WO2019153207A1 - 动态指示qfi的方法和用户设备 - Google Patents

动态指示qfi的方法和用户设备 Download PDF

Info

Publication number
WO2019153207A1
WO2019153207A1 PCT/CN2018/075870 CN2018075870W WO2019153207A1 WO 2019153207 A1 WO2019153207 A1 WO 2019153207A1 CN 2018075870 W CN2018075870 W CN 2018075870W WO 2019153207 A1 WO2019153207 A1 WO 2019153207A1
Authority
WO
WIPO (PCT)
Prior art keywords
qfi
mapping
value
threshold
user equipment
Prior art date
Application number
PCT/CN2018/075870
Other languages
English (en)
French (fr)
Inventor
尤心
石聪
刘建华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18857430.5A priority Critical patent/EP3550879B1/en
Priority to US16/336,786 priority patent/US11310689B2/en
Priority to PCT/CN2018/075870 priority patent/WO2019153207A1/zh
Priority to CN201880003858.XA priority patent/CN109863733B/zh
Publication of WO2019153207A1 publication Critical patent/WO2019153207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of wireless communications, and in particular to techniques for dynamically indicating QFI.
  • 5G refers to the fifth-generation mobile phone mobile communication standard, also known as the fifth-generation mobile communication technology. 5G is also an extension after 4G. Under research, the theoretical downlink speed of 5G network is 10Gb/s. According to industry expectations, 5G The development prospects are extremely broad.
  • the NR (NR Radio Access) wireless protocol stack is divided into two planes: the user plane and the control plane.
  • the UP (User Plane) protocol stack is a protocol cluster used for user data transmission
  • the CP (Control Plane) protocol stack is a protocol cluster used for control signaling transmission of the system.
  • the NR user plane has one more layer of SDAP (Service Data Adaptation Protocol) layer than the LTE (Long Term Evolution) protocol stack.
  • the user plane protocol is from top to bottom. : SDAP, PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control) layer, MAC (Medium Access Control) layer, and PHY layer (physical layer).
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY layer physical layer
  • the SDAP layer is mainly used for mapping between QoS (Quality of Service) flows and radio bearers, and marking QFI (Qos) in DL (Down Link) and UL (Up Link) packets.
  • Flow ID quality of service flow identifier).
  • the number of bits of the QFI carried by the QFI and the N3 interface carried in the SDAP header is different, resulting in a mismatch and communication failure. service.
  • a method of dynamically indicating QFI comprising the steps of:
  • the user equipment obtains the SDAP SDU and obtains the first QFI to which the SDAP SDU belongs; and,
  • the number of bits of the first QFI is greater than the number of bits of the second QFI.
  • the above method further comprises the following substeps:
  • the first QFI is mapped to a vacant location that the second QFI has not been mapped.
  • a user equipment comprising:
  • Obtaining a module configured to obtain a SDAP SDU, and a first QFI to which the SDAP SDU belongs;
  • mapping module configured to map the first QFI to a second QFI
  • a setting module configured to include the second QFI in the SDAP header
  • the number of bits of the first QFI is greater than the number of bits of the second QFI.
  • mapping module further includes the following sub-modules:
  • a first mapping submodule configured to map the first QFI to the same value of the second QFI when the value of the first QFI is less than a preset first threshold
  • a second mapping submodule configured to map the first QFI to a vacant location that the second QFI is not mapped when the value of the first QFI is greater than the first threshold.
  • a computer storage medium having stored thereon computer executable instructions which, when executed by a processor, implement the method steps of any of the above.
  • the number of bits of the second QFI carried in the SDAP header (header) on the RAN (Radio Access Network) side has been determined to be 6, and on the other hand, The number of bits of the first QFI obtained by the user equipment is 7, which causes a problem of mismatch.
  • the inventors of the present invention utilize the characteristics of the first QFI not to be in order, in other words, if explicitly arranged on demand QFI can reduce the number of bits in the first QFI.
  • a new dynamic indication QFI method which maps the first QFI to a second QFI with a smaller number of bits, and the second QFI is It is included in the SDAP header and solves the mismatch problem caused by the above-mentioned bit number size, so that the communication service can be better realized based on the existing communication standard.
  • the first QFI having a large number of bits is divided into two segments by a threshold, and the first segment directly corresponds to the QFI having a small number of bits, that is, the first The QFI maps to the same value of the second QFI; the second segment maps to the unmapped vacant position, thereby better realizing the QFI mapping with a larger number of bits to the QFI with a smaller number of bits, better Realize communication services.
  • FIG. 1 is a flow chart showing a method of dynamically indicating QFI according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the architecture of Qos in an application scenario of an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a user plane protocol stack in an application scenario of an embodiment of the present invention.
  • QFI Qos flow ID, Qos flow ID
  • SDAP Service Data Adaptation Protocol, Service Data Adaptation Protocol
  • SDAP SDU Service Data Adaptation Protocol service data unit
  • RLC Radio Link Control, wireless link control
  • PHY Physical, physical layer
  • 5QI 5G QoS Identifier, 5G Quality of Service Identification
  • NR NR Radio Access, wireless access
  • PDU Protocol Data Unit, protocol data unit
  • PDU session PDU session
  • QoS flow Quality of Service flow
  • NAS Non-access stratum, non-access stratum
  • GBR Guaranteed Bit Rate, guaranteed bit rate
  • Non-GBR Non-Guaranteed Bit Rate, unguaranteed bit rate
  • RB Resource Bearer, bearer between the terminal and the base station
  • DRB Data RB, data bearer between the terminal and the base station
  • RAN Radio Access Network, wireless access network
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the inventors of the present invention have conducted extensive and in-depth research and found that in order to better implement communication services based on existing communication standards, it is necessary to solve the number of bits of the first QFI obtained by the user equipment and the number of bits carried in the SDAP header of the RAN side.
  • the number of bits of the second QFI is different, resulting in a mismatch problem.
  • the inventors of the present invention found that although the number of bits of the first QFI is 7, the first QFI is not arranged in order, thereby proposing to divide the first QFI. For two parts, where 6 bits or less, ie (0-63), map directly to the same value of the second QFI, more than 6 bits, ie (64-79), the mapping to the second QFI has not been mapped yet.
  • This new dynamic indication of QFI achieves mapping the first QFI to a second QFI with a smaller number of bits, and includes the second QFI in the SDAP header, which resolves the mismatch caused by the above-mentioned number of bits.
  • the problem is to be able to better implement communication services based on existing communication standards.
  • the method for dynamically indicating QFI and the user equipment provided by the embodiment of the present application implement a better communication service, and therefore have a very broad application prospect in the field of 5G communication.
  • FIG. 3 is a schematic diagram showing the architecture of the QoS in the application scenario of the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the user plane protocol stack in the application scenario of the embodiment of the present application. Referring to FIG. 3 and FIG. 4, for each UE, 5GC establishes one or more PDU sessions, and each PDU session has one or more DRBs relatively applied to carry its data in the air interface.
  • the minimum granularity of QoS can be divided into different QoS flows.
  • One PDU session can have multiple QoS flows, and different QoS flows are marked by different QFIs.
  • data in the same QoS flow will have the same QoS processing, such as scheduling, and so on.
  • QFI will mark each packet in the N3 interface from 5GC to RAN.
  • the QFI has 7 bits.
  • QFI is unique in a PDU session.
  • the QFI of the N3 interface can be dynamically allocated or implicitly equal to 5QI.
  • the SDAP layer indicates the QFI (if configured) for each SDAP PDU to indicate the mapping relationship between QoS flow and DRB.
  • the QFI has the RAN (SDAP layer) side identifier and is transmitted on the air interface for the purpose of RQoS (Reflective QoS). If the NR-RAN or NAS does not use reflective mapping, then it is not necessary.
  • the downlink air interface transmits QFI.
  • the NG-RAN can configure the UE to transmit the QFI on the air interface.
  • the QFI needs to be at least 7 bits, but the QFI carried in the SDAP header on the RAN side has been agreed to be 6 bits. Therefore, it is necessary to solve the QFI of the N3 interface to 7 bits.
  • the RAN side QFI is a 6-bit unmatched problem, otherwise communication services cannot be implemented.
  • the method for dynamically indicating QFI in this embodiment includes the following steps:
  • the user equipment obtains the SDAP SDU and obtains the first QFI to which the SDAP SDU belongs.
  • the SDAP SDU comes from the upper layer of the user equipment protocol stack. Specifically, for the uplink, the SDAP SDU is from the application layer, and for the downlink, the SDAP SDU is from the core network.
  • the QFI mapping of the embodiment of the present application is applicable to both uplink and downlink based on the principle of the present application. Further, in the embodiment of the present application, the value of the first QFI is equal to the value of 5QI.
  • step 102 the user equipment maps the first QFI to the second QFI, where the number of bits of the first QFI is greater than the number of bits of the second QFI. Further, in the embodiment of the present application, the first QFI is 7 bits, and the second QFI is 6 bits.
  • this embodiment can be understood as corresponding to the foregoing case, that is, the QFI carried in the SDAP header is the second QFI, and its size is 6 bits, that is, supports up to 64 QoS flows. . While the first QFI dynamically indicates to 5QI or equals 5QI, since 5QI currently supports 0-97 as described above, the size of the first QFI is 7 bits.
  • the inventors of the present invention have found through research that 5QIs are not arranged in order. In this case, if the 5QIs are arranged in order or mapped appropriately, the 6-bit second QFI is also operable. Therefore, the inventors of the present invention map the 7-bit first QFI to the 6-bit second QFI so that the 7-bit first QFI obtained by the UE from the SDAP SDU can be mapped, and then included in the second header of the SDAP header.
  • the SDAPs are matched to implement communication services.
  • step 102 the mapping is performed by the following specific conditions:
  • the first QFI maps to a vacant location that the second QFI has not been mapped.
  • the value of the first QFI is less than the preset first threshold, it is directly mapped to the same value of the second QFI, in which case the value is regarded as "already mapped", other values That is, the value of the mapping relationship that has not been formed corresponding to the first QFI is regarded as "unmapped vacant location", as described above, when the value of the first QFI is greater than the first threshold, mapping to the second QFI "The unspaced vacant position.”
  • mapping from the first QFI to the second QFI will be specifically described below (see Table 2 and Table 3).
  • the first threshold is used to divide the 7-bit first QFI into two parts (0-63, 64-79), that is, the QFI within 6 bits, and exceed 6-bit QFI.
  • “63” or “64” may be used as the first threshold, and if "63” is taken as the first threshold, those skilled in the art may understand that when the value of the first QFI is equal to the preset value When the first threshold is "63", the first QFI is mapped to the same value of the second QFI. And if "64" is used as the first threshold, when the value of the first QFI is equal to the preset first threshold "64", then the first QFI is mapped to the vacant location where the second QFI is not mapped. .
  • the first threshold is 6 bits, that is, 64 values.
  • the first threshold includes 64 values including the value of 0-63.
  • the first QFI is mapped to the same value of the second QFI, and for more than 6 bits, the first QFI is mapped to the vacant location where the second QFI is not mapped.
  • the vacant location is detected by the user equipment.
  • the vacant location is indicated by the RRC signaling.
  • step 103 the second QFI is included (or set) in the SDAP header.
  • the QFI of 7 bits is mapped to a 6-bit QFI through the mapping of the first QFI and the second QFI, and the QFI, that is, the number of bits of the second QFI and the size of the QFI specified in the SDAP header are The same, all 6 bits, thus solving the problem of the original mismatch, based on the current communication protocol, can better achieve communication services.
  • the method further includes the following steps: the SDAP layer of the user equipment stores a mapping relationship between the first QFI and the second QFI, where the mapping relationship is used as a user equipment future.
  • the basis for the value of the first QFI to which the received SDAP SDU belongs is mapped to the value corresponding to the second QFI.
  • the user equipment may determine the mapping between the first QFI and the second QFI according to the existing mapping relationship, and has a fast processing speed and save system resources. Etc.
  • step 103 further includes the following steps: if the first QFI already exists in the existing mapping relationship, mapping the first QFI to the second QFI according to the mapping relationship. If the first QFI does not exist in the existing mapping relationship, and the value of the first QFI is less than a preset first threshold, mapping the first QFI to the same value of the second QFI, and And storing the mapping relationship; if the first QFI does not exist in the existing mapping relationship, and the value of the first QFI is greater than a preset first threshold, mapping the first QFI to the mapping relationship The vacant location where the second QFI has not been mapped, and stores the mapping relationship.
  • remapping can be performed so that the value of the first QFI less than 6 bits can directly correspond to the second QFI.
  • mapping from the first QFI to the second QFI are specifically described below.
  • the GBR Guard Bit Rate
  • 7 bits are set according to the preset first threshold.
  • the first QFI is divided into two parts (0-63, 64-79), for 0-63, that is, the first QFI smaller than the first threshold, "1, 2, 3, 4", the same mapping to the second QFI
  • the value of "1, 2, 3, 4"; and for the first QFI greater than the first threshold, "65, 66, 75" is mapped to the unspaced spare position in the second QFI: "10, 11 , 12".
  • the mapping of the first QFI to the second QFI is achieved.
  • the second QFI is included in the SDAP header.
  • the QFI within 6 bits is correspondingly mapped to the same value of the 6-bit second QFI by the new mapping condition, and the pair is over 6
  • the QFI of the bit is mapped to the vacant position of the second QFI that has not been mapped, and the 5QI of the larger number of bits is mapped to the second QFI of the smaller number of bits, and the matching between the two is achieved, and the mapping is performed.
  • the QFI is included in the SDAP header to enable better communication services based on existing communication standards.
  • the user equipment in this embodiment includes an obtaining module 201, a mapping module 202, and a setting module 203.
  • the obtaining module 201 is configured to obtain a SDAP SDU, and a first QFI to which the SDAP SDU belongs, a mapping module 202, configured to map the first QFI to a second QFI, and a setting module 203, configured to use the second QFI It is included in the SDAP header.
  • the number of bits of the first QFI is greater than the number of bits of the second QFI.
  • the mapping module 202 further includes the following sub-module: a first mapping sub-module, configured to: when the value of the first QFI is less than a preset first threshold, the first QFI Mapping to the same value of the second QFI; the second mapping submodule, configured to map the first QFI to the unmapped spare of the second QFI when the value of the first QFI is greater than the first threshold position;
  • the user equipment further includes a storage module, configured to store, in the SDAP layer of the user equipment, a mapping relationship between the first QFI and the second QFI, where the mapping relationship is used as a user equipment future.
  • the basis for the value of the first QFI to which the received SDAP SDU belongs is mapped to the value corresponding to the second QFI.
  • the value of the first QFI is equal to the value of 5QI.
  • the first QFI is 7 bits
  • the second QFI is 6 bits
  • the mapping module 202 further includes: a third mapping submodule, where the value of the first QFI is equal to a preset first threshold, and the first threshold is 63. The first QFI is mapped to the same value of the second QFI. Further, the mapping module 202 further includes: a fourth mapping submodule, configured to: when the value of the first QFI is equal to a preset first threshold, and the first threshold is 64, A QFI maps to a vacant location that the second QFI has not been mapped.
  • the vacant location is detected by the user equipment.
  • the vacant location is indicated by the radio resource control RRC signaling.
  • mapping module 202 further includes the following submodules:
  • a fifth mapping submodule configured to map the first QFI to the second QFI according to the mapping relationship when the first QFI already exists in the existing mapping relationship, and the storage module is further configured to store the mapping relationship;
  • mapping submodule configured to map the first QFI to the second when the first QFI does not exist in the existing mapping relationship, and the value of the first QFI is less than a preset first threshold The same value of QFI, and the storage module is also used to store the mapping relationship;
  • a seventh mapping submodule configured to map the first QFI to the mapping relationship when the first QFI does not exist in the existing mapping relationship, and the value of the first QFI is greater than a preset first threshold.
  • the vacant location where the second QFI is not mapped, and the storage module is further configured to store the mapping relationship.
  • This embodiment is an apparatus embodiment corresponding to the method embodiment described above, and the embodiment can be implemented in cooperation with the above embodiment.
  • the related technical details mentioned in the above embodiments are still effective in the present embodiment, and are not described herein again in order to reduce repetition. Accordingly, the related technical details mentioned in the present embodiment can also be applied to the above-described embodiments.
  • the QFI within 6 bits is correspondingly mapped to the same value of the 6-bit second QFI, and for more than 6 bits.
  • the QFI, mapped to the vacant location of the second QFI that has not been mapped, implements mapping the 5QI of a larger number of bits to the second QFI of the smaller number of bits, achieving a match between the two, and mapping the QFI is included in the SDAP header to enable better communication services based on existing communication standards.
  • each module mentioned in each device implementation manner of the present invention is a logic module.
  • a logic module may be a physical module, a part of a physical module, or multiple physical entities.
  • the combined implementation of modules, the physical implementation of these logic modules themselves is not the most important, the combination of the functions implemented by these logic modules is the key to solving the technical problems raised by the present invention.
  • the above-mentioned various device embodiments of the present invention do not introduce a module that is not closely related to solving the technical problem proposed by the present invention, which does not indicate that the above device implementation does not have other Module.
  • the implementation functions of the modules shown in the foregoing user equipment implementation manner can be understood by referring to the related description of the foregoing method for dynamically indicating QFI.
  • the functions of the modules shown in the above embodiments of the user equipment may be implemented by a program running on a processor, or may be implemented by a specific logic circuit.
  • the user equipment when the user equipment is implemented in the form of a software function module and sold or used as a separate product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the method of various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • embodiments of the invention are not limited to any specific combination of hardware and software.
  • an embodiment of the present invention further provides a computer storage medium storing computer executable instructions, which are implemented by the processor to implement the above dynamic indication QFI method of the embodiment of the present invention.
  • an action is performed according to an element, it means the meaning of performing the action at least according to the element, and includes two cases: the action is performed only according to the element, and according to the element and Other elements perform this behavior.
  • the expressions of plural, multiple, multiple, etc. include two, two, two, two or more, two or more, two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信领域,公开了一种动态指示QFI的方法和用户设备,该方法包含以下步骤:用户设备获得SDAP SDU,并获得该SDAP SDU所属的第一QFI;将比特数较大的该第一QFI映射为比特数较小的第二QFI,其中,如果该第一QFI的值小于预先设定的第一阈值,则将该第一QFI映射到该第二QFI的相同的值;如果该第一QFI的值大于该第一阈值,则将该第一QFI映射到该第二QFI未被映射过的空余位置。然后,将该第二QFI包含在SDAP包头中。本发明能够基于现有的通信标准,更好地实现通信服务。

Description

动态指示QFI的方法和用户设备 技术领域
本发明涉及无线通信领域,具体涉及动态指示QFI的技术。
背景技术
5G是指第五代移动电话行动通信标准,也称第五代移动通信技术,5G也是4G之后的延伸,正在研究中,5G网络的理论下行速度为10Gb/s,根据业界的预期,5G的发展前景极为广阔。
在5G架构下,NR(NR Radio Access,无线接入)无线协议栈分为两个平面:用户面和控制面。UP(User Plane,用户面)协议栈即用户数据传输采用的协议簇,CP(Control Plane,控制面)协议栈即系统的控制信令传输采用的协议簇。
如图a所示,NR用户平面相比LTE(Long Term Evolution,长期演进)协议栈多了一层SDAP(Service Data Adaptation Protocol,服务数据适配协议)层,用户面协议从上到下依次是:SDAP、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)、RLC(Radio Link Control,无线链路控制)层,MAC(Medium Access Control,媒体介入控制)层、以及PHY层(物理层)。SDAP层主要用于QoS(Quality of Service,服务质量)流与无线承载之间的映射,以及在DL(Down Link,下行链路)和UL(Up Link,上行链路)包中标记QFI(Qos flow ID,服务质量流标识)。
但是,根据3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)最新会议进展结论,SDAP header(包头)中携带的QFI与N3接口所携带的QFI的比特数不同,导致不匹配,无法实现通信服务。
综上该,本领域迫切需要提出一种基于现有的通信标准,能够更好地实现通信服务的方法。
发明内容
本发明的目的就是提供一种动态指示QFI的方法和用户设备,能够基于现有的通信标准,更好地实现通信服务。
在本发明的第一个方面,提供了一种动态指示QFI的方法,包含以下步骤:
用户设备获得SDAP SDU,并获得该SDAP SDU所属的第一QFI;以及,
将该第一QFI映射为第二QFI,并将该第二QFI包含在SDAP包头中;
其中,该第一QFI的比特数大于该第二QFI的比特数。
在另一优选例中,上述方法进一步包含以下子步骤:
如果该第一QFI的值小于预先设定的第一阈值,则将该第一QFI映射到该第二QFI的相同的值;
如果该第一QFI的值大于该第一阈值,则将该第一QFI映射到该第二QFI未被映射过的空余位置。
在本发明的第二个方面,提供了一种用户设备,包含:
获取模块,用于获得SDAP SDU,和该SDAP SDU所属的第一QFI;
映射模块,用于将该第一QFI映射为第二QFI;
设置模块,用于将该第二QFI包含在SDAP包头中;
其中,该第一QFI的比特数大于该第二QFI的比特数。
在另一优选例中,该映射模块进一步包含以下子模块:
第一映射子模块,用于在该第一QFI的值小于预先设定的第一阈值时,将该第一QFI映射到该第二QFI的相同的值;
第二映射子模块,用于在该第一QFI的值大于该第一阈值时,将该第一QFI映射到该第二QFI未被映射过的空余位置。
在本发明的第三个方面,提供了一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述任一项该的方法步骤。
本发明的实施方式至少具有以下效果:
首先,针对现有的通信标准中,已同意将RAN(Radio Access Network,无线接入网)侧的SDAP header(头)里所携带的第二QFI的比特数确定为6,而另一方面,用户设备获得的第一QFI的比特数为7,导致不匹配的问题,本发明的发明人利用了第一QFI中的值并非是按序排列的特点,换句话说,如果明确按需排列第QFI,则可以减少第一QFI的比特数,由此,提出了一种新的动态指示QFI的方式,实现了将第一QFI映射到比特数更小的第二QFI,并将该第二QFI包含在SDAP包头中,解决了上述比特数大小而导致的不匹配问题,以便基于现有的通信标准,能够更好地实现通信服务。
进一步地,在具体动态指示QFI的方法中,将比特数较大的第一QFI通过一个阈值划分为两个区段,第一区段与比特数较小的QFI直接对应,即,将第一 QFI映射到第二QFI相同的值;第二区段则映射到未被映射过的空余位置,由此,更好地实现了比特数较大的QFI映射到比特数较小的QFI,更好地实现通信服务。
应理解,在本发明范围内中,本申请实施例的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1示出了本发明的一个实施例的动态指示QFI的方法的流程示意图。
图2示出了本发明的一个实施例的用户设备的结构示意图。
图3示出了本发明的一个实施例的应用场景中的Qos的架构示意图。
图4示出了本发明的一个实施例的应用场景中的用户面协议栈示意图。
在各附图中,
201:获取模块
202:映射模块
203:设置模块
具体实施方式
下面说明本申请涉及的部分术语
QFI:Qos flow ID,Qos流标识
SDAP:Service Data Adaptation Protocol,服务数据适配协议
SDAP SDU:Service Data Adaptation Protocol service Data Unit,服务数据适配协议服务数据单元
RLC:Radio Link Control,无线链路控制
MAC:Medium Access Control,介质访问控制
PHY:Physical,物理层
5QI:5G QoS Identifier,5G服务质量标识
NR:NR Radio Access,无线接入
PDU:Protocol Data Unit,协议数据单元
PDU session:PDU会话
QoS flow:Quality of Service flow,服务质量流
NAS:Non-access stratum,非接入层
GBR:Guaranteed Bit Rate,保证的比特速率
Non-GBR:Non-Guaranteed Bit Rate,不保证的比特速率
DL:Down Link,下行链路
UL:Up Link,上行链路
RB:Resource Bearer,终端与基站之间的承载
DRB:Data RB,终端与基站之间的数据承载
RAN:Radio Access Network,无线接入网
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议
本发明的发明人经过广泛而深入的研究,发现为了基于现有的通信标准,能够更好地实现通信服务,需要解决用户设备获得的第一QFI的比特数与RAN侧的SDAP包头中携带的第二QFI的比特数不一样而导致不匹配的问题,同时,本发明的发明人发现,虽然第一QFI的比特数为7,但第一QFI并非按序排列,从而提出将第一QFI划分为两部分,其中,6比特以内的,即(0-63),直接映射到第二QFI相同的值,超过6比特的,即(64-79),则映射到第二QFI还没有被映射过的空余位置。这种新的动态指示QFI的方式,实现了将第一QFI映射到比特数更小的第二QFI,并将该第二QFI包含在SDAP包头中,解决了上述比特数大小而导致的不匹配问题,以便基于现有的通信标准,能够更好地实现通信服务。
本申请实施例的优点至少包括:
1)实现不同比特数的QFI之间的映射,解决了用户设备获得的第一QFI的比特数与此后在RAN侧的SDAP包头中携带的第二QFI的比特数不一样而导致不匹配的问题。
2)能够基于现有的通信标准,更好地实现通信服务。
综上所述,本申请实施例提供的动态指示QFI的方法以及用户设备实现更好的通信服务,因此,在5G通信领域有十分广阔的应用前景。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明 的实施方式作进一步地详细描述。在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。
第一实施例:动态指示QFI的方法
首先,介绍一下本申请实施例的具体实现场景。
图3示出了本申请实施例的应用场景中的Qos的架构示意图,图4示出了本申请实施例的应用场景中的用户面协议栈示意图。结合图3、图4,对于每一个UE,5GC建立一个或者多个PDU session,每一个PDU session在空口会有一个或者多个DRB相对应用于承载其数据。
更具体地说,在PDU session中,QoS的最小颗粒度可以区分为不同的QoS flow,一个PDU session可以有多个QoS flow,不同QoS flow由不同的QFI来标示。在一个PDU session中,同一个QoS flow中的数据会有相同的QoS处理,比如:调度,等等。
QFI在从5GC到RAN的时候会在N3接口中给每一个包标示,这个QFI的比特数为7。QFI在一个PDU session是唯一的。N3接口的QFI可以动态的分配也可以隐式的等于5QI。
表1:
Figure PCTCN2018075870-appb-000001
Figure PCTCN2018075870-appb-000002
Figure PCTCN2018075870-appb-000003
在上面的表1中示出,5QI跟5G QoS特征之间有一个一对一的映射;由于5QI最大值为79,所以需要QFI为至少7比特。
另一方面,如图a所示,在RAN侧,SDAP层会给标示每个SDAP PDU标示QFI(如果配置了的话),用来标示QoS flow到DRB的映射关系。对于下行,QFI有RAN(SDAP层)侧标识并在空口传输,目的是为了RQoS(Reflective QoS,反射的Qos),如果NR-RAN或者NAS都不使用反射映射(reflective mapping),那么可以不用在下行空口传输QFI。对于上行,NG-RAN可以配置UE在空口传输QFI。
需要指出的是,虽然5QI最大值为79,需要QFI是至少7比特的,但RAN侧的SDAP header里所携带的QFI已经同意为6bit,由此,需要解决N3接口的QFI为7比特而到了RAN侧QFI为6比特的不配的问题,否则无法实现通信服务。
下面进一步说明本申请实施例的具体方法。
参见图1,本实施例的动态指示QFI的方法,包含以下步骤:
在步骤101:用户设备获得SDAP SDU,并获得该SDAP SDU所属的第一QFI。该SDAP SDU来自用户设备协议栈的上层。具体地说,对于上行来说,该SDAP SDU来自应用层,对于下行来说,该SDAP SDU来自核心网。本领域的技术人员可以理解,基于本申请的原理,本申请实施例的QFI映射对于上下行均适用。进一步地说,在本申请实施例中,该第一QFI的值与5QI的值相等。
接着,在步骤102:用户设备将该第一QFI映射为第二QFI,其中,该第一QFI的比特数大于该第二QFI的比特数。进一步地说,在本申请实施例中,该第一QFI是7比特的,该第二QFI是6比特的。
更具体地说,本实施例可以理解为对应于前面提到的一种情况,即,SDAP header里所携带的QFI是第二QFI,它的大小为6比特,即,最多支持64个QoS flow。而第一QFI动态指示给5QI或者等于5QI,由于如上文该,5QI目前支持0-97,因此, 第一QFI的大小为7比特。
本发明的发明人通过研究发现,5QI并非按序排列,在这种情况下,若将5QI按序排列或者适当地进行映射的话,则6比特的第二QFI也是可以工作的。因此,本发明的发明人将7比特的第一QFI映射到6比特的第二QFI,使UE从SDAP SDU获得的7比特的第一QFI能够通过映射,与之后包含在SDAP包头中的第二SDAP相匹配,从而实现通信服务。
进一步地说,在步骤102中,通过以下具体条件进行映射:
如果该第一QFI的值小于预先设定的第一阈值,则将该第一QFI映射到该第二QFI的相同的值;如果该第一QFI的值大于该第一阈值,则将该第一QFI映射到该第二QFI未被映射过的空余位置。例如,若第一QFI的值小于预先设定的第一阈值,则直接映射到第二QFI的相同的值,在这种情况下,该值被视为“已经被映射过”,其他的值,即,尚未与第一QFI形成对应的映射关系的值,被视为“未被映射过的空余位置”,如上所述,当第一QFI的值大于第一阈值时,映射到第二QFI的“未被影射过的空余位置”。为更便于理解,下文中将会具体举两个从第一QFI映射到第二QFI的例子(参见表2和表3)。
更进一步地说,在本申请实施例中,上述第一阈值的作用在于将7比特的第一QFI分为两部分(0-63,64-79),即在6比特以内的QFI,以及超过6比特的QFI。
在这种情况下,可以将“63”或“64”作为第一阈值,如果将“63”作为第一阈值,本领域的技术人员可以理解,当该第一QFI的值等于预先设定的第一阈值“63”时,则将该第一QFI映射到该第二QFI的相同的值。而如果将“64”作为第一阈值,当该第一QFI的值等于预先设定的第一阈值“64”时,则将该第一QFI映射到该第二QFI未被映射过的空余位置。
换句话说,也可以理解为第一阈值是6比特,即,64个值,在这种情况下,第一阈值包含了0-63的数值在内的64个值,对于这64个值,将第一QFI映射到该第二QFI的相同的值,而对于大于6比特的,将第一QFI映射到该第二QFI未被映射过的空余位置。
进一步地说,在本申请实施例中,该空余位置由该用户设备检测得到。或者,在本申请的另一个实施例中,该空余位置由该无线资源控制RRC信令指示得到。
接着,在步骤103:将该第二QFI包含(或者说设置)在SDAP包头中。本领域 的技术人员可以理解,经过第一QFI与第二QFI的映射,7比特的QFI映射为6比特的QFI,该QFI,即第二QFI的比特数与SDAP包头中规定的QFI的大小是一样的,都是6比特,因此解决了原先不匹配的问题,在目前通信协议的基础上,能够更好地实现通信服务。
进一步地说,在本申请实施例中,步骤103之后,还进一步包含以下步骤:该用户设备的SDAP层存储该第一QFI与该第二QFI的映射关系,其中,该映射关系作为用户设备未来收到的SDAP SDU所属的第一QFI映射到第二QFI对应的值的依据。在这种情况下,用户设备在未来收到了SDAP SDU所属的第一QFI时,可以根据或者参考已有的映射关系确定第一QFI与第二QFI的映射,具有处理速度快,以及节省系统资源等优点。
更进一步地说,在此基础上,步骤103之后还进一步包含以下步骤:如果该第一QFI已存在于已有的映射关系中,则根据该映射关系将该第一QFI映射为该第二QFI;如果该第一QFI未存在于已有的映射关系中,并且该第一QFI的值小于预先设定的第一阈值,则将该第一QFI映射到该第二QFI的相同的值,并存储该映射关系;如果该第一QFI未存在于已有的映射关系中,并且该第一QFI的值大于预先设定的第一阈值,则将该第一QFI映射到该映射关系中该第二QFI未被映射过的空余位置,并存储该映射关系。本领域的技术人员可以理解,对于已被映射过的QFI值,可以进行重新映射,以使第一QFI小于6比特的值都能够直接与第二QFI对应。但也可以直接将后续收到的第一QFI小于6比特的值映射到第二QFI的空余位置。
下面具体举两个从第一QFI映射到第二QFI的例子。
表2:
Figure PCTCN2018075870-appb-000004
如表2所示,在GBR(Guaranteed Bit Rate,保证的比特速率)业务中,当用户设备收到来自上层的SDAP SDU所属的第一QFI时,根据预先设定的第一阈值,将7比特的第一QFI分为两部分(0-63,64-79),对于0-63,即小于第一阈值的第一QFI,“1,2,3,4”,映射到第二QFI的相同的值:“1,2,3,4”;而对于大于第一阈值的第一QFI,“65,66,75”则映射到第二QFI中未被影射过的空余位置:“10,11,12”。由此,实现了第一QFI到第二QFI的映射。然后,再将第二QFI包含到SDAP包头中。
表3:
Figure PCTCN2018075870-appb-000005
如表3所示,在Non-GBR(Non-Guaranteed Bit Rate,不保证的比特速率)业务中,当用户设备收到来自上层的SDAP SDU所属的第一QFI时,根据预先设定的第一阈值,将7比特的第一QFI分为两部分(0-63,64-79),对于0-63,即小于第一阈值的第一QFI,“5,6,7,8,9”,映射到第二QFI的相同的值:“5,6,7,8,9”;而对于大于第一阈值的第一QFI,“69,70,79”则映射到第二QFI中未被影射过的空余位置:“13,14,15”。由此,实现了第一QFI到第二QFI的映射。然后,再将第二QFI包含到SDAP包头中。
上述实施方式的优点至少包括:
利用7比特的5QI,也就是第一QFI,并非按序排列的特点,通过新的映射条件,对6比特以内的QFI对应地映射到6比特的第二QFI的相同的值,而对超过6比特的QFI,映射到第二QFI的还没有被映射过的空余位置,实现了将较大比特数的5QI映射到较小比特数的第二QFI,实现了两者的匹配,并将映射后的QFI包含到SDAP包头中,使得能够基于现有的通信标准,提供更好的通信服务。
第二实施例:用户设备
参见图2,本实施例的用户设备包含获取模块201、映射模块202,以及设置模块203。其中,获取模块201,用于获得SDAP SDU,和该SDAP SDU所属的第一QFI;映射模块202,用于将该第一QFI映射为第二QFI;设置模块203,用于将该第二QFI包含在SDAP包头中。其中,该第一QFI的比特数大于该第二QFI的比特数。
进一步地说,在本申请实施例中,映射模块202进一步包含以下子模块:第一映射子模块,用于在该第一QFI的值小于预先设定的第一阈值时,将该第一QFI映射到该第二QFI的相同的值;第二映射子模块,用于在该第一QFI的值大于该第一阈值时,将该第一QFI映射到该第二QFI未被映射过的空余位置;
进一步地说,在本申请实施例中,用户设备还包含存储模块,用于在该用户设备的SDAP层存储该第一QFI与该第二QFI的映射关系,其中,该映射关系作为用户设备未来收到的SDAP SDU所属的第一QFI映射到第二QFI对应的值的依据。
进一步地说,在本申请实施例中,该第一QFI的值与5QI的值相等。
进一步地说,在本申请实施例中,该第一QFI是7比特的,该第二QFI是6比特的。
进一步地说,在本申请实施例中,该映射模块202还进一步包含:第三映射子模块,用于在该第一QFI的值等于预先设定的第一阈值,且该第一阈值为63时,将该第一QFI映射到该第二QFI的相同的值。更进一步地说,该映射模块202还进一步包含:第四映射子模块,用于在该第一QFI的值等于预先设定的第一阈值,且所述第一阈值为64时,将该第一QFI映射到该第二QFI未被映射过的空余位置。
进一步地说,在本申请实施例中,该空余位置由该用户设备检测得到。
进一步地说,在本申请实施例中,该空余位置由该无线资源控制RRC信令指示得到。
进一步地说,在本申请实施例中,该映射模块202进一步包含以下子模块:
第五映射子模块,用于当该第一QFI已存在于已有的映射关系中时,根据该映射关系将该第一QFI映射为该第二QFI,并且,存储模块还用于存储该映射关系;
第六映射子模块,用于当该第一QFI未存在于已有的映射关系中,并且该第一QFI的值小于预先设定的第一阈值时,将该第一QFI映射到该第二QFI的相同的值,并且,存储模块还用于存储该映射关系;
第七映射子模块,用于当该第一QFI未存在于已有的映射关系中,并且该第一QFI的值大于预先设定的第一阈值时,将该第一QFI映射到该映射关系中该第二QFI未被映射过的空余位置,并且,存储模块还用于存储该映射关系。
本实施方式与上文该的方法实施方式是对应的装置实施方式,本实施方式可与上文该的实施方式互相配合实施。上文该的实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上文该的实施方式中。
上述实施方式的优点至少包括:
利用7比特的5QI,也就是第一QFI并非按序排列的特点,通过新的映射条件,对6比特以内的QFI对应地映射到6比特的第二QFI的相同的值,而对超过6比特的QFI,映射到第二QFI的还没有被映射过的空余位置,实现了将较大比特数的5QI映射到较小比特数的第二QFI,实现了两者的匹配,并将映射后的QFI包含到SDAP包头中,使得能够基于现有的通信标准,提供更好的通信服务。
需要说明的是,本发明各设备实施方式中提到的各模块都是逻辑模块,在物理上,一个逻辑模块可以是一个物理模块,也可以是一个物理模块的一部分,还可以以多个物理模块的组合实现,这些逻辑模块本身的物理实现方式并不是最重要的,这些逻辑模块所实现的功能的组合才是解决本发明所提出的技术问题的关键。此外,为了突出本发明的创新部分,本发明上述各设备实施方式并没有将与解决本发明所提出的技术问题关系不太密切的模块引入,这并不表明上述设备实施方式并不存在其它的模块。
需要说明的是,本领域技术人员应当理解,上述用户设备实施方式中所示的各模块的实现功能可参照前述动态指示QFI的方法的相关描述而理解。上述用户设备实施方式中所示的各模块的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。本发明实施例上述用户设备如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例该方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述动态指示QFI的方法。
需要说明的是,在本专利的申请文件中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括该要素的过程、 方法、物品或者设备中还存在另外的相同要素。本专利的申请文件中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该要素执行该行为、和根据该要素和其它要素执行该行为。多个、多次、多种等表达包括2个、2次、2种以及2个以上、2次以上、2种以上。
在本申请提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本申请的上述讲授内容之后,本领域技术人员可以对本申请作各种改动或修改,这些等价形式同样落于本申请所要求保护的范围。

Claims (19)

  1. 一种动态指示服务质量流标识QFI的方法,其特征在于,包含以下步骤:
    用户设备获得服务数据适配协议服务数据单元SDAP SDU,并获得所述SDAP SDU所属的第一QFI;以及,
    将所述第一QFI映射为第二QFI,并将所述第二QFI包含在服务数据适配协议SDAP包头中;
    其中,所述第一QFI的比特数大于所述第二QFI的比特数。
  2. 如权利要求1所述的方法,其特征在于,所述将所述第一QFI映射为第二QFI之后,所述方法还包括:
    所述用户设备存储所述第一QFI与所述第二QFI的映射关系。
  3. 如权利要求2所述的方法,其特征在于,所述用户设备通过SDAP层存储所述映射关系。
  4. 如权利要求1所述的方法,其特征在于,所述第一QFI的值与5G服务质量标识5QI的值相等。
  5. 如权利要求1所述的方法,其特征在于,所述第一QFI是7比特的,所述第二QFI是6比特的。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述将所述第一QFI映射为第二QFI,包括:
    如果所述第一QFI的值小于第一阈值,则将所述第一QFI映射到所述第二QFI的相同的值;
    如果所述第一QFI的值大于所述第一阈值,则将所述第一QFI映射到所述第二QFI未被映射过的空余位置;
    如果所述第一QFI的值等于所述第一阈值,则将所述第一QFI映射到所述第二QFI的相同的值,或者,将所述第一QFI映射到所述第二QFI未被映射过的空余位置。
  7. 如权利要求6述的方法,其特征在于,如果所述第一QFI的值等于所述第一阈值,则将所述第一QFI映射到所述第二QFI的相同的值,或者,将所述第一QFI映射到所述第二QFI未被映射过的空余位置,包括:
    所述第一阈值是63时,如果所述第一QFI的值等于所述第一阈值,则将所述第一QFI映射到所述第二QFI的相同的值;
    所述第一阈值是64时,如果所述第一QFI的值等于所述第一阈值,则将所述 第一QFI映射到所述第二QFI未被映射过的空余位置。
  8. 如权利要求6所述的方法,其特征在于,
    所述空余位置由所述用户设备检测得到;或者
    所述空余位置由所述无线资源控制RRC信令指示得到。
  9. 如权利要求2所述的方法,其特征在于,所述将所述第一QFI映射为第二QFI,包括:
    如果所述第一QFI已存在于存储的映射关系中,则根据所述映射关系将所述第一QFI映射为所述第二QFI;
    如果所述第一QFI未存在于存储的映射关系中,并且所述第一QFI的值小于预先设定的第一阈值,则将所述第一QFI映射到所述第二QFI的相同的值,并存储所述映射关系;
    如果所述第一QFI未存在于存储的映射关系中,并且所述第一QFI的值大于预先设定的第一阈值,则将所述第一QFI映射到所述映射关系中所述第二QFI未被映射过的空余位置,并存储所述映射关系。
  10. 一种用户设备,其特征在于,包含:
    获取模块,用于获得SDAP SDU,和所述SDAP SDU所属的第一QFI;
    映射模块,用于将所述第一QFI映射为第二QFI;
    设置模块,用于将所述第二QFI包含在SDAP包头中;
    其中,所述第一QFI的比特数大于所述第二QFI的比特数。
  11. 如权利要求10所述的用户设备,其特征在于,还包括:
    存储模块,用于存储所述第一QFI与所述第二QFI的映射关系。
  12. 如权利要求11所述的用户设备,其特征在于,所述存储模块通过SDAP层存储所述映射关系。
  13. 如权利要求10所述的用户设备,其特征在于,所述第一QFI的值与5QI的值相等。
  14. 如权利要求10所述的用户设备,其特征在于,所述第一QFI是7比特的,所述第二QFI是6比特的。
  15. 如权利要求10所述的用户设备,其特征在于,所述映射模块进一步包含以下子模块:
    第一映射子模块,用于在所述第一QFI的值小于预先设定的第一阈值时,将所述第一QFI映射到所述第二QFI的相同的值;
    第二映射子模块,用于在所述第一QFI的值大于所述第一阈值时,将所述第一QFI映射到所述第二QFI未被映射过的空余位置;以及
    第三映射子模块,用于在所述第一QFI的值等于预先设定的第一阈值时,将所述第一QFI映射到所述第二QFI的相同的值;或者
    第四映射子模块,用于在所述第一QFI的值等于预先设定的第一阈值时,将所述第一QFI映射到所述第二QFI未被映射过的空余位置。
  16. 如权利要求15所述的用户设备,其特征在于,
    第三映射子模块,用于在所述第一QFI的值等于预先设定的第一阈值,且所述第一阈值为63时,将所述第一QFI映射到所述第二QFI的相同的值;或者
    第四映射子模块,用于在所述第一QFI的值等于预先设定的第一阈值,且所述第一阈值为64时,将所述第一QFI映射到所述第二QFI未被映射过的空余位置。
  17. 如权利要求15-16中任意一项所述的用户设备,其特征在于,所述空余位置由所述用户设备检测得到;或者
    所述空余位置由所述无线资源控制RRC信令指示得到。
  18. 如权利要求15所述的用户设备,其特征在于,所述映射模块进一步包含以下子模块:
    第五映射子模块,用于当所述第一QFI已存在于已有的映射关系中时,根据所述映射关系将所述第一QFI映射为所述第二QFI;
    第六映射子模块,用于当所述第一QFI未存在于已有的映射关系中,并且所述第一QFI的值小于预先设定的第一阈值时,将所述第一QFI映射到所述第二QFI的相同的值,并且,所述存储模块还用于存储所述映射关系;
    第七映射子模块,用于当所述第一QFI未存在于已有的映射关系中,并且所述第一QFI的值大于预先设定的第一阈值时,将所述第一QFI映射到所述映射关系中所述第二QFI未被映射过的空余位置,并且,所述存储模块还用于存储所述映射关系。
  19. 一种计算机存储介质,其上存储有计算机可执行指令,其特征在于,所述计算机可执行指令被处理器执行时实现权利要求1至9任一项所述的方法步骤。
PCT/CN2018/075870 2018-02-08 2018-02-08 动态指示qfi的方法和用户设备 WO2019153207A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18857430.5A EP3550879B1 (en) 2018-02-08 2018-02-08 Method and user equipment for dynamically indicating a qfi
US16/336,786 US11310689B2 (en) 2018-02-08 2018-02-08 Method for dynamically indicating QFI and user equipment
PCT/CN2018/075870 WO2019153207A1 (zh) 2018-02-08 2018-02-08 动态指示qfi的方法和用户设备
CN201880003858.XA CN109863733B (zh) 2018-02-08 2018-02-08 动态指示qfi的方法和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075870 WO2019153207A1 (zh) 2018-02-08 2018-02-08 动态指示qfi的方法和用户设备

Publications (1)

Publication Number Publication Date
WO2019153207A1 true WO2019153207A1 (zh) 2019-08-15

Family

ID=66893995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075870 WO2019153207A1 (zh) 2018-02-08 2018-02-08 动态指示qfi的方法和用户设备

Country Status (4)

Country Link
US (1) US11310689B2 (zh)
EP (1) EP3550879B1 (zh)
CN (1) CN109863733B (zh)
WO (1) WO2019153207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105657A1 (en) * 2018-06-22 2021-04-08 Huawei Technologies Co., Ltd. Data Transmission Method and Apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109003398B (zh) 2012-06-14 2022-04-29 百利游戏技术有限公司 用于增强现实游戏的系统和方法
GB2575469A (en) * 2018-07-10 2020-01-15 Nec Corp Communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102502279B1 (ko) * 2016-07-08 2023-02-21 삼성전자 주식회사 무선 통신 시스템에 있어서 핸드오버를 수행하는 방법 및 장치
WO2018195752A1 (zh) * 2017-04-25 2018-11-01 北京小米移动软件有限公司 缓存状态的上报方法及装置
WO2018196102A1 (zh) * 2017-04-27 2018-11-01 北京小米移动软件有限公司 信息传递方法、装置及计算机可读存储介质
CN107493590B (zh) * 2017-06-15 2021-08-03 苏州智行畅联科技有限公司 数据传输方法及装置、基站及计算机可读存储介质
US10798754B2 (en) * 2017-07-24 2020-10-06 Asustek Computer Inc. Method and apparatus for serving quality of service (QOS) flow in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Shorter QFI in SDAP header", 3GPP TSG-RAN WG2 MEETING #99 BIS R2-1710393, 9 October 2017 (2017-10-09), Prague, Czech Repu- blic, XP051354905 *
OPPO: "Discussion on QFI awareness", 3GPP TSG-RAN2 #99 R2-1707779, 21 August 2017 (2017-08-21), Berlin, Germany, XP051317739 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105657A1 (en) * 2018-06-22 2021-04-08 Huawei Technologies Co., Ltd. Data Transmission Method and Apparatus
US11877178B2 (en) * 2018-06-22 2024-01-16 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Also Published As

Publication number Publication date
EP3550879B1 (en) 2021-04-07
CN109863733A (zh) 2019-06-07
US11310689B2 (en) 2022-04-19
CN109863733B (zh) 2020-05-08
EP3550879A4 (en) 2019-10-09
US20210368381A1 (en) 2021-11-25
EP3550879A1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2018127117A9 (zh) 信息传输的方法和装置
TWI488525B (zh) 執行暫存器狀態回報的方法及相關通訊裝置
TWI336577B (en) Method and mobile terminal for communicating data in a wireless communications system
WO2022028202A1 (zh) 下行控制信息的处理方法及设备
JP7053823B2 (ja) 方法、装置、コンピュータプログラム製品およびコンピュータプログラム
WO2018053692A1 (zh) 数据传输方法、装置及系统
WO2016029667A1 (zh) 一种上行数据传输方法及装置
WO2011156973A1 (zh) 缓存状态报告的报告方法、获取方法、终端、基站和通信系统
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
WO2019080486A1 (zh) 控制信息的处理方法及系统、第一设备、第二设备
JP7100135B6 (ja) データ伝送制御方法および関連製品
WO2019153207A1 (zh) 动态指示qfi的方法和用户设备
TWI663858B (zh) L2層資料封包處理方法和使用該方法的電子裝置
WO2016183714A1 (zh) 通信方法和通信设备
WO2012119491A1 (zh) 通用公共无线接口的非i/q数据传输方法和装置
US20220368494A1 (en) Uplink re-transmission with compact memory usage
WO2019214523A1 (zh) 一种通信方法及装置
WO2019029686A1 (zh) 数据传输方法、设备和通信系统
WO2016119514A1 (zh) 一种上报功率余量报告的方法、装置及存储介质
CN107005998A (zh) 数据传输的方法、基站和用户设备
US12010530B2 (en) PDCP duplication function determination and indication methods and devices, base station, and terminal
TW201922021A (zh) 方法、設備、電腦程式產品及電腦程式
US20200305220A1 (en) Radio access network node, radio terminal, network node, and method therefor
WO2017166078A1 (zh) 比特块大小确定方法及设备
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018857430

Country of ref document: EP

Effective date: 20200427

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE