WO2019151144A1 - Chemical mechanical polishing composition and polishing method - Google Patents

Chemical mechanical polishing composition and polishing method Download PDF

Info

Publication number
WO2019151144A1
WO2019151144A1 PCT/JP2019/002526 JP2019002526W WO2019151144A1 WO 2019151144 A1 WO2019151144 A1 WO 2019151144A1 JP 2019002526 W JP2019002526 W JP 2019002526W WO 2019151144 A1 WO2019151144 A1 WO 2019151144A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
titanium oxide
polishing composition
acid
Prior art date
Application number
PCT/JP2019/002526
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕也
昌宏 野田
達也 山中
昂輝 石牧
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019151144A1 publication Critical patent/WO2019151144A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a chemical mechanical polishing composition and a polishing method using the same.
  • CMP chemical mechanical polishing
  • CMP while supplying a polishing composition containing abrasive grains and reagents onto a polishing pad, the semiconductor substrate is pressed against the polishing pad affixed on the surface plate, and the semiconductor substrate and the polishing pad are slid against each other.
  • This is a technique for chemically and mechanically polishing a semiconductor substrate.
  • unevenness on the surface of a semiconductor substrate can be removed by chemical reaction with a reagent and mechanical polishing with abrasive grains, and the surface can be flattened.
  • a ruthenium film polishing composition for planarizing a ruthenium film, which is a next-generation semiconductor material, by CMP has been studied (see, for example, Patent Documents 1 and 2).
  • a ruthenium film polishing composition in order to improve the ruthenium film polishing rate, a slurry in which abrasive grains such as alumina and titanium oxide and an oxidizing agent are used in combination has been studied.
  • titanium oxide particles when used as abrasive grains, the surface is chemically active, so it is easy to react with water, oxygen, nitrogen, etc. There was a problem of being easily damaged.
  • some embodiments according to the present invention can suppress the generation of ruthenium tetroxide, which is highly toxic to the human body, can polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed, and can polish polishing scratches on the surface to be polished.
  • An object of the present invention is to provide a chemical mechanical polishing composition capable of reducing the amount of polishing and a polishing method using the same.
  • Another object of the present invention is to provide a chemical mechanical polishing composition having excellent stability in which generation of foaming is further reduced, in addition to the above object.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the chemical mechanical polishing composition according to the present invention is: (A) titanium oxide-containing particles; (B) an organic acid; Containing The (A) titanium oxide-containing particles have a half width of less than 1 ° at the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum.
  • the (A) titanium oxide-containing particles further contain aluminum, wherein in (A) containing titanium oxide particles, it is possible the number of moles of titanium M Ti, the number of moles of aluminum is taken as M Al, the value of M Ti / M Al is 6-70.
  • the ratio (Rmax / Rmin) between the major axis (Rmax) and the minor axis (Rmin) of the (A) titanium oxide-containing particles may be 1.1 to 4.0.
  • the (C) oxidizing agent may be at least one selected from potassium periodate, potassium hypochlorite, and hydrogen peroxide.
  • the content of the (A) titanium oxide-containing particles can be 0.1% by mass or more and 10% by mass or less with respect to the total mass of the chemical mechanical polishing composition.
  • the pH can be 7 or more and 13 or less.
  • the chemical mechanical polishing composition of the above application example is It can be used to polish a semiconductor substrate containing a ruthenium film.
  • One aspect of the polishing method according to the present invention is: A step of polishing a semiconductor substrate using the chemical mechanical polishing composition of the above application example.
  • the semiconductor substrate may include a ruthenium film.
  • the generation of ruthenium tetroxide, which is highly toxic to the human body, can be suppressed, and a semiconductor substrate, particularly a ruthenium film-containing substrate can be polished at high speed, and the object to be polished Surface scratches can be reduced.
  • a semiconductor substrate, particularly a ruthenium film-containing substrate can be polished at high speed, and the object to be polished Surface scratches can be reduced.
  • a semiconductor substrate, particularly a ruthenium film-containing substrate can be polished at a high speed, and can be polished flat and with high throughput. .
  • FIG. 1 is a conceptual diagram schematically showing the major axis (Rmax) and minor axis (Rmin) of (A) titanium oxide-containing particles.
  • FIG. 2 is a cross-sectional view schematically showing an object to be processed suitable for use in the polishing method according to this embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing process.
  • FIG. 4 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing process.
  • FIG. 5 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • a numerical range described using “to” means that numerical values described before and after “to” are included as a lower limit value and an upper limit value.
  • Chemical mechanical polishing composition contains (A) titanium oxide-containing particles and (B) an organic acid, and the (A) titanium oxide-containing particles are powder X.
  • the full width at half maximum of the peak portion where the diffraction intensity in the line diffraction pattern is maximum is less than 1 °.
  • Titanium oxide-containing particles The chemical mechanical polishing composition according to this embodiment includes (A) titanium oxide-containing particles.
  • “(A) Titanium oxide-containing particles” in the present invention may be particles formed only from titanium oxide, or may be particles containing other compounds than titanium oxide.
  • the titanium oxide contained in the titanium oxide-containing particles any of rutile type, anatase type, amorphous, and a mixture thereof can be used.
  • the upper limit of the full width at half maximum of the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum is less than 1 °, and preferably less than 0.7 °.
  • the lower limit value of the half width is preferably 0.2 ° or more.
  • the powder X-ray diffraction pattern is a diffraction measured at each incident angle in a two-dimensional graph with the incident angle as the horizontal axis and the diffraction intensity as the vertical axis when performing sample measurement by powder X-ray diffraction. Refers to the intensity plot line.
  • the (A) titanium oxide-containing particles in this embodiment have a ratio (Rmax / Rmin) of the major axis to the minor axis of 1.1 when the major axis of the (A) titanium oxide-containing particle is Rmax and the minor axis is Rmin. Is preferably 4.0 to 4.0, more preferably 1.5 to 3.8, and particularly preferably 2.0 to 3.5. If the ratio of the major axis to the minor axis (Rmax / Rmin) is 1.1 or more, the ruthenium film-containing substrate can be polished at high speed, and if the ratio of the major axis to the minor axis (Rmax / Rmin) is 4.0 or less. (A) Since the catch at the end of the titanium oxide-containing particles can be suppressed, polishing scratches on the polished surface of the ruthenium film-containing substrate can be reduced.
  • the ratio of the major axis to the minor axis (Rmax / Rmin) of the titanium oxide-containing particles can be adjusted by appropriately controlling the heat treatment conditions, acid addition conditions, pulverization conditions, and the like in production.
  • the major axis (Rmax) and minor axis (Rmin) of the titanium oxide-containing particles can be measured as follows. For example, when the image of one independent titanium oxide-containing particle 1 photographed by a transmission electron microscope is elliptical as shown in FIG. 1, the major axis a of the elliptical shape is defined as the major axis (Rmax of the titanium oxide-containing particle 1). ) And the short axis b of the elliptical shape is determined as the short diameter (Rmin) of the titanium oxide-containing particle 1.
  • the major axis (Rmax) and minor axis (Rmin) of 50 titanium oxide-containing particles are measured, and after calculating the average value of major axis (Rmax) and minor axis (Rmin), the major axis and The ratio to the minor axis (Rmax / Rmin) can be calculated and obtained.
  • titanium oxide-containing particles contain a compound other than titanium oxide
  • examples of the compound other than titanium oxide include aluminum hydroxide, aluminum oxide (alumina), aluminum chloride, aluminum nitride, aluminum acetate, and aluminum phosphate. And aluminum compounds such as aluminum sulfate, sodium aluminate, and potassium aluminate.
  • the (A) titanium oxide-containing particles containing an aluminum compound are also referred to as “aluminum / titanium oxide-containing particles”.
  • the value of Al is preferably 6 to 70, more preferably 10 to 65, and particularly preferably 20 to 60. If the value of M Ti / M Al is 6 or more, sufficient hardness for polishing can be obtained, so that the ruthenium film-containing substrate can be polished at high speed, and the titanium oxide-containing particles are chemically inert. As a result, the generation of foaming can be suppressed.
  • the value of M Ti / M Al is 70 or less, aggregation of the aluminum / titanium oxide-containing particles can be suppressed, so that polishing scratches on the surface to be polished can be reduced.
  • M Ti / M Al The value of M Ti / M Al is obtained by dissolving aluminum / titanium oxide-containing particles with dilute hydrofluoric acid and using ICP-MS (inductively coupled plasma mass spectrometer: manufactured by PerkinElmer, model number “ELAN DRC PLUS”). The content of titanium and aluminum in the aluminum / titanium oxide-containing particles can be measured and calculated from the measured values.
  • the aluminum / titanium oxide-containing particles are easily dispersed in a chemical mechanical polishing composition having a pH of 7 or more and 13 or less, and are excellent in stability.
  • the reason is that, in the chemical mechanical polishing composition having a pH of 7 or more and 13 or less, the zeta potential of the aluminum / titanium oxide-containing particles is increased, and therefore, the dispersibility is considered to be improved by electrostatic repulsion between the particles. .
  • the absolute value of the zeta potential of the aluminum / titanium oxide-containing particles in the chemical mechanical polishing composition having a pH of 7 or more and 13 or less is preferably 25 mV or more, more preferably 30 mV or more, and particularly preferably. Is 35 mV or more. If the absolute value of the zeta potential of the aluminum / titanium oxide-containing particles in the chemical mechanical polishing composition in the pH range is 25 mV or more, the dispersibility of the aluminum / titanium oxide-containing particles is improved, and the semiconductor substrate High-speed polishing can be performed while reducing polishing scratches (particularly a ruthenium film-containing substrate).
  • the average particle diameter of the titanium oxide-containing particles is preferably 10 nm or more and 300 nm or less, more preferably 20 nm or more and 200 nm or less, and particularly preferably 25 nm or more and 150 nm or less. If the (A) titanium oxide-containing particles having an average particle size in the above range, a sufficient polishing rate can be obtained, and a chemical mechanical polishing composition excellent in stability without causing sedimentation / separation of particles can be obtained. As a result, good performance can be achieved.
  • the average particle diameter of the (A) titanium oxide-containing particles is determined by measuring the specific surface area by the BET method using, for example, a flow-type specific surface area automatic measuring device (manufactured by Shimadzu Corporation, “micrometricsFlowSorbII2300”). It can be calculated.
  • the content of the titanium oxide-containing particles is preferably 0.1% by mass or more, and 0.3% by mass or more with respect to the total mass of the chemical mechanical polishing composition from the viewpoint of polishing the semiconductor substrate at high speed. Is more preferable, and 0.5% by mass or more is particularly preferable.
  • the content of the titanium oxide-containing particles is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less from the viewpoint of reducing the occurrence of polishing scratches on the polished surface.
  • the chemical mechanical polishing composition according to this embodiment contains (B) an organic acid.
  • the organic acid By containing the organic acid, the ruthenium film-containing substrate can be polished at a higher speed.
  • an ion composed of an element of a semiconductor material containing a metal such as ruthenium or an organic acid having a coordination ability with respect to the surface of the semiconductor material or the like is preferable.
  • an organic acid having at least one of a hydroxyl group and a carboxyl group is preferable. With such an organic acid, the coordination ability with respect to the surface of a semiconductor material containing a metal such as ruthenium is increased, and the polishing rate can be improved.
  • (B) organic acids include stearic acid, lauric acid, oleic acid, myristic acid, dodecylbenzenesulfonic acid, alkenyl succinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, Acetic acid, oxalic acid, citric acid, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid; glycine, alanine, aspartic acid, glutamic acid, lysine, arginine, tryptophan, aromatic amino acid And amino acids such as heterocyclic amino acids.
  • At least one selected from stearic acid, lauric acid, oleic acid, myristic acid, dodecylbenzenesulfonic acid, alkenyl succinic acid and maleic acid is preferable.
  • These (B) organic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the organic acid may be a salt of the organic acid, or may react with a base separately added in the chemical mechanical polishing composition to form a salt of the organic acid.
  • bases include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, organic alkali compounds such as tetramethylammonium hydroxide (TMAH), choline, and ammonia. Is mentioned.
  • the content of the organic acid (B) is preferably 0.001% by mass or more with respect to the total mass of the chemical mechanical polishing composition from the viewpoint of high-speed polishing of a semiconductor substrate containing a metal such as ruthenium. More preferably, it is more preferably at least 0.005% by mass.
  • the content of the organic acid is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the chemical mechanical polishing composition according to this embodiment may contain (C) an oxidizing agent within a range in which the ruthenium film is not oxidized during the CMP process to produce ruthenium tetroxide.
  • C By containing an oxidizing agent, it is possible to create a fragile modified layer on the surface to be polished by oxidizing a metal such as ruthenium and promoting a complexing reaction with a polishing liquid component. Has the effect of facilitating.
  • oxidizing agent examples include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, diammonium cerium nitrate, potassium hypochlorite, ozone, potassium periodate, and peracetic acid. .
  • oxidants at least one selected from potassium periodate, potassium hypochlorite and hydrogen peroxide is preferable, and hydrogen peroxide is more preferable from the viewpoint of suppressing the generation of ruthenium tetroxide.
  • These (C) oxidizing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the (C) oxidizing agent is the total mass of the chemical mechanical polishing composition from the viewpoint of preventing the oxidation of a metal such as ruthenium from becoming insufficient and reducing the polishing rate. Is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and particularly preferably 0.01% by mass or more.
  • the content of the oxidizing agent is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less from the viewpoint of preventing ruthenium tetroxide from being generated due to excessive oxidation of ruthenium. .
  • the chemical mechanical polishing composition according to the present embodiment includes, in addition to water, which is a main liquid medium, a nitrogen-containing heterocyclic compound, a surfactant, an inorganic acid and a salt thereof, and water-soluble as necessary. It may contain a polymer or the like.
  • the chemical mechanical polishing composition according to this embodiment contains water as a main liquid medium.
  • the water is not particularly limited, but pure water is preferable. Water should just be mix
  • the chemical mechanical polishing composition according to this embodiment may contain a nitrogen-containing heterocyclic compound.
  • a nitrogen-containing heterocyclic compound By containing a nitrogen-containing heterocyclic compound, excessive etching of a metal such as ruthenium can be suppressed, and surface roughness after polishing such as corrosion can be prevented.
  • the nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from a hetero five-membered ring and a hetero six-membered ring having at least one nitrogen atom.
  • the heterocyclic ring include hetero five-membered rings such as a pyrrole structure, an imidazole structure, and a triazole structure; and hetero six-membered rings such as a pyridine structure, a pyrimidine structure, a pyridazine structure, and a pyrazine structure.
  • the heterocyclic ring may form a condensed ring.
  • indole structure isoindole structure, benzimidazole structure, benzotriazole structure
  • quinoline structure isoquinoline structure, quinazoline structure, cinnoline structure, phthalazine structure, quinoxaline structure, acridine structure and the like.
  • heterocyclic compounds having such a structure heterocyclic compounds having a pyridine structure, a quinoline structure, a benzimidazole structure, or a benzotriazole structure are preferable.
  • nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxy Examples thereof include benzotriazole, and further derivatives having these skeletons. Among these, at least one selected from benzotriazole and triazole is preferable.
  • These nitrogen-containing heterocyclic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the nitrogen-containing heterocyclic compound is preferably 0.05 to 2% by mass, more preferably 0.8%, based on the total mass of the chemical mechanical polishing composition. 1 to 1% by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain a surfactant.
  • the surfactant has the effect of imparting an appropriate viscosity to the chemical mechanical polishing composition, suppresses excessive etching of metals such as ruthenium, and prevents surface roughness after polishing such as corrosion. There are cases where it is possible.
  • the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates; sulfonates such as alkylnaphthalene sulfonates and ⁇ -olefin sulfonates; higher alcohol sulfates, alkyl ethers.
  • examples thereof include sulfates such as sulfates and polyoxyethylene alkylphenyl ether sulfates; and fluorine-containing surfactants such as perfluoroalkyl compounds.
  • Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
  • examples of the nonionic surfactant include nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adduct, and acetylene alcohol; polyethylene glycol type surfactants. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.001 based on the total mass of the chemical mechanical polishing composition. It is not less than 3% by mass and particularly preferably not less than 0.01% and not more than 1% by mass.
  • the chemical mechanical polishing composition according to this embodiment may contain an inorganic acid and a salt thereof.
  • an inorganic acid and a salt thereof By containing an inorganic acid and a salt thereof, the polishing rate for a metal such as ruthenium may be further improved.
  • the inorganic acid for example, at least one selected from hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid is preferable.
  • a salt of an inorganic acid the salt of the above-mentioned inorganic acid may be sufficient, and the base added separately in the chemical mechanical polishing composition and the above-mentioned inorganic acid may form a salt.
  • Such bases include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide; organic alkali compounds such as tetramethylammonium hydroxide (TMAH) and choline, and ammonia. Is mentioned.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide
  • organic alkali compounds such as tetramethylammonium hydroxide (TMAH) and choline, and ammonia. Is mentioned.
  • the content of the inorganic acid and the salt is preferably 3 to 8% by mass, more preferably 3 to 6% by mass with respect to the total mass of the chemical mechanical polishing composition. %.
  • the chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer.
  • a water-soluble polymer By containing a water-soluble polymer, it may be adsorbed on the surface of a semiconductor substrate (particularly a ruthenium film-containing substrate) to reduce polishing friction.
  • water-soluble polymers include polyacrylic acid, polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyethyleneimine, polyvinyl methyl ether, polyallylamine, and hydroxyethyl cellulose.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 or more and 1,500,000 or less, more preferably 10,000 or more and 500,000 or less, and particularly preferably 30,000 or more and 100 or less. , 000 or less. If the weight average molecular weight of the water-soluble polymer is within the above range, the water-soluble polymer is easily adsorbed to the semiconductor substrate (particularly the ruthenium film-containing substrate), and the polishing friction is further reduced. As a result, generation of polishing flaws on the surface to be polished can be more effectively reduced.
  • “weight average molecular weight (Mw)” refers to a weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably 0.001% by mass or more based on the total mass of the chemical mechanical polishing composition from the viewpoint of effectively obtaining the effect of reducing the occurrence of polishing scratches on the surface to be polished. 0.003% by mass or more is more preferable, and 0.01% by mass or more is particularly preferable.
  • the content of the water-soluble polymer is preferably 1% by mass or less, more preferably 0.5% by mass or less, from the viewpoint of polishing at a sufficient polishing rate while suppressing generation of polishing scratches on the surface to be polished. .1% by mass or less is particularly preferable.
  • the content of the water-soluble polymer depends on the weight average molecular weight (Mw) of the water-soluble polymer, but is preferably adjusted so that the viscosity of the chemical mechanical polishing composition is less than 10 mPa ⁇ s. .
  • Mw weight average molecular weight
  • the viscosity of the chemical mechanical polishing composition is less than 10 mPa ⁇ s, it is easy to polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed, and the viscosity is appropriate.
  • a composition can be provided.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 7 to 13, and more preferably 8 to 12.5.
  • the absolute value of the zeta potential of the (A) titanium oxide-containing particles in the chemical mechanical polishing composition is increased and the dispersibility is improved, so that the semiconductor substrate (particularly the ruthenium film-containing substrate) High-speed polishing can be performed while reducing polishing scratches.
  • the absolute value of the zeta potential is particularly increased and the dispersibility is improved.
  • pH is 13 or less, the handleability at the time of production will improve.
  • the pH of the chemical mechanical polishing composition according to this embodiment can be adjusted by adding, for example, potassium hydroxide, ethylenediamine, TMAH (tetramethylammonium hydroxide), ammonia, or the like. The above can be used.
  • pH refers to a hydrogen ion index
  • the value can be measured using a commercially available pH meter (for example, a desktop pH meter manufactured by Horiba, Ltd.).
  • the chemical mechanical polishing composition according to this embodiment can suppress the generation of ruthenium tetroxide, which is highly toxic to the human body, and can polish a ruthenium film-containing substrate at high speed in CMP of a ruthenium film-containing substrate as described above. In addition, polishing scratches on the surface to be polished can be reduced. Therefore, the chemical mechanical polishing composition according to this embodiment is suitable as a polishing material for chemically mechanically polishing a ruthenium film-containing substrate in a semiconductor substrate in which a ruthenium film, which is a next-generation semiconductor material, is applied to a base of a copper film. It is.
  • the chemical mechanical polishing composition according to this embodiment can be prepared by dissolving or dispersing the above-described components in a liquid medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of the components described above are not particularly limited.
  • the chemical mechanical polishing composition according to this embodiment can be prepared as a concentrated type stock solution and diluted with a liquid medium such as water when used.
  • polishing method includes a step of polishing a semiconductor substrate using the chemical mechanical polishing composition described above.
  • the chemical mechanical polishing composition described above suppresses the generation of ruthenium tetroxide, which is highly toxic to the human body, and can polish the ruthenium film at high speed when chemically rubbing the ruthenium film-containing substrate. It is possible to reduce polishing scratches. Therefore, the polishing method according to the present embodiment is suitable for polishing a semiconductor substrate in which a ruthenium film, which is a next-generation semiconductor material, is applied to a base of a copper film.
  • a specific example of the polishing method according to the present embodiment will be described in detail with reference to the drawings.
  • FIG. 2 is a cross-sectional view schematically showing a target object suitable for use in the polishing method according to this embodiment.
  • the target object 100 is formed through the following steps (1) to (4).
  • a base 10 is prepared.
  • the substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, a functional device such as a transistor (not shown) may be formed on the base 10. Next, a silicon oxide film 12 that is an insulating film is formed on the substrate 10 by using a thermal oxidation method.
  • the silicon oxide film 12 is patterned. Using the obtained pattern as a mask, wiring trenches 14 are formed in the silicon oxide film 12 by photolithography.
  • a ruthenium film 16 is formed on the surface of the silicon oxide film 12 and the inner wall surface of the wiring groove 14.
  • the ruthenium film 16 can be formed, for example, by chemical vapor deposition (CVD) using a ruthenium precursor, atomic layer deposition (ALD), or physical vapor deposition (PVD) such as sputtering.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • PVD physical vapor deposition
  • a 10,000 to 15,000 mm copper film 18 is deposited by chemical vapor deposition or electroplating.
  • a material of the copper film not only high-purity copper but also an alloy containing copper can be used.
  • the copper content in the alloy containing copper is preferably 95% by mass or more.
  • FIG. 3 is a cross-sectional view schematically showing the workpiece 100 at the end of the first polishing step.
  • the first polishing step is a step of polishing the copper film 18 until the ruthenium film 16 is exposed using the chemical mechanical polishing composition for the copper film.
  • FIG. 4 is a cross-sectional view schematically showing the workpiece 100 at the end of the second polishing step.
  • the second polishing step is a step of polishing the ruthenium film 16 and the copper film 18 until the silicon oxide film 12 is exposed using the chemical mechanical polishing composition described above.
  • the chemical mechanical polishing composition described above since the chemical mechanical polishing composition described above is used, the generation of ruthenium tetroxide, which is highly toxic to the human body, is suppressed, the ruthenium film can be polished at a high speed, and polishing scratches on the surface to be polished can be removed. Can be reduced.
  • FIG. 5 is a perspective view schematically showing the polishing apparatus 200.
  • the slurry (chemical mechanical polishing composition) 44 is supplied from the slurry supply nozzle 42, and the semiconductor substrate is rotated while the turntable 48 to which the polishing cloth 46 is attached is rotated. This is done by bringing the carrier head 52 holding 50 into contact.
  • FIG. 5 also shows the water supply nozzle 54 and the dresser 56.
  • the polishing load of the carrier head 52 can be selected within a range of 0.7 to 70 psi, and preferably 1.5 to 35 psi. Further, the rotation speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm.
  • the flow rate of the slurry (chemical mechanical polishing composition) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and preferably 50 to 400 mL / min.
  • polishing apparatuses examples include: “EPO-112”, “EPO-222” manufactured by Ebara Manufacturing Co., Ltd .; “LGP-510”, “LGP-552” manufactured by Lappmaster SFT, “Applied Materials” Model “Mirra”, “Reflexion”; G & P manufactured by TECHNOLOGY, model “POLI-400L”; manufactured by AMAT, model “Reflexion LK”, and the like.
  • the slurry was heated to 50 ° C., and 12.5 kg of 35% hydrochloric acid was added at this temperature over 4 minutes with stirring.
  • the hydrochloric acid concentration in the slurry after addition of hydrochloric acid was 40 g / L in terms of 100% HCl. It was made to become.
  • the hydrochloric acid addition rate was 0.11 kg / min per 1 kg of TiO 2 .
  • ⁇ Preparation of aluminum / titanium oxide-containing particles B, C, G to I> The powder obtained by mixing the titanium oxide particles A and aluminum hydroxide obtained above was baked in the range of 100 to 1000 ° C., and then washed with a 1% aqueous sodium hydroxide solution. Subsequently, it was washed with water, dried and pulverized to obtain aluminum / titanium oxide-containing particles. At this time, the mixing ratio of the titanium oxide particles A and aluminum hydroxide is appropriately adjusted, and the firing temperature is appropriately changed within the range of 100 to 1000 ° C., whereby the aluminum / titanium oxide-containing particles B shown in Tables 1 and 2 are used. , C, G to I were obtained respectively.
  • TiO 2 ⁇ Preparation of titanium oxide particles D>
  • the titanyl sulfate solution was hydrolyzed by a conventional method, and 40 kg of a 48% aqueous sodium hydroxide solution was added to 35 kg of hydrous titanium dioxide cake (titanium dioxide hydrate) (10 kg in terms of TiO 2 ) that had been filtered and washed.
  • the mixture was heated and stirred at a temperature range of 95 to 105 ° C. for 2 hours.
  • the slurry was then filtered and washed thoroughly to obtain a base-treated titanium dioxide hydrate. Water was added to the hydrate cake to make a slurry, and the hydrated TiO 2 concentration was adjusted to 110 g / L. While stirring the slurry, 35% hydrochloric acid was added to adjust the pH to 7.0.
  • the slurry was heated to 50 ° C., and 9.1 kg of 35% hydrochloric acid was added at this temperature over 4 minutes with stirring.
  • the hydrochloric acid concentration in the slurry after addition of hydrochloric acid was 30 g / L in terms of 100% HCl. It was made to become.
  • the hydrochloric acid addition rate is 0.08 kg / min per 1 kg of TiO 2 .
  • the aluminum / titanium oxide-containing particles E and F shown in Table 3 were respectively adjusted by appropriately adjusting the mixing ratio of the titanium oxide particles and aluminum hydroxide and appropriately changing the firing temperature within the range of 100 to 1000 ° C. Obtained.
  • ⁇ Silica particles> To a mixed solution of 787.9 g of pure water, 786.0 g of 26% ammonia water, and 12924 g of methanol, a mixed solution of 1522.2 g of tetramethoxysilane and 413.0 g of methanol was dropped over 55 minutes while maintaining the liquid temperature at 35 ° C. Thus, a silica sol using water and methanol as liquid media was obtained. This silica sol was heated and concentrated to 5000 mL under normal pressure to obtain silica particles.
  • ⁇ Alumina particles> As the alumina particles, Advanced Alumina Series AA-04 manufactured by Sumitomo Chemical Co., Ltd. was used.
  • Polishing device G & P TECHNOLOGY, model “POLI-400L” ⁇ Polishing pad: Fuji Spinning Co., Ltd., “Multi-rigid polyurethane pad; H800-type1 (3-1S) 775” ⁇
  • Chemical mechanical polishing composition supply rate 100 mL / min ⁇
  • Surface plate rotation speed: 100 rpm -Head rotation speed: 90 rpm -Head pressing pressure: 2 psi Polishing rate ( ⁇ / min) (film thickness before polishing ⁇ film thickness after polishing) / polishing time
  • the evaluation criteria for the polishing rate are as follows. Tables 1 to 3 show the ruthenium film polishing rate and its evaluation results. (Evaluation criteria) -When the polishing rate is 300 ⁇ / min or more, the polishing rate is high, so in actual semiconductor polishing, the speed balance with the polishing of the other material film can be easily secured, and it is determined to be good because it is practical. It was written. When the polishing rate was less than 300 ⁇ / min, the polishing rate was low, so that it was difficult to put into practical use and was judged as defective, and indicated as “B”.
  • the total number of defects of 90 nm or more was counted using the defect inspection apparatus (the model "Surfscan SP1" by KLA-Tencor Corporation).
  • the evaluation criteria are as follows.
  • the total number of defects per wafer and the evaluation results are also shown in Tables 1 to 3. (Evaluation criteria)
  • the case where the total number of defects per wafer was less than 500 was judged good, and “A” was indicated in the table.
  • Evaluation results Tables 1 to 3 show the compositions of the chemical mechanical polishing compositions of the examples and the comparative examples and the evaluation results.
  • Examples 1 to 19 by using a chemical mechanical polishing composition containing titanium oxide-containing particles and an organic acid having a half-value width of less than 1 ° in the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum, It was found that the ruthenium film can be polished at a high speed and polishing scratches on the surface to be polished can be reduced.
  • Comparative Example 1 is an example in which a chemical mechanical polishing composition containing titanium oxide particles A having a half-width of less than 1 ° at the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum and containing no organic acid is used. It is. In this case, since the organic acid was not contained, the ruthenium film could not be polished at a high speed, and in the defect evaluation, many defects were recognized on the surface of the surface to be polished.
  • Comparative Example 2 is an example using a chemical mechanical polishing composition containing silica particles and an organic acid (stearic acid).
  • the ruthenium film could not be polished at high speed because the mechanical polishing force of the silica particles was too low.
  • Comparative Example 3 is an example in which a chemical mechanical polishing composition containing alumina particles and an organic acid (stearic acid) having a half-value width of less than 1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern is used. is there.
  • a chemical mechanical polishing composition containing alumina particles and an organic acid (stearic acid) having a half-value width of less than 1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern is used. is there.
  • the mechanical polishing power of the alumina particles is too low, the ruthenium film cannot be polished at a high speed, and in the defect evaluation, a large number of defects were found on the surface of the surface to be polished.
  • Comparative Example 4 is a chemical mechanical polishing composition containing aluminum / titanium oxide-containing particles E having a half-value width of 2.1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern and an organic acid (stearic acid). It is an example using a thing. In this case, since the hardness of the aluminum / titanium oxide-containing particles E was low and the mechanical polishing power was too low, the ruthenium film could not be polished at high speed.
  • Comparative Example 5 is a chemical mechanical polishing composition containing aluminum / titanium oxide-containing particles F having a half-value width of 1.4 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern and an organic acid (stearic acid). It is an example using a thing. In this case, since the hardness of the aluminum / titanium oxide-containing particles F was slightly lowered, the ruthenium film could not be polished at high speed, and in the defect evaluation, many defects were recognized on the surface of the surface to be polished. .
  • Comparative Example 6 and Comparative Example 7 are examples in which the titanium oxide particles A having a half-value width of less than 1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern, and nitric acid and sulfuric acid were used in place of the organic acid, respectively. It is. In this case, a number of defects were observed on the surface of the surface to be polished due to the etching action of nitric acid or sulfuric acid.
  • the chemical mechanical polishing composition according to the present invention can polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed and reduce polishing scratches on the surface to be polished.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • SYMBOLS 1 Titanium oxide containing particle, 10 ... Base

Abstract

Provided are: a chemical mechanical polishing composition which can polish a semiconductor substrate (particularly, a ruthenium film-containing substrate) at high speed and reduce polishing scratches on a surface to be polished while suppressing the generation of ruthenium tetraoxide which is highly toxic to the human body; and a polishing method by using said composition. This chemical mechanical polishing composition contains titanium oxide-containing particles (A) and an organic acid (B), wherein the titanium oxide-containing particles (A) have a full width at half maximum of a peak portion, at which the diffraction intensity in a powder X-ray diffraction pattern is maximum, of less than 1°.

Description

化学機械研磨用組成物及び研磨方法Chemical mechanical polishing composition and polishing method
 本発明は、化学機械研磨用組成物及びそれを用いた研磨方法に関する。 The present invention relates to a chemical mechanical polishing composition and a polishing method using the same.
 半導体集積回路の製造技術の向上に伴い、半導体素子の高集積化、高速動作が求められている。これに伴い、半導体素子における微細回路の製造工程において要求される半導体基板表面の平坦性はより厳しくなってきており、化学機械研磨(Chemical Mechanical Polishing:CMP)が半導体素子の製造工程に不可欠な技術となっている。 With the improvement of semiconductor integrated circuit manufacturing technology, high integration and high speed operation of semiconductor elements are required. As a result, the flatness of the semiconductor substrate surface required in the manufacturing process of fine circuits in semiconductor elements has become more severe, and chemical mechanical polishing (CMP) is a technology indispensable for the manufacturing process of semiconductor elements. It has become.
 CMPは、砥粒や試薬を含む研磨組成物を研磨パッド上に供給しながら、定盤上に貼り付けた研磨パッドに半導体基板を押し当てて、半導体基板と研磨パッドとを相互に摺動させて、半導体基板を化学的かつ機械的に研磨する技術である。CMPでは、試薬による化学的な反応と砥粒による機械的な研磨により半導体基板表面の凹凸を削り、その表面を平坦化することができる。 In CMP, while supplying a polishing composition containing abrasive grains and reagents onto a polishing pad, the semiconductor substrate is pressed against the polishing pad affixed on the surface plate, and the semiconductor substrate and the polishing pad are slid against each other. This is a technique for chemically and mechanically polishing a semiconductor substrate. In CMP, unevenness on the surface of a semiconductor substrate can be removed by chemical reaction with a reagent and mechanical polishing with abrasive grains, and the surface can be flattened.
 微細化の進む半導体市場では現在、回路線幅10nm台の先端ノードの半導体基板が主流となってきている。そして、回路線幅10nm台以降の微細配線を実現するために、低抵抗で銅との相性が良いルテニウム膜を銅膜の下地に施すことにより、銅膜の埋め込み性を改善する技術が検討されている。 In the semiconductor market where miniaturization is progressing, a semiconductor substrate with a tip node having a circuit line width of 10 nm is becoming mainstream. In order to realize fine wiring with a circuit line width on the order of 10 nm or more, a technique for improving the embedding property of the copper film by applying a ruthenium film having a low resistance and good compatibility with copper to the base of the copper film has been studied. ing.
 このような背景のもとで、次世代半導体材料であるルテニウム膜をCMPにより平坦化するためのルテニウム膜研磨用組成物(スラリー)が検討されている(例えば、特許文献1~2参照)。このようなルテニウム膜研磨用組成物としては、ルテニウム膜の研磨速度を向上させるために、アルミナや酸化チタン等の砥粒及び酸化剤を併用したスラリーが検討されている。 Under such a background, a ruthenium film polishing composition (slurry) for planarizing a ruthenium film, which is a next-generation semiconductor material, by CMP has been studied (see, for example, Patent Documents 1 and 2). As such a ruthenium film polishing composition, in order to improve the ruthenium film polishing rate, a slurry in which abrasive grains such as alumina and titanium oxide and an oxidizing agent are used in combination has been studied.
特表2009-514219号公報Special table 2009-514219 特表2010-535424号公報Special table 2010-535424
 しかしながら、CMPにおいてルテニウム膜の研磨速度を向上させるためには、高酸化力の酸化剤及び/又は高硬度の砥粒を含有するルテニウム膜研磨用組成物を用いる必要があった。ところが、高酸化力の酸化剤を含有するルテニウム膜研磨用組成物を用いたCMPでは、人体への毒性が強い四酸化ルテニウムが発生しやすく、生産プロセスに支障をきたすという課題があった。また、高硬度の砥粒を含有するルテニウム膜研磨用組成物を用いたCMPでは、研磨後の被研磨面に研磨傷が生じやすいという課題があった。 However, in order to improve the polishing rate of the ruthenium film in CMP, it is necessary to use a ruthenium film polishing composition containing an oxidizing agent with high oxidizing power and / or abrasive grains with high hardness. However, in CMP using a ruthenium film polishing composition containing an oxidizing agent having high oxidizing power, there is a problem that ruthenium tetroxide having strong toxicity to the human body is likely to be generated, which hinders the production process. In addition, CMP using a ruthenium film polishing composition containing high-hardness abrasive grains has a problem that polishing scratches are likely to occur on the polished surface after polishing.
 さらに、砥粒として酸化チタン粒子を用いた場合には、その表面が化学的に活性であるため、水、酸素、窒素等と反応しやすく、起泡が発生するなどして生産時のハンドリングが損なわれやすいという課題があった。 In addition, when titanium oxide particles are used as abrasive grains, the surface is chemically active, so it is easy to react with water, oxygen, nitrogen, etc. There was a problem of being easily damaged.
 そこで、本発明に係る幾つかの態様は、人体への毒性が強い四酸化ルテニウムの発生を抑制するとともに、半導体基板(特にルテニウム膜含有基板)を高速研磨でき、かつ、被研磨面の研磨傷を低減できる化学機械研磨用組成物、及びこれを用いた研磨方法を提供することを目的とする。また、本発明に係る幾つかの態様は、前記目的に加えて、さらに起泡の発生が低減された安定性に優れた化学機械研磨用組成物を提供することを目的とする。 Therefore, some embodiments according to the present invention can suppress the generation of ruthenium tetroxide, which is highly toxic to the human body, can polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed, and can polish polishing scratches on the surface to be polished. An object of the present invention is to provide a chemical mechanical polishing composition capable of reducing the amount of polishing and a polishing method using the same. Another object of the present invention is to provide a chemical mechanical polishing composition having excellent stability in which generation of foaming is further reduced, in addition to the above object.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
 [適用例1]
 本発明に係る化学機械研磨用組成物の一態様は、
 (A)酸化チタン含有粒子と、
 (B)有機酸と、
を含有し、
 前記(A)酸化チタン含有粒子が、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満のものである。
[Application Example 1]
One aspect of the chemical mechanical polishing composition according to the present invention is:
(A) titanium oxide-containing particles;
(B) an organic acid;
Containing
The (A) titanium oxide-containing particles have a half width of less than 1 ° at the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum.
 [適用例2]
 上記適用例の化学機械研磨用組成物において、
 前記(A)酸化チタン含有粒子がアルミニウムをさらに含有し、
 前記(A)酸化チタン含有粒子における、チタンのモル数をMTi、アルミニウムのモル数をMAlとしたときに、MTi/MAlの値が6~70であることができる。
[Application Example 2]
In the chemical mechanical polishing composition of the above application example,
The (A) titanium oxide-containing particles further contain aluminum,
Wherein in (A) containing titanium oxide particles, it is possible the number of moles of titanium M Ti, the number of moles of aluminum is taken as M Al, the value of M Ti / M Al is 6-70.
 [適用例3]
 上記適用例の化学機械研磨用組成物において、
 前記(A)酸化チタン含有粒子の長径(Rmax)と短径(Rmin)との比率(Rmax/Rmin)が1.1~4.0であることができる。
[Application Example 3]
In the chemical mechanical polishing composition of the above application example,
The ratio (Rmax / Rmin) between the major axis (Rmax) and the minor axis (Rmin) of the (A) titanium oxide-containing particles may be 1.1 to 4.0.
 [適用例4]
 上記適用例の化学機械研磨用組成物において、
 さらに、化学機械研磨用組成物の全質量に対して、(C)酸化剤を0.001質量%以上5質量%以下含有することができる。
[Application Example 4]
In the chemical mechanical polishing composition of the above application example,
Furthermore, 0.001 mass% or more and 5 mass% or less of (C) oxidizing agents can be contained with respect to the total mass of the chemical mechanical polishing composition.
 [適用例5]
 上記適用例の化学機械研磨用組成物において、
 前記(C)酸化剤が、過ヨウ素酸カリウム、次亜塩素酸カリウムおよび過酸化水素から選択される少なくとも1種であることができる。
[Application Example 5]
In the chemical mechanical polishing composition of the above application example,
The (C) oxidizing agent may be at least one selected from potassium periodate, potassium hypochlorite, and hydrogen peroxide.
 [適用例6]
 上記適用例の化学機械研磨用組成物において、
 化学機械研磨用組成物の全質量に対して、前記(A)酸化チタン含有粒子の含有量が0.1質量%以上10質量%以下であることができる。
[Application Example 6]
In the chemical mechanical polishing composition of the above application example,
The content of the (A) titanium oxide-containing particles can be 0.1% by mass or more and 10% by mass or less with respect to the total mass of the chemical mechanical polishing composition.
 [適用例7]
 上記適用例の化学機械研磨用組成物において、
 pHが7以上13以下であることができる。
[Application Example 7]
In the chemical mechanical polishing composition of the above application example,
The pH can be 7 or more and 13 or less.
 [適用例8]
 上記適用例の化学機械研磨用組成物は、
 ルテニウム膜を含む半導体基板を研磨するために用いられることができる。
[Application Example 8]
The chemical mechanical polishing composition of the above application example is
It can be used to polish a semiconductor substrate containing a ruthenium film.
 [適用例9]
 本発明に係る研磨方法の一態様は、
 上記適用例の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。
[Application Example 9]
One aspect of the polishing method according to the present invention is:
A step of polishing a semiconductor substrate using the chemical mechanical polishing composition of the above application example.
 [適用例10]
 上記適用例の研磨方法において、
 前記半導体基板がルテニウム膜を含むことができる。
[Application Example 10]
In the polishing method of the above application example,
The semiconductor substrate may include a ruthenium film.
 本発明に係る化学機械研磨用組成物の一態様によれば、人体への毒性が強い四酸化ルテニウムの発生を抑制するとともに、半導体基板、特にルテニウム膜含有基板を高速研磨でき、かつ、被研磨面の研磨傷を低減することができる。また、本発明に係る化学機械研磨用組成物の一態様によれば、前記の効果に加えて、さらに起泡の発生が低減された安定性に優れたものとすることができる。また、本発明に係る研磨方法の一態様によれば、上記化学機械研磨用組成物を用いることで、半導体基板、特にルテニウム膜含有基板を高速研磨し、平坦かつ高スループットで研磨することができる。 According to one aspect of the chemical mechanical polishing composition of the present invention, the generation of ruthenium tetroxide, which is highly toxic to the human body, can be suppressed, and a semiconductor substrate, particularly a ruthenium film-containing substrate can be polished at high speed, and the object to be polished Surface scratches can be reduced. Moreover, according to one aspect of the chemical mechanical polishing composition according to the present invention, in addition to the above effects, it is possible to achieve excellent stability in which generation of foaming is further reduced. Further, according to one aspect of the polishing method of the present invention, by using the chemical mechanical polishing composition, a semiconductor substrate, particularly a ruthenium film-containing substrate can be polished at a high speed, and can be polished flat and with high throughput. .
図1は、(A)酸化チタン含有粒子の長径(Rmax)及び短径(Rmin)を模式的に示した概念図である。FIG. 1 is a conceptual diagram schematically showing the major axis (Rmax) and minor axis (Rmin) of (A) titanium oxide-containing particles. 図2は、本実施形態に係る研磨方法の使用に適した被処理体を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing an object to be processed suitable for use in the polishing method according to this embodiment. 図3は、第1研磨工程終了時での被処理体を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing process. 図4は、第2研磨工程終了時での被処理体を模式的に示した断面図である。FIG. 4 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing process. 図5は、化学機械研磨装置を模式的に示した斜視図である。FIG. 5 is a perspective view schematically showing a chemical mechanical polishing apparatus.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。 Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, Various modifications implemented in the range which does not change the summary of this invention are also included.
 本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。 In this specification, a numerical range described using “to” means that numerical values described before and after “to” are included as a lower limit value and an upper limit value.
 1.化学機械研磨用組成物
 本実施形態に係る化学機械研磨用組成物は、(A)酸化チタン含有粒子と、(B)有機酸とを含有し、前記(A)酸化チタン含有粒子が、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満のものである。以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。
1. Chemical mechanical polishing composition The chemical mechanical polishing composition according to this embodiment contains (A) titanium oxide-containing particles and (B) an organic acid, and the (A) titanium oxide-containing particles are powder X. The full width at half maximum of the peak portion where the diffraction intensity in the line diffraction pattern is maximum is less than 1 °. Hereinafter, each component contained in the chemical mechanical polishing composition according to this embodiment will be described in detail.
 1.1.(A)酸化チタン含有粒子
 本実施形態に係る化学機械研磨用組成物は、(A)酸化チタン含有粒子を含む。本発明における「(A)酸化チタン含有粒子」は、酸化チタンのみから形成される粒子であってもよいし、酸化チタン以外の他の化合物を含有する粒子であってもよい。(A)酸化チタン含有粒子に含まれる酸化チタンは、ルチル型、アナターゼ型、無定形及びそれらの混合物のいずれも使用することができる。
1.1. (A) Titanium oxide-containing particles The chemical mechanical polishing composition according to this embodiment includes (A) titanium oxide-containing particles. “(A) Titanium oxide-containing particles” in the present invention may be particles formed only from titanium oxide, or may be particles containing other compounds than titanium oxide. (A) As for the titanium oxide contained in the titanium oxide-containing particles, any of rutile type, anatase type, amorphous, and a mixture thereof can be used.
 (A)酸化チタン含有粒子は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅の上限値が1°未満であり、0.7°未満であることが好ましい。当該半値幅の下限値は、0.2°以上であることが好ましい。回折強度が最大となるピーク部分の半値幅が前記範囲であると、(A)酸化チタン含有粒子の結晶子が均質となり研磨に最適な硬度となる。その結果、ルテニウム膜含有基板を高速研磨でき、かつ、被研磨面の研磨傷を低減することができる。 (A) In the titanium oxide-containing particles, the upper limit of the full width at half maximum of the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum is less than 1 °, and preferably less than 0.7 °. The lower limit value of the half width is preferably 0.2 ° or more. When the full width at half maximum of the peak portion where the diffraction intensity is maximum is in the above range, the crystallites of the (A) titanium oxide-containing particles are uniform, and the hardness is optimum for polishing. As a result, the ruthenium film-containing substrate can be polished at high speed, and polishing scratches on the surface to be polished can be reduced.
 なお、粉末X線回折パターンとは、粉体X線回折による試料測定を行った際の、入射角を横軸、回折強度を縦軸とする2次元グラフにおける、各入射角で測定される回折強度のプロット線のことを指す。 The powder X-ray diffraction pattern is a diffraction measured at each incident angle in a two-dimensional graph with the incident angle as the horizontal axis and the diffraction intensity as the vertical axis when performing sample measurement by powder X-ray diffraction. Refers to the intensity plot line.
 本実施形態における(A)酸化チタン含有粒子は、(A)酸化チタン含有粒子の長径をRmaxと短径をRminとしたときに、長径と短径との比率(Rmax/Rmin)が1.1~4.0であることが好ましく、1.5~3.8であることがより好ましく、2.0~3.5であることが特に好ましい。長径と短径との比率(Rmax/Rmin)が1.1以上であれば、ルテニウム膜含有基板を高速研磨でき、長径と短径との比率(Rmax/Rmin)が4.0以下であれば、(A)酸化チタン含有粒子の端部での引っ掛かりが抑制できるので、ルテニウム膜含有基板の被研磨面の研磨傷を低減することができる。 The (A) titanium oxide-containing particles in this embodiment have a ratio (Rmax / Rmin) of the major axis to the minor axis of 1.1 when the major axis of the (A) titanium oxide-containing particle is Rmax and the minor axis is Rmin. Is preferably 4.0 to 4.0, more preferably 1.5 to 3.8, and particularly preferably 2.0 to 3.5. If the ratio of the major axis to the minor axis (Rmax / Rmin) is 1.1 or more, the ruthenium film-containing substrate can be polished at high speed, and if the ratio of the major axis to the minor axis (Rmax / Rmin) is 4.0 or less. (A) Since the catch at the end of the titanium oxide-containing particles can be suppressed, polishing scratches on the polished surface of the ruthenium film-containing substrate can be reduced.
 (A)酸化チタン含有粒子の長径と短径との比率(Rmax/Rmin)は、製造上の加熱処理条件、酸添加条件、粉砕条件等を適宜制御することにより調整することができる。 (A) The ratio of the major axis to the minor axis (Rmax / Rmin) of the titanium oxide-containing particles can be adjusted by appropriately controlling the heat treatment conditions, acid addition conditions, pulverization conditions, and the like in production.
 (A)酸化チタン含有粒子の長径(Rmax)及び短径(Rmin)は、以下のようにして測定することができる。例えば、図1に示すように透過型電子顕微鏡により撮影された一つの独立した酸化チタン含有粒子1の像が楕円形状である場合、楕円形状の長軸aを酸化チタン含有粒子1の長径(Rmax)と判別し、楕円形状の短軸bを酸化チタン含有粒子1の短径(Rmin)と判別する。このような判別手法により、例えば50個の酸化チタン含有粒子の長径(Rmax)及び短径(Rmin)を測定し、長径(Rmax)及び短径(Rmin)の平均値を算出した後、長径と短径との比率(Rmax/Rmin)を計算して求めることができる。 (A) The major axis (Rmax) and minor axis (Rmin) of the titanium oxide-containing particles can be measured as follows. For example, when the image of one independent titanium oxide-containing particle 1 photographed by a transmission electron microscope is elliptical as shown in FIG. 1, the major axis a of the elliptical shape is defined as the major axis (Rmax of the titanium oxide-containing particle 1). ) And the short axis b of the elliptical shape is determined as the short diameter (Rmin) of the titanium oxide-containing particle 1. By such a discriminating method, for example, the major axis (Rmax) and minor axis (Rmin) of 50 titanium oxide-containing particles are measured, and after calculating the average value of major axis (Rmax) and minor axis (Rmin), the major axis and The ratio to the minor axis (Rmax / Rmin) can be calculated and obtained.
 (A)酸化チタン含有粒子が酸化チタン以外の化合物を含有する場合、酸化チタン以外の化合物としては、例えば、水酸化アルミニウム、酸化アルミニウム(アルミナ)、塩化アルミニウム、窒化アルミニウム、酢酸アルミニウム、リン酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム、アルミン酸カリウム等のアルミニウム化合物が挙げられる。本明細書において、アルミニウム化合物を含有する(A)酸化チタン含有粒子を「アルミニウム/酸化チタン含有粒子」ともいう。 (A) When the titanium oxide-containing particles contain a compound other than titanium oxide, examples of the compound other than titanium oxide include aluminum hydroxide, aluminum oxide (alumina), aluminum chloride, aluminum nitride, aluminum acetate, and aluminum phosphate. And aluminum compounds such as aluminum sulfate, sodium aluminate, and potassium aluminate. In this specification, the (A) titanium oxide-containing particles containing an aluminum compound are also referred to as “aluminum / titanium oxide-containing particles”.
 (A)酸化チタン含有粒子がアルミニウム/酸化チタン含有粒子である場合、アルミニウム/酸化チタン含有粒子における、チタンのモル数をMTi、アルミニウムのモル数をMAlとしたときに、MTi/MAlの値が6~70であることが好ましく、10~65であることがより好ましく、20~60であることが特に好ましい。MTi/MAlの値が6以上であれば、研磨するのに十分な硬度が得られるために、ルテニウム膜含有基板を高速研磨することができ、酸化チタン含有粒子が化学的に不活性となる結果、起泡の発生を抑制することができる。MTi/MAlの値が70以下であれば、アルミニウム/酸化チタン含有粒子の凝集を抑制できるので、被研磨面の研磨傷を低減することができる。 (A) In the case where the titanium oxide-containing particles are aluminum / titanium oxide-containing particles, when the number of moles of titanium in the aluminum / titanium oxide-containing particles is M Ti and the number of moles of aluminum is M Al , M Ti / M The value of Al is preferably 6 to 70, more preferably 10 to 65, and particularly preferably 20 to 60. If the value of M Ti / M Al is 6 or more, sufficient hardness for polishing can be obtained, so that the ruthenium film-containing substrate can be polished at high speed, and the titanium oxide-containing particles are chemically inert. As a result, the generation of foaming can be suppressed. When the value of M Ti / M Al is 70 or less, aggregation of the aluminum / titanium oxide-containing particles can be suppressed, so that polishing scratches on the surface to be polished can be reduced.
 なお、MTi/MAlの値は、アルミニウム/酸化チタン含有粒子を希フッ化水素酸で溶解させ、ICP-MS(誘導結合プラズマ質量分析計:例えばパーキンエルマー製、型番「ELAN DRC PLUS」)にて、アルミニウム/酸化チタン含有粒子中のチタン及びアルミニウムの含有量を測定し、その測定値から算出して求めることができる。 The value of M Ti / M Al is obtained by dissolving aluminum / titanium oxide-containing particles with dilute hydrofluoric acid and using ICP-MS (inductively coupled plasma mass spectrometer: manufactured by PerkinElmer, model number “ELAN DRC PLUS”). The content of titanium and aluminum in the aluminum / titanium oxide-containing particles can be measured and calculated from the measured values.
 アルミニウム/酸化チタン含有粒子は、pH7以上13以下の化学機械研磨用組成物中において容易に分散し、その安定性にも優れている。その理由としては、pH7以上13以下の化学機械研磨用組成物中において、アルミニウム/酸化チタン含有粒子のゼータ電位が大きくなるので、粒子同士の静電反発力によって分散性が向上するものと考えられる。 The aluminum / titanium oxide-containing particles are easily dispersed in a chemical mechanical polishing composition having a pH of 7 or more and 13 or less, and are excellent in stability. The reason is that, in the chemical mechanical polishing composition having a pH of 7 or more and 13 or less, the zeta potential of the aluminum / titanium oxide-containing particles is increased, and therefore, the dispersibility is considered to be improved by electrostatic repulsion between the particles. .
 このような観点から、pH7以上13以下の化学機械研磨用組成物中におけるアルミニウム/酸化チタン含有粒子のゼータ電位の絶対値は、好ましくは25mV以上であり、より好ましくは30mV以上であり、特に好ましくは35mV以上である。上記のpH領域にある化学機械研磨用組成物中において、アルミニウム/酸化チタン含有粒子のゼータ電位の絶対値が25mV以上であれば、アルミニウム/酸化チタン含有粒子の分散性が向上するとともに、半導体基板(特にルテニウム膜含有基板)の研磨傷を低減しながら高速研磨することができる。 From such a viewpoint, the absolute value of the zeta potential of the aluminum / titanium oxide-containing particles in the chemical mechanical polishing composition having a pH of 7 or more and 13 or less is preferably 25 mV or more, more preferably 30 mV or more, and particularly preferably. Is 35 mV or more. If the absolute value of the zeta potential of the aluminum / titanium oxide-containing particles in the chemical mechanical polishing composition in the pH range is 25 mV or more, the dispersibility of the aluminum / titanium oxide-containing particles is improved, and the semiconductor substrate High-speed polishing can be performed while reducing polishing scratches (particularly a ruthenium film-containing substrate).
 (A)酸化チタン含有粒子の平均粒子径は、好ましくは10nm以上300nm以下であり、より好ましくは20nm以上200nm以下であり、特に好ましくは25nm以上150nm以下である。上記範囲の平均粒子径を有する(A)酸化チタン含有粒子であれば、十分な研磨速度が得られると共に、粒子の沈降・分離を生ずることのない安定性に優れた化学機械研磨用組成物が得られるため、良好なパフォーマンスを達成できる。なお、(A)酸化チタン含有粒子の平均粒子径は、例えば流動式比表面積自動測定装置(株式会社島津製作所製、「micrometricsFlowSorbII2300」)を用いてBET法による比表面積を測定し、その測定値から算出して求めることができる。 (A) The average particle diameter of the titanium oxide-containing particles is preferably 10 nm or more and 300 nm or less, more preferably 20 nm or more and 200 nm or less, and particularly preferably 25 nm or more and 150 nm or less. If the (A) titanium oxide-containing particles having an average particle size in the above range, a sufficient polishing rate can be obtained, and a chemical mechanical polishing composition excellent in stability without causing sedimentation / separation of particles can be obtained. As a result, good performance can be achieved. The average particle diameter of the (A) titanium oxide-containing particles is determined by measuring the specific surface area by the BET method using, for example, a flow-type specific surface area automatic measuring device (manufactured by Shimadzu Corporation, “micrometricsFlowSorbII2300”). It can be calculated.
 (A)酸化チタン含有粒子の含有量は、半導体基板を高速で研磨する観点から、化学機械研磨用組成物の全質量に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上が特に好ましい。(A)酸化チタン含有粒子の含有量は、被研磨面の研磨傷の発生を低減する観点から、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。 (A) The content of the titanium oxide-containing particles is preferably 0.1% by mass or more, and 0.3% by mass or more with respect to the total mass of the chemical mechanical polishing composition from the viewpoint of polishing the semiconductor substrate at high speed. Is more preferable, and 0.5% by mass or more is particularly preferable. (A) The content of the titanium oxide-containing particles is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less from the viewpoint of reducing the occurrence of polishing scratches on the polished surface.
 1.2.(B)有機酸
 本実施形態に係る化学機械研磨用組成物は、(B)有機酸を含有する。(B)有機酸を含有することにより、ルテニウム膜含有基板をさらに高速で研磨することができる。
1.2. (B) Organic acid The chemical mechanical polishing composition according to this embodiment contains (B) an organic acid. (B) By containing the organic acid, the ruthenium film-containing substrate can be polished at a higher speed.
 (B)有機酸としては、ルテニウム等の金属を含む半導体材料の元素からなるイオンまたは半導体材料等の表面に対し、配位能力を有する有機酸が好ましい。このような有機酸としては、ヒドロキシル基及びカルボキシル基の少なくとも1種を有する有機酸が好ましい。このような有機酸であれば、ルテニウム等の金属を含む半導体材料等の表面に対する配位能力が高まり、研磨速度を向上させることができる。 (B) As the organic acid, an ion composed of an element of a semiconductor material containing a metal such as ruthenium or an organic acid having a coordination ability with respect to the surface of the semiconductor material or the like is preferable. As such an organic acid, an organic acid having at least one of a hydroxyl group and a carboxyl group is preferable. With such an organic acid, the coordination ability with respect to the surface of a semiconductor material containing a metal such as ruthenium is increased, and the polishing rate can be improved.
 (B)有機酸の具体例としては、ステアリン酸、ラウリン酸、オレイン酸、ミリスチン酸、ドデシルベンゼンスルホン酸、アルケニルコハク酸、乳酸、酒石酸、フマル酸、グリコール酸、フタル酸、マレイン酸、ギ酸、酢酸、シュウ酸、クエン酸、リンゴ酸、マロン酸、グルタル酸、コハク酸、安息香酸、キノリン酸、キナルジン酸、アミド硫酸;グリシン、アラニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン、芳香族アミノ酸及び複素環型アミノ酸等のアミノ酸が挙げられる。これらの中でも、四酸化ルテニウムの発生抑制等を考慮すると、ステアリン酸、ラウリン酸、オレイン酸、ミリスチン酸、ドデシルベンゼンスルホン酸、アルケニルコハク酸及びマレイン酸から選択される少なくとも1種であることが好ましい。これらの(B)有機酸は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of (B) organic acids include stearic acid, lauric acid, oleic acid, myristic acid, dodecylbenzenesulfonic acid, alkenyl succinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, Acetic acid, oxalic acid, citric acid, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid; glycine, alanine, aspartic acid, glutamic acid, lysine, arginine, tryptophan, aromatic amino acid And amino acids such as heterocyclic amino acids. Among these, in consideration of suppression of the generation of ruthenium tetroxide, etc., at least one selected from stearic acid, lauric acid, oleic acid, myristic acid, dodecylbenzenesulfonic acid, alkenyl succinic acid and maleic acid is preferable. . These (B) organic acids may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、(B)有機酸は、上記有機酸の塩であってもよく、化学機械研磨用組成物中で別途添加した塩基と反応して上記有機酸の塩となっていてもよい。このような塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等の有機アルカリ化合物、及びアンモニア等が挙げられる。 (B) The organic acid may be a salt of the organic acid, or may react with a base separately added in the chemical mechanical polishing composition to form a salt of the organic acid. Examples of such bases include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, organic alkali compounds such as tetramethylammonium hydroxide (TMAH), choline, and ammonia. Is mentioned.
 (B)有機酸の含有量は、ルテニウム等の金属を含む半導体基板を高速研磨する観点から、化学機械研磨用組成物の全質量に対して、0.001質量%以上が好ましく、0.003質量%以上がより好ましく、0.005質量%以上が特に好ましい。(B)有機酸の含有量は、四酸化ルテニウムが発生することを防ぐ観点から、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。 The content of the organic acid (B) is preferably 0.001% by mass or more with respect to the total mass of the chemical mechanical polishing composition from the viewpoint of high-speed polishing of a semiconductor substrate containing a metal such as ruthenium. More preferably, it is more preferably at least 0.005% by mass. (B) From the viewpoint of preventing the generation of ruthenium tetroxide, the content of the organic acid is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
 1.3.(C)酸化剤
 本実施形態に係る化学機械研磨用組成物は、CMP工程中にルテニウム膜が酸化されて四酸化ルテニウムを生成しない範囲内で、(C)酸化剤を含有してもよい。(C)酸化剤を含有することにより、ルテニウム等の金属を酸化して研磨液成分との錯化反応を促すことにより、被研磨面に脆弱な改質層を作り出すことができるため、研磨しやすくする効果がある。
1.3. (C) Oxidizing agent The chemical mechanical polishing composition according to this embodiment may contain (C) an oxidizing agent within a range in which the ruthenium film is not oxidized during the CMP process to produce ruthenium tetroxide. (C) By containing an oxidizing agent, it is possible to create a fragile modified layer on the surface to be polished by oxidizing a metal such as ruthenium and promoting a complexing reaction with a polishing liquid component. Has the effect of facilitating.
 (C)酸化剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、硝酸二アンモニウムセリウム、次亜塩素酸カリウム、オゾン、過ヨウ素酸カリウム、過酢酸等が挙げられる。これらの酸化剤のうち、四酸化ルテニウムの発生を抑制する観点から、過ヨウ素酸カリウム、次亜塩素酸カリウムおよび過酸化水素から選択される少なくとも1種が好ましく、過酸化水素がより好ましい。これらの(C)酸化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 (C) Examples of the oxidizing agent include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, diammonium cerium nitrate, potassium hypochlorite, ozone, potassium periodate, and peracetic acid. . Among these oxidants, at least one selected from potassium periodate, potassium hypochlorite and hydrogen peroxide is preferable, and hydrogen peroxide is more preferable from the viewpoint of suppressing the generation of ruthenium tetroxide. These (C) oxidizing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
 (C)酸化剤を含有する場合、(C)酸化剤の含有量は、ルテニウム等の金属の酸化が不十分となり研磨速度が低下することを防ぐ観点から、化学機械研磨用組成物の全質量に対して、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上が特に好ましい。(C)酸化剤の含有量は、ルテニウムの過度の酸化により四酸化ルテニウムが発生することを防ぐ観点から、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。 In the case of containing (C) an oxidizing agent, the content of the (C) oxidizing agent is the total mass of the chemical mechanical polishing composition from the viewpoint of preventing the oxidation of a metal such as ruthenium from becoming insufficient and reducing the polishing rate. Is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and particularly preferably 0.01% by mass or more. (C) The content of the oxidizing agent is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less from the viewpoint of preventing ruthenium tetroxide from being generated due to excessive oxidation of ruthenium. .
 1.4.その他の添加剤
 本実施形態に係る化学機械研磨用組成物は、主要な液状媒体である水の他、必要に応じて、含窒素複素環化合物、界面活性剤、無機酸及びその塩、水溶性高分子等を含有してもよい。
1.4. Other Additives The chemical mechanical polishing composition according to the present embodiment includes, in addition to water, which is a main liquid medium, a nitrogen-containing heterocyclic compound, a surfactant, an inorganic acid and a salt thereof, and water-soluble as necessary. It may contain a polymer or the like.
<水>
 本実施形態に係る化学機械研磨用組成物は、水を主要な液状媒体として含有する。水としては、特に制限されるものではないが、純水が好ましい。水は、上述した化学機械研磨用組成物の構成材料の残部として配合されていればよく、水の含有量については特に制限はない。
<Water>
The chemical mechanical polishing composition according to this embodiment contains water as a main liquid medium. The water is not particularly limited, but pure water is preferable. Water should just be mix | blended as the remainder of the constituent material of the composition for chemical mechanical polishing mentioned above, and there is no restriction | limiting in particular about content of water.
<含窒素複素環化合物>
 本実施形態に係る化学機械研磨用組成物は、含窒素複素環化合物を含有してもよい。含窒素複素環化合物を含有することにより、ルテニウム等の金属の過剰なエッチングを抑制し、かつ、腐食等の研磨後の表面荒れを防ぐことができる。
<Nitrogen-containing heterocyclic compound>
The chemical mechanical polishing composition according to this embodiment may contain a nitrogen-containing heterocyclic compound. By containing a nitrogen-containing heterocyclic compound, excessive etching of a metal such as ruthenium can be suppressed, and surface roughness after polishing such as corrosion can be prevented.
 含窒素複素環化合物は、少なくとも1個の窒素原子を有する、複素五員環及び複素六員環から選択される少なくとも1種の複素環を含む有機化合物である。前記複素環としては、ピロール構造、イミダゾール構造、トリアゾール構造等の複素五員環;ピリジン構造、ピリミジン構造、ピリダジン構造、ピラジン構造等の複素六員環が挙げられる。該複素環は縮合環を形成していてもよい。具体的には、インドール構造、イソインドール構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造、キノリン構造、イソキノリン構造、キナゾリン構造、シンノリン構造、フタラジン構造、キノキサリン構造、アクリジン構造等が挙げられる。このような構造を有する複素環化合物のうち、ピリジン構造、キノリン構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造を有する複素環化合物が好ましい。 The nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from a hetero five-membered ring and a hetero six-membered ring having at least one nitrogen atom. Examples of the heterocyclic ring include hetero five-membered rings such as a pyrrole structure, an imidazole structure, and a triazole structure; and hetero six-membered rings such as a pyridine structure, a pyrimidine structure, a pyridazine structure, and a pyrazine structure. The heterocyclic ring may form a condensed ring. Specific examples include indole structure, isoindole structure, benzimidazole structure, benzotriazole structure, quinoline structure, isoquinoline structure, quinazoline structure, cinnoline structure, phthalazine structure, quinoxaline structure, acridine structure and the like. Of the heterocyclic compounds having such a structure, heterocyclic compounds having a pyridine structure, a quinoline structure, a benzimidazole structure, or a benzotriazole structure are preferable.
 含窒素複素環化合物の具体例としては、アジリジン、ピリジン、ピリミジン、ピロリジン、ピペリジン、ピラジン、トリアジン、ピロール、イミダゾール、インドール、キノリン、イソキノリン、ベンゾイソキノリン、プリン、プテリジン、トリアゾール、トリアゾリジン、ベンゾトリアゾール、カルボキシベンゾトリアゾール等が挙げられ、さらに、これらの骨格を有する誘導体が挙げられる。これらの中でも、ベンゾトリアゾール及びトリアゾールから選択される少なくとも1種であることが好ましい。これらの含窒素複素環化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxy Examples thereof include benzotriazole, and further derivatives having these skeletons. Among these, at least one selected from benzotriazole and triazole is preferable. These nitrogen-containing heterocyclic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 含窒素複素環化合物を含有する場合、含窒素複素環化合物の含有量は、化学機械研磨用組成物の全質量に対して、好ましくは0.05~2質量%であり、より好ましくは0.1~1質量%である。 When the nitrogen-containing heterocyclic compound is contained, the content of the nitrogen-containing heterocyclic compound is preferably 0.05 to 2% by mass, more preferably 0.8%, based on the total mass of the chemical mechanical polishing composition. 1 to 1% by mass.
<界面活性剤>
 本実施形態に係る化学機械研磨用組成物は、界面活性剤を含有してもよい。界面活性剤には、化学機械研磨用組成物に適度な粘性を付与する効果があるほか、ルテニウム等の金属の過剰なエッチングを抑制し、かつ、腐食等の研磨後の表面荒れを防ぐことができる場合がある。
<Surfactant>
The chemical mechanical polishing composition according to this embodiment may contain a surfactant. The surfactant has the effect of imparting an appropriate viscosity to the chemical mechanical polishing composition, suppresses excessive etching of metals such as ruthenium, and prevents surface roughness after polishing such as corrosion. There are cases where it is possible.
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩および脂肪族アンモニウム塩などが挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants. Examples of the anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates; sulfonates such as alkylnaphthalene sulfonates and α-olefin sulfonates; higher alcohol sulfates, alkyl ethers. Examples thereof include sulfates such as sulfates and polyoxyethylene alkylphenyl ether sulfates; and fluorine-containing surfactants such as perfluoroalkyl compounds. Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts. Examples of the nonionic surfactant include nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adduct, and acetylene alcohol; polyethylene glycol type surfactants. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 界面活性剤を含有する場合、界面活性剤の含有量は、化学機械研磨用組成物の全質量に対して、好ましくは0.001質量%以上5質量%以下であり、より好ましくは0.001質量%以上3質量%以下であり、特に好ましくは0.01質量%以上1質量%以下である。 When the surfactant is contained, the content of the surfactant is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.001 based on the total mass of the chemical mechanical polishing composition. It is not less than 3% by mass and particularly preferably not less than 0.01% and not more than 1% by mass.
<無機酸及びその塩>
 本実施形態に係る化学機械研磨用組成物は、無機酸及びその塩を含有してもよい。無機酸及びその塩を含有することにより、ルテニウム等の金属に対する研磨速度がさらに向上する場合がある。無機酸としては、例えば、塩酸、硝酸、硫酸、及びリン酸から選ばれる少なくとも1種が好ましい。無機酸の塩としては、上述の無機酸の塩であってもよく、化学機械研磨用組成物中で別途添加した塩基と上述の無機酸とが塩を形成してもよい。このような塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物;テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等の有機アルカリ化合物、及びアンモニア等が挙げられる。
<Inorganic acids and their salts>
The chemical mechanical polishing composition according to this embodiment may contain an inorganic acid and a salt thereof. By containing an inorganic acid and a salt thereof, the polishing rate for a metal such as ruthenium may be further improved. As the inorganic acid, for example, at least one selected from hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid is preferable. As a salt of an inorganic acid, the salt of the above-mentioned inorganic acid may be sufficient, and the base added separately in the chemical mechanical polishing composition and the above-mentioned inorganic acid may form a salt. Examples of such bases include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide; organic alkali compounds such as tetramethylammonium hydroxide (TMAH) and choline, and ammonia. Is mentioned.
 無機酸及びその塩を含有する場合、無機酸及びその塩の含有量は、化学機械研磨用組成物の全質量に対して、好ましくは3~8質量%であり、より好ましくは3~6質量%である。 When the inorganic acid and the salt thereof are contained, the content of the inorganic acid and the salt is preferably 3 to 8% by mass, more preferably 3 to 6% by mass with respect to the total mass of the chemical mechanical polishing composition. %.
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子を含有することにより、半導体基板(特にルテニウム膜含有基板)の表面に吸着して研磨摩擦を低減できる場合がある。このような水溶性高分子としては、ポリアクリル酸、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルメチルエーテル、ポリアリルアミン、ヒドロキシエチルセルロース等が挙げられる。
<Water-soluble polymer>
The chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer. By containing a water-soluble polymer, it may be adsorbed on the surface of a semiconductor substrate (particularly a ruthenium film-containing substrate) to reduce polishing friction. Examples of such water-soluble polymers include polyacrylic acid, polyacrylamide, polyvinyl alcohol, polyvinyl pyrrolidone, polyethyleneimine, polyvinyl methyl ether, polyallylamine, and hydroxyethyl cellulose.
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1,000以上1,500,000以下であり、より好ましくは10,000以上500,000以下であり、特に好ましくは30,000以上100,000以下である。水溶性高分子の重量平均分子量が上記範囲内にあれば、水溶性高分子が半導体基板(特にルテニウム膜含有基板)に吸着しやすくなり、研磨摩擦がより低減する。その結果、被研磨面の研磨傷の発生をより効果的に低減することができる。なお、本明細書中における「重量平均分子量(Mw)」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。 The weight average molecular weight (Mw) of the water-soluble polymer is preferably 1,000 or more and 1,500,000 or less, more preferably 10,000 or more and 500,000 or less, and particularly preferably 30,000 or more and 100 or less. , 000 or less. If the weight average molecular weight of the water-soluble polymer is within the above range, the water-soluble polymer is easily adsorbed to the semiconductor substrate (particularly the ruthenium film-containing substrate), and the polishing friction is further reduced. As a result, generation of polishing flaws on the surface to be polished can be more effectively reduced. In the present specification, “weight average molecular weight (Mw)” refers to a weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
 水溶性高分子の含有量は、被研磨面の研磨傷の発生を低減する効果を効果的に得る観点から、化学機械研磨用組成物の全質量に対して、0.001質量%以上が好ましく、0.003質量%以上がより好ましく、0.01質量%以上が特に好ましい。水溶性高分子の含有量は、被研磨面の研磨傷の発生を抑制しつつ、十分な研磨速度で研磨する観点から、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が特に好ましい。 The content of the water-soluble polymer is preferably 0.001% by mass or more based on the total mass of the chemical mechanical polishing composition from the viewpoint of effectively obtaining the effect of reducing the occurrence of polishing scratches on the surface to be polished. 0.003% by mass or more is more preferable, and 0.01% by mass or more is particularly preferable. The content of the water-soluble polymer is preferably 1% by mass or less, more preferably 0.5% by mass or less, from the viewpoint of polishing at a sufficient polishing rate while suppressing generation of polishing scratches on the surface to be polished. .1% by mass or less is particularly preferable.
 なお、水溶性高分子の含有量は、水溶性高分子の重量平均分子量(Mw)にも依存するが、化学機械研磨用組成物の粘度が10mPa・s未満となるように調整することが好ましい。化学機械研磨用組成物の粘度が10mPa・s未満であると、半導体基板(特にルテニウム膜含有基板)を高速で研磨しやすく、粘度が適正であるため研磨布上に安定して化学機械研磨用組成物を供給することができる。 The content of the water-soluble polymer depends on the weight average molecular weight (Mw) of the water-soluble polymer, but is preferably adjusted so that the viscosity of the chemical mechanical polishing composition is less than 10 mPa · s. . When the viscosity of the chemical mechanical polishing composition is less than 10 mPa · s, it is easy to polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed, and the viscosity is appropriate. A composition can be provided.
 1.5.pH
 本実施形態に係る化学機械研磨用組成物のpHは、7~13であることが好ましく、8~12.5であることがより好ましい。pHが7以上であると、化学機械研磨用組成物中の(A)酸化チタン含有粒子のゼータ電位の絶対値が大きくなり、分散性が向上するため、半導体基板(特にルテニウム膜含有基板)の研磨傷を低減しながら高速研磨することができる。中でも、アルミニウム/酸化チタン含有粒子の場合、pHが7以上であると、特にゼータ電位の絶対値が大きくなり、分散性が向上する。また、pHが13以下であれば、生産時のハンドリング性が向上する。
1.5. pH
The pH of the chemical mechanical polishing composition according to this embodiment is preferably 7 to 13, and more preferably 8 to 12.5. When the pH is 7 or more, the absolute value of the zeta potential of the (A) titanium oxide-containing particles in the chemical mechanical polishing composition is increased and the dispersibility is improved, so that the semiconductor substrate (particularly the ruthenium film-containing substrate) High-speed polishing can be performed while reducing polishing scratches. In particular, in the case of aluminum / titanium oxide-containing particles, when the pH is 7 or more, the absolute value of the zeta potential is particularly increased and the dispersibility is improved. Moreover, if pH is 13 or less, the handleability at the time of production will improve.
 なお、本実施形態に係る化学機械研磨用組成物のpHは、例えば水酸化カリウム、エチレンジアミン、TMAH(テトラメチルアンモニウムハイドロオキサイド)、アンモニア等を添加することにより調整することができ、これらの1種以上を用いることができる。 The pH of the chemical mechanical polishing composition according to this embodiment can be adjusted by adding, for example, potassium hydroxide, ethylenediamine, TMAH (tetramethylammonium hydroxide), ammonia, or the like. The above can be used.
 本発明において、pHは、水素イオン指数のことを指し、その値は、市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて測定することができる。 In the present invention, pH refers to a hydrogen ion index, and the value can be measured using a commercially available pH meter (for example, a desktop pH meter manufactured by Horiba, Ltd.).
 1.6.用途
 本実施形態に係る化学機械研磨用組成物は、上述したようにルテニウム膜含有基板のCMPにおいて、人体への毒性が強い四酸化ルテニウムの発生を抑制するとともに、ルテニウム膜含有基板を高速研磨でき、かつ、被研磨面の研磨傷を低減することができる。そのため、本実施形態に係る化学機械研磨用組成物は、次世代半導体材料であるルテニウム膜を銅膜の下地に施した半導体基板において、ルテニウム膜含有基板を化学機械研磨するための研磨材料として好適である。
1.6. Applications The chemical mechanical polishing composition according to this embodiment can suppress the generation of ruthenium tetroxide, which is highly toxic to the human body, and can polish a ruthenium film-containing substrate at high speed in CMP of a ruthenium film-containing substrate as described above. In addition, polishing scratches on the surface to be polished can be reduced. Therefore, the chemical mechanical polishing composition according to this embodiment is suitable as a polishing material for chemically mechanically polishing a ruthenium film-containing substrate in a semiconductor substrate in which a ruthenium film, which is a next-generation semiconductor material, is applied to a base of a copper film. It is.
 1.7.化学機械研磨用組成物の調製方法
 本実施形態に係る化学機械研磨用組成物は、水等の液状媒体に前述した各成分を溶解または分散させることにより調製することができる。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、前述した各成分の混合順序や混合方法についても特に制限されない。
1.7. Method for Preparing Chemical Mechanical Polishing Composition The chemical mechanical polishing composition according to this embodiment can be prepared by dissolving or dispersing the above-described components in a liquid medium such as water. The method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of the components described above are not particularly limited.
 また、本実施形態に係る化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。 Also, the chemical mechanical polishing composition according to this embodiment can be prepared as a concentrated type stock solution and diluted with a liquid medium such as water when used.
 2.研磨方法    
 本実施形態に係る研磨方法は、上述した化学機械研磨用組成物を用いて、半導体基板を研磨する工程を含む。上述した化学機械研磨用組成物は、ルテニウム膜含有基板を化学機械研磨する際に、人体への毒性が強い四酸化ルテニウムの発生を抑制するとともに、ルテニウム膜を高速研磨でき、かつ、被研磨面の研磨傷を低減することができる。そのため、本実施形態に係る研磨方法は、次世代半導体材料であるルテニウム膜を銅膜の下地に施した半導体基板を研磨する場合に好適である。以下、本実施形態に係る研磨方法の一具体例について、図面を用いて詳細に説明する。
2. Polishing method
The polishing method according to this embodiment includes a step of polishing a semiconductor substrate using the chemical mechanical polishing composition described above. The chemical mechanical polishing composition described above suppresses the generation of ruthenium tetroxide, which is highly toxic to the human body, and can polish the ruthenium film at high speed when chemically rubbing the ruthenium film-containing substrate. It is possible to reduce polishing scratches. Therefore, the polishing method according to the present embodiment is suitable for polishing a semiconductor substrate in which a ruthenium film, which is a next-generation semiconductor material, is applied to a base of a copper film. Hereinafter, a specific example of the polishing method according to the present embodiment will be described in detail with reference to the drawings.
 2.1.被処理体
 図2は、本実施形態に係る研磨方法の使用に適した被処理体を模式的に示した断面図である。被処理体100は、以下の工程(1)ないし(4)を経ることにより形成される。
2.1. FIG. 2 is a cross-sectional view schematically showing a target object suitable for use in the polishing method according to this embodiment. The target object 100 is formed through the following steps (1) to (4).
 (1)まず、図2に示すように、基体10を用意する。基体10は、例えばシリコン基板とその上に形成された酸化シリコン膜とから構成されていてもよい。さらに、基体10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。次に、基体10の上に、熱酸化法を用いて絶縁膜である酸化シリコン膜12を形成する。 (1) First, as shown in FIG. 2, a base 10 is prepared. The substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, a functional device such as a transistor (not shown) may be formed on the base 10. Next, a silicon oxide film 12 that is an insulating film is formed on the substrate 10 by using a thermal oxidation method.
 (2)次いで、酸化シリコン膜12をパターニングする。得られたパターンをマスクとして、フォトリソグラフィー法により酸化シリコン膜12に配線用溝14を形成する。 (2) Next, the silicon oxide film 12 is patterned. Using the obtained pattern as a mask, wiring trenches 14 are formed in the silicon oxide film 12 by photolithography.
 (3)次いで、酸化シリコン膜12の表面及び配線用溝14の内壁面にルテニウム膜16を形成する。ルテニウム膜16は、例えば、ルテニウムプレカーサを用いた化学気相成長法(CVD)や原子層堆積法(ALD)、またはスパッタリングなどの物理気相堆積法(PVD)により形成することができる。 (3) Next, a ruthenium film 16 is formed on the surface of the silicon oxide film 12 and the inner wall surface of the wiring groove 14. The ruthenium film 16 can be formed, for example, by chemical vapor deposition (CVD) using a ruthenium precursor, atomic layer deposition (ALD), or physical vapor deposition (PVD) such as sputtering.
 (4)次いで、化学蒸着法または電気めっき法により、10,000~15,000Åの銅膜18を堆積させる。銅膜18の材料としては、純度の高い銅だけでなく、銅を含有する合金を使用することもできる。銅を含有する合金中の銅含有量としては、95質量%以上であることが好ましい。 (4) Next, a 10,000 to 15,000 mm copper film 18 is deposited by chemical vapor deposition or electroplating. As a material of the copper film 18, not only high-purity copper but also an alloy containing copper can be used. The copper content in the alloy containing copper is preferably 95% by mass or more.
 2.2.研磨方法
 2.2.1.第1研磨工程
 図3は、第1研磨工程終了時での被処理体100を模式的に示した断面図である。図3に示すように、第1研磨工程は、銅膜用の化学機械研磨用組成物を用いてルテニウム膜16が露出するまで銅膜18を研磨する工程である。
2.2. Polishing method 2.2.1. First Polishing Step FIG. 3 is a cross-sectional view schematically showing the workpiece 100 at the end of the first polishing step. As shown in FIG. 3, the first polishing step is a step of polishing the copper film 18 until the ruthenium film 16 is exposed using the chemical mechanical polishing composition for the copper film.
 2.2.2.第2研磨工程
 図4は、第2研磨工程終了時での被処理体100を模式的に示した断面図である。図4に示すように、第2研磨工程は、上述の化学機械研磨用組成物を用いて酸化シリコン膜12が露出するまでルテニウム膜16及び銅膜18を研磨する工程である。第2研磨工程では、上述の化学機械研磨用組成物を用いるので、人体への毒性が強い四酸化ルテニウムの発生を抑制するとともに、ルテニウム膜を高速研磨でき、かつ、被研磨面の研磨傷を低減することができる。
2.2.2. Second Polishing Step FIG. 4 is a cross-sectional view schematically showing the workpiece 100 at the end of the second polishing step. As shown in FIG. 4, the second polishing step is a step of polishing the ruthenium film 16 and the copper film 18 until the silicon oxide film 12 is exposed using the chemical mechanical polishing composition described above. In the second polishing step, since the chemical mechanical polishing composition described above is used, the generation of ruthenium tetroxide, which is highly toxic to the human body, is suppressed, the ruthenium film can be polished at a high speed, and polishing scratches on the surface to be polished can be removed. Can be reduced.
 2.3.化学機械研磨装置
 上述の第1研磨工程及び第2研磨工程には、例えば図5に示すような研磨装置200を用いることができる。図5は、研磨装置200を模式的に示した斜視図である。上述の第1研磨工程及び第2研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用組成物)44を供給し、かつ研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図5には、水供給ノズル54およびドレッサー56も併せて示してある。
2.3. Chemical Mechanical Polishing Device For the first polishing step and the second polishing step described above, for example, a polishing device 200 as shown in FIG. 5 can be used. FIG. 5 is a perspective view schematically showing the polishing apparatus 200. In the first polishing step and the second polishing step described above, the slurry (chemical mechanical polishing composition) 44 is supplied from the slurry supply nozzle 42, and the semiconductor substrate is rotated while the turntable 48 to which the polishing cloth 46 is attached is rotated. This is done by bringing the carrier head 52 holding 50 into contact. FIG. 5 also shows the water supply nozzle 54 and the dresser 56.
 キャリアーヘッド52の研磨荷重は、0.7~70psiの範囲内で選択することができ、好ましくは1.5~35psiである。また、ターンテーブル48及びキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用組成物)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。 The polishing load of the carrier head 52 can be selected within a range of 0.7 to 70 psi, and preferably 1.5 to 35 psi. Further, the rotation speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm. The flow rate of the slurry (chemical mechanical polishing composition) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and preferably 50 to 400 mL / min.
 市販の研磨装置としては、例えば、荏原製作所社製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」;G&P TECHNOLOGY社製、型式「POLI-400L」;AMAT社製、型式「Reflexion LK」等が挙げられる。 Examples of commercially available polishing apparatuses include: “EPO-112”, “EPO-222” manufactured by Ebara Manufacturing Co., Ltd .; “LGP-510”, “LGP-552” manufactured by Lappmaster SFT, “Applied Materials” Model “Mirra”, “Reflexion”; G & P manufactured by TECHNOLOGY, model “POLI-400L”; manufactured by AMAT, model “Reflexion LK”, and the like.
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」および「%」は、特に断らない限り質量基準である。
3. Examples Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to these examples. In the examples, “parts” and “%” are based on mass unless otherwise specified.
 3.1.砥粒の調製
<酸化チタン粒子Aの調製>
 常法により硫酸チタニル溶液を加水分解し、ろ過洗浄した含水二酸化チタンケーキ(二酸化チタン水和物)35kg(TiO換算で10kg)に、48%水酸化ナトリウム水溶液40kgを攪拌しながら投入し、その後加熱して95~105℃の温度範囲で2時間攪拌した。次いで、このスラリーをろ過し、十分洗浄することにより塩基処理された二酸化チタン水和物を得た。この水和物ケーキに水を加えてスラリー化し、TiO換算濃度で110g/Lに調整した。このスラリーを攪拌しながら、35%塩酸を添加して、pH7.0とした。
3.1. Preparation of abrasive grains <Preparation of titanium oxide particles A>
The titanyl sulfate solution was hydrolyzed by a conventional method, and 40 kg of a 48% aqueous sodium hydroxide solution was added to 35 kg of hydrous titanium dioxide cake (titanium dioxide hydrate) (10 kg in terms of TiO 2 ) that had been filtered and washed. The mixture was heated and stirred at a temperature range of 95 to 105 ° C. for 2 hours. The slurry was then filtered and washed thoroughly to obtain a base-treated titanium dioxide hydrate. Water was added to the hydrate cake to make a slurry, and the hydrated TiO 2 concentration was adjusted to 110 g / L. While stirring the slurry, 35% hydrochloric acid was added to adjust the pH to 7.0.
 次いで、上記スラリーを50℃に加熱し、この温度で35%塩酸12.5kgを、攪拌しながら4分間で添加し、塩酸添加後のスラリー中における塩酸濃度が、100%HCl換算で40g/Lとなるようにした。塩酸添加速度は、TiO換算1kg当たり0.11kg/分とした。塩酸添加に引き続き、スラリーの加熱を行い、100℃で2時間熟成した。熟成後のスラリーに、アンモニア水を添加してpH=6.5に中和した。十分にろ過、水洗を行い、乾燥後、流体エネルギーミルで粉砕し、ルチル型酸化チタン粒子Aを得た。 Next, the slurry was heated to 50 ° C., and 12.5 kg of 35% hydrochloric acid was added at this temperature over 4 minutes with stirring. The hydrochloric acid concentration in the slurry after addition of hydrochloric acid was 40 g / L in terms of 100% HCl. It was made to become. The hydrochloric acid addition rate was 0.11 kg / min per 1 kg of TiO 2 . Following the addition of hydrochloric acid, the slurry was heated and aged at 100 ° C. for 2 hours. Ammonia water was added to the slurry after aging to neutralize to pH = 6.5. After sufficiently filtering, washing with water, drying and pulverizing with a fluid energy mill, rutile type titanium oxide particles A were obtained.
<アルミニウム/酸化チタン含有粒子B,C,G~Iの調製>
 上記で得られた酸化チタン粒子Aと水酸化アルミニウムを混合した粉末を100~1000℃の範囲で焼成した後に、1%水酸化ナトリウム水溶液を用いて洗浄した。次いで、水洗、乾燥、粉砕してアルミニウム/酸化チタン含有粒子を得た。この際、酸化チタン粒子Aと水酸化アルミニウムの混合割合を適宜調整し、焼成温度を100~1000℃の範囲内で適宜変更することにより、表1~表2に示すアルミニウム/酸化チタン含有粒子B,C,G~Iをそれぞれ得た。
<Preparation of aluminum / titanium oxide-containing particles B, C, G to I>
The powder obtained by mixing the titanium oxide particles A and aluminum hydroxide obtained above was baked in the range of 100 to 1000 ° C., and then washed with a 1% aqueous sodium hydroxide solution. Subsequently, it was washed with water, dried and pulverized to obtain aluminum / titanium oxide-containing particles. At this time, the mixing ratio of the titanium oxide particles A and aluminum hydroxide is appropriately adjusted, and the firing temperature is appropriately changed within the range of 100 to 1000 ° C., whereby the aluminum / titanium oxide-containing particles B shown in Tables 1 and 2 are used. , C, G to I were obtained respectively.
<酸化チタン粒子Dの調製>
 常法により硫酸チタニル溶液を加水分解し、ろ過洗浄した含水二酸化チタンケーキ(二酸化チタン水和物)35kg(TiO換算で10kg)に、48%水酸化ナトリウム水溶液40kgを攪拌しながら投入し、その後加熱して95~105℃の温度範囲で2時間攪拌した。次いで、このスラリーをろ過し、十分洗浄することにより塩基処理された二酸化チタン水和物を得た。この水和物ケーキに水を加えてスラリー化し、TiO換算濃度で110g/Lに調整した。このスラリーを攪拌しながら、35%塩酸を添加して、pH7.0とした。
<Preparation of titanium oxide particles D>
The titanyl sulfate solution was hydrolyzed by a conventional method, and 40 kg of a 48% aqueous sodium hydroxide solution was added to 35 kg of hydrous titanium dioxide cake (titanium dioxide hydrate) (10 kg in terms of TiO 2 ) that had been filtered and washed. The mixture was heated and stirred at a temperature range of 95 to 105 ° C. for 2 hours. The slurry was then filtered and washed thoroughly to obtain a base-treated titanium dioxide hydrate. Water was added to the hydrate cake to make a slurry, and the hydrated TiO 2 concentration was adjusted to 110 g / L. While stirring the slurry, 35% hydrochloric acid was added to adjust the pH to 7.0.
 次いで、上記スラリーを50℃に加熱し、この温度で35%塩酸9.1kgを、攪拌しながら4分間で添加し、塩酸添加後のスラリー中における塩酸濃度が、100%HCl換算で30g/Lとなるようにした。塩酸添加速度は、TiO換算1kg当たり0.08kg/分である。塩酸添加に引き続き、スラリーの加熱を行い、100℃で2時間熟成した。熟成後のスラリーに、アンモニア水を添加してpH=6.5に中和した。十分にろ過、水洗を行い、乾燥後、流体エネルギーミルで粉砕し、アナターゼ型酸化チタン粒子Dを得た。 Next, the slurry was heated to 50 ° C., and 9.1 kg of 35% hydrochloric acid was added at this temperature over 4 minutes with stirring. The hydrochloric acid concentration in the slurry after addition of hydrochloric acid was 30 g / L in terms of 100% HCl. It was made to become. The hydrochloric acid addition rate is 0.08 kg / min per 1 kg of TiO 2 . Following the addition of hydrochloric acid, the slurry was heated and aged at 100 ° C. for 2 hours. Ammonia water was added to the slurry after aging to neutralize to pH = 6.5. After sufficiently filtering and washing with water, drying and pulverizing with a fluid energy mill, anatase-type titanium oxide particles D were obtained.
<アルミニウム/酸化チタン含有粒子E,Fの調製>
 常法により硫酸チタニル溶液を加水分解し、ろ過洗浄した含水二酸化チタンケーキ(二酸化チタン水和物)35kg(TiO換算で10kg)に、48%水酸化ナトリウム水溶液40kgを攪拌しながら投入し、その後加熱して95~105℃の温度範囲で2時間撹拌した。次いで、このスラリーをろ過し、十分洗浄することにより塩基処理された酸化チタン粒子を得た。得られた酸化チタン粒子と水酸化アルミニウムを混合した粉末を100~1000℃の範囲で焼成した後に、1%水酸化ナトリウム水溶液を用いて洗浄した。次いで、水洗、乾燥、粉砕してアルミニウム/酸化チタン含有粒子を得た。この際、酸化チタン粒子と水酸化アルミニウムの混合割合を適宜調整し、焼成温度を100~1000℃の範囲内で適宜変更することにより、表3に示すアルミニウム/酸化チタン含有粒子E,Fをそれぞれ得た。
<Preparation of aluminum / titanium oxide-containing particles E and F>
The titanyl sulfate solution was hydrolyzed by a conventional method, and 40 kg of a 48% aqueous sodium hydroxide solution was added to 35 kg of hydrous titanium dioxide cake (titanium dioxide hydrate) (10 kg in terms of TiO 2 ) that had been filtered and washed. The mixture was heated and stirred at a temperature range of 95 to 105 ° C. for 2 hours. Next, the slurry was filtered and sufficiently washed to obtain base-treated titanium oxide particles. The obtained powder obtained by mixing titanium oxide particles and aluminum hydroxide was baked in the range of 100 to 1000 ° C. and then washed with a 1% aqueous sodium hydroxide solution. Subsequently, it was washed with water, dried and pulverized to obtain aluminum / titanium oxide-containing particles. At this time, the aluminum / titanium oxide-containing particles E and F shown in Table 3 were respectively adjusted by appropriately adjusting the mixing ratio of the titanium oxide particles and aluminum hydroxide and appropriately changing the firing temperature within the range of 100 to 1000 ° C. Obtained.
<酸化チタン粒子Jの調製>
 上記で得られた酸化チタン粒子Aをさらに550℃で焙焼し、ルチル型酸化チタン粒子Jを得た。
<Preparation of titanium oxide particles J>
The titanium oxide particles A obtained above were further baked at 550 ° C. to obtain rutile type titanium oxide particles J.
<シリカ粒子>
 純水787.9g、26%アンモニア水786.0g、メタノール12924gの混合液に、テトラメトキシシラン1522.2g、メタノール413.0gの混合液を、液温を35℃に保ちつつ55分かけて滴下し、水とメタノールを液状媒体とするシリカゾルを得た。このシリカゾルを常圧下で5000mLまで加熱濃縮し、シリカ粒子を得た。
<Silica particles>
To a mixed solution of 787.9 g of pure water, 786.0 g of 26% ammonia water, and 12924 g of methanol, a mixed solution of 1522.2 g of tetramethoxysilane and 413.0 g of methanol was dropped over 55 minutes while maintaining the liquid temperature at 35 ° C. Thus, a silica sol using water and methanol as liquid media was obtained. This silica sol was heated and concentrated to 5000 mL under normal pressure to obtain silica particles.
<アルミナ粒子>
 アルミナ粒子は、住友化学社製アドバンストアルミナシリーズAA-04を使用した。
<Alumina particles>
As the alumina particles, Advanced Alumina Series AA-04 manufactured by Sumitomo Chemical Co., Ltd. was used.
 3.2.砥粒の物性評価
 3.2.1.砥粒のX線回折強度測定
 上記で得られた砥粒の粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅は以下の条件で測定した。
(測定条件)
・装置:全自動水平型多目的X線回折装置SmartLab(リガク社製)
・X線源:3kw(水冷)
・測定方法:ガラス試料板を用いた粉末法
・スリット:PB中分解能
・測定範囲:15~120deg
・ステップ:0.05deg
・スキャンスピード:0.5deg/min(連続)
3.2. Evaluation of physical properties of abrasive grains 3.2.1. Measurement of X-ray diffraction intensity of abrasive grains The full width at half maximum of the peak portion where the diffraction intensity in the powder X-ray diffraction pattern of the abrasive grains obtained above was maximum was measured under the following conditions.
(Measurement condition)
Apparatus: Fully automatic horizontal multipurpose X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: 3 kW (water cooling)
・ Measurement method: Powder method using glass sample plate ・ Slit: PB medium resolution ・ Measurement range: 15 to 120 deg
・ Step: 0.05deg
Scan speed: 0.5 deg / min (continuous)
 3.2.2.アルミニウム/酸化チタン含有粒子のTi/Alモル比分析
 上記で得られたアルミニウム/酸化チタン含有粒子を希フッ化水素酸に溶解させて、ICP-MS(パーキンエルマー製、型番「ELAN DRC PLUS」)にてチタン(Ti)とアルミニウム(Al)の含有量を測定し、モル比(MTi/MAl)を算出した。
3.2.2. Analysis of Ti / Al molar ratio of aluminum / titanium oxide-containing particles The above-obtained aluminum / titanium oxide-containing particles are dissolved in dilute hydrofluoric acid to obtain ICP-MS (manufactured by PerkinElmer, model number “ELAN DRC PLUS”) Was used to measure the contents of titanium (Ti) and aluminum (Al), and the molar ratio (M Ti / M Al ) was calculated.
 3.2.3.砥粒の長径(Rmax)及び短径(Rmin)の測定
 上記で得られた砥粒を乾燥させて透過型電子顕微鏡により観察した。上記で示した判断手法により、50個の砥粒の長径(Rmax)と短径(Rmin)を測定し、長径(Rmax)と短径(Rmin)の平均値を算出した後、長径と短径との比率(Rmax/Rmin)を計算して求めた。
3.2.3. Measurement of major axis (Rmax) and minor axis (Rmin) of abrasive grains The abrasive grains obtained above were dried and observed with a transmission electron microscope. The major axis (Rmax) and minor axis (Rmin) of 50 abrasive grains were measured by the above-described determination method, and after calculating the average value of the major axis (Rmax) and minor axis (Rmin), the major axis and minor axis were calculated. The ratio (Rmax / Rmin) was calculated.
 3.3.化学機械研磨用組成物の調製
 上記で作製等した砥粒の所定量を容量1Lのポリエチレン製の瓶に添加し、その後表1又は表2に示す組成となるように各成分を添加し、さらに必要に応じてアンモニアを加えて表1又は表2に示すpHとなるように調整し、全成分の合計量が100質量部となるように純水で調整することにより、各実施例及び各比較例の化学機械研磨用組成物を調製した。
3.3. Preparation of Chemical Mechanical Polishing Composition A predetermined amount of the abrasive grains produced as described above is added to a polyethylene bottle having a capacity of 1 L, and then each component is added so that the composition shown in Table 1 or Table 2 is obtained. Each example and each comparison were made by adding ammonia as necessary to adjust to the pH shown in Table 1 or 2 and adjusting with pure water so that the total amount of all components was 100 parts by mass. An example chemical mechanical polishing composition was prepared.
 3.4.評価方法
 3.4.1.研磨速度評価
 上記で得られた化学機械研磨用組成物を用いて、直径8インチのルテニウム膜50nm付きウェハを被研磨体として、下記の研磨条件で30秒の化学機械研磨試験を行った。
3.4. Evaluation method 3.4.1. Polishing Rate Evaluation Using the chemical mechanical polishing composition obtained above, a wafer with a ruthenium film of 50 nm having a diameter of 8 inches was subjected to a chemical mechanical polishing test for 30 seconds under the following polishing conditions.
<研磨条件>
・研磨装置:G&P TECHNOLOGY社製、型式「POLI-400L」
・研磨パッド:富士紡績社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:100mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
・研磨速度(Å/分)=(研磨前の膜の厚さ-研磨後の膜の厚さ)/研磨時間
<Polishing conditions>
・ Polishing device: G & P TECHNOLOGY, model “POLI-400L”
・ Polishing pad: Fuji Spinning Co., Ltd., “Multi-rigid polyurethane pad; H800-type1 (3-1S) 775”
・ Chemical mechanical polishing composition supply rate: 100 mL / min ・ Surface plate rotation speed: 100 rpm
-Head rotation speed: 90 rpm
-Head pressing pressure: 2 psi
Polishing rate (Å / min) = (film thickness before polishing−film thickness after polishing) / polishing time
 なお、ルテニウム膜の厚さは、抵抗率測定機(NPS社製、型式「Σ-5」)により直流4探針法で抵抗を測定し、このシート抵抗値とルテニウムの体積抵抗率から下記式によって算出した。
 膜の厚さ(Å)=[ルテニウム膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω)]×1010
The thickness of the ruthenium film is determined by the following formula from the sheet resistance value and the volume resistivity of ruthenium by measuring the resistance by a direct current four-probe method using a resistivity measuring device (manufactured by NPS, model “Σ-5”). Calculated by
Film thickness (Å) = [volume resistivity of ruthenium film (Ω · m) ÷ sheet resistance value (Ω)] × 10 10
 研磨速度の評価基準は下記の通りである。ルテニウム膜の研磨速度及びその評価結果を表1~表3に併せて示す。
(評価基準)
・研磨速度が300Å/分以上である場合、研磨速度が大きいため、実際の半導体研磨において他材料膜の研磨との速度バランスが容易に確保でき、実用的であるから良好と判断し「A」と表記した。
・研磨速度が300Å/分未満である場合、研磨速度が小さいため、実用困難であり不良と判断し「B」と表記した。
The evaluation criteria for the polishing rate are as follows. Tables 1 to 3 show the ruthenium film polishing rate and its evaluation results.
(Evaluation criteria)
-When the polishing rate is 300 Å / min or more, the polishing rate is high, so in actual semiconductor polishing, the speed balance with the polishing of the other material film can be easily secured, and it is determined to be good because it is practical. It was written.
When the polishing rate was less than 300 Å / min, the polishing rate was low, so that it was difficult to put into practical use and was judged as defective, and indicated as “B”.
 3.4.2.欠陥評価
 被研磨体である直径12インチのルテニウム膜付きウェハを、下記条件で1分間研磨を行った。
<研磨条件>
・研磨装置:AMAT社製、型式「Reflexion LK」
・研磨パッド:富士紡績社製、「多硬質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
3.4.2. Defect Evaluation A wafer with a ruthenium film having a diameter of 12 inches, which is an object to be polished, was polished for 1 minute under the following conditions.
<Polishing conditions>
・ Polishing device: Model “Reflexion LK” manufactured by AMAT
・ Polishing pad: Fuji Spinning Co., Ltd., “Multi-rigid polyurethane pad; H800-type1 (3-1S) 775”
・ Chemical mechanical polishing composition supply rate: 300 mL / min ・ Surface plate rotation speed: 100 rpm
-Head rotation speed: 90 rpm
-Head pressing pressure: 2 psi
 上記で研磨が行われたルテニウム膜付きウェハについて、欠陥検査装置(ケーエルエー・テンコール社製、型式「Surfscan SP1」)を用いて、90nm以上の大きさの欠陥総数をカウントした。評価基準は以下の通りである。ウェハ当たりの欠陥総数及びその評価結果を表1~表3に併せて示す。
(評価基準)
・ウェハ当たりの欠陥総数が500個未満である場合を良好と判断し、表中に「A」と記載した。
・ウェハ当たりの欠陥総数が500個以上である場合を不良と判断し、表中に「B」と記載した。
About the wafer with a ruthenium film | membrane polished by the above, the total number of defects of 90 nm or more was counted using the defect inspection apparatus (the model "Surfscan SP1" by KLA-Tencor Corporation). The evaluation criteria are as follows. The total number of defects per wafer and the evaluation results are also shown in Tables 1 to 3.
(Evaluation criteria)
The case where the total number of defects per wafer was less than 500 was judged good, and “A” was indicated in the table.
A case where the total number of defects per wafer was 500 or more was judged as defective, and was described as “B” in the table.
 3.4.3.化学機械研磨用組成物の起泡試験
 表1~表3に記載の化学機械研磨用組成物を5mL、透明プラスティック容器に(アズワン製、10mLスチロール棒瓶)入れ、蓋をして密閉し、一日静置させた。一日後に、容器壁面に付着した起泡の数をカウントした。化学機械研磨用組成物の起泡試験の評価基準は下記の通りである。起泡の個数及びその評価結果を表1~表3に併せて示す。
(評価基準)
・起泡数が3個未満である場合、ガス発生が少ないため、実用的であるから良好と判断し「A」と表記した。
・起泡数が3個以上である場合、ガス発生が多いため、実用的でないから不良と判断し「B」と表記した。
3.4.3. Foaming test of chemical mechanical polishing composition 5 mL of the chemical mechanical polishing composition described in Tables 1 to 3 is placed in a transparent plastic container (manufactured by ASONE, 10 mL polystyrene stick bottle), sealed with a lid, Allowed to stand still. One day later, the number of foams adhering to the container wall surface was counted. The evaluation criteria of the foaming test of the chemical mechanical polishing composition are as follows. Tables 1 to 3 also show the number of foaming and the evaluation results.
(Evaluation criteria)
-When the number of foams was less than 3, since the generation of gas was small, it was determined to be good because it was practical and indicated as "A".
-When the number of foams was 3 or more, gas generation was large, so it was not practical, so it was judged as bad, and indicated as "B".
 3.4.4.腐食評価
 上記ルテニウム膜50nm付きウェハを1cm×1cmにカットし、金属ウェハ試験片とした。この試験片について、走査型電子顕微鏡により倍率50,000倍にて予め表面を観察しておいた。次いで、各実施例及び各比較例の化学機械研磨用組成物50mLをそれぞれポリエチレン容器に入れて25℃に保ち、金属ウェハ試験片(1cm×1cm)を60分間浸漬し、流水で10秒間洗浄し乾燥させた後、走査型電子顕微鏡により倍率50,000倍にて表面の腐食状態を観察し、以下の基準で評価した。その評価結果を表1~表3に併せて示す。
(評価基準)
・A:浸漬前と比較して腐食による表面の形状変化が認められなかった。
・B:浸漬前と比較して腐食している箇所と腐食していない箇所とが混在していた。
・C:浸漬前と比較して全面が腐食していた。
3.4.4. Corrosion Evaluation The wafer with the ruthenium film 50 nm was cut into 1 cm × 1 cm to obtain a metal wafer test piece. The surface of this test piece was observed in advance with a scanning electron microscope at a magnification of 50,000 times. Next, 50 mL of the chemical mechanical polishing composition of each Example and each Comparative Example was put in a polyethylene container and kept at 25 ° C., a metal wafer specimen (1 cm × 1 cm) was immersed for 60 minutes, and washed with running water for 10 seconds. After drying, the surface corrosion state was observed with a scanning electron microscope at a magnification of 50,000 times, and evaluated according to the following criteria. The evaluation results are also shown in Tables 1 to 3.
(Evaluation criteria)
A: No change in surface shape due to corrosion was observed compared to before immersion.
-B: The location which has corroded compared with the place before immersion, and the location which has not corroded were mixed.
-C: The whole surface was corroded compared with before immersion.
 3.5.評価結果
 表1~表3に、各実施例及び各比較例の化学機械研磨用組成物の組成並びに各評価結果を示す。
3.5. Evaluation results Tables 1 to 3 show the compositions of the chemical mechanical polishing compositions of the examples and the comparative examples and the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3中の各成分は、それぞれ下記の商品又は試薬を用いた。
<砥粒>
・酸化チタン粒子A~J:上記で作製した酸化チタン粒子A~J
・シリカ:上記で作製したシリカ粒子
・アルミナ:住友化学社製、アドバンストアルミナシリーズ商品名「AA-04」
<有機酸>
・ステアリン酸:和光純薬工業株式会社製、商品名「ステアリン酸」
・ラウリン酸:和光純薬工業株式会社製、商品名「ラウリン酸」
・ミリスチン酸:和光純薬工業株式会社製、商品名「ミリスチン酸」
・ドデシルベンゼンスルホン酸アンモニウム:東京化成工業株式会社株式会社製、商品名「Sodium Dodecylbenzenesulfonate」
・アルケニルコハク酸ジカリウム:花王株式会社製、商品名「ラテムル ASK」
<酸化剤>
・過酸化水素:和光純薬工業株式会社製、商品名「過酸化水素」
・過ヨウ素酸カリウム:和光純薬工業株式会社製、商品名「過よう素酸カリウム」
・次亜塩素酸カリウム:関東化学株式会社製、商品名「次亜塩素酸カリウム溶液」
<その他の添加剤>
・ベンゾトリアゾール:和光純薬工業株式会社製、商品名「1H―ベンゾトリアゾール」、含窒素複素環化合物
・アセチレンジオール系ノニオン性界面活性剤:日信化学工業株式会社製、商品名「サーフィノール485」、界面活性剤
・ポリアクリル酸:東亜合成株式会社製、商品名「ジュリマーAC-10L」、重量平均分子量(Mw)=50,000
・ポリビニルピロリドン(K30):株式会社日本触媒製、商品名「ポリビニルピロリドン K―30」、水溶性高分子
The following products or reagents were used for the respective components in Tables 1 to 3.
<Abrasive grains>
Titanium oxide particles A to J: Titanium oxide particles A to J produced above
・ Silica: Silica particles prepared above ・ Alumina: Sumitomo Chemical Co., Ltd., Advanced Alumina series product name “AA-04”
<Organic acid>
・ Stearic acid: Wako Pure Chemical Industries, Ltd., trade name “Stearic acid”
・ Lauric acid: Wako Pure Chemical Industries, Ltd., trade name “Lauric acid”
-Myristic acid: Wako Pure Chemical Industries, Ltd., trade name "Myristic acid"
・ Ammonium dodecylbenzenesulfonate: manufactured by Tokyo Chemical Industry Co., Ltd., trade name “Sodium Dodecylbenzenesulfonate”
・ Dipotassium alkenyl succinate: product name “Latemul ASK” manufactured by Kao Corporation
<Oxidizing agent>
・ Hydrogen peroxide: Wako Pure Chemical Industries, Ltd., trade name “hydrogen peroxide”
-Potassium periodate: Wako Pure Chemical Industries, Ltd., trade name "potassium periodate"
-Potassium hypochlorite: manufactured by Kanto Chemical Co., Ltd., trade name "potassium hypochlorite solution"
<Other additives>
Benzotriazole: Wako Pure Chemical Industries, Ltd., trade name “1H-benzotriazole”, nitrogen-containing heterocyclic compound, acetylenic diol-based nonionic surfactant: Nissin Chemical Industry Co., Ltd., trade name “Surfinol 485 ”, Surfactant / polyacrylic acid: manufactured by Toa Gosei Co., Ltd., trade name“ Julimer AC-10L ”, weight average molecular weight (Mw) = 50,000
-Polyvinylpyrrolidone (K30): Nippon Shokubai Co., Ltd., trade name "Polyvinylpyrrolidone K-30", water-soluble polymer
 実施例1~19では、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満の酸化チタン含有粒子及び有機酸を含有する化学機械研磨用組成物を用いることで、ルテニウム膜を高速研磨でき、かつ、被研磨面の研磨傷を低減できることがわかった。 In Examples 1 to 19, by using a chemical mechanical polishing composition containing titanium oxide-containing particles and an organic acid having a half-value width of less than 1 ° in the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum, It was found that the ruthenium film can be polished at a high speed and polishing scratches on the surface to be polished can be reduced.
 比較例1は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満の酸化チタン粒子Aを含有し、有機酸を含有しない化学機械研磨用組成物を使用した例である。この場合には、有機酸を含有しないため、ルテニウム膜を高速研磨できず、また欠陥評価では、被研磨面の表面に多数の欠陥が認められた。 Comparative Example 1 is an example in which a chemical mechanical polishing composition containing titanium oxide particles A having a half-width of less than 1 ° at the peak portion where the diffraction intensity in the powder X-ray diffraction pattern is maximum and containing no organic acid is used. It is. In this case, since the organic acid was not contained, the ruthenium film could not be polished at a high speed, and in the defect evaluation, many defects were recognized on the surface of the surface to be polished.
 比較例2は、シリカ粒子及び有機酸(ステアリン酸)を含有する化学機械研磨用組成物を使用した例である。この場合には、シリカ粒子の機械的研磨力が低すぎるため、ルテニウム膜を高速研磨することができなかった。 Comparative Example 2 is an example using a chemical mechanical polishing composition containing silica particles and an organic acid (stearic acid). In this case, the ruthenium film could not be polished at high speed because the mechanical polishing force of the silica particles was too low.
 比較例3は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満のアルミナ粒子及び有機酸(ステアリン酸)を含有する化学機械研磨用組成物を使用した例である。この場合には、アルミナ粒子の機械的研磨力が低すぎるため、ルテニウム膜を高速研磨することができず、また欠陥評価では、被研磨面の表面に多数の欠陥が認められた。 Comparative Example 3 is an example in which a chemical mechanical polishing composition containing alumina particles and an organic acid (stearic acid) having a half-value width of less than 1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern is used. is there. In this case, since the mechanical polishing power of the alumina particles is too low, the ruthenium film cannot be polished at a high speed, and in the defect evaluation, a large number of defects were found on the surface of the surface to be polished.
 比較例4は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が2.1°のアルミニウム/酸化チタン含有粒子E及び有機酸(ステアリン酸)を含有する化学機械研磨用組成物を使用した例である。この場合には、アルミニウム/酸化チタン含有粒子Eの硬度が低くなり、機械的研磨力が低すぎるため、ルテニウム膜を高速研磨することができなかった。 Comparative Example 4 is a chemical mechanical polishing composition containing aluminum / titanium oxide-containing particles E having a half-value width of 2.1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern and an organic acid (stearic acid). It is an example using a thing. In this case, since the hardness of the aluminum / titanium oxide-containing particles E was low and the mechanical polishing power was too low, the ruthenium film could not be polished at high speed.
 比較例5は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1.4°のアルミニウム/酸化チタン含有粒子F及び有機酸(ステアリン酸)を含有する化学機械研磨用組成物を使用した例である。この場合には、アルミニウム/酸化チタン含有粒子Fの硬度がやや低くなったために、ルテニウム膜を高速研磨することができず、また欠陥評価では、被研磨面の表面に多数の欠陥が認められた。 Comparative Example 5 is a chemical mechanical polishing composition containing aluminum / titanium oxide-containing particles F having a half-value width of 1.4 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern and an organic acid (stearic acid). It is an example using a thing. In this case, since the hardness of the aluminum / titanium oxide-containing particles F was slightly lowered, the ruthenium film could not be polished at high speed, and in the defect evaluation, many defects were recognized on the surface of the surface to be polished. .
 比較例6及び比較例7は、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満の酸化チタン粒子Aと、有機酸の代わりに硝酸、硫酸をそれぞれ使用した例である。この場合には、硝酸や硫酸によるエッチング作用によって、被研磨面の表面に多数の欠陥が認められた。 Comparative Example 6 and Comparative Example 7 are examples in which the titanium oxide particles A having a half-value width of less than 1 ° at the peak portion where the diffraction intensity is maximum in the powder X-ray diffraction pattern, and nitric acid and sulfuric acid were used in place of the organic acid, respectively. It is. In this case, a number of defects were observed on the surface of the surface to be polished due to the etching action of nitric acid or sulfuric acid.
 以上の結果から、本発明に係る化学機械研磨用組成物によれば、半導体基板(特にルテニウム膜含有基板)を高速研磨でき、かつ、被研磨面の研磨傷を低減できることがわかった。 From the above results, it was found that the chemical mechanical polishing composition according to the present invention can polish a semiconductor substrate (particularly a ruthenium film-containing substrate) at high speed and reduce polishing scratches on the surface to be polished.
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment. In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. In addition, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
1…酸化チタン含有粒子、10…基体、12…酸化シリコン膜、14…配線用溝、16…ルテニウム膜、18…銅膜、42…スラリー供給ノズル、44…スラリー(化学機械研磨用組成物)、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…研磨装置 DESCRIPTION OF SYMBOLS 1 ... Titanium oxide containing particle, 10 ... Base | substrate, 12 ... Silicon oxide film, 14 ... Groove for wiring, 16 ... Ruthenium film, 18 ... Copper film, 42 ... Slurry supply nozzle, 44 ... Slurry (chemical mechanical polishing composition) 46 ... Polishing cloth, 48 ... Turntable, 50 ... Semiconductor substrate, 52 ... Carrier head, 54 ... Water supply nozzle, 56 ... Dresser, 100 ... Object to be processed, 200 ... Polishing apparatus

Claims (10)

  1.  (A)酸化チタン含有粒子と、
     (B)有機酸と、
    を含有し、
     前記(A)酸化チタン含有粒子が、粉末X線回折パターンにおける回折強度が最大となるピーク部分の半値幅が1°未満のものである、化学機械研磨用組成物。
    (A) titanium oxide-containing particles;
    (B) an organic acid;
    Containing
    The chemical mechanical polishing composition according to (A), wherein the titanium oxide-containing particles have a peak width at which the diffraction intensity in the powder X-ray diffraction pattern is maximum of less than 1 °.
  2.  前記(A)酸化チタン含有粒子がアルミニウムをさらに含有し、
     前記(A)酸化チタン含有粒子における、チタンのモル数をMTi、アルミニウムのモル数をMAlとしたときに、MTi/MAlの値が6~70である、請求項1に記載の化学機械研磨用組成物。
    The (A) titanium oxide-containing particles further contain aluminum,
    The value of M Ti / M Al is 6 to 70, when the number of moles of titanium in the (A) titanium oxide-containing particles is M Ti and the number of moles of aluminum is M Al . Chemical mechanical polishing composition.
  3.  前記(A)酸化チタン含有粒子の長径(Rmax)と短径(Rmin)との比率(Rmax/Rmin)が1.1~4.0である、請求項1または請求項2に記載の化学機械研磨用組成物。 3. The chemical machine according to claim 1, wherein a ratio (Rmax / Rmin) of a major axis (Rmax) to a minor axis (Rmin) of the (A) titanium oxide-containing particles is 1.1 to 4.0. Polishing composition.
  4.  さらに、化学機械研磨用組成物の全質量に対して、(C)酸化剤を0.001質量%以上5質量%以下含有する、請求項1ないし請求項3のいずれか1項に記載の化学機械研磨用組成物。 Furthermore, the chemistry of any one of Claims 1 thru | or 3 which contains 0.001 mass% or more and 5 mass% or less of (C) oxidizing agent with respect to the total mass of the composition for chemical mechanical polishing. Mechanical polishing composition.
  5.  前記(C)酸化剤が、過ヨウ素酸カリウム、次亜塩素酸カリウムおよび過酸化水素から選択される少なくとも1種である、請求項4に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 4, wherein the (C) oxidizing agent is at least one selected from potassium periodate, potassium hypochlorite and hydrogen peroxide.
  6.  化学機械研磨用組成物の全質量に対して、前記(A)酸化チタン含有粒子の含有量が0.1質量%以上10質量%以下である、請求項1ないし請求項5のいずれか1項に記載の化学機械研磨用組成物。 The content of the (A) titanium oxide-containing particles is 0.1% by mass or more and 10% by mass or less based on the total mass of the chemical mechanical polishing composition. The composition for chemical mechanical polishing described in 1.
  7.  pHが7以上13以下である、請求項1ないし請求項6のいずれか1項に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to any one of claims 1 to 6, wherein the pH is 7 or more and 13 or less.
  8.  ルテニウム膜を含む半導体基板を研磨するために用いられる、請求項1ないし請求項7のいずれか1項に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to any one of claims 1 to 7, which is used for polishing a semiconductor substrate containing a ruthenium film.
  9.  請求項1ないし請求項7のいずれか1項に記載の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む、研磨方法。 A polishing method comprising a step of polishing a semiconductor substrate using the chemical mechanical polishing composition according to any one of claims 1 to 7.
  10.  前記半導体基板がルテニウム膜を含む、請求項9に記載の研磨方法。 The polishing method according to claim 9, wherein the semiconductor substrate includes a ruthenium film.
PCT/JP2019/002526 2018-02-05 2019-01-25 Chemical mechanical polishing composition and polishing method WO2019151144A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018018153 2018-02-05
JP2018-018154 2018-02-05
JP2018018154 2018-02-05
JP2018-018155 2018-02-05
JP2018018155 2018-02-05
JP2018-018153 2018-02-05

Publications (1)

Publication Number Publication Date
WO2019151144A1 true WO2019151144A1 (en) 2019-08-08

Family

ID=67478238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002526 WO2019151144A1 (en) 2018-02-05 2019-01-25 Chemical mechanical polishing composition and polishing method

Country Status (2)

Country Link
TW (3) TWI788517B (en)
WO (1) WO2019151144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060234A1 (en) * 2019-09-27 2021-04-01 株式会社トクヤマ RuO4 GAS GENERATION SUPPRESSION AGENT, AND RuO4 GAS GENERATION SUPPRESSION METHOD
US11674230B2 (en) 2019-09-27 2023-06-13 Tokuyama Corporation Treatment liquid for semiconductor with ruthenium and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202132527A (en) * 2019-12-12 2021-09-01 日商Jsr股份有限公司 Composition for chemical mechanical polishing and method for polishing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010031A (en) * 2007-06-26 2009-01-15 Fujifilm Corp Metal polishing liquid and polishing method using the same
JP2009206240A (en) * 2008-02-27 2009-09-10 Jsr Corp Water-based dispersing substance for polishing chemical machinery, manufacturing method thereof, and chemical machinery polishing method
JP2015168818A (en) * 2014-03-11 2015-09-28 信越化学工業株式会社 Polishing composition and polishing method and production method of polishing composition
WO2016140246A1 (en) * 2015-03-04 2016-09-09 日立化成株式会社 Cmp polishing liquid and polishing method in which same is used

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014007063A1 (en) * 2012-07-06 2016-06-02 日立化成株式会社 Polishing liquid for CMP, storage liquid and polishing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010031A (en) * 2007-06-26 2009-01-15 Fujifilm Corp Metal polishing liquid and polishing method using the same
JP2009206240A (en) * 2008-02-27 2009-09-10 Jsr Corp Water-based dispersing substance for polishing chemical machinery, manufacturing method thereof, and chemical machinery polishing method
JP2015168818A (en) * 2014-03-11 2015-09-28 信越化学工業株式会社 Polishing composition and polishing method and production method of polishing composition
WO2016140246A1 (en) * 2015-03-04 2016-09-09 日立化成株式会社 Cmp polishing liquid and polishing method in which same is used

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060234A1 (en) * 2019-09-27 2021-04-01 株式会社トクヤマ RuO4 GAS GENERATION SUPPRESSION AGENT, AND RuO4 GAS GENERATION SUPPRESSION METHOD
JP6874231B1 (en) * 2019-09-27 2021-05-19 株式会社トクヤマ RuO4 gas generation inhibitor and RuO4 gas generation suppression method
US11674230B2 (en) 2019-09-27 2023-06-13 Tokuyama Corporation Treatment liquid for semiconductor with ruthenium and method of producing the same
US11932590B2 (en) 2019-09-27 2024-03-19 Tokuyama Corporation Inhibitor for RuO4 gas generation and method for inhibiting RuO4 gas generation

Also Published As

Publication number Publication date
TW201943828A (en) 2019-11-16
TWI788517B (en) 2023-01-01
TWI795521B (en) 2023-03-11
TW201942317A (en) 2019-11-01
TW201943829A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
WO2019151145A1 (en) Chemical mechanical polishing composition and polishing method
JP3457144B2 (en) Polishing composition
TWI227726B (en) Chemical-mechanical abrasive composition and method
JP2003124160A (en) Polishing composition and polishing method using it
JP2008527728A (en) Polishing slurry and method for chemical mechanical polishing
WO2019151144A1 (en) Chemical mechanical polishing composition and polishing method
JP7371729B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2011093195A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method using same, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP2021019113A (en) Composition for chemical mechanical polishing and manufacturing method and polishing method thereof
JP2020035895A (en) Aqueous dispersion for chemical mechanical polishing and method for manufacturing the same
JP7073975B2 (en) Aqueous dispersion for chemical mechanical polishing
WO2021117428A1 (en) Composition for chemical mechanical polishing and method for polishing
TW202106849A (en) Abrasive grains and chemical mechanical polishing composition
JP2009224771A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP7167558B2 (en) Aqueous dispersion for chemical mechanical polishing
JP2021019112A (en) Composition for chemical mechanical polishing and manufacturing method and polishing method thereof
JP2021019111A (en) Composition for chemical mechanical polishing and manufacturing method thereof, and polishing method
WO2021124771A1 (en) Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing
JP5413569B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010041024A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2022046055A (en) Semiconductor substrate processing method
KR20240024993A (en) Polishing liquid for CMP, polishing liquid set for CMP and polishing method
JP2020017556A (en) Chemical mechanical polishing aqueous dispersion and manufacturing method thereof
JP2009224767A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2009212496A (en) Aqueous dispersion for chemical mechanical polishing and its manufacturing method, and chemical mechanical polishing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP