WO2019151799A1 - Method for treating polychlorinated biphenyls using microorganisms - Google Patents

Method for treating polychlorinated biphenyls using microorganisms Download PDF

Info

Publication number
WO2019151799A1
WO2019151799A1 PCT/KR2019/001360 KR2019001360W WO2019151799A1 WO 2019151799 A1 WO2019151799 A1 WO 2019151799A1 KR 2019001360 W KR2019001360 W KR 2019001360W WO 2019151799 A1 WO2019151799 A1 WO 2019151799A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcbs
strain
insulating oil
concentration
conditions
Prior art date
Application number
PCT/KR2019/001360
Other languages
French (fr)
Korean (ko)
Inventor
이성기
이성호
송미경
Original Assignee
이성기
이성호
송미경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이성기, 이성호, 송미경 filed Critical 이성기
Publication of WO2019151799A1 publication Critical patent/WO2019151799A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils

Definitions

  • the present invention relates to a method for treating polychlorinated biphenyls (PCBs) using certain microorganisms.
  • PCBs PolyChlorinated Biphenyls
  • This compound is insoluble in water, good in solubility in organic solvents, stable in acids and alkalis, low in volatility, high in viscosity and very high in thermal resistance, so PCBs are used in insulating oils in transformers and accumulators or in heat exchangers. It has been used as a medium and has been widely used in industries such as paint, ink and pesticides.
  • PCBs Polychlorinated Biphenyls
  • insulating oils such as transformers and condensers used in power plants.
  • Act on Persistent Organic Pollutants Control 2008.1.27
  • the use of PCBs contaminated equipment insulating oil is prohibited and until 2015. Although it is mandatory to handle it, it is not completely finished due to technical and environmental problems.
  • KEPCO has conducted R & D projects on budget of about 2 billion won from March 2005.
  • the decomposition process was carried out by diluting waste insulating emulsion (3%), preheating pressurized oxygen-added mixed supercritical oxidation (1020 4000psi) Is made of. According to the dilution of the insulating oil (about 3%), the waste to be treated increases by 33 times, and the decomposition rate is slow, the processing cost is high due to the addition of a large amount of oxygen, and the safety problems and the emitted gas and There is a problem that additional secondary equipment for condensate treatment is required.
  • Overseas treatment trends are as follows. Overseas, R & D activities such as decomposition treatment technology, alternative treatment technology, and recycling technology are actively progressed by PCBs processing technology, and most countries such as USA, Canada, and Europe prefer high temperature incineration treatment methods. Incineration is the most reliable method, but when the combustion conditions are poor, there is a high possibility of generating toxic gases such as dioxins, and various incineration technologies and prevention facilities have been studied to solve this problem. As a result, incineration technology is being developed or developed using 1) Grate incinerate method, 2) Fluidized bed method, 3) Pure oxygen supply liquid incineration method, 4) Rotary-kiln incinerator method, etc.
  • the inventors of the present invention have come to know that the processing efficiency and reproducibility of PCBs contaminated insulating oil using the PCBs purification treatment technology using a specific microorganism can be developed into a treatment facility.
  • Patent Document 1 Republic of Korea Patent No. 10-0848137
  • Patent Document 2 Republic of Korea Patent No. 10-0612225
  • Patent Document 3 Korean Patent Registration No. 10-0864632
  • Patent Document 4 Republic of Korea Patent Registration 10-1021690
  • Patent Document 5 Republic of Korea Patent Registration 10-1085553
  • Patent Document 6 Republic of Korea Patent Publication No. 10-2006-0036261
  • Patent Document 7 Republic of Korea Patent Registration 10-0782543
  • Patent Document 8 Republic of Korea Patent No. 10-0798410
  • One aspect of the present invention is to provide a new PCBs processing method that solves the above problems.
  • An aspect of the present invention is to provide a method for administering a specific bacterial community in the PCBs processing method of insulating oil containing Polychlorinated Biphenyls (PCBs).
  • an aspect of the present invention is to provide a PCBs processing method comprising a biodegradation step of specific conditions in the PCBs processing method of insulating oil containing polychlorinated Biphenyls (PCBs), after bacterial community administration.
  • PCBs polychlorinated Biphenyls
  • PCBs of insulating oil containing PCBs (Polychlorinated Biphenyls)
  • the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 selected from NBC2000 bacterial community with accession number KCTC 10623 BP. Strain, Brebundimonas vesicularis Cy102 strain, Brebunundimonasvesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp.
  • Cy107 strain Capital One or more of Pseudomonas aeruginosa Tnh strain, W24 strain which is an oil degradation gram negative bacterium and Nz2001 strain which is a sulfur strain; At least one of Bacillus cereus EBC106 strain and Pseudomonas sp. EBC107 strain selected from EBC1000 bacterial community with an accession number of KCTC 0652 BP; To provide.
  • the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 strain, Brebundi Monas Veciculis Cy102 strain, Brebundimonas vesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp.
  • EBC107 strains Provide a method.
  • the PCBs treated bacterial community provides a method for treating the PCBs of insulating oil, which is administered after incubating at 10 9 CFU / ml or more of the cell number.
  • the culture is incubated for 4 to 5 days with bacto-yeast extract in a Luria-Bertani nutrient medium, to provide a PCBs treatment method of insulating oil do.
  • the method of processing the PCBs of the insulating oil further provides a method of processing the PCBs of the insulating oil, further comprising the step of biodegradation after administration of the PCBs treatment bacterial community.
  • the step of biodegrading is a temperature condition of 24 °C to 26 °C; pH conditions of pH 5.3 to 8.5; And DO conditions with a dissolved oxygen concentration of 73% to 95%;
  • the present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
  • the step of biodegradation is a temperature condition of 24 °C to 25 °C; pH conditions of pH 6-8; And DO conditions in which the concentration of dissolved oxygen is 80% to 90%;
  • the present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
  • the step of biodegrading further comprises a condition for stirring using a stirrer of 150 rpm to 250 rpm during biodegradation, to provide a method for processing PCBs of insulating oil.
  • the step of biodegrading has a biodegradation time of 50 days or more, to provide a method for processing PCBs of insulating oil.
  • the step of biodegrading has a biodegradation time of 70 days to 200 days, to provide a method for processing PCBs of insulating oil.
  • the insulating oil is an insulating oil contained in a transformer, to provide a method for processing PCBs of insulating oil.
  • the method is to provide a method for processing PCBs of insulating oil, reducing the concentration of PCBs in the insulating oil to 50ppm or less.
  • the method is to reduce the concentration of PCBs in the insulating oil to 50ppm or less and at the same time to provide a method for treating the PCBs of the insulating oil to generate dioxin below the concentration of 3 ng-TEQ / g.
  • the method according to one aspect of the present invention can significantly reduce the concentration of PCBs in the insulating oil while at the same time keeping the emission of dioxins much lower than the legal standard.
  • the method according to an aspect of the present invention can significantly reduce the concentration of PCBs in insulating oil without contamination problems such as solid waste and soil.
  • the method according to an aspect of the present invention can significantly reduce the concentration of PCBs in the insulating oil at an economical facility cost.
  • the method according to one aspect of the present invention can reduce the concentration of PCBs in a large amount of insulating oil at once.
  • the method according to an aspect of the present invention can reduce the concentration of PCBs in the insulating oil to the same level as the international level.
  • the method according to one aspect of the present invention can reduce the concentration of PCBs in the insulating oil in a relatively faster time than the conventional technology.
  • the method according to an aspect of the present invention provides a method for processing PCBs in insulating oil that can be used directly in the field such as a transformer without additional installation of secondary equipment.
  • 1A to 1D are graphs of changes in pH, temperature, DO, and stirring speed of a reaction tank.
  • Figure 2a is a result of the observation of the main reaction tank GX-1 containing the high concentration PCBs, (a) is a photo before the mixing of the strain, the color of the yellow and transparent insulating oil appeared, (b) is a photograph of when the strain was stirred immediately after mixing the strain a little Turbidity (microbial proliferation) and microbial community were observed, (c) 69 days after the strain turbidity was increased, microbial community was observed inside the reactor, (d) 161 days after the strain turbidity Became thicker, and a large number of microbial communities were formed inside the reactor.
  • Figure 2b is a low concentration of PCBs containing insulating oil main reaction tank GX-2 observation results, (a) is a photograph before the strain mixing, the color of the yellow and transparent insulating oil appeared, (b) is a photograph when agitated immediately after mixing the strain a little strain Turbidity and microbial community were observed, (c) the 66-day old photos showed turbidity of the strain, the microbial community was observed inside the reactor, (d) 161 days the strain turbidity was increased, The color changed from light yellow to white, and microbial community was formed inside the reactor.
  • Figure 2c is a result of observation of the pre-reactor GR-1 containing the high concentration of PCBs containing oil, (a) is a picture of the strain before mixing the yellow and transparent insulating oil, (b) is a picture of a slight strain when the image is stirred immediately after mixing the strain Turbidity and microbial community were observed, (c) was a 51-day picture of the turbidity of the strain was increased, the microbial community was observed inside the reactor, (d) 84 days of the picture was taken around September 15 It turned brown.
  • Figure 2d is a result of observation of the preliminary reactor GR-2 containing a high concentration PCBs insulating oil control, (a) is a photograph immediately after the initial charge, (b) is a photograph after 51 days, (c) is a photograph after 84 days.
  • Figure 3 is a graph showing the change in PCBs concentration (main reactor-GX) with the reaction time applied GC-ECD analysis.
  • 4A is a non-PCBs insulating oil GC-ECD method peak pattern (lab frontier).
  • Figure 4b is a non-PCBs insulating oil + microbial strain GC-ECD method peak pattern (Lab Frontier).
  • the variable includes all values within the described range including the listed endpoints of the range.
  • the range “5 to 10” includes any subrange such as 6 to 10, 7 to 10, 6 to 9, 7 to 9, as well as values of 5, 6, 7, 8, 9, and 10.
  • any value between integers that are within the scope of the described range such as 5.5, 6.5, 7.5, 5.5-8.5, 6.5-9, and the like.
  • the range of “10% to 30%” ranges from 10% to 15%, 12% to 10%, 11%, 12%, 13%, etc. as well as all integers including up to 30%. It will be understood to include any subranges such as 18%, 20% to 30%, etc., and to include any value between valid integers within the range of the stated range, such as 10.5%, 15.5%, 25.5% and the like.
  • PCBs of insulating oil containing PCBs (Polychlorinated Biphenyls)
  • the step of administering a PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain selected from NBC2000 bacterial community with accession number KCTC 10623 BP , Bredundimonas vesicularis Cy101 strain, Bredundimonas vesicularis Cy102 strain, Bredundimonasvesicularis Cy103 strain, Bacillus stearothermophilus Bacillus stearothermophilus strain Or any one or more of Bacillus sp.
  • Cy107 strain Pseudomonas aeruginosa Tnh strain, W24 strain which is an oil degradation gram negative bacterium and Nz2001 strain which is a sulfur strain; At least one of Bacillus cereus EBC106 strain and Pseudomonas sp. EBC107 strain selected from EBC1000 bacterial community with an accession number of KCTC 0652 BP; To provide.
  • the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 strain, Brebundi Monas Veciculis Cy102 strain, Brebundimonas vesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp.
  • EBC107 strains Provide a method.
  • the PCBs treated bacterial community Pseudomonas sp. Cy100 strain (hereinafter abbreviated as "Cy100"), Pseudomonas sp. EBC107 strain (hereinafter, “EBC107 Abbreviated as " Pseudomonas aeruginosa " Tnh strain (hereinafter abbreviated as "Tnh”), Brevundimonas vesicularis Cy101 strain (hereinafter abbreviated as "Cy101”) , Brevundimonas vesicularis Cy102 strain (hereinafter abbreviated as "Cy102”), Brevundimonas vesicularis Cy103 strain (hereinafter abbreviated as "Cy103”), as Bacillus stea Bacillus stearothermophilus Cy104 strain (hereinafter abbreviated as "Cy104”), Bacillus sp.
  • Cy100 Pseudomonas sp
  • Cy107 strain (hereinafter abbreviated as "Cy107"), Bacillus cereus EBC106 strain (hereinafter referred to as "Cy104") , Abbreviated as “EBC106”, the Nz2001 strain which is a sulfur strain Characterized in that consisting of abbreviated as “Nz2001” abbreviated as) and oil decomposition gram-negative bacteria strain W24 (hereinafter, "W24").
  • the PCBs treatment bacterial community essentially include Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001 It characterized in that it further comprises one or more strains selected from the group consisting of.
  • the PCBs treated bacterial community provides a method for treating the PCBs of insulating oil, which is administered after culturing at 10 9 CFU / ml or more. If the cell number is satisfied, the PCBs can be effectively decomposed.
  • the culture is incubated for 4 to 5 days with bacto-yeast extract in a Luria-Bertani nutrient medium, to provide a PCBs treatment method of insulating oil do.
  • PCBs can be effectively decomposed.
  • the method of treating the PCBs of the insulating oil further provides a method of processing the PCBs of the insulating oil after the biodegradation, after administration of the bacterial community.
  • the step of biodegrading is a temperature condition of 24 °C to 26 °C; pH conditions of pH 5.3 to 8.5; And DO conditions with a dissolved oxygen concentration of 73% to 95%;
  • the present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions. When the biodegradation conditions are satisfied, PCBs can be effectively decomposed.
  • the step of biodegradation is a temperature condition of 24 °C to 25 °C; pH conditions of pH 6-8; And DO conditions in which the concentration of dissolved oxygen is 80% to 90%;
  • the present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
  • the step of biodegrading further comprises a condition for stirring using a stirrer of 150 rpm to 250 rpm during biodegradation, to provide a method for processing PCBs of insulating oil.
  • a stirrer with a speed of 190 rpm to 210 rpm during biodegradation may be used.
  • PCBs can be effectively decomposed.
  • the step of biodegrading has a biodegradation time of 50 days or more, to provide a method for processing PCBs of insulating oil.
  • the biodegradation time is satisfied, PCBs can be effectively decomposed.
  • the step of biodegrading has a biodegradation time of 70 days to 200 days, to provide a method for processing PCBs of insulating oil.
  • the biodegradation time may be 150 days to 170 days.
  • the insulating oil is an insulating oil contained in a transformer, to provide a method for processing PCBs of insulating oil.
  • the method is to provide a method for processing PCBs of insulating oil, reducing the concentration of PCBs in the insulating oil to 50ppm or less.
  • the method is to reduce the concentration of PCBs in the insulating oil to 50ppm or less and at the same time to provide a method for treating the PCBs of the insulating oil to generate dioxin below the concentration of 3 ng-TEQ / g.
  • concentration of dioxins may be 0.5 to 0.7 ng-TEQ / g concentration.
  • Luria-Bertani liquid medium (10 g of Bacterium-Tryptone, 5 g of Bakto yeast extract, 10 g of NaCl + 1 liter of demineralized water), and then 1 ml was taken to take 1 ml of Luria-Bertani agar medium ( Each colony was isolated from 10 g of Bakto-Tryptone, 5 g of Bakto yeast extract, 10 g of NaCl, 1.5% of agar, and 950 ml of demineralized water.
  • Each colony separated from pure water was reinoculated into the above-described minimal liquid medium, followed by shaking culture, followed by different cultures of colonies of different shapes formed in the Luria-Bertani solid medium, and the same colonies appearing in the passage of the colonies. About 50 species were separated.
  • the 26 bacteria obtained here were composed of a community named NBC2000, and each of the bacteria constituting the bacterial community was Cy100, Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Ntar1, Ntar2, Ntar3, Gc300, Gc500, Gc501, Bs100, Aeng17, Aeng18, Sp300, Tnh, Djhc, Pcpts, EBC106, EBC107, Bs101, W24 and Nz2001.
  • the bacterial community NBC2000 according to the present invention was deposited on April 16, 2004 at the Genetic Resource Center of the Korea Research Institute of Bioscience and Biotechnology under accession number KCTC 10623 BP.
  • Luria-Bertani nutritional medium [10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of sodium chloride (NaCl) / 1 liter of demineralized water] 8, temperature 25 ⁇ 30 o C, shaking (shaking) rotation at 80 ⁇ 120rpm 48 ⁇ 96 hours incubation for optimum growth, even in subcultures grow well under the same conditions.
  • API Kits API20E, API20NE, API50CH and API50CHB purchased from bioMerieux (bioMerieux sa 69280 Marcy I'Etoile / France). To Table 5).
  • Each strain consists of NBC2000 purely separated from soils such as Korea, New Zealand, Sweden, and Cyprus, all of which have mobility characteristics and can be applied to a wide variety of soils.
  • the method of morphological characterization of individual strains in bacterial community NBC2000 is as follows.
  • Cy100 After 48 hours of incubation, the surface appears as an uneven irregular yellow colony and grows to a size of 4 mm.
  • Cy101 Appears as translucent ivory convex colonies after 48 hours of incubation and grows to a size of 2.5 mm.
  • Cy102 Appears as yellow round colonies after 48 hours of incubation and grows to 2 mm in size.
  • Cy103 After 48 hours of incubation, it appears as an ivory round and flat colony, growing to a size of 4 mm.
  • Cy104 Appears as translucent ivory round colonies after 48 hours of incubation and grows to 4 mm in size.
  • Cy105 Appears as ivory round colonies after 48 hours of incubation and grows to a size of 2.5 mm.
  • Cy106 After 48 hours of incubation, it appears as a round colony with a matt white color and grows to a size of 1.5 mm.
  • Cy107 After 48 hours of incubation, it appears as a matt white round colony and grows to a size of 1 mm.
  • Ntar1 After 24 hours of incubation, it appears as a translucent yellowish, round, glossy colony, growing to a size of 1 mm.
  • Ntar2 After 24 hours of incubation, it appears as a round, glossy colony of beige and ivory, growing to a size of 2 mm.
  • Ntar3 After 48 hours of incubation, it appears as an ivory-colored round and glossy colony, growing to a size of 1.5 mm.
  • Gc300 After 24 hours of cultivation, it appears as an ivory round, glossy convex colony and grows to a size of 3 mm.
  • Gc500 After 24 hours of incubation, it appears as an ivory round, glossy convex colony, growing to a size of 1.5 mm.
  • Gc501 After 24 hours of cultivation, it appears as an ivory round, glossy convex colony and grows to a size of 2.5 mm.
  • Bs100 Appears as bright ivory round colonies after incubation for 24 hours and grows to 2 mm in size.
  • Aeng17 After 24 hours of incubation, it appears as round or irregular colonies of red or ivory color and grows to 3mm in size.
  • Aeng18 After 24 hours of incubation, it appears as round or irregular colonies of red or ivory color and grows to 3mm in size.
  • Sp300 After 24 hours of incubation, it appears as round or irregular colonies of beige and brown color, growing to a size of 3 mm.
  • Tnh After 40 hours of incubation, the translucent ivory surface appears as an uneven metallic colony and grows to 4 mm in size. Over time, the medium changes color to indigo blue.
  • Pcpts After 24 hours of incubation, they appear as beige and brown round or irregular colonies and grow to a size of 3 mm.
  • EBC106 Appears as a flat matte colony that grows to an uneven surface after culturing for 24 hours and grows to a size of 7 mm.
  • EBC107 After 40 hours of incubation, the semi-transparent ivory-colored surface appears as uneven irregular colonies and grows to a size of 4 mm.
  • Bs101 After culturing for 24 hours, it is yellowish ivory, rounded and surrounded by a rim, growing to a size of 5 mm. It is a gram-positive bacterium that has motility
  • W24 Pale yellow, round, glossy and convex colonies that grow to a size of 1.5 mm after 48 hours of incubation. Gram-negative bacteria are motility.
  • Nz2001 Appears as white matte colonies after 48 h of incubation and grows to 2.5 mm. During prolonged incubation, hyphae appear at the edges of the colony, and there is motility.
  • Maconkey solid medium [MacConkey agar: 17g peptone, Proteose peptone 3g, 10g lactose, 1.5g Bil Salts No.3, 5g sodium chloride, 13.5g agar, 0.03g neutral red, 0.001 g of crystal violet, 1 liter of demineralized water, pH7.3 ⁇ 7.5]
  • Ntar1 is transparent light brown with uneven surface
  • Ntar2 is a small beige colony
  • Ntar3 is a light brown transparent brown colony
  • Gc300 is a dark pink colony with beige edges
  • Gc500 is most of the beige and pink colonies
  • Gc501 is a dark pink colony with beige edges.
  • Aeng17 and Aeng18 are dark red colonies
  • Sp300 is a beige colony
  • Tnh is a dark khaki colony
  • Djhc is pink in the center of the colony and beige at the edges
  • EBC107 appears as a very pale pink colony
  • Nz2001 appears as a pink beige colony
  • Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, W24 strains do not show colonies even after 48 hours of incubation.
  • (C) Desoxycholate agar [Desoxycholate agar: Protez peptone 10g, lactose 10g, sodium desoxycholate 0.5g, sodium chloride 5g, sodium citrate 2g, agar 15g, neutral red 0.03g, deionized water 1 liter, pH7.3 ... 7.5] colony color after 48 h incubation
  • Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, 24 strains do not show colonies even after 48 hours of culture.
  • Cy100 is a pale pink colony that looks like a flower
  • Ntar1, Ntar2, and Ntar3 are transparent orange colonies
  • Gc300 and Gc501 are dark pink colonies with beige edges
  • Gc500 is a light reddish beige colony
  • Aeng17 and Aeng18 are dark red colonies
  • Sp300 is a transparent light brown colony
  • Tnh is a light brown colony metallic
  • Djhc is a mix of pink and beige
  • Pcpts are transparent brown colonies
  • EBC107 appeared as a yellow colony.
  • Nz2001 appeared as a red beige colony.
  • PCBs, dioxins, PCE, toluene and taric acid are measured by the bacterial community constituent bacteria under optimal conditions in the laboratory, and sulfur and PCP are average values measured at individual strain levels.
  • Serratia sp. Aeng18 PCP 500 ppm, taric acid, dioxin 100 ng / kg;
  • Serratia sp. Ntar2 taric acid
  • Pseudomonas sp. Djhc 1000 ppm PCP, 300 ng / kg dioxin;
  • Pseudomonas sp. EBC107 700 ppm PCBs, 100 ppm PCP, dioxin 100 ng / kg, PCE 50,000 mg / kg;
  • Pseudomonas sp. Tnh 700 ppm PCBs, 500 ppm PCP, dioxin 300 ng / kg, PCE 50,000 mg / kg, taric acid;
  • Aeromonas sp. Aeng17 taric acid, PCP 100 ppm, dioxin 50 ng / kg;
  • Pseudomonas sp. Pcpts PCP 1,000 ppm, dioxin 500 ng / kg;
  • Pseudomonas sp. Sp300 taric acid, PCP 700 ppm, dioxin 100 ng / kg;
  • Chryseomonas sp. Gc501 PCP 500 ppm, dioxin 100 ng / kg;
  • Chryseomonas sp. Gc500 PCP 500 ppm, dioxin 100 ng / kg;
  • Chryseomonas sp. Gc300 PCP 300 ppm, dioxin 100 ng / kg;
  • Bacillus sp. Bs100 Taric acid
  • Bacillus sp. EBC106 700 ppm PCBs, 1,000 ppm PCP, dioxin 300 ng / kg, taric acid, PCE 50,000 mg / kg, toluene 50,000 mg / kg;
  • Gram positive bacterium Bs101 taric acid
  • Gram negative bacteria W24 100 ppm TPH, 100 ppm toluene;
  • waste acid waste alkali solid medium
  • waste alkali waste alkali, medium formed by adding only 1.5% of agar (agar) to medium, pH neutralization
  • chlorine compound solid medium BB 20 in chlorine compound liquid medium
  • Each colony was purified by re-inoculation on the same medium as above, and then shaken and cultured, and 40 kinds of useful bacteria having separate colonies of different shapes and the same colonies when subcultured were isolated.
  • Bacteria isolated in step (1) were used for pharmaceutical wastes and petrochemical wastes. Inoculated sequentially in each of the minimum medium was added and repeated in the same manner as in step (1), nine species were isolated according to colony type mainly viable strain at a higher concentration.
  • the nine bacteria obtained here were composed of one community and named EBC1000, and each bacteria constituting the bacterial community was named EBC100, 101, 103, 104, 105, 106, 107, 108 and 109, respectively.
  • the bacterial community EBC1000 according to the present invention was deposited internationally with the accession number KCTC 0652 BP at the Genetic Resource Center in Korea Biotechnology Research Institute on August 12, 1999.
  • PH 5-8 at Luria-Bertani nutrient medium (10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of NaCl / l of demineralized water), temperature 25-35 °C, shaking (shaking) 50 ⁇ 100rpm per minute incubation for 24 to 48 hours shows the optimum growth, even in subcultures grow well under the same conditions.
  • EBC 100, 101, 103, 104, 105, 106, 107, 108, and 109 strains of the bacterial community EBC1000 were mixed with Gram-negative bacteria and Gram-positive bacteria.
  • EBC100 is a circular colony with a diameter of 1 mm
  • EBC101 is a large round about 2 mm
  • EBC103 is a thick round about 2 mm
  • EBC104 and EBC105 are a small round about 0.5 mm
  • EBC106 is 3 mm
  • EBC107 is about 1.2mm brown colony
  • EBC108 is about 1mm yellow colony
  • EBC109 is about 2mm double circle.
  • EBC100, 101, 103, 106, 107, and 108 have strong viability even under strong acid (pH3 ⁇ 4) and strong alkali (pH9 ⁇ 11) conditions, and EBC104, 105, and 109 grow. This was slow. Motility is shown in EBC100, 104, 105, and 109.
  • EBC1000, EBC100, 101 and 103 belong to the genus Klebsiella
  • EBC105 belong to the genus Providencia
  • EBC104 and EBC109 belong to the genus Escherichia
  • EBC106 belong to the genus Bacillus
  • EBC107 is Gram-negative bacteria
  • EBC108 is Gram-positive bacteria.
  • EBC 100 EBC 101 EBC 103 Gram strain - - - Catalase + Oxidase - Urease + Citrase utilizat. + Glucose utilizat. + V-P test + Lysine decarboxylase + Ornithine decarboxylase -
  • EBC 100 EBC 101 EBC 103 Inositol + + Arabinos + + + Mannitol + + + Rhamnos + + + + Glucose + + + + Sorbitol + + + + ⁇ -cyclodextrin - - - dextrin + + - Glycogen - Adonitol + + D-Arabitol + + Cellobiose + + D-fructose + + + L-fucose + + + + D-galactose + + + + ⁇ -lactose - Maltose + + D-Raffinose + + D-trehalose + + + Methyl-pyruvate - + + Citric acid + + + + + + Formic acid + Malonic acid - - Succinic acid + D-alanine + L-alanine + + L-glutamic acid + + L-serine + + + D, L-lactic acid + + + + + motility + + +
  • FAMEs fatty acid methyl esters
  • This fused capillary column (HP 19091B-102) was used.
  • the carrier gas is hydrogen
  • the column head pressure is 10 psi
  • the split ratio is 100: 1
  • the split vent is 50 ml / min
  • Septum Purge is 5 ml / min
  • FID hydrogen is 30 ml / min
  • FID nitrogen is 30 ml / min
  • FID air is 400 ml / min
  • initial temperature is 170 ° C.
  • the program rate is 5 ° C./min
  • the final temperature is 270 ° C.
  • the FID temperature is 300 ° C.
  • the injection port is 250 ° C. and the injection volume is 2 ⁇ l.
  • the FAMEs graph used Microbial Identification System Software (Microbial ID, Inc., Delaware, USA) and peak identification and stagnation compared to a standard calibration mixture (Microbial ID, Inc., Delaware, USA). The time, peak area, and peak percentage were obtained.
  • EBC100 As a result of analysis of FAMEs for each strain of EBC100, 101 and 103, the cellular fatty acids composition of EBC100 was C12: 0, C14: 0, C16: 0, C16: 1, C17: 0 cyclo, C14: 0 3OH, EBC101 is C12: 0, C14: 0, C15: 0, C16: 0, C17: 0 cyclo, C14: 0 3OH. EBC103 was found to be C14: 0, C15: 0, C16: 0, C17: 0 cyclo, C14: 0 3OH.
  • the method of separating individual strains from bacterial community EBC1000 is as follows.
  • EBC106 Genus Bacillus
  • EBC107 Gram-negative bacteria
  • EBC108 Gram-positive bacteria
  • Luria-Bertan agar 10 g of Bacterium-Tryptone, 5 g of Bacterium-Yeast Extract, 10 g of NaCl, 1.5% of agar, 950 ml of demineralized water
  • EBC107 can be distinguished by the morphological features of brown colony, EBC108 is yellow colony.
  • strains include Desoxycholate agar; 10 g of bactopeptone, 10 g of bactolactose, 1 g of sodium deoxyoxylate, 5 g of sodium chloride, 2 g of dipotassium, 1 g of iron citrate, 1 g of sodium citrate, 15 g of bacto agar, neutral
  • the colony morphology of each strain can be confirmed by diluting the bacterial community EBC1000 in 0.03 g of red red / deionized water 1-Difco manual, 1984]. After incubation in desoxycholate agar for 24 hours, EBC100, 101, and 103 show reddish white viscosities and slight differences in size.
  • EBC104 is red and white and viscous
  • EBC105 is brown
  • EBC106 is light brown
  • EBC108 is colorless
  • EBC109 is red (Dictionary of Microbiology and Molecular Biology, 2nd, Paul Singleton Diana Sainsbury 1987).
  • Tamol-SN at 500, 1000, 2000, 4000 ppm in a minimum medium (pH 7.2) made by dissolving 0.065 g of K 2 HPO 4 , 0.017 g of KH 2 PO 4 , 0.1 g of MgSO 4 , and 0.5 g of NaNO 3 in 1 L of demineralized water. After gradually increasing the dose and inoculating the bacterial community EBC1000, the absorbance and the concentration of Tamol were measured over time.
  • a minimum medium made by dissolving 0.065 g of K 2 HPO 4 , 0.017 g of KH 2 PO 4 , 0.1 g of MgSO 4 , and 0.5 g of NaNO 3 in 1 L of demineralized water.
  • Tamol-SN (ppm) Degradation rate (mg / l / h) 500 1.3 1000 3.8 2000 5.2 4000 4.0
  • PCP contaminated digestive phenolic compound
  • PCP Digestive Phenolic Compounds
  • the reactor design is a decomposition reaction tank made of strong glass material that can see the internal reaction process from the outside, and is designed in such a way as to control the inlet and the outlet through equipping facilities and equipment for temperature, pH, oxygen, and agitation.
  • Liflus GX and Liflus GR models of fermenters from Biotron In order to select Liflus GX and Liflus GR models of fermenters from Biotron, a domestic company, two main reactors (GX) and two preliminary reactors (GR) were installed, and experimental reactors (flasks) needed for studies such as preliminary experiments and reproducibility. And incubators, etc.) were installed and operated.
  • the main reactor Liflulus GX
  • the stirring speed, temperature, pH and DO measurement, air injection amount setting, etc. can be periodically performed, and data on conditions and changes can be periodically stored and acquired through a computer.
  • the preliminary reactor (Liflus GR) allowed only the setting of temperature and stirring speed (11).
  • a reaction tank is a device that incubates microorganisms in insulating oil containing PCBs and feeds PCBs and other nutrients to reduce the concentration of PCBs according to the growth of microorganisms. It was designed in the same form as a fermentation tank to grow microorganisms.
  • reactors basically consist of PCBs decomposition strain, PCBs containing insulating oil, and agitator for effective mixing of injected air, aeration device for air injection, and cooling and heat transfer device for temperature control. It is composed of dissolved oxygen (DO) control (measurement) device and pH control (measurement) device to control.
  • DO dissolved oxygen
  • pH control measurement
  • the reactor was designed in consideration of problems such as heat resistance and other chemical corrosiveness in the biodegradation experiments with microbial strains and insulating oil containing PCBs.
  • the main body of the reactor consists mainly of stainless steel STS 316 and STS 304. It is resistant to corrosion, does not rust and minimizes reactivity with other materials, making it easy for durability and stability. Among them, especially in the case of STS 316, it is used for the inside of the medium or the water-contacting part, and STS 304 is mainly used for other external places.
  • STS 304 and 316 are different depending on the content of chromium and nickel, and 316 has a relatively weak strength but is known to have excellent chemical resistance and corrosion resistance.
  • the glass material is made of borosilicate, borosilicate glass instead of silicic acid. It contains at least 5% of boric acid, and the expansion coefficient decreases by adding boron, which increases chemical resistance, especially acid resistance and weather resistance. It is characterized by abundant impact properties. Used as glass for chemical resistant heat-resistant container.
  • the first is to find the medium environment in which the microorganisms are growing.
  • factors such as temperature, pH and dissolved oxygen.
  • the pH sensor a glass electrode type sensor is used, and the measuring principle uses a phenomenon in which a potential difference proportional to the difference occurs when two kinds of solutions having different pHs exist on both sides of the glass thin film.
  • the pH sensor should be calibrated with pH standard solution before entering the reaction experiment. Before calibration, organic or inorganic matters on the surface of the electrode should be removed, and it should be calibrated with 3-point calibration method to calibrate all three pH4, 7, 10.
  • Oxygen is one of the most important factors in the growth of aerobic microorganisms.
  • oxygen is present in the form of dissolved oxygen which is diffused into the culture medium from the air bubbles by aeration and agitation. Therefore, the growth of microorganisms for the decomposition of PCBs is greatly influenced by the dissolved oxygen concentration by aeration and agitation conditions.
  • the dissolved oxygen concentration in the reactor is measured using a DO electrode. DO measuring electrode should be calibrated before use. After zero setting, saturation setting should be done.
  • DO electrodes should also be careful not to touch the bottom of the membrane, the oxygen-permeable membrane at the bottom of the electrode, and to avoid damage. In addition, if the membrane is blocked by foreign material, it should be cleaned carefully. The electrolyte solution inside should be replaced when the reaction is slow.
  • the stirrer basically consists of a motor that generates rotational force, a stirring shaft that transmits this rotational force to an impellar, and a stirrer that actually causes stirring.
  • the stirring force of the stirrer must be driven by a motor installed outside the reactor, and in order to maintain the sterilization state of the reactor, the inside and outside of the reactor are blocked so that foreign substances do not flow from the outside.
  • the stirrer is made of Teflon material.
  • Microbial growth is the result of a series of chemical reactions, which means that the growth of microorganisms is greatly affected by temperature.
  • the reaction rate is increased about 2 times as the temperature rises by 10 °C, the growth rate of the microorganism is observed to increase with increasing temperature.
  • the width of the temperature at which the growth rate is increased is very narrowly observed.
  • microorganisms is a biochemical reaction unlike general chemical reactions, so there is an optimum temperature for the reaction.
  • the optimum temperature for microbial growth depends on the target microorganism.
  • Microorganisms are more sensitive to temperature than mortality than growth rates and require thorough control. Therefore, in the reactor, the cooling water for temperature control is supplied to the outer jacket of the reactor.
  • the reactor Underneath the reactor is a heating plate. This transfers heat into the reactor.
  • the temperature sensor In the temperature sensor, the temperature is measured and the temperature rises above the preset temperature, and the cooling water is circulated through the jacket to lower the temperature. When the temperature drops, the heating plate is operated to increase the temperature.
  • the energy delivered to the stirrer during the operation of the reactor is transferred to the reactant to generate a large amount of heat, and the microorganisms dissipate a large amount of heat even during the growth, which requires a cooling device to effectively remove the generated heat. Done.
  • the coolant flows through the jacket inside the reactor and is cooled.
  • an Anti Foam Sensor that removes bubbles
  • an Air pump for injecting air
  • an Air flow controller for adjusting the air volume
  • a condenser that cools and returns moisture in the generated gas.
  • the reactor was installed in the laboratory of Chuncheon Bio Industry Promotion Institute.
  • the inside of the laboratory is capable of maintaining and managing temperature and humidity, supplying coolant smoothly, and equipped with various laboratory equipment and safety protection equipment necessary for the experiment. Since this experiment requires a long-term reaction test, the preliminary operation and safety inspection of the reactor were carried out according to the procedure before entering the experiment. The preliminary operation was performed by putting water in the GX and GR reactors and washing the electrical safety test and equipment error test.
  • GX connects computer and communication line to acquire and test data.
  • the reactor was named and managed by GX-1, GX-2, GR-1, and GR-2, respectively.
  • liquid waste collection boxes and solid waste collection boxes were installed to prevent leakage of each waste and collect and store it.
  • the number of samples per time should be according to the number of reactors, but proportionally according to the situation, and corrected and supplemented according to the change of the sample.
  • PCBs concentration analysis should be commissioned by a national accredited agency and technical cooperation (including consultation and evaluation) with the analytical organization should increase the reliability of the analysis and degradation process. Therefore, after analyzing the accredited certification bodies, information on each certification body was collected and an analysis institution was selected.
  • the GC-ECD method is' Labfrontier 'and' Pohang Industrial Science Research Institute (RIST) 'and the HR-MS method is' Pohang Industrial Science Research Institute (RIST). 'Was selected.
  • Each sample was collected by KEPCO Kangwon Branch from the first Chonbuk National University Chemical Safety Management Research Center. The samples were selected from 339.58 ppm of insulating oil containing high concentration PCBs and 60.54 ppm of insulating oil containing low concentration PCBs. At the time of collection, various protective equipments were worn and collected according to the guidance of the person in charge. The prepared brown glass sample bottles were wiped about 3 times with insulating oil to be collected, and then samples were taken to be representative. Various wastes generated during the storage were put in plastic, sealed and stored. After collecting the sample, various items such as name, number, place, date, collector, method, and quantity of the sample were recorded in the collected sample bottle.
  • the collected insulating oil sample was sealed and stored in the dark.
  • the sample should be stored in a safe place without direct sunlight of 0 ⁇ 4, but due to the characteristics of the experiment, it should be stored in consideration of safety avoiding direct sunlight at room temperature in order to control it in the same way as the field sample.
  • it was necessary to check for leakage and stability at a designated time every day, and thoroughly managed to prevent contact with outsiders.
  • a microbial community selected from the NBC2000 bacterial community and the EBC1000 bacterial community was used. Specifically, 12 strains of Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001 were included.
  • the medium used for strain culture was Luria-Bertani nutrient medium (10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of sodium chloride (NaCl)). / 1 liter of demineralized water, and incubated at an optimum temperature of incubator temperature of 30 ° C. and shaking at 115 rpm.
  • the total volume of the reactor (GX) is 8l, and the working volume (about 70% of the total volume) is about 5 ⁇ 6l, so 4l of insulating oil was added, and the preliminary reactor (GR) had a total volume of 5l, and the working volume was Since it is about 3 ⁇ 4l, 3l of insulating oil was added.
  • the conditions of the reactor were set to a temperature of 25 ° C. and a stirring speed of 200 rpm as the optimum conditions set forth in the existing patent.
  • the interval of data acquisition was set in units of 10 minutes so that data such as temperature, pH, DO, and stirring speed could be acquired.
  • the injection of air was set at 0.5-1 l / min through the air pump roll.
  • samples were collected by using disposable protective pipettes.
  • the pipette was washed once with insulating oil inside the reaction tank so as to have representativeness of the sample.
  • the sampling procedure was carried out according to the procedure, and the waste generated after sampling was processed and stored in the waste collection box.
  • sample name, collection date, number, collector, collection place, and sample volume were recorded in the sample collection bottle and collected in the sample analysis request book.
  • sample bottle was firmly fixed using styrofoam, and placed in an ice box containing an ice pack. In addition, it was fixed directly so as not to leak from the inside and then directly requested.
  • the measurement items are volatile organic carbons (VOCs) that can be volatilized in the insulating oil itself, chlorine behavior through decomposition of PCBs, and chlorine gas (Cl 2 ) which can estimate the generation of harmful gas, metabolism of carbon and carbon Gas components were measured for three items of carbon dioxide (CO 2 ), which can be seen in the behavior.
  • VOCs volatile organic carbons
  • CO 2 carbon dioxide
  • VOCs measuring equipment is shown in Table 12 below.
  • MultiRAE-IR (CO 2 measurement) Measuring range 0 ⁇ 20000ppm Resolution 10 ppm Response time 30sec sensor NDIR Date of Calibration 2008. 08. 26 Calibration organization RAE KOREA Serial NO. 080-901072
  • the calibrated gas measurement equipment was prepared and one of the four lines of the reactor feedline was left open. If the line is not open, the pressure inside the reactor may be damaged due to the difference between the amount of air flowing into the reactor and the gas sampling rate of the gas measurement equipment, which may cause damage to the reactor or the gas measurement equipment. In the open part, the air inside the reactor is forced out or flows out due to the pressure. In the actual experiment, it was confirmed that when one line was left open, the sampling rate of the gas measuring device was smaller than the gas supply amount of the reaction tank so that the air inside the reaction vessel was released.
  • gas measurement equipment with a filter was connected to the sparger part at the end of the condenser, and the connection part was closed with paraffin tape to prevent gas leakage.
  • Dioxin analysis was commissioned on the sample inside the reactor as well as the measurement of emissions, which is an environmentally friendly requirement for biodegradation experiments of PCBs. Dioxin analysis was analyzed by HR-MS method, and commissioned after collection by the same method as the existing sampling in the reactor.
  • the strains were identified by the CFU / ml colony counting method on a plate medium.
  • 1A to 1D are graphs of changes in pH, temperature, DO, and stirring speed of a reaction tank.
  • the average number of microorganisms in the reactor maintained 100-fold multiplication in terms of reproducibility of microbial biodegradation results of PCBs contaminated soil and PCBs insulated oil published in the data of Patents 10-588305, PCT / KR2005 / 001238, EP1745214. Resistance to PCBs and proliferation of microorganisms for biodegradation (FIGS. 2A-2D).
  • Table 16 shows the increase in the number of microbial cells over the reaction time between the microorganism and the PCBs-containing insulating oil.
  • Table 17 shows changes in PCBs concentration (main reactor-GX) over time.
  • Table 18 shows changes in PCBs concentration (preliminary reactor-GR) over time.
  • the concentration of the insulating oil sample containing the high concentration PCBs itself, the microorganism reaction in the insulating oil containing the high concentration PCBs of the preliminary reactor 73 days, and the microbial reaction in the insulating oil containing the high concentration PCBs of the main reactor 150 days Samples were collected and analyzed three times by the Pohang Institute of Industrial Science (RIST).
  • Table 20 shows changes in PCBs concentration over time.
  • Table 21 shows the concentration analysis results for each isomer compared to the initial HR-MS method.
  • Dioxin concentration of the liquid sample in the reaction tank was measured by the HR-MS instrumental analysis of the Pohang Institute of Science and Technology (Table 22).
  • Table 22 shows the results of dioxin analysis in the reactor liquid sample.
  • Table 23 shows the measurement results of the reaction gas generated from the reactor.
  • the strains used in the experiments essentially include Cy106, using a mixed strain of Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001.
  • Table 24 shows changes in PCBs concentrations (assay HR-MS) with treatment duration.
  • the population of PCBs degrading microorganisms increased from 10 8 CFU / ml to 10 10 CFU / ml with the reaction time. This suggests that the degradation of PCBs by microorganisms is due to the catalytic reaction of enzymes that occur in microbial metabolism, and the active growth of microorganisms can be evaluated as an objective indicator that the degradation of PCBs is actively progressing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for treating polychlorinated biphenyls (PCBs) in an insulating oil containing PCBs, in which biodegradation can be carried out by administering a certain microbial cell and culturing same under certain conditions such that the PCBs of the insulating oil can be effectively treated.

Description

미생물을 이용한 폴리염화비페닐의 처리 방법Treatment Method of Polychlorinated Biphenyls Using Microorganisms
본 발명은 특정 미생물을 이용한 폴리염화비페닐(PCBs) 처리 방법에 관한 것이다.The present invention relates to a method for treating polychlorinated biphenyls (PCBs) using certain microorganisms.
폴리염화비페닐(PolyChlorinated Biphenyls. PCBs)은 두 개의 벤젠고리가 연결된 바이페닐의 10개 수소원자중 2∼10개가 염소원자로 치환된 화합물을 말한다. 이 화합물은 물에 불용성이며 유기용매에 대한 용해도가 좋으며 산과 알칼리에도 안정적이고 휘발성이 낮으며 높은 점도를 보이며 열에 대한 안정성이 매우 높기 때문에 PCBs는 변압기 및 축전지의 절연유에 포함되어 사용 되거나 열교환기의 열교환매체로서 되었으며 페인트, 잉크, 농약 등의 산업분야에 널리 사용되었어 왔다.PolyChlorinated Biphenyls (PCBs) refer to compounds in which 2 to 10 of the 10 hydrogen atoms of biphenyl are linked with two benzene rings and substituted with chlorine atoms. This compound is insoluble in water, good in solubility in organic solvents, stable in acids and alkalis, low in volatility, high in viscosity and very high in thermal resistance, so PCBs are used in insulating oils in transformers and accumulators or in heat exchangers. It has been used as a medium and has been widely used in industries such as paint, ink and pesticides.
그러나 1970년대 중반에 PCBs가 건강과 환경에 심각한 악영향을 미치는 것으로 알려진 이래 이미 생산되어 폐기 되어야 할 PCBs를 효과적으로 처리하는 방법의 개발에 많은 연구가 이루어져 왔다.However, since the PCBs are known to have serious adverse health and environmental impacts in the mid-1970s, much research has been made on the development of methods to effectively process PCBs that have already been produced and must be disposed of.
다염소화비페닐(Polychlorinated Biphenyls : PCBs)은 발전소에서 사용 중인 변압기, 콘덴서 등의 절연유에 함유되어 있으며, 잔류성유기오염물질 관리법 시행(2008.1.27)에 따라 PCBs 오염기기절연유의 사용금지와 2015년까지 의무적으로 처리토록 규정하고 있었으나, 기술적, 환경적인 문제로 인하여 완전히 끝나지 않고 있다.Polychlorinated Biphenyls (PCBs) are contained in insulating oils such as transformers and condensers used in power plants.In accordance with the Act on Persistent Organic Pollutants Control (2008.1.27), the use of PCBs contaminated equipment insulating oil is prohibited and until 2015. Although it is mandatory to handle it, it is not completely finished due to technical and environmental problems.
미국, 일본, 유럽 등은 이미 자국 내 PCBs 처리를 위해 소각, 화학처리설비를 설치하여 운영하고 있다. 국내에는 소규모의 화학적 처리설비가 설치되었으나 PCBs 처리효율 등의 문제가 남아 있어 가동을 위해 설비를 보완 중에 있다. The United States, Japan and Europe have already installed and operated incineration and chemical treatment facilities for processing PCBs in their own countries. Although small chemical treatment facilities have been installed in Korea, there are problems such as PCBs processing efficiency, which is being supplemented for operation.
환경부 주관으로 국내 PCBs 처리설비를 설치 운영하기 위해 소각처리, 화학처리를 위한 연구 및 실증시범사업을 추진하여 왔으나 소각처리 방식은 PCBs 분해율에 대한 미검증, 다이옥신 배출에 의한 환경영향 등이 평가되지 못하여 추가적으로 고온소각 실증사업을 계획하고 있으며, 화학처리방식은 고상 폐기물 및 토양 등의 PCBs 오염물질을 처리할 수 없는 문제가 있다. In order to install and operate domestic PCBs processing facilities under the auspices of the Ministry of Environment, we have conducted research and demonstration demonstration projects for incineration and chemical treatment, but the incineration method has not been evaluated for PCBs decomposition rate and the environmental impact from dioxin emissions. In addition, a high-temperature incineration demonstration project is planned, and the chemical treatment method cannot deal with PCBs contaminants such as solid waste and soil.
국내 처리 동향은 다음과 같다. 현재 우리나라에서는 「폐기물 관리법」및「잔류성 유기오염물질관리법」에 따라 고온소각법 또는 화학적 처리방법으로 처리해야 하나, 고온소각은 연소조건이 불량할 때(연소온도 1100℃미만이거나 그 지속시간이 2초 미만일 때, 소각로 내 잉여 산소가 6% 미만 일 때)에는 다이옥신 등의 유독성 기체가 발생할 가능성이 높기 때문에 국내 소각처리시설에 대한 환경단체, 시민 등의 반대여론으로 가동되지 못하고 있는 실정이다. 구체적으로 국내적으로 하기와 같은 기술이 있다.Domestic treatment trends are as follows. At present, Korea should be treated by high temperature incineration or chemical treatment in accordance with the Waste Management Act and the Residual Organic Pollutants Control Act. In case of less than 6 seconds and less than 6% of surplus oxygen in the incinerator), toxic gases such as dioxins are more likely to be generated, which is why they are not operated due to opposition from environmental groups and citizens. Specifically, there are domestic technologies as follows.
가. 초임계수산화공정을 이용한 난분해성 폐기물 처리기술end. Refractory waste treatment technology using supercritical hydroxide process
한국전력연구원에서 2005. 3월부터 약 20억원의 예산으로 연구개발과제를 수행하였으며, 분해공정은 폐절연유유화제 희석(3%) 예열 가압 산소첨가 혼합초임계 산화(1020 4000psi)감온감압 기액 분리 배출로 이루어진다. 절연유 희석(약 3%) 처리에 따라 처리대상 폐기물이 33배 증가하게 되며, 분해속도가 늦고, 다량의 산소첨가로 처리비용이 많이 들며, 초임계상태의 운영에 따른 안전성 문제와 배출되는 가스 및 응축수 처리를 위한 2차 설비가 추가로 필요하다는 문제점이 있다.KEPCO has conducted R & D projects on budget of about 2 billion won from March 2005. The decomposition process was carried out by diluting waste insulating emulsion (3%), preheating pressurized oxygen-added mixed supercritical oxidation (1020 4000psi) Is made of. According to the dilution of the insulating oil (about 3%), the waste to be treated increases by 33 times, and the decomposition rate is slow, the processing cost is high due to the addition of a large amount of oxygen, and the safety problems and the emitted gas and There is a problem that additional secondary equipment for condensate treatment is required.
나. E-Beam(전자빔)을 이용한 PCBs 처리기술I. PCBs processing technology using E-Beam
원자력연구소 정읍방사선연구소에서 개발한 기술로 전자선의 강력한 에너지를 이용 상온, 고압 상태에서 PCBs를 구성하는 다량의 염소를 탈리시켜 처리하는 기술이다. 그러나, 이와 같은 처리 기술은 처리효율이 국제수준(99.9999%)에 미치지 못하고, 대규모 처리에 적합하지 않는 것으로 평가되고 있다. It is a technology developed by Jeongeup Radiation Research Institute of Nuclear Research Institute. It is a technology that removes and processes a large amount of chlorine constituting PCBs at room temperature and high pressure using strong energy of electron beam. However, such a treatment technique is estimated to be less than the international level (99.9999%) and not suitable for large scale treatment.
다. 화학촉매방법, NaCl-원자력연구소All. Chemical Catalyst Method, NaCl-Atomic Energy Research Institute
이외에 화학촉매 방법이 있으나, 시설비용, 처리용량, 결과의 문제점 등이 산재하고 있다.In addition, there are chemical catalyst methods, but facility costs, treatment capacity, and problems of the results are scattered.
해외 처리 동향은 다음과 같다. 해외에서는 PCBs 처리기술로 분해처리기술, 대체처리기술, 재활용기술 등 연구개발 활동이 활발히 진행되고 있고, 미국, 캐나다, 유럽 등 대부분의 국가가 고온소각 처리방법을 선호하고 있다. 소각은 가장 확실한 방법이지만 연소조건이 불량할 때에는 다이옥신 등의 유독성 기체의 발생 가능성이 높기 때문에 이 문제를 해결하기 위한 다양한 소각기술 및 방지설비 등이 연구되어 왔다. 그 결과, 소각분해 기술은 1) Grate incinerate 사용법, 2) Fluidized Bed 이용법, 3) 순산소 공급 액체 소각법, 4) Rotary-kiln 소각로 이용법 등이 개발 또는 개발 중에 있으며, 대체기술로는 1) 열(Pyroliser 이용)분해법, 2) UV(infrared furnace)사용법, 3) 응용나트륨(molten salt-glasser)처리법, 4) 플라즈마(plasma technology)이용법, 5) 미생물분해법이 있으며, 재활용기술로는 1) 촉매 탈염소법, 2) oxidative UV light treatment, 3) MC(methylene chloride)공법 처리 등이 연구개발되어 운영되고 있다.Overseas treatment trends are as follows. Overseas, R & D activities such as decomposition treatment technology, alternative treatment technology, and recycling technology are actively progressed by PCBs processing technology, and most countries such as USA, Canada, and Europe prefer high temperature incineration treatment methods. Incineration is the most reliable method, but when the combustion conditions are poor, there is a high possibility of generating toxic gases such as dioxins, and various incineration technologies and prevention facilities have been studied to solve this problem. As a result, incineration technology is being developed or developed using 1) Grate incinerate method, 2) Fluidized bed method, 3) Pure oxygen supply liquid incineration method, 4) Rotary-kiln incinerator method, etc. (Pyroliser) decomposition method, 2) UV (infrared furnace) method, 3) molten salt-glasser treatment method, 4) plasma technology method, 5) microbial decomposition method, 1) catalyst Dechlorination, 2) oxidative UV light treatment, and 3) MC (methylene chloride) treatment are researched and developed.
미국의 EPA에서는 PCBs 처리와 관련하여 고온연소기술, 화학적 탈염소기술, 매립기술 그리고 열분해법 등의 대체기술을 PCBs 처리기술로 인정하고 있으며, 유럽지역 또한 소각법이 선호되고 있고, 화학적 방법으로 Solvent Decontamination, Sodium Reduction 기술을 적용하고 있다. 일본의 경우 탈염소화 분해기술, 수열산화 분해기술, 환원열화학 분해기술, 광분해기술, 플라즈마 분해기술 등 총 17개 기술을 처리지침으로 명시하고 있다.In the US, EPA recognizes alternative technologies such as high-temperature combustion technology, chemical dechlorination technology, landfill technology and pyrolysis as PCBs processing technology.Incineration is also preferred in Europe. Decontamination and Sodium Reduction technology are applied. In the case of Japan, a total of 17 technologies are specified as treatment guidelines, such as dechlorination, hydrothermal and oxidative decomposition, reduction and thermochemical decomposition, photolysis, and plasma decomposition.
그러나, 상기에서 언급한 바와 같이, 국내외의 PCBs 처리 기술들은 PCBs 분해율에 대한 미검증, 다이옥신 배출의 문제, 고상 폐기물 및 토양 등의 PCBs 오염물질을 처리할 수 없는 문제가 남아 있다However, as mentioned above, domestic and foreign PCBs processing techniques remain unproven for PCBs decomposition rate, dioxin emissions, and inability to deal with PCBs contaminants such as solid waste and soil.
이에 본 발명의 발명자들은 특정 미생물을 이용한 PCBs 정화 처리기술을 이용하여 PCBs 오염 절연유의 처리효율 및 재현성을 입증하고 이를 통하여 처리설비로 발전시킬 수 있음을 알게 되어 본 발명에 이르게 되었다.Accordingly, the inventors of the present invention have come to know that the processing efficiency and reproducibility of PCBs contaminated insulating oil using the PCBs purification treatment technology using a specific microorganism can be developed into a treatment facility.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 등록특허 10-0848137호(Patent Document 1) Republic of Korea Patent No. 10-0848137
(특허문헌 2) 대한민국 등록특허 10-0612225호(Patent Document 2) Republic of Korea Patent No. 10-0612225
(특허문헌 3) 대한민국 등록특허 10-0864632호(Patent Document 3) Korean Patent Registration No. 10-0864632
(특허문헌 4) 대한민국 등록특허 10-1021690호(Patent Document 4) Republic of Korea Patent Registration 10-1021690
(특허문헌 5) 대한민국 등록특허 10-1085553호(Patent Document 5) Republic of Korea Patent Registration 10-1085553
(특허문헌 6) 대한민국 공개특허 10-2006-0036261호(Patent Document 6) Republic of Korea Patent Publication No. 10-2006-0036261
(특허문헌 7) 대한민국 등록특허 10-0782543호(Patent Document 7) Republic of Korea Patent Registration 10-0782543
(특허문헌 8) 대한민국 등록특허 10-0798410호(Patent Document 8) Republic of Korea Patent No. 10-0798410
본 발명의 일측면은 상기와 같은 문제점을 해결한 새로운 PCBs 처리 방법을 제공하고자 한다. One aspect of the present invention is to provide a new PCBs processing method that solves the above problems.
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서, 특정 세균 공동체를 투여하는 방법을 제공하고자 한다.An aspect of the present invention is to provide a method for administering a specific bacterial community in the PCBs processing method of insulating oil containing Polychlorinated Biphenyls (PCBs).
또한, 본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서, 세균 공동체 투여 후, 특정 조건의 생분해 단계를 포함하는, PCBs 처리 방법을 제공하고자 한다. In addition, an aspect of the present invention is to provide a PCBs processing method comprising a biodegradation step of specific conditions in the PCBs processing method of insulating oil containing polychlorinated Biphenyls (PCBs), after bacterial community administration.
상기 목적을 달성하기 위하여, In order to achieve the above object,
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,In one aspect of the present invention is a method for processing PCBs of insulating oil containing PCBs (Polychlorinated Biphenyls),
PCBs 처리 세균공동체를 투여하는 단계를 포함하며, Administering a PCBs treated bacterial community,
상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법을 제공한다.The PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 selected from NBC2000 bacterial community with accession number KCTC 10623 BP. Strain, Brebundimonas vesicularis Cy102 strain, Brebunundimonasvesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp. Cy107 strain, Capital One or more of Pseudomonas aeruginosa Tnh strain, W24 strain which is an oil degradation gram negative bacterium and Nz2001 strain which is a sulfur strain; At least one of Bacillus cereus EBC106 strain and Pseudomonas sp. EBC107 strain selected from EBC1000 bacterial community with an accession number of KCTC 0652 BP; To provide.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 strain, Brebundi Monas Veciculis Cy102 strain, Brebundimonas vesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp. Cy107 strain, Pseudomonas aruginosa (Pseudomonas aeruginosa) PCBs treatment of insulating oils, including Tnh strains, W24 strains of oil degradation gram negative bacteria, Nz2001 strains of sulfur strains, Bacillus cereus EBC106 strains and Pseudomonas sp. EBC107 strains Provide a method.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the PCBs treated bacterial community provides a method for treating the PCBs of insulating oil, which is administered after incubating at 10 9 CFU / ml or more of the cell number.
본 발명의 일측면에 있어서, 상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the culture is incubated for 4 to 5 days with bacto-yeast extract in a Luria-Bertani nutrient medium, to provide a PCBs treatment method of insulating oil do.
본 발명의 일측면에 있어서, 상기 절연유의 PCBs 처리 방법은 PCBs 처리 세균공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the method of processing the PCBs of the insulating oil further provides a method of processing the PCBs of the insulating oil, further comprising the step of biodegradation after administration of the PCBs treatment bacterial community.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 26℃의 온도 조건; pH 5.3 내지 8.5의 pH 조건; 및 용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the step of biodegrading is a temperature condition of 24 ℃ to 26 ℃; pH conditions of pH 5.3 to 8.5; And DO conditions with a dissolved oxygen concentration of 73% to 95%; The present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 25℃의 온도 조건; pH 6 내지 8의 pH 조건; 및 용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the step of biodegradation is a temperature condition of 24 ℃ to 25 ℃; pH conditions of pH 6-8; And DO conditions in which the concentration of dissolved oxygen is 80% to 90%; The present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the step of biodegrading further comprises a condition for stirring using a stirrer of 150 rpm to 250 rpm during biodegradation, to provide a method for processing PCBs of insulating oil.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the step of biodegrading has a biodegradation time of 50 days or more, to provide a method for processing PCBs of insulating oil.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the step of biodegrading has a biodegradation time of 70 days to 200 days, to provide a method for processing PCBs of insulating oil.
본 발명의 일측면에 있어서, 상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the insulating oil is an insulating oil contained in a transformer, to provide a method for processing PCBs of insulating oil.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the method is to provide a method for processing PCBs of insulating oil, reducing the concentration of PCBs in the insulating oil to 50ppm or less.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the present invention, the method is to reduce the concentration of PCBs in the insulating oil to 50ppm or less and at the same time to provide a method for treating the PCBs of the insulating oil to generate dioxin below the concentration of 3 ng-TEQ / g.
본 발명의 일 측면에 따른 방법은 다이옥신의 배출을 법적 기준보다 매우 낮게 하면서, 동시에 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.The method according to one aspect of the present invention can significantly reduce the concentration of PCBs in the insulating oil while at the same time keeping the emission of dioxins much lower than the legal standard.
본 발명의 일 측면에 따른 방법은 고상 폐기물 및 토양 등의 오염 문제가 없이 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.The method according to an aspect of the present invention can significantly reduce the concentration of PCBs in insulating oil without contamination problems such as solid waste and soil.
본 발명의 일 측면에 따른 방법은 경제적인 시설비용으로 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.The method according to an aspect of the present invention can significantly reduce the concentration of PCBs in the insulating oil at an economical facility cost.
본 발명의 일 측면에 따른 방법은 한꺼번에 많은 양의 절연유 내 PCBs의 농도를 줄일 수 있다.The method according to one aspect of the present invention can reduce the concentration of PCBs in a large amount of insulating oil at once.
본 발명의 일 측면에 따른 방법은 국제수준과 동일한 수준으로 절연유 내 PCBs의 농도를 줄일 수 있다.The method according to an aspect of the present invention can reduce the concentration of PCBs in the insulating oil to the same level as the international level.
본 발명의 일 측면에 따른 방법은 기존 기술보다 비교적 빠른 시간안에 절연유 내 PCBs의 농도를 줄일 수 있다.The method according to one aspect of the present invention can reduce the concentration of PCBs in the insulating oil in a relatively faster time than the conventional technology.
본 발명의 일 측면에 따른 방법은 2차 설비의 추가적인 설치 없이 변압기 등의 현장에서 바로 사용할 수 있는 절연유 내 PCBs 처리 방법을 제공한다.The method according to an aspect of the present invention provides a method for processing PCBs in insulating oil that can be used directly in the field such as a transformer without additional installation of secondary equipment.
도 1a 내지 도 1d는 반응조의 pH, 온도, DO, 교반속도의 변화 그래프이다.1A to 1D are graphs of changes in pH, temperature, DO, and stirring speed of a reaction tank.
도 2a는 고농도 PCBs 함유 절연유 주 반응조 GX-1 관찰결과이며, (a)는 균주 혼합 전의 사진으로 노랗고 투명한 절연유의 색상이 나타났고, (b)는 균주 혼합 직후 교반하였을 때의 사진으로 약간의 균주탁도(미생물 증식상태) 및 미생물 군집이 관찰되었으며, (c)는 69일 경과의 사진으로 균주의 탁도가 진해졌으며, 반응조 내부에 미생물 군집이 관찰되었고, (d)는 161일 경과 사진으로 균주탁도가 보다 진해졌으며, 반응조 내부에 미생물 군집이 많이 형성되었다.Figure 2a is a result of the observation of the main reaction tank GX-1 containing the high concentration PCBs, (a) is a photo before the mixing of the strain, the color of the yellow and transparent insulating oil appeared, (b) is a photograph of when the strain was stirred immediately after mixing the strain a little Turbidity (microbial proliferation) and microbial community were observed, (c) 69 days after the strain turbidity was increased, microbial community was observed inside the reactor, (d) 161 days after the strain turbidity Became thicker, and a large number of microbial communities were formed inside the reactor.
도 2b는 저농도 PCBs 함유 절연유 주 반응조 GX-2 관찰결과이며, (a)는 균주 혼합 전의 사진으로 노랗고 투명한 절연유의 색상이 나타났고, (b)는 균주 혼합 직후 교반하였을 때의 사진으로 약간의 균주탁도 및 미생물 군집이 관찰되었으며, (c)는 66일 경과의 사진으로 균주의 탁도가 진해졌으며, 반응조 내부에 미생물 군집이 관찰되었고, (d)는 161일 경과 사진으로 균주탁도가 보다 진해졌으며, 연노랑색에서 흰색계열에 가깝게 색상이 변화하였고 반응조 내부에 미생물 군집이 형성되었다.Figure 2b is a low concentration of PCBs containing insulating oil main reaction tank GX-2 observation results, (a) is a photograph before the strain mixing, the color of the yellow and transparent insulating oil appeared, (b) is a photograph when agitated immediately after mixing the strain a little strain Turbidity and microbial community were observed, (c) the 66-day old photos showed turbidity of the strain, the microbial community was observed inside the reactor, (d) 161 days the strain turbidity was increased, The color changed from light yellow to white, and microbial community was formed inside the reactor.
도 2c는 고농도 PCBs 함유 절연유 예비 반응조 GR-1관찰결과이며, (a)는 균주 혼합 전의 사진으로 노랗고 투명한 절연유의 색상이 나타났고, (b)는 균주 혼합 직후 교반하였을 때의 사진으로 약간의 균주탁도 및 미생물 군집이 관찰되었으며, (c)는 51일 경과의 사진으로 균주의 탁도가 많이 진해졌으며, 반응조 내부에 미생물 군집이 관찰되었고, (d)는 84일 경과 사진으로 9월 15일 전후로 색상이 갈색으로 변화하였다. Figure 2c is a result of observation of the pre-reactor GR-1 containing the high concentration of PCBs containing oil, (a) is a picture of the strain before mixing the yellow and transparent insulating oil, (b) is a picture of a slight strain when the image is stirred immediately after mixing the strain Turbidity and microbial community were observed, (c) was a 51-day picture of the turbidity of the strain was increased, the microbial community was observed inside the reactor, (d) 84 days of the picture was taken around September 15 It turned brown.
도 2d는 고농도 PCBs 함유 절연유 대조구 예비 반응조 GR-2관찰결과이며, (a)는 초기 투입직후의 사진이며, (b)는 51일 경과후의 사진이고, (c)는 84일 경과후의 사진이다.Figure 2d is a result of observation of the preliminary reactor GR-2 containing a high concentration PCBs insulating oil control, (a) is a photograph immediately after the initial charge, (b) is a photograph after 51 days, (c) is a photograph after 84 days.
도 3은 GC-ECD 분석법을 적용한 반응시간 경과에 따른 PCBs 농도 변화 (주 반응조-GX)를 그래프로 나타낸 것이다.Figure 3 is a graph showing the change in PCBs concentration (main reactor-GX) with the reaction time applied GC-ECD analysis.
도 4a는 Non-PCBs 절연유 GC-ECD법 피크 패턴 (랩프론티어)이다.4A is a non-PCBs insulating oil GC-ECD method peak pattern (lab frontier).
도 4b는 Non-PCBs 절연유+미생물균주 GC-ECD법 피크 패턴 (랩프론티어)이다.Figure 4b is a non-PCBs insulating oil + microbial strain GC-ECD method peak pattern (Lab Frontier).
본 명세서에 있어서, 범위가 변수에 대해 기재되는 경우, 상기 변수는 상기 범위의 기재된 종료점들을 포함하는 기재된 범위 내의 모든 값들을 포함하는 것으로 이해될 것이다. 예를 들면, "5 내지 10"의 범위는 5, 6, 7, 8, 9, 및 10의 값들뿐만 아니라 6 내지 10, 7 내지 10, 6 내지 9, 7 내지 9 등의 임의의 하위 범위를 포함하고, 5.5, 6.5, 7.5, 5.5 내지 8.5 및 6.5 내지 9 등과 같은 기재된 범위의 범주에 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다. 또한 예를 들면, "10% 내지 30%"의 범위는 10%, 11%, 12%, 13% 등의 값들과 30%까지를 포함하는 모든 정수들뿐만 아니라 10% 내지 15%, 12% 내지 18%, 20% 내지 30% 등의 임의의 하위 범위를 포함하고, 10.5%, 15.5%, 25.5% 등과 같이 기재된 범위의 범주 내의 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다.In the present specification, when a range is described for a variable, it will be understood that the variable includes all values within the described range including the listed endpoints of the range. For example, the range "5 to 10" includes any subrange such as 6 to 10, 7 to 10, 6 to 9, 7 to 9, as well as values of 5, 6, 7, 8, 9, and 10. And any value between integers that are within the scope of the described range, such as 5.5, 6.5, 7.5, 5.5-8.5, 6.5-9, and the like. Also for example, the range of “10% to 30%” ranges from 10% to 15%, 12% to 10%, 11%, 12%, 13%, etc. as well as all integers including up to 30%. It will be understood to include any subranges such as 18%, 20% to 30%, etc., and to include any value between valid integers within the range of the stated range, such as 10.5%, 15.5%, 25.5% and the like.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,In one aspect of the present invention is a method for processing PCBs of insulating oil containing PCBs (Polychlorinated Biphenyls),
PCBs 처리 세균공동체를 투여하는 단계를 포함하며, 상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법을 제공한다.The step of administering a PCBs treated bacterial community, the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain selected from NBC2000 bacterial community with accession number KCTC 10623 BP , Bredundimonas vesicularis Cy101 strain, Bredundimonas vesicularis Cy102 strain, Bredundimonasvesicularis Cy103 strain, Bacillus stearothermophilus Bacillus stearothermophilus strain Or any one or more of Bacillus sp. Cy107 strain, Pseudomonas aeruginosa Tnh strain, W24 strain which is an oil degradation gram negative bacterium and Nz2001 strain which is a sulfur strain; At least one of Bacillus cereus EBC106 strain and Pseudomonas sp. EBC107 strain selected from EBC1000 bacterial community with an accession number of KCTC 0652 BP; To provide.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 strain, Brebundi Monas Veciculis Cy102 strain, Brebundimonas vesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp. Cy107 strain, Pseudomonas aruginosa (Pseudomonas aeruginosa) PCBs treatment of insulating oils, including Tnh strains, W24 strains of oil degradation gram negative bacteria, Nz2001 strains of sulfur strains, Bacillus cereus EBC106 strains and Pseudomonas sp. EBC107 strains Provide a method.
본 발명의 일측면에 있어서, PCBs 처리 세균공동체는, 수도모나스 속(Pseudomonas sp.) Cy100 균주(이하, "Cy100"으로 약칭함), 수도모나스 속(Pseudomonas sp.) EBC107 균주(이하, "EBC107"로 약칭함), 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주(이하, "Tnh"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주(이하, "Cy101"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주(이하, "Cy102"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy103 균주(이하, "Cy103"로 약칭함), 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주(이하, "Cy104"로 약칭함), 바실러스 속(Bacillus sp.) Cy107 균주(이하, "Cy107"로 약칭함), 바실러스 세레우스(Bacillus cereus) EBC106 균주(이하, "EBC106"로 약칭함), 유황 균주인 Nz2001 균주(이하, "Nz2001"로 약칭함) 및 유류 분해 그람 음성 세균인 W24 균주(이하, "W24"로 약칭함)로 구성된 것을 특징으로 한다.In one aspect of the invention, the PCBs treated bacterial community, Pseudomonas sp. Cy100 strain (hereinafter abbreviated as "Cy100"), Pseudomonas sp. EBC107 strain (hereinafter, "EBC107 Abbreviated as " Pseudomonas aeruginosa " Tnh strain (hereinafter abbreviated as "Tnh"), Brevundimonas vesicularis Cy101 strain (hereinafter abbreviated as "Cy101") , Brevundimonas vesicularis Cy102 strain (hereinafter abbreviated as "Cy102"), Brevundimonas vesicularis Cy103 strain (hereinafter abbreviated as "Cy103"), as Bacillus stea Bacillus stearothermophilus Cy104 strain (hereinafter abbreviated as "Cy104"), Bacillus sp. Cy107 strain (hereinafter abbreviated as "Cy107"), Bacillus cereus EBC106 strain (hereinafter referred to as "Cy104") , Abbreviated as "EBC106", the Nz2001 strain which is a sulfur strain Characterized in that consisting of abbreviated as "Nz2001" abbreviated as) and oil decomposition gram-negative bacteria strain W24 (hereinafter, "W24").
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는, Cy106를 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001 로 이루어진 군으로부터 선택된 하나 이상의 균주를 더 포함하는 것을 특징으로 한다.In one aspect of the invention, the PCBs treatment bacterial community, essentially include Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001 It characterized in that it further comprises one or more strains selected from the group consisting of.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균 공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법을 제공한다. 상기 균체수를 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.In one aspect of the present invention, the PCBs treated bacterial community provides a method for treating the PCBs of insulating oil, which is administered after culturing at 10 9 CFU / ml or more. If the cell number is satisfied, the PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법을 제공한다. 상기 배양조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.In one aspect of the invention, the culture is incubated for 4 to 5 days with bacto-yeast extract in a Luria-Bertani nutrient medium, to provide a PCBs treatment method of insulating oil do. When the culture conditions are satisfied, PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 절연유의 PCBs 처리 방법은 세균 공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the method of treating the PCBs of the insulating oil further provides a method of processing the PCBs of the insulating oil after the biodegradation, after administration of the bacterial community.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 26℃의 온도 조건; pH 5.3 내지 8.5의 pH 조건; 및 용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다. 상기 생분해 조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.In one aspect of the invention, the step of biodegrading is a temperature condition of 24 ℃ to 26 ℃; pH conditions of pH 5.3 to 8.5; And DO conditions with a dissolved oxygen concentration of 73% to 95%; The present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions. When the biodegradation conditions are satisfied, PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 25℃의 온도 조건; pH 6 내지 8의 pH 조건; 및 용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.In one aspect of the invention, the step of biodegradation is a temperature condition of 24 ℃ to 25 ℃; pH conditions of pH 6-8; And DO conditions in which the concentration of dissolved oxygen is 80% to 90%; The present invention provides a method for treating PCBs of insulating oil, which is a step of decomposing while satisfying any one or more of the conditions.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게, 생분해 중 회전수 190 rpm 내지 210 rpm의 교반기를 사용할 수 있다. 상기 교반 조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.In one aspect of the invention, the step of biodegrading further comprises a condition for stirring using a stirrer of 150 rpm to 250 rpm during biodegradation, to provide a method for processing PCBs of insulating oil. Preferably, a stirrer with a speed of 190 rpm to 210 rpm during biodegradation may be used. When the stirring conditions are satisfied, PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 상기 생분해 시간을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.In one aspect of the invention, the step of biodegrading has a biodegradation time of 50 days or more, to provide a method for processing PCBs of insulating oil. When the biodegradation time is satisfied, PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게 상기 생분해 시간은 150일 내지 170일 일 수 있다. 상기 생분해 시간을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다. In one aspect of the invention, the step of biodegrading has a biodegradation time of 70 days to 200 days, to provide a method for processing PCBs of insulating oil. Preferably the biodegradation time may be 150 days to 170 days. When the biodegradation time is satisfied, PCBs can be effectively decomposed.
본 발명의 일측면에 있어서, 상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the insulating oil is an insulating oil contained in a transformer, to provide a method for processing PCBs of insulating oil.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.In one aspect of the invention, the method is to provide a method for processing PCBs of insulating oil, reducing the concentration of PCBs in the insulating oil to 50ppm or less.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게 상기 다이옥신의 농도는 0.5 내지 0.7 ng-TEQ/g 농도 일 수 있다.In one aspect of the present invention, the method is to reduce the concentration of PCBs in the insulating oil to 50ppm or less and at the same time to provide a method for treating the PCBs of the insulating oil to generate dioxin below the concentration of 3 ng-TEQ / g. Preferably the concentration of dioxins may be 0.5 to 0.7 ng-TEQ / g concentration.
이하, 본 발명에 사용된 PCBs 처리 세균공동체에 포함되는 NBC2000 세균공동체 및 EBC1000 세균공동체의 분리, 동정 및 활성을 상세히 설명한다. Hereinafter, the isolation, identification and activity of the NBC2000 bacterial community and the EBC1000 bacterial community included in the PCBs-treated bacterial community will be described in detail.
NBC2000 세균공동체의 분리, 동정 및 활성Isolation, Identification and Activity of NBC2000 Bacterial Communities
1.One. 환경호르몬을 분해할 수 있는 신규의 세균 공동체의 분리Isolation of a New Bacterial Community That Can Decompose Environmental Hormones
(1) 한국, 남유럽, 오세아니아 등지에서 채집한 토양에서 PCBs, PCP, 다이옥신, PCE, 톨루엔, 타르산 등을 분해하는 세균을 분리 (1) Isolates bacteria that degrade PCBs, PCP, dioxin, PCE, toluene, taric acid, etc. from soil collected in Korea, Southern Europe, Oceania, etc.
채집한 토양 1 그람을 루리아-베르타니 액체배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g + 탈염수 1 리터)에서 2 ~ 3일간 진탕 배양한 후 1ml을 취하여 루리아-베르타니 한천배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g, 한천 1.5% + 탈염수 950ml )에서 각 콜로니를 분리하였다. 이때 나타난 각 콜로니를 선택하여 PCBs, PCP, PCE, 톨루엔, 타르산이 각각 포함된 최소액체배지 (K2HPO4 0.065g, KH2PO4 0.017g, MgSO4 0.1g, NaNO3 0.5g + 탈염수 1리터)에 순차적으로 접종하고 25 ~ 30o C에서 3일 이상 진탕 배양하였다. 각 유해물질의 감소확인과 더불어 진탕 배양액 1 ml를 취하여 루리아-베르타니 한천배지에 순차적으로 접종하고 25 ~ 30o C에서 3 ~ 5일간 배양하였다. One gram of the collected soil was shaken for 2 to 3 days in Luria-Bertani liquid medium (10 g of Bacterium-Tryptone, 5 g of Bakto yeast extract, 10 g of NaCl + 1 liter of demineralized water), and then 1 ml was taken to take 1 ml of Luria-Bertani agar medium ( Each colony was isolated from 10 g of Bakto-Tryptone, 5 g of Bakto yeast extract, 10 g of NaCl, 1.5% of agar, and 950 ml of demineralized water. Select each colony that appeared at this time and select the minimum liquid medium containing PCBs, PCP, PCE, toluene and taric acid (K 2 HPO 4 0.065g, KH 2 PO 4 0.017g, MgSO 4 0.1g, NaNO 3 0.5g + Demineralized water 1 Liters) were sequentially inoculated and shaken at 25 to 30 o C for at least 3 days. In addition to confirming the reduction of each harmful substance, 1 ml of shaking culture solution was taken and sequentially inoculated into Luria-Bertani agar medium and incubated at 25 to 30 o C for 3 to 5 days.
순수 분리한 각 콜로니를 상기와 같은 최소액체배지에 재 접종하여 진탕 배양한 후 루리아-베르타니 고체배지에서 개별적으로 형성된 각기 다른 모양의 콜로니 형태를 가지며 그 콜로니의 계대 배양시 동일한 콜로니가 나타나는 유용세균 50 여종을 분리하였다.Each colony separated from pure water was reinoculated into the above-described minimal liquid medium, followed by shaking culture, followed by different cultures of colonies of different shapes formed in the Luria-Bertani solid medium, and the same colonies appearing in the passage of the colonies. About 50 species were separated.
(2) 위에서 분리한 세균들을 PCBs, PCP, PCE, 톨루엔, 타르산이 단계적으로 높은 농도로 포함된 최소 배지에 각각 순차적으로 접종하여 상기 (1)과 같은 방법으로 반복하여 보다 높은 농도에서 생존하는 균주 및 형태차이에 따라서 26종을 분리하였다.(2) The bacteria isolated from the above inoculated sequentially in a minimal medium containing PCBs, PCP, PCE, toluene, tartaric acid at a high concentration step by step and repeat in the same manner as in (1) to survive at a higher concentration And 26 species were separated according to morphological differences.
여기서 얻은 26 종의 세균들을 공동체로 구성하여 NBC2000으로 명명하였으며, 상기 세균공동체를 이루는 각각의 세균을 각각 Cy100, Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Ntar1, Ntar2, Ntar3, Gc300, Gc500, Gc501, Bs100, Aeng17, Aeng18, Sp300, Tnh, Djhc, Pcpts, EBC106, EBC107, Bs101, W24 및 Nz2001로 명명하였다. The 26 bacteria obtained here were composed of a community named NBC2000, and each of the bacteria constituting the bacterial community was Cy100, Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Ntar1, Ntar2, Ntar3, Gc300, Gc500, Gc501, Bs100, Aeng17, Aeng18, Sp300, Tnh, Djhc, Pcpts, EBC106, EBC107, Bs101, W24 and Nz2001.
본 발명에 따른 세균공동체 NBC2000은 2004년 4월 16 일 한국생명공학연구원내 유전자원센터에 기탁번호 KCTC 10623 BP로 국제기탁을 하였다.The bacterial community NBC2000 according to the present invention was deposited on April 16, 2004 at the Genetic Resource Center of the Korea Research Institute of Bioscience and Biotechnology under accession number KCTC 10623 BP.
2. 세균공동체 NBC2000의 성장을 위한 최적조건의 확립  2. Establishment of Optimum Conditions for Growth of Bacterial Community NBC2000
루리아-베르타니(Luria-Bertani) 영양배지 [박토-트립톤 (bacto-tryptone) 10g, 박토-효모추출물(bacto-yeast extract) 5g, 소디움 클로라이드(NaCl) 10g/탈염수 1리터]에서 pH 6 ~ 8, 온도 25 ~ 30 oC, 진탕(shaking) 분당 회전수 80 ~ 120rpm으로 48 ~ 96시간 배양하면 최적성장을 나타내며, 계대 배양시에도 동일조건에서 잘 성장한다. Luria-Bertani nutritional medium [10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of sodium chloride (NaCl) / 1 liter of demineralized water] 8, temperature 25 ~ 30 o C, shaking (shaking) rotation at 80 ~ 120rpm 48 ~ 96 hours incubation for optimum growth, even in subcultures grow well under the same conditions.
3. 세균공동체 NBC2000의 생화학적인 동정3. Biochemical Identification of Bacterial Community NBC2000
토양으로부터 순수 분리한 각 세균에 대한 동정은 bioMerieux (bioMerieux sa 69280 Marcy I'Etoile/France)에서 구입한 API Kits인 API20E, API20NE, API50CH, API50CHB 등으로 실시하여 23종의 속명을 결정하였다(표1 내지 표 5 참조). 23 bacteria were identified by API Kits API20E, API20NE, API50CH and API50CHB purchased from bioMerieux (bioMerieux sa 69280 Marcy I'Etoile / France). To Table 5).
테스트항목\균주Test Item \ Strain Cy100Cy100 Aeng18Aeng18 DjhcDjhc Ntar3Ntar3 Ntar2Ntar2 Ebc107Ebc107
오르소-니트로-페닐-β-D-갈락토피라노시드Ortho-nitro-phenyl-β-D-galactopyranoside -- ++ -- -- ++ --
아르기닌Arginine ++ ++ ++ ++ ++ ++
라이신Lysine -- ++ -- -- ++ --
오르니틴Ornithine -- ++ -- -- ++ --
소디움 시트리트Sodium Citrit ++ ++ ++ ++ ++ ++
소디움 티오설페이트Sodium Thiosulfate __ -- -- -- -- --
우레아Urea __ -- ++ -- -- --
트립토판Tryptophan ++ ++ ++ ++ ++ ++
인돌Indole __ -- -- -- -- --
소디움 피루베이트Sodium Pyruvate __ ++ -- ++ ++ --
콘 젤라틴Corn gelatin __ ++ -- -- -- --
글루코스Glucose __ -- -- -- ++ --
만니톨Mannitol __ ++ -- -- ++ --
이노시톨Inositol __ ++ -- -- ++ --
소르비톨Sorbitol __ ++ -- -- ++ --
람노스Rhamnos __ -- -- -- -- --
수크로스Sucrose __ ++ -- -- ++ --
멜리바이오스Melibiose __ -- -- -- -- --
아밀그달린Amygdalin __ ++ -- -- ++ --
아라비노스Arabinos __ -- -- -- -- --
옥시다제Oxidase ++ -- ++ ++ -- ++
질산염의 아질산염으로의 환원Reduction of Nitrate to Nitrite -- ++ -- ++ ++ --
질산염의 질소가스로의 환원Reduction of Nitrate to Nitrogen Gas ++ -- ++ -- -- ++
운동성motility ++ ++ ++ ++ ++ ++
마콩키배지Maconki Badge ++ ++ ++ ++ ++ ++
그람균주Gram strain -- -- -- -- -- --
동정결과Identification result Pseudomonas sp.Pseudomonas sp. Serratia sp.Serratia sp. Pseudomonas sp.Pseudomonas sp. Pseudomonas sp.Pseudomonas sp. Serratia sp.Serratia sp. Pseudomonas sp.Pseudomonas sp.
테스트항목\균주Test Item \ Strain TnhTnh Aeng17Aeng17 PcptsPcpts Ntar1Ntar1 Sp300Sp300
포타시움나이트레트(NO3 - NO2)Potassium Nytreth (NO3-NO2) ++ ++ -- ++ ++
트립토판(인돌)Tryptophan (Indole) -- ++ -- -- --
글루코스(acidification)Glucose -- ++ -- ++ --
아르기닌Arginine -- ++ -- ++ --
우레아Urea ++ ++ ++ ++ ++
에스큐린Escurin ++ ++ ++ ++ ++
젤라틴gelatin ++ ++ ++ ++ ++
p-니트로페닐-β-D-갈락토피라노사이드p-nitrophenyl-β-D-galactopyranoside -- ++ -- ++ --
글루코스(동화)Glucose (Fairy Tale) ++ ++ ++ -- ++
아라비노스Arabinos -- -- -- -- --
만노스Mannos -- ++ -- ++ --
만니톨Mannitol ++ ++ ++ -- ++
N-아세틸글루코사마인N-acetylglucosamine ++ ++ ++ ++ ++
말토스Maltose -- ++ -- ++ --
글루코네이트Gluconate ++ ++ ++ -- ++
카프리트Caprit ++ ++ ++ -- ++
아디파트Adipart -- -- ++ -- --
말레이트Malate ++ ++ ++ ++ ++
사이트레이트Site rate ++ ++ ++ ++ ++
페닐아세테이트Phenyl Acetate -- ++ -- -- --
테트라메칠-p-페닐렌다이아마인(옥시다제)Tetramethyl-p-phenylenediamine (oxidase) ++ ++ ++ -- ++
운동성motility ++ ++ ++ ++ ++
마콩키배지Maconki Badge ++ ++ ++ ++ ++
그람균주Gram strain -- -- -- -- --
동정결과Identification result Pseudomonas aeruginosaPseudomonas aeruginosa Aeromonas hydrophilaAeromonas hydrophila Pseudomonas aeruginosaPseudomonas aeruginosa Stenotrophomonas maltophiliaStenotrophomonas maltophilia Pseudomonas aeruginosaPseudomonas aeruginosa
테스트항목\균주Test Item \ Strain Gc501Gc501 Gc500Gc500 Gc300Gc300 Cy101Cy101 Cy102Cy102 Cy103Cy103
포타시움나이트레트(NO3 - NO2)Potassium Nytreth (NO3-NO2) ++ ++ ++ -- -- --
트립토판(인돌)Tryptophan (Indole) -- -- -- -- -- --
글루코스(산성화)Glucose (acidification) ++ -- ++ -- -- --
아르기닌Arginine -- -- ++ -- -- --
우레아Urea -- -- ++ -- -- --
에스큐린Escurin ++ ++ ++ ++ ++ ++
젤라틴gelatin -- -- -- -- -- --
p-니트로페닐-β-D-갈락토피라노사이드p-nitrophenyl-β-D-galactopyranoside ++ ++ ++ -- -- --
글루코스(동화)Glucose (Fairy Tale) ++ ++ ++ -- -- --
아라비노스Arabinos ++ ++ ++ -- -- --
만노스Mannos ++ ++ ++ -- -- --
만니톨Mannitol ++ ++ ++ -- -- --
N-아세틸 글루코사마인N-acetyl glucosamine ++ ++ ++ -- -- --
말토스Maltose ++ ++ ++ -- -- --
글루코네이트Gluconate ++ ++ ++ -- -- --
카프리트Caprit -- -- -- -- -- --
아디파트Adipart -- -- -- -- -- --
말레이트Malate ++ -- ++ -- -- --
사이트레이트Site rate ++ ++ ++ -- -- --
페닐 아세테이트Phenyl acetate ++ -- ++ -- -- --
테트라메칠-p-페닐렌다이아마인Tetramethyl-p-phenylenediamine -- -- -- ++ ++ ++
운동성motility ++ ++ ++ ++ ++ ++
마콩키 배지Maconki Badge ++ ++ ++ ++ -- ++
그람 균주Gram strain -- -- -- -- -- --
동정결과Identification result Chryseomonas luteolaChryseomonas luteola Chryseomonas sp.Chryseomonas sp. Chryseomonas luteolaChryseomonas luteola Brevundimonas vesicularisBrevundimonas vesicularis Brevundimonas vesicularisBrevundimonas vesicularis Brevundimonas vesicularisBrevundimonas vesicularis
테스트항목\균주Test Item \ Strain Bs100Bs100 Cy104Cy104 Cy105Cy105 Cy106Cy106 Cy107Cy107 Ebc106Ebc106
콘트롤Control -- -- -- -- -- --
글리세롤Glycerol ++ -- ++ -- -- --
에리트리톨Erythritol -- -- -- -- -- --
D-아라비노스D-Arabinose -- -- -- -- -- --
L-아라비노스L-Arabinose -- -- ++ -- -- --
리보스Ribose -- -- -- -- -- ++
D-크실로스D-Xylose -- -- ++ -- -- --
L-크실로스L-xylose -- -- -- -- -- --
아도니톨Adonitol -- -- -- -- -- --
베타 메칠-D-크실로스Beta Methyl-D-Xylose -- -- ++ -- -- --
갈락토오스Galactose ++ -- -- -- -- --
D-글루코스D-glucose ++ -- ++ -- -- ++
D-프락토스D-fractose ++ ++ ++ -- -- ++
D-만노스D-Mannose -- ++ ++ -- -- ++
L-소르보스L-sorbos -- -- -- -- -- --
람노스Rhamnos -- -- -- -- -- --
둘시톨Dulcitol -- -- -- -- -- --
이노시톨Inositol -- -- -- -- -- --
만니톨Mannitol -- ++ ++ -- -- --
소르비톨Sorbitol -- -- -- -- -- --
알파-메칠-D-만노시드Alpha-methyl-D-mannoside -- -- -- -- -- --
알파-메칠-D-글루코시드Alpha-Methyl-D-Glucoside -- -- -- -- -- --
N-아세틸-글루코스아민N-acetyl-glucosamine ++ -- ++ -- -- --
아밀그다린Amygdarin -- -- -- -- -- --
아르부틴Arbutin -- -- -- -- -- ++
에스큐린Escurin ++ ++ ++ ++ ++ ++
살리신Salinity -- -- -- -- -- ++
셀로비오스Cellobiose -- ++ -- -- -- --
말토스Maltose ++ ++ ++ -- -- ++
락토스Lactose ++ -- -- -- -- --
멜리비오스Melibiose -- -- ++ -- -- --
수크로즈Sucrose ++ ++ ++ -- -- --
트리할로스Trihalose ++ ++ ++ -- -- ++
이눌린Inulin -- -- -- -- -- --
멜리지토스Melittose -- -- ++ -- -- --
D-라피노스D-Raffinose -- ++ ++ -- -- --
스타치Starch -- ++ ++ -- -- ++
글리코겐Glycogen -- ++ ++ -- -- ++
자일리톨Xylitol -- -- -- -- -- --
젠티오비오스Genthiobios -- -- -- -- -- --
D-트라노스D-Tranose ++ -- ++ -- -- --
D-리크로스D-recross -- -- -- -- -- --
D-타가토스D-tagatose -- -- -- -- -- --
D-푸코스D-fucose -- -- -- -- -- --
L-푸코스L-fucose -- -- -- -- -- --
D-아라비톨D-Arabitol -- -- -- -- -- --
L-아라비톨L-Arabitol -- -- -- -- -- --
글루코네이트Gluconate -- -- -- -- -- --
2-케토-글루코네이트2-keto-gluconate -- -- -- -- -- --
5-케토-글루코네이트5-keto-gluconate -- -- -- -- -- --
운동성motility ++ ++ ++ ++ ++ ++
마콩키 배지Maconki Badge -- -- -- -- -- --
그람 균주Gram strain ++ ++ ++ ++ ++ ++
동정결과Identification result Bacillus stearothermophilusBacillus stearothermophilus Bacillus stearothermophilusBacillus stearothermophilus Bacillus sp.Bacillus sp. Bacillus sp.Bacillus sp. Bacillus sp.Bacillus sp. Bacillus cereusBacillus cereus
4. 세균공동체 NBC2000을 구성하는 각 세균들의 분리 4. Isolation of each bacteria constituting bacterial community NBC2000
1)균주 분리 및 방법1) Strain isolation and method
각 균주는 한국, 뉴질랜드, 스웨덴 및 사이프로스 등의 토양에서 순수 분리하여 NBC2000을 구성하였으며, 모두 운동성을 가지고 있는 특징이 있어서 광대하고 다양한 토양에 적용할 수 있다. 세균 공동체 NBC2000에서 개별 균주를 분리하는 형태적인 특징의 방법은 다음과 같다. Each strain consists of NBC2000 purely separated from soils such as Korea, New Zealand, Sweden, and Cyprus, all of which have mobility characteristics and can be applied to a wide variety of soils. The method of morphological characterization of individual strains in bacterial community NBC2000 is as follows.
(가) 루리아-베르타니 한천배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g, 한천 1.5% + 탈염수 950ml )에서의 배양(A) Cultivation in Luria-Bertani agar medium (10 g of Bacterium-Tryptone, 5 g of Bacterial yeast extract, 10 g of NaCl, 1.5% agar, 950 ml of demineralized water)
Cy100: 48시간 배양 후 표면이 불 균일한 부정형의 노란빛 콜로니로 나타나며 4mm의 크기로 성장한다.Cy100: After 48 hours of incubation, the surface appears as an uneven irregular yellow colony and grows to a size of 4 mm.
Cy101: 48시간 배양 후 반투명 아이보리색의 볼록한 콜로니로 나타나며 2.5mm의 크기로 성장한다. Cy101: Appears as translucent ivory convex colonies after 48 hours of incubation and grows to a size of 2.5 mm.
Cy102: 48시간 배양 후 노란색의 둥근 콜로니로 나타나며 2mm의 크기로 성장한다.Cy102: Appears as yellow round colonies after 48 hours of incubation and grows to 2 mm in size.
Cy103: 48시간 배양 후 아이보리색에 둥글고 납작한 콜로니로 나타나며 4mm의 크기로 성장한다. Cy103: After 48 hours of incubation, it appears as an ivory round and flat colony, growing to a size of 4 mm.
Cy104: 48시간 배양 후 반투명한 아이보리색의 둥근 콜로니로 나타나며 4mm의 크기로 성장한다.Cy104: Appears as translucent ivory round colonies after 48 hours of incubation and grows to 4 mm in size.
Cy105: 48시간 배양 후 상아빛의 둥근 콜로니로 나타나며 2.5mm의 크기로 성장한다. Cy105: Appears as ivory round colonies after 48 hours of incubation and grows to a size of 2.5 mm.
Cy106: 48시간 배양 후 무광택 흰빛으로 가운데가 패인 둥근 콜로니로 나타나며, 1.5mm의 크기로 성장한다.Cy106: After 48 hours of incubation, it appears as a round colony with a matt white color and grows to a size of 1.5 mm.
Cy107: 48시간 배양 후 무광택 흰빛의 둥근 콜로니로 나타나며 1mm의 크기로 성장한다. Cy107: After 48 hours of incubation, it appears as a matt white round colony and grows to a size of 1 mm.
Ntar1: 24시간 배양 후 반투명한 노란 빛에 둥글고 광택이 나는 콜로니로 나타나며, 1mm의 크기로 성장한다.Ntar1: After 24 hours of incubation, it appears as a translucent yellowish, round, glossy colony, growing to a size of 1 mm.
Ntar2: 24시간 배양 후 베이지색과 아이보리색의 둥글고 광택이 나는 콜로니로 나타나며 2mm의 크기로 성장한다.Ntar2: After 24 hours of incubation, it appears as a round, glossy colony of beige and ivory, growing to a size of 2 mm.
Ntar3: 48시간 배양 후 아이보리색에 둥글고 광택이 나는 콜로니로 나타나며 1.5mm의 크기로 성장한다.Ntar3: After 48 hours of incubation, it appears as an ivory-colored round and glossy colony, growing to a size of 1.5 mm.
Gc300: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 3mm의 크기로 성장한다.Gc300: After 24 hours of cultivation, it appears as an ivory round, glossy convex colony and grows to a size of 3 mm.
Gc500: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 1.5mm의 크기로 성장한다.Gc500: After 24 hours of incubation, it appears as an ivory round, glossy convex colony, growing to a size of 1.5 mm.
Gc501: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 2.5mm의 크기로 성장한다.Gc501: After 24 hours of cultivation, it appears as an ivory round, glossy convex colony and grows to a size of 2.5 mm.
Bs100: 24시간 배양 후 밝은 상아빛의 둥근 콜로니로 나타나며 2mm의 크기로 성장한다.Bs100: Appears as bright ivory round colonies after incubation for 24 hours and grows to 2 mm in size.
Aeng17: 24시간 배양 후 붉은빛 또는 아이보리색의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.Aeng17: After 24 hours of incubation, it appears as round or irregular colonies of red or ivory color and grows to 3mm in size.
Aeng18: 24시간 배양 후 붉은빛 또는 아이보리색의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.Aeng18: After 24 hours of incubation, it appears as round or irregular colonies of red or ivory color and grows to 3mm in size.
Sp300: 24시간 배양 후 베이지색과 갈색빛의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.Sp300: After 24 hours of incubation, it appears as round or irregular colonies of beige and brown color, growing to a size of 3 mm.
Tnh: 40시간 배양 후 반투명 아이보리색의 표면이 불균일한 금속빛의 콜로니로 나타나며 4mm의 크기로 성장한다. 시간이 경과되면서 배지의 색상이 남청색으로 변화된다.Tnh: After 40 hours of incubation, the translucent ivory surface appears as an uneven metallic colony and grows to 4 mm in size. Over time, the medium changes color to indigo blue.
Djhc: 24시간 배양 후 아이보리색의 둥글고 표면이 매끄러운 형태로 점도가 강하며 광택이 나는 콜로니로 나타나며 3mm의 크기로 성장한다.Djhc: After 24 hours of cultivation, the ivory is a round, smooth surface with viscous, glossy colonies that grow to a size of 3 mm.
Pcpts: 24시간 배양 후 베이지색과 갈색빛의 둥근 또는 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.Pcpts: After 24 hours of incubation, they appear as beige and brown round or irregular colonies and grow to a size of 3 mm.
EBC106: 24시간 배양 후 아이보리색의 표면이 불균일한 상태로 퍼져자라는 납작한 무광택의 콜로니로 나타나며 7mm의 크기로 성장한다.EBC106: Appears as a flat matte colony that grows to an uneven surface after culturing for 24 hours and grows to a size of 7 mm.
EBC107: 40시간 배양 후 반 투명 아이보리색의 표면이 불균일한 부정형의 콜로니로 나타나며 4mm의 크기로 성장한다.EBC107: After 40 hours of incubation, the semi-transparent ivory-colored surface appears as uneven irregular colonies and grows to a size of 4 mm.
Bs101: 24시간 배양 후 노란빛 아이보리색에 둥글며 표면에 테가 둘러진 콜로니로서 5mm의 크기로 성장한다. 그람양성세균으로 운동성이 있다.Bs101: After culturing for 24 hours, it is yellowish ivory, rounded and surrounded by a rim, growing to a size of 5 mm. It is a gram-positive bacterium that has motility
W24: 48시간 배양 후 옅은 노란색에 둥글고 광택이 나며 볼록한 형태의 콜로니로서 1.5mm의 크기로 성장한다. 그람음성세균으로 운동성이 있다.W24: Pale yellow, round, glossy and convex colonies that grow to a size of 1.5 mm after 48 hours of incubation. Gram-negative bacteria are motility.
Nz2001: 48시간 배양 후 흰빛 무광택의 콜로니로 나타나며 2.5mm로 성장한다. 장시간 배양시는 콜로니 가장자리에 균사가 나타나며, 운동성이 있다.Nz2001: Appears as white matte colonies after 48 h of incubation and grows to 2.5 mm. During prolonged incubation, hyphae appear at the edges of the colony, and there is motility.
(나) 마콩키 고체배지 〔MacConkey agar: 펩톤 17g, 프로테즈 펩톤(Proteose peptone) 3g, 락토스 10g, 빌 소트(Bile Salts No.3) 1.5g, 염화나트륨 5g, 한천 13.5g, 뉴트럴 레드 0.03g, 크리스탈 비올렛트 0.001g, 탈염수 1 리터, pH7.3~7.5〕 에서 48시간 배양후의 콜로니 색상(B) Maconkey solid medium [MacConkey agar: 17g peptone, Proteose peptone 3g, 10g lactose, 1.5g Bil Salts No.3, 5g sodium chloride, 13.5g agar, 0.03g neutral red, 0.001 g of crystal violet, 1 liter of demineralized water, pH7.3 ~ 7.5]
Cy100은 연한 갈색의 작은 콜로니가 나타나며, Cy100 appears in light brown small colonies,
Ntar1은 투명한 연갈색이며 표면이 불균일하며, Ntar1 is transparent light brown with uneven surface,
Ntar2는 베이지색의 작은 콜로니이며, Ntar2 is a small beige colony,
Ntar3은 옅은 붉은빛이 나는 투명한 갈색의 콜로니이며, Ntar3 is a light brown transparent brown colony,
Gc300은 짙은 분홍색의 콜로니에 가장자리는 베이지색이며, Gc300 is a dark pink colony with beige edges,
Gc500은 대부분의 베이지색과 분홍색 콜로니이며, Gc500 is most of the beige and pink colonies,
Gc501은 짙은 분홍색의 콜로니로 가장자리는 베이지색이며, Gc501 is a dark pink colony with beige edges.
Aeng17과 Aeng18은 짙은 붉은색의 콜로니이며, Aeng17 and Aeng18 are dark red colonies,
Sp300은 베이지색의 콜로니이며, Sp300 is a beige colony
Tnh는 어두운 카키색의 콜로니이며, Tnh is a dark khaki colony,
Djhc는 콜로니 가운데는 연분홍색이며 가장자리는 베이지색이며, Djhc is pink in the center of the colony and beige at the edges,
Pcpts는 연한 카키색으로 나타나고, Pcpts appear in light khaki
EBC107은 아주 옅은 분홍색의 콜로니로 나타나며, EBC107 appears as a very pale pink colony,
Nz2001은 분홍빛의 베이지색 콜로니로 나타나며, Nz2001 appears as a pink beige colony,
Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101,W24 균주는 48시간 배양 후에도 콜로니가 나타나지 않는다.Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, W24 strains do not show colonies even after 48 hours of incubation.
(다) 데스옥사콜레이트 고체배지〔Desoxycholate agar: 프로테즈 펩톤 10g, 락토스 10g, 데스옥시콜레이트 나트륨 0.5g, 염화나트륨 5g, 구연산나트륨 2g, 한천 15g, 뉴트럴 레드 0.03g, 탈염수 1 리터, pH7.3~7.5〕에서 48시간 배양 후의 콜로니 색상(C) Desoxycholate agar [Desoxycholate agar: Protez peptone 10g, lactose 10g, sodium desoxycholate 0.5g, sodium chloride 5g, sodium citrate 2g, agar 15g, neutral red 0.03g, deionized water 1 liter, pH7.3 ... 7.5] colony color after 48 h incubation
Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, 24 균주는 48시간 배양 후에도 콜로니가 나타나지 않는다. Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, 24 strains do not show colonies even after 48 hours of culture.
Cy100은 연분홍빛이 나는 노란색 콜로니로 꽃 처럼 주름진 모양, Cy100 is a pale pink colony that looks like a flower
Ntar1과 Ntar2, Ntar3은 투명한 주황빛의 콜로니, Ntar1, Ntar2, and Ntar3 are transparent orange colonies,
Gc300과 Gc501은 짙은 분홍색의 콜로니로 가장자리는 베이지색, Gc300 and Gc501 are dark pink colonies with beige edges,
Gc500은 약한 붉은 빛이 나는 베이지색 콜로니, Gc500 is a light reddish beige colony,
Aeng17과 Aeng18은 짙은 붉은색의 콜로니, Aeng17 and Aeng18 are dark red colonies,
Sp300은 투명한 연갈색의 콜로니, Sp300 is a transparent light brown colony,
Tnh는 연한 갈색의 콜로니로 금속빛, Tnh is a light brown colony metallic,
Djhc는 연분홍과 베이지색이 혼합된 모양, Djhc is a mix of pink and beige
Pcpts는 투명한 갈색빛 콜로니, Pcpts are transparent brown colonies,
EBC107은 노란빛의 콜로니로 나타났다. EBC107 appeared as a yellow colony.
Nz2001은 붉은빛의 베이지색 콜로니로 나타났다. Nz2001 appeared as a red beige colony.
타르를 분해하는 Bs101, 유황균주 Nz2001, 유류 분해균주 W24는 현재의 방법으로는 동정이 곤란하였으므로 미 동정 균주로 결정하였다. Bs101, sulfur strain Nz2001, and oil degradation strain W24, which decompose tar, were identified as unidentified strains because it was difficult to identify by the present method.
5. NBC2000 개별 균주들의 각 환경호르몬 분해범위 5. Scope of Environmental Hormone Degradation in Individual Strains of NBC2000
1)각 분리 균주의 환경호르몬 분해 범위1) Range of environmental hormone degradation of each isolate
PCBs, 다이옥신, PCE, 톨루엔, 타르산은 실험실의 최적조건에서 세균 공동체의 구성세균으로 측정한 값이며, 황(Sulphur)과 PCP는 개별 균주 수준에서 측정한 평균값이다.PCBs, dioxins, PCE, toluene and taric acid are measured by the bacterial community constituent bacteria under optimal conditions in the laboratory, and sulfur and PCP are average values measured at individual strain levels.
수도모나스 속(Pseudomonas sp.) Cy100 : PCBs 700 ppm;Pseudomonas sp. Cy100: 700 ppm PCBs;
서레시아 속(Serratia sp.) Aeng18 : PCP 500 ppm, 타르산, 다이옥신 100 ng/kg;Serratia sp. Aeng18: PCP 500 ppm, taric acid, dioxin 100 ng / kg;
서레시아 속(Serratia sp.) Ntar2 : 타르산;Serratia sp. Ntar2: taric acid;
수도모나스 속(Pseudomonas sp.) Djhc : PCP 1000 ppm, 다이옥신 300 ng/kg;Pseudomonas sp. Djhc: 1000 ppm PCP, 300 ng / kg dioxin;
수도모나스 속(Pseudomonas sp.) Ntar3 : 타르산;Pseudomonas sp. Ntar 3: taric acid;
수도모나스 속(Pseudomonas sp.) EBC107 : PCBs 700 ppm, PCP 100 ppm, 다이옥신 100 ng/kg, PCE 50,000 mg/kg;Pseudomonas sp. EBC107: 700 ppm PCBs, 100 ppm PCP, dioxin 100 ng / kg, PCE 50,000 mg / kg;
수도모나스 속(Pseudomonas sp.) Tnh : PCBs 700 ppm, PCP 500 ppm, 다이옥신 300 ng/kg, PCE 50,000 mg/kg, 타르산;Pseudomonas sp. Tnh: 700 ppm PCBs, 500 ppm PCP, dioxin 300 ng / kg, PCE 50,000 mg / kg, taric acid;
에어로모나스 속(Aeromonas sp.) Aeng17 : 타르산, PCP 100 ppm, 다이옥신 50 ng/kg;Aeromonas sp. Aeng17: taric acid, PCP 100 ppm, dioxin 50 ng / kg;
수도모나스 속(Pseudomonas sp.) Pcpts : PCP 1,000 ppm, 다이옥신 500 ng/kg;Pseudomonas sp. Pcpts: PCP 1,000 ppm, dioxin 500 ng / kg;
스텐노트로포모나스 속(Stenotrophomonas sp.) Ntar1 : 타르산;Stenotrophomonas sp. Ntar1: Taric acid;
수도모나스 속(Pseudomonas sp.) Sp300 : 타르산, PCP 700 ppm, 다이옥신 100 ng/kg;Pseudomonas sp. Sp300: taric acid, PCP 700 ppm, dioxin 100 ng / kg;
크리저모나스 속(Chryseomonas sp.) Gc501 : PCP 500 ppm, 다이옥신 100 ng/kg;Chryseomonas sp. Gc501: PCP 500 ppm, dioxin 100 ng / kg;
크리저모나스 속(Chryseomonas sp.) Gc500 : PCP 500 ppm, 다이옥신 100 ng/kg;Chryseomonas sp. Gc500: PCP 500 ppm, dioxin 100 ng / kg;
크리저모나스 속(Chryseomonas sp.) Gc300 : PCP 300 ppm, 다이옥신 100 ng/kg;Chryseomonas sp. Gc300: PCP 300 ppm, dioxin 100 ng / kg;
브레분디모나스 속(Brevundimonas sp.) Cy101 : PCBs 150 ppm;Brevundimonas sp. Cy101: PCBs 150 ppm;
브레분디모나스 속(Brevundimonas sp. Cy102 : PCBs 150 ppm;Brebundimonas sp. Cy102: PCBs 150 ppm;
브레분디모나스 속(Brevundimonas sp.) Cy103 : PCBs 700 ppm;Brevundimonas sp. Cy103: 700 ppm PCBs;
바실러스 속(Bacillus sp.) Bs100 : 타르산;Bacillus sp. Bs100: Taric acid;
바실러스 속(Bacillus sp.) Cy104 : PCBs 800 ppm; Bacillus sp. Cy104: PCBs 800 ppm;
바실러스 속(Bacillus sp.) Cy105 : PCBs 700 ppm;Bacillus sp. Cy105: 700 ppm PCBs;
바실러스 속(Bacillus sp.) Cy106 : PCBs 1,000 ppm;Bacillus sp. Cy106: 1,000 ppm PCBs;
바실러스 속(Bacillus sp.) Cy107 : PCBs 150 ppm;Bacillus sp. Cy107: 150 ppm PCBs;
바실러스 속(Bacillus sp.) EBC106 : PCBs 700 ppm, PCP 1,000 ppm, 다이옥신 300 ng/kg, 타르산, PCE 50,000 mg/kg, 톨루엔 50,000 mg/kg;Bacillus sp. EBC106: 700 ppm PCBs, 1,000 ppm PCP, dioxin 300 ng / kg, taric acid, PCE 50,000 mg / kg, toluene 50,000 mg / kg;
그람 양성 세균 Bs101: 타르산;Gram positive bacterium Bs101: taric acid;
그람 음성 세균 W24: TPH 100 ppm, 톨루엔 100 ppm;Gram negative bacteria W24: 100 ppm TPH, 100 ppm toluene;
유황 균주 Nz2001: 황(Sulphur), 타르산, 다이옥신 50 ng/kgSulfur Strain Nz2001: Sulphur, Taric Acid, Dioxin 50 ng / kg
EBC1000 세균공동체의 분리, 동정 및 활성Isolation, Identification and Activity of EBC1000 Bacterial Communities
하기에서는 본 발명에 따른 EBC1000세균 공동체의 분리, 동정 및 활성을 자세히 설명하고자 한다.Hereinafter will be described in detail the isolation, identification and activity of the EBC1000 bacterial community according to the present invention.
1. 난분해 독성 폐액 폐기물을 분해할 수 있는 신규한 세균 공동체의 분리1. Isolation of a Novel Bacterial Community That Can Decompose Hardly Degradable Toxic Wastes
(1) 울산공단 등의 토양, 폐수에서 채집한 시료를 해역배출용 난분해성 폐액이 혼합된 액체배지에서 진탕배양하여 40여종의 미생물을 분리하는 단계(1) separating 40 kinds of microorganisms by shaking culture of samples collected from the soil and wastewater, such as Ulsan Industrial Complex, in a liquid medium mixed with difficult-to-dissolve wastewater
울산공단 등지에서 채집한 토양 각 1g, 폐수 각 10㎖을, 폐산, 폐알카리 폐수 액체배지(K2HPO4 0.65g, KH2PO4 0.17g, MgSO4 0.1g, NaNO3 0.5g과 의약품 산업폐액 및 석유화학폐액의 난분해성 화학물질이 함유된 폐산폐알카리성폐액 10%를 탈염수(deionized water)1l에 희석하여 형성한 배지, pH 0~14)와 염소화합물액체배지(K2HPO4 0.65g, KH2PO4 0.17g, MgSO4 0.1g, NaNO3 0.5g과 오염소화 페놀화합물(pentachlorophenol:PCP) 50 ppm을 deionized water 1l에 녹여 형성한 배지, pH 7.2)에 순차적으로 접종하고 20~30℃에서 5일 이상 진탕배양하였다. 1g of soil collected from Ulsan Industrial Complex, 10ml of wastewater, waste acid, waste alkaline wastewater liquid medium (K 2 HPO 4 0.65g, KH 2 PO 4 0.17g, MgSO 4 0.1g, NaNO 3 0.5g and pharmaceutical industry A medium formed by diluting 10% of waste acid alkaline wastes containing hardly decomposable chemicals from waste and petrochemical wastes in 1l of deionized water, pH 0 ~ 14) and chlorine compound liquid medium (K 2 HPO 4 0.65g , KH 2 PO 4 0.17g, MgSO 4 0.1g, NaNO 3 0.5g and 50 ppm of pentachlorophenol (PCP) dissolved in 1l of deionized water, pH 7.2) were inoculated sequentially and 20 ~ 30 Shake culture was carried out for 5 days or more.
상기 진탕배양액 1㎖를 취하여 폐산, 폐알카리 고체배지(폐산, 폐알카리 액체배지에 한천(agar)만 1.5% 첨가하여 형성한 배지, pH 중화)와 염소화합물고체배지(염소화합물 액체배지에 BTB 20㎎, 한천 1.5%를 첨가하여 형성한 배지)에 순차적으로 접종하고 20~30℃에서 3~10일간 배양하였다. Take 1 ml of the shake culture solution, waste acid, waste alkali solid medium (waste acid, waste alkali, medium formed by adding only 1.5% of agar (agar) to medium, pH neutralization) and chlorine compound solid medium (BTB 20 in chlorine compound liquid medium) ㎎, medium formed by adding 1.5% agar) was sequentially inoculated and incubated at 20-30 ° C for 3-10 days.
순수분리한 각 콜로니를 상기와 같은 배지에 재접종하여 진탕배양한 후, 개별적으로 형성된 각기 다른 모양의 콜로니 형태를 가지며 그 콜로니의 계대배양시 동일한 콜로니가 나타나는 유용세균 40 여종을 분리하였다.Each colony was purified by re-inoculation on the same medium as above, and then shaken and cultured, and 40 kinds of useful bacteria having separate colonies of different shapes and the same colonies when subcultured were isolated.
(2) (1)단계에서 분리된 세균들을 난분해성 폐액의 농도를 점차 증가시킨 배지에서 배양하여 9종의 강력한 세균들을 분리하는 단계(2) Separating 9 strong bacteria by culturing the bacteria isolated in step (1) in a medium gradually increasing the concentration of the hardly degradable waste liquid
상기 (1)단계에서 분리한 세균들을 의약품 산업폐액 및 석유화학폐액의 난분해성 화학물질이 함유된 원액폐액 및 폐액을 50%, 80% 첨가한 최소배지와 오염소화 페놀화합물(PCP) 500 ppm을 첨가한 최소배지에 각각 순차적으로 접종하여 상기 (1)단계와 같은 방법으로 반복하여, 보다 높은 농도에서 생존가능한 균주위주로 콜로니 형태에 따라 9종을 분리하였다. Bacteria isolated in step (1) were used for pharmaceutical wastes and petrochemical wastes. Inoculated sequentially in each of the minimum medium was added and repeated in the same manner as in step (1), nine species were isolated according to colony type mainly viable strain at a higher concentration.
여기서 얻은 9종의 세균들을 하나의 공동체로 구성하여 EBC1000으로 명명하였으며, 상기 세균 공동체를 이루는 각각의 세균을 각각 EBC100, 101, 103, 104, 105, 106, 107, 108 및 109로 명명하였다.The nine bacteria obtained here were composed of one community and named EBC1000, and each bacteria constituting the bacterial community was named EBC100, 101, 103, 104, 105, 106, 107, 108 and 109, respectively.
본 발명에 따른 세균 공동체 EBC1000은 1999년 8월12일 한국생명공학연구소내 유전자원센터에 기탁번호 KCTC 0652 BP로 국제기탁을 하였다The bacterial community EBC1000 according to the present invention was deposited internationally with the accession number KCTC 0652 BP at the Genetic Resource Center in Korea Biotechnology Research Institute on August 12, 1999.
2. 세균 공동체 EBC1000의 성장을 위한 최적조건 확립2. Establish Optimal Conditions for Growth of Bacterial Community EBC1000
루리아-베르타니(Luria-Bertani)영양배지[박토-트립톤(bacto-tryptone) 10g, 박토-효모 추출물(bacto-yeast extract) 5g, NaCl 10g/탈염수 1l]에서 pH5~8, 온도 25~35℃, 진탕(shaking) 분당회전수 50~100rpm으로 24~48시간 배양하면 최적성장을 나타내며, 계대배양시에도 동일조건에서 잘 성장한다.PH 5-8 at Luria-Bertani nutrient medium (10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of NaCl / l of demineralized water), temperature 25-35 ℃, shaking (shaking) 50 ~ 100rpm per minute incubation for 24 to 48 hours shows the optimum growth, even in subcultures grow well under the same conditions.
3. 세균 공동체 EBC1000의 동정3. Identification of Bacterial Community EBC1000
세균 공동체 EBC1000을 구성하고 있는 EBC 100, 101, 103, 104, 105, 106, 107, 108, 109 균주는 그람음성세균과 그람양성세균의 혼합상태였으며, 형태 및 크기가 각각 특이하였다. LB고체배지에서 24시간 동안 배양시 EBC100은 직경 1㎜의 원형콜로니, EBC101은 2㎜ 정도의 큰 원형, EBC103은 2㎜의 두꺼운 원형, EBC104와 EBC105는 0.5㎜정도의 작은 원형, EBC106은 3㎜정도의 두꺼운 모양, EBC107은 1.2㎜정도의 갈색 콜로니, EBC108은 1㎜정도의 노란색 콜로니, EBC109는 2㎜정도의 이중원형의 모양을 나타내었다. 9종의 균주는 호기성 및 통기성 균주들로서 EBC100, 101, 103, 106, 107, 108은 강산(pH3~4), 강알카리(pH9~11) 조건에서도 생존력이 강하였으며, EBC104, 105, 109는 생장이 느렸다. 운동성은 EBC100, 104, 105, 109에서 나타내었다. EBC 100, 101, 103, 104, 105, 106, 107, 108, and 109 strains of the bacterial community EBC1000 were mixed with Gram-negative bacteria and Gram-positive bacteria. After 24 hours of incubation in LB solid medium, EBC100 is a circular colony with a diameter of 1 mm, EBC101 is a large round about 2 mm, EBC103 is a thick round about 2 mm, EBC104 and EBC105 are a small round about 0.5 mm, and EBC106 is 3 mm EBC107 is about 1.2mm brown colony, EBC108 is about 1mm yellow colony, EBC109 is about 2mm double circle. Nine strains are aerobic and breathable strains, and EBC100, 101, 103, 106, 107, and 108 have strong viability even under strong acid (pH3 ~ 4) and strong alkali (pH9 ~ 11) conditions, and EBC104, 105, and 109 grow. This was slow. Motility is shown in EBC100, 104, 105, and 109.
세균 공동체 EBC1000을 구성하는 균주들의 속(屬)을 살펴보면, EBC100, 101, 103은 클레브시엘라 속이고, EBC105는 프로비덴시아 속, EBC104 및 EBC109는 에스체리치아 속, EBC106은 바실러스 속에 속하고, EBC107은 그람음성세균, EBC108은 그람양성세균이다.Looking at the genus of the strains that make up the bacterial community EBC1000, EBC100, 101 and 103 belong to the genus Klebsiella, EBC105 belong to the genus Providencia, EBC104 and EBC109 belong to the genus Escherichia, EBC106 belong to the genus Bacillus, EBC107 is Gram-negative bacteria and EBC108 is Gram-positive bacteria.
상기와 같은 각 균주의 특성을 정리하면 아래 표 6 및 표 7와 같다.To summarize the characteristics of each strain as described above are shown in Table 6 and Table 7.
시 료 sample EBC 100EBC 100 EBC 101EBC 101 EBC 103EBC 103
그람균주Gram strain -- -- --
카탈라제Catalase ++
옥시다제Oxidase --
우레아제Urease ++
시트라제 이용(Citrase utilizat.)Citrase utilizat. ++
글루코스 이용(Glucose utilizat.)Glucose utilizat. ++
V-P 시험V-P test ++
라이신데카르복실라제Lysine decarboxylase ++
오르니틴데카르복실라제Ornithine decarboxylase --
시 료 sample EBC 100EBC 100 EBC 101EBC 101 EBC 103EBC 103
이노시톨Inositol ++ ++
아라비노스Arabinos ++ ++ ++
만니톨Mannitol ++ ++ ++
람노스Rhamnos ++ ++ ++
글루코스Glucose ++ ++ ++
소르비톨Sorbitol ++ ++ ++
α-시클로덱스트린α-cyclodextrin -- -- --
덱스트린dextrin ++ ++ --
글리코겐Glycogen --
아도니톨(adonitol)Adonitol ++ ++
D-아라비톨D-Arabitol ++ ++
셀로비오스Cellobiose ++ ++
D-프럭토오스D-fructose ++ ++ ++
L-푸코스L-fucose ++ ++ ++
D-갈락토스D-galactose ++ ++ ++
α-락토스α-lactose --
말토스Maltose ++ ++
D-라피노오스D-Raffinose ++ ++
D-트레할로스D-trehalose ++ ++ ++
메틸-파이루베이트Methyl-pyruvate -- ++ ++
시트르산Citric acid ++ ++ ++
포름산Formic acid ++
말론산Malonic acid -- --
숙신산Succinic acid ++
D-알라닌D-alanine ++
L-알라닌L-alanine ++ ++
L-글루타민산L-glutamic acid ++ ++
L-세린L-serine ++ ++ ++
D,L-락트산D, L-lactic acid ++ ++ ++
운동성motility ++ ++ ++
D-만노스D-Mannose ++ ++ ++
시 료sample EBC 104EBC 104 EBC 105EBC 105 EBC 106EBC 106
그람균주Gram strain -- -- --
ONPGONPG ++ -- ++
아르기닌Arginine -- -- --
라이신Lysine ++ -- --
오르니틴Ornithine -- -- --
구연산 나트륨Sodium citrate -- -- --
티오황산 나트륨Sodium thiosulfate ++ -- ++
우레아Urea -- ++ --
트립토판Tryptophan -- ++ --
인돌Indole ++ ++ ++
파이루베이트 크레아틴나트륨Pyruvate creatine sodium -- -- --
콘 목탄 젤라틴(Kohn Charcoal Gelatin)Kohn Charcoal Gelatin -- -- --
글루코스, 질산칼륨Glucose, potassium nitrate ++ ++ ++
만티올(Mantiol)Manantiol ++ ++ ++
이노시톨Inositol -- -- --
람노스Rhamnos ++ -- ++
수크로스Sucrose ++ ++ ++
멜리바이오스Melibiose -- -- --
아미그달린Amigdalin -- -- --
아라비노스Arabinos -- -- --
산화효소Oxidase ++ -- ++
질산염의 아질산염으로의 환원Reduction of Nitrate to Nitrite -- -- --
질산염의 N2가스로의 환원Reduction of Nitrate to N 2 Gas ++ ++ ++
운동성(Mobility)Mobility -- -- --
글루코스의 산화Oxidation of glucose ++ ++ ++
글루코스의 발효Fermentation of glucose ++ ++ ++
항생제 내성Antibiotic resistance ++ -- ++
KmR Km R KmS Km S KmS Km S
ApS Ap S ApR Ap R ApR Ap R
TcS Tc S TcR Tc R TcR Tc R
한편, 가스 크로마토그래피를 통해 각 균주의 지방산 메틸에스테르(Fatty Acid Methyl Esters: FAMEs)분석을 하였다.Meanwhile, fatty acid methyl esters (FAMEs) of each strain were analyzed by gas chromatography.
FAMEs 분석에는 휴렛팩커드 시리즈 Ⅱ 가스 크로마토그래피 모델 5890A(Hewlett Packard series ⅡGas Chromatograph model 5890A; Microbial ID. Inc., Delaware, USA)가 이용되었으며, 분리 칼럼(sepation column)은 25m×0.22㎜×0.33㎛ 메틸페닐실리콘이 융합된 모세관 칼럼(HP 19091B-102)을 사용하였다. Hewlett Packard series II Gas Chromatograph model 5890A; Microbial ID. Inc., Delaware, USA was used for the analysis of FAMEs.The separation column was 25m × 0.22mm × 0.33㎛ methylphenylsilicone. This fused capillary column (HP 19091B-102) was used.
상기 가스 크로마토그래피의 조건은, 운반가스(carrier gas)는 수소이고, 칼럼상부압력(column Head Pressure)은 10psi이고, 분할비(split ratio)는 100:1이며, 분할 배기구멍(split vent)는 50㎖/분이고, 격막 퍼지(Septum Purge)는 5㎖/분이며, FID 수소는 30㎖/분이고, FID 질소는 30㎖/분이며, FID 공기는 400㎖/분이고, 초기 온도는 170℃이며, 프로그램 속도는 5℃/분이고, 최종온도는 270℃이며, FID 온도는 300℃이고, 주입포트는 250℃이며, 주입 부피는 2㎕이다.In the gas chromatography, the carrier gas is hydrogen, the column head pressure is 10 psi, the split ratio is 100: 1, and the split vent is 50 ml / min, Septum Purge is 5 ml / min, FID hydrogen is 30 ml / min, FID nitrogen is 30 ml / min, FID air is 400 ml / min, initial temperature is 170 ° C., The program rate is 5 ° C./min, the final temperature is 270 ° C., the FID temperature is 300 ° C., the injection port is 250 ° C. and the injection volume is 2 μl.
FAMEs 그래프는 미생물 동정 시스템 소프트웨어(Microbial Identification System Software; Microbial ID, Inc., Delaware, USA)를 이용하였으며 표준 혼합물(standard calibration mixture; Microbial ID, Inc., Delaware, USA)와 비교하여 피크 동정, 정체 시간, 피크 영역, 피크 퍼센트를 구하였다.The FAMEs graph used Microbial Identification System Software (Microbial ID, Inc., Delaware, USA) and peak identification and stagnation compared to a standard calibration mixture (Microbial ID, Inc., Delaware, USA). The time, peak area, and peak percentage were obtained.
EBC100, 101, 103 각 균주에 대한 FAMEs분석 결과, EBC100의 세포내 지방산 조성(cellular fatty acids composition)은 C12:0, C14:0, C16:0, C16:1, C17:0 cyclo, C14:0 3OH 이며, EBC101은 C12:0, C14:0, C15:0, C16:0, C17:0 cyclo, C14:0 3OH이다. EBC103은 C14:0, C15:0, C16:0, C17:0 cyclo, C14:0 3OH로 나타났다.As a result of analysis of FAMEs for each strain of EBC100, 101 and 103, the cellular fatty acids composition of EBC100 was C12: 0, C14: 0, C16: 0, C16: 1, C17: 0 cyclo, C14: 0 3OH, EBC101 is C12: 0, C14: 0, C15: 0, C16: 0, C17: 0 cyclo, C14: 0 3OH. EBC103 was found to be C14: 0, C15: 0, C16: 0, C17: 0 cyclo, C14: 0 3OH.
4. 세균 공동체 EBC1000을 구성하는 각 세균들의 분리4. Isolation of each bacteria that make up the bacterial community EBC1000
세균 공동체 EBC1000에서 개별균주를 분리하는 방법은 다음과 같다.The method of separating individual strains from bacterial community EBC1000 is as follows.
EBC106(바실러스 속), EBC107(그람음성세균) 및 EBC108(그람양성세균)은, 루리아-베르타닌 한천(박토-트립톤 10g, 박토-효모 추출물 5g, NaCl 10g, 한천 1.5% + 950㎖ 탈염수)의 영양소 고체배지에서 배양하면, EBC106은 전형적인 바실러스 형태의 두꺼운 주름모양이고, EBC107은 갈색 콜로니, EBC108은 노란색 콜로니의 형태적 특징으로 구별될 수 있다.EBC106 (genus Bacillus), EBC107 (Gram-negative bacteria) and EBC108 (Gram-positive bacteria) were identified as Luria-Bertan agar (10 g of Bacterium-Tryptone, 5 g of Bacterium-Yeast Extract, 10 g of NaCl, 1.5% of agar, 950 ml of demineralized water) When cultured in nutrient solid medium of EBC106, the typical Bacillus-shaped thick wrinkles, EBC107 can be distinguished by the morphological features of brown colony, EBC108 is yellow colony.
그외 균주들은 데스옥시콜레이트 아가[Desoxycholate agar; 박토 펩톤 10g, 박토 락토스 10g, 데스옥시콜레이트 나트륨 1g, 염화나트륨 5g, 이칼륨(dipotassium) 2g, 구연산 철(Fe citrate) 1g, 구연산 나트륨(sodium citrate) 1g, 박토 한천(bacto agar) 15g, 뉴트랄 레드(neutral red) 0.03g/탈염수(deionized water) 1l- Difco manual, 1984]에서 세균공동체 EBC1000을 희석도말하면 각 균주의 콜로니 형태를 확인할 수 있다. 24시간 데스옥시콜레이트 아가에 배양하고 나면 EBC100, 101, 103은 붉은색상에 흰색의 점성이 나타나며, 크기상 미세한 차이를 보인다. EBC104는 붉은색에 흰부분이 나타나며 무점성이며, EBC105는 갈색, EBC106, 107은 엷은 갈색, EBC108은 무색, EBC109는 붉은색에 점성을 나타낸다(Dictionary of Microbiology and Molecular Biology, 2nd, Paul Singleton Diana Sainsbury 1987).Other strains include Desoxycholate agar; 10 g of bactopeptone, 10 g of bactolactose, 1 g of sodium deoxyoxylate, 5 g of sodium chloride, 2 g of dipotassium, 1 g of iron citrate, 1 g of sodium citrate, 15 g of bacto agar, neutral The colony morphology of each strain can be confirmed by diluting the bacterial community EBC1000 in 0.03 g of red red / deionized water 1-Difco manual, 1984]. After incubation in desoxycholate agar for 24 hours, EBC100, 101, and 103 show reddish white viscosities and slight differences in size. EBC104 is red and white and viscous, EBC105 is brown, EBC106, 107 is light brown, EBC108 is colorless, and EBC109 is red (Dictionary of Microbiology and Molecular Biology, 2nd, Paul Singleton Diana Sainsbury 1987).
5. 세균 공동체 EBC1000의 특성5. Characteristics of Bacterial Community EBC1000
(1) 세균 공동체 EBC1000에 의한 알킬아릴나프탈렌 설폰산 나트륨(sodium alkylarylnaphthalene sulfonate: Tamol-SN)의 분해속도(1) Degradation rate of sodium alkylarylnaphthalene sulfonate (Tamol-SN) by bacterial community EBC1000
K2HPO4 0.065g, KH2PO4 0.017g, MgSO4 0.1g, NaNO3 0.5g을 탈염수 1l에 용해시켜 만든 최소배지(pH 7.2)에 Tamol-SN을 500, 1000, 2000, 4000 ppm으로 점차 증가하여 투여하고 세균 공동체 EBC1000을 접종한 뒤 시간별로 흡광도와 Tamol의 농도를 측정하였다. Tamol-SN at 500, 1000, 2000, 4000 ppm in a minimum medium (pH 7.2) made by dissolving 0.065 g of K 2 HPO 4 , 0.017 g of KH 2 PO 4 , 0.1 g of MgSO 4 , and 0.5 g of NaNO 3 in 1 L of demineralized water. After gradually increasing the dose and inoculating the bacterial community EBC1000, the absorbance and the concentration of Tamol were measured over time.
Tamol-SN(ppm)Tamol-SN (ppm) 분해속도(㎎/l/h)Degradation rate (mg / l / h)
500500 1.31.3
10001000 3.83.8
20002000 5.25.2
40004000 4.04.0
표 9에 나타난 바와 같이, 시간당 Tamol의 분해속도는 500 ppm일 때 분해속도는 1.3(㎎/l/h)이고, 4000 ppm일 때는 4.0(㎎/l/h)이었다.(2) 세균 공동체 EBC1000에 의한 오염소화 페놀화합물(PCP)의 분해속도As shown in Table 9, the degradation rate of tamol per hour was 1.3 (mg / l / h) at 500 ppm and 4.0 (mg / l / h) at 4000 ppm. (2) Bacterial Community EBC1000 Degradation Rate of Digested Phenol Compounds (PCP) by
상기 (1)과 같은 최소액체배지 조건에 BTB 20mg를 탈염수 1l에 용해시켜 만든 후 오염소화 페놀화합물(PCP)을 표 4와 같이 투여하고 세균 공동체 EBC1000을 접종한 뒤 시간별로 흡광도와 오염소화 페놀화합물(PCP)의 농도를 측정하였다. 그 결과는 표 10에 나타나 있다. After dissolving BTB 20mg in 1L of demineralized water under the minimum liquid medium conditions as shown in (1), the contaminated digestive phenolic compound (PCP) was administered as shown in Table 4, and the inoculation of bacterial community EBC1000 was followed by absorbance and contaminated digestive phenolic compound over time. The concentration of (PCP) was measured. The results are shown in Table 10.
오염소화 페놀화합물(PCP)(ppm)Digestive Phenolic Compounds (PCP) (ppm) 분해속도(㎎/l/h)Degradation rate (mg / l / h)
200200 0.90.9
500500 6.56.5
10001000 5.05.0
20002000 4.54.5
세균 공동체 NBC2000 및 EBC1000 각 균주의 조합에 따른 환경호르몬의 분해특성Degradation Characteristics of Environmental Hormone by Combination of Bacterial Community NBC2000 and EBC1000
개별균주의 분해능은 제한적이지만 NBC2000 또는 EBC1000 전체 또는 그 구성 균주들의 각 조합별 세균 공동체를 시료 또는 오염 환경에 처리하면 더 광범하고 효율적인 분해효과가 나타난다. 이는 NBC2000 및 EBC1000을 구성하는 개별균주의 기능보다는 세균 공동체로서의 상호협력으로 인한 창발성의 상승효과는 매우 크다고 볼 수 있다. 어떤 균주도 단일 균주로서는 복잡다단한 PCBs를 분해할 수 없으나, NBC2000 각 균주들과 EBC1000(KCTC0652 BP) 각 균주들의 조합에 따라서는 균주간의 상호보완 및 군집내의 유전자 전이 교환방식으로 인하여 효율적인 분해효과를 나타내게 된다. 이를 입증하기 위하여, 본 발명자는 다음과 같은 실험을 수행하였다.Although the resolution of individual strains is limited, treatment of the bacterial community of the whole NBC2000 or EBC1000 or each combination of its constituent strains in a sample or contaminated environment results in a more extensive and efficient degradation effect. This is a synergistic effect of emergence due to mutual cooperation as a bacterial community rather than the function of individual strains constituting NBC2000 and EBC1000. None of the strains can degrade complex PCBs with a single strain, but depending on the combination of each strain of NBC2000 and each strain of EBC1000 (KCTC0652 BP), the strains can be effectively complemented by complementary strains and exchange of genes in the community. Will be displayed. In order to prove this, the inventor performed the following experiment.
이하, 본 발명은 다음 실험예에 의거하여 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on the following experimental examples, but the present invention is not limited thereto.
NBC2000세균공동체 및 EBC1000세균공동체에서 선택된 12종의 혼합세균공동체의 절연유내 PCBs 분해효과 확인 실험Determination of PCBs Degradation Effect in Insulating Oil of 12 Mixed Bacterial Communities Selected from NBC2000 Bacteria and EBC1000 Bacteria
1절. PCBs 분해 반응조의 설계 Verse 1. Design of PCBs Decomposition Reactor
1. 반응조의 요건 및 선택1. Requirements and selection of reactor
반응조 설계는 외부에서 내부반응 과정을 볼 수 있는 강력 유리재료 등에 의한 분해반응조로 온도, pH, 산소, 교반의 부속시설 및 장비를 갖추고 투입구, 인출구 등을 제어하는 방식으로 설계하였다.The reactor design is a decomposition reaction tank made of strong glass material that can see the internal reaction process from the outside, and is designed in such a way as to control the inlet and the outlet through equipping facilities and equipment for temperature, pH, oxygen, and agitation.
이에 국내 기업인 바이오트론(Biotron)사의 발효조 Liflus GX 및 Liflus GR모델을 선택하여 주 반응조 2개(GX)와 예비 반응조 2개(GR)를 설치하였으며, 예비실험 및 재현성 등 연구에 필요한 실험 반응조(플라스크 및 인큐베이터 등)를 설치, 운영하였다. 주 반응조(Liflus GX)의 경우 교반속도, 온도, pH 및 DO 측정, 공기주입량 설정 등이 가능하며, 주기적으로 조건 및 변화에 대한 데이터를 컴퓨터를 통해 저장 및 취득이 가능하도록 하였다. 예비 반응조(Liflus GR)는 온도 및 교반속도의 설정만이 가능하도록 하였다(11).In order to select Liflus GX and Liflus GR models of fermenters from Biotron, a domestic company, two main reactors (GX) and two preliminary reactors (GR) were installed, and experimental reactors (flasks) needed for studies such as preliminary experiments and reproducibility. And incubators, etc.) were installed and operated. In the case of the main reactor (Liflus GX), the stirring speed, temperature, pH and DO measurement, air injection amount setting, etc. can be periodically performed, and data on conditions and changes can be periodically stored and acquired through a computer. The preliminary reactor (Liflus GR) allowed only the setting of temperature and stirring speed (11).
2. 반응조의 구성 및 실험과의 상관관계2. Composition of reactor and correlation with experiment
가. 반응조의 개요end. Outline of reactor
반응조란, PCBs가 함유된 절연유에 미생물을 배양하여, PCBs 및 기타 영양원을 먹이로 삼아 미생물의 성장에 따른 PCBs의 농도 저감을 위한 반응이 일어나는 장비로써, 기본적인 개념으로는 PCBs가 함유된 절연유를 배지로 하여 미생물을 증식시키는 발효조와 같은 형태로 설계하였다.A reaction tank is a device that incubates microorganisms in insulating oil containing PCBs and feeds PCBs and other nutrients to reduce the concentration of PCBs according to the growth of microorganisms. It was designed in the same form as a fermentation tank to grow microorganisms.
이들 반응조에는 PCBs 분해균주, PCBs 함유 절연유, 그리고 주입된 공기의 효과적인 혼합을 위한 교반기, 공기주입을 위한 폭기장치, 그리고 온도조절을 위한 냉각 및 전열 장치 등이 기본적으로 구성되어 있고, 균주의 생육조건을 조절하기 위한 용존 산소(DO) 조절(측정)장치와 pH 조절(측정)장치 등으로 구성되어 있다.These reactors basically consist of PCBs decomposition strain, PCBs containing insulating oil, and agitator for effective mixing of injected air, aeration device for air injection, and cooling and heat transfer device for temperature control. It is composed of dissolved oxygen (DO) control (measurement) device and pH control (measurement) device to control.
반응조에 이와 같은 다양한 종류의 조절장치가 장착되는 이유는 균주에게 우리가 목적으로 하는 PCBs의 효과적인 분해 환경을 제공하여 줌으로서 주어진 시간 내에 최대 분해효율을 얻고자 하는데 있다. The reason why such various kinds of control devices are installed in the reactor is to provide the strains with an effective degradation environment of the PCBs of interest, so as to obtain the maximum degradation efficiency within a given time.
나. 반응조의 본체I. Main body of reactor
반응조는 미생물 균주 및 PCBs함유 절연유와의 생분해 실험에 있어 내열성 및 기타 화학 부식성 등의 문제를 고려하여 설계하였다.The reactor was designed in consideration of problems such as heat resistance and other chemical corrosiveness in the biodegradation experiments with microbial strains and insulating oil containing PCBs.
반응조의 기본 본체는 주로 스테인리스 STS 316, STS 304 로 이루어져 있다. 이는 부식에 강하고, 녹이 슬지 않으며 기타 물질과의 반응성을 최소로 하여 내구성 및 안정성에 용이하다. 이 중에서도 특히 STS 316의 경우에는 내부의 배지 또는 물이 닿는 부분에 사용되며, 기타 외부적인 곳에는 STS 304 가 주로 사용 된다.The main body of the reactor consists mainly of stainless steel STS 316 and STS 304. It is resistant to corrosion, does not rust and minimizes reactivity with other materials, making it easy for durability and stability. Among them, especially in the case of STS 316, it is used for the inside of the medium or the water-contacting part, and STS 304 is mainly used for other external places.
STS 304와 316은 크롬과 니켈의 함량에 따라 다르며, 316의 경우 강도는 비교적 조금 약하나 내약품성 및 내식성이 뛰어난 것으로 알려져 있다.STS 304 and 316 are different depending on the content of chromium and nickel, and 316 has a relatively weak strength but is known to have excellent chemical resistance and corrosion resistance.
유리재질은 Borosilicate(붕규산유리)로 되어 있으며 규산 대신에 붕산을 주체로 하는 유리로 붕산을 적어도 5% 이상 함유하며, 붕소를 첨가함으로써 팽창계수가 저하하여 화학적 내성, 특히 내산성내후성이 증대하고, 내열충격성이 풍부한 점이 특징이다. 이화학용내열용기용 유리로 쓰인다.The glass material is made of borosilicate, borosilicate glass instead of silicic acid. It contains at least 5% of boric acid, and the expansion coefficient decreases by adding boron, which increases chemical resistance, especially acid resistance and weather resistance. It is characterized by abundant impact properties. Used as glass for chemical resistant heat-resistant container.
다. pH 측정장치All. pH measuring device
미생물의 활성 즉 증식속도에 미치는 환경적 요인을 찾아보면 제일 먼저 미생물이 성장하고 있는 배지 환경을 찾을 수 있다. 그러나 배지 환경 못지않게 중요한 인자들이 온도, pH 그리고 용존 산소를 들 수 있다.Looking at the environmental factors affecting the activity of the microorganisms, that is, the growth rate, the first is to find the medium environment in which the microorganisms are growing. However, as important as the medium environment are factors such as temperature, pH and dissolved oxygen.
미생물의 증식에 있어서 pH의 영향도 온도의 영향에 못지않게 매우 중요하다. 따라서 주기적인 pH의 측정과 함께 관리 또한 필요하다.The effect of pH on the growth of microorganisms is just as important as the effect of temperature. Therefore, maintenance is also required along with periodic pH measurements.
pH 센서는 유리전극식의 센서가 사용되고, 그 측정원리는 유리박막의 양측에 pH가 다른 2종의 용액이 있으면 그 차에 비례한 전위차가 생기는 현상을 이용하고 있다. pH 센서는 반응실험에 들어가기 이전에 앞서 pH 표준용액을 이용하여 보정해주어야 한다. 보정하기에 앞서 전극의 표면에 묻은 유기물 또는 무기물을 제거하여 주어야 하며, pH4, 7, 10의 세 가지 모두를 보정하는 3-point 보정방식으로 보정하여 사용한다.As the pH sensor, a glass electrode type sensor is used, and the measuring principle uses a phenomenon in which a potential difference proportional to the difference occurs when two kinds of solutions having different pHs exist on both sides of the glass thin film. The pH sensor should be calibrated with pH standard solution before entering the reaction experiment. Before calibration, organic or inorganic matters on the surface of the electrode should be removed, and it should be calibrated with 3-point calibration method to calibrate all three pH4, 7, 10.
라. DO 측정장치la. DO measuring device
미생물의 배양에 있어 산소는 호기성 미생물의 증식에 있어 매우 중요한 요소 중의 하나이다. 일반적으로 미생물 배양에서 산소는 통기와 교반장치에 의하여 공기방울에서 배양액내로 확산되어 들어가는 용존산소의 형태로 존재하게 된다. 그러므로 PCBs의 분해를 위한 미생물의 증식은 통기와 교반조건에 의한 용존산소의 농도에 크게 영향을 받는다. 반응조 내의 용존산소 농도는 DO 전극을 이용하여 측정하게 된다. DO 측정 전극도 사용 전 보정을 해야 하며, Zero Setting 후, 포화상태에서의 Saturation setting을 하여야 한다.Oxygen is one of the most important factors in the growth of aerobic microorganisms. In general, in the culture of microorganisms, oxygen is present in the form of dissolved oxygen which is diffused into the culture medium from the air bubbles by aeration and agitation. Therefore, the growth of microorganisms for the decomposition of PCBs is greatly influenced by the dissolved oxygen concentration by aeration and agitation conditions. The dissolved oxygen concentration in the reactor is measured using a DO electrode. DO measuring electrode should be calibrated before use. After zero setting, saturation setting should be done.
DO 전극은 또한 전극바닥의 산소투과성막인 membrane이 바닥에 닿지 않도록 주의 하여야 하며, 파손되지 않도록 주의 하여야 한다. 또한 막이 이물질에 의해 막혔을 경우 조심스럽게 세척해 주어야 한다. 내부의 전해질용액은 반응이 느릴 경우 교환하여 주어야 한다.DO electrodes should also be careful not to touch the bottom of the membrane, the oxygen-permeable membrane at the bottom of the electrode, and to avoid damage. In addition, if the membrane is blocked by foreign material, it should be cleaned carefully. The electrolyte solution inside should be replaced when the reaction is slow.
마. 교반장치hemp. Agitator
교반장치는 미생물의 성장에 필요한 산소공급과 PCBs 함유 절연유와 균체를 혼합하여 균체로부터 대사물질의 물질이동을 촉진시키고, 반응 과정 중에 발생되는 열이 효과적으로 냉각될 수 있도록 도와주는 역할 등 매우 중요하다. 교반기는 기본적으로 회전력을 발생시키는 모터와 이 회전력을 교반기(impellar)에 전달하는 교반축, 그리고 실제적으로 교반을 일으키는 교반기로 구성되어 있다.Stirring device is very important, such as the oxygen supply necessary for the growth of microorganisms and the mixing of the insulating oil and PCBs containing PCBs to promote the movement of metabolites from the cells, and to help effectively cool the heat generated during the reaction process. The stirrer basically consists of a motor that generates rotational force, a stirring shaft that transmits this rotational force to an impellar, and a stirrer that actually causes stirring.
교반기의 교반력은 반응조 외부에 설치된 모터를 통해 구동하여야 하는데, 반응조의 멸균상태를 유지하기 위해서는 외부로부터 이물질이 유입 되지 않도록 반응조 내외부가 차단되어 있다. 교반기의 재질은 Teflon재질로 구성 되어 있다.The stirring force of the stirrer must be driven by a motor installed outside the reactor, and in order to maintain the sterilization state of the reactor, the inside and outside of the reactor are blocked so that foreign substances do not flow from the outside. The stirrer is made of Teflon material.
바. 온도조절장치bar. Thermostat
미생물증식은 일련의 화학반응의 결과이며, 이는 미생물의 증식이 온도에 크게 영향을 받고 있음을 의미한다. 일반적으로 화학반응은 온도가 10℃ 상승함에 따라 그 반응속도가 약 2배 정도 증가하게 되는데, 미생물의 증식도 온도가 상승함에 따라 함께 증가하는 것으로 관찰되고 있다. 그러나 그 증식속도가 상승되는 온도의 폭은 매우 좁게 관찰된다.Microbial growth is the result of a series of chemical reactions, which means that the growth of microorganisms is greatly affected by temperature. In general, the reaction rate is increased about 2 times as the temperature rises by 10 ℃, the growth rate of the microorganism is observed to increase with increasing temperature. However, the width of the temperature at which the growth rate is increased is very narrowly observed.
이는 미생물의 증식이 일반 화학반응과는 달리 생화학적인 반응이기 때문에 그 반응에 있어 최적 온도가 존재하기 때문이다. 이때 미생물 증식의 최적온도는 대상 미생물에 따라 다르다.This is because the growth of microorganisms is a biochemical reaction unlike general chemical reactions, so there is an optimum temperature for the reaction. The optimum temperature for microbial growth depends on the target microorganism.
미생물은 온도에 있어 증가율보다 사멸율이 더 민감하므로 철저한 관리가 필요하다. 따라서 반응조에서는 온도조절을 위한 냉각수가 반응조의 외부 자켓에 공급되게 되어 있다.Microorganisms are more sensitive to temperature than mortality than growth rates and require thorough control. Therefore, in the reactor, the cooling water for temperature control is supplied to the outer jacket of the reactor.
반응조 아래 부분에는 전열판이 놓여 있다. 이를 통해 반응조 내부로 열을 전달하게 된다. 온도센서에서는 온도를 측정하여 미리 설정하여 놓은 온도값 이상으로 올라가게 되면 자켓을 통해 냉각수를 순환시켜 온도를 낮추게 되고, 온도가 떨어지게 되면 전열판이 가동되어 온도를 높이게 되는 자동 시스템으로 구성되어 있다.Underneath the reactor is a heating plate. This transfers heat into the reactor. In the temperature sensor, the temperature is measured and the temperature rises above the preset temperature, and the cooling water is circulated through the jacket to lower the temperature. When the temperature drops, the heating plate is operated to increase the temperature.
사. 냉각장치four. Chiller
반응조가 운영되는 동안 교반기에 전달된 에너지가 반응물질 중에 전달되어 다량의 열이 발생되게 되고, 또한 미생물은 증식하는 동안에도 다량의 열을 발산하게 되어 발생된 열을 효과적으로 제거하기 위한 냉각 장치가 필요하게 된다.The energy delivered to the stirrer during the operation of the reactor is transferred to the reactant to generate a large amount of heat, and the microorganisms dissipate a large amount of heat even during the growth, which requires a cooling device to effectively remove the generated heat. Done.
본 반응조에서는 반응조 내부의 자켓을 통하여 냉각수가 흘러 냉각이 된다.In this reactor, the coolant flows through the jacket inside the reactor and is cooled.
아. 기타장치Ah. Other device
이 밖에도 생물공정을 위한 부수적인 장치로써 거품을 제거하는 Anti Foam Sensor, 공기주입을 위한 Air pump, 공기량 조절을 위한 Air flow controller, 발생되는 가스중의 수분을 냉각시켜 돌려보내주는 콘덴서 등이 있다.In addition, as an ancillary device for bioprocessing, there is an Anti Foam Sensor that removes bubbles, an Air pump for injecting air, an Air flow controller for adjusting the air volume, and a condenser that cools and returns moisture in the generated gas.
3. 반응조의 설치 및 최적 조건의 확립3. Establishment of reactor and establishment of optimum conditions
반응조는 춘천바이오산업진흥원 내 실험실에 설치하였다. 실험실 내부는 온도와 습도의 유지 및 관리가 가능하고, 냉각수의 공급이 원활하며 실험에 필요한 각종 실험기구 및 안전 방호용 부속장비가 갖추어져 있다. 본 실험은 장기간에 걸친 반응 테스트가 필요하므로 실험에 들어가기에 앞서 절차서에 따라 반응조의 예비가동 및 안전검사를 실시하였다. 예비가동은 GX 및 GR 반응조의 내부에 물을 넣어 세척과 동시에 전기안전 테스트 및 장비오류 테스트를 실시하였다.The reactor was installed in the laboratory of Chuncheon Bio Industry Promotion Institute. The inside of the laboratory is capable of maintaining and managing temperature and humidity, supplying coolant smoothly, and equipped with various laboratory equipment and safety protection equipment necessary for the experiment. Since this experiment requires a long-term reaction test, the preliminary operation and safety inspection of the reactor were carried out according to the procedure before entering the experiment. The preliminary operation was performed by putting water in the GX and GR reactors and washing the electrical safety test and equipment error test.
GX는 컴퓨터와 통신선을 연결하여 데이터를 취득하며 테스트 하였다. 4일 연속의 예비가동 결과 전기적 불안정과 장비적 오류를 발견하여 전기적으로는 단독전원 등의 설치를 하였고, 장비적으로는 반응조 내부의 부품을 교체하여 반응조의 설치를 안정적으로 실시할 수 있었으며, 반응조 자체의 최적 조건을 가질 수 있었다.GX connects computer and communication line to acquire and test data. As a result of the preliminary operation for 4 days, it discovered electrical instability and equipment error and installed the single power supply electrically.In terms of equipment, it was possible to stably install the reactor by replacing parts inside the reactor. Could have its own optimum conditions.
반응조를 설치 한 후, 반응조에 각각 GX-1, GX-2, GR-1, GR-2로 명칭을 정하여 관리 하였으며 반응조 주변에 경계선을 설치하여 지정된 연구원 이외의 출입을 통제하였다. 또한 액체폐기물수거함, 고체폐기물 수거함을 설치하여, 각 폐기물의 유출을 막고 수거하여 보관하였다.After the reactor was installed, the reactor was named and managed by GX-1, GX-2, GR-1, and GR-2, respectively. In addition, liquid waste collection boxes and solid waste collection boxes were installed to prevent leakage of each waste and collect and store it.
2절 분석방법 및 분석기관의 선정 Section 2 Analysis Methods and Selection of Analysis Institutions
1. 분석방법의 선정1. Selection of analytical methods
PCBs 함유 절연유를 미생물과 혼합한 후, 교반 및 배양을 통해 절연유 내의 PCBs 농도의 저감 추이를 확인하기 위하여 공인된 분석기관에 분석을 의뢰하였다. After the PCBs-containing insulating oil was mixed with the microorganisms, the analysis was commissioned to an authorized analytical institution to confirm the decrease in PCBs concentration in the insulating oil through stirring and culturing.
PCBs의 분석법은 크게 하기 표 11와 같다.Analysis of PCBs is largely shown in Table 11 below.
분석방법Analysis method 시료량(㎖)Sample amount (ml) 분석단가(만원)Analysis unit price (KRW 10,000) 분석기간(일)Analysis period (days) 내 용Contents
간이분석법(L2000DX법)Simple analysis method (L2000DX method) 4040 약 4~5About 4 ~ 5 즉시Immediately - 즉시 측정 가능- 5ppm 이상이면 정밀분석- 기준이상, 이하만 표시-Immediate measurement-Precision analysis if more than 5ppm-Only above and below the standard
정밀분석GC-ECD법Precision Analysis GC-ECD Method 2020 약 20About 20 약 30About 30 - 현행인증 표준방법- 분석값 : 소수점표시-Current standard certification method-Analysis value: Decimal point display
개량GC-ECD법Improved GC-ECD Method 2020 약 14About 14 약 30About 30 - 정밀분석법의 전처리 방법개선- 분석값 : 정수표시-Improvement of pretreatment method of precision analysis method-Analysis value: Integer display
HR-MS법HR-MS method 5~205 to 20 약 200~300About 200 ~ 300 약 60About 60 - 현재 209종 이성체 분석불가- 17~27종 이성체 분석-Currently, 209 isomers cannot be analyzed.- 17 to 27 isomers are analyzed.
본 과제에서는 지정폐기물 기준여부가 아닌 PCBs농도의 변화에 따른 분해능을 측정하고자 하는 것이므로, 간이 분석법은 의미가 없으며, 개량 GC-ECD법 또한 분석값이 정수로 표현되므로(반올림) 큰 의미가 없다고 판단되었다. 따라서 현행 인증 표준방법인 정밀분석GC-ECD법을 통한 농도 저감 추이와 PCBs의 이성체의 농도 변화추이를 위한 HR-MS법을 사용하여 분석 하였다. 하지만 모든 시료의 분석을 HR-MS법으로 분석할 수 있는 상황이 아니므로, HR-MS법과 GC-ECD법을 병행하여 두 방법의 상관관계를 분석한 후 연계할 수 있도록 하였다.In this project, since we are trying to measure the resolution according to the change of PCBs concentration, not the designated waste standard, the simplified analysis method is not meaningful. It became. Therefore, the analysis was carried out using the HR-MS method for the concentration reduction of PCBs and the concentration change of the isomers of PCBs. However, the analysis of all samples is not a situation that can be analyzed by the HR-MS method, so that the correlation between the two methods by using the HR-MS method and the GC-ECD method can be analyzed and linked.
가. 정밀분석 GC-ECD법 (Gas Chromatography-Electron Capture Detector)end. Precision analysis GC-ECD method (Gas Chromatography-Electron Capture Detector)
- 시간의 변화에 따른 미생물의 PCBs 농도의 저감 추이를 확인 할 때 사용한다.-It is used to check the decrease of PCBs concentration of microorganisms over time.
- 시료분석 계획을 수립하여 의뢰하되, 미생물 및 반응조 내부의 상황에 맞게 계획을 변경하여 의뢰할 수 있게 하였다.-Established and requested a sample analysis plan, but changed the plan to suit the situation inside the microorganism and reactor.
- 각 회당 시료의 개수는 반응조의 개수 대로 하되 상황에 따라 비례적으로 시행하며, 시료의 변화에 따라 수정 및 보완하도록 하였다.-The number of samples per time should be according to the number of reactors, but proportionally according to the situation, and corrected and supplemented according to the change of the sample.
나. HR-MS법 (High Resolution-Mass Spectrometer)I. HR-MS method (High Resolution-Mass Spectrometer)
- PCBs의 각 이성체에 따른 농도 변화 추이를 확인할 때 사용한다.(17~27종)-It is used to check the change of concentration according to each isomer of PCBs. (17 ~ 27 species)
- 시료분석 계획을 수립하여 의뢰하되, 미생물 및 반응조 내부의 상황에 맞게 계획을 변경하여 의뢰할 수 있게 하였다.-Established and requested a sample analysis plan, but changed the plan to suit the situation inside the microorganism and reactor.
- 최종 산물(부산물)에 대한 다이옥신 함유여부 확인 시에도 의뢰하였다.-It was also requested to check the dioxin content of the final product (by-product).
2. 분석기관의 선정2. Selection of analytical institutions
PCBs 농도 분석은 국가가 인증하는 기관에 의뢰하고, 분석기관과 기술협력(자문 및 평가포함)을 통해 분석 및 분해과정의 신뢰성을 높여야 한다. 따라서 공인 인증된 기관을 조사하여, 각 인증기관에 대한 정보를 수집 한 후 분석기관을 선정하였다. 조사된 기관 중 분석 기간 및 분석 단가 등의 정보를 조사하여 정밀 GC-ECD법은 ‘랩프론티어’ 및 ‘포항산업과학연구원(RIST)’으로, HR-MS법은 ‘포항산업과학연구원(RIST)’으로 선정하였다.PCBs concentration analysis should be commissioned by a national accredited agency and technical cooperation (including consultation and evaluation) with the analytical organization should increase the reliability of the analysis and degradation process. Therefore, after analyzing the accredited certification bodies, information on each certification body was collected and an analysis institution was selected. The GC-ECD method is' Labfrontier 'and' Pohang Industrial Science Research Institute (RIST) 'and the HR-MS method is' Pohang Industrial Science Research Institute (RIST). 'Was selected.
3절 PCBs 함유 절연유 시료의 채취Section 3 Sampling Insulating Oil Samples Containing PCBs
1. PCBs 함유 절연유의 현장 채취1. On-site sampling of insulating oil containing PCBs
한국전력공사 강원지사의 협조를 받아 주상용 변압기에 내장된 현장시료로써 ‘08년 4월 3일 고농도PCBs 함유 절연유 10l, 저농도 PCBs 함유 절연유를 7l를 각각 채취 하였다.On April 3, 2008, 10 l of insulating oil containing high concentration PCBs and 7 l of insulating oil containing low concentration PCBs were collected as a field sample embedded in a commercial transformer with the cooperation of Kangwon Branch of KEPCO.
각 시료는 한국전력 강원지사에서 최초 전북대 화학물질안전관리연구센터에 의뢰하여 측정한 결과 값으로 고농도 PCBs 함유 절연유가 339.58ppm, 저농도 PCBs 함유 절연유가 60.54ppm인 절연유를 선택하여 채취 하였다. 채취 시에는 각종 방호용품을 착용 한 후, 담당자의 안내에 따라 채취 하였으며, 준비된 갈색 유리재질의 시료병을 채취하고자 하는 절연유로 3회 정도 닦아낸 뒤, 대표성이 있도록 시료를 채취하였다. 도중 발생되는 각종 폐기물은 비닐에 담아 밀봉 후 보관하였으며, 시료의 채취가 끝나고 채취된 시료병에 시료의 명칭, 번호, 장소, 일시, 채취자, 방법, 채취량 등의 각종 기재사항을 기록하였다.Each sample was collected by KEPCO Kangwon Branch from the first Chonbuk National University Chemical Safety Management Research Center. The samples were selected from 339.58 ppm of insulating oil containing high concentration PCBs and 60.54 ppm of insulating oil containing low concentration PCBs. At the time of collection, various protective equipments were worn and collected according to the guidance of the person in charge. The prepared brown glass sample bottles were wiped about 3 times with insulating oil to be collected, and then samples were taken to be representative. Various wastes generated during the storage were put in plastic, sealed and stored. After collecting the sample, various items such as name, number, place, date, collector, method, and quantity of the sample were recorded in the collected sample bottle.
가. 채취도구end. Harvesting tools
PCBs 함유 절연유 시료 채취 시에는 각종 안전 방호용품을 착용하여 안전하게 채취 할 수 있도록 하였으며, PCBs 함유 절연유가 외부로 누출되는 것을 막기 위하여 각종 채취도구를 사용하였다. 채취도구는 사용 후 폐기처리 하여 비닐에 담아 밀봉 후 보관하도록 하였다.When sampling the insulating oil containing PCBs, various safety protection items were worn for safe collection and various sampling tools were used to prevent leakage of the insulating oil containing PCBs. The collection tools were disposed of after use and disposed of in plastic to be sealed and stored.
나. PCBs 함유 절연유 보관 및 취급사항I. Insulation oil storage and handling with PCBs
채취한 절연유 시료는 밀봉하여 암소에 보관하였다. 시료의 보관은 원칙적으로 0~4의 직사광선이 없는 안전한 곳에 보관하여야 하나, 실험의 특성상 현장시료의 조건과 동일하게 조절하기 위하여 상온에서 직사광선을 피해 안전성을 고려하여 보관하였다. 시료의 관리에 있어서는 매일 지정된 시간에 누출 및 안정성 여부를 확인하도록 하며, 외부인의 접촉이 없도록 철저히 관리였다. 또한 시료 기록 관리대장에 이상 유무를 기록하도록 하고, 이상이 있을 시에는 절차에 따라 즉시 보고 및 조치하도록 하였다.The collected insulating oil sample was sealed and stored in the dark. In principle, the sample should be stored in a safe place without direct sunlight of 0 ~ 4, but due to the characteristics of the experiment, it should be stored in consideration of safety avoiding direct sunlight at room temperature in order to control it in the same way as the field sample. In the management of samples, it was necessary to check for leakage and stability at a designated time every day, and thoroughly managed to prevent contact with outsiders. In addition, it was to record the abnormality in the sample record management ledger, and if any abnormality occurred, immediately report and take measures according to the procedure.
4절 PCBs 분해 균주의 배양 Section 4 Cultivation of PCBs Degrading Strains
1. 균주의 선택1. Selection of strains
절연유 내의 PCBs 분해를 위한 균주의 선택에 있어 상기 NBC2000 세균공동체및 EBC1000 세균공동체에서 선택된 미생물 공동체를 사용하였다. 구체적으로 Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001의 12종의 균주를 포함하였다.In selecting strains for degradation of PCBs in insulating oil, a microbial community selected from the NBC2000 bacterial community and the EBC1000 bacterial community was used. Specifically, 12 strains of Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001 were included.
2. 균주의 배양2. Cultivation of Strains
균주 배양에 있어 사용된 배지는 루리아-베르타니(Luria-Bertani)영양배지[박토-트립톤(bacto-tryptone) 10g, 박토-효모 추출물-(bacto-yeast extract) 5g, 소디움 클로라이드(NaCl) 10g / 탈염수 1l]에 배양하며, 인큐베이터 온도 30℃, 진탕(Shaking) 분당회전수 115rpm의 최적 조건으로 4~5일간 배양하였다.The medium used for strain culture was Luria-Bertani nutrient medium (10 g of bacto-tryptone, 5 g of bacto-yeast extract, 10 g of sodium chloride (NaCl)). / 1 liter of demineralized water, and incubated at an optimum temperature of incubator temperature of 30 ° C. and shaking at 115 rpm.
5절 PCBs 함유 절연유의 생 분해능 재현성 실험Section 5 Bioresolution Reproducibility Test of Insulating Oil Containing PCBs
1. PCBs 함유 절연유의 생 분해능 재현성 실험1.Reproduction test of biodegradation of insulating oil containing PCBs
시료 분석방법 및 분석기관의 선정, 반응조의 예비가동을 통한 최적 조건의 형성 및 PCBs 함유 절연유 현장 시료채취와 균주의 배양이 끝난 후, 반응조 내부에 PCBs 함유 절연유를 넣고 미생물을 투입하여 PCBs 함유 절연유의 생 분해능 재현성 실험을 실시하였다. 반응조 가동 및 사용에 관한 절차는 절차서에 따라 진행하였다.Selection of sample analysis method and analysis institute, formation of optimum conditions through preliminary operation of reactor, and after completion of field sampling and culture of strain containing PCBs, inserting PCBs containing insulating oil into reactor and adding microorganisms Bioresolution reproducibility experiments were conducted. Procedures for the operation and use of the reactor were carried out according to the procedure.
PCBs 함유 절연유 시료를 반응조 내부로 투입하기에 앞서 각종 방호용품을 착용하고 예비가동 및 세척, 건조가 끝난 주 반응조(GX-1, GX-2)에 각각 고농도 PCBs함유 절연유(GX-1) 및 저농도 PCBs 함유 절연유(GX-2)를 4l씩 조심스럽게 넣은 후, 각 절연유에서 GC-ECD 분석용 절연유 시료를 20ml씩 채취 하였으며, pH 측정장치 및 DO 측정장치 등의 부속 장치를 보정, 장착 하였다.주 반응조(GX)의 Total Volume은 8l이며, Working Volume(Total Volume 의 약 70%)은 약 5~6l정도 이므로 4l의 절연유를 투입하였고, 예비반응조(GR)는 Total Volume이 5l이며, Working Volume은 약 3~4l정도 이므로 3l의 절연유를 투입하였다.Before putting the PCBs-containing insulating oil sample into the reactor, wear protective equipment and pre-start, clean, and dry the main reactors (GX-1, GX-2) after the high concentration of PCBs-containing insulating oil (GX-1) and low concentration. After carefully inserting 4 liters of insulating oil (GX-2) containing PCBs, 20 ml of GC-ECD analysis oil was sampled from each insulating oil, and accessories such as pH measuring device and DO measuring device were calibrated and installed. The total volume of the reactor (GX) is 8l, and the working volume (about 70% of the total volume) is about 5 ~ 6l, so 4l of insulating oil was added, and the preliminary reactor (GR) had a total volume of 5l, and the working volume was Since it is about 3 ~ 4l, 3l of insulating oil was added.
2. 반응조의 최적 조건 설정2. Setting Optimum Condition of Reactor
미생물을 이용한 PCBs 함유 절연유의 생 분해실험에 있어 기존 특허에서 제시된 최적 조건으로 하여 반응조의 조건을 온도 25℃, 교반속도 200rpm으로 설정하였다. 또한 데이터 취득의 간격을 10분 단위로 하여 온도, pH, DO, 교반속도 등의 데이터를 취득 할 수 있도록 설정하였다. 공기의 주입은 에어 펌프롤 통해 0.5~1l/Min으로 설정하였다.In the biodegradation experiment of PCBs-containing insulating oil using microorganisms, the conditions of the reactor were set to a temperature of 25 ° C. and a stirring speed of 200 rpm as the optimum conditions set forth in the existing patent. In addition, the interval of data acquisition was set in units of 10 minutes so that data such as temperature, pH, DO, and stirring speed could be acquired. The injection of air was set at 0.5-1 l / min through the air pump roll.
6절 반응조 시료채취 및 분석의뢰 Section 6 Sampling and Requesting Analysis
1. 시료채취 방법1. Sample Collection Method
폐기물공정시험법의 절차에 따라서 반응조 내부의 시료를 채취하여 분석의뢰 하기 위하여 각종 방호용품을 착용하고 1회용 피펫을 사용하여 시료를 채취 하였다. 시료채취 시에는 시료의 대표성을 가질 수 있도록 피펫을 한번 반응조 내부의 절연유로 씻어 낸 후 비례적으로 채취하여 시료채취병에 담았다. In order to request for analysis by sampling the sample inside the reactor according to the procedure of the waste process test method, samples were collected by using disposable protective pipettes. At the time of sampling, the pipette was washed once with insulating oil inside the reaction tank so as to have representativeness of the sample.
시료채취에 관한 절차는 절차서에 따라 진행하였으며, 시료채취 후 발생되는 폐기물은 폐기물 수거함에 처리하여 보관하였다.The sampling procedure was carried out according to the procedure, and the waste generated after sampling was processed and stored in the waste collection box.
2. 분석의뢰2. Request for analysis
반응조 내부 시료를 채취하여 분석기관에 의뢰하기 전 시료채취병에 시료명, 채취일, 번호, 채취자, 채취장소, 시료양 등을 기재하고, 시료분석의뢰 관리 대장에 기록하였다. 또한 분석의뢰 중에 파손 및 누출을 막기 위하여 시료병을 스티로폼을 이용하여 단단히 고정 시키고, 얼음팩이 들어 있는 아이스박스에 담았다. 또한 내부에서 누출이 되지 않도록 잘 고정 시킨 후 직접 의뢰 하였다.The sample name, collection date, number, collector, collection place, and sample volume were recorded in the sample collection bottle and collected in the sample analysis request book. In addition, in order to prevent breakage and leakage during the request for analysis, the sample bottle was firmly fixed using styrofoam, and placed in an ice box containing an ice pack. In addition, it was fixed directly so as not to leak from the inside and then directly requested.
7절 유해성 평가 및 기타실험SECTION 7 Hazard Assessment and Other Experiments
1. 반응조 발생가스 측정1.Measurement of reactant gas
가. 반응조 발생가스 측정의 개요end. Outline of Reactor Tank Gas Measurement
절연유 내부에 함유된 PCBs를 미생물에 의한 정화 처리기술을 이용하여 PCBs 오염 절연유의 생분해에 의한 처리효율을 입증하는 실험 중 발생되는 부산물은 액상 부산물과 기체부산물로 크게 볼 수 있다. 반응조 발생가스 측정 실험은 기체 성분에 대한 분석으로, 기체 부산물 평가 및 환경에 미치는 영향을 평가하였다.The by-products generated during the experiments to prove the efficiency of biodegradation of PCBs-contaminated insulating oil using microbial purification technology for PCBs contained in insulating oil are considered as liquid by-products and gaseous by-products. Reactor-generated gas measurement experiments were conducted on gaseous components to evaluate gaseous by-products and their impact on the environment.
미생물에 의한 생물학적 PCBs 처리 실험을 위해 반응조 내부로 공기가 공급되고, 외부로 콘덴서를 지나 스파져를 통해 방출 된다. 따라서 반응조 내부에서 미생물에 의한 기작으로 배출되는 가스 성분을 측정하고자 하였다.For experiments with microbial PCBs, air is supplied into the reactor and released through the sparger through the condenser. Therefore, the gas components emitted by the mechanism by the microorganism in the reaction tank was to be measured.
측정항목은 절연유 자체에서 휘발 될 수 있는 휘발성유기탄소(VOCs), PCBs의 분해를 통한 염소의 거동을 살펴보고 유해가스의 발생을 추정 할 수 있는 염소가스(Cl2), 미생물의 대사와 탄소의 거동을 살펴 볼 수 있는 이산화탄소(CO2)의 3가지 항목에 대한 기체 성분을 측정 하였다.The measurement items are volatile organic carbons (VOCs) that can be volatilized in the insulating oil itself, chlorine behavior through decomposition of PCBs, and chlorine gas (Cl 2 ) which can estimate the generation of harmful gas, metabolism of carbon and carbon Gas components were measured for three items of carbon dioxide (CO 2 ), which can be seen in the behavior.
현재 정밀 분석장비(GC-MS 등)로 측정 할 수 있는 항목에는 제한이 있었으며, 또한 연속적 가스 발생에 대해 측정이 어려운 점이 있어, 휴대용 가스측정기를 임차하여 측정하였다.Currently, there are limitations on the items that can be measured by precision analysis equipment (GC-MS, etc.), and it is difficult to measure the continuous gas generation.
가. VOCs 측정장비는 하기 표 12과 같다.end. VOCs measuring equipment is shown in Table 12 below.
EntryRAE(VOCs측정)EntryRAE (VOCs Measurement)
측정범위Measuring range 0~999ppm0 to 999 ppm
분해능Resolution 1ppm1 ppm
응답시간Response time 10sec10sec
센서sensor Photo-ionization sensorPhoto-ionization sensor
검교정일자Date of Calibration 2008. 08. 262008. 08. 26
검교정기관Calibration organization RAE KOREARAE KOREA
Serial NO.Serial NO. 180-000833180-000833
나. Cl2 측정장비는 하기 표 13과 같다I. Cl 2 measuring equipment is shown in Table 13 below.
VRAE(Cl2 측정)VRAE (Cl 2 measurement)
측정범위Measuring range 0~10ppm0-10 ppm
분해능Resolution 0.1ppm0.1 ppm
응답시간Response time 60sec60sec
검출방식Detection method electrochemical for toxic gaseselectrochemical for toxic gases
catalytic for combustible gasescatalytic for combustible gases
검교정일자Date of Calibration 2008. 08. 262008. 08. 26
검교정기관Calibration organization RAE KOREARAE KOREA
Serial NO. Serial NO. 170-102277170-102277
다. CO2 측정장비는 하기 표 14과 같다All. CO 2 measuring equipment is shown in Table 14 below.
MultiRAE-IR(CO2측정) MultiRAE-IR (CO 2 measurement)
측정범위 Measuring range 0~20000ppm0 ~ 20000ppm
분해능Resolution 10ppm10 ppm
응답시간Response time 30sec30sec
센서sensor NDIRNDIR
검교정일자Date of Calibration 2008. 08. 262008. 08. 26
검교정기관Calibration organization RAE KOREARAE KOREA
Serial NO.Serial NO. 080-901072080-901072
나. 실험방법I. Experiment method
교정된 기체측정 장비를 준비하고 반응조 피드라인의 4개 라인 중 한 개의 라인을 열어 두었다. 만약 라인을 열어두지 않으면 반응조 내부로 유입되는 공기의 양과 기체 측정장비의 기체 샘플링 속도의 차이로 인해 반응조 내부에 압력이 차서 반응조가 손상되거나, 기체 측정장비에 무리가 갈 수 있다. 열어둔 부분에서는 반응조 내부의 공기가 압력으로 인해 외부로 빠져나가거나 유입된다. 실제 실험에서는 한 개의 라인을 열어 두었을 때, 기체 측정장치의 샘플링 속도가 반응조의 기체공급량보다 적어 반응조 내부의 공기가 빠져나가는 것으로 확인하였다.The calibrated gas measurement equipment was prepared and one of the four lines of the reactor feedline was left open. If the line is not open, the pressure inside the reactor may be damaged due to the difference between the amount of air flowing into the reactor and the gas sampling rate of the gas measurement equipment, which may cause damage to the reactor or the gas measurement equipment. In the open part, the air inside the reactor is forced out or flows out due to the pressure. In the actual experiment, it was confirmed that when one line was left open, the sampling rate of the gas measuring device was smaller than the gas supply amount of the reaction tank so that the air inside the reaction vessel was released.
또한 콘덴서 끝의 스파져 부분에 필터가 설치된 기체측정 장비를 연결하고 연결부분을 파라핀 테이프로 막아 기체가 새는 것을 방지하였다.In addition, gas measurement equipment with a filter was connected to the sparger part at the end of the condenser, and the connection part was closed with paraffin tape to prevent gas leakage.
각 항목의 반응속도를 참조하여, VOCs 및 Cl2는 각 반응조당 1시간씩 측정하였으며, CO2의 경우에는 연속적으로 20분간 측정하고 각 결과를 수기로 기록하였다.With reference to the reaction rate of each item, VOCs and Cl 2 were measured for 1 hour per reactor, in the case of CO 2 was measured continuously for 20 minutes and each result was recorded by hand.
각 반응조에 대해 항목을 바꿔가며 측정하였으며, CO2 항목의 경우 실내 및 실외에 대한 CO2를 측정하여 비교하였다.Each reactor was measured by changing the items, and in the case of CO 2 items, CO 2 was measured for indoor and outdoor.
2. 다이옥신 측정2. Dioxin Measurement
PCBs의 생 분해 실험에 있어 친환경적으로 요구되는 사항인 배출 기체 측정과 더불어 반응조 내부 시료에 대해 다이옥신 분석을 의뢰 하였다. 다이옥신 분석은 HR-MS법으로 분석하였으며, 기존 반응조 내부 시료채취와 동일한 방법으로 채취 후 의뢰 하였다.Dioxin analysis was commissioned on the sample inside the reactor as well as the measurement of emissions, which is an environmentally friendly requirement for biodegradation experiments of PCBs. Dioxin analysis was analyzed by HR-MS method, and commissioned after collection by the same method as the existing sampling in the reactor.
3. 미생물 총 균체수 확인3. Check the total number of microorganism
미생물은 12종류의 PCBs 분해균주를 미리 충분히 배양한 후, 균주는 평판배지에서 CFU/ml의 콜로니계수법으로 균체수를 확인하였다.After the microorganisms had sufficiently cultured 12 kinds of PCBs degradation strains in advance, the strains were identified by the CFU / ml colony counting method on a plate medium.
4. 기타실험4. Other experiment
PCBs의 분해경과추이에 따라서는 일부 미생물의 균주를 소량으로 추가접종 하였고, PCBs가 함유되지 않은 절연유(Non-PCBs 절연유)와, 미생물 균주를 혼합한 절연유를 분석함으로써 미생물에 의한 GC-ECD 분석값의 간섭효과를 관찰하였다.According to the degradation of PCBs, some microorganism strains were additionally inoculated, and GC-ECD analysis values by microorganisms were analyzed by analyzing insulating oils containing non-PCBs and non-PCBs insulating oils. The interference effect of was observed.
8절 실험결과 및 고찰 Section 8 Experimental Results and Discussion
1. 미생물 반응조 운전 데이터1. Microbial Reactor Operation Data
반응조(GX)에서 나타나는 온도, pH 변화, DO 변화, 교반속도 등의 데이터를 2주 단위로 평균하여 나타내었다. 실험 조건은 pH 6~8, 온도 24~25℃, 교반기 회전수 200RPM으로 유지하였으며, 반응조의 산소농도는 초기 대비 80~90% 수준으로 유지하였다(표 15 및 도 1).Data such as temperature, pH change, DO change, and stirring speed appearing in the reaction tank (GX) were averaged for two weeks. Experimental conditions were maintained at pH 6 ~ 8, temperature 24 ~ 25 ℃, agitator rotation speed 200RPM, oxygen concentration of the reactor was maintained at 80 ~ 90% of the initial level (Table 15 and Figure 1).
고농도 (GX-1)High Concentration (GX-1) 저농도 (GX-2)Low concentration (GX-2)
주 차parking pHpH 온도(℃)Temperature (℃) DO(%)DO (%) RPMRPM pHpH 온도(℃)Temperature (℃) DO(%)DO (%) RPM RPM
1,2주차Week 1 & 2 8.218.21 24.0224.02 88.9588.95 199.77199.77 7.827.82 25.0225.02 95.1495.14 200.00200.00
3,4주차 Weeks 3 and 4 5.365.36 25.7225.72 90.2190.21 199.90199.90 6.956.95 25.7425.74 94.0494.04 199.90199.90
5,6주차 Week 5,6 6.166.16 25.6925.69 85.2585.25 200.00200.00 6.696.69 25.7725.77 89.4589.45 199.90199.90
7,8주차 Week 7, 8 6.276.27 25.6625.66 81.3681.36 200.00200.00 6.436.43 25.8125.81 89.3589.35 200.00200.00
9,10주차 Week 9,10 6.496.49 25.5025.50 76.4576.45 199.78199.78 6.496.49 25.4525.45 89.3089.30 199.78199.78
11,12주차 Week 11,12 6.956.95 25.6425.64 73.7673.76 200.00200.00 6.376.37 25.7225.72 93.1293.12 200.00200.00
13,14주차 Week 13,14 6.856.85 25.3725.37 79.3679.36 199.70199.70 6.476.47 25.4025.40 91.7891.78 199.80199.80
15,16주차 Week 15,16 7.107.10 25.5425.54 81.8181.81 200.00200.00 6.856.85 25.1825.18 89.0789.07 200.00200.00
17,18주차Week 17,18 6.646.64 25.5625.56 84.2584.25 200.00200.00 6.466.46 25.7325.73 92.3092.30 200.00200.00
19,20주차 Week 19,20 6.576.57 25.4825.48 73.9073.90 200.00200.00 6.566.56 25.6925.69 93.3093.30 200.00200.00
21,22주차 Week 21,22 6.486.48 25.5625.56 84.4184.41 200.00200.00 6.416.41 25.7125.71 92.5492.54 200.00200.00
23,24주차 Week 23,24 6.036.03 25.7225.72 77.2477.24 200.00200.00 6.446.44 25.7725.77 93.0693.06 200.00200.00
도 1a 내지 도 1d는 반응조의 pH, 온도, DO, 교반속도의 변화 그래프이다.1A to 1D are graphs of changes in pH, temperature, DO, and stirring speed of a reaction tank.
2. 미생물 반응조의 시간 경과에 따른 미생물 증식 변화2. Changes in microbial growth over time in microbial reactors
가. 반응조 미생물 탁도 변화end. Microbial Turbidity Changes in Reactors
반응조 내부에 PCBs 함유 절연유를 넣고 미생물을 투입한 다음 반응시간 경과에 따른 미생물 탁도 변화를 관찰하였다. 초기 PCBs 함유 절연유의 경우 노랗고 투명한 색을 나타내었고, 미생물 투입 직후 연한 노랑색에 약간의 탁도가 보였으며, 약 70일 경과 후에는 반응조 표면에 미생물 군집이 관찰되었고, 약 160일 경과 후에는 미생물 증식에 따른 탁도가 보다 증가하고 반응조 표면에 미생물 군집이 많이 형성된 것이 관찰되었다. After inserting the PCBs containing insulating oil into the reactor, the microbial turbidity was observed with the reaction time. Insulating oil containing PCBs showed yellow and transparent color, slight turbidity appeared in light yellow immediately after microorganism injection, and after about 70 days, microbial community was observed on the surface of the reactor, and after about 160 days, More turbidity was observed and more microbial communities were formed on the surface of the reactor.
실험 결과는 도 2a 내지 도 2d와 같았다. 도 2a 내지 도 2d은 반응시간 경과에 따른 반응조별 미생물 탁도 변화를 보여준다.Experimental results were the same as in Figs. 2a to 2d. 2A to 2D show microbial turbidity changes of reaction tanks over time.
나. 미생물 균주의 증식범위I. Growth range of microbial strain
초기의 접종 미생물은 Cy106을 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107, 및 NZ2001 을 포함한 미생물 공동체를 각 균주별로 109CFU/ml 까지 배양한 후 접종하였으며, 평판배지에서 콜로니 계수법 CFU/ml로 측정시 초기반응 시 평균적으로 5.8x107~1.2x108/ml로 나타났으며, 반응기간의 지속에 따라 그림(GX1, GX2, GR1)에서와 같이 미생물의 수가 평균적으로 6.2x109~1.5x1010/ml의 최대치까지 증식된 형태를 계속 나타내었다(표 14).Early inoculating microorganisms essentially include Cy106, and microbial communities including Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107, and NZ2001 up to 10 9 CFU / ml for each strain. After incubation and inoculation, the colony counting CFU / ml on the plate medium showed an average of 5.8x10 7 ~ 1.2x10 8 / ml for the initial reaction, depending on the duration of the reactor (GX1, GX2, GR1) As shown in the figure, the number of microorganisms continued to grow up to a maximum of 6.2x10 9 -1.5x10 10 / ml on average (Table 14).
반응조 내에서 미생물의 개체수가 평균적으로 100배 증식을 유지하고 있는 것은 특허 10-588305, PCT/KR2005/001238, EP1745214의 자료에서 발표한 PCBs 오염토양, PCBs 절연유의 미생물 생분해 결과에 대한 재현성 측면에서 균주의 PCBs에 대한 내성 및 생분해를 위한 미생물의 증식으로 나타났다(도 2a 내지 도 2d).The average number of microorganisms in the reactor maintained 100-fold multiplication in terms of reproducibility of microbial biodegradation results of PCBs contaminated soil and PCBs insulated oil published in the data of Patents 10-588305, PCT / KR2005 / 001238, EP1745214. Resistance to PCBs and proliferation of microorganisms for biodegradation (FIGS. 2A-2D).
하기 표 16은 미생물과 PCBs 함유 절연유의 반응시간 경과에 따른 미생물 균체수의 증가를 나타낸다.Table 16 below shows the increase in the number of microbial cells over the reaction time between the microorganism and the PCBs-containing insulating oil.
접종 시 (CFU/ml)Inoculation (CFU / ml) 초기반응 시 (CFU/ml)Initial reaction (CFU / ml) 지속반응 시 (CFU/ml)In case of sustained reaction (CFU / ml)
109 10 9 5.8×107~1.2×108 5.8 × 10 7 ~ 1.2 × 10 8 6.2×109~1.5×1010 6.2 × 10 9 to 1.5 × 10 10
3. PCBs 분해율 분석 결과3. PCBs Degradation Rate Analysis Results
가. GC-ECD 분석 결과end. GC-ECD Analysis Results
미생물 혼합반응 시간 경과에 따라 PCBs 함유 절연유 시료분석을 의뢰하여 하기 표 17-18와 같은 결과를 얻었다. 분석결과, 시간의 경과에 따라 PCBs 농도의 증감이 반복되고, 또한 분석기관마다 분석결과가 상이하여 GC-ECD 분석법으로는PCBs 분해율을 확인할 수 없었다.By requesting analysis of PCBs-containing insulating oil sample according to the microbial mixing reaction time, the results as shown in Table 17-18 were obtained. As a result of analysis, the PCBs concentration was increased and decreased with time, and the analysis results were different for each analytical institution, so the degradation rate of PCBs could not be confirmed by GC-ECD analysis.
표 17은 반응시간 경과에 따른 PCBs 농도 변화 (주 반응조-GX)이다.Table 17 shows changes in PCBs concentration (main reactor-GX) over time.
시료채취일자 (D+경과일)Sampling date (D + elapsed date) GX-1(고농도)(ppm)GX-1 (high concentration) (ppm) GX-2(저농도)(ppm)GX-2 (low concentration) (ppm)
랩프론티어Rapfrontier RISTRIST 랩프론티어Rapfrontier RISTRIST
04.22 (0)04.22 (0) 415415 -- 7979 --
04.24 (D+2)04.24 (D + 2) 530530 -- 8080 --
05.08 (D+16)05.08 (D + 16) 415415 -- 5151 --
05.26 (D+34)05.26 (D + 34) 570570 -- 7777 --
06.10 (D+49)06.10 (D + 49) 520520 -- 71.571.5 --
06.24 (D+63)06.24 (D + 63) 322.5322.5 -- 3939 --
07.10 (D+79)07.10 (D + 79) 410410 511.98511.98 37.537.5 44.5244.52
07.17 (D+86)07.17 (D + 86) -- 544.78544.78 -- 52.6852.68
07.21 (D+90)07.21 (D + 90) 160160 -- 5151 --
07.23 (D+92)07.23 (D + 92) -- 356.01356.01 -- 45.4745.47
08.12 (D+112)08.12 (D + 112) -- 388.19388.19 -- 56.2456.24
09.09 (D+140)09.09 (D + 140) 330330 6969 25.2825.28
(중층) 321(Middle Floor) 321 -- (상층) 43(Upper floor) 43 --
-- -- (중층) 40(Middle floor) 40 --
09.16 (D+147)09.16 (D + 147) 310310 465.51465.51 4040 22.1922.19
표 18는 반응시간 경과에 따른 PCBs 농도 변화 (예비 반응조-GR)이다.Table 18 shows changes in PCBs concentration (preliminary reactor-GR) over time.
시료채취일자(D+경과일)Sampling date (D + elapsed date) GR-1(고농도)(ppm)GR-1 (high concentration) (ppm) GR-2 (ppm)(고농도 대조구)GR-2 (ppm) (high concentration control)
랩프론티어Rapfrontier RISTRIST 랩프론티어Rapfrontier RISTRIST
07.09 ((D+1)07.09 ((D + 1) 335335 449.78449.78 325325 369.24369.24
07.09 (D+1) 혼합 후07.09 After mixing (D + 1) 385385 495.05495.05 -- --
07.17 (D+9)07.17 (D + 9) -- 464.75464.75 -- 436.99436.99
07.21 (D+14)07.21 (D + 14) 370370 -- 270270 --
07.23 (D+16)07.23 (D + 16) -- 330.91330.91 -- 314.75314.75
08.12 (D+35)08.12 (D + 35) -- 364.58364.58 -- 394.42394.42
09.09 (D+63)09.09 (D + 63) 370370 462.42462.42 384384 --
316316 -- -- --
316316 -- -- --
09.16 (D+70)09.16 (D + 70) 310310 480.14480.14 295295 --
표 17-18에서 나타난 것처럼 초기농도 대비 최종농도의 PCBs 분해율은 분석기관에 따라 상당한 차이가 있으며, 그 원인으로 미생물 대사산물의 간섭효과를 가능성으로 추측하고 있다. 예로 PCBs 함유 절연유에 미생물 균주를 투입하였을 때 초기 415ppm에서 투입 후 530ppm으로 나타난 PCBs 농도의 증가와, PCBs 0.7ppm의 절연유(MOC-1)에 미생물을 투입한 후 14일간 경과 후 6.5ppm으로 증가한 경우이다(하기 표 19). 하기 표 19은 Non-PCBs 실험의 결과를 GC-ECD로 분석한 결과이며, 각 결과에 따른 피크패턴을 도 4a 내지 도 4b에 나타내었다. As shown in Table 17-18, the rate of degradation of PCBs from the initial concentration to the final concentration varies considerably between analytical institutions, and it is assumed that the interference effect of microbial metabolites is likely. For example, when the microbial strain was added to the insulating oil containing PCBs, the PCBs concentration increased from 415ppm to 530ppm, and then increased to 6.5ppm after 14 days of injecting microorganisms into 0.7ppm of PCBs (MOC-1). (Table 19 below). Table 19 is a result of analyzing the results of the non-PCBs experiment by GC-ECD, the peak pattern according to each result is shown in Figures 4a to 4b.
시료명Sample Name 비고Remarks 농도(ppm)Concentration (ppm) 분석기관Analytical Institution
MOC-1MOC-1 Non-PCBs 절연유 자체Non-PCBs insulating oil itself 0.7 0.7 랩프론티어Rapfrontier
MOM-1MOM-1 Non-PCBs 절연유+미생물 배양Non-PCBs Insulating Oil + Microbial Culture 6.56.5
나. HR-MS 분석결과I. HR-MS analysis result
HR-MS 분석에서는 초기 고농도 PCBs 함유 절연유 시료 자체의 농도, 예비반응조의 고농도 PCBs를 함유한 절연유에서 미생물 반응이 73일 경과된 시료, 주 반응조의 고농도 PCBs를 함유한 절연유에서 미생물 반응이 150일 경과된 시료를 채취하여 3회 포항산업과학연구원(RIST)에서 분석하였다.In the HR-MS analysis, the concentration of the insulating oil sample containing the high concentration PCBs itself, the microorganism reaction in the insulating oil containing the high concentration PCBs of the preliminary reactor 73 days, and the microbial reaction in the insulating oil containing the high concentration PCBs of the main reactor 150 days Samples were collected and analyzed three times by the Pohang Institute of Industrial Science (RIST).
표 21에 기재된 HR-MS 분석결과를 보면 27종 PCBs 중 5염화 PCBs인 PCBs 118(2,3‘,4,4’,5-PeCB), PCBs 123(2',3,4,4',5-PeCB) 이성체의 농도는 2~5배 증가한 것으로 나타났으나 1~3염화 PCBs의 저염소 PCBs는 모두 100% 분해된 것으로 나타났고, 염소치환 개수가 6~10인 고염화 PCBs의 경우에도 평균 60~100%정도로 대부분의 PCBs가 분해된 결과를 보이고 있으며, 독성등가농도가 큰 Coplanar PCBs의 농도도 대부분 줄어드는 경향을 나타내었다. The HR-MS analysis shown in Table 21 shows PCBs 118 (2,3 ', 4,4', 5-PeCB), PCBs 123 (2 ', 3,4,4', The concentration of 5-PeCB) isomers was increased by 2 to 5 times, but the low chlorine PCBs of 1 to 3 chloride PCBs were 100% decomposed. Most PCBs were degraded with an average of 60-100%, and the concentrations of coplanar PCBs with high toxic equivalent concentrations also tended to decrease.
HR-MS 분석결과 27종 초기농도 약 24ppm의 PCBs가 미생물 분해 후 약 60% 감소된 9.4ppm으로 나타났다. 12종의 독성 PCBs인 Coplanar PCBs는 초기 25,646pg-TEQ/g에서 미생물 분해 후 1,526pg-TEQ/g으로 감소되었다. 150일 경과 후 12종의 Coplanar PCBs 독성등가농도는 약 94.04%까지 감소된 것으로 나타났다(표 20).HR-MS analysis showed that PCBs with 27 initial concentrations of about 24 ppm were 9.4 ppm, which was reduced by 60% after microbial degradation. Coplanar PCBs, 12 toxic PCBs, decreased from the initial 25,646 pg-TEQ / g to 1,526 pg-TEQ / g after microbial degradation. After 150 days, the toxic equivalent concentrations of the 12 Coplanar PCBs were reduced by approximately 94.04% (Table 20).
표 20는 반응시간 경과에 따른 PCBs 농도 변화이다.Table 20 shows changes in PCBs concentration over time.
시료명Sample Name 시료채취일(D+경과일)Sampling date (D + elapsed date) 내 용 Contents 27종 농도(분해율)27 concentrations (degradation rate) 12종 농도(분해율)12 concentrations (degradation rate) 독성등가농도(pg-TEQ/g)Toxicity equivalent concentration (pg-TEQ / g)
MHX-1MHX-1 4.224.22 고농도PCBs 절연유High concentration PCBs insulating oil 23.83 ppm-23.83 ppm 20.88 ppm-20.88 ppm 25646.14-25646.14-
MHR-1MHR-1 9.19 (D+73)9.19 (D + 73) 고농도 GR-1High concentration GR-1 21.36 ppm(10.36%)21.36 ppm (10.36%) 20.70 ppm(0.86%)20.70 ppm (0.86%) 6036.69(76.46%) 6036.69 (76.46%)
MHX-2MHX-2 9.19(D+150)9.19 (D + 150) 고농도 GX-1High concentration GX-1 9.45 ppm(60.34%) 9.45 ppm (60.34%) 8.88 ppm(57.47%) 8.88 ppm (57.47%) 1526.46(94.04%) 1526.46 (94.04%)
표 21는 HR-MS법 초기대비 각 이성체별 농도 분석 결과이다.Table 21 shows the concentration analysis results for each isomer compared to the initial HR-MS method.
총농도(27종)Total concentration (27 species) 독성등가(WHO 2005TEF)Toxicity Equivalence (WHO 2005TEF) 염소치환 수Chlorine Substitution MHX-1(초기)MHX-1 (initial) MHX-2 (D+150)MHX-2 (D + 150) 초기대비Initial preparation
농도(pg/g)Concentration (pg / g) 농도(pg/g)Concentration (pg / g) 저감농도(pg/g)Reduction Concentration (pg / g) 분해율(%)% Decomposition
PCB1PCB1 1One 0.000.00 0.000.00 0.000.00 --
PCB3PCB3 8808.938808.93 0.000.00 -8808.93-8808.93 100.00100.00
PCB4PCB4 0.000.00 0.000.00 0.000.00 --
PCB15 PCB15 22 579684.54579684.54 0.000.00 -579684.54-579684.54 100.00100.00
PCB19PCB19 33 70475.8670475.86 0.000.00 -70475.86-70475.86 100.00100.00
PCB37PCB37 705234.91705234.91 0.000.00 -705234.91-705234.91 100.00100.00
PCB54 PCB54 44 1955.851955.85 1257.961257.96 -697.89-697.89 35.6835.68
PCB77PCB77 0.00010.0001 192681.23192681.23 74356.4774356.47 -118324.76-118324.76 61.4161.41
PCB81PCB81 0.00030.0003 80241.3980241.39 24905.5224905.52 -55335.87-55335.87 68.9668.96
PCB104PCB104 55 0.000.00 197.27197.27 197.27197.27 --
PCB105PCB105 0.000030.00003 7018089.607018089.60 2704419.672704419.67 -4313669.93-4313669.93 61.4761.47
PCB114PCB114 0.000030.00003 692079.40692079.40 303527.80303527.80 -388551.60-388551.60 56.1456.14
PCB118PCB118 0.000030.00003 164941.47164941.47 928454.26928454.26 +763512.79+763512.79 -462.90-462.90
PCB123PCB123 0.000030.00003 269106.64269106.64 981782.23981782.23 +712675.59+712675.59 -264.83-264.83
PCB126PCB126 0.10.1 46757.3846757.38 12483.7512483.75 -34273.63-34273.63 73.3073.30
PCB155 PCB155 66 0.000.00 0.000.00 0.000.00 --
PCB156PCB156 0.000030.00003 6755316.416755316.41 2256769.352256769.35 -4498547.06-4498547.06 66.5966.59
PCB157PCB157 0.000030.00003 859659.60859659.60 307098.35307098.35 -552561.25-552561.25 64.2864.28
PCB167PCB167 0.000030.00003 3081491.463081491.46 935468.30935468.30 -2146023.16-2146023.16 69.6469.64
PCB169PCB169 0.030.03 677689.56677689.56 0.000.00 -677689.56-677689.56 100.00100.00
PCB188PCB188 77 9214.049214.04 2830.382830.38 -6383.66-6383.66 69.2869.28
PCB189PCB189 0.000030.00003 1038437.831038437.83 354938.41354938.41 -683499.42-683499.42 65.8265.82
PCB202 PCB202 88 661675.67661675.67 238378.85238378.85 -423296.82-423296.82 63.9763.97
PCB205PCB205 312425.50312425.50 113564.51113564.51 -198860.99-198860.99 63.6563.65
PCB206PCB206 99 489043.61489043.61 175489.76175489.76 -313553.85-313553.85 64.1264.12
PCB208PCB208 85839.3085839.30 31085.2631085.26 -54754.04-54754.04 63.7963.79
PCB209 PCB209 1010 34651.1334651.13 2606.982606.98 -32044.15-32044.15 92.4892.48
합계Sum 23835501.3123835501.31 9449615.089449615.08 60.3560.35
다. 부산물 유해성 평가 결과All. Byproduct Hazard Assessment Results
부산물 유해성 평가 실험으로 반응조 내부의 액상시료의 다이옥신 농도를 포항산업과학연구원의 HR-MS 기기 분석법으로 실시(표 22)하였으며, 추가적으로 반응조 발생 가스 측정을 통하여 다음과 같은 결과(표 23)를 얻었다.Dioxin concentration of the liquid sample in the reaction tank was measured by the HR-MS instrumental analysis of the Pohang Institute of Science and Technology (Table 22).
PCBs의 미생물 처리에 있어서 209종의 PCBs 동종체들은 분자구조상 미생물과 반응 시에 미생물 대사산물과의 상호작용으로 인하여 209종의 dioxin 형태로 쉽게 변환될 수 있어 PCBs의 생분해 시에 가장 많이 나타날 수 있는 대표적인 독성부산물이다. 본 실험에서 반응조 내부 시료의 다이옥신 분석결과 표 20에서와 같이 0.5~0.7ng-TEQ/g의 농도로 검출되어 소각재의 법적 방출제한치인 3ng-TEQ/g 보다 낮은 결과를 보였다. 또한 부가적으로 실험한 배출가스 측정결과에서도 유해가스는 검출되지 않았다.In the microbial treatment of PCBs, 209 PCBs homologues can be easily converted into 209 dioxin forms due to their interaction with microbial metabolites when reacting with microorganisms in molecular structure. Representative toxic byproducts. In the experiment, the dioxin analysis of the sample inside the reactor showed a concentration of 0.5∼0.7ng-TEQ / g as shown in Table 20, which was lower than 3ng-TEQ / g, the legal limit of incineration ash. In addition, no harmful gases were detected in the experimentally measured emissions.
표 22은 반응조 액상시료 중 다이옥신 분석 결과이다.Table 22 shows the results of dioxin analysis in the reactor liquid sample.
시료명 (D+경과일)Sample name (D + elapsed date) 다이옥신농도 (ng-TEQ/g)Dioxin concentration (ng-TEQ / g) 분석기관Analytical Institution
GR-1 (D+73)GR-1 (D + 73) 0.6970.697 RISTRIST
GX-1 (D+150)GX-1 (D + 150) 0.5170.517
표 23은 반응조 발생가스 측정결과이다.Table 23 shows the measurement results of the reaction gas generated from the reactor.
구 분division 실외(ppm)Outdoor (ppm) 실험실(ppm)Laboratory (ppm) 반응조(ppm)Reactor (ppm)
이산화탄소(CO2)CO2 496496 700700 713~844713 ~ 844
휘발성유기탄소(VOCs)Volatile Organic Carbons (VOCs) -- -- N.DN.D
염소가스(Cl2)Chlorine Gas (Cl2) -- -- N.DN.D
9 절 요약 및 결론Section 9 Summary and Conclusion
- 절연유내에 함유된 고농도(530ppm) 및 저농도(80ppm) PCBs 물질을 처리하기 위해 생물학적 처리기술을 적용함.-Biological treatment technology is applied to process high concentration (530ppm) and low concentration (80ppm) PCBs materials in insulating oil.
- 실험은 한전 강원지사에 보관 중인 주상용 변압기에 내장된 절연유 17L(고농도:10L, 저농도:7L)를 시료로 하여 수행함.-The experiment was carried out using 17L of insulating oil (high concentration: 10L, low concentration: 7L) embedded in the pole transformer in KEPCO Kangwon branch.
- 실험에 사용된 균주는 Cy106을 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001의 혼합 균주를 사용함.The strains used in the experiments essentially include Cy106, using a mixed strain of Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 and NZ2001.
- 실험 조건은 pH 6~8, 반응기 온도 24~25℃, 교반속도 200RPM 및 DO 농도는 포화상태(80~90%)를 유지함.-Experimental conditions were pH 6-8, reactor temperature 24-25 ℃, stirring speed 200RPM and DO concentration kept saturated (80-90%).
- HR-MS로 분석한 결과 실험 150일 경과 후 일부 PCBs 농도가 증가하였으나, coplanar-PCBs 12종의 TEQ 독성은 94%(1526.46 pg-TEQ/g)정도 감소하였으며 PCBs 농도는 57% 감소하는 것으로 나타났음. 비독성 PCBs 동종체까지 포함한 27종의 PCBs 분해율은 60% 감소하는 것으로 나타남(표 24).-As a result of analysis by HR-MS, some PCBs concentration increased after 150 days of experiment, but TEQ toxicity of 12 coplanar-PCBs decreased by 94% (1526.46 pg-TEQ / g) and PCBs concentration decreased by 57%. Appeared. The degradation rate of 27 PCBs, including non-toxic PCBs isoforms, was reduced by 60% (Table 24).
표 24은 처리 기간에 따른 PCBs 농도 변화(분석법 : HR-MS)이다.Table 24 shows changes in PCBs concentrations (assay HR-MS) with treatment duration.
구 분division 초기(D+0)Initial (D + 0) D+150D + 150 분해율(%)% Decomposition
총농도(27종)(ppm)Total concentration (27 species) (ppm) 23.8323.83 9.449.44 60.3560.35
총농도(12종) ※(ppm)Total concentration (12 kinds) ※ (ppm) 20.8820.88 8.888.88 57.4757.47
독성농도(12종)(pg-TEQ/g)Toxicity concentrations (12 species) (pg-TEQ / g) 25,646.1425,646.14 1,526.461,526.46 94.0594.05
주) 분석기관 : 포항산업과학연구원Note) Analysis organization: Pohang Institute of Industrial Science
HR-MS Model : Thermo Trace GC Ultra - DFSHR-MS Model: Thermo Trace GC Ultra-DFS
※ : Coplanar-PCBs ※: Coplanar-PCBs
- GC-ECD 분석법에 의한 PCBs 농도변화를 분석한 결과 초기농도 대비 최종농도는 감소하였으나, 분해기간 중 PCBs 농도의 증감현상 반복과 분석기관별 분석결과가 상이하여 분해율을 확인할 수 없었음.-As a result of analyzing PCBs concentration change by GC-ECD method, the final concentration was decreased compared to the initial concentration.
- PCBs 분해 미생물의 개체 수는 초기 108 CFU/ml에서 반응시간이 경과함에 따라 1010 CFU/ml로 증가하였음. 이는 미생물에 의한 PCBs 분해가 미생물 대사작용에서 발생되는 효소(Enzyme)의 촉매반응에 의한 것으로 볼 때, 미생물의 활발한 성장은 PCBs 물질의 분해가 활발하게 진행되고 있는 객관적 지표로 평가할 수 있음.The population of PCBs degrading microorganisms increased from 10 8 CFU / ml to 10 10 CFU / ml with the reaction time. This suggests that the degradation of PCBs by microorganisms is due to the catalytic reaction of enzymes that occur in microbial metabolism, and the active growth of microorganisms can be evaluated as an objective indicator that the degradation of PCBs is actively progressing.
- 미생물을 이용한 PCBs의 생물학적 처리 시 나타날 수 있는 부산물의 유해성 여부에서는 액상시료중의 다이옥신 성분을 평가한 결과 GR-1와 GX-1 반응조에서 각각 0.697ng-TEQ/g, 0.517ng-TEQ/g의 값을 보였으며, 이는 소각재의 법적 방출 제한치 3ng-TEQ/g의 25% 미만 수준임.-In the presence of harmful by-products from biological treatment of PCBs using microorganisms, dioxin components in liquid samples were evaluated, and 0.697ng-TEQ / g and 0.517ng-TEQ / g in GR-1 and GX-1 reactors, respectively. , Which is less than 25% of the legal emission limit of 3 ng-TEQ / g.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.
[수탁번호][Accession number]
기탁기관명 : 한국생명공학연구원Depositary: Korea Research Institute of Bioscience and Biotechnology
수탁번호 : KCTC10623BPAccession number: KCTC10623BP
수탁일자 : 20040416Deposit date: 20040416
기탁기관명 : 한국생명공학연구원Depositary: Korea Research Institute of Bioscience and Biotechnology
수탁번호 : KCTC0652BPAccession number: KCTC0652BP
수탁일자 : 19990811Trust Date: 19990811
[규칙 제26조에 의한 보정 13.02.2019] 
Figure WO-DOC-FIGURE-407
[Revision 13.02.2019 under Rule 26]
Figure WO-DOC-FIGURE-407
[규칙 제26조에 의한 보정 13.02.2019] 
Figure WO-DOC-FIGURE-408
[Revision 13.02.2019 under Rule 26]
Figure WO-DOC-FIGURE-408

Claims (13)

  1. PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,In the PCBs processing method of insulating oil containing Polychlorinated Biphenyls (PCBs),
    PCBs 처리 세균공동체를 투여하는 단계를 포함하며, Administering a PCBs treated bacterial community,
    상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법.The PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 selected from NBC2000 bacterial community with accession number KCTC 10623 BP. Strain, Brebundimonas vesicularis Cy102 strain, Brebunundimonasvesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp. Cy107 strain, Capital One or more of Pseudomonas aeruginosa Tnh strain, W24 strain which is an oil degradation gram negative bacterium and Nz2001 strain which is a sulfur strain; At least one of Bacillus cereus EBC106 strain and Pseudomonas sp. EBC107 strain selected from EBC1000 bacterial community with an accession number of KCTC 0652 BP; .
  2. 제 1항에 있어서,The method of claim 1,
    상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법.The PCBs treated bacterial community is Bacillus sp. Cy106 strain, Pseudomonas sp. Cy100 strain, Brebundimonas vesicularis Cy101 strain, Brebundimonas vesicularis (Brevundimonas vesicularis) Cy102 strain, Brebundimonas vesicularis Cy103 strain, Bacillus stearothermophilus Cy104 strain, Bacillus sp. Cy107 strain, Pseudomonas aeruginosa Tnh strain, oil A method for processing PCBs of insulating oil, comprising a W24 strain, a degraded Gram negative bacterium, a Nz2001 strain, a sulfur strain, a Bacillus cereus EBC106 strain, and a Pseudomonas sp. EBC107 strain.
  3. 제 1항에 있어서,The method of claim 1,
    상기 PCBs 처리 세균 공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법.The PCBs treatment bacterial community is to be administered after culturing the cell number 10 9 CFU / ml or more, PCBs treatment method of insulating oil.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법.The culture is incubated for 4 to 5 days with bacto-yeast extract in Luria-Bertani nutrient medium, PCBs treatment method of insulating oil.
  5. 제 1항에 있어서,The method of claim 1,
    상기 절연유의 PCBs 처리 방법은 PCBs 처리 세균 공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법.The method of treating the PCBs of the insulating oil further comprises biodegrading after administering the PCBs treatment bacterial community, PCBs processing method of insulating oil.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 생분해 시키는 단계는 The biodegradation step
    24℃ 내지 26℃의 온도 조건; Temperature conditions of 24 ° C. to 26 ° C .;
    pH 5.3 내지 8.5의 pH 조건; 및pH conditions of pH 5.3 to 8.5; And
    용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법.DO conditions of dissolved oxygen of 73% to 95%; Decomposing while satisfying any one or more of the conditions, Method for processing PCBs of insulating oil.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 생분해 시키는 단계는 The biodegradation step
    24℃ 내지 25℃의 온도 조건; Temperature conditions of 24 ° C. to 25 ° C .;
    pH 6 내지 8의 pH 조건; 및pH conditions of pH 6-8; And
    용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법.DO conditions with a dissolved oxygen concentration of 80% to 90%; Decomposing while satisfying any one or more of the conditions, Method for processing PCBs of insulating oil.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법. The step of biodegradation further comprises the conditions of stirring using a stirrer with a rotational speed of 150 rpm to 250 rpm during biodegradation, PCBs processing method of insulating oil.
  9. 제 5 항에 있어서,The method of claim 5,
    상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법.The biodegrading step has a biodegradation time of more than 50 days, PCBs processing method of insulating oil.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법.The biodegrading step has a biodegradation time of 70 days to 200 days, PCBs processing method of insulating oil.
  11. 제 1항에 있어서,The method of claim 1,
    상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법.The insulating oil is an insulating oil contained in the transformer, PCBs processing method of the insulating oil.
  12. 제 1항에 있어서,The method of claim 1,
    상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법.The method reduces the concentration of PCBs in insulating oil to 50 ppm or less.
  13. 제 11항에 있어서,The method of claim 11,
    상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법.Wherein the method reduces the concentration of PCBs in insulating oil to 50 ppm or less and at the same time generates dioxin below a concentration of 3 ng-TEQ / g.
PCT/KR2019/001360 2018-02-01 2019-01-31 Method for treating polychlorinated biphenyls using microorganisms WO2019151799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180012987A KR102045301B1 (en) 2018-02-01 2018-02-01 A method for treating PCBs using a microorganism
KR10-2018-0012987 2018-02-01

Publications (1)

Publication Number Publication Date
WO2019151799A1 true WO2019151799A1 (en) 2019-08-08

Family

ID=67479432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001360 WO2019151799A1 (en) 2018-02-01 2019-01-31 Method for treating polychlorinated biphenyls using microorganisms

Country Status (2)

Country Link
KR (1) KR102045301B1 (en)
WO (1) WO2019151799A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164139A (en) * 2021-10-27 2022-03-11 福州大学 Alkali-resistant chromium-resistant bacillus cereus and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323646A (en) * 1997-05-23 1998-12-08 Fukuoka Pref Gov Decomposition process for chlorine compound by microbe
JP2003111586A (en) * 2001-10-04 2003-04-15 Railway Technical Res Inst Method for culturing polychlorobiphenyl-decomposing thermophilic microorganism, device for the same and method for decomposing polychlorobiphenyl
KR100403267B1 (en) * 2000-07-18 2003-11-13 주식회사 프로바이오닉 A novel microorganism Bacillus pumilus BS-019 absorbing dioxin and dioxin-like compounds and a biosorption method of the same
KR20050104260A (en) * 2004-04-28 2005-11-02 이성기 Bacterial consortium nbc2000 and method for treating biologically endocrine disrupters using the nbc2000
KR101230858B1 (en) * 2011-11-28 2013-02-07 한국지질자원연구원 Pseudomonas sp. having a capability of degrading poly chlorinated biphenyls and the use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612225B1 (en) 2004-10-20 2006-08-11 학산금속공업 주식회사 separating system of wastetransformer in charger insulating oil which contains polychlorinated biphenyl
KR100749898B1 (en) 2004-10-25 2007-08-21 한국전력공사 Method for removing polychlorinated biphenyls by catalyst
KR100798410B1 (en) 2007-03-14 2008-01-28 한국원자력연구원 A method of eliminating chlorine element in waste insulating oil
KR100848137B1 (en) 2007-05-17 2008-07-23 한국전력공사 Process for the supercritical water oxidation of transformer oil contaminated with polychlorinated biphenyls
KR100864632B1 (en) 2007-06-04 2008-10-22 학산금속공업 주식회사 Separating system of wastetransformer in charger insulating oil which contains polychlorinated biphenyl with ultrasonic cleaner
KR100782543B1 (en) 2007-09-07 2007-12-06 박관순 Method of polychlorinated biphenyls detoxification
KR101085553B1 (en) 2009-08-31 2011-11-24 아름다운 환경건설(주) Dechlorination process of polychlorinated biphenyls
KR101021690B1 (en) 2010-05-12 2011-03-22 (주)원창에너지 Method for treatment of wasted insulation oil including polychlorinated biphenyls

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323646A (en) * 1997-05-23 1998-12-08 Fukuoka Pref Gov Decomposition process for chlorine compound by microbe
KR100403267B1 (en) * 2000-07-18 2003-11-13 주식회사 프로바이오닉 A novel microorganism Bacillus pumilus BS-019 absorbing dioxin and dioxin-like compounds and a biosorption method of the same
JP2003111586A (en) * 2001-10-04 2003-04-15 Railway Technical Res Inst Method for culturing polychlorobiphenyl-decomposing thermophilic microorganism, device for the same and method for decomposing polychlorobiphenyl
KR20050104260A (en) * 2004-04-28 2005-11-02 이성기 Bacterial consortium nbc2000 and method for treating biologically endocrine disrupters using the nbc2000
KR101230858B1 (en) * 2011-11-28 2013-02-07 한국지질자원연구원 Pseudomonas sp. having a capability of degrading poly chlorinated biphenyls and the use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164139A (en) * 2021-10-27 2022-03-11 福州大学 Alkali-resistant chromium-resistant bacillus cereus and application thereof
CN114164139B (en) * 2021-10-27 2023-03-10 福州大学 Alkali-resistant chromium-resistant bacillus cereus and application thereof

Also Published As

Publication number Publication date
KR102045301B1 (en) 2019-11-18
KR20190093822A (en) 2019-08-12

Similar Documents

Publication Publication Date Title
Thangaraj et al. Microbial degradation of azo dyes by textile effluent adapted, Enterobacter hormaechei under microaerophilic condition
Telke et al. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT
Ma et al. Degradation of polycyclic aromatic hydrocarbons by Pseudomonas sp. JM2 isolated from active sewage sludge of chemical plant
Samanta et al. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol
US20050054030A1 (en) Methods and compositions for degradation of nitroaromatic and nitramine pollutants
Young et al. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L.(garden lettuce)
US6858417B2 (en) Dna fragment carrying toluene monooxygenase, gene, recombinant plasmid, transformed microorganism, method for degrading chlorinated aliphatic hydrocarbon compounds and aromatic compounds, and method for environmental remediation
Xu et al. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp.
Dwivedi et al. Isolation and characterization of butachlor‐catabolizing bacterial strain Stenotrophomonas acidaminiphila JS‐1 from soil and assessment of its biodegradation potential
WO2019151799A1 (en) Method for treating polychlorinated biphenyls using microorganisms
WO2011158998A1 (en) Strain of bacillus amyloliquefaciens having a high vitamin k2 producing ability
Saibu et al. Aerobic bacterial transformation and biodegradation of dioxins: a review
WO2010143871A9 (en) Method for screening and quantifying various enzyme activities using a genetic enzyme screening system
WO2019124904A1 (en) Microfluidic paper chip for detecting micro-organism, method for preparing the same and method for detecting micro-organism using the same
Sutherland et al. Catabolism of substituted benzoic acids by Streptomyces species
KR100588305B1 (en) Bacterial consortium NBC2000 and method for treating biologically endocrine disrupters using the NBC2000
WO2009125929A2 (en) System for reducing environmental pollutants
Xing et al. Degradation mechanism of 4-chlorobiphenyl by consortium of Pseudomonas sp. strain CB-3 and Comamonas sp. strain CD-2
Asadi et al. Laccase mediator system obtained from a marine spore exhibits decolorization potential in harsh environmental conditions
May et al. Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media
WO2016178513A1 (en) Novel gene involved in production of c5-c8 organic acids, strain, and method for preparing biofuel using same
Khan et al. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1
Irawati et al. The potential of copper-resistant bacteria Acinetobacter sp. strain CN5 in decolorizing dyes
KR100325252B1 (en) A novel microorganism Rhodococcus pyridinovorans PDB9 degrading aromatic compounds
Sharma et al. Characterization of pentachlorophenol degrading bacterial consortium from chemostat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746648

Country of ref document: EP

Kind code of ref document: A1