WO2019153654A1 - Fractional-order model-based magnetic resonance fingerprinting method and device, and medium - Google Patents

Fractional-order model-based magnetic resonance fingerprinting method and device, and medium Download PDF

Info

Publication number
WO2019153654A1
WO2019153654A1 PCT/CN2018/096146 CN2018096146W WO2019153654A1 WO 2019153654 A1 WO2019153654 A1 WO 2019153654A1 CN 2018096146 W CN2018096146 W CN 2018096146W WO 2019153654 A1 WO2019153654 A1 WO 2019153654A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
fractional
dictionary
imaging
model
Prior art date
Application number
PCT/CN2018/096146
Other languages
French (fr)
Chinese (zh)
Inventor
王海峰
梁栋
邹莉娴
刘新
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2019153654A1 publication Critical patent/WO2019153654A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization

Definitions

  • the present invention relates to the field of magnetic resonance imaging technologies, and in particular, to a magnetic resonance fingerprint imaging method.
  • Magnetic resonance imagers use magnetic fields and radio wave pulses to generate images of body tissue and structure.
  • Magnetic Resonance Fingerprinting can obtain more information per measurement.
  • the magnetic resonance fingerprint imaging technology mainly includes the following steps: 1. Using different repetition time (TR) and echo in each excitation of the pulse sequence. Time of Echo (TE) and Flip Angle (FA), and acquire data with multi-interleaf spiral and reconstruct an undersampled image sequence; 2.
  • the technical problem to be solved by the present invention is to provide a new magnetic resonance fingerprint imaging method to solve the problem of large error.
  • the present invention firstly discloses a magnetic resonance fingerprint imaging method, the technical solution of which is implemented as follows:
  • a magnetic resonance fingerprint imaging method comprising:
  • Step S1 in each excitation of the pulse sequence, using different repetition time, echo time, flip angle, and using non-Cartesian trajectory in K space for data acquisition;
  • Step S2 using a Bloch model based on the fractional order model to simulate the calculation, and generating a dictionary based on the fractional Bloch model;
  • step S3 the magnetic resonance image is reconstructed, and the signal of the corresponding element in the image is compared with the dictionary, and finally the multi-parameter quantitative imaging result is obtained.
  • the step S2 is specifically: generating a dictionary by using a fractional Bloch model simulation calculation according to a parameter set of the adopted pulse sequence.
  • the method for reconstructing the magnetic resonance image comprises: one of a non-uniform fast Fourier transform, a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm.
  • the point-by-point time series of the reconstructed image and the elements in the dictionary are matched one by one by the maximum inner product method to obtain a multi-parameter quantitative imaging result.
  • the variables in the dictionary include a longitudinal relaxation time and a transverse relaxation time
  • the multi-parameter quantitative imaging result is a quantitative imaging of the tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
  • the longitudinal relaxation is represented by a fractional Bloch model as:
  • M z (t) M z (0)+[M 0 -M z (0)][1-E ⁇ (-(t/T 1 ) ⁇ )].
  • the transverse relaxation is expressed by a fractional Bloch model as:
  • M xy (t) M xy (0)[E ⁇ (-(t/T 2 ) ⁇ )]+M xy ( ⁇ ).
  • the Mita-Lehler function can be approximated as
  • the present invention also discloses a computer readable medium having a program stored therein for a computer to perform the magnetic resonance fingerprint imaging method.
  • the present invention also discloses a magnetic resonance image processing apparatus for using the magnetic resonance fingerprint imaging method, comprising a data acquisition module, a dictionary generation module, and an imaging result generation module;
  • the data acquisition module is configured to use different repetition times, echo times, flip angles in each excitation of the pulse sequence, and use the non-Cartesian trajectory in the K space for data acquisition;
  • the dictionary generation module simulates a calculation by a Bloch model based on a fractional order model, and generates a dictionary based on a fractional Bloch model
  • the imaging result generating module is configured to reconstruct a magnetic resonance image, and compare a signal of a corresponding element in the image with the dictionary to finally obtain a multi-parameter quantitative imaging result.
  • the dictionary generating module generates a dictionary by using a fractional Bloch model to simulate a parameter according to a parameter set of the adopted pulse sequence.
  • the imaging result generation module generates a reconstructed magnetic resonance image by using one of a non-uniform fast Fourier transform, a singular value decomposition back projection method, and a low rank alternating direction multiplier algorithm.
  • the imaging result generation module identifies the point-by-point time series of the reconstructed image and the elements in the dictionary by the maximum inner product method one by one to obtain a multi-parameter quantitative imaging result.
  • the multi-parameter quantitative imaging result generated by the imaging result generation module is a quantitative imaging of tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
  • said dictionary generation module generates said model by a longitudinally relaxed fractional Bloch model or/and a laterally relaxed fractional Bloch model;
  • M z (t) M z (0)+[M 0 -M z (0)][1-E ⁇ (-(t/T 1 ) ⁇ )]
  • M xy (t) M xy (0)[E ⁇ (-(t/T 2 ) ⁇ )]+M xy ( ⁇ ).
  • the present invention does not add additional data and scan time while improving the accuracy of quantitative parameter imaging.
  • Figure 1 is a diagram showing the flip angle variation of a pulse sequence employed in one embodiment
  • Figure 2 is a diagram showing the repetition time and echo time variation of the pulse sequence employed in one embodiment
  • the present invention has been made primarily to solve the problems of the corresponding prior art in the field of magnetic resonance image reconstruction, and therefore the present invention is particularly applicable to the subdivision, but does not mean that the present invention
  • the scope of application of the technical solution is thus limited, and those skilled in the art can reasonably implement various specific applications in the field of magnetic resonance imaging as needed.
  • Step S2 using a Bloch model based on the fractional order model to simulate the calculation, and generating a dictionary based on the fractional Bloch model;
  • the transverse relaxation is represented by a fractional Bloch model as:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Computing Systems (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Discrete Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A fractional-order Bloch model-based quantitative parameter magnetic resonance fingerprinting method, the steps thereof comprising: collecting data using different times of repetition, times of echo and flip angles in each excitation of pulse sequences, and reconstructing said data to obtain an image; generating a dictionary on the basis of a fractional-order Bloch model; and obtaining a multi-parameter image using pattern recognition. The method improves the sampling speed and imaging accuracy of quantitative parameter magnetic resonance fingerprinting. While improving the accuracy of quantitative parameter imaging, the present invention does not add any additional data and scanning time.

Description

一种基于分数阶模型的磁共振指纹成像方法、装置及介质Magnetic resonance fingerprint imaging method, device and medium based on fractional order model 技术领域Technical field
本发明涉及磁共振成像技术领域,特别涉及一种磁共振指纹成像方法。The present invention relates to the field of magnetic resonance imaging technologies, and in particular, to a magnetic resonance fingerprint imaging method.
背景技术Background technique
磁共振成像仪是利用磁场和无线电波脉冲来生成身体组织和结构的图像。相比于传统的磁共振成像,磁共振指纹成像(Magnetic Resonance Fingerprinting,MRF)每次测量可以获取更多的信息。作为一种快速、同时获得多参数定量成像的新方法,磁共振指纹成像技术主要包括以下步骤:1、在脉冲序列的每一次激发中采用不同的重复时间(Time of Repetition,TR)、回波时间(Time of Echo,TE)和翻转角(Flip Angle,FA),并用多次激发螺旋轨迹(multi-interleaf spiral)采集数据并重建得到欠采样的图像序列;2、根据脉冲序列的参数(TR、TE和FA),基于经典的一阶布洛赫(Bloch)模型来计算出字典;3、将重建的图像序列与字典中元素逐点匹配识别,即可同时获得多参数定量成像结果。Magnetic resonance imagers use magnetic fields and radio wave pulses to generate images of body tissue and structure. Compared to traditional magnetic resonance imaging, Magnetic Resonance Fingerprinting (MRF) can obtain more information per measurement. As a new method for obtaining multi-parameter quantitative imaging quickly, the magnetic resonance fingerprint imaging technology mainly includes the following steps: 1. Using different repetition time (TR) and echo in each excitation of the pulse sequence. Time of Echo (TE) and Flip Angle (FA), and acquire data with multi-interleaf spiral and reconstruct an undersampled image sequence; 2. Parameters according to pulse sequence (TR) , TE and FA), based on the classic first-order Bloch model to calculate the dictionary; 3, the reconstructed image sequence and the elements in the dictionary are matched point by point, and multi-parameter quantitative imaging results can be obtained at the same time.
传统定量磁共振成像通过经典布洛赫模型(描述磁共振物理过程的模型)对图像每个像素位置上的信号进行非线性拟合得到组织的特性参数,比如:纵向弛豫时间(T1),横向弛豫时间(T2)等。然而,该成像方法误差大,其定量参数成像结果也不理想。Traditional quantitative magnetic resonance imaging obtains the characteristic parameters of the tissue by nonlinear fitting of the signal at each pixel position of the image through the classical Bloch model (a model describing the physical process of magnetic resonance), such as: longitudinal relaxation time (T1), Lateral relaxation time (T2) and the like. However, the imaging method has a large error, and the quantitative parameter imaging result is also not satisfactory.
发明内容Summary of the invention
本发明要解决的技术问题是提供一种新的磁共振指纹成像方法以解决误差大的问题。The technical problem to be solved by the present invention is to provide a new magnetic resonance fingerprint imaging method to solve the problem of large error.
为了解决上述技术问题,本发明首先披露了一种磁共振指纹成像方法,其技术方案是这样实施的:In order to solve the above technical problem, the present invention firstly discloses a magnetic resonance fingerprint imaging method, the technical solution of which is implemented as follows:
一种磁共振指纹成像方法,所述磁共振指纹成像方法的步骤包括:A magnetic resonance fingerprint imaging method, the steps of the magnetic resonance fingerprint imaging method comprising:
步骤S1,在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;Step S1, in each excitation of the pulse sequence, using different repetition time, echo time, flip angle, and using non-Cartesian trajectory in K space for data acquisition;
步骤S2,用基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;Step S2, using a Bloch model based on the fractional order model to simulate the calculation, and generating a dictionary based on the fractional Bloch model;
步骤S3,重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。In step S3, the magnetic resonance image is reconstructed, and the signal of the corresponding element in the image is compared with the dictionary, and finally the multi-parameter quantitative imaging result is obtained.
优选地,所述步骤S2具体为,根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典。Preferably, the step S2 is specifically: generating a dictionary by using a fractional Bloch model simulation calculation according to a parameter set of the adopted pulse sequence.
优选地,所述步骤S3中,重建磁共振图像的方法包括:非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种。Preferably, in the step S3, the method for reconstructing the magnetic resonance image comprises: one of a non-uniform fast Fourier transform, a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm.
优选地,所述步骤S3中,将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。Preferably, in the step S3, the point-by-point time series of the reconstructed image and the elements in the dictionary are matched one by one by the maximum inner product method to obtain a multi-parameter quantitative imaging result.
优选地,所述字典中的变量包括纵向弛豫时间和横向弛豫时间;Preferably, the variables in the dictionary include a longitudinal relaxation time and a transverse relaxation time;
所述步骤S3中,多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。In the step S3, the multi-parameter quantitative imaging result is a quantitative imaging of the tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
优选地,纵向弛豫用分数阶布洛赫模型表示为:Preferably, the longitudinal relaxation is represented by a fractional Bloch model as:
Figure PCTCN2018096146-appb-000001
Figure PCTCN2018096146-appb-000001
M z(t)=M z(0)+[M 0-M z(0)][1-E β(-(t/T 1) β)]。 M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )].
优选地,横向弛豫用分数阶布洛赫模型表示为:Preferably, the transverse relaxation is expressed by a fractional Bloch model as:
Figure PCTCN2018096146-appb-000002
Figure PCTCN2018096146-appb-000002
M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
优选地,假设在τ的值较小的时候,米塔-列夫勒函数可以近似为
Figure PCTCN2018096146-appb-000003
Preferably, assuming that the value of τ is small, the Mita-Lehler function can be approximated as
Figure PCTCN2018096146-appb-000003
Figure PCTCN2018096146-appb-000004
或/和
Figure PCTCN2018096146-appb-000005
then
Figure PCTCN2018096146-appb-000004
Or / and
Figure PCTCN2018096146-appb-000005
本发明还公开了一种计算机可读介质,该计算机可读介质具有存储在其中的程序,该程序用于计算机执行所述的磁共振指纹成像方法。The present invention also discloses a computer readable medium having a program stored therein for a computer to perform the magnetic resonance fingerprint imaging method.
本发明还公开了一种用于使用所述磁共振指纹成像方法的磁共振图像处理装置,包括数据采集模块,字典生成模块,成像结果生成模块;The present invention also discloses a magnetic resonance image processing apparatus for using the magnetic resonance fingerprint imaging method, comprising a data acquisition module, a dictionary generation module, and an imaging result generation module;
所述数据采集模块用于在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;The data acquisition module is configured to use different repetition times, echo times, flip angles in each excitation of the pulse sequence, and use the non-Cartesian trajectory in the K space for data acquisition;
所述字典生成模块通过基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;The dictionary generation module simulates a calculation by a Bloch model based on a fractional order model, and generates a dictionary based on a fractional Bloch model;
所述成像结果生成模块用于重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。The imaging result generating module is configured to reconstruct a magnetic resonance image, and compare a signal of a corresponding element in the image with the dictionary to finally obtain a multi-parameter quantitative imaging result.
优选地,所述字典生成模块根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典。Preferably, the dictionary generating module generates a dictionary by using a fractional Bloch model to simulate a parameter according to a parameter set of the adopted pulse sequence.
所述成像结果生成模块采用非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种,生成重建磁共振图像。The imaging result generation module generates a reconstructed magnetic resonance image by using one of a non-uniform fast Fourier transform, a singular value decomposition back projection method, and a low rank alternating direction multiplier algorithm.
优选地,所述成像结果生成模块将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。Preferably, the imaging result generation module identifies the point-by-point time series of the reconstructed image and the elements in the dictionary by the maximum inner product method one by one to obtain a multi-parameter quantitative imaging result.
优选地,所述成像结果生成模块生成的多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。Preferably, the multi-parameter quantitative imaging result generated by the imaging result generation module is a quantitative imaging of tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
优选地,所述字典生成模块通过纵向弛豫的分数阶布洛赫模型或/和横向弛豫的分数阶布洛赫模型生成所述模型;Advantageously, said dictionary generation module generates said model by a longitudinally relaxed fractional Bloch model or/and a laterally relaxed fractional Bloch model;
纵向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of longitudinal relaxation is:
Figure PCTCN2018096146-appb-000006
Figure PCTCN2018096146-appb-000006
M z(t)=M z(0)+[M 0-M z(0)][1-E β(-(t/T 1) β)] M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )]
横向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of transverse relaxation is:
Figure PCTCN2018096146-appb-000007
Figure PCTCN2018096146-appb-000007
M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
实施本发明的有益效果有:The beneficial effects of implementing the invention are:
1、本发明提高了磁共振指纹定量参数成像的采样速度和成像精确度;1. The invention improves the sampling speed and imaging accuracy of magnetic resonance fingerprint quantitative parameter imaging;
2、本发明在提高定量参数成像准确度的同时,不增加额外的数据和扫描时间。2. The present invention does not add additional data and scan time while improving the accuracy of quantitative parameter imaging.
附图说明DRAWINGS
为更好地理解本发明的技术方案,可参考下列的、用于对现有技术或实施例进行说明的附图。这些附图将对部分实施例或现有技术涉及的产品或方法进行简要的展示。这些附图的基本信息如下:For a better understanding of the technical solutions of the present invention, reference may be made to the following drawings for illustrating the prior art or embodiments. These drawings will briefly show some of the embodiments or products or methods involved in the prior art. The basic information of these drawings is as follows:
图1为一个实施例中,所采用的脉冲序列的翻转角变化;Figure 1 is a diagram showing the flip angle variation of a pulse sequence employed in one embodiment;
图2为一个实施例中,所采用的脉冲序列的重复时间和回波时间变化;Figure 2 is a diagram showing the repetition time and echo time variation of the pulse sequence employed in one embodiment;
图3为一个实施例中,磁共振指纹成像脉冲序列时序图;3 is a timing diagram of a magnetic resonance fingerprint imaging pulse sequence in an embodiment;
图4为一个实施例中,纵向弛豫时间参数成像结果图;4 is a view showing an imaging result of a longitudinal relaxation time parameter in one embodiment;
图5为一个实施例中,横向弛豫时间参数成像结果图。Figure 5 is a graph showing the results of imaging the transverse relaxation time parameters in one embodiment.
具体实施方式Detailed ways
现在对本发明实施例中的技术方案或有益效果作进一步的展开描述,显然,所描述的实施例仅是本发明的部分实施方式,而并非全部。The technical solutions or the beneficial effects of the embodiments of the present invention will be further described. It is obvious that the described embodiments are only partial, but not all, of the present invention.
需要指出的是,本发明创造的提出,主要是为了解决磁共振图像重建领域内,相应的现有技术存在的问题,所以本发明创造特别适用于该细分领域,但并非意味本发明创造的技术方案所可应用的范围因此受限,本领域技术人员可根据需要,在磁共振成像领域下的各种具体应用场合进行合理地实施。It should be noted that the present invention has been made primarily to solve the problems of the corresponding prior art in the field of magnetic resonance image reconstruction, and therefore the present invention is particularly applicable to the subdivision, but does not mean that the present invention The scope of application of the technical solution is thus limited, and those skilled in the art can reasonably implement various specific applications in the field of magnetic resonance imaging as needed.
一种磁共振指纹成像方法,所述成像方法的步骤包括:A magnetic resonance fingerprint imaging method, the steps of the imaging method comprising:
步骤S1,在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;Step S1, in each excitation of the pulse sequence, using different repetition time, echo time, flip angle, and using non-Cartesian trajectory in K space for data acquisition;
步骤S2,用基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;Step S2, using a Bloch model based on the fractional order model to simulate the calculation, and generating a dictionary based on the fractional Bloch model;
步骤S3,重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。In step S3, the magnetic resonance image is reconstructed, and the signal of the corresponding element in the image is compared with the dictionary, and finally the multi-parameter quantitative imaging result is obtained.
其中,脉冲序列的设置可以参考图1~图3。The setting of the pulse sequence can be referred to FIG. 1 to FIG. 3.
本发明利用更精确的分数阶布洛赫模型替代经典的一阶布洛赫(Bloch)模型来建立分数阶布洛赫模型的字典,再利用生成的字典元素进行模式识别匹配识别,得到定量的组织特性参数成像。该方法提高了磁共振指纹成像所建立的字典精确度,并且减少了模式识别的误差,使得磁共振指纹成像更接近金标准的定量参数成像。The invention replaces the classical first-order Bloch model with a more accurate fractional Bloch model to build a dictionary of fractional Bloch models, and then uses the generated dictionary elements for pattern recognition matching recognition to obtain quantitative Imaging of tissue characteristic parameters. This method improves the dictionary accuracy established by magnetic resonance fingerprint imaging and reduces the error of pattern recognition, making magnetic resonance fingerprint imaging closer to the gold standard quantitative parameter imaging.
在一个优选的实施例中,所述步骤S2具体为,根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典。In a preferred embodiment, the step S2 is specifically: generating a dictionary by using a fractional Bloch model simulation calculation according to a parameter set of the adopted pulse sequence.
在一个优选的实施例中,所述步骤S3中,重建磁共振图像的方法包括:非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种。In a preferred embodiment, in the step S3, the method for reconstructing the magnetic resonance image comprises: one of a non-uniform fast Fourier transform, a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm.
在一个优选的实施例中,所述步骤S3中,将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。In a preferred embodiment, in step S3, the point-by-point time series of the reconstructed image and the elements in the dictionary are matched one by one by the maximum inner product method to obtain a multi-parameter quantitative imaging result.
在一个优选的实施例中,所述字典中的变量包括纵向弛豫时间和横向弛豫时间;In a preferred embodiment, the variables in the dictionary include a longitudinal relaxation time and a transverse relaxation time;
所述步骤S3中,多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。In the step S3, the multi-parameter quantitative imaging result is a quantitative imaging of the tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
在一个优选的实施例中,纵向弛豫用分数阶布洛赫模型表示为:In a preferred embodiment, the longitudinal relaxation is represented by a fractional Bloch model as:
Figure PCTCN2018096146-appb-000008
Figure PCTCN2018096146-appb-000008
M z(t)=M z(0)+[M 0-M z(0)][1-E β(-(t/T 1) β)]。 M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )].
在一个优选的实施例中,横向弛豫用分数阶布洛赫模型表示为:In a preferred embodiment, the transverse relaxation is represented by a fractional Bloch model as:
Figure PCTCN2018096146-appb-000009
Figure PCTCN2018096146-appb-000009
M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
上述公式中,各字符的含义为:In the above formula, the meaning of each character is:
Figure PCTCN2018096146-appb-000010
Caputo形式的Riemann-Liouville的β阶微分算子
Figure PCTCN2018096146-appb-000010
The β-order differential operator of Riemann-Liouville in Caputo form
M 0:初始磁化矢量 M 0 : initial magnetization vector
M z(t):t时刻纵向磁化矢量 M z (t): longitudinal magnetization vector at time t
M xy(t):t时刻横向磁化矢量 M xy (t): transverse magnetization vector at time t
Figure PCTCN2018096146-appb-000011
β阶T 1弛豫
Figure PCTCN2018096146-appb-000011
Β-order T 1 relaxation
Figure PCTCN2018096146-appb-000012
α阶T 2弛豫
Figure PCTCN2018096146-appb-000012
Α-order T 2 relaxation
E β(-(t/T 1) β):T 1的β阶拉伸Mittag-Leffler函数 E β (-(t/T 1 ) β ): β 1 stretch Mittag-Leffler function of T 1
E α(-(t/T 2) α):T 2的α阶拉伸Mittag-Leffler函数 E α (-(t/T 2 ) α ): α 2 stretch Mittag-Leffler function of T 2
ω 0:共振频率 ω 0 : resonance frequency
Figure PCTCN2018096146-appb-000013
Riemann-Liouville的(1-α)阶积分算子
Figure PCTCN2018096146-appb-000013
Riemann-Liouville's (1-α) order integral operator
Caputo及Riemann–Liouville公式可参考由高心,刘兴文,邵仕泉所著的《分数阶动力学系统的混沌、控制与同步》或其它相关的文献资料。The Caputo and Riemann–Liouville formulas can be found in “Chaotic, Control and Synchronization of Fractional Dynamic Systems” by Gao Xin, Liu Xingwen, and Shao Shiquan, or other related literature.
Mittag-Leffler(米塔—列夫勒)相关函数可参考由卿汉赖编著的《复变数函数论(增订本)》或其它相关的文献资料。The Mittag-Leffler correlation function can be found in the Complex Variable Function Theory (updated edition) or other related literature compiled by Qing Hanlai.
在一个优选的实施例中,特别地假设在τ的值较小的时候,米塔-列夫勒函数近似为
Figure PCTCN2018096146-appb-000014
In a preferred embodiment, it is specifically assumed that when the value of τ is small, the Mita-Levre function is approximated as
Figure PCTCN2018096146-appb-000014
Figure PCTCN2018096146-appb-000015
或/和
Figure PCTCN2018096146-appb-000016
then
Figure PCTCN2018096146-appb-000015
Or / and
Figure PCTCN2018096146-appb-000016
本发明还公开了一种计算机可读介质,该计算机可读介质具有存储在其中的程序,该程序用于计算机执行所述的磁共振指纹成像方法。The present invention also discloses a computer readable medium having a program stored therein for a computer to perform the magnetic resonance fingerprint imaging method.
本发明还公开了一种用于使用所述磁共振指纹成像方法的磁共振图像处理装置,包括数据采集模块,字典生成模块,成像结果生成模块;The present invention also discloses a magnetic resonance image processing apparatus for using the magnetic resonance fingerprint imaging method, comprising a data acquisition module, a dictionary generation module, and an imaging result generation module;
所述数据采集模块用于在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;The data acquisition module is configured to use different repetition times, echo times, flip angles in each excitation of the pulse sequence, and use the non-Cartesian trajectory in the K space for data acquisition;
所述字典生成模块通过基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;The dictionary generation module simulates a calculation by a Bloch model based on a fractional order model, and generates a dictionary based on a fractional Bloch model;
所述成像结果生成模块用于重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。The imaging result generating module is configured to reconstruct a magnetic resonance image, and compare a signal of a corresponding element in the image with the dictionary to finally obtain a multi-parameter quantitative imaging result.
在一个优选的实施例中,所述字典生成模块根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典。In a preferred embodiment, the dictionary generation module generates the dictionary by using a fractional Bloch model to simulate calculations according to a parameter set of the employed pulse sequence.
所述成像结果生成模块采用非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种,生成重建磁共振图像。The imaging result generation module generates a reconstructed magnetic resonance image by using one of a non-uniform fast Fourier transform, a singular value decomposition back projection method, and a low rank alternating direction multiplier algorithm.
在一个优选的实施例中,所述成像结果生成模块将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。In a preferred embodiment, the imaging result generation module identifies the point-by-point time series of the reconstructed image and the elements in the dictionary by the maximum inner product method one by one to obtain a multi-parameter quantitative imaging result.
在一个优选的实施例中,所述成像结果生成模块生成的多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。In a preferred embodiment, the multi-parameter quantitative imaging result generated by the imaging result generation module is a quantitative imaging of tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
在一个优选的实施例中,所述字典生成模块通过纵向弛豫的分数阶布洛赫模型或/和横向弛豫的分数阶布洛赫模型生成所述模型;In a preferred embodiment, the dictionary generation module generates the model by a longitudinally relaxed fractional Bloch model or/and a laterally relaxed fractional Bloch model;
纵向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of longitudinal relaxation is:
Figure PCTCN2018096146-appb-000017
Figure PCTCN2018096146-appb-000017
M z(t)=M (0)+[M -M (0)][1-E β(-(t/T 1) β)] M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )]
横向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of transverse relaxation is:
Figure PCTCN2018096146-appb-000018
Figure PCTCN2018096146-appb-000018
M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
利用本发明的方法进行模拟可得到图4和图5,并且显示各图像的平均差异(avg.diff.△)。其中图4为分别使用传统方法和本发明方法生成字典,并最终通过奇异值分解背投影法和低秩交替方向乘子算法得到的纵向弛豫时间参数成像(T1 mapping)。图5为分别使用传统方法和本发明方法生成字 典,并最终通过奇异值分解背投影法和低秩交替方向乘子算法得到的横向弛豫时间参数成像(T2 mapping)。Simulations were performed using the method of the present invention to obtain Figures 4 and 5, and the average difference (avg.diff.?) of each image is shown. 4 is a longitudinal relaxation time parameter imaging (T1 mapping) obtained by using a conventional method and the method of the present invention to generate a dictionary, and finally by a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm. Fig. 5 is a transverse relaxation time parameter imaging (T2 mapping) obtained by generating a dictionary using the conventional method and the method of the present invention, respectively, and finally by a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm.
图像与对比参考图像的参考均方差比经典的一阶布洛赫模型的磁共振指纹成像均有所减小,同时不增加额外的数据和扫描时间。目前实验表明,本发明的分数阶布洛赫模型生成的T1 mapping和T2 mapping比原来的一阶布洛赫模型的定量参数成像提高50%以上准确度。The reference mean square error of the image and the comparative reference image is reduced compared to the classical first-order Bloch model, while no additional data and scan time are added. At present, experiments show that the T1 mapping and T2 mapping generated by the fractional Bloch model of the present invention are more than 50% accurate than the quantitative parameter imaging of the original first-order Bloch model.
最后需要指出的是,上文所列举的实施例,为本发明较为典型的、较佳实施例,仅用于详细说明、解释本发明的技术方案,以便于读者理解,并不用以限制本发明的保护范围或者应用。因此,在本发明的精神和原则之内所作的任何修改、等同替换、改进等而获得的技术方案,都应被涵盖在本发明的保护范围之内。It should be noted that the above-exemplified embodiments are preferred and preferred embodiments of the present invention, and are only used to explain and explain the technical solutions of the present invention in order to facilitate the reader's understanding and are not intended to limit the present invention. The scope of protection or application. Therefore, the technical solutions obtained by any modification, equivalent replacement, improvement, etc., made within the spirit and principle of the present invention are intended to be included in the scope of the present invention.

Claims (14)

  1. 一种基于分数阶模型的磁共振指纹成像方法,其特征在于:A magnetic resonance fingerprint imaging method based on fractional order model, characterized in that:
    所述磁共振指纹成像方法的步骤包括:The steps of the magnetic resonance fingerprint imaging method include:
    步骤S1,在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;Step S1, in each excitation of the pulse sequence, using different repetition time, echo time, flip angle, and using non-Cartesian trajectory in K space for data acquisition;
    步骤S2,用基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;Step S2, using a Bloch model based on the fractional order model to simulate the calculation, and generating a dictionary based on the fractional Bloch model;
    步骤S3,重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。In step S3, the magnetic resonance image is reconstructed, and the signal of the corresponding element in the image is compared with the dictionary, and finally the multi-parameter quantitative imaging result is obtained.
  2. 根据权利要求1所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 1, wherein:
    所述步骤S2具体为,根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典。The step S2 is specifically: generating a dictionary by using a fractional Bloch model simulation calculation according to a parameter set of the adopted pulse sequence.
  3. 根据权利要求2所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 2, wherein:
    所述步骤S3中,重建磁共振图像的方法包括:非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种。In the step S3, the method for reconstructing the magnetic resonance image comprises: one of a non-uniform fast Fourier transform, a singular value decomposition back projection method and a low rank alternating direction multiplier algorithm.
  4. 根据权利要求3所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 3, wherein:
    所述步骤S3中,将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。In the step S3, the point-by-point time series of the reconstructed image and the elements in the dictionary are matched one by one by the maximum inner product method to obtain a multi-parameter quantitative imaging result.
  5. 根据权利要求4任一所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to any one of claims 4, wherein:
    所述字典中的变量包括纵向弛豫时间和横向弛豫时间;The variables in the dictionary include longitudinal relaxation time and transverse relaxation time;
    所述步骤S3中,多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。In the step S3, the multi-parameter quantitative imaging result is a quantitative imaging of the tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
  6. 根据权利要求5所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 5, wherein:
    纵向弛豫用分数阶布洛赫模型表示为:The longitudinal relaxation is expressed by the fractional Bloch model as:
    Figure PCTCN2018096146-appb-100001
    Figure PCTCN2018096146-appb-100001
    M z(t)=M z(0)+[M 0-M z(0)][1-E β(-(t/T 1) β)]。 M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )].
  7. 根据权利要求6所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 6, wherein:
    横向弛豫用分数阶布洛赫模型表示为:The transverse relaxation is expressed by the fractional Bloch model as:
    Figure PCTCN2018096146-appb-100002
    Figure PCTCN2018096146-appb-100002
    M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
  8. 根据权利要求7所述的磁共振指纹成像方法,其特征在于:The magnetic resonance fingerprint imaging method according to claim 7, wherein:
    可以假设米塔-列夫勒函数近似为
    Figure PCTCN2018096146-appb-100003
    It can be assumed that the Mita-Levre function is approximated as
    Figure PCTCN2018096146-appb-100003
    Figure PCTCN2018096146-appb-100004
    或/和
    Figure PCTCN2018096146-appb-100005
    then
    Figure PCTCN2018096146-appb-100004
    Or / and
    Figure PCTCN2018096146-appb-100005
  9. 一种计算机可读介质,该计算机可读介质具有存储在其中的程序,该程序用于计算机执行权利要求1~8中任一项所述的磁共振指纹成像方法。A computer readable medium having a program stored therein for a computer to perform the magnetic resonance fingerprint imaging method of any one of claims 1-8.
  10. 一种用于使用权利要求1~8中任一项所述磁共振指纹成像方法的磁共振图像处理装置,其特征在于:A magnetic resonance image processing apparatus for using the magnetic resonance fingerprint imaging method according to any one of claims 1 to 8, characterized in that:
    包括数据采集模块,字典生成模块,成像结果生成模块;The utility model comprises a data acquisition module, a dictionary generation module and an imaging result generation module;
    所述数据采集模块用于在脉冲序列的每一次激发中,采用不同的重复时间、回波时间、翻转角,并利用在K空间中的非笛卡尔轨迹进行数据采集;The data acquisition module is configured to use different repetition times, echo times, flip angles in each excitation of the pulse sequence, and use the non-Cartesian trajectory in the K space for data acquisition;
    所述字典生成模块通过基于分数阶模型的布洛赫模型来模拟计算,生成基于分数阶布洛赫模型的字典;The dictionary generation module simulates a calculation by a Bloch model based on a fractional order model, and generates a dictionary based on a fractional Bloch model;
    所述成像结果生成模块用于重建磁共振图像,并将图像中相应元素的信号与所述字典进行比对,最终获得多参数定量成像结果。The imaging result generating module is configured to reconstruct a magnetic resonance image, and compare a signal of a corresponding element in the image with the dictionary to finally obtain a multi-parameter quantitative imaging result.
  11. 根据权利要求10所述的装置,其特征在于:The device of claim 10 wherein:
    所述字典生成模块根据采用的脉冲序列的参数集合,用分数阶布洛赫模型模拟计算,生成所述字典;The dictionary generating module simulates and calculates with a fractional Bloch model according to a parameter set of the adopted pulse sequence, and generates the dictionary;
    所述成像结果生成模块采用非均匀快速傅立叶变换,奇异值分解反投影法和低秩交替方向乘子算法中的一种,生成重建磁共振图像。The imaging result generation module generates a reconstructed magnetic resonance image by using one of a non-uniform fast Fourier transform, a singular value decomposition back projection method, and a low rank alternating direction multiplier algorithm.
  12. 根据权利要求10所述的装置,其特征在于:The device of claim 10 wherein:
    所述成像结果生成模块将重建图像的逐点时间序列与字典中元素用最大内积法逐条匹配识别,获得多参数定量成像结果。The imaging result generation module identifies the point-by-point time series of the reconstructed image and the elements in the dictionary by the maximum inner product method one by one to obtain a multi-parameter quantitative imaging result.
  13. 根据权利要求10所述的装置,其特征在于:The device of claim 10 wherein:
    所述成像结果生成模块生成的多参数定量成像结果为定量的组织特性参数成像,包括纵向弛豫时间参数成像和横向弛豫时间参数成像。The multi-parameter quantitative imaging result generated by the imaging result generation module is a quantitative imaging of tissue characteristic parameters, including longitudinal relaxation time parameter imaging and transverse relaxation time parameter imaging.
  14. 根据权利要求10所述的装置,其特征在于:The device of claim 10 wherein:
    所述字典生成模块通过纵向弛豫的分数阶布洛赫模型或/和横向弛豫的分数阶布洛赫模型生成所述模型;The dictionary generation module generates the model by a longitudinally relaxed fractional Bloch model or/and a laterally relaxed fractional Bloch model;
    纵向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of longitudinal relaxation is:
    Figure PCTCN2018096146-appb-100006
    Figure PCTCN2018096146-appb-100006
    M z(t)=M z(0)+[M 0-M z(0)][1-E β(-(t/T 1) β)]; M z (t)=M z (0)+[M 0 -M z (0)][1-E β (-(t/T 1 ) β )];
    横向弛豫的分数阶布洛赫模型为:The fractional-order Bloch model of transverse relaxation is:
    Figure PCTCN2018096146-appb-100007
    Figure PCTCN2018096146-appb-100007
    M xy(t)=M xy(0)[E α(-(t/T 2) α)]+M xy(∞)。 M xy (t)=M xy (0)[E α (-(t/T 2 ) α )]+M xy (∞).
PCT/CN2018/096146 2018-02-08 2018-07-18 Fractional-order model-based magnetic resonance fingerprinting method and device, and medium WO2019153654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810127489.7A CN110133554B (en) 2018-02-08 2018-02-08 Magnetic resonance fingerprint imaging method, device and medium based on fractional order model
CN201810127489.7 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019153654A1 true WO2019153654A1 (en) 2019-08-15

Family

ID=67549182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096146 WO2019153654A1 (en) 2018-02-08 2018-07-18 Fractional-order model-based magnetic resonance fingerprinting method and device, and medium

Country Status (2)

Country Link
CN (1) CN110133554B (en)
WO (1) WO2019153654A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537931B (en) * 2020-04-28 2022-05-17 深圳先进技术研究院 Rapid magnetic resonance multi-parameter imaging method and device
WO2021217391A1 (en) * 2020-04-28 2021-11-04 深圳先进技术研究院 Rapid magnetic resonance multi-parameter imaging method and apparatus
CN114217255B (en) * 2021-11-29 2022-09-20 浙江大学 Rapid liver multi-parameter quantitative imaging method
CN115561690B (en) * 2022-09-23 2023-09-26 深圳市联影高端医疗装备创新研究院 Magnetic resonance data processing method and device and computer equipment
CN117310574B (en) * 2023-11-28 2024-02-13 华中科技大学 Method for acquiring magnetic field conversion matrix, external magnetic field measurement method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707251A (en) * 2011-12-12 2012-10-03 中国科学院深圳先进技术研究院 Method and system for calculating sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) sequence signal and method for acquiring aorta signal
US20150302297A1 (en) * 2014-04-19 2015-10-22 Case Western Reserve University Magnetic Resonance Fingerprinting (MRF) Serial Artificial Neural Network (ANN) Sequence Design
CN105869192A (en) * 2016-03-28 2016-08-17 浙江大学 Technology for reconstructing MRI fingerprint identification based on sliding window
CN107110947A (en) * 2014-12-29 2017-08-29 通用电气公司 The method and apparatus of the intensity of correction MRI is schemed using B1
CN107110938A (en) * 2014-11-14 2017-08-29 皇家飞利浦有限公司 Use the magnetic resonance fingerprint of the self-rotary echo-pulse series with extra 180 degree RF pulses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236046B (en) * 2013-04-28 2016-01-20 南京理工大学 Based on the fractional order adaptive coherent spot filtering method of image aspects fuzzy membership
CN103927725B (en) * 2014-05-07 2017-04-26 哈尔滨工业大学 Movie nuclear magnetic resonance image sequence motion field estimation method based on fractional order differential
CN107194354B (en) * 2017-05-23 2019-09-03 杭州师范大学 A kind of quick dictionary search method for magnetic resonance fingerprint imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707251A (en) * 2011-12-12 2012-10-03 中国科学院深圳先进技术研究院 Method and system for calculating sampling perfection with application-optimized contrasts by using different flip angle evolutions (SPACE) sequence signal and method for acquiring aorta signal
US20150302297A1 (en) * 2014-04-19 2015-10-22 Case Western Reserve University Magnetic Resonance Fingerprinting (MRF) Serial Artificial Neural Network (ANN) Sequence Design
CN107110938A (en) * 2014-11-14 2017-08-29 皇家飞利浦有限公司 Use the magnetic resonance fingerprint of the self-rotary echo-pulse series with extra 180 degree RF pulses
CN107110947A (en) * 2014-12-29 2017-08-29 通用电气公司 The method and apparatus of the intensity of correction MRI is schemed using B1
CN105869192A (en) * 2016-03-28 2016-08-17 浙江大学 Technology for reconstructing MRI fingerprint identification based on sliding window

Also Published As

Publication number Publication date
CN110133554B (en) 2021-04-30
CN110133554A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2019153654A1 (en) Fractional-order model-based magnetic resonance fingerprinting method and device, and medium
Hammernik et al. Learning a variational network for reconstruction of accelerated MRI data
Liang et al. Deep magnetic resonance image reconstruction: Inverse problems meet neural networks
Pezzotti et al. An adaptive intelligence algorithm for undersampled knee MRI reconstruction
Song et al. Coupled dictionary learning for multi-contrast MRI reconstruction
Candes et al. Enhancing sparsity by reweighted ℓ 1 minimization
Ying et al. Vandermonde factorization of Hankel matrix for complex exponential signal recovery—Application in fast NMR spectroscopy
Young et al. Recursive gabor filtering
Esposito et al. Real-time independent component analysis of fMRI time-series
EP3179263B1 (en) Dictionary-free magnetic resonance parameter inference for fingerprinting reconstruction
US9336611B2 (en) Multi-contrast image reconstruction with joint bayesian compressed sensing
Yang et al. Physics-driven synthetic data learning for biomedical magnetic resonance: The imaging physics-based data synthesis paradigm for artificial intelligence
Unser et al. Stochastic models for sparse and piecewise-smooth signals
US20070253599A1 (en) Motion Estimation Using Hidden Markov Model Processing in MRI and Other Applications
Ilbey et al. Comparison of system-matrix-based and projection-based reconstructions for field free line magnetic particle imaging
US10627470B2 (en) System and method for learning based magnetic resonance fingerprinting
CN106537168A (en) System and method for adaptive dictionary matching in magnetic resonance fingerprinting
Liu et al. High-performance rapid MR parameter mapping using model-based deep adversarial learning
Nguyen-Duc et al. Frequency-splitting dynamic MRI reconstruction using multi-scale 3D convolutional sparse coding and automatic parameter selection
Aviles-Rivero et al. Compressed sensing plus motion (CS+ M): a new perspective for improving undersampled MR image reconstruction
Xie et al. PUERT: Probabilistic under-sampling and explicable reconstruction network for CS-MRI
Zhao et al. Generative Models for Inverse Imaging Problems: From mathematical foundations to physics-driven applications
Vasudeva et al. Compressed sensing mri reconstruction with co-vegan: Complex-valued generative adversarial network
Weizman et al. PEAR: PEriodic And fixed Rank separation for fast fMRI
Vasudeva et al. Co-VeGAN: Complex-valued generative adversarial network for compressive sensing MR image reconstruction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904517

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18904517

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18904517

Country of ref document: EP

Kind code of ref document: A1