WO2019153478A1 - 一种具有缺陷监测及综合控制功能的高压开关柜 - Google Patents
一种具有缺陷监测及综合控制功能的高压开关柜 Download PDFInfo
- Publication number
- WO2019153478A1 WO2019153478A1 PCT/CN2018/082106 CN2018082106W WO2019153478A1 WO 2019153478 A1 WO2019153478 A1 WO 2019153478A1 CN 2018082106 W CN2018082106 W CN 2018082106W WO 2019153478 A1 WO2019153478 A1 WO 2019153478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switchgear
- circuit
- sensor
- circuit breaker
- compartment
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/26—Casings; Parts thereof or accessories therefor
- H02B1/30—Cabinet-type casings; Parts thereof or accessories therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B13/00—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
- H02B13/02—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
- H02B13/035—Gas-insulated switchgear
- H02B13/065—Means for detecting or reacting to mechanical or electrical defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D11/00—Component parts of measuring arrangements not specially adapted for a specific variable
- G01D11/24—Housings ; Casings for instruments
- G01D11/245—Housings for sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/01—Frameworks
- H02B1/014—Corner connections for frameworks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/26—Casings; Parts thereof or accessories therefor
- H02B1/30—Cabinet-type casings; Parts thereof or accessories therefor
- H02B1/32—Mounting of devices therein
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B1/00—Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
- H02B1/56—Cooling; Ventilation
- H02B1/565—Cooling; Ventilation for cabinets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B11/00—Switchgear having carriage withdrawable for isolation
- H02B11/12—Switchgear having carriage withdrawable for isolation with isolation by horizontal withdrawal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/30—Smart metering, e.g. specially adapted for remote reading
Definitions
- the invention relates to the field of power supply and power distribution equipment, and in particular to a high voltage switch cabinet with defect monitoring and integrated control functions.
- the high-voltage switchgear is a common equipment for the power supply system, and its structure usually includes: a busbar room, a circuit breaker room, a cable room, a secondary room, and internal components thereof.
- the switchgear When the switchgear is manufactured, it does not consider how to monitor it, so the switchgear itself has no monitoring function and its corresponding structure. Due to manufacturing quality and equipment aging, etc., various defects and faults may occur inside the switchgear during operation, such as overheating, insulation aging, discharge, flashover, mechanical jam, malfunction, etc. These defects often end up as serious switchgear accidents. Among the various defects of the switchgear, overheating due to thermal defects such as poor contact is the most troublesome problem in the power field.
- the document disclosed in CN102243285A discloses "a fault detecting device and method based on temperature and current analysis", which solves the problem that the joint temperature and current are combined to determine the thermal defect of the busbar fault, to some extent, but Because the scheme installs temperature sensors, current sensors, high-voltage side data acquisition modules, and high- and low-voltage data transmission modules on the high-voltage side, there are potential safety hazards.
- ZL201310519918.2 it is proposed to help detect the heat of the switchgear that may overheat due to poor contact by detecting the air temperature of each compartment of the switchgear instead of a specific contact point and combining its load current.
- the method of defect the specific method of the scheme is: "The temperature sensor is installed in the upper part of each current-carrying compartment space in the high-voltage switch cabinet, or in the cavity of the switch cabinet top cover which communicates with the compartment space," (0008).
- This scheme better solves the problems of the safety of the monitoring system, the problem of incomplete monitoring, and the complexity of the system, the inventors further studied and found that if the thermal defect of the switchgear is used according to the scheme in the field practice When testing, the analysis results often have errors, and it is often difficult to judge whether there are defects and where the defects occur.
- the present invention provides a high-voltage switchgear to overcome the deficiencies of the existing switchgear, and hopes to adopt some of the simplest structure and less investment under the premise of not changing the original structure of the switchgear as much as possible.
- the detection points of the high-pressure defect monitoring are organically integrated into the same place, thereby finally achieving the technical effect of concentrating the monitoring and control of various defects of the switchgear into a unified intelligent center, so that the switchgear can better adapt to the modern society. Demand.
- the basic idea of this (invention) is: 1. To solve the problem of thermal defect monitoring as a breakthrough, combing and improving the existing detection technology to achieve the goal of enabling various defect detection in the high-voltage part of the switchgear to be realized in the same part; A common channel is provided in the high-voltage compartment of the switchgear to meet various high-pressure defect information detection, so that various sensors and connecting lines are installed therein; 3. A unified intelligent management center is set in the switchgear, that is, a new type The switchgear integrated measurement and control device enables it to monitor and analyze various information and parameters and automatically operate and control the switchgear.
- thermal defects caused by poor contact, etc. can be basically classified into three categories: 1. thermal defects caused by poor contact, etc.; 2. insulation defects; 3 mechanical defects.
- thermal defects caused by poor contact and the like are often considered to be the most troublesome problems in the power field.
- the technology for monitoring thermal defects is rare and there are still obvious deficiencies.
- Switching cabinet thermal defect detection and switch cabinet online temperature measurement monitors the temperature at the time to judge whether the switch cabinet is hot and overheated; while the thermal defect monitoring also needs to detect the temperature, but the purpose is to determine whether the switch cabinet has defective contact, is it possible for the switch cabinet? There will be a prejudgment of overheating. Many times, although the temperature is not high at the time, there may still be defects in poor contact.
- the inventors found that by detecting the air temperature in the high-voltage compartment of the switchgear and the related current detection, and correlating the temperature and current, it is possible to realize the monitoring switch in the low-voltage region.
- Possible thermal faults in the cabinet as in the document of the patent number ZL201310519918.2, it is proposed to detect the air temperature of each compartment of the switchgear instead of a specific contact point and combine its load current.
- the method to help find thermal defects is that the heat generated by the switchgear is generated by the current passed, so the air temperature of the switchgear compartment has a corresponding relationship with the current.
- the present invention utilizes this principle to discover thermal defects present in switchgear cabinets.
- the graph corresponding to the relationship between room temperature rise and current can be obtained, and in the later operation of the switchgear, continuously The measured temperature and current values are compared with this chart. If the temperature rise value is significantly higher than the temperature rise value at the corresponding current in the graph, it indicates that the heating law of the device has changed, there may be a thermal defect with poor contact, and the air in the compartment here.
- the temperature is actually a comprehensive temperature of an interval. This method essentially determines whether there is a thermal defect by monitoring the change of the integrated temperature in this interval. Of course, this simple method still has certain problems.
- the prior art research on thermal defects or overheating is to treat the switchgear and its compartments as an isolated system.
- the inventors have found that the air temperature of the compartment is not only related to the heating of the components of the compartment, but also to the heating of the adjacent compartment; therefore, in order to correctly determine whether there is a thermal defect, the temperature and phase of the adjacent compartment must be The effects of the temperature of the adjacent compartment are taken into account.
- the air temperature of each compartment has an independent variable as an independent variable.
- the independent variables participating in the analysis are only sufficiently independent, and the correlation analysis by these variables will give good results. There is already a significant intersection between the analyzed variables, which will significantly affect the analysis results. However, the actual situation is that the temperatures between the compartments often interact with each other.
- the busbar compartment is often the compartment with the highest temperature, and the temperature of other compartments is also the largest, so in order to get the correct result, the temperature sensor of other compartments should avoid the busbar compartment as much as possible.
- the effect is as far as possible from the busbar room; and even if it is the busbar chamber itself, the internal temperature distribution is not uniform. The closer to the upper temperature, the higher the temperature.
- the temperature rise in the lower part of the busbar chamber is often only the upper temperature rise. Half or even lower.
- the inventor believes that the shorter the heat conduction path between the heat generating part and the sensor, the smaller the probability of heat exchange occurring; the installation of the circuit breaker chamber and the cable room temperature sensor should be as far as possible from the high temperature area of the busbar room, that is, The more likely it is to get the right analysis. Therefore, how to correctly select the installation position of the sensor in the detection of the compartment temperature, how to avoid the influence of the temperature of the adjacent compartment, is crucial for the correct analysis of the thermal defect. Practice has proved that if the temperature sensor is not installed properly, the effect will be poor, and even the problem cannot be found.
- the "temperature sensor is installed in the upper part of each current-carrying compartment space in the high-voltage switchgear or on the top cover of the switchgear cabinet.
- the method of "cavity in the cavity communicating with the compartment space” will have more heat exchange along the way due to the hot air rising, and the detected temperature data will not correctly reflect the state and characteristics of the contact point heating.
- the analysis results from these data will be subject to serious deviations, and even if an abnormal increase in temperature can be detected, it is difficult to tell which compartment is a problem due to too much heat exchange. How serious is the problem? Therefore, in order to obtain the correct result, the mounting position of the sensor must be well determined to overcome the deficiencies of the prior art.
- the program hopes to achieve two effects: first, it is reliable to find out whether there is an abnormality, whether there is a thermal defect with poor contact; second, after the abnormality is found, it can also help to distinguish the approximate part of the defect, in which compartment the defect occurs?
- the compartment temperature actually reflects the integrated temperature of an interval, and it is necessary to conduct repeated studies to monitor which temperature is most effective in this interval.
- the inventor's long-term exploration concluded that the hot air flow in the path to the sensor, if more heat exchange occurs in the middle, the ability to correctly reflect the fault is worse, and the ability to resolve the fault occurrence area is more difference. In principle, the closer the sensor is to the hot spot, the more effective it is, but it must be considered that the hot spot is at a high voltage. To ensure sufficient insulation level, it is necessary to take into account the monitoring of multiple possible hot spots.
- the temperature sensor for the circuit breaker room and the cable room should be as far as possible from the high temperature area of the busbar room. That is to say, the sensor should be installed as close as possible to the heat-generating area while satisfying the insulation requirements, while being as far away as possible from the busbar compartment, instead of "installed above each current-carrying compartment" as described in the comparative document ZL201310519918.2.
- the reasonable positions of the compartment temperature sensors determined by the present invention are:
- the first compartment air temperature sensor is arranged in the middle of the cable compartment and above the output line of the circuit breaker.
- the height J from the lower line of the circuit breaker is 10-40 cm, and is located at the center line 0-10 of the line out of the circuit breaker B. Centimeter position;
- the second compartment air temperature sensor is arranged in the middle of the circuit breaker chamber, above the circuit breaker B phase, at the center line of the circuit breaker B phase 0-10 cm, and the distance h from the top of the circuit breaker is 10-40 cm. ;
- the third compartment air temperature sensor is disposed at 0-2 cm below the top cover of the switch cabinet busbar, and the vertical center line between the two-phase busbars under the cover plate is 0-3 cm, which is away from the width of the switch cabinet.
- the center line is 0-20 cm.
- the temperature sensor 14 of the first compartment is located above the lower outlet of the circuit breaker, and the height J from the lower outlet of the circuit breaker is 10-40 cm, and is at a distance from the circuit breaker.
- the center line of the B-phase line is 0-10 cm (see Figure 2). If the lower connector or other components of the cable room heat up, the temperature sensor 14 is in the path where the hot air flow rises as short as possible, which is beneficial to improve. The credibility of the test results.
- the circuit breaker lower output line is below the busbar room and corresponds to the lowest temperature of the busbar room, the influence on the detection result is minimal, and since the actual installation position of the sensor 14 is in the middle and the lower part of the switchgear, it is also helpful to help distinguish whether the fault is It appears in the area below the diaphragm between the cable compartment and the busbar compartment.
- the sensor 14 is mounted on the upper part of the cable compartment according to the scheme of the comparative document ZL201310519918.2, it has been proved that in this case, the sensor 14 hardly finds the overheating failure of the components in the cable compartment due to the excessive heat exchange. It is impossible to analyze and find thermal defects.
- the temperature sensor 14 Since the phase B of the circuit breaker is between the A phase and the C phase in the spatial position, the temperature sensor 14 is located at a position of 0-10 cm near the center line of the line B of the circuit breaker, and at the same time, the heat on both sides is well considered. Monitoring of the situation.
- the temperature sensor 13 of the second road compartment temperature sensor 13 is located above the phase B of the circuit breaker indoor circuit breaker, and the distance h from the top of the circuit breaker is 10-40 cm. In this way, the sensor is placed as close as possible to the heat-generating part under the premise of ensuring the insulation requirement, and the temperature sensor is relatively lower than the temperature at the lower part of the busbar chamber, so that the temperature of the busbar chamber is as small as possible.
- the temperature sensor 13 is located above the phase B of the circuit breaker in the circuit breaker, at the position of 0-10 cm near the center line of the phase B of the circuit breaker, which is also very Good consideration of the monitoring of the heating on both sides.
- the temperature sensor is installed in the upper part of each current-carrying compartment space in the high-voltage switchgear
- the sensor is installed in the upper part of the circuit breaker chamber, due to heat exchange, especially The influence of the busbar room, in which the sensor is difficult to correctly reflect the heating of the circuit breaker and related connection parts.
- this installation method has occurred many false positives at the power site;
- the third-channel compartment temperature sensor that is, the busbar room temperature sensor 12
- the busbar room temperature sensor 12 is installed below the top cover of the switchgear.
- the position of the low voltage region of 2 cm which is substantially equal to the distance between the two-phase busbars under the cover plate, that is, the position of 0-3 cm near the vertical center line between the two-phase busbars under the cover plate on.
- the sensor 12 of the busbar chamber is mounted at a position 0-20 cm from the center line in the width direction of the switch cabinet, so that the sensor is in the center of the busbar chamber, where the temperature can better reflect the integrated average temperature of the busbar chamber.
- the detection effect is also to further concentrate the various defect detection of the high voltage components of the switchgear to the same place and reduce the signal attenuation, so that the monitoring of various defects of the switchgear can be concentrated to the goal of the unified monitoring center.
- a special metal shield is placed in the corresponding part of the switchgear:
- a first metal shield for mounting the sensor is disposed on the partition between the cable compartment and the busbar compartment, and the first predetermined portion of the first metal shield is located at a distance
- the lower limit of the output of the circuit breaker is 10-40 cm, and is located at a position of 0-15 cm from the center line of the output line of the circuit breaker B, and at least the portion of the first predetermined portion is hollowed out.
- the cable compartment air temperature sensor is placed in this hollowed out part.
- a second metal shield for mounting the sensor is disposed above the circuit breaker, and the second predetermined portion of the second metal shield is located at a height h from the top of the circuit breaker. It is 10-40 cm and is at a position of 0-10 cm from the center line of the phase B of the circuit breaker, and at least the second predetermined portion is partially hollowed out.
- the circuit breaker chamber air temperature sensor is placed in this hollowed out part.
- a strip-shaped third metal shield for mounting the sensor is disposed inside the top cover of the switch cabinet busbar compartment in a direction parallel to the busbar, the shield being located between the two-phase busbars below the coverplate At a position where the vertical center line is 0 to 4 cm, the third predetermined portion of the shield is located at 0 to 20 cm from the center line in the width direction of the switch cabinet, and at least the third predetermined portion is partially hollowed out.
- the shape of the metal shield is processed into an appropriate curvature, and the shield is connected to the switch cabinet housing or the partition, and the switch cabinet
- the body forms an equipotential body.
- this special metal shield is to use its curvature to achieve a uniform spatial electric field and prevent the local electric field from being too strong.
- the electric field strength of the electrode surface is inversely proportional to the square of its radius of curvature. The larger the radius of curvature, the lower the electric field strength of the surface, the more uniform the electric field distribution, and the higher the insulation level of the air.
- the experimental data shows that the surface electric field strength of the electrode with a radius of curvature equal to 5 mm will be reduced by several tens of times compared with a conventionally processed component, and the breakdown voltage level of the air will be doubled for the specific structure of the switchgear cabinet. Even several times, that is to say, the shield with the appropriate radius of curvature can significantly improve the insulation level between the sensor and the high-voltage live parts, so that the sensor can be as close as possible to the ideal detection position without lowering the insulation level. purpose.
- a first metal shield for mounting the sensor is disposed on the partition between the cable compartment and the busbar compartment, and the shield is located at a height J of 10-40 cm from the lower outlet of the circuit breaker, and The position of the center line of the circuit breaker B phase line is 0-15 cm, and at least this part is partially hollowed out, and the cable room air temperature sensor is disposed at the hollow portion. Since the partition between the cable chamber and the busbar compartment is higher than the position of each heating element in the cable compartment, the metal shield for mounting the sensor is disposed on the partition, and the heat generation of the components in the cable can be installed due to air convection. The temperature sensor in the shield is well detected.
- This part of the shield is located at a height of 10-40 cm from the lower line of the circuit breaker, which not only ensures the insulation of the high-voltage live parts, but also ensures the detection of heat of the relevant components. If the lower connector or other components in the cable compartment heat up, the temperature sensor disposed therein is in a shorter path where the hot air flow rises, actually bringing the sensor close to the heat generating portion, which is beneficial to improve the effectiveness of the detection. . Since the lower output line of the circuit breaker is below the busbar room and corresponds to the lowest temperature of the busbar room, the influence on the detection result is minimal. At the same time, since the actual installation position of the sensor is in the middle and lower part of the switchgear, it is also helpful to help distinguish whether the fault occurs.
- the hollow part of the metal shield is located at a position of 0-15 cm from the center line of the line B of the circuit breaker, in order to ensure that the temperature sensor disposed therein can detect the heat of both sides at the same time.
- the second predetermined portion of the second metal shield is placed at a height h of 10-40 cm from the top of the circuit breaker, and is at the center line 0-10 of the circuit breaker B phase.
- the temperature sensor disposed therein is relatively lower than the temperature at the lower part of the busbar chamber, thereby being affected by the temperature of the busbar chamber. As small as possible, it also brings the sensor close to the hot part.
- the temperature sensor Since the spatial position of the phase B of the circuit breaker is between phase A and phase C, the temperature sensor is located above the phase B of the circuit breaker in the circuit breaker, at the position of 0-10 cm near the center line of the phase B of the circuit breaker. Take into account the monitoring of heat on both sides.
- the long third metal shield is placed on the inner side of the top cover of the busbar chamber. In a direction parallel to the busbar and at a distance of 0 to 4 cm from the vertical centerline between the two-phase busbars under the cover plate, so that despite the installation of the shield, the air insulation distance from the high-voltage busbar remains No reduction, security is guaranteed. It is partially hollowed out from the centerline of the width direction of the switchgear cabinet by 0 to 20 cm, so that the sensor placed there is in the center of the busbar chamber, and the temperature here can well reflect the integrated average temperature of the busbar compartment.
- the present invention detects the current parameter by placing at least one current sensor on the secondary circuit of the switchgear current transformer.
- the switchgear monitoring and control device is provided with at least four air temperature detecting circuits and one current detecting circuit, wherein one air temperature detecting circuit is used for detecting the ambient temperature outside the switch cabinet, and the remaining three air temperature detecting circuits are used for detecting the switch.
- the air temperature of each compartment in the cabinet, the current detecting circuit is used for detecting the load current of the switch cabinet, the air temperature sensor of each compartment is installed in the hollow part of the shield, and the current sensor is installed on the secondary circuit of the current transformer, each The temperature sensor and the current sensor are connected to the corresponding circuit of the measuring and controlling device through a wire.
- the measurement and control device or the background data processing center obtains the temperature of the compartment of the switch cabinet at different ambient temperatures T H , the temperature of adjacent compartments T Z , T Y , and the load current I F of the cabinet according to the detected data. a set of data sheets 1 for the temperature of the compartment;
- the deviation value ⁇ d; in the future operation, the detected compartment temperature value is continuously compared with the calculated value of the expression, and if the detected temperature is higher than the calculated value and larger than the set value ⁇ d, the device is considered The fever condition deteriorates and an alarm is issued. Otherwise, it is considered that there is no problem.
- the second object of the present invention is to improve and integrate the existing monitoring means on the basis of overcoming the thermal defect detection, and to provide a monitoring, electrical parameter measurement and operation control of the switchgear of the switchgear.
- the switchgear integrated measurement and control device is a commonly used measurement and control device installed in the modern switchgear. It also has the functions of the traditional switchgear electrical parameter measurement and display device, relay protection device and communication, and integrates conventional measurement, control, protection, operation and display. In one.
- the power parameter measurement includes measuring the current, voltage, active power, power factor, electric energy and other power parameters of the main circuit, but the existing switchgear monitoring and control device does not have the switch cabinet defect detection function.
- a switchgear integrated measurement and control device the switchgear integrated measurement and control device and/or provided with at least one ultrasonic detection circuit, and/or at least one gas detection circuit, and/or at least one photoelectric detection circuit
- Corresponding ultrasonic, gas, and photoelectric sensors are respectively disposed on the hollow portion of the metal shield cover, and are connected to the corresponding loops of the switchgear monitoring and control device through the wires.
- the monitoring of insulation defects such as partial discharge ultrasonic signals and arc discharge signal detection needs to be carried out in the high-voltage compartment. It has been proved that the effect of installing sensors in different positions in the high-voltage compartment is different, especially between the sensor and the signal source. The difference in the case is even large. Although the ultrasonic signal and the optical signal have a certain reflection effect in the compartment, if the sensor is installed in an improper position, especially in the presence of an obstruction, the signal strength of the signal after reaching the sensor after multiple reflections may be only 10% of the original. --20%, or even lower, which will greatly reduce the detection effect. Therefore, for the detection of signals such as ultrasound and discharge, it is also very important to select the mounting position of the sensor.
- the invention is provided with a gas and/or ultrasonic and/or photoelectric detection circuit on the integrated control device of the switchgear, and the ultrasonic/gas/photoelectric sensors are disposed at the hollow portions of the metal shields of the aforementioned compartments, and the sensors are at this position. It is possible to well detect the discharge signal appearing in the corresponding compartment.
- the inventors have also discovered that the beginning of the discharge in the switchgear is often accompanied by the appearance of certain special gases, such as ozone, nitrogen monoxide, nitrogen dioxide, etc., as well as the emission of ultrasonic signals, which can be detected by these special gases. Helps to detect early discharges, thus overcoming the problems of false positives and false negatives caused by ultrasonic testing in the prior art.
- the shielding cover not only satisfies the requirements of detecting thermal defects well, but also is an ideal position for detecting other high-voltage defect signals in the compartment, and the attenuation of ultrasonic signals, gas signals, photoelectric signals, etc. is small, and the number is greatly improved. The detection effect of these defects.
- the gas and ultrasonic sensors installed in the hollowed out part of the shield can reliably detect and emit an alarm signal at a short distance and with little occlusion.
- the ultrasonic sensor After testing and comparing, the ultrasonic sensor adopts this installation mode, and the detection sensitivity of the ultrasonic signal is at least 100%-300% higher than the original installation mode. Therefore, for the ultrasonic signal detection scheme, in the past, it can only be used as an auxiliary detection means for high-voltage partial discharge. After such technical improvement, it is completely possible to become the basic detection means for high-voltage partial discharge of the switchgear.
- an arc will be generated.
- the photoelectric sensor installed in the hollow portion of the metal shield is slightly shorter due to the short distance between the light source and the light source, and the sensitivity is significantly improved. Therefore, in the early stage of the arc, the arc can be The development is still sensitively detected at the initial stage.
- the detection signal is transmitted to the integrated monitoring and control device of the switchgear at the first time. After the measurement and control device makes the judgment, the trip command can be issued in the shortest time ( ⁇ 4/1000 seconds). And export signals, to obtain a valuable cut-off time to prevent the expansion of accidents. That is to say, by the means of arranging the photoelectric sensor in the metal shield, the effect of the photoelectric trip protection technology is also significantly improved.
- the present invention solves the technical problem of concentrating high-voltage defects of different properties to the same low voltage for detection by technical measures of setting a special metal shield at specific portions of each high-voltage compartment. Further laid the foundation for centralized monitoring of various types of defects in the switchgear, in order to finally realize the goal of transforming the traditional equipment of the switchgear into a smart power supply device with self-monitoring, self-diagnosis, self-protection and self-control.
- a switchgear integrated measurement and control device the switchgear integrated measurement and control device is further provided with at least two-way, split coil current detection loop and/or at least two auxiliary switch action signal detection loops, current sensor stringing
- the circuit breaker is closed, the winding coil circuit is closed, or the through-type current sensor is used to insert the closing and opening coil circuit.
- the current sensor is connected to the circuit breaker closing and opening coil circuit of the switchgear measuring and controlling device through the wire, and the switch
- the auxiliary switch action signal detection circuit of the cabinet measurement and control device is connected to the auxiliary switch of the circuit breaker through a wire.
- the circuit breaker opening and closing coil current is detected by a corresponding current sensor.
- the operation signal of the auxiliary switch of the circuit breaker is detected by the auxiliary switch action signal detecting circuit.
- the closing and opening actions of the circuit breaker are realized by starting and closing the electromagnet. Due to the effect of electromagnetic induction, due to the change of the position of the armature during the action of the electromagnet, it will adversely affect the change of the current of the electromagnet coil, that is, the position of the armature has a corresponding relationship with the electromagnet coil current. In addition, the current of the split and closing coils is turned on and off by means of the auxiliary switch. Since the auxiliary switch and the circuit breaker are mechanically connected, there is a corresponding relationship between the operation of the auxiliary switch and the circuit breaker, so The analysis of the split and closing coil currents can be used to understand a large amount of information about the electromagnet and the operating state of the circuit breaker.
- a switching coil current detecting circuit and a bypass coil current detecting circuit are arranged in the integrated control and control device of the switchgear. For example, if the circuit breaker is operated for a long time due to various reasons, the waveform of the coil current is elongated and found.
- the closing and opening speeds are also important technical parameters that reflect the mechanical state of the circuit breaker and need to be closely watched. Since there is a corresponding relationship between the action between the auxiliary switch and the circuit breaker, the length of the switching time between the two auxiliary switches reflects the speed of the circuit breaker. For example, the lengthening of the switching time of the auxiliary switch must correspond to the slow speed of the circuit breaker.
- the switchgear integrated measurement and control device is further provided with at least two circuit breaker auxiliary switch action signal detection loops, and the change of the action time of the circuit breaker is monitored by monitoring the change of the action time of the two auxiliary switches.
- the switchgear monitoring and control device is further provided with at least two switch output loops for controlling the circuit breaker trolleys to enter and exit, and/or a switch output loop with two control grounding knife operations and/or at least two circuit breakers. , closing position switch input circuit, and / or having at least 2 circuit breakers working, test position switch input circuit, and / or having at least 2 grounding knife, sub-position switch input circuit, and / or at least
- the switch panel input circuit is opened on the rear panel of the 1-way switchgear to control the operation of the hand-in, out and ground switches.
- the invention overcomes the prior art error of the thermal defect monitoring result by setting a special metal shielding cover at the corresponding part of the high voltage compartment of the switchgear and bringing the compartment air temperature sensor close to the ideal detection position. Defects are difficult to judge and other problems, and the problem of monitoring thermal defects in the low pressure region is well solved.
- the invention simultaneously sets various high-voltage defect sensors of the switch cabinet to the hollow portion of the metal shield cover, and skillfully solves the problem that the detection of various high-voltage defects of the switch cabinet is difficult to be unified in one place, and the thermal defects and insulation defects of the high-voltage part are Monitoring is concentrated in this low-voltage part for detection, which not only overcomes the defects of the prior art for the occurrence of incorrect or even faulty thermal defect monitoring; at the same time, it solves the difficulty of installation of other high-voltage defect monitoring sensors and improper installation position. The problem and significantly improved the detection of these defects. Therefore, it has become a practical solution to focus on the detection of various high-voltage defects, which has once seemed unattainable in the industry.
- the switchgear integrated monitoring and control device has greatly simplified the switchgear.
- the monitoring and control has solved the problem of various defects and it is difficult to balance the long-standing problem that has long plagued the power field.
- the present invention realizes that the traditional power supply equipment of the switchgear is transformed into a self-monitoring, self-diagnosis and self-protection without changing the original structure of the switchgear and the minimum resource input.
- Self-controlled intelligent power supply equipment which provides a reliable guarantee for the power demand of modern society.
- 13, 14 are the busbar room, circuit breaker room, cable indoor sensor, 15-ambient temperature sensor, 72 is the busbar cross section, 81 is the circuit breaker, 91 is the partition between the cable room and the busbar room, 101 is the circuit breaker The partition between the chamber and the secondary chamber, 111, 121, 131 is a metal shield, 92-circuit breaker is out of the line, h is the distance between the shield and 81, and J is the distance between the shield and 92;
- FIG. 2 is a schematic cross-sectional view of the mounting position of the busbar metal shield 111, 71 is the busbar roof, a is the distance between the high voltage busbar 72 and the busbar roof 71; b is the distance between the two busbars; c is the metal shield 111 The maximum distance from the top cover of the busbar compartment; l is the distance from the busbar 72 when the 111 is at the vertical centerline position between the two-phase busbars 72;
- Figure 3a-c is a schematic structural view (cross section) of a metal shield of different shapes
- Figure 4 is a schematic view of the top view of the switchgear and the center line in the width direction;
- FIG. 5 is a schematic cross-sectional view (longitudinal section) of the metal shield cover 121 of the circuit breaker chamber in the embodiment; 13-sensor, 112- is a hollow shield head, 122-connecting line;
- Figure 6 is a cross-sectional (longitudinal sectional) view of the busbar chamber and the cable compartment metal shields 111, 131 in the embodiment;
- Figure 7 is a schematic diagram of a comprehensive measurement and control device with multiple defect monitoring functions, 11-switch cabinet integrated measurement and control device, 12, 13, 14, 15 - temperature sensor, 16, 17 - current sensor; 18 - gas sensor, 19 - ultrasonic sensor , 20—photoelectric sensor, 21, 22—circuit breaker coil current sensor, 23, 24—auxiliary switch signal loop, 25, 26, 27, 28: 1-4 DO output loop, 29, 30, 31, 32, 33, 34 , 35:1—7DI input loop.
- the present invention provides a high voltage switchgear having thermal defect detection and insulation defect monitoring functions to overcome the deficiencies of the prior art.
- This scheme skillfully solves the technical problem of concentrating high-voltage defects of different natures to the same low-voltage detection, thus laying a foundation for centralized detection of various types of defects in the switchgear, and finally the traditional power supply of the switchgear.
- the device is transformed into a smart power supply device with self-monitoring, self-diagnosis, self-protection and self-control.
- Embodiment 1 is a high voltage switch cabinet with a thermal defect monitoring function, including: a switch cabinet body, and a metal shield disposed in each high voltage compartment of the switch cabinet.
- the covers 111, 121, and 131 are disposed on the integrated measuring and controlling device 11 on the secondary chamber panel of the switchgear, and four temperature sensors and two current sensors.
- an elongated metal shield 131 for mounting a sensor is disposed on a downward facing side of the partition between the cable compartment and the busbar compartment, and the minimum distance J between the shield and the lower line of the circuit breaker is At a height of 13 cm to ensure its insulation from the high-voltage live parts, the length of the metal shield extends through the entire width of the switch cabinet.
- the part is partially hollowed out, and the hollow length is not less than 5 cm; in the circuit breaker room, a sensor is installed above the circuit breaker.
- An elongated metal shield 121 that is laid along the secondary chamber partition and extends to a height h of 13 cm from the top of the circuit breaker, and a section for mounting the sensor is attached to the end thereof.
- a centimeter-long hollow section 112 which is located 0-7 cm near the centerline of the phase B of the circuit breaker, and the hollow section has a spherical shape with a radius of curvature of 1 cm; at the top of its busbar compartment
- An inner side of the cover is provided with an elongated metal shield 111 for mounting the sensor at a position 0 to 3 cm from the vertical center line between the two-phase busbars in a direction parallel to the busbar and at a distance from the underside of the cover plate.
- the shielding cover traverses the entire width direction of the switch cabinet and is partially hollowed out at a center line of 0 to 5 cm from the width direction of the switch cabinet, that is, the length of the shield cover is 1/2 cabinet width, and the length of the hollow section is 5 cm. .
- the metal shield of each compartment has a semi-circular cross section with a radius of curvature of 1 cm.
- the integrated measuring and controlling device 11 disposed on the secondary chamber panel of the switchgear is provided with four air temperature detecting circuits and two current detecting circuits, wherein one air temperature detecting circuit is used for detecting the ambient temperature outside the switch cabinet, and the remaining three paths are used.
- the air temperature detection circuit is used to detect the air temperature of each compartment in the switch cabinet, and the current detection loop is used to detect the load current of the switch cabinet.
- the temperature sensors 12, 13, and 14 in the switch cabinet are installed in the hollow portion of each compartment metal shield, and are connected to the corresponding temperature detecting circuit of the measuring and controlling device through the connecting line.
- the current sensors 16, 17 are arranged in the secondary chamber in series with the secondary circuit of the current transformer and connected to the current detecting circuit of the measuring and controlling device through the connecting line, thereby forming a switch cabinet thermal defect monitoring system. .
- Two current sensors are used here because the load in the switchgear is three-phase. Under normal circumstances, the three-phase current of the switchgear is unbalanced.
- the measurement and control device 11 or the monitoring background lists the detected temperature and current data into a data table, and further uses the mathematical fitting method to obtain the air temperature or temperature rise of a certain compartment.
- this expression reflects the law of the influence of the temperature and load current at the initial stage of the switchgear operation and the temperature change of the adjacent compartment, and the corresponding switch is The initial state of the cabinet.
- the measurement and control device 11 can also be transmitted to the upper level monitoring background, and analyzed by more powerful computer analysis software.
- the measurement and control device 11 or the upper-level monitoring background obtains the following set of data according to the received ambient temperature, temperature of each compartment, temperature of adjacent compartments of the adjacent cabinet, load current and other data.
- Table here the current unit is kiloamperes:
- Temperature and temperature rise, as well as current or current squared, are different expressions of the same physical quantity. Because of the room temperature rise compartment temperature - ambient temperature, the temperature rise parameter actually contains the influence of the ambient temperature on the dependent variable, ie the room temperature rise, the generated expression has already reflected the influence of environmental factors, so In this example application, the ambient temperature is not taken as a separate variable. Similarly, the square of the load current is used to reflect the current parameter.
- T 1.43* left neighbor interval room temperature rise + 1.48 * right neighbor room temperature rise + 1.87 * load current squared.
- This expression corresponds to the heating law of the initial stage of the switch cabinet.
- the measured relevant parameters are continuously substituted into the expression to calculate the temperature or temperature rise of the compartment under this condition, such as when the temperature rise of the left adjacent compartment is 7.1 ° C, left
- the temperature rise of the adjacent compartment is 5.3 °C
- the load current of the cabinet is 760A
- the model selected for the temperature sensor is Pt100, and the current sensor is a metal film precision resistor.
- the structure of the second embodiment is basically the same as that of the first embodiment.
- the difference is that the measurement and control device 11 is also provided with three gas detection circuits, three ultrasonic detection circuits, three photoelectric detection circuits and corresponding sensors; and two circuit breakers.
- the coil current detecting circuit and the current sensor; the two-way auxiliary switch action signal detecting circuit; the measuring and controlling device 11 is also provided with two-way control circuit breaker hand-in and out switch quantity output circuits 1DO, 2DO; two-way control grounding knife operation Switching output circuit 3DO, 4DO and 2 circuit breakers, closing position switch input circuit 1DI, 2DI, 2 circuit breaker operation, test position switch input circuit 3DI, 4DI, 2 way grounding knife, sub-position
- the gas, ultrasonic and photoelectric sensors 18, 19, 20 are respectively mounted on the hollow portions of the metal shields 111, 121, 131 of the respective high-pressure compartments, and the sensors are connected to the respective detection circuits of the measuring and controlling device 11 through the connecting wires.
- the sensors 21 and 22 for detecting the circuit breaker split and closing coil currents are connected in series with the circuit breaker split and closing coil circuits, and are connected to the circuit breaker coil current detecting circuit of the measuring and controlling device through the connecting line.
- the contacts on the circuit breaker auxiliary switch for closing the closing and opening coils, the signals commonly referred to as the a and b contacts are passed through the connecting line and the auxiliary switching action signal detecting circuit 23 on the measuring and controlling device 11, 24 phase connection.
- the switch quantity output circuits 1DO and 2DO of the control circuit breaker trolley of the control circuit breaker 11 are connected with the motor control circuit of the handcart chassis of the circuit breaker compartment to control the entry and exit of the circuit breaker handcart.
- 3, 4DO is the grounding switch operation output, 3, 4DO is connected with the motor control loop of the grounding knife in the cable room.
- the measurement and control device 11 can determine that there is an insulation defect and a discharge phenomenon occurs, and an alarm is issued; if only the ultrasonic signal or If the ozone signal is used, it will not be alarmed to avoid false positives. Once a short-circuit accident occurs, a strong arc will be generated, and the development of the arc will be extremely short-lived from weak to strong. Since the hollowed-out part of each shield is actually as close as possible to the monitored high-voltage component, it is placed in it.
- the photoelectric sensor 20 can be detected very sensitively in the early stage of the arc, and the detected signal is directly transmitted to the integrated control and control device 11 of the switchgear through the detection circuit, and the measurement and control device 11 can determine the position in the shortest position.
- a trip command and an exit signal are issued within time ( ⁇ 4/1000 seconds) to gain valuable time to prevent the expansion of the accident.
- the current sensors 21, 22 connected in series to the closing and opening coil circuit transmit the current signal to the measuring and controlling device 11, and the auxiliary switch also transmits its action signal to the measuring and control through the connecting line.
- the device 11 and the monitoring device 11 store these signals, and the staff periodically recalls and analyzes the information without knowing the power to understand the mechanical state information exposed by the circuit breaker during the operation. For example, when the switch is closed, the electromagnet armature is stuck, and the closing speed of the circuit breaker does not change. It shows that the switching time between the auxiliary switch a contact and the b contact has not changed, but the current of the closing coil The waveform of the corresponding part of the waveform will be changed and found, and provide a basis for maintenance.
- the measurement and control device 11 When the measurement and control device 11 performs the operation of entering, exiting, and opening and closing the circuit breaker handrail and the grounding knife, it will be carried out according to the software programming procedure, thereby avoiding the safety risk caused by manual operation errors. For example, when the measuring and controlling device 11 obtains the operation command of the circuit breaker car, the measuring and controlling device automatically checks the opening signal circuit 1, 2DI to determine whether the circuit breaker is in the opening position, and only when the circuit breaker is in the opening position, the vehicle is out. The operation is safe. Conversely, if the circuit breaker is in the closed state, it will cause a serious short circuit accident.
- the switch output circuit 2DO turns on the chassis motor control circuit, and the circuit breaker trolley exits from the switch cabinet.
- the measurement and control device is also strictly in accordance with the preset procedures, so it is very safe and efficient. In this way, the switchgear is transformed into a smart power supply device with self-monitoring, self-diagnosis, self-protection and self-control. At this time, the switchgear monitoring and control device is no longer the measurement device for the control and electrical parameters in the traditional sense. It is a comprehensive intelligent management system that integrates the detection of various parameters, the monitoring of various defects and the integrated control of the switchgear.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Gas-Insulated Switchgears (AREA)
Abstract
一种具有缺陷监测及综合控制功能的高压开关柜,高压开关柜包括各隔室以及安装于二次室(10)的综合测控装置(11),在开关柜电缆室(9)内,在其电缆室(9)与母线室(7)间的隔板(91)上设置有用于安装传感器(14)的第一金属屏蔽罩(131),第一金属屏蔽罩(131)的第一预设部分位于距断路器(81)下出线10—40厘米的高度J,且对着断路器(81)B相出线的中心线0—15厘米的位置上,并且至少第一预设部分的局部被镂空;该开关柜实现了把绝缘缺陷的检测点与热缺陷检测集成到同一处,从而进一步将开关柜变成具有自我监测、自我保护、自我控制的智能供电设备。
Description
本发明涉及供电、配电设备领域,具体地,涉及一种具有缺陷监测及综合控制功能的高压开关柜。
高压开关柜是供电系统的常用设备,其结构通常包括:母线室、断路器室、电缆室和二次室及其内部元件等几部分构成。开关柜在制造时,并没有考虑如何对其监测的问题,所以开关柜本身是不带监测功能以及与之相对应的结构的。由于制造质量和设备老化等原因,在运行过程中开关柜内部会出现各种各样的缺陷和故障,如过热、绝缘老化、放电、闪络、机械卡涩、动作失灵等各种缺陷,而这些缺陷常常最终会发展成严重的开关柜事故。在开关柜的各种缺陷中,由于接触不良这一热缺陷所造成的过热是电力现场最为头疼的问题。公开号为CN102243285A的文件公开了“一种基于温度和电流分析的故障检测装置及方法”,该发明一定程度上解决了接头温度与电流相结合来判断母线搭接故障的热缺陷的问题,但是由于该方案在高压侧安装温度传感器、电流传感器、高压侧数据采集模块和高、低压数据传输模块等元件,因而存在着安全隐患。在专利号为ZL201310519918.2的文件中,提出了通过检测开关柜各隔室的空气温度而不是某个具体的接触点、并结合其负荷电流来帮助发现开关柜因接触不良而可能过热的热缺陷的方法,该方案的具体作法是:“温度传感器安装在高压开关柜内各载流隔室空间的上部,或是安装在开关柜顶盖板上与隔室空间相通的腔体中,”(0008)。此方案虽然较好地解决了监测系统的安全性问题、监测部位不全面的问题、以及系统过于复杂等问题,但是发明人进一步研究发现:在现场实践中如果按照该方案对开关柜的热缺陷进行检测,分析结果常常会出现错误,往往难于判断是否存在缺陷,以及缺陷大致发生在什么部位。另外,为了及时发现开关柜的各种缺陷人们做了大量的研究,开发了各种类型的检测设备,但是这些设备都是后来加装上去的,从而改变了开关柜原有的结构和状态,这对于开关柜日后的运行和维护带来困难,也增加了不安全因素。而且各种监测设备往往都比较复杂且是自成系统,一台开关柜很难把这么多不同系统都装上。虽然很早就有观点提出希望能把各种缺陷监测集合在一个统一的系统中,但是由于各种缺陷、特别是高压部位缺陷监测的工作原理、信号检测的部位以及检测方式差别太大,很难整合在一起而难于实现。正由于这一问题没有得到解决,所以目前绝大多数开关柜,仍然处于无监控状态。而另一方面,随着时代的进步,人们对电的依赖度越来越大,电力系统非常需要一种结构简单、尽量不改变开关柜的原有结构,同时具有能全面监测各种缺陷功能的高压开关柜,特别是由于无人值守变电站的普遍推行,更需要一种兼有能远控断路器手车进、出车等功能的开关柜,便于管理和维护, 减少停电检查维修的时间。
发明内容
本(发明)提供一种高压开关柜,以克服现有开关柜的不足,希望在尽可能不改变开关柜原有结构的前提下,通过某些尽可能简单的结构和较少的投入,把高压部位缺陷监测的检测点有机地集成到同一处,从而最终达到将开关柜各类缺陷的监测、控制集中到一个统一的智能中心的技术效果,使得开关柜能够更好地适应现代社会对于电力的需求。
本(发明)的基本思路是:1.以解决好热缺陷监测为突破口,梳理并改进现有的检测技术,达到使开关柜高压部位各种缺陷检测能在同一个部位实现的目标;2.在开关柜高压隔室内部设置能满足多种高压缺陷信息检测的公共通道,以便将各种传感器及连接线安装于其中;3.在开关柜设置一个统一的智能管理中心,即一种新的开关柜综合测控装置,使其能够实现对多种信息、参数的监测、分析并能自动对开关柜进行操作、控制。
发明人研究认为,开关柜的缺陷可以基本归结为三类:1.由于接触不良等原因造成的热缺陷;2.绝缘缺陷;3机械缺陷。特别是由于接触不良等原因造成的热缺陷常常被认为是电力现场最为头疼的问题,而目前能够实现对热缺陷监测的技术却很少且还存在着明显不足。开关柜热缺陷检测和开关柜在线测温,二者之间虽然有联系但不是一回事。在线测温通过监测当时的温度以判断开关柜是否出现热了过热;而热缺陷监测虽然也要对温度进行检测,但目的是要确定开关柜是否存在接触不良的缺陷,是对开关柜是否可能会出现过热的预判。许多时候虽然当时的温度不高,但是仍然可能存在接触不良的缺陷。
发明人在研究热缺陷的过程中发现,通过对开关柜高压隔室中空气温度的检测以及相关的电流的检测,并对此温度和电流进行相关性分析,就能够实现在低电压区域监测开关柜可能存在的热缺陷故障,如在其申请的专利号为ZL201310519918.2的文件中,提出了通过检测开关柜各隔室的空气温度而不是某个具体的接触点、并结合其负荷电流来帮助发现热缺陷的方法,这是由于开关柜的发热是由所通过的电流所产生,所以开关柜隔室的空气温度与电流有着对应关系。本发明正是利用此原理来发现开关柜存在的热缺陷的。简单地说,比如在开关柜投运初期记录下某隔室在不同电流下的温升值,就可以得到该隔室温升与电流对应关系的图表,在开关柜后期的运行中,不断地将测得的温度、电流值与此图表对比,如果温升值明显高于图表中相应电流下的温升值,则表明设备的发热规律发生了变化,可能存在接触不良的热缺陷,这里隔室的空气温度实际上是一个区间的综合温度,此方法实质上就是通过对这个区间综合温度的变化情况的监测来确定是否存在热缺陷的,当然这种简单的方法还存在一定的问题。
现有技术对于热缺陷或是过热问题的研究,都是把开关柜以及其隔室看作一个孤立系统 来看待的。发明人发现,隔室的空气温度不仅与本隔室的元件发热有关,还与相邻隔室的发热情况有关;所以为了正确判断是否存在热缺陷,就必须对相邻隔室的温度以及相邻隔室的温度所带来的影响加以考虑。在热缺陷的分析中,各隔室的空气温度作为独立变量对分析结果产生影响,参与分析的独立变量只有足够独立,由这些变量进行的相关性分析才会得到良好的结果,反之,如果参与分析的变量之间已经存在明显的交叉,就会显著影响分析结果。但是,实际情况是各隔室间的温度往往又是相互影响的,如发明人在实践中发现,不仅各隔室的温度不同、而且即使是同一隔室内各点的温度也是不同的。发明人发现,在实际运行中,母线室往往是温度最高的隔室,对其它隔室温度的影响也最大,所以为了得到正确的结果,其它隔室的温度传感器就应该尽可能避开母线室的影响,尽量远离母线室;而且即使是母线室自身,其内部的温度分布也是不均匀的,越靠近上部温度越高,如在实践中发现,母线室下部的温升往往只有上部温升的一半,甚至更低。所以发明人认为,发热部位与传感器之间热传导的路径越短,所发生的热交换几率就越小;对于断路器室、电缆室温度传感器的安装还应当尽量远离母线室的高温区,也就越有可能获得正确的分析结果。因此,在隔室温度的检测中如何正确选择传感器的安装位置,如何避开相邻隔室温度的影响,对于能否正确分析热缺陷就显得至关重要。实践证明:如果温度传感器的安装位置不恰当,效果就会很差,甚至不能发现问题。
例如对于电缆室、断路器室而言,如果按照对比文件ZL201310519918.2的方案:把“温度传感器安装在高压开关柜内各载流隔室空间的上部,或是安装在开关柜顶盖板上与隔室空间相通的腔体中”,的方法,将会由于热空气在上升的过程中,沿途存在较多的热量交换,所检测的温度数据将不能正确反映接触点发热的状态和特点,由这些数据得出的分析结果将可能出现严重的偏差,而且即使能检测到温度存在异常升高,也会由于存在太多热量交换而难于分辨究竟是哪个隔室出现问题?问题有多严重?因此,要想得到正确的结果必须很好地确定传感器的安装位置以克服现有技术的不足。
本方案希望达到的效果有两个:第一,可靠地发现是否存在异常、是否存在接触不良的热缺陷;第二,发现异常后,还能够帮助分辨缺陷大致部位,缺陷发生在哪个隔室?这里,隔室温度实际上反映的是一个区间的综合温度,在此区间内监测哪一点的温度最有效需要经过反复的研究。发明人经过长期探索得出的结论是:热空气流在到达传感器的路径中,如果中途发生的热交换越多,对于正确反映故障的能力就越差,对故障发生区域的分辨能力也就越差。原则上传感器离发热点越近越有效,但又必须考虑到发热点处于高电压部位,要保证有足够的绝缘水平,同时还必须兼顾到多个可能发热部位的监测。
所以,对于断路器室、电缆室的温度传感器应当尽量远离母线室的高温区。也就是说, 传感器应当在满足绝缘要求的情况下尽可能向下安装以接近发热区域,同时尽量远离母线室,而不是对比文件ZL201310519918.2所说“安装在各载流隔室的上方”。
根据反复的探索,本发明确定的各隔室温度传感器设置的合理位置分别是:
第一路隔室空气温度传感器设置于电缆室中部、断路器下出线的上方,距断路器下出线的高度J为10—40厘米处,且处于距断路器B相出线的中心线0—10厘米的位置;
第二路隔室空气温度传感器设置于断路器室中部,断路器B相上方,处于断路器B相的中心线0—10厘米的位置,且距断路器顶部的距离h为10-40厘米处;
第三路隔室空气温度传感器设置于开关柜母线室内顶盖下方0-2厘米处,且处于盖板下面的两相母排之间的竖直中心线0—3厘米、距开关柜宽度方向的中心线0—20厘米的位置上。
下面对各传感器设置位置作进一步详述:
对于电缆室而言,在电缆室中部,第1路隔室温度传感器即温度传感器14位于断路器下出线的上方,距断路器下出线的高度J为10—40厘米处,且处于距断路器B相出线的中心线0—10厘米的位置上(见图2),如果下连接头或是电缆室其它元件发热,那么温度传感器14就处于热空气流上升尽量短的路径上,有利于提高检测结果的可信度。同时由于断路器下出线处于母线室的下方,对应母线室温度最低的部位,所以对检测结果的影响最小,而且由于传感器14的实际安装位置处于开关柜的中、下部也有利于帮助分辨故障是否出现在电缆室内与母线室间的横隔板以下的部位。反之,如果按照对比文件ZL201310519918.2的方案将传感器14安装在电缆室上部,实践证明在这种情况下,由于存在太多的热量交换,传感器14几乎发现不了电缆室中元件的过热故障,更不可能分析发现热缺陷。由于断路器B相在空间位置上处于A相和C相之间,温度传感器14处于断路器B相出线的中心线附近0—10厘米的位置上,也就同时很好兼顾了对两侧发热情况的监测。
对断路器室而言,在断路器室的中部,第2路隔室温度传感器即温度传感器13位于断路器室内断路器B相上方,距断路器顶部的距离h为10--40厘米处。这样,在保证绝缘要求的前提下将传感器尽量接近发热部位,也使得该温度传感器相对处于母线室下部温度较低的部位,从而受母线室温度的影响尽可能比较小。同时由于断路器B相的空间位置处于A相和C相之间,温度传感器13位于断路器室内断路器B相上方,处于断路器B相的中心线附近0—10厘米的位置上,同样很好兼顾了对两侧发热情况的监测。反之,如果按照对比文件ZL201310519918.2的方案:把“温度传感器安装在高压开关柜内各载流隔室空间的上部”,即把传感器安装在断路器室的上部,由于热交换,特别是受母线室的影响,其中的传感器很难正确反映断路器及相关连接部位的发热情况。实践也证明,这种安装方式在电力现场已发生多次误报;
由于开关柜内部空间狭小,空气绝缘裕度不大,为了不因传感器的装入而降低绝缘水平,故将第3路隔室温度传感器即母线室温度传感器12安装在开关柜顶盖以下0―2厘米的低电压区域、与盖板下面的两相母排之间的距离大致相等的位置,即处于盖板下面的两相母排之间的竖直中心线附近0—3厘米、的位置上。这样尽管安装了传感器,其与高压母线间的空气绝缘距离仍然不会减小,安全得到保证。将母线室的传感器12安装在距开关柜宽度方向的中心线0—20厘米的位置上,使得该传感器处于母线室居中的位置,此处的温度能更好地反映母线室综合平均温度。
进一步地,为了在上述合理位置上实现传感器的安装,也就是说希望在满足绝缘要求的情况下,能够使得传感器尽可能地抵近需要监测的部位,以减少可能发生的热量交换,达到理想的检测效果,同时也是为能进一步让开关柜高压元件的多种缺陷检测都集中到同一处并减少信号衰减,从而最终实现开关柜的各种缺陷的监测能集中到统一的监测中心的目标,本(发明)在开关柜的相应部位设置了特制的金属屏蔽罩:
一.在开关柜电缆室内,在电缆室中部,在其电缆室与母线室间的隔板上设置有用于安装传感器的第一金属屏蔽罩,第一金属屏蔽罩的第一预设部分位于距断路器下出线10—40厘米的高度J,且对着断路器B相出线的中心线0—15厘米的位置上,并且至少第一预设部分的局部被镂空。电缆室空气温度传感器设置在此镂空部位。
二.在开关柜断路器室内,断路器室中部,位于断路器的上方设置有用于安装传感器的第二金属屏蔽罩,第二金属屏蔽罩的第二预设部分位于距断路器顶部的高度h为10—40厘米处,且处于断路器B相的中心线0—10厘米的位置上,并且至少第二预设部分有局部被镂空。断路器室空气温度传感器设置在此镂空部位。
三.在开关柜母线室的顶盖内侧沿着与母线平行的方向、设置有用于安装传感器的长条形的第三金属屏蔽罩,该屏蔽罩位于距离盖板下面的两相母排之间的竖直中心线0至4厘米的位置上,该屏蔽罩的第三预设部分位于距离开关柜宽度方向的中心线0至20厘米处,并且至少第三预设部分有局部被镂空。
为了在保证绝缘水平的前提下把传感器抵近到理想的检测部位,该金属屏蔽罩的外形被加工成恰当的的弧度,同时屏蔽罩与开关柜壳体或者隔板相连通,与开关柜壳体形成等电位体。
这是由于在高压环境中安装传感器,即使传感器很小、而且是安装在低电压区域,但是凸起的导电物体的存在仍然可能会导致局部电场过强,使得空气绝缘水平下降。这里设置该特制金属屏蔽罩最重要的是要利用它的弧度起到均匀空间电场、防止局部的电场强度过强的作用。对于电场的电极而言,电极表面的电场强度与其曲率半径的平方成反比,其曲率半径 越大,其表面的电场强度就越低,电场分布就越均匀,空气的绝缘水平也就越高。实验数据表明,曲率半径等于5mm的电极和一个普通加工的元件对比,其表面电场强度将降低几十倍以上,而对于开关柜的具体结构而言,其空气的击穿电压水平将提高一倍甚至数倍,也就是说,采用适当曲率半径的屏蔽罩可以显著地提高传感器与高压带电部位间的绝缘水平,从而达到在不降低绝缘水平的条件下使得传感器尽可能抵近理想的检测部位的目的。本(发明)根据开关柜电场的实际情况将各隔室内安装的金属屏蔽罩的曲率半径选定为R=3―40mm。这样,通过此屏蔽罩的设置很好地解决了在低电压区域监测高压载流部位的发热的问题,同时也为其它高压缺陷的集中监测奠定了基础。
下面进一步对屏蔽罩的设置作进一步的详述:
一.在电缆室中部,在其电缆室与母线室间的隔板上设置有用于安装传感器的第一金属屏蔽罩,该屏蔽罩一部分位于距断路器下出线10—40厘米的高度J,且对着断路器B相出线的中心线0—15厘米的位置上,并且至少这部分有局部被镂空,电缆室空气温度传感器设置在此镂空部位。由于电缆室与母线室间的隔板比电缆室内各发热元件的位置都高,用于安装传感器的金属屏蔽罩设置在此隔板上,由于空气对流作用,电缆室内元件的发热都能被安装在屏蔽罩里的温度传感器很好地检测到。该屏蔽罩这一部分位于距断路器下出线10—40厘米的高度,既保证了对高压带电部分的绝缘,又保证了对相关元件发热检测。如果下连接头或是电缆室中其它元件发热,那么设置在其中的温度传感器就处于热空气流上升的较短路径上,实际上是将传感器抵近了发热部位,有利于提高检测的有效性。由于断路器下出线处于母线室的下方,对应母线室温度最低的部位,所以对检测结果的影响最小,同时由于传感器的实际安装位置处于开关柜的中、下部也有利于帮助分辨故障是否出现在电缆室内与母线室间的横隔板以下的部位。金属屏蔽罩的镂空部位对着断路器B相出线的中心线0—15厘米的位置上,是为了保证设置在其中的温度传感器能同时很好地检测两侧部位的发热情况。
二.在断路器室的中部,将第二金属屏蔽罩的第二预设部分设置在位于距断路器顶部的高度h为10—40厘米处,且处于断路器B相的中心线0—10厘米的位置上,并至少在此处作局部镂空,这样,既保证了必须的绝缘水平,也使得设置在其中的温度传感器相对处于母线室下部温度较低的部位,从而受母线室温度的影响尽可能比较小,同时也是将传感器抵近了发热部位。由于断路器B相的空间位置处于A相和C相之间,其温度传感器位于断路器室内断路器B相上方,处于断路器B相的中心线附近0—10厘米的位置上,也就同时兼顾了对两侧发热的监测。
三.由于开关柜内部空间狭小,空气绝缘裕度就不大,为了不因传感器的装入而降低绝缘水平,故将长条形的第三金属屏蔽罩设置在其母线室的顶盖内侧沿着与母线平行方向、且 处于位于盖板下面的距离两相母排之间的竖直中心线0至4厘米的位置上,这样尽管安装了屏蔽罩,其与高压母线间的空气绝缘距离仍然不会减小,安全得到保证。并将其距离开关柜宽度方向的中心线0至20厘米处局部镂空,使得设置在该处的传感器处于母线室居中的位置,此处的温度能很好地反映母线室综合平均温度。
为了实现对于热缺陷的监测,除了监测各隔室的空气温度外,本(发明)对于电流参数的检测是将至少一只电流传感器设置在开关柜电流互感器的二次回路上。
这些隔室温度传感器加上用于检测环境温度的温度传感器,以及电流传感器和安装于开关柜二次室的开关柜测控装置构成了开关柜热缺陷监测系统。这里,开关柜测控装置设置有至少4路空气温度检测回路、1路电流检测回路,其中1路空气温度检测回路用于检测开关柜外的环境温度、其余3路空气温度检测回路用于检测开关柜内各隔室的空气温度,电流检测回路用于检测开关柜负荷电流,各隔室的空气温度传感器安装在所述屏蔽罩的镂空部位内,电流传感器安装在电流互感器二次回路上,各温度传感器以及电流传感器通过导线与测控装置的对应回路相连接。
设备投运初期,测控装置或后台数据处理中心根据检测的数据,获得开关柜某隔室在不同环境温度T
H、相邻隔室的温度T
Z、T
Y,以及本柜负荷电流I
F条件下本隔室温度的一组数据表1;
表1
对此数据表利用数学拟合的方法,得到在设备投运初期时该隔室温度对于这些参数的数学表达式T=f(T
H、T
Z、T
Y、I
F);;设定一个偏差值△d;在今后的运行中不断的把检测到的隔室温度值与表达式的计算数值进行对比,如果检测到的温度高于计算值,且大于设定值△d,则认为设备发热状况劣化而发出报警,反之,则认为,没有问题。
这样,通过对于热缺陷检测传感器合理位置的确定以及特制金属屏蔽罩的设置,很好地解决了在低电压区域监测高压载流部位的发热的问题,使得将开关柜高压部位的其它缺陷的 检测集中到一起奠定了基础,从而最终使开关柜的各种缺陷的集中监测有了可能。
本发明的第二个目的是在攻克热缺陷检测的基础上,改进并整合现有的监测手段,提供一种能把开关柜各种缺陷的监测、电气参数测量以及开关柜的操作控制集合于一个统一的智能管理中心——综合测控装置内的高压开关柜。
开关柜综合测控装置是现代开关柜中安装的常用的测量控制设备,兼具传统开关柜的电参数测量显示装置、继电保护装置及通讯等功能,集常规测量、控制、保护、操作、显示于一体。电力参数测量包括测量主回路的电流、电压、有功功率、功率因数、电能等电力参数,但是现有的开关柜测控装置不具备开关柜缺陷检测功能。
进一步地,一种开关柜综合测控装置,所述开关柜综合测控装置上和/或设置有至少1路超声检测回路,和/或至少1路气体检测回路,和/或至少1路光电检测回路,相应的超声、气体、光电传感器则分别设置于前述金属屏蔽罩的镂空部位,并通过导线与开关柜测控装置的相应回路相连接。
由于制造缺陷、绝缘老化或是受潮,高压开关柜在运行过程中有可能出现局部的放电现象,这种放电现象开始往往很微弱,但常常最终发展成严重的短路事故,所以非常需要对开关柜的高压绝缘状态进行监测。一般来讲,对于高压缺陷的检测通常都是在高压部位进行,比如对于热缺陷,对比文件CN102243285A的方案就是在高压侧安装温度传感器、电流传感器、高压侧数据采集模块等的方式来实现的,而在低电压区域进行监测的方案目前只有本发明人提出,且还存在着不足。又例如,对于高压绝缘缺陷的检测,通常是在高压部位通过电荷法、泄漏电流法等电信号检测的方法,这要在开关柜内实施是非常困难的。现虽有可在低电压区域进行放电信号监测的超声信号法方案,实践表明,现有的这种模式目前效果并不理想,漏报、误报率还比较高,难于成为绝缘缺陷检测的主要手段。这是由于开关柜原本并没有用于信号检测的相应结构和通道,高压隔室中安装有各种高电压元件,传感器的安装要受到种种因素的限制,尤其是要避开遮挡是非常困难的。而局部放电的超声信号、弧光放电信号检测等绝缘缺陷监测都需要在高压隔室进行,实践证明,在高压隔室中的不同位置安装传感器效果是不同的,特别是传感器与信号源间有遮挡的情况下差别甚至会很大。尽管超声信号和光信号在隔室内有一定的的反射效应,但是如果传感器的安装位置不当,特别是存在遮挡物的情况下,信号经过多次反射后到达传感器的信号强度可能仅有原来的10%--20%,甚至更低,从而会大幅度降低检测效果,所以对于超声、放电等信号的检测,传感器的安装位置选择同样是非常重要的。也正是由于传感器的安装受到各种制约,所以在实际应用中难于在合理的位置安装传感器,常常只能在相对方便的地方进行安装。比如超声传感器、光电传感器通常只好安装在开关柜高压隔室的侧壁上,导致传感器离隔室内各元件的距离远近不一,差别很 大,对于有些部位之间甚至要隔好几个遮挡物,严重影响检测效果,所以尽管超声局部放电检测、光电放电信号检测技术早有应用,但是最终实际检测效果并不理想,误报、漏报的情况时有发生。本发明在开关柜综合测控装置上设有气体和/或超声和/或光电检测回路,通过设置在前述各隔室金属屏蔽罩中镂空部位的超声/气体/光电传感器,这些传感器在此位置上能够很好地实现对于相应隔室内所出现的放电信号进行检测。另外发明人还发现,开关柜内开始出现放电的时候往往会伴随某些特殊气体的出现,如臭氧、一氧化氮、二氧化氮等,以及发出超声信号,可以通过对这些特殊气体的检测来帮助发现早期的放电,从而克服现有技术仅用超声检测所带来的误报、漏报的问题。由于本方案设定的传感器安装位置在满足绝缘要求的条件下实际上尽可能抵近了理想的检测部位,而且很好地兼顾了对于周围部位的检测,与各元件间很少存在遮挡,因此该屏蔽罩的设置不仅很好地满足了热缺陷的检测需要,同时也是隔室内其它高压缺陷信号检测的理想位置,对超声信号、气体信号、光电信号等的衰减都很小,极大地提高了对于这些缺陷的检测效果。
如果在开关柜内部出现微小的放电,安装在屏蔽罩中镂空部位的气体和超声传感器就能在较短的距离上和少有遮挡的条件下可靠地探测到并发出报警信号,在缺陷出现的早期发现故障并及时发出报警,从而实现开关柜绝缘缺陷的监测,避免事故的发生。经过测试对比,超声传感器采取这一安装方式后,超声信号的检测灵敏度比原有的安装方式至少提高了100%—300%。因此,对于超声信号检测方案,过去只能作为高压局部放电的辅助检测手段,经过这样的技术改进后,完全有可能成为开关柜高压局部放电的基本检测手段。
而短路事故一旦发生,将会产生弧光,安装在金属屏蔽罩镂空部位的光电传感器由于与光源之间由于距离很短而且极少遮挡,灵敏度得到显著的提升,所以能够在弧光出现的早期,弧光发展还处于初始阶段就灵敏地检测到,第一时间将检测信号传送給本开关柜的综合测控装置,测控装置作出判断后可以就地在最短的时间(<4/1000秒)内发出跳闸命令和出口信号,为防止事故的扩大争取到宝贵的切断电源时间。也就是说通过在此金属屏蔽罩中设置光电传感器的措施,同样也使得光电跳闸保护技术的效果得到显著的提升。
就这样,本发明通过在各高压隔室特定部位设置特制金属屏蔽罩的技术措施,巧妙而近乎完美地解决了把不同性质的高压缺陷集中到同一个低电压处进行检测的技术难题,从而为进一步把开关柜各类缺陷的监测集中检测奠定了基础,以最终实现将开关柜这一传统设备转变成具有自我监测、自我诊断、自我防护、自我控制的智能供电设备的目标。
进一步地,一种开关柜综合测控装置,所述开关柜综合测控装置上还设置有至少2路合、分闸线圈电流检测回路和/或至少2路辅助开关动作信号检测回路,电流传感器串入断路器合闸、分闸线圈回路,或采用穿心式电流传感器套入合闸、分闸线圈回路,电流传感器通过导 线与开关柜测控装置的断路器合闸、分闸线圈回路相连接,开关柜测控装置的辅助开关动作信号检测回路则通过导线与断路器的辅助开关相连接。通过相应的电流传感器检测断路器分闸、合闸线圈电流。通过辅助开关动作信号检测回路检测断路器的辅助开关的动作信号。
开关柜中的断路器在操作过程中,由于机械故障而发生事故也一直是威胁开关柜安全重大隐患,如何能及时发现断路器可能存在的机械缺陷同样是电力现场急需解决的重要问题。虽然人们也开发了不少用于监测断路器机械特性的在线监测装置,但是这些装置的结构普遍过于复杂、成本过高而难于普及。而现在对于供电的要求越来越高,不容许开关柜轻易停电检修的现状下,电力现场迫切需一种结构简单、准确可靠,能够同时对多种缺陷进行监测的在线监测装置,以减少停电检查测试的时间。为此,本发明所述的开关柜综合测控装置设置有断路器机械特性的监测功能。
断路器的合闸、分闸动作都是通过启动合、分闸电磁铁来实现的。由于电磁感应的作用,电磁铁在动作过程中由于衔铁位置的变化,就会反过来影响电磁铁线圈电流的变化,也就是说衔铁的位置与电磁铁线圈电流有一种对应关系。另外,分、合闸线圈电流是依靠辅助开关来接通和切断的,由于辅助开关与断路器之间是通过机械连接,故辅助开关与断路器之间的动作存在对应的关系,所以,通过对分、合闸线圈电流的分析,可以了解电磁铁以及断路器动作状态的大量信息,如果断路器存在某些机械缺陷就有可能在线圈电流的波形中反映出来。本(发明)利用这一原理,在所述的开关柜综合测控装置中设置一路合闸线圈电流检测回路、一路分闸线圈电流检测回路。比如断路器由于种种原因造成动作时间偏长,就会造成线圈电流的波形拉长而被发现。
另外合闸、分闸速度也是反映断路器机械状态的十分重要的技术参数,需要密切关注。由于辅助开关与断路器之间的动作存在对应的关系,所以两路辅助开关之间切换时间的长短反映了断路器速度的快慢。比如辅助开关的切换时间加长必然对应着断路器的速度偏慢。基于这一原理,所述开关柜综合测控装置上还设有至少2路断路器辅助开关动作信号检测回路,通过监测两辅助开关动作时间的变化,以了解断路器动作速度的变化。
进一步,所述开关柜测控装置还设有至少2路控制断路器小车进、出的开关量输出回路和/或有2路控制接地刀操作的开关量输出回路和/或至少2路断路器分、合闸位置开关量输入回路,和/或有至少2路断路器工作、试验位置开关量输入回路,和/或有至少2路接地刀合、分位置开关量输入回路,和/或有至少1路开关柜后面板开启开关量输入回路,以控制手车进、出车和接地开关分、合闸操作。
在对开关柜进行检查、维护、检修和试验时,常常需要对开关柜的断路器手车以及接地刀等设备进行进、出车以及开、合操作,而这些操作需要严格按照规定程序进行,否则可能 会造成严重事故,所以断路器手车和接地刀的操作是一件麻烦而且可能存在安全风险的操作。如果采用智能控制就能大大提高工作效率、降低安全风险。特别是无人值守变电站的普遍推行,更需要一种兼有能远控断路器手车进、出车等功能的开关柜,便于管理和维护,减少停电检查维修的时间。
本申请提供的一个或多个技术方案,至少具有如下技术效果或优点:
本发明通过在开关柜高压隔室的相应部位设置特制金属屏蔽罩,把隔室空气温度传感器抵近到理想检测位置的技术措施,很好地克服了现有技术对热缺陷监测结果出现错误和缺陷部位难于判断等问题,很好地解决了在低压区域监测热缺陷的问题。本发明同时将开关柜各种高压缺陷传感器设置到此金属屏蔽罩镂空部位,巧妙地解决了开关柜各种高压缺陷的检测难于统一于一处的难题,把高压部位的热缺陷、绝缘缺陷的监测都集中到此低电压部位进行检测,既很好地克服了现有技术对于热缺陷监测出现的不正确甚至错误的弊病;同时很好地解决了其它高压缺陷监测传感器安装困难和安装位置不当的问题、并显著提高了对于这些缺陷的检测效果。从而把各种高压缺陷集中检测这一业界曾经看似遥不可及的愿望变成了切实可行的方案。正是基于这一技术瓶颈的突破,最终实现了把开关柜的各类缺陷的监测及控制集合在一个统一的智能监测管理中心——开关柜综合测控装置中的目标,极大地简化了开关柜的监测和控制,很好地解决了各种缺陷监测难于兼顾这一长期以来困扰电力现场的老大难问题。
本(发明)通过以上技术措施实现了在尽量不改变开关柜原有结构和极少的资源投入的前提下,把开关柜这一传统的供电设备转变成一个具有自我监测、自我诊断、自我防护、自我控制的智能供电设备,从而为现代社会对于电力的需求提供可靠保障。
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定;
图1为开关柜的内部结构示意图,以及屏蔽罩的安装示意图;7、8、9、10分别为开关柜的母线室、断路器室、电缆室,二次室,11为测控装置,12、13、14分别为母线室、断路器室、电缆室内的传感器,15—环境温度传感器,72为母线横截面,81为断路器,91为电缆室与母线室间的隔板,101为断路器室与二次室间的隔板、111、121、131为金属屏蔽罩,92-断路器下出线,h为屏蔽罩与81间的距离,J为屏蔽罩与92间的距离;
图2为母线室金属屏蔽罩111安装位置剖面示意图,71为母线室顶盖,a为高压母线72与母线室顶盖71间的距离;b为两母线间的距离;c为金属屏蔽罩111与母线室顶盖间的最大距离;l为当111处于两相母排72之间的竖直中心线位置上时,与母线72间的距离;
图3a-c为不同外形金属屏蔽罩的结构示意图(横剖);
图4为开关柜顶视图及宽度方向中线示意图;
图5为实施例中断路器室金属屏蔽罩121的剖面(纵剖)示意图;13-传感器,112—为镂空状屏蔽罩头,122-连接线;
图6为实施例中母线室、电缆室金属屏蔽罩111、131的剖面(纵剖)示意图;
图7为具有多种缺陷监测功能的综合测控装置示意图,11-开关柜综合测控装置,12、13、14、15—温度传感器,16、17—电流传感器;18—气体传感器,19—超声传感器,20—光电传感器,21、22—断路器线圈电流传感器,23、24—辅助开关信号回路、25、26、27、28:1—4DO输出回路,29、30、31、32、33、34、35:1—7DI输入回路。
本发明提供了一种具有热缺陷检测以及绝缘缺陷监测功能的高压开关柜,以克服现有技术的不足。本方案巧妙地解决了把不同性质的高压缺陷集中到同一个低电压处检测的技术难题,从而为把开关柜各类缺陷的监测集中检测奠定了基础,并最终将开关柜这一传统的供电设备转变成一个具有自我监测、自我诊断、自我防护、自我控制的智能供电设备。
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在相互不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述范围内的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
请参考图1-图7,本申请提供了实施例1,本实施例为具有热缺陷监测功能的高压开关柜,包括:开关柜柜体、设置于开关柜内各高压隔室中的金属屏蔽罩111、121、131设置于开关柜二次室面板上的综合测控装置11以及4只温度传感器、2只电流传感器等几部分所组成。
其中,在电缆室内,在其电缆室与母线室间的隔板朝下的一面设置有用于安装传感器的长条形金属屏蔽罩131,该屏蔽罩处于与断路器下出线间的最小距离J为13厘米的高度上,以保证其与高压带电部位的绝缘,该金属屏蔽罩的长度贯穿开关柜的整个宽度。同时在对着断路器B相出线的中心线0—7厘米的位置上,将该部分作局部镂空,镂空长度不小于5厘米;在其断路器室内,位于断路器的上方设置有用于安装传感器的长条形金属屏蔽罩121,该屏蔽罩沿着二次室隔板敷设并延伸到位于距断路器顶部的高度h为13厘米处,并在其末端加装了一段用于安装传感器的3厘米长的镂空段112,此镂空段处于断路器B相的中心线附 近0—7厘米的位置上,且此镂空段端部为球面形,其曲率半径为1厘米;在其母线室的顶盖内侧沿着与母线平行方向、且处于位于盖板下面的距离两相母排之间的竖直中心线0至3厘米的位置上设置有用于安装传感器的长条形金属屏蔽罩111,该屏蔽罩横贯了开关柜的整个宽度方向,并在距离开关柜宽度方向的中心线0至5厘米处、即在屏蔽罩的长度为1/2柜宽处局部镂空,镂空区间的长度为5厘米。本例中各隔室的金属屏蔽罩的横截面均为半圆形,其曲率半径为1厘米。设置于开关柜二次室面板上的综合测控装置11上设置有4路空气温度检测回路、2路电流检测回路,其中1路空气温度检测回路用于检测开关柜外的环境温度、其余3路空气温度检测回路用于检测开关柜内各隔室的空气温度,电流检测回路用于检测开关柜负荷电流。开关柜内的温度传感器12、13、14安装在各隔室金属屏蔽罩的镂空部位,通过连接线与测控装置的对应的温度检测回路相连接。电流传感器16、17则设置在二次室内与电流互感器的二次回路相串联并通过连接线与测控装置的电流检测回路相连接,从而构成了开关柜热缺陷监测系统。。这里选用两只电流传感器是因为开关柜内的负荷是三相制,在通常情况下开关柜的三相电流是不平衡的,一只电流传感器难于准确的反映开关柜的负荷电流,所以本方案采用了两只电流传感器,以检测开关柜的两路负荷电流,最后得到开关柜三相负荷电流的平均值。这是因为在三相制中,可以对其中两相电流的大小和相位通过矢量计算得到第三相电流的大小,最终得到三相负荷电流的平均值,这里不再赘述。
在开关柜的投运初期,测控装置11或监控后台把检测到的温度和电流等数据列成一个数据表,对这个数据表进一步利用数学拟合方法得到某隔室的空气温度或者温升相对于负荷电流以及相邻隔室温度变化的数学表达式,这个表达式反映的就是开关柜投运初期的温度与负荷电流以及相邻隔室温度变化等相关因素影响的规律,所对应的是开关柜的初始状态。对于检测到的温度和电流数据,测控装置11也可以传送給上一级监控后台,利用更为强大的计算机分析软件进行分析。
下面以某隔室的实测数据为例具体说明。在开关柜投运初期,测控装置11或上一级监控后台根据收到的环境温度、各隔室温度、、邻柜相邻隔室的温度、负荷电流等数据简单处理后得到如下一组数据表(这里电流单位为千安):
温度和温升,以及电流或是电流平方是同一物理量的不同表达方式。由于隔室温升=隔室温度—环境温度,温升参数中实际上已经包含了环境温度对于因变量即本隔室温升的影响,所生成的表达式已经反映了环境因素的影响,所以在本例应用中不把环境温度作为单独的变量,同样,这里是用负荷电流平方來反映电流参数的。
接下来将本隔室温升作为因变量,其余参数作为自变量进行数学拟合运算,便可得到这些变量的相应系数a=1.43、b=1.48、c=1.87、d=-3.37,从而得到本隔室温升T的关于以这些参量为自变量的表达式:
T=1.43*左邻隔室温升+1.48*右邻隔室温升+1.87*负荷电流平方。
此表达式对应的是开关柜本隔室投运初期所的发热规律。在后期的运行过程中,不断地把所测得的相关参数代入表达式中,计算出在此条件下本隔室的温度或温升值,比如当左邻隔室的温升为7.1℃、左邻隔室的温升为5.3℃、本柜负荷电流为760A,将其代入表达式计算得温升为5.9℃,而实际测试值为9.1℃,9.1-5.9=3.2℃,如果预先设置最大允许值d=2.5℃,则说明开关柜的状态已比初始状态有明显的劣化,需要进行检修。
本实施例中温度传感器选用的型号为Pt100,电流传感器为金属膜精密电阻。
实施例2.
本实施例2与实施例1的结构基本相同,所不同的是,测控装置11还设置有3路气体检测回路3路超声检测回路、3路光电检测回路和相应的传感器;还有2路断路器线圈电流检测回路及电流传感器;2路辅助开关动作信号检测回路;该测控装置11还设有2路控制断路器手车进、出的开关量输出回路1DO、2DO;2路控制接地刀操作的开关量输出回路3DO、4DO以及2路断路器分、合闸位置开关量输入回路1DI、2DI,2路断路器工作、试验位置开关量输入回路3DI、4DI,2路接地刀合、分位置开关量输入回路5DI、6DI,1路开关柜后面板开启的行程开关开关量输入回路7DI,从而构成路一台具有热缺陷、绝缘缺陷、机械缺陷监测功能以及遥控断路器小车进、出车操作等功能的高压开关柜。
气体、超声及光电传感器18、19、20分别安装在各高压隔室的金属屏蔽罩111、121、131的镂空部位,各传感器通过连接线与测控装置11的相应检测回路相连接。检测断路器分、合闸线圈电流的传感器21、22与断路器的分、合闸线圈回路相串联,并通过连接线与测控装置的断路器线圈电流检测回路相连接。另外,将断路器辅助开关上用于接通合闸、分闸线圈的触点,习惯上称为a、b触点的信号通过连接线与测控装置11上的辅助开关动作信号检测 回路23、24相连接。
测控装置11的控制断路器小车进、出的开关量输出回路1DO、2DO与断路器室中手车底盘车上的电机控制回路连接,以控制断路器手车的进、出车。3、4DO为接地开关操作输出,3、4DO与电缆室中接地刀的电机控制回路相连接。开入量(开关量输入回路):1、2DI为指示断路器合、分闸位置的信号输入回路,与辅助开关的断路器合、分闸位置接点连接;3、4DI为断路器位置信号输入回路,分别与断路器室中的断路器工作位置、试验位置的行程开关相连,5、6DI为接地刀位置信号输入回路,分别与电缆室中接地刀的合闸、分闸位置行程开关相连接;7DI为后门位置信号输入回路,与后门的位置行程开关相连接。
在开关柜运行过程中,如果臭氧传感器18和超声传感器19都检测到信号并传送給测控装置,测控装置11据此即可判断存在绝缘缺陷有放电现象发生而发出报警;如果仅仅有超声信号或是臭氧信号则暂不报警,避免误报。而短路事故一旦发生,将会产生强烈的弧光,而弧光的发展由弱到强存在极其短暂的过程,由于各屏蔽罩的镂空部位实际上尽可能抵近了被监测的高压元件,设置在其中的光电传感器20可以在弧光刚开始出现的早期非常灵敏地检测到,并经过检测回路直接将检测到的信号传送給本开关柜综合测控装置11,测控装置11作出判断后可以就地在最短的时间(<4/1000秒)内发出跳闸命令和出口信号,为防止事故的扩大赢得宝贵的时间。
断路器在进行合闸或分闸操作时,串联在合闸、分闸线圈回路的电流传感器21、22将电流信号传送給测控装置11,同时辅助开关也将其动作信号通过连接线传送給测控装置11,测控装置11将这些信号存储起来,工作人员在不停电的情况下定期将这些信息调出并进行分析,以了解断路器在动作过程中所曝露出来的机械状态信息。比如合闸时,电磁铁衔铁出现卡涩,这时断路器的合闸速度并不发生改变,表现出来辅助开关a触点到b触点间的转换时间未发生改变,但是合闸线圈的电流波形中相应部位的波形就会发生变化而被发现,并为检修提供依据。
测控装置11在对断路器手车以及接地刀等设备进行进、出车以及开、合控制操作时,将按照软件编制的程序进行,从而避免人工操作错误带来的安全风险。比如,测控装置11得到断路器小车出车操作命令时,测控装置会自动检查开入信号回路1、2DI以确定断路器是否处于分闸位置,只有当断路器处于分闸位置时,进行出车操作才是安全的。反之,如果断路器处于合闸状态出车,将会导致严重的短路事故。测控装置11确认断路器处于分闸状态且无进车指令时,开关量输出回路2DO接通底盘车电机控制回路,断路器小车从开关柜退出。对于其它操作,测控装置也是严格按照预先设定的程序进行,所以非常安全高效。这样,开关柜转变成了一个具有自我监测、自我诊断、自我防护、自我控制的智能供电设备,而这时的开 关柜测控装置也不再是原来传统意义上的控制和电参数的测量设备,而是集各种参数的检测、各种缺陷的监测和开关柜的综合控制于一身的综合智能管理系统。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (9)
- 一种具有缺陷监测及综合控制功能的高压开关柜,其特征在于,高压开关柜包括各隔室以及安装于二次室的综合测控装置,在开关柜电缆室内,在其电缆室与母线室间的隔板上设置有用于安装传感器的第一金属屏蔽罩,第一金属屏蔽罩的第一预设部分位于距断路器下出线10—40厘米的高度J,且对着断路器B相出线的中心线0—15厘米的位置上,并且至少第一预设部分的局部被镂空。
- 根据权利要求1所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,在开关柜断路器室内,位于断路器的上方设置有用于安装传感器的第二金属屏蔽罩,第二金属屏蔽罩的第二预设部分位于距断路器顶部的高度h为10—40厘米处,且处于断路器B相的中心线0—10厘米的位置上,并且至少第二预设部分有局部被镂空。
- 根据权利要求1所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,在开关柜母线室的顶盖内侧沿着与母线平行方向设置有用于安装传感器的长条形的第三金属屏蔽罩,该屏蔽罩位于距离盖板下面的两相母排之间的竖直中心线0至4厘米的位置上,该屏蔽罩的第三预设部分位于距离开关柜宽度方向的中心线0至20厘米处,并且至少第三预设部分有局部被镂空。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,在开关柜各隔室内安装的金属屏蔽罩的曲率半径为3—40毫米。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,在开关柜各隔室内的屏蔽罩镂空部位内和/或安装有温度传感器和/或超声传感器和/或气体传感器和/或光电传感器。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,开关柜测控装置上设置有至少4路空气温度检测回路、1路电流检测回路,其中1路空气温度检测回路用于检测开关柜外的环境温度、其余3路空气温度检测回路用于检测开关柜内各隔室的空气温度,电流检测回路用于检测开关柜负荷电流,各隔室的空气温度传感器安装在所述屏蔽罩的镂空部位内,电流传感器安装在电流互感器二次回路上,各温度传感器以及电流传感器通过导线与测控装置的对应回路相连接。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,开关柜测控装置上和/或设置有至少1路超声检测回路,和/或至少1路气体检测回路,和/或至少1路光电检测回路,相应的超声、气体、光电传感器则分别设置于前述金属屏蔽罩的镂空部位,并通过导线与开关柜测控装置的相应回路相连接。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,开关柜测控装置上设置有至少2路合、分闸线圈电流检测回路,和/或至少2路辅助开关动作 信号检测回路,电流传感器串入断路器合闸、分闸线圈回路,或采用穿心式电流传感器套入合闸、分闸线圈回路,电流传感器通过导线与开关柜测控装置的断路器合闸、分闸线圈回路相连接,开关柜测控装置的辅助开关动作信号检测回路则通过导线与断路器的辅助开关相连接。
- 根据权利要求1-3所述的具有缺陷监测及综合控制功能的高压开关柜,其特征在于,开关柜测控装置还设有至少2路控制断路器小车进、出的开关量输出回路和/或有2路控制接地刀操作的开关量输出回路和/或至少2路断路器分、合闸位置开关量输入回路,和/或有至少2路断路器工作、试验位置开关量输入回路,和/或有至少2路接地刀合、分位置开关量输入回路,和/或有至少1路开关柜后面板开启开关量输入回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810117766.6A CN108321691B (zh) | 2018-02-06 | 2018-02-06 | 一种具有缺陷监测及综合控制功能的高压开关柜 |
CN201810117766.6 | 2018-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153478A1 true WO2019153478A1 (zh) | 2019-08-15 |
Family
ID=62902987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082106 WO2019153478A1 (zh) | 2018-02-06 | 2018-04-08 | 一种具有缺陷监测及综合控制功能的高压开关柜 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108321691B (zh) |
WO (1) | WO2019153478A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111478217B (zh) * | 2020-04-08 | 2022-06-21 | 国网湖南省电力有限公司 | 用于变电站开关柜的一键顺控支持系统及其应用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295190B1 (en) * | 1999-10-26 | 2001-09-25 | Electric Boat Corporation | Circuit breaker arrangement with integrated protection, control and monitoring |
CN101431219A (zh) * | 2007-10-30 | 2009-05-13 | 上海广电电气(集团)股份有限公司 | 开关柜连接组合装置及其制造方法 |
CN102243285A (zh) * | 2011-05-06 | 2011-11-16 | 厦门Abb开关有限公司 | 一种基于温度和电流分析的故障检测装置及方法 |
CN102510007A (zh) * | 2011-11-10 | 2012-06-20 | 杭州恒信电气有限公司 | 智能中压开关柜 |
CN103259208A (zh) * | 2013-06-03 | 2013-08-21 | 宁波电业局 | 一种智能化中压开关柜 |
CN103529351A (zh) * | 2013-10-29 | 2014-01-22 | 李宏仁 | 高压开关柜热缺陷在线监测系统及方法 |
CN203932746U (zh) * | 2014-06-11 | 2014-11-05 | 吉林省金冠电气股份有限公司 | 开关设备温度控制系统 |
-
2018
- 2018-02-06 CN CN201810117766.6A patent/CN108321691B/zh not_active Expired - Fee Related
- 2018-04-08 WO PCT/CN2018/082106 patent/WO2019153478A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6295190B1 (en) * | 1999-10-26 | 2001-09-25 | Electric Boat Corporation | Circuit breaker arrangement with integrated protection, control and monitoring |
CN101431219A (zh) * | 2007-10-30 | 2009-05-13 | 上海广电电气(集团)股份有限公司 | 开关柜连接组合装置及其制造方法 |
CN102243285A (zh) * | 2011-05-06 | 2011-11-16 | 厦门Abb开关有限公司 | 一种基于温度和电流分析的故障检测装置及方法 |
CN102510007A (zh) * | 2011-11-10 | 2012-06-20 | 杭州恒信电气有限公司 | 智能中压开关柜 |
CN103259208A (zh) * | 2013-06-03 | 2013-08-21 | 宁波电业局 | 一种智能化中压开关柜 |
CN103529351A (zh) * | 2013-10-29 | 2014-01-22 | 李宏仁 | 高压开关柜热缺陷在线监测系统及方法 |
CN203932746U (zh) * | 2014-06-11 | 2014-11-05 | 吉林省金冠电气股份有限公司 | 开关设备温度控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108321691B (zh) | 2020-05-22 |
CN108321691A (zh) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108287288B (zh) | 一种开关柜热缺陷监测系统及分析方法及综合测控装置 | |
CN105790147B (zh) | 一种铠装移开式交流金属封闭开关设备 | |
CN102891533B (zh) | 一种800kV智能断路器 | |
CN204243896U (zh) | 用于配电网的开关状态监测装置 | |
CN103884961A (zh) | 电缆故障在线监测系统 | |
CN105699808A (zh) | 基于在线间接测温方式的开关柜故障诊断方法 | |
CN112701786B (zh) | 一种220kV及以下电压等级橇装电控一体化变电站 | |
CN105990802A (zh) | 一种智能中压温度场压力光电测位开关柜 | |
CN105841746A (zh) | 一种多参数融合的高压大容量干式电抗器在线监测装置 | |
CN204422095U (zh) | 开关柜触头和母排连接点温升在线监测装置及系统 | |
WO2019153478A1 (zh) | 一种具有缺陷监测及综合控制功能的高压开关柜 | |
CN105785262B (zh) | 基于母线转换电流分析的热倒母线合闸动作状态监测方法 | |
CN106990305A (zh) | 高压电力电容器成套装置的干式空心电抗器在线监测方法 | |
CN105990803B (zh) | 一种智能中压绝缘表征压力激光测位开关柜 | |
CN105990804B (zh) | 一种智能中压绝缘表征压力非接触测位开关柜 | |
CN205785301U (zh) | 一种多参数融合的高压大容量干式电抗器在线监测装置 | |
CN110034538B (zh) | 一种干式电抗器非电量保护系统 | |
CN206281932U (zh) | 一种变电站直流接地检测装置 | |
CN114362355A (zh) | 一种基于多源数据融合的10kV开闭所可视化智能监测系统 | |
CN114498914A (zh) | 一种智能变电站综合监控系统 | |
CN109975615B (zh) | 一种gis主回路电阻异常检测系统及方法 | |
CN207801207U (zh) | 一种开关柜 | |
CN205507004U (zh) | 一种运行中电力电缆绝缘工况实时检测预警装置 | |
CN204992774U (zh) | 中高压开关柜载流回路过热监测装置 | |
CN215560707U (zh) | 离子膜电解工艺整流电流故障预警装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904929 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904929 Country of ref document: EP Kind code of ref document: A1 |