参数和所述第二预设参数,并在所述第一预设参数和所述第二预设参数满足预设条件时控制所述第一连接机构和所述第二连接机构相对接或分离。
进一步地,上述涵道飞行器中,所述第一连接机构内设置有第一通信连接体;所述第二连接机构内设置有第二通信连接体;所述第一通信连接体和所述第二通信连接体在所述第一连接机构和所述第二连接相连接时导通,以使所述第一涵道飞行器和所述第二涵道飞行器实现能源共享和信号数据的传输。
进一步地,上述涵道飞行器,所述第一连接机构为连接轴,所述第二 连接机构为连接孔,所述连接轴与所述连接孔相插接并通过锁死机构锁死;或者,所述第一连接机构为连接孔,所述第二连接机构为连接轴,所述连接轴与所述连接孔相插接并通过锁死机构锁死。
另一方面,本发明还提出了可空中实时重构的涵道飞行器的对接方法,该方法包括如下步骤:获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相对接。
进一步地,上述涵道飞行器的对接方法中,所述预设参数包括飞行高度和飞行方位。
进一步地,上述涵道飞行器的对接方法中还包括:第一涵道飞行器和第二涵道飞行器对接后,第一涵道飞行器的飞行控制器接管对接后的两个涵道飞行器的控制权,第二涵道飞行器的机载飞行控制器进入备用控制状态。
又一方面,本发明还提出了一种可空中实时重构的涵道飞行器的对接系统,该系统包括:第一获取模块,用于获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;对接模块,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相对接。
又一方面,本发明还提出了一种可空中实时重构的涵道飞行器的分离方法,该方法包括如下步骤:获取处于连接状态的第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相分离。
又一方面,本发明还提出了一种可空中实时重构的涵道飞行器的分离系统,该系统包括:第二获取模块,获取处于连接状态的第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;分离模块,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相分离。
由上述技术方案可见,本发明提供的可空中实时重构的涵道飞行器、对接分离方法及系统中,重构控制器可以实时控制处于飞行状态的第一涵道飞行器和第二涵道飞行器进行对接重构为一体模式。可以看出,可实时空中重构的设计,使两架独立的涵道飞行器具有了在空中飞行工况下,重 构为一体模式进行协同作业的能力,通过将携带不同的传感器和作业器械的第一涵道飞行器和第二涵道飞行器在空中的重新组合,可以共同完成更为复杂的工作。此外,重构控制器也可以实时控制处于飞行状态的已对接的第一涵道飞行器和第二涵道飞行器分离成两架独立的涵道飞行器,可空中分离使得涵道飞行器对复杂环境具有更好的适应性,例如,对接后的两个涵道飞行器的结构尺寸会有所增加,对于狭窄的作业空间,可以将两架已对接的涵道飞行器进行分离,分别进入狭窄空间进行作业,适用范围更广。此外,可拆分、重组的特性也更方便涵道飞行器的携带和运输与批量化、模块化生产和装配。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的可空中实时重构的涵道飞行器的结构示意图;
图2为本发明实施例中提供的单个的涵道飞行器的结构示意图;
图3为本发明实施例中提供的单个的涵道飞行器的侧视图;
图4为本发明实施例中提供的单个的涵道飞行器的运动方向示意图;
图5为本发明实施例提供的可空中实时重构的涵道飞行器的对接方法的流程图;
图6为本发明实施例提供的可空中实时重构的涵道飞行器的对接方法的又一流程图;
图7为本发明实施例提供的一种可空中实时重构的涵道飞行器的对接系统的结构框图;
图8为本发明实施例提供的一种可空中实时重构的涵道飞行器的分离方法的流程图;
图9为本发明实施例提供的一种可空中实时重构的涵道飞行器的分离 系统的结构框图。
具体实施方式
当然,实施本发明实施例的任一技术方案并不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本发明实施例中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。
下面结合本发明实施例附图进一步说明本发明实施例具体实现。
纵列涵道飞行器实施例
参见图1和图2,图中示出了可空中实时重构的涵道飞行器的优选结构。如图所示,该涵道飞行器包括:第一涵道飞行器1、第二涵道飞行器2和重构控制器。
其中,第一涵道飞行器1和第二涵道飞行器2均为本领域技术人员所熟知的结构,下面结合图2以第一涵道飞行器为例对具体结构进行详细说明。
参见图2,第一涵道飞行器1一般包括涵道体4、螺旋桨5、电机6、机载设备舱7和桨距舵机8。螺旋桨5设置在涵道体内,电机6与螺旋桨5相连接,为螺旋桨5提供升力,桨距舵机8改变螺旋桨5的总桨距从而改变第一涵道飞行器1的升力,通过改变桨距调节升力的方式可以避免由于螺旋桨5转动惯量过大带来的响应慢的问题,提高第一涵道飞行器1的操作性能。对于双涵道飞行器,前后两个螺旋桨5转向相反,抵消由于螺旋桨5转动产生的反扭矩。在第一涵道飞行器1的底部设置有舵面9、摇臂10和舵面舵机11。舵面舵机11通过摇臂10与舵面9相连接,舵面舵机11通过摇臂10带动舵面9倾转,从而控制涵道下洗流的转向来控制第一涵道飞行器1的滚转和偏航。上述涵道飞行器的滚转、偏航、俯仰分别为涵道飞行器绕图4所示机体坐标系的x轴、y轴、z轴旋转。此外,第一涵 道飞行器1上还应该设置有机载设备舱7。
需要说明的是,本实施例中所提及的第一涵道飞行器1和第二涵道飞行器2可以为单涵道飞行器,也可以为双涵道飞行器,当然,也可以为多涵道飞行器,本实施例对单个涵道飞行器上设置的涵道的具体数量及形式不做任何限制。
第一涵道飞行器1上设置有第一连接机构,第二涵道飞行器2上设置有第二连接机构,第二连接机构用于与第一连接机构进行可拆卸连接。重构控制器用于在第一涵道飞行器1和第二涵道飞行器2处于飞行状态时控制第一连接机构和第二连接机构相对接或分离。其中,重构控制器可以为单独设置的控制器,也可以利用第一涵道飞行器1或者第二涵道飞行器2上的机载飞控系统中的飞行控制器来实现,本实施例对重构控制器的具体实现形式不做任何限定。第一连接机构可以设置在第一涵道飞行器1的外侧壁,第二连接机构可以设置在第二涵道飞行器2的外侧壁,其中,第一连接机构和第二连接机构的具体实现形式多样,本实施例对其不做任何限定。
本实施例中,重构控制器可以实时控制处于飞行状态的第一涵道飞行器1和第二涵道飞行器2进行对接重构为一体模式,可以看出,可实时空中重构的设计,使两架独立的涵道飞行器具有了在空中飞行工况下,重构为一体模式进行协同作业的能力,通过将携带不同的传感器和作业器械的第一涵道飞行器1和第二涵道飞行器2在空中的重新组合,可以共同完成更为复杂的工作。此外,重构控制器也可以实时控制处于飞行状态的已对接的第一涵道飞行器1和第二涵道飞行器2分离成两架独立的涵道飞行器,可空中分离使得涵道飞行器对复杂环境具有更好的适应性,例如,对接后的两个涵道飞行器的结构尺寸会有所增加,对于遇到狭窄的使用环境,可以将两架已对接的涵道飞行器进行分离,分别进入狭窄空间进行作业,提高适用性。此外,可拆分、重组的特性也更方便涵道飞行器的携带和运输与批量化、模块化生产和装配。
本实施例中,处于分离状态的涵道飞行器具有可穿越狭小复杂空间的能力,机动性与通过性高;处于接合状态的涵道飞行器可以显著提升抗干扰能力与系统稳定性,且具有更大的有效载荷,可以完成更为复杂的工作。 可空中实时重构的涵道飞行器可以根据实际工况需要在飞行状态下自由对接与分离,进行独立或协同作业,从而克服了传统飞行器领域机动性与载荷能力的矛盾,兼具两者优点,显著增强了涵道飞行器对复杂环境的适应性。
为了更好地实现第一涵道飞行器1和第二涵道飞行器2之间的对接,需要检测对接时两个涵道飞行器的参数,为此,上述实施例中还可以包括:第一检测机构(图中未示出)和第二检测机构(图中未示出)。其中,第一检测机构设置于第一涵道飞行器1上,用于检测第一涵道飞行器1的第一预设参数。第二检测机构设置于第二涵道飞行器2上,用于检测第二涵道飞行器的第二预设参数。重构控制器与第一检测机构和第二检测机构相连接,用于接收第一预设参数和第二预设参数,并在第一预设参数和第二预设参数满足预设条件时控制第一连接机构和第二连接机构相对接或分离。其中,第一预设参数可以为第一涵道飞行器1的高度、方位等,同理,第二预设参数也可以为第二涵道飞行器2的高度、方位等。具体实施时,预设条件可以根据实际情况来确定,例如,当第一涵道飞行器1和第二涵道飞行器2的高度差在预设范围内,同时,方位角度差也在预设范围内时,确定可以控制第一涵道飞行器1和第二涵道飞行器2进行对接。需要说明的是,具体实施时,高度差的预设范围及方位角度差的预设范围可以根据实际情况来确定,本实施例对其不做任何限定。
当第一涵道飞行器1和第二涵道飞行器2进行对接后,两个涵道飞行器要同时控制,协同作业,所以,在两个涵道飞行器之间要进行信号和数据的传递,实现信息共享,为此,第一连接机构内设置有第一通信连接体,第二连接机构内设置有第二通信连接体,第一通信连接体和第二通信连接体在第一连接机构和第二连接机构相连接时导通,以使第一涵道飞行器1和第二涵道飞行器2实现能源共享和信号数据的传输。具体地,通过电流传输,两个涵道飞行器可以共享电能。当第一涵道飞行器1没电时,可以通过接合形成供电系统并联,共享第二涵道飞行器2的电能,即通过第二涵道飞行器给第一涵道飞行器供电。同理,也可以通过第一涵道飞行器给第二涵道飞行器供电。
参见图4,上述实施例中,第一连接机构可以为连接轴12,第二连接 机构可以为连接孔13,连接轴12与连接孔13相插接并通过锁死机构锁死。具体地,连接轴12和连接孔13上可布置有电磁铁来辅助两者的定位连接。连接轴12和连接孔13内均包含导电电芯和通信电缆,两者通过布置在环壁上的接触片进行连接,从而实现两架涵道飞行器的能源共享、信号通讯与数据传输。优选地,在连接成功后,连接孔13可以通过作动机构旋转,从而在机械上锁死连接轴,防止两者的脱离。具体实施时,可以在连接轴12的外壁及连接孔13的内壁上均凸设有限位块,当连接轴12在连接孔13内旋转一角度后,连接孔13及连接轴12上的限位块位于同一轴向位置并相互抵压,以对二者进行轴向限位。当然,连接孔13和连接轴12还可以采用本领域技术人员所熟知的其他锁死机构,本实施例对其具体形式不做任何限定。
或者,第一连接机构为连接孔13,第二连接机构为连接轴12,连接轴12与连接孔13相插接并通过锁死机构锁死。
当然,具体实施时,第一连接机构也可以为连接孔13和连接轴12的组合,同理,第二连接机构也可以为连接孔13和连接轴12的组合,第一连接机构和第二连接机构通过连接孔13和连接轴12的接合实现连接,本实施例对连接孔13和连接轴12的具体设置形式不做任何限定。
需要说明的是,上述实施例以两架单体的涵道飞行器的对接和分离为例进行的说明,具体实施时,可以为两架,也可以为三架或三架以上,涵道飞行器的具体数量可以根据实际情况来确定,本实施例对其不做任何限定。
综上,本实施例可以将两架单体的涵道飞行器在空中进行实时组合,协同作业,同时,也可以实现已组合的两个涵道飞行器的空中实时分离,使两个涵道飞行器进行独立作业,有效拓宽了无人机的应用场景。
对接方法实施例:
参见图5,图5为本发明实施例提供的一种可空中实时重构的涵道飞行器的对接方法的流程图。如图所示,该方法包括如下步骤:
步骤S510,获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数。其中,预设参数可以包括飞行高度和飞行方位等。
具体地,对第一涵道飞行器和第二涵道飞行器的对接姿态进行准备,在对接程序启动后,地面站会采集第一涵道飞行器和第二涵道飞行器的飞行数据,通过GPS数据判断两个涵道飞行器的位置,通过气压计、超声波模块等传感器采集的数据调整两个涵道飞行器的高度。当两个涵道飞行器处于同一高度、同一方位后,视觉、激光雷达等传感器开始采集数据交由控制器解算识别位于机体上的标志物,调整两个涵道飞行器的姿态,进行两涵道飞行器的连接机构的方向校准。当涵道飞行器的数量为多个时,相邻两个涵道飞行器的连接机构的方向校准与上述两个涵道飞信器的连接机构的方向校准类似,为节约篇幅,在此不再赘述。
步骤S520,在预设参数满足预设条件时,控制第一涵道飞行器和第二涵道飞行器相对接。
具体地,重构控制器根据超声波模块等距离传感器采集的数据解算两个涵道飞行器的理论间距,控制两个涵道飞行器不断接近,在进入连接机构有效工作范围内,两个涵道飞行器的连接机构上的电磁铁启动,辅助连接轴与连接孔对接,在接触片连接上之后,系统判定两涵道飞行器的能源与通信连接成功,作动机构旋转连接孔上的机械结构,锁死连接轴。
本实施例中,重构控制器可以实时控制处于飞行状态的第一涵道飞行器和第二涵道飞行器进行对接重构为一体模式,可以看出,可实时空中重构的设计,使两架独立的涵道飞行器具有了在空中飞行工况下,重构为一体模式进行协同作业的能力,通过将携带不同的传感器和作业器械的第一涵道飞行器和第二涵道飞行器在空中进行重新组合,可以共同完成更为复杂的工作。
参见图6,图6为本发明实施例提供的涵道飞行器的对接方法的又一流程图。如图所示,该方法包括如下步骤:
步骤S610,获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数。
步骤S620,在预设参数满足预设条件时,控制第一涵道飞行器和第二涵道飞行器相对接。其中,步骤S610和步骤S620的具体实施过程参见上述实施例中的步骤S510、S520即可,本实施例在此不再赘述。
步骤S630,第一涵道飞行器和第二涵道飞行器对接后,第一涵道飞行 器的飞行控制器接管对接后的两个涵道飞行器的控制权,控制系统由单体模式切换到多体模式。第二涵道飞行器的飞行控制器进入备用控制状态。
具体地,第一涵道飞行器和第二涵道飞行器的连接机构成功连接后,两个涵道飞行器的能源与通信建立了连接,第二涵道飞行器的飞行控制器断开与地面站的通讯,将其动力、传感器、作业机械等的控制信息移交给第一涵道飞行器的飞行控制器管控,第二涵道飞行器的飞行控制器进入辅助控制状态,由第一涵道飞行器的飞行控制器接管整个重构后的涵道飞行器的主要控制权。此时,第二涵道飞行器的飞行控制器处于备用状态,或称为辅助控制状态,此状态下,第一涵道飞行器的飞行控制器运行控制主程序,第二涵道飞行器的飞行控制器不再运行控制程序,但当第一涵道飞行器的飞行控制器的运算需求较大时,第二涵道飞行器的飞行控制器硬件也可以提供额外的计算能力,辅助主控制器(即第一涵道飞行器的飞行控制器)的计算,提高系统计算能力。本实例中的辅助控制状态指计算能力上的辅助,而不是控制内容上的辅助。
本实施例将重构后的两个涵道飞行器的控制权放置在了第一涵道飞行器上,避免了两个涵道飞行器的飞行控制器的干涉控制,引起系统混乱。
对接系统实施例:
参见图7,图7为本发明实施例提供的一种可空中实时重构的涵道飞行器的对接系统的结构框图。如图所示,该系统包括:
第一获取模块710,用于获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数。该模块的具体实施过程参见步骤S510即可,本实施例在此不再赘述。
对接模块720,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和第二涵道飞行器相对接。该模块的具体实施过程参见步骤S520即可,本实施例在此不再赘述。
分离方法实施例:
参见图8,图8为本发明实施例提供的一种可空中实时重构的涵道飞行器的分离方法的流程图。如图所示,该方法包括如下步骤:
步骤S810,获取处于连接状态的第一涵道飞行器和第二涵道飞行器在 飞行过程中的预设参数。具体实施时,第一涵道飞行器和第二涵道飞行器的预设参数参见上述对接方法实施例即可,本实施例在此不再赘述。
步骤S820,在预设参数满足预设条件时,控制第一涵道飞行器和第二涵道飞行器相分离。具体实施时,分离时第一涵道飞行器和第二涵道飞行器满足的预设条件可以与对接时相同,具体实施过程参见上述说明即可,本实施例在此不再赘述。
此外,重构控制器也可以实时控制处于飞行状态的已对接的第一涵道飞行器和第二涵道飞行器分离成两架独立的涵道飞行器,可空中分离使得飞行器对复杂环境具有更好的适应性,例如,对接后的两个涵道飞行器的结构尺寸会有所增加,对于狭窄的作业空间,可以将两架已对接的涵道飞行器进行分离,分别进入狭窄空间进行作业,有效提高其环境适应性。此外,可拆分、重组的特性也更方便涵道飞行器的携带和运输与批量化、模块化生产和装配。
分离系统实施例:
参见图9,图9为本发明实施例提供的一种可空中实时重构的涵道飞行器的分离系统的结构框图,如图所示,该系统包括:
第二获取模块910,获取处于连接状态的第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数。第二获取模块910的具体实施过程参加上述步骤S810即可,本实施例在此不再赘述。
分离模块920,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相分离。分离模块920的具体实施过程参加上述步骤S820即可,本实施例在此不再赘述。
如上,对本发明的实施例进行了详细地说明,但是只要实质上没有脱离本发明的发明点及效果,可以有很多的变形,这对本领域的技术人员来说是显而易见的。因此,这样的变形例全部包含在本发明的保护范围之内。

Claims (10)

  1. 一种可空中实时重构的涵道飞行器,其特征在于,包括:第一涵道飞行器、第二涵道飞行器和重构控制器;其中,
    所述第一涵道飞行器设置有第一连接机构,所述第二涵道飞行器设置有第二连接机构,所述第二连接机构用于与所述第一连接机构相连接;
    重构控制器,用于在所述第一涵道飞行器和所述第二涵道飞行器处于飞行状态时控制所述第一连接机构和所述第二连接机构相对接或分离。
  2. 根据权利要求1所述的可空中实时重构的涵道飞行器,其特征在于,还包括:
    第一检测机构,设置于所述第一涵道飞行器,用于检测所述第一涵道飞行器的第一预设参数;
    第二检测机构,设置于所述第二涵道飞行器,用于检测所述第二涵道飞行器的第二预设参数;
    所述重构控制器与所述第一检测机构和所述第二检测机构相连接,用于接收所述第一预设参数和所述第二预设参数,并在所述第一预设参数和所述第二预设参数满足预设条件时控制所述第一连接机构和所述第二连接机构相对接或分离。
  3. 根据权利要求1或2所述的可空中实时重构的涵道飞行器,其特征在于,
    所述第一连接机构内设置有第一通信连接体;
    所述第二连接机构内设置有第二通信连接体;
    所述第一通信连接体和所述第二通信连接体在所述第一连接机构和所述第二连接相连接时导通,以使所述第一涵道飞行器和所述第二涵道飞行器实现能源共享和信号数据的传输。
  4. 根据权利要求1或2所述的可空中实时重构的涵道飞行器,其特征在于,所述第一连接机构为连接轴,所述第二连接机构为连接孔,所述连接轴与所述连接孔相插接并通过锁死机构锁死;或者,
    所述第一连接机构为连接孔,所述第二连接机构为连接轴,所述连接轴与所述连接孔相插接并通过锁死机构锁死。
  5. 一种可空中实时重构的涵道飞行器的对接方法,其特征在于,包括如下步骤:
    获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;
    在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相对接。
  6. 根据权利要求5所述的可空中实时重构的涵道飞行器的对接方法,其特征在于,所述预设参数包括飞行高度和飞行方位。
  7. 根据权利要求5所述的可空中实时重构的涵道飞行器的对接方法,其特征在于,还包括:
    第一涵道飞行器和第二涵道飞行器对接后,第一涵道飞行器的飞行控制器接管对接后的两个涵道飞行器的控制权,第二涵道飞行器的飞行控制器进入备用状态。
  8. 一种可空中实时重构的涵道飞行器的对接系统,其特征在于,包括:
    第一获取模块,用于获取第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;
    对接模块,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相对接。
  9. 一种可空中实时重构的涵道飞行器的分离方法,其特征在于,包括如下步骤:
    获取处于连接状态的第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;
    在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相分离。
  10. 一种可空中实时重构的涵道飞行器的分离系统,其特征在于,包括:
    第二获取模块,获取处于连接状态的第一涵道飞行器和第二涵道飞行器在飞行过程中的预设参数;
    分离模块,用于在所述预设参数满足预设条件时,控制所述第一涵道飞行器和所述第二涵道飞行器相分离。
PCT/CN2019/073143 2018-02-06 2019-01-25 可空中实时重构的涵道飞行器、对接分离方法及系统 WO2019154118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810118279.1A CN109334968A (zh) 2018-02-06 2018-02-06 可空中实时重构的涵道飞行器、对接分离方法及系统
CN201810118279.1 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019154118A1 true WO2019154118A1 (zh) 2019-08-15

Family

ID=65291475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073143 WO2019154118A1 (zh) 2018-02-06 2019-01-25 可空中实时重构的涵道飞行器、对接分离方法及系统

Country Status (2)

Country Link
CN (1) CN109334968A (zh)
WO (1) WO2019154118A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158290B (zh) * 2019-12-31 2020-11-03 埃游科技(深圳)有限公司 用于无人设备的多模态控制方法和装置
CN112550695A (zh) * 2020-12-07 2021-03-26 北京航空航天大学 垂直起降翼尖铰接组合式无人飞行器
CN113428361B (zh) * 2021-07-06 2022-11-25 中国人民解放军总参谋部第六十研究所 一种可分合智能变体垂直起降无人平台及其控制策略
CN114537674B (zh) * 2022-01-25 2024-02-13 北京理工大学 一种可分离式飞行器、操控方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556341A (zh) * 2011-12-05 2012-07-11 北京航空航天大学 具有分布式和自组装特征的群体飞行机器人
US20160159472A1 (en) * 2014-12-04 2016-06-09 Elwha Llc Reconfigurable unmanned aircraft system
CN106005386A (zh) * 2016-07-06 2016-10-12 尹栋 面向可组合集群的涵道无人机
CN205652354U (zh) * 2016-04-08 2016-10-19 南京航空航天大学 组合涵道飞行器
CN106716273A (zh) * 2016-07-28 2017-05-24 深圳市大疆创新科技有限公司 多旋翼无人机及其控制方法
CN107264789A (zh) * 2017-07-11 2017-10-20 广州市妙伊莲科技有限公司 一种组合式无人机
CN208412124U (zh) * 2018-02-06 2019-01-22 酷黑科技(北京)有限公司 可空中实时重构的涵道飞行器及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105775119B (zh) * 2016-04-08 2018-01-23 南京航空航天大学 组合涵道飞行器
US10196143B2 (en) * 2016-06-02 2019-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System and method for modular unmanned aerial system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556341A (zh) * 2011-12-05 2012-07-11 北京航空航天大学 具有分布式和自组装特征的群体飞行机器人
US20160159472A1 (en) * 2014-12-04 2016-06-09 Elwha Llc Reconfigurable unmanned aircraft system
CN205652354U (zh) * 2016-04-08 2016-10-19 南京航空航天大学 组合涵道飞行器
CN106005386A (zh) * 2016-07-06 2016-10-12 尹栋 面向可组合集群的涵道无人机
CN106716273A (zh) * 2016-07-28 2017-05-24 深圳市大疆创新科技有限公司 多旋翼无人机及其控制方法
CN107264789A (zh) * 2017-07-11 2017-10-20 广州市妙伊莲科技有限公司 一种组合式无人机
CN208412124U (zh) * 2018-02-06 2019-01-22 酷黑科技(北京)有限公司 可空中实时重构的涵道飞行器及系统

Also Published As

Publication number Publication date
CN109334968A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2019154118A1 (zh) 可空中实时重构的涵道飞行器、对接分离方法及系统
US20230303244A1 (en) High speed multi-rotor vertical takeoff and landing aircraft
EP3621877B1 (en) Modular aircraft with vertical takeoff and landing capability
US11459099B2 (en) M-wing aircraft having VTOL and biplane orientations
US10501193B2 (en) Aircraft having a versatile propulsion system
US10850835B2 (en) Unmanned aerial vehicle with monolithic wing and twin-rotor propulsion/lift modules
US11273911B2 (en) Detachable power tethering systems for aircraft
US10351232B2 (en) Rotor assembly having collective pitch control
US20160244159A1 (en) Controlled Take-Off And Flight System Using Thrust Differentials
JP2021176757A (ja) 垂直離着陸(vtol)航空機
CA3077958C (en) Multimodal unmanned aerial systems having tiltable wings
EP3878736A1 (en) Aircraft having convertible tailboom and landing gear systems
US11479352B2 (en) Tailsitting biplane aircraft having a coaxial rotor system
EP3087003A1 (en) An unmanned aerial vehicle
US11479353B2 (en) Distributed elevon systems for tailsitting biplane aircraft
US11650604B2 (en) Yaw control systems for tailsitting biplane aircraft
CN208412124U (zh) 可空中实时重构的涵道飞行器及系统
US20210362852A1 (en) Thrust Vectoring Coaxial Rotor Systems for Aircraft
KR101808855B1 (ko) 비행 환경에 따른 조립식 기체
US20230091705A1 (en) Convertible Staggerwing Aircraft having Optimized Hover Power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19752056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19752056

Country of ref document: EP

Kind code of ref document: A1