WO2019150971A1 - Photoelectric conversion element and image pickup device - Google Patents

Photoelectric conversion element and image pickup device Download PDF

Info

Publication number
WO2019150971A1
WO2019150971A1 PCT/JP2019/001253 JP2019001253W WO2019150971A1 WO 2019150971 A1 WO2019150971 A1 WO 2019150971A1 JP 2019001253 W JP2019001253 W JP 2019001253W WO 2019150971 A1 WO2019150971 A1 WO 2019150971A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
electrode
layer
conversion element
semiconductor
Prior art date
Application number
PCT/JP2019/001253
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 坂東
治典 塩見
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2019150971A1 publication Critical patent/WO2019150971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to, for example, a photoelectric conversion element having a photoelectric conversion layer containing semiconductor nanoparticles and an imaging apparatus including the photoelectric conversion element.
  • CMOS Complementary Metal Oxide Semiconductor
  • the charge generated by the photoelectric conversion is once accumulated in the photoelectric conversion unit in the semiconductor substrate and then transferred to the FD. For this reason, a photoelectric conversion part can be completely depleted.
  • the photoelectric conversion unit provided outside the semiconductor substrate the charge generated by the photoelectric conversion unit is directly accumulated in the FD as described above, so that the photoelectric conversion unit is completely depleted. It was difficult, kTC noise became large, random noise worsened, and the picked-up image quality was reduced.
  • Patent Document 1 among the first electrode and the second electrode disposed so as to face each other with the photoelectric conversion layer interposed therebetween, the first electrode side disposed on the side opposite to the light incident side is An image sensor is disclosed that is provided with a charge storage electrode that is spaced apart from one electrode and that is opposed to a photoelectric conversion layer with an insulating layer interposed therebetween.
  • charges generated by photoelectric conversion can be stored in the photoelectric conversion layer, and the charge storage portion can be completely depleted at the start of exposure. Therefore, it is possible to reduce a decrease in image quality.
  • Patent Document 2 a photoelectric conversion element using semiconductor nanoparticles in a photoelectric conversion layer has been developed.
  • improvement in quantum efficiency is required.
  • a photoelectric conversion element includes a first electrode including a plurality of independent electrodes, a second electrode disposed opposite to the first electrode, semiconductor nanoparticles, a first electrode, The photoelectric conversion layer provided between the two electrodes and an oxide semiconductor material and a semiconductor layer provided between the first electrode and the photoelectric conversion layer are provided.
  • An imaging apparatus includes a plurality of pixels each provided with one or a plurality of photoelectric conversion elements, and includes the photoelectric conversion element according to the embodiment described above as a photoelectric conversion element.
  • a semiconductor including a photoelectric conversion layer including a semiconductor nanoparticle and an oxide semiconductor material between a first electrode and a second electrode arranged to face each other.
  • the dielectric constant of the photoelectric conversion layer is ⁇ CQD
  • the relative dielectric constant of the semiconductor layer is ⁇ S , so that the relative dielectric constant of the photoelectric conversion layer satisfies ⁇ CQD / ⁇ S ⁇ 3 . This suppresses recombination of charges generated by photoelectric conversion by applying a strong electric field to the photoelectric conversion layer.
  • a semiconductor layer including an oxide semiconductor material and a photoelectric conversion layer including semiconductor nanoparticles between the first electrode and the second electrode are provided in this order, and the relative dielectric constant of the photoelectric conversion layer ( ⁇ CQD ) satisfies ⁇ CQD / ⁇ S ⁇ 3 with respect to the relative dielectric constant ( ⁇ S ) of the semiconductor layer.
  • An electric field is applied. Therefore, charge recombination in the photoelectric conversion layer is suppressed, and quantum efficiency can be improved.
  • FIG. 2 is an equivalent circuit diagram of the image sensor shown in FIG. 1. It is a schematic diagram showing arrangement
  • FIG. 7A is a timing diagram illustrating an operation example of the photoelectric conversion element illustrated in FIG. 1. It is a potential distribution figure between electrodes at the time of light irradiation of the photoelectric conversion element as a comparative example.
  • FIG. 2 is a potential distribution diagram between electrodes when the photoelectric conversion element shown in FIG.
  • FIG. 1 is irradiated with light. It is a block diagram showing the structure of the imaging device which used the image pick-up element shown in FIG. 1 as a pixel. It is a functional block diagram showing an example of the electronic device (camera) using the imaging device shown in FIG. It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram which shows an example of a function structure of a camera head and CCU. It is a block diagram which shows an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • Embodiment an example of a photoelectric conversion element in which the relative dielectric constant of the photoelectric conversion layer is controlled
  • Configuration of image sensor 1-2 Configuration of image sensor 1-2.
  • Manufacturing method of imaging device 1-3 Image sensor control method 1-4.
  • FIG. 1 schematically illustrates a cross-sectional configuration of an imaging device (imaging device 1) according to an embodiment of the present disclosure.
  • FIG. 2 schematically shows an enlarged cross-sectional configuration of a main part (photoelectric conversion element 10) of the image sensor 1 shown in FIG.
  • FIG. 3 is an equivalent circuit diagram of the image sensor 1 shown in FIG.
  • FIG. 4 schematically shows the arrangement of the transistors constituting the lower electrode 11 and the control unit of the image sensor 1 shown in FIG.
  • the imaging device 1 constitutes one pixel (unit pixel P) in an imaging device (imaging device 100; see FIG. 11) such as a CMOS image sensor.
  • the imaging element 1 is, for example, one in which the photoelectric conversion element 10 is provided on the first surface (back surface) 30 ⁇ / b> A side of the semiconductor substrate 30.
  • the photoelectric conversion element 10 includes a photoelectric conversion layer 14 formed using semiconductor nanoparticles between a lower electrode 11 (first electrode) and an upper electrode 15 (second electrode) arranged to face each other.
  • a semiconductor layer 13 is provided between the lower electrode 11 and the photoelectric conversion layer 14 via an insulating layer 12.
  • the lower electrode 11 includes a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C disposed between the readout electrode 11A and the storage electrode 11B, for example, as a plurality of independent electrodes.
  • the storage electrode 11B and the transfer electrode 11C are covered with an insulating layer 12, and the readout electrode 11A is electrically connected to the semiconductor layer 13 through an opening 12H provided in the insulating layer 12.
  • the photoelectric conversion element 10 of the present embodiment is configured such that the ratio of the relative dielectric constant of the photoelectric conversion layer 14 to the relative dielectric constant of the semiconductor layer 13 is less than 3.
  • the photoelectric conversion element 10 is a photoelectric conversion element that absorbs light corresponding to a part or all of a selective wavelength range (for example, 700 nm to 2500 nm) and generates electron-hole pairs.
  • the photoelectric conversion element 10 includes, for example, a lower electrode 11, an insulating layer 12, a semiconductor layer 13, a photoelectric conversion layer 14, and an upper electrode 15 stacked in this order on the first surface 30 ⁇ / b> A side of the semiconductor substrate 30. It has the structure which was made.
  • the fixed charge layer 16A, the dielectric layer 16B, the interlayer insulating layer 17 and the like are omitted.
  • the lower electrode 11 is separately formed for each unit pixel P, and will be described in detail later.
  • the lower electrode 11 includes a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C that are separated from each other with an insulating layer 12 therebetween.
  • the semiconductor layer 13, the photoelectric conversion layer 14, and the upper electrode 15 are illustrated as being separately formed for each image sensor 1. May be.
  • the lower electrode 11 includes, for example, a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C that are independent from each other.
  • the lower electrode 11 can be formed using, for example, a light-transmitting conductive material (transparent conductive material).
  • the band gap energy of the transparent conductive material is preferably 2.5 eV or more, for example, and preferably 3.1 eV or more.
  • a metal oxide can be raised as the transparent conductive material.
  • indium-zinc oxide indium-tin oxide (including ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO, and amorphous ITO), indium added to zinc oxide as a dopant Oxide (IZO), Indium-gallium oxide (IGO) with gallium oxide added with indium as a dopant, Indium-gallium-zinc oxide with zinc oxide added with indium and gallium (IGZO, In -GaZnO 4) , indium-tin-zinc oxide (ITZO) in which indium and tin are added to zinc oxide as dopants, IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (doping other elements) ZnO), aluminum-zinc oxide (AZO) in which aluminum is added as a dopant to zinc oxide
  • the transparent electrode which uses gallium oxide, titanium oxide, niobium oxide, nickel oxide etc. as a base layer can be mentioned.
  • the thickness of the lower electrode 11 in the Y-axis direction (hereinafter simply referred to as thickness) is, for example, 2 ⁇ 10 ⁇ 8 m or more and 2 ⁇ 10 ⁇ 7 m or less, preferably 3 ⁇ 10 ⁇ 8 m or more and 1 ⁇ . 10 -7 m or less.
  • the lower electrode 11 is formed of, for example, platinum (Pt), gold (Au), palladium (Pd), chromium (Cr), nickel (Ni), aluminum ( Al), silver (Ag), tantalum (Ta), tungsten (W), copper (Cu), titanium (Ti), indium (In), tin (Sn), iron (Fe), cobalt (Co) and molybdenum ( It can be formed as a single layer film or a laminated film using a metal such as Mo) or an alloy thereof. Specifically, it can be formed using Al—Nd (alloy of aluminum and neodymium), ASC (alloy of aluminum, samarium and copper) or the like.
  • the lower electrode 11 is made of a conductive material such as the above metal or an alloy thereof, polysilicon containing impurities, a carbon-based material, an oxide semiconductor material, a carbon nano tube, and graphene. You may make it form.
  • the lower electrode 11 may be formed using an organic material (conductive polymer) such as poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid [PEDOT / PSS].
  • the material may be mixed with a binder (polymer) and paste or ink may be cured to form.
  • the readout electrode 11A is for transferring signal charges generated in the photoelectric conversion layer 14 to the floating diffusion FD1.
  • the read electrode 11A is provided on the second surface (front surface) 30B side of the semiconductor substrate 20 via, for example, the upper first contact 17A, the pad portion 39A, the through electrode 34, the connection portion 41A, and the lower second contact 46. It is connected to the floating diffusion FD1.
  • the storage electrode 11 ⁇ / b> B is for storing signal charges (electrons) in the semiconductor layer 13 among the charges generated in the photoelectric conversion layer 14.
  • the storage electrode 11B is preferably larger than the readout electrode 11A, so that a large amount of charge can be stored.
  • the transfer electrode 11C is for improving the efficiency of transferring the charge accumulated in the storage electrode 11B to the read electrode 11A, and is provided between the read electrode 11A and the storage electrode 11B.
  • the transfer electrode 11C is connected to a pixel drive circuit constituting the drive circuit via, for example, the upper third contact 17C and the pad portion 39C.
  • the readout electrode 11A, the storage electrode 11B, and the transfer electrode 11C can apply a voltage independently.
  • the insulating layer 12 is for electrically separating the storage electrode 11B and the transfer electrode 11C from the semiconductor layer 13.
  • the insulating layer 12 is provided on the interlayer insulating layer 17 so as to cover the lower electrode 11.
  • the insulating layer 12 is provided with an opening 12H on the readout electrode 11A of the lower electrode 11, and the readout electrode 11A and the semiconductor layer 13 are electrically connected through the opening 12H.
  • the side surface of the opening 12H preferably has an inclination that widens toward the light incident side S1. Thereby, the movement of charges from the semiconductor layer 13 to the readout electrode 11A becomes smoother.
  • Examples of the material of the insulating layer 12 include inorganic insulating materials such as silicon oxide materials, metal oxide high dielectric insulating materials such as silicon nitride (SiN x ), and aluminum oxide (Al 2 O 3 ).
  • inorganic insulating materials such as silicon oxide materials, metal oxide high dielectric insulating materials such as silicon nitride (SiN x ), and aluminum oxide (Al 2 O 3 ).
  • PMMA polymethyl methacrylate
  • PVP polyvinylphenol
  • PVA polyvinyl alcohol
  • PET polyethylene terephthalate
  • sirene N-2 (aminoethyl) 3-aminopropyltrimethoxy
  • Silanol derivatives silane coupling agents
  • silane AEAPTMS
  • MPTMS 3-mercaptopropyltrimethoxysilane
  • OTS octadecyltrichlorosilane
  • novolac-type phenol resin fluorine-based resin
  • organic insulating material exemplified by linear hydrocarbons having a functional group capable of binding to the control electrode at one end can be given, and these can also be used in combination.
  • silicon oxide-based material silicon oxide (SiO x ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxynitride (SiON), SOG (spin-on-glass), low dielectric constant material (for example, polyaryl ether) Cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, and organic SOG).
  • the semiconductor layer 13 accumulates signal charges generated in the photoelectric conversion layer 14 and transfers them to the readout electrode 11A.
  • the carrier density of the semiconductor layer 13 is preferably 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less, for example.
  • the relative dielectric constant ( ⁇ S ) of the semiconductor layer 13 is preferably 5 or more and 25 or less, for example.
  • the semiconductor layer 13 is preferably formed using a material having a higher charge mobility and a larger band gap than the photoelectric conversion layer 14. Thereby, for example, charge transfer can be speeded up and hole injection from the readout electrode to the semiconductor layer 13 can be suppressed.
  • the semiconductor layer 13 includes, for example, an oxide semiconductor material.
  • the oxide semiconductor material include IGZO (In—Ga—Zn—O-based oxide semiconductor), ZTO (Zn—Sn—O-based oxide semiconductor; Zn 2 SnO 4 ), and IGZTO (In—Ga—Zn—). Examples thereof include Sn—O-based oxide semiconductors: InGaZnSnO), GTO (Ga—Sn—O-based oxide semiconductors; Ga 2 O 3 : SnO 2 ), and IGO (In—Ga—O-based oxide semiconductors).
  • the semiconductor layer 13 preferably uses at least one of the above oxide semiconductor materials, and among them, IGZO is preferably used.
  • the thickness of the semiconductor layer 13 is, for example, 30 nm to 200 nm, preferably 60 nm to 150 nm.
  • the photoelectric conversion layer 14 converts light energy into electric energy, and provides a field where excitons generated when absorbing light in a wavelength region of 700 nm to 2500 nm are separated into electrons and holes, for example.
  • the thickness of the photoelectric conversion layer 14 which is a thing is 100 nm or more and 1000 nm or less, for example, Preferably it is 300 nm or more and 800 nm or less.
  • the photoelectric conversion layer 14 includes semiconductor nanoparticles (semiconductor nanoparticles 14X) and has, for example, a configuration in which a plurality of semiconductor nanoparticles 14X are dispersed in a conductive polymer.
  • the semiconductor nanoparticles 14X are generally particles having a particle size of several to several tens of nanometers. For example, as shown in FIG. 5, the core part 14a, a shell layer 14b provided around the core part 14a, and a shell And a ligand portion 14c bonded to the surface of the layer 14b.
  • the shell layer 14b is not essential, and the semiconductor nanoparticles 14X may be composed of a core portion 14a and a ligand portion 14c bonded to the surface of the core portion 14a.
  • the material constituting the core portion 14a include silicon and selenium that are group IV semiconductors, and CuInGaSe, CuInSe 2 , CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , CuZnSnSSe, and ZnCuInSe that are chalcopyrite compounds.
  • the semiconductor nanoparticle 14X has a large band gap due to the quantum confinement effect when the particle size is smaller than twice the exciton-bohr radius of the material.
  • the semiconductor nanoparticles 14X of the present embodiment preferably have an average particle size of, for example, 3 nm or more and 6 nm or less.
  • the particle size of the semiconductor nanoparticles 14X is the particle size of the core portion 14a or the core portion 14a including the shell layer 14b when the core portion 14a is covered by the shell layer 14b.
  • size of the core part 14a containing the core part 14a and the shell layer 14b can be adjusted with the raw material supply amount at the time of those synthesis
  • the ligand part 14c is composed of, for example, an adsorption group that interacts with the surface of the core part 14a or the shell layer 14b, and an alkyl chain that binds to the adsorption group.
  • the number of carbons in the alkyl chain is, for example, 2 to 50
  • the adsorbing group is, for example, amine, phosphone, phosphine, carboxyl, hydroxyl, thiol.
  • halogen atoms such as chlorine (Cl), bromine (Br), and iodine (I) may be used.
  • the photoelectric conversion layer 14 of the present embodiment preferably has a relative dielectric constant ( ⁇ CQD ) that is less than 3 with respect to the relative dielectric constant of the semiconductor layer 13, in other words, the photoelectric conversion layer 14.
  • ⁇ CQD relative dielectric constant
  • the photoelectric conversion layer 14 Preferably has a dielectric constant satisfying ⁇ CQD / ⁇ S ⁇ 3.
  • the relative dielectric constant of the semiconductor layer 13 is 10
  • the relative dielectric constant of the photoelectric conversion layer 14 is preferably less than 30. This makes it possible to apply a strong electric field to the photoelectric conversion layer 14 and suppress recombination of electron-hole pairs generated in the photoelectric conversion layer 14 due to photoelectric conversion.
  • the relative dielectric constant of the photoelectric conversion layer 14 can be controlled, for example, by changing the type of the semiconductor nanoparticles 14X to be used. Moreover, the relative dielectric constant of the photoelectric conversion layer 14 can be controlled by changing the volume ratio of the semiconductor nanoparticles 14 ⁇ / b> X included in the photoelectric conversion layer 14. As a method for changing the volume ratio of the semiconductor nanoparticles 14X contained in the photoelectric conversion layer 14, the following three methods may be mentioned. First, the first method includes changing the size of the core portion 14a constituting the semiconductor nanoparticle 14X.
  • the volume ratio of the core portion 14a in the semiconductor nanoparticle 14X is reduced by reducing the particle size of the core portion 14a, and the photoelectric conversion layer 14 using the same.
  • the second method is to change the length of the ligand portion 14c. For example, when the core part 14a having the same particle diameter is used, by increasing the length of the ligand part 14c, the volume ratio of the core part 14a in the semiconductor nanoparticle 14X becomes small, and the photoelectric conversion layer 14 using the same. The relative dielectric constant of decreases.
  • a photoelectric conversion layer 14 may be formed by mixing a conductive material having a relative dielectric constant lower than that of the core portion 14a with the core portion 14a.
  • the relative dielectric constant of the photoelectric conversion layer can be lowered by increasing the mixing ratio of the conductive materials.
  • the ligand part 14c used in the second method includes, for example, acenes such as anthracene, carrier conductivity such as thiophene compound represented by the following formula (1) and S-adenosine methionine (SAM) It is preferable to use one having
  • the conductive material to be mixed with the core part 14a in the third method uses the following carrier conductive polymer instead of the ligand part 14c, and mixes with the core part 14a covered with the core part 14a or the shell layer 14b. You may make it use.
  • carrier conductive polymer examples include PEDOT: PSS, low molecular thiophene polymer, 3-hexylthiophene (P3HT), phenyl C61 butyric acid methyl ester (PCBM), Poly [2,1,3-benzothiadiazole-4,7- diyl [4,4-bis (2-ethylhexyl) -4H-cyclopenta [2,1-b: 3,4-b ′] dithio-phene-2,6-diyl]] (PCPDTBT), poly (2,3 -bis (2-hexyldecyl) quinoxaline-5,8-diyl-alt-N- (2-hexyldecyl) -dithieno [3,2-b: 2 ', 3'-d] pyrrotgle) (PDTPQx-HD), poly [[4,8-bis] (2-ethylhexyl) oxy] benzo [1,2-b: 4-5-b ′] diophen
  • the upper electrode 15 is made of a light transmissive conductive material.
  • the upper electrode 15 may be separated for each unit pixel P, or may be formed as a common electrode for each unit pixel P.
  • the thickness of the upper electrode 15 is, for example, 10 nm to 200 nm.
  • another layer may be provided between the photoelectric conversion layer 14 and the upper electrode 15.
  • a work function such as MoO 3 , WO 3 , V 2 O 5 is large between the photoelectric conversion layer 14 and the upper electrode 15.
  • a layer made of a material may be added. Thereby, an internal electric field generated between the lower electrode 11 and the upper electrode 15 can be strengthened.
  • the near infrared light L incident on the photoelectric conversion element 10 from the upper electrode 15 side is absorbed by the photoelectric conversion layer 14.
  • the excitons generated thereby are separated into electrons and holes by exciton separation as shown in FIG. 6A, for example.
  • the charges (electrons and holes) generated here are caused by diffusion due to the carrier concentration difference or an internal electric field due to the work function difference between the anode (here, the upper electrode 15) and the cathode (here, the lower electrode 11). For example, as shown in FIG. 6B, they are conveyed to different electrodes.
  • the transport direction of electrons and holes is controlled by applying a potential between the lower electrode 11 and the upper electrode 15.
  • the electrons are carried as signal charges to the lower electrode 11 side.
  • the electrons carried to the lower electrode 11 side are accumulated in the semiconductor layer 13 on the storage electrode 11B, and then transferred to the readout electrode 11A and detected as a photocurrent, as shown in FIG. 6C.
  • the second surface 30B of the semiconductor substrate 30 includes, for example, a floating diffusion (floating diffusion layer) FD1 (region 36B in the semiconductor substrate 30) an amplifier transistor (modulation element) AMP, a reset transistor RST, a selection transistor SEL, and a multilayer Wiring 40 is provided.
  • the multilayer wiring 40 has a configuration in which, for example, wiring layers 41, 42, and 43 are laminated in an insulating layer 44.
  • the first surface 30A side of the semiconductor substrate 30 is represented as the light incident side S1
  • the second surface 30B side is represented as the wiring layer side S2.
  • a layer (fixed charge layer) 16A having a fixed charge, a dielectric layer 16B having an insulating property, and an interlayer insulating layer 17 are provided between the first surface 30A of the semiconductor substrate 30 and the lower electrode 11, for example.
  • a protective layer 18 is provided on the upper electrode 15.
  • a light shielding film 21 is provided on the readout electrode 11A, for example.
  • the light shielding film 21A does not extend to at least the storage electrode 11B, and may be provided so as to cover at least the region of the readout electrode 11A that is in direct contact with the photoelectric conversion layer 14.
  • the electrode is provided slightly larger than the readout electrode 11A formed in the same layer as the storage electrode 11B.
  • a color filter 22 is provided on the storage electrode 11B, for example.
  • the color filter 22 is, for example, for preventing visible light from entering the photoelectric conversion layer 14 and may be provided so as to cover at least the region of the storage electrode 11B.
  • FIG. 1 shows an example in which the light shielding film 21 and the color filter 22 are provided at different positions in the film thickness direction of the protective layer 18, they may be provided at the same position.
  • optical members such as a planarizing layer (not shown) and an on-chip lens 23 are disposed above the protective layer 18.
  • the fixed charge layer 16A may be a film having a positive fixed charge or a film having a negative fixed charge.
  • the material of the film having a negative fixed charge include hafnium oxide, aluminum oxide, zirconium oxide, tantalum oxide, and titanium oxide.
  • lanthanum oxide praseodymium oxide, cerium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holeium oxide, thulium oxide, ytterbium oxide, lutetium oxide
  • an yttrium oxide, an aluminum nitride film, a hafnium oxynitride film, an aluminum oxynitride film, or the like may be used.
  • the fixed charge layer 16A may have a configuration in which two or more kinds of films are stacked. Thereby, for example, in the case of a film having a negative fixed charge, the function as the hole accumulation layer can be further enhanced.
  • the material of the dielectric layer 16B is not particularly limited.
  • the dielectric layer 16B is formed of a silicon oxide film, TEOS, a silicon nitride film, a silicon oxynitride film, or the like.
  • the interlayer insulating layer 17 is constituted by, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these. .
  • the protective layer 18 is made of a light-transmitting material, for example, a single layer film made of any of silicon oxide, silicon nitride, silicon oxynitride, or the like, or a laminated film made of two or more of them. It is comprised by.
  • the thickness of the protective layer 18 is, for example, 100 nm to 30000 nm.
  • a through electrode 34 is provided between the first surface 30A and the second surface 30B of the semiconductor substrate 30.
  • the photoelectric conversion element 10 is connected to the gate Gamp of the amplifier transistor AMP and one source / drain region 36B of the reset transistor RST (reset transistor Tr1rst) that also serves as the floating diffusion FD1 through the through electrode 34.
  • the signal charge generated in the photoelectric conversion element 10 on the first surface 30A side of the semiconductor substrate 30 is favorably transferred to the second surface 30B side of the semiconductor substrate 30 through the through electrode 34, It is possible to improve the characteristics.
  • the lower end of the through electrode 34 is connected to a connection portion 41A in the wiring layer 41, and the connection portion 41A and the gate Gamp of the amplifier transistor AMP are connected via a lower first contact 45.
  • the connection portion 41A and the floating diffusion FD1 (region 36B) are connected via, for example, the lower second contact 46.
  • the upper end of the through electrode 34 is connected to the readout electrode 11A via, for example, the pad portion 39A and the upper first contact 17A.
  • the through electrode 34 has a function as a connector between the photoelectric conversion element 10 and the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1, and serves as a transmission path for electric charges (here, electrons) generated in the photoelectric conversion element 10. It is.
  • the reset gate Grst of the reset transistor RST is arranged. Thereby, the charge accumulated in the floating diffusion FD1 can be reset by the reset transistor RST.
  • the semiconductor substrate 30 is composed of, for example, an n-type silicon (Si) substrate and has a p-well 31 in a predetermined region. On the second surface 30B of the p-well 31, the above-described amplifier transistor AMP, reset transistor RST, selection transistor SEL, and the like are provided. In addition, a peripheral circuit (not shown) including a logic circuit or the like is provided in the peripheral portion of the semiconductor substrate 30.
  • the reset transistor RST reset transistor Tr1rst resets the charge transferred from the photoelectric conversion element 10 to the floating diffusion FD1, and is configured by a MOS transistor, for example.
  • the reset transistor Tr1rst includes a reset gate Grst, a channel formation region 36A, and source / drain regions 36B and 36C.
  • the reset gate Grst is connected to the reset line RST1, and one source / drain region 36B of the reset transistor Tr1rst also serves as the floating diffusion FD1.
  • the other source / drain region 36C constituting the reset transistor Tr1rst is connected to the power supply VDD.
  • the amplifier transistor AMP is a modulation element that modulates the amount of charge generated in the photoelectric conversion element 10 into a voltage, and is configured by, for example, a MOS transistor.
  • the amplifier transistor AMP includes a gate Gamp, a channel formation region 35A, and source / drain regions 35B and 35C.
  • the gate Gamp is connected to the read electrode 11A and one source / drain region 36B (floating diffusion FD1) of the reset transistor Tr1rst through the lower first contact 45, the connecting portion 41A, the lower second contact 46, the through electrode 34, and the like.
  • one source / drain region 35B shares a region with the other source / drain region 36C constituting the reset transistor Tr1rst and is connected to the power supply VDD.
  • the selection transistor SEL selection transistor TR1sel
  • the selection transistor SEL includes a gate Gsel, a channel formation region 34A, and source / drain regions 34B and 34C.
  • the gate Gsel is connected to the selection line SEL1.
  • One source / drain region 34B shares a region with the other source / drain region 35C constituting the amplifier transistor AMP, and the other source / drain region 34C is a signal line (data output line) VSL1. It is connected to the.
  • the reset line RST1 and the selection line SEL1 are each connected to a vertical drive circuit 112 that constitutes a drive circuit.
  • the signal line (data output line) VSL1 is connected to the column signal processing circuit 113 constituting the drive circuit.
  • the lower first contact 45, the upper first contact 17A, the upper second contact 17B, and the upper third contact 17C are doped silicon materials such as PDAS (PhosphorusphorDoped Amorphous Silicon), or aluminum (Al), tungsten, for example. It is made of a metal material such as (W), titanium (Ti), cobalt (Co), hafnium (Hf), and tantalum (Ta).
  • PDAS PhosphorusphorDoped Amorphous Silicon
  • Al aluminum
  • tungsten for example. It is made of a metal material such as (W), titanium (Ti), cobalt (Co), hafnium (Hf), and tantalum (Ta).
  • the image sensor 1 of the present embodiment can be manufactured as follows, for example.
  • FIG. 7A to 7E show the manufacturing method of the image sensor 1 in the order of steps.
  • a p-well 31 is formed as a first conductivity type well in the semiconductor substrate 30.
  • a p + region is formed in the vicinity of the first surface 30 ⁇ / b> A of the semiconductor substrate 30.
  • the gate insulating layer 32, the selection transistor SEL, the amplifier transistor AMP, and the reset transistor RST are formed on the second surface 30B of the semiconductor substrate 30. And a gate wiring layer 47 including these gates. Thereby, the selection transistor SEL, the amplifier transistor AMP, and the reset transistor RST are formed. Further, the multilayer wiring 40 including the wiring layers 41 to 43 including the lower first contact 45, the lower second contact 46, and the connecting portion 41A and the insulating layer 44 is formed on the second surface 30B of the semiconductor substrate 30.
  • an SOI (Silicon On Insulator) substrate in which a semiconductor substrate 30, a buried oxide film (not shown), and a holding substrate (not shown) are stacked is used.
  • the buried oxide film and the holding substrate are bonded to the first surface 30A of the semiconductor substrate 30. After ion implantation, annealing is performed.
  • a support substrate (not shown) or another semiconductor substrate is joined to the second surface 30B side (multilayer wiring 40 side) of the semiconductor substrate 30 and turned upside down.
  • the semiconductor substrate 30 is separated from the buried oxide film of the SOI substrate and the holding substrate, and the first surface 30A of the semiconductor substrate 30 is exposed.
  • the above steps can be performed by techniques used in a normal CMOS process, such as ion implantation and CVD (Chemical Vapor Deposition).
  • the semiconductor substrate 30 is processed from the first surface 30A side by dry etching, for example, to form, for example, an annular opening 34H.
  • the depth of the opening 34H penetrates from the first surface 30A to the second surface 30B of the semiconductor substrate 30 and reaches, for example, the connection portion 41A.
  • a negative fixed charge layer 16A is formed on the first surface 30A of the semiconductor substrate 30 and the side surface of the opening 34H. Two or more types of films may be stacked as the negative fixed charge layer 16A. Thereby, the function as a hole accumulation layer can be further enhanced.
  • the dielectric layer 16B is formed.
  • the interlayer insulating layer 17 is formed on the dielectric layer 16B and the pad portions 39A, 39B, and 39C.
  • the surface of the interlayer insulating layer 17 is planarized by using, for example, a CMP (Chemical-Mechanical-Polishing) method.
  • openings 18H1, 18H2, and 18H3 are respectively formed in the interlayer insulating layer 17 on the pad portions 39A, 39B, and 39C, and then, for example, Al or the like is formed in the openings 18H1, 18H2, and 18H3. Then, the upper first contact 18A, the upper second contact 18B, and the upper third contact 18C are formed.
  • the conductive film 21x is formed on the interlayer insulating layer 17, the conductive film 21x is formed at predetermined positions (for example, on the pad portion 39A, the pad portion 39B, and the pad portion 39C).
  • a photoresist PR is formed.
  • the readout electrode A, the storage electrode 11B, and the transfer electrode 11C shown in FIG. 7E are patterned by etching and removing the photoresist PR.
  • an opening 12H is provided on the readout electrode 11A.
  • the semiconductor layer 13, the photoelectric conversion layer 14, the upper electrode 15, the protective layer 19, the light shielding film 21, and the color filter 22 are formed on the interlayer insulating layer 17.
  • an optical member such as a planarizing layer and an on-chip lens 23 are disposed.
  • the photoelectric conversion element 10 is connected to the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1 through the through electrode 34. Therefore, electrons (signal charges) of the electron-hole pairs generated in the photoelectric conversion element 10 are taken out from the lower electrode 11 side and transferred to the second surface 30B side of the semiconductor substrate 30 through the through electrode 34. Are accumulated in the floating diffusion FD1. At the same time, the charge amount generated in the photoelectric conversion element 10 is modulated into a voltage by the amplifier transistor AMP.
  • a reset gate Grst of the reset transistor RST is disposed next to the floating diffusion FD1. Thereby, the electric charge accumulated in the floating diffusion FD1 is reset by the reset transistor RST.
  • the photoelectric conversion element 10 is connected not only to the amplifier transistor AMP but also to the floating diffusion FD1 through the through electrode 34, the charge accumulated in the floating diffusion FD1 can be easily obtained by the reset transistor RST. It becomes possible to reset to.
  • FIG. 8 shows an operation example of the photoelectric conversion element 10.
  • A shows the potential at the storage electrode 11B
  • B shows the potential at the floating diffusion FD1 (reading electrode 11A)
  • C shows the potential at the gate (Gsel) of the reset transistor TR1rst. It is.
  • voltages are individually applied to the readout electrode 11A, the storage electrode 11B, and the transfer electrode 11C.
  • the potential V1 is applied from the drive circuit to the readout electrode 11A, and the potential V2 is applied to the storage electrode 11B.
  • the potentials V1 and V2 satisfy V1> V2.
  • signal charges (electrons here) generated by the photoelectric conversion are attracted to the storage electrode 11B and stored in the region of the semiconductor layer 13 facing the storage electrode 11B (storage period).
  • the potential of the region of the semiconductor layer 13 facing the storage electrode 11B becomes a more positive value as the photoelectric conversion time elapses.
  • the holes are sent from the upper electrode 15 to the drive circuit.
  • a reset operation is performed in the later stage of the accumulation period. Specifically, at timing t1, the scanning unit changes the voltage of the reset signal RST from a low level to a high level. Thereby, in the unit pixel P, the reset transistor TR1rst is turned on. As a result, the voltage of the floating diffusion FD1 is set to the power supply voltage VDD, and the voltage of the floating diffusion FD1 is reset (reset period).
  • the charge is read out. Specifically, at timing t2, the potential V3 is applied from the drive circuit to the readout electrode 11A, the potential V4 is applied to the storage electrode 11B, and the potential V5 is applied to the transfer electrode 11C.
  • the potentials V3, V4, and V5 satisfy V4> V5> V3.
  • the signal charge accumulated in the region corresponding to the storage electrode 11B moves from the storage electrode 11B to the transfer electrode 11C and the readout electrode 11A in this order, and is read from the readout electrode 11A to the floating diffusion FD1. That is, the charge accumulated in the semiconductor layer 13 is read out to the control unit (transfer period).
  • the potential V1 is again applied from the drive circuit to the read electrode 11A, and the potential V2 is applied to the storage electrode 11B.
  • the signal charge generated by the photoelectric conversion is attracted to the storage electrode 11B and stored in the region of the semiconductor layer 13 facing the storage electrode 11B (storage period).
  • a photoelectric conversion element using semiconductor nanoparticles in a photoelectric conversion layer has been developed as a photoelectric conversion element having sensitivity to near infrared light.
  • a semiconductor layer is provided between the lower electrode and the photoelectric conversion layer, for example, like the photoelectric conversion element 1000 illustrated in FIG. Yes.
  • the semiconductor layer is for accumulating the charge generated in the photoelectric conversion layer on the charge accumulation electrode constituting the lower electrode and transferring the accumulated charge to the charge collection electrode.
  • the mobility of the charge It is formed using an oxide semiconductor material such as high IGZO.
  • a photoelectric conversion element in which a semiconductor layer and a photoelectric conversion layer using semiconductor nanoparticles are stacked there is a concern about an increase in dark current and a decrease in quantum efficiency.
  • FIG. 9 shows a potential distribution between electrodes during light irradiation of a general photoelectric conversion element.
  • the horizontal axis in FIG. 9 indicates the distance from the interface between the electrode disposed on the light incident side and the photoelectric conversion layer. Accordingly, the film thickness of 0 nm is an interface with the electrode disposed on the light incident side, the film thickness of 300 nm is the interface with the electrode disposed on the opposite side to the light incident side, and the film thickness of 200 nm is between the photoelectric conversion layer and This corresponds to the interface with the semiconductor layer.
  • the solid line for example, a semiconductor layer having a dielectric constant 10 in donor concentration (N D) 10 15 cm -3 , between the electrodes of the photoelectric conversion device using a photoelectric conversion layer having a dielectric constant 30 It represents the potential distribution.
  • the broken line in FIG. 9 indicates, for example, between the electrodes of a photoelectric conversion element using a semiconductor layer having a donor density (N D ) of 10 18 cm ⁇ 3 and a relative dielectric constant of 10 and a photoelectric conversion layer having a relative dielectric constant of 30. It represents the potential distribution.
  • N D donor density
  • the energy change in the range of 0 nm to 200 nm corresponding to the photoelectric conversion layer is small compared to the energy change in the film thickness of 200 nm to 300 nm corresponding to the semiconductor layer. It can be seen that the internal electric field applied to the photoelectric conversion layer during light irradiation is weak. It can also be seen that the lower the carrier density (donor density) of the semiconductor layer to be joined, the less the internal electric field is applied to the photoelectric conversion layer during light irradiation.
  • the quantum efficiency of a photoelectric conversion element is improved by laminating an n-type semiconductor layer and a photoelectric conversion layer.
  • a photoelectric conversion element provided with a plurality of independent electrodes on the side opposite to the light incident side is used for charge accumulation and transfer operations.
  • the semiconductor layer needs to be depleted.
  • an internal electric field is hardly applied to the photoelectric conversion layer as shown in FIG. 9 due to the difference in relative dielectric constant. Therefore, the charge transfer depends on diffusion conduction, and the quantum efficiency decreases.
  • the relative dielectric constant ( ⁇ CQD ) of the photoelectric conversion layer 14 is ⁇ with respect to the relative dielectric constant ( ⁇ S ) of the semiconductor layer 13. CQD / ⁇ S ⁇ 3 was satisfied.
  • FIG. 10 shows the potential distribution between the electrodes when the photoelectric conversion element 10 is irradiated with light.
  • the horizontal axis of FIG. 10 shows the distance from the interface between the electrode (upper electrode 15) and the photoelectric conversion layer (photoelectric conversion layer 14) arranged on the light incident side, as in FIG.
  • the film thickness of 0 nm is the interface with the upper electrode 15
  • the film thickness 300 is the interface with the lower electrode 11
  • the film thickness of 200 nm corresponds to the interface between the photoelectric conversion layer 14 and the semiconductor layer 13.
  • the solid line in FIG. 10 represents the potential distribution between the electrodes of the photoelectric conversion element using the photoelectric conversion layer of this embodiment.
  • the broken line in FIG. 10 represents the potential distribution between the electrodes of the photoelectric conversion element using the semiconductor layer having the donor density (N D ) 10 15 cm ⁇ 3 shown in FIG. 9 as a comparative example.
  • the relative dielectric constant ( ⁇ r ) of the photoelectric conversion layer in the comparative example is 30, the relative dielectric constant ( ⁇ CQD ) of the photoelectric conversion layer 14 of the photoelectric conversion element 10 of the present embodiment is 15. Yes.
  • the relative dielectric constant ( ⁇ r ) of the semiconductor layer is 10 for both the comparative example and the photoelectric conversion element 10.
  • the photoelectric conversion element 10 of this Embodiment as shown in FIG. 10, it turns out that the strong internal electric field is applied to the photoelectric converting layer 14 at the time of light irradiation compared with a comparative example. Therefore, the efficiency of transport of electrons generated in the photoelectric conversion layer 14 to the storage electrode 11B is improved, and recombination of electron-hole pairs in the photoelectric conversion layer 14 can be suppressed.
  • the relative dielectric constant of the photoelectric conversion layer 14 is reduced with respect to the relative dielectric constant ( ⁇ S ) of the semiconductor layer 13 by reducing the relative dielectric constant of the photoelectric conversion layer 14. Since ⁇ CQD ) satisfies ⁇ CQD / ⁇ S ⁇ 3, a strong electric field is applied to the photoelectric conversion layer 14. Therefore, charge recombination in the photoelectric conversion layer 14 is suppressed, and quantum efficiency can be improved.
  • FIG. 11 illustrates the overall configuration of an imaging apparatus (imaging apparatus 100) that uses the imaging element 1 described in the above embodiment for each pixel.
  • This imaging device 100 is a CMOS image sensor, and has a pixel unit 1a as an imaging area on a semiconductor substrate 30, and, for example, a row scanning unit 131, a horizontal selection unit 133, and the like in a peripheral region of the pixel unit 1a.
  • a peripheral circuit unit 130 including a column scanning unit 134 and a system control unit 132 is provided.
  • the pixel unit 1a has, for example, a plurality of unit pixels P that are two-dimensionally arranged in a matrix.
  • a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for reading a signal from the pixel.
  • One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
  • the row scanning unit 131 is configured by a shift register, an address decoder, or the like, and is a pixel driving unit that drives each unit pixel P of the pixel unit 1a, for example, in units of rows.
  • a signal output from each unit pixel P of the pixel row that is selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig.
  • the horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
  • the column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel transmitted through each of the vertical signal lines Lsig is sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 30 through the horizontal signal line 135. .
  • the circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 30 or provided in the external control IC. It may be. In addition, these circuit portions may be formed on another substrate connected by a cable or the like.
  • the system control unit 132 receives a clock given from the outside of the semiconductor substrate 30, data for instructing an operation mode, and the like, and outputs data such as internal information of the imaging apparatus 100.
  • the system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Peripheral circuit drive control.
  • FIG. 12 shows a schematic configuration of an electronic device 200 (camera) as an example.
  • the electronic device 200 is, for example, a video camera capable of shooting a still image or a moving image, and drives the imaging device 100, an optical system (optical lens) 210, a shutter device 211, the imaging device 100, and the shutter device 211.
  • a driving unit 213 and a signal processing unit 212 are included.
  • the optical system 210 guides image light (incident light) from a subject to the pixel unit 1a of the imaging apparatus 100.
  • the optical system 210 may be composed of a plurality of optical lenses.
  • the shutter device 211 controls a light irradiation period and a light shielding period for the imaging apparatus 100.
  • the drive unit 213 controls the transfer operation of the imaging device 100 and the shutter operation of the shutter device 211.
  • the signal processing unit 212 performs various signal processing on the signal output from the imaging apparatus 100.
  • the video signal Dout after the signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
  • the technology (present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 13 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
  • the in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient.
  • Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
  • an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
  • the capsule endoscope 10100 includes a capsule-type casing 10101.
  • a light source unit 10111 In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
  • the light source unit 10111 includes a light source such as an LED (light-emitting diode), and irradiates the imaging field of the imaging unit 10112 with light.
  • a light source such as an LED (light-emitting diode)
  • the image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various types of signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A.
  • the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A.
  • the wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
  • the power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115.
  • FIG. 13 in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111.
  • the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
  • the control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
  • a processor such as a CPU
  • the external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • the capsule endoscope 10100 for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200.
  • an imaging condition for example, a frame rate or an exposure value in the imaging unit 10112
  • a control signal from the external control device 10200 can be changed by a control signal from the external control device 10200.
  • the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device.
  • image processing for example, development processing (demosaic processing), image quality enhancement processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed.
  • the external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data.
  • the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 10112 among the configurations described above. Thereby, detection accuracy improves.
  • Application example 4 ⁇ Application example to endoscopic surgery system>
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 14 illustrates a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: “Camera Control Unit”) 11201 as RAW data.
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • image processing for example, development processing (demosaic processing
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 includes a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (light emitting diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow-band light observation (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging device constituting the imaging unit 11402 may be one (so-called single plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of lens units 11401 can be provided corresponding to each imaging element.
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good.
  • a so-called AE (Auto-Exposure) function, AF (Auto-Focus) function, and AWB (Auto-White Balance) function are mounted on the endoscope 11100.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be any type of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). You may implement
  • FIG. 16 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 17 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 17 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the sample for evaluation was produced using the following method, and the external quantum efficiency (EQE) and photoresponsiveness were evaluated.
  • EQE external quantum efficiency
  • a glass substrate provided with an ITO electrode having a thickness of 50 nm was washed by UV / ozone treatment, and then a 100 nm thick semiconductor layer made of IGZO was formed on the ITO electrode by sputtering. Subsequently, the substrate was subjected to heat treatment at 350 ° C. for 1 hour in the atmosphere to deplete IGZO.
  • PbS nanoparticles in which oleic acid is coordinated on the surface of the nanoparticles are used as semiconductor nanoparticles, and this and P3HT are dispersed in a chloroform solvent and applied onto the semiconductor layer at a rotational speed of 2500 rpm by a spin coating method. A photoelectric conversion layer was formed.
  • the amount of PbS nanoparticles and P3HT added to the chloroform solvent is such that, for example, when the volume ratio of PbS nanoparticles in the photoelectric conversion layer after film formation is 20%, PbS nanoparticles are added to 1 ml of chloroform. Disperse 70 mg, 30 mg of P3HT. The volume ratio can be adjusted in proportion to the amount of nanoparticles and P3HT. Subsequently, a solution of BDT (1,4-benzenedithiol) dispersed in acetonitrile solvent at a concentration of 0.05 mol / L was added dropwise to exchange the ligand of PbS nanoparticles from oleic acid to BDT.
  • This operation reduces the distance between the nanoparticles and improves the carrier conductivity between the nanoparticles.
  • acetonitrile was added dropwise to wash away excess organic substances such as oleic acid, and then heat treatment was performed at 150 ° C. for 10 minutes in an inert gas atmosphere to remove the residual solvent.
  • an MoO 3 film having a thickness of 10 nm was formed on the photoelectric conversion layer using a vacuum deposition method, and an ITO film having a thickness of 50 nm was further stacked using a sputtering method, thereby forming an upper electrode.
  • a photoelectric conversion element having a 1 mm ⁇ 1 mm photoelectric conversion region was produced.
  • FIG. 18A shows the relationship between the relative dielectric constant and EQE of the photoelectric conversion layer in which the volume ratio of the PbS nanoparticles is changed.
  • EQE is normalized based on the relative dielectric constant ( ⁇ r ) 30 of the photoelectric conversion layer in a general photoelectric conversion element.
  • FIG. 18B shows the relationship between the ratio of the relative permittivity of the photoelectric conversion layer to the relative permittivity of the semiconductor layer ( ⁇ CQD / ⁇ S ) and EQE.
  • FIG. 19 shows the relationship between the volume ratio of semiconductor nanoparticles (PbS nanoparticles) in the photoelectric conversion layer, EQE, and photoresponse time using these samples.
  • the relative permittivity of the photoelectric conversion layer is determined by forming a photoelectric conversion layer on a glass substrate provided with an ITO electrode using the same method, and separately preparing an element having an upper electrode made of Al.
  • the effective area of the element, photoelectric conversion It calculated using the capacity
  • EQE was evaluated using a semiconductor parameter analyzer. Specifically, the amount of light (wavelength 940 nm) irradiated from the LED light source to the photoelectric conversion element via the bandpass filter is 10 ⁇ W / cm 2 and the reverse bias voltage applied between the electrodes is 3 V.
  • the external photoelectric conversion efficiency was calculated from the bright current value and the dark current value.
  • the light response time was measured by using a digital oscilloscope to measure how the bright current value observed during light irradiation falls after the light is blocked. Specifically, light having a wavelength of 940 nm was irradiated for 100 ms at a light amount of 50 ⁇ W / cm 2 , and the reverse bias voltage applied between the electrodes was set to 3V. The time from immediately after the light interruption until the current value attenuates to 10% at the time of light irradiation was defined as the light response time, which was defined as the light response time.
  • FIG. 18A shows that EQE decreases in proportion to the relative dielectric constant of the photoelectric conversion layer.
  • the solid line shows the device simulation result by the drift diffusion model optimized within the range of values that the physical property parameters of the semiconductor layer and the photoelectric conversion layer can take.
  • FIG. 18B shows the quantum efficiencies obtained by combining a semiconductor layer having a relative dielectric constant in the range of 5 to 25 and a photoelectric conversion layer having a relative dielectric constant in the range of 10 to 50 based on these physical property parameters. The results obtained by device simulation and plotted against ⁇ CQD / ⁇ S are shown.
  • the ratio of the relative dielectric constant of the semiconductor layer to the relative dielectric constant of the photoelectric conversion layer is preferably ⁇ CQD / ⁇ S ⁇ 3. More preferably, ⁇ CQD / ⁇ S ⁇ 2.6. From FIG. 19, it was found that the photoresponse time was shortened with an increase in the volume ratio of the PbS nanoparticles. This can be presumed that the photoresponsiveness of the photoelectric conversion element is determined by the hole transporting property of P3HT, and the photoresponsiveness is improved by reducing the volume ratio of P3HT. On the other hand, a decrease in EQE was confirmed with an increase in the volume ratio of PbS nanoparticles.
  • the volume ratio of PbS nanoparticles in the photoelectric conversion layer is preferably 17% or more and 26% or less in order to achieve both photoresponsiveness and EQE.
  • the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible.
  • the example in which the photoelectric conversion element 10 that photoelectrically converts light having a wavelength in the near-infrared region is used alone in the imaging element 1 is shown.
  • visible light or the like other than the near-infrared region You may use in combination with the other photoelectric conversion element which photoelectrically converts the light of this wavelength.
  • the other photoelectric conversion element include a so-called inorganic photoelectric conversion element embedded in the semiconductor substrate 30 and a so-called organic photoelectric conversion element in which a photoelectric conversion layer is formed using an organic semiconductor material.
  • the configuration of the back-illuminated image sensor 1 is described as an example, but the present invention can also be applied to a front-illuminated image sensor.
  • it when used in combination with other photoelectric conversion elements, it may be configured as a so-called vertical spectral imaging element, or photoelectric conversion of light in other wavelength ranges on a semiconductor substrate.
  • the photoelectric conversion elements may be two-dimensionally arrayed (for example, Bayer array).
  • a substrate on which another functional element such as a memory element is provided on the multilayer wiring side may be laminated.
  • the photoelectric conversion element 10, the imaging element 1, and the imaging apparatus 100 according to the present disclosure do not have to include all the constituent elements described in the above-described embodiments and the like, and conversely, may include other layers. Good.
  • the technology of the present disclosure can be applied not only to an imaging device but also to, for example, a solar battery.
  • the present disclosure may be configured as follows.
  • a first electrode comprising a plurality of electrodes independent from each other;
  • a second electrode disposed opposite to the first electrode;
  • the photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, the dielectric constant of the semiconductor layer in the case of the ⁇ S, ⁇ CQD / ⁇ S ⁇ photoelectric conversion element meets 3.
  • the said semiconductor layer is a photoelectric conversion element as described in said (1) which has a carrier density of 1 * 10 ⁇ 17 > cm ⁇ -3> or less.
  • the photoelectric conversion layer further contains a conductive polymer, The photoelectric conversion element according to (1) or (2), wherein the semiconductor nanoparticles are dispersed in the conductive polymer.
  • the semiconductor nanoparticles have a core part and a ligand part bonded to the surface of the core part,
  • the core portion includes at least one of PbS, PbSe, PbTe, CuInSe 2 , ZnCuInSe, CuInS 2 , HgTe, InAs, InSb, Ag 2 S, CuZnSnSSe, (1) to (1) 4)
  • the semiconductor nanoparticles further have a shell layer provided around the core part, The photoelectric conversion element according to (5), wherein the shell layer includes at least one of PbO, PbO 2 , Pb 3 O 4 , ZnS, ZnSe, and ZnTe.
  • the semiconductor layer includes at least one of IGZO, ZTO, Zn 2 SnO 4 , InGaZnSnO, GTO, Ga 2 O 3 : SnO 2 and IGO.
  • the photoelectric conversion element as described.
  • the first electrode is made of titanium (Ti), silver (Ag), aluminum (Al), magnesium (Mg), chromium (Cr), nickel (Ni), tungsten (W), or copper (Cu). Formed, The photoelectric conversion element according to any one of (1) to (7), wherein the second electrode is formed using indium tin oxide (ITO).
  • the first electrode is disposed opposite to the photoelectric conversion layer with a charge readout electrode electrically connected to the photoelectric conversion layer through an opening provided in the insulating layer, and the insulating layer interposed therebetween.
  • the photoelectric conversion element according to any one of (1) to (8) comprising a charge storage electrode.
  • (11) The photoelectric conversion element according to any one of (1) to (10), wherein a voltage is individually applied to each of the plurality of electrodes constituting the first electrode.
  • the photoelectric conversion element as described.
  • the photoelectric conversion element is A first electrode comprising a plurality of electrodes independent from each other; A second electrode disposed opposite to the first electrode; A photoelectric conversion layer including semiconductor nanoparticles and provided between the first electrode and the second electrode; Including an oxide semiconductor material, and having a semiconductor layer provided between the first electrode and the photoelectric conversion layer, The photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, when the relative dielectric constant epsilon S of the semiconductor layer, ⁇ CQD / ⁇ S ⁇ 3 was filled with and the imaging device.

Abstract

One embodiment of this photoelectric conversion element comprises: a first electrode consisting of a plurality of mutually independent electrodes; a second electrode disposed opposing the first electrode; a photoelectric conversion layer that contains semiconductor nanoparticles and that is disposed between the first electrode and the second electrode; and a semiconductor layer that contains an oxide semiconductor material and that is disposed between the first electrode and the photoelectric conversion layer. The photoelectric conversion layer satisfies εCQDS<3 if the dielectric constant of the photoelectric conversion layer is εCQD and the dielectric constant of the semiconductor layer is εS.

Description

光電変換素子および撮像装置Photoelectric conversion element and imaging device
 本開示は、例えば、半導体ナノ粒子を含む光電変換層を有する光電変換素子およびこれを備えた撮像装置に関する。 The present disclosure relates to, for example, a photoelectric conversion element having a photoelectric conversion layer containing semiconductor nanoparticles and an imaging apparatus including the photoelectric conversion element.
 CCD(Charge Coupled Device)イメージセンサ、あるいはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像装置では、画素サイズの縮小化が進んでいる。半導体基板の外部に光電変換部を有する撮像装置では、光電変換によって生成した電荷は、半導体基板内に形成された浮遊拡散層(フローティングディフュージョン;FD)内に電荷を蓄積することが一般的である。 In an imaging apparatus such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, the pixel size is being reduced. In an imaging device having a photoelectric conversion unit outside a semiconductor substrate, charges generated by photoelectric conversion are generally accumulated in a floating diffusion layer (floating diffusion; FD) formed in the semiconductor substrate. .
 ところで、半導体基板内に光電変換部を設けた撮像装置では、光電変換によって生成した電荷は、半導体基板内の光電変換部に一旦蓄積されたのちFDに転送される。このため、光電変換部を完全空乏化することができる。これに対して、半導体基板の外部に設けられた光電変換部では、上記のように、光電変換部よって生成した電荷は直接FDに蓄積されるため、光電変換部を完全に空乏化することは難しく、kTCノイズが大きくなり、ランダムノイズが悪化して撮像画質の低下をもたらしていた。 By the way, in an imaging device provided with a photoelectric conversion unit in a semiconductor substrate, the charge generated by the photoelectric conversion is once accumulated in the photoelectric conversion unit in the semiconductor substrate and then transferred to the FD. For this reason, a photoelectric conversion part can be completely depleted. On the other hand, in the photoelectric conversion unit provided outside the semiconductor substrate, the charge generated by the photoelectric conversion unit is directly accumulated in the FD as described above, so that the photoelectric conversion unit is completely depleted. It was difficult, kTC noise became large, random noise worsened, and the picked-up image quality was reduced.
 これに対して、例えば、特許文献1では、光電変換層を間に対向配置された第1電極および第2電極のうち、光入射側とは反対側に配置された第1電極側に、第1電極とは離間して配置され、且つ、絶縁層を介して光電変換層に対向して配置された電荷蓄積用の電極を設けた撮像素子が開示されている。この撮像素子では、光電変換によって生成した電荷を光電変換層内に蓄積することができ、露光開始時に電荷蓄積部を完全空乏化することが可能となる。よって、撮像画質の低下を低減することが可能となる。 On the other hand, for example, in Patent Document 1, among the first electrode and the second electrode disposed so as to face each other with the photoelectric conversion layer interposed therebetween, the first electrode side disposed on the side opposite to the light incident side is An image sensor is disclosed that is provided with a charge storage electrode that is spaced apart from one electrode and that is opposed to a photoelectric conversion layer with an insulating layer interposed therebetween. In this imaging device, charges generated by photoelectric conversion can be stored in the photoelectric conversion layer, and the charge storage portion can be completely depleted at the start of exposure. Therefore, it is possible to reduce a decrease in image quality.
特開2017-157816号公報JP 2017-157816 A 特開2010-177392号公報JP 2010-177392 A
 ところで、近年、近赤外光に感度を有する光電変換素子として、例えば、特許文献2において光電変換層に半導体ナノ粒子を用いた光電変換素子が開発されている。半導体ナノ粒子を用いて光電変換層を形成した光電変換素子では、量子効率の向上が求められている。 Incidentally, in recent years, as a photoelectric conversion element having sensitivity to near-infrared light, for example, in Patent Document 2, a photoelectric conversion element using semiconductor nanoparticles in a photoelectric conversion layer has been developed. In a photoelectric conversion element in which a photoelectric conversion layer is formed using semiconductor nanoparticles, improvement in quantum efficiency is required.
 量子効率を向上させることが可能な光電変換素子および撮像装置を提供することが望ましい。 It is desirable to provide a photoelectric conversion element and an imaging device that can improve quantum efficiency.
 本開示の一実施形態の光電変換素子は、互いに独立する複数の電極からなる第1電極と、第1電極と対向配置された第2電極と、半導体ナノ粒子を含むと共に、第1電極と第2電極との間に設けられた光電変換層と、酸化物半導体材料を含むと共に、第1電極と光電変換層との間に設けられた半導体層とを備えたものであり、光電変換層は、光電変換層の比誘電率をεCQD、半導体層の比誘電率をεSとした場合に、εCQD/εS<3を満たしている。 A photoelectric conversion element according to an embodiment of the present disclosure includes a first electrode including a plurality of independent electrodes, a second electrode disposed opposite to the first electrode, semiconductor nanoparticles, a first electrode, The photoelectric conversion layer provided between the two electrodes and an oxide semiconductor material and a semiconductor layer provided between the first electrode and the photoelectric conversion layer are provided. When the relative dielectric constant of the photoelectric conversion layer is ε CQD and the relative dielectric constant of the semiconductor layer is ε S , ε CQD / ε S <3 is satisfied.
 本開示の一実施形態の撮像装置は、1または複数の光電変換素子がそれぞれ設けられている複数の画素を備えたものであり、光電変換素子として、上記一実施形態の光電変換素子を有する。 An imaging apparatus according to an embodiment of the present disclosure includes a plurality of pixels each provided with one or a plurality of photoelectric conversion elements, and includes the photoelectric conversion element according to the embodiment described above as a photoelectric conversion element.
 本開示の一実施形態の光電変換素子および一実施形態の撮像装置では、対向配置された第1電極と第2電極との間に半導体ナノ粒子を含む光電変換層および酸化物半導体材料を含む半導体層を有し、光電変換層の比誘電率をεCQD、半導体層の比誘電率をεSとした場合に、光電変換層の比誘電率がεCQD/εS<3を満たすようにした。これにより、光電変換層に強い電界を印加して光電変換によって生成した電荷の再結合を抑制する。 In the photoelectric conversion element according to an embodiment of the present disclosure and the imaging device according to an embodiment, a semiconductor including a photoelectric conversion layer including a semiconductor nanoparticle and an oxide semiconductor material between a first electrode and a second electrode arranged to face each other. The dielectric constant of the photoelectric conversion layer is ε CQD , and the relative dielectric constant of the semiconductor layer is ε S , so that the relative dielectric constant of the photoelectric conversion layer satisfies ε CQD / ε S <3 . This suppresses recombination of charges generated by photoelectric conversion by applying a strong electric field to the photoelectric conversion layer.
 本開示の一実施形態の光電変換素子および一実施形態の撮像装置によれば、第1電極と第2電極との間に、酸化物半導体材料を含む半導体層および半導体ナノ粒子を含む光電変換層をこの順に設け、光電変換層の比誘電率が(εCQD)が半導体層の比誘電率(εS)に対してεCQD/εS<3を満たすようにしたので、光電変換層に強い電界が印加されるようになる。よって、光電変換層内における電荷の再結合が抑制され、量子効率を向上させることが可能となる。 According to the photoelectric conversion element of one embodiment of the present disclosure and the imaging apparatus of one embodiment, a semiconductor layer including an oxide semiconductor material and a photoelectric conversion layer including semiconductor nanoparticles between the first electrode and the second electrode. Are provided in this order, and the relative dielectric constant of the photoelectric conversion layer (ε CQD ) satisfies ε CQD / ε S <3 with respect to the relative dielectric constant (ε S ) of the semiconductor layer. An electric field is applied. Therefore, charge recombination in the photoelectric conversion layer is suppressed, and quantum efficiency can be improved.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present disclosure.
本開示の実施の形態に係る撮像素子の断面模式図である。It is a cross-sectional schematic diagram of an image sensor according to an embodiment of the present disclosure. 図1に示した光電変換素子の断面模式図である。It is a cross-sectional schematic diagram of the photoelectric conversion element shown in FIG. 図1に示した撮像素子の等価回路図である。FIG. 2 is an equivalent circuit diagram of the image sensor shown in FIG. 1. 図1に示した撮像素子の下部電極および制御部を構成するトランジスタの配置を表す模式図である。It is a schematic diagram showing arrangement | positioning of the transistor which comprises the lower electrode and control part of the image pick-up element shown in FIG. 半導体ナノ粒子の断面構成の模式図である。It is a schematic diagram of the cross-sectional structure of a semiconductor nanoparticle. 図1に示した光電変換素子の動作原理を説明する図である。It is a figure explaining the principle of operation of the photoelectric conversion element shown in FIG. 図1に示した光電変換素子の動作原理を説明する図である。It is a figure explaining the principle of operation of the photoelectric conversion element shown in FIG. 図1に示した光電変換素子の動作原理を説明する図である。It is a figure explaining the principle of operation of the photoelectric conversion element shown in FIG. 図1に示した撮像素子の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the image pick-up element shown in FIG. 図7Aに続く工程を表す断面模式図である。It is a cross-sectional schematic diagram showing the process following FIG. 7A. 図7Bに続く工程を表す断面模式図である。It is a cross-sectional schematic diagram showing the process of following FIG. 7B. 図7Cに続く工程を表す断面模式図である。It is a cross-sectional schematic diagram showing the process of following FIG. 7C. 図7Dに続く工程を表す断面模式図である。It is a cross-sectional schematic diagram showing the process following FIG. 7D. 図1に示した光電変換素子の一動作例を表すタイミング図である。FIG. 3 is a timing diagram illustrating an operation example of the photoelectric conversion element illustrated in FIG. 1. 比較例としての光電変換素子の光照射時における電極間のポテンシャル分布図である。It is a potential distribution figure between electrodes at the time of light irradiation of the photoelectric conversion element as a comparative example. 図1に示した光電変換素子の光照射時における電極間のポテンシャル分布図である。FIG. 2 is a potential distribution diagram between electrodes when the photoelectric conversion element shown in FIG. 1 is irradiated with light. 図1に示した撮像素子を画素として用いた撮像装置の構成を表すブロック図である。It is a block diagram showing the structure of the imaging device which used the image pick-up element shown in FIG. 1 as a pixel. 図11に示した撮像装置を用いた電子機器(カメラ)の一例を表す機能ブロック図である。It is a functional block diagram showing an example of the electronic device (camera) using the imaging device shown in FIG. 体内情報取得システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of a camera head and CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part. 実施例における半導体層の比誘電率に対する光電変換層の比誘電率とEQEとの関係を表す特性図である。It is a characteristic view showing the relationship between the dielectric constant of the photoelectric converting layer with respect to the dielectric constant of the semiconductor layer in Example, and EQE. 実施例における半導体層の比誘電率に対する光電変換層の比誘電率の比(εCQD/εS)とEQEとの関係を表す特性図である。It is a characteristic view showing the relationship between the ratio (ε CQD / ε S ) of the relative permittivity of the photoelectric conversion layer to the relative permittivity of the semiconductor layer in the example and EQE. 実施例における半導体ナノ粒子の体積比率とEQEおよび応答時間との関係を表す特性図である。It is a characteristic view showing the relationship between the volume ratio of the semiconductor nanoparticle in an Example, EQE, and response time.
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態(光電変換層の比誘電率を制御した光電変換素子の例)
  1-1.撮像素子の構成
  1-2.撮像素子の製造方法
  1-3.撮像素子の制御方法
  1-4.作用・効果
 2.適用例
 3.実施例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The following description is one specific example of the present disclosure, and the present disclosure is not limited to the following aspects. In addition, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, and the like of each component illustrated in each drawing. The order of explanation is as follows.
1. Embodiment (an example of a photoelectric conversion element in which the relative dielectric constant of the photoelectric conversion layer is controlled)
1-1. Configuration of image sensor 1-2. Manufacturing method of imaging device 1-3. Image sensor control method 1-4. Action / Effect Application example Example
<1.実施の形態>
 図1は、本開示の一実施の形態に係る撮像素子(撮像素子1)の断面構成を模式的に表したものである。図2は、図1に示した撮像素子1の要部(光電変換素子10)の断面構成を拡大して模式的に表したものである。図3は、図1に示した撮像素子1の等価回路図である。図4は、図1に示した撮像素子1の下部電極11および制御部を構成するトランジスタの配置を模式的に表したものである。この撮像素子1は、例えば、CMOSイメージセンサ等の撮像装置(撮像装置100;図11参照)において1つの画素(単位画素P)を構成するものである。
<1. Embodiment>
FIG. 1 schematically illustrates a cross-sectional configuration of an imaging device (imaging device 1) according to an embodiment of the present disclosure. FIG. 2 schematically shows an enlarged cross-sectional configuration of a main part (photoelectric conversion element 10) of the image sensor 1 shown in FIG. FIG. 3 is an equivalent circuit diagram of the image sensor 1 shown in FIG. FIG. 4 schematically shows the arrangement of the transistors constituting the lower electrode 11 and the control unit of the image sensor 1 shown in FIG. The imaging device 1 constitutes one pixel (unit pixel P) in an imaging device (imaging device 100; see FIG. 11) such as a CMOS image sensor.
(1-1.撮像素子の構成)
 撮像素子1は、例えば、半導体基板30の第1面(裏面)30A側に光電変換素子10が設けられたものである。光電変換素子10は、対向配置された下部電極11(第1電極)と上部電極15(第2電極)との間に、半導体ナノ粒子を用いて形成された光電変換層14を有する。下部電極11と光電変換層14との間には、絶縁層12を介して半導体層13が設けられている。下部電極11は、互いに独立した複数の電極として読み出し電極11Aと、蓄積電極11Bと、例えば読み出し電極11Aと蓄積電極11Bとの間に配置された転送電極11Cとを有する。蓄積電極11Bおよび転送電極11Cは絶縁層12によって覆われ、読み出し電極11Aは絶縁層12に設けられた開口12Hを介して半導体層13と電気的に接続されている。本実施の形態の光電変換素子10は、半導体層13の比誘電率に対する光電変換層14の比誘電率の比が3未満となるように構成されたものである。
(1-1. Configuration of image sensor)
The imaging element 1 is, for example, one in which the photoelectric conversion element 10 is provided on the first surface (back surface) 30 </ b> A side of the semiconductor substrate 30. The photoelectric conversion element 10 includes a photoelectric conversion layer 14 formed using semiconductor nanoparticles between a lower electrode 11 (first electrode) and an upper electrode 15 (second electrode) arranged to face each other. A semiconductor layer 13 is provided between the lower electrode 11 and the photoelectric conversion layer 14 via an insulating layer 12. The lower electrode 11 includes a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C disposed between the readout electrode 11A and the storage electrode 11B, for example, as a plurality of independent electrodes. The storage electrode 11B and the transfer electrode 11C are covered with an insulating layer 12, and the readout electrode 11A is electrically connected to the semiconductor layer 13 through an opening 12H provided in the insulating layer 12. The photoelectric conversion element 10 of the present embodiment is configured such that the ratio of the relative dielectric constant of the photoelectric conversion layer 14 to the relative dielectric constant of the semiconductor layer 13 is less than 3.
 なお、本実施の形態では、光電変換によって生じる電子および正孔の対(電子-正孔対)のうち、電子を信号電荷として読み出す場合について説明する。また、図中において、「p」「n」に付した「+(プラス)」は、p型またはn型の不純物濃度が高いことを表し、「++」はp型またはn型の不純物濃度が「+」よりも更に高いことを表している。 In the present embodiment, a case will be described in which electrons are read out as signal charges out of electron-hole pairs (electron-hole pairs) generated by photoelectric conversion. In the figure, “+ (plus)” attached to “p” and “n” indicates that the p-type or n-type impurity concentration is high, and “++” indicates that the p-type or n-type impurity concentration is high. It is higher than “+”.
 光電変換素子10は、選択的な波長域(例えば、700nm以上2500nm以下)の一部または全部の波長域に対応する光を吸収して、電子-正孔対を発生させる光電変換素子である。光電変換素子10は、図2に示したように、例えば、半導体基板30の第1面30A側に下部電極11、絶縁層12、半導体層13、光電変換層14および上部電極15がこの順に積層された構成を有している。なお、図2では、固定電荷層16A、誘電体層16Bおよび層間絶縁層17等は省略して表している。下部電極11は、例えば、単位画素Pごとに分離形成されると共に、詳細は後述するが、絶縁層12を間に互いに分離された読み出し電極11A、蓄積電極11Bおよび転送電極11Cから構成されている。半導体層13、光電変換層14および上部電極15は、図1では、撮像素子1ごとに分離形成されている例を示したが、例えば、複数の撮像素子1に共通した連続層として設けられていてもよい。 The photoelectric conversion element 10 is a photoelectric conversion element that absorbs light corresponding to a part or all of a selective wavelength range (for example, 700 nm to 2500 nm) and generates electron-hole pairs. As shown in FIG. 2, the photoelectric conversion element 10 includes, for example, a lower electrode 11, an insulating layer 12, a semiconductor layer 13, a photoelectric conversion layer 14, and an upper electrode 15 stacked in this order on the first surface 30 </ b> A side of the semiconductor substrate 30. It has the structure which was made. In FIG. 2, the fixed charge layer 16A, the dielectric layer 16B, the interlayer insulating layer 17 and the like are omitted. For example, the lower electrode 11 is separately formed for each unit pixel P, and will be described in detail later. The lower electrode 11 includes a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C that are separated from each other with an insulating layer 12 therebetween. . In FIG. 1, the semiconductor layer 13, the photoelectric conversion layer 14, and the upper electrode 15 are illustrated as being separately formed for each image sensor 1. May be.
 下部電極11は、上記のように、例えば、互いに独立する読み出し電極11Aと、蓄積電極11Bと、転送電極11Cとから構成されている。下部電極11は、例えば、光透過性を有する導電性材料(透明導電性材料)を用いて形成することができる。透明導電材料のバンドギャップエネルギーは、例えば、2.5eV以上であることが好ましく、3.1eV以上であることが望ましい。透明導電材料としては、金属酸化物を上げることができる。具体的には、酸化インジウム、インジウム-錫酸化物(ITO,Indium Tin Oxide,SnドープのIn23、結晶性ITOおよびアモルファスITOを含む)、酸化亜鉛にドーパントとしてインジウムを添加したインジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、酸化ガリウムにドーパントとしてインジウムを添加したインジウム-ガリウム酸化物(IGO)、酸化亜鉛にドーパントとしてインジウムとガリウムを添加したインジウム-ガリウム-亜鉛酸化物(IGZO,In-GaZnO4)、酸化亜鉛にドーパントとしてインジウムと錫を添加したインジウム-錫-亜鉛酸化物(ITZO)、IFO(FドープのIn23)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(他元素をドープしたZnOを含む)、酸化亜鉛にドーパントとしてアルミニウムを添加したアルミニウム-亜鉛酸化物(AZO)、酸化亜鉛にドーパントとしてガリウムを添加したガリウム-亜鉛酸化物(GZO)、酸化チタン(TiO2)、酸化チタンにドーパントとしてニオブを添加したニオブ-チタン酸化物(TNO)、酸化アンチモン、スピネル型酸化物、YbFe24構造を有する酸化物を例示することができる。この他、ガリウム酸化物、チタン酸化物、ニオブ酸化物またはニッケル酸化物等を母層とする透明電極を挙げることができる。下部電極11のY軸方向の膜厚(以下、単に厚みとする)は、例えば、2×10-8m以上2×10-7m以下であり、好ましくは3×10-8m以上1×10-7m以下である。 As described above, the lower electrode 11 includes, for example, a readout electrode 11A, a storage electrode 11B, and a transfer electrode 11C that are independent from each other. The lower electrode 11 can be formed using, for example, a light-transmitting conductive material (transparent conductive material). The band gap energy of the transparent conductive material is preferably 2.5 eV or more, for example, and preferably 3.1 eV or more. A metal oxide can be raised as the transparent conductive material. Specifically, indium-zinc oxide, indium-tin oxide (including ITO, Indium Tin Oxide, Sn-doped In 2 O 3 , crystalline ITO, and amorphous ITO), indium added to zinc oxide as a dopant Oxide (IZO), Indium-gallium oxide (IGO) with gallium oxide added with indium as a dopant, Indium-gallium-zinc oxide with zinc oxide added with indium and gallium (IGZO, In -GaZnO 4) , indium-tin-zinc oxide (ITZO) in which indium and tin are added to zinc oxide as dopants, IFO (F-doped In 2 O 3 ), tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), FTO (F-doped SnO 2 ), zinc oxide (doping other elements) ZnO), aluminum-zinc oxide (AZO) in which aluminum is added as a dopant to zinc oxide, gallium-zinc oxide (GZO) in which gallium is added as a dopant to zinc oxide, titanium oxide (TiO 2 ) Examples thereof include niobium-titanium oxide (TNO) obtained by adding niobium as a dopant to titanium oxide, antimony oxide, spinel oxide, and oxide having a YbFe 2 O 4 structure. In addition, the transparent electrode which uses gallium oxide, titanium oxide, niobium oxide, nickel oxide etc. as a base layer can be mentioned. The thickness of the lower electrode 11 in the Y-axis direction (hereinafter simply referred to as thickness) is, for example, 2 × 10 −8 m or more and 2 × 10 −7 m or less, preferably 3 × 10 −8 m or more and 1 ×. 10 -7 m or less.
 なお、下部電極11に透明性が不要である場合には、下部電極11は、例えば、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、チタン(Ti)、インジウム(In)、錫(Sn)、鉄(Fe)、コバルト(Co)およびモリブデン(Mo)等の金属あるいはそれらの合金を用いた単層膜または積層膜として形成することができる。具体的には、Al-Nd(アルミニウムとネオジウムとの合金)やASC(アルミニウムとサマリウムと銅との合金)等を用いて形成することができる。また、下部電極11は、上記金属あるいはそれらの合金からなる導電性粒子、不純物を含有したポリシリコン、炭素系材料、酸化物半導体材料、カーボン・ナノ・チューブおよびグラフェン等の導電性材料を用いて形成するようにしてもよい。この他、下部電極11は、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]といった有機材料(導電性高分子)を用いて形成してもよく、これらの導電性材料をバインダー(高分子)に混合してペーストまたは、インクとしたものを硬化させて形成するようにしてもよい。 When the lower electrode 11 does not require transparency, the lower electrode 11 is formed of, for example, platinum (Pt), gold (Au), palladium (Pd), chromium (Cr), nickel (Ni), aluminum ( Al), silver (Ag), tantalum (Ta), tungsten (W), copper (Cu), titanium (Ti), indium (In), tin (Sn), iron (Fe), cobalt (Co) and molybdenum ( It can be formed as a single layer film or a laminated film using a metal such as Mo) or an alloy thereof. Specifically, it can be formed using Al—Nd (alloy of aluminum and neodymium), ASC (alloy of aluminum, samarium and copper) or the like. The lower electrode 11 is made of a conductive material such as the above metal or an alloy thereof, polysilicon containing impurities, a carbon-based material, an oxide semiconductor material, a carbon nano tube, and graphene. You may make it form. In addition, the lower electrode 11 may be formed using an organic material (conductive polymer) such as poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid [PEDOT / PSS]. The material may be mixed with a binder (polymer) and paste or ink may be cured to form.
 読み出し電極11Aは、光電変換層14内で発生した信号電荷をフローティングディフュージョンFD1に転送するためのものである。読み出し電極11Aは、例えば、上部第1コンタクト17A、パッド部39A、貫通電極34、接続部41Aおよび下部第2コンタクト46を介して、半導体基板20の第2面(表面)30B側に設けられたフローティングディフュージョンFD1に接続されている。 The readout electrode 11A is for transferring signal charges generated in the photoelectric conversion layer 14 to the floating diffusion FD1. The read electrode 11A is provided on the second surface (front surface) 30B side of the semiconductor substrate 20 via, for example, the upper first contact 17A, the pad portion 39A, the through electrode 34, the connection portion 41A, and the lower second contact 46. It is connected to the floating diffusion FD1.
 蓄積電極11Bは、光電変換層14内で発生した電荷のうち、信号電荷(電子)を半導体層13内に蓄積するためのものである。蓄積電極11Bは、読み出し電極11Aよりも大きいことが好ましく、これにより、多くの電荷を蓄積することができる。 The storage electrode 11 </ b> B is for storing signal charges (electrons) in the semiconductor layer 13 among the charges generated in the photoelectric conversion layer 14. The storage electrode 11B is preferably larger than the readout electrode 11A, so that a large amount of charge can be stored.
 転送電極11Cは、蓄積電極11Bで蓄積された電荷の読み出し電極11Aへの転送の効率を向上させるためのものであり、読み出し電極11Aと蓄積電極11Bとの間に設けられている。この転送電極11Cは、例えば、上部第3コンタクト17Cおよびパッド部39Cを介して駆動回路を構成する画素駆動回路に接続されている。読み出し電極11A、蓄積電極11Bおよび転送電極11Cは、各々独立して電圧を印加することが可能となっている。 The transfer electrode 11C is for improving the efficiency of transferring the charge accumulated in the storage electrode 11B to the read electrode 11A, and is provided between the read electrode 11A and the storage electrode 11B. The transfer electrode 11C is connected to a pixel drive circuit constituting the drive circuit via, for example, the upper third contact 17C and the pad portion 39C. The readout electrode 11A, the storage electrode 11B, and the transfer electrode 11C can apply a voltage independently.
 絶縁層12は、蓄積電極11Bおよび転送電極11Cと半導体層13とを電気的に分離するためのものである。絶縁層12は、下部電極11を覆うように、例えば、層間絶縁層17上に設けられている。また、絶縁層12には、下部電極11のうち、読み出し電極11A上に開口12Hが設けられており、この開口12Hを介して、読み出し電極11Aと半導体層13とが電気的に接続されている。開口12Hの側面は、例えば、図2に示したように、光入射側S1に向かって広がる傾斜を有することが好ましい。これにより、半導体層13から読み出し電極11Aへの電荷の移動がより滑らかとなる。 The insulating layer 12 is for electrically separating the storage electrode 11B and the transfer electrode 11C from the semiconductor layer 13. For example, the insulating layer 12 is provided on the interlayer insulating layer 17 so as to cover the lower electrode 11. The insulating layer 12 is provided with an opening 12H on the readout electrode 11A of the lower electrode 11, and the readout electrode 11A and the semiconductor layer 13 are electrically connected through the opening 12H. . For example, as shown in FIG. 2, the side surface of the opening 12H preferably has an inclination that widens toward the light incident side S1. Thereby, the movement of charges from the semiconductor layer 13 to the readout electrode 11A becomes smoother.
 絶縁層12の材料としては、酸化ケイ素系材料、窒化ケイ素(SiNx)、酸化アルミニウム(Al23)等の金属酸化物高誘電絶縁材料等の無機系絶縁材料が挙げられる。この他、ポリメチルメタクリレート(PMMA)、ポリビニルフェノール(PVP)、ポリビニルアルコール(PVA)、ポリイミド、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリスチレン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン(AEAPTMS)、3-メルカプトプロピルトリメトキシシラン(MPTMS)、オクタデシルトリクロロシラン(OTS)等のシラノール誘導体(シランカップリング剤)、ノボラック型フェノール樹脂、フッ素系樹脂、オクタデカンチオール、ドデシルイソシアネイト等の一端に制御電極と結合可能な官能基を有する直鎖炭化水素類にて例示される有機系絶縁材料(有機ポリマー)を挙げることができ、これらを組み合わせて用いることもできる。なお、酸化ケイ素系材料としては、酸化シリコン(SiOx)、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低比誘電率材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマーおよびベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボンおよび有機SOG)が挙げられる。 Examples of the material of the insulating layer 12 include inorganic insulating materials such as silicon oxide materials, metal oxide high dielectric insulating materials such as silicon nitride (SiN x ), and aluminum oxide (Al 2 O 3 ). In addition, polymethyl methacrylate (PMMA), polyvinylphenol (PVP), polyvinyl alcohol (PVA), polyimide, polycarbonate (PC), polyethylene terephthalate (PET), polystyrene, N-2 (aminoethyl) 3-aminopropyltrimethoxy Silanol derivatives (silane coupling agents) such as silane (AEAPTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), octadecyltrichlorosilane (OTS), novolac-type phenol resin, fluorine-based resin, octadecanethiol, dodecyl isocyanate, etc. An organic insulating material (organic polymer) exemplified by linear hydrocarbons having a functional group capable of binding to the control electrode at one end can be given, and these can also be used in combination. As the silicon oxide-based material, silicon oxide (SiO x ), BPSG, PSG, BSG, AsSG, PbSG, silicon oxynitride (SiON), SOG (spin-on-glass), low dielectric constant material (for example, polyaryl ether) Cycloperfluorocarbon polymer and benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, fluorinated aryl ether, fluorinated polyimide, amorphous carbon, and organic SOG).
 半導体層13は、光電変換層14内で発生した信号電荷を蓄積すると共に、読み出し電極11Aへ転送するためのものである。半導体層13のキャリア密度は、例えば1×1014cm-3以上1×1017cm-3以下であることが好ましい。半導体層13の比誘電率(εS)は、例えば5以上25以下であることが好ましい。半導体層13は、光電変換層14よりも電荷の移動度が高く、且つ、バンドギャップが大きな材料を用いて形成されていることが好ましい。これにより、例えば電荷転送を高速化するとともに読み出し電極から半導体層13へのホール注入を抑制することができる。 The semiconductor layer 13 accumulates signal charges generated in the photoelectric conversion layer 14 and transfers them to the readout electrode 11A. The carrier density of the semiconductor layer 13 is preferably 1 × 10 14 cm −3 or more and 1 × 10 17 cm −3 or less, for example. The relative dielectric constant (ε S ) of the semiconductor layer 13 is preferably 5 or more and 25 or less, for example. The semiconductor layer 13 is preferably formed using a material having a higher charge mobility and a larger band gap than the photoelectric conversion layer 14. Thereby, for example, charge transfer can be speeded up and hole injection from the readout electrode to the semiconductor layer 13 can be suppressed.
 半導体層13は、例えば、酸化物半導体材料を含んで構成されている。酸化物半導体材料としては、例えば、IGZO(In-Ga-Zn-O系酸化物半導体),ZTO(Zn-Sn-O系酸化物半導体;Zn2SnO4),IGZTO(In-Ga-Zn-Sn-O系酸化物半導体;InGaZnSnO)、GTO(Ga-Sn-O系酸化物半導体;Ga23:SnO2)およびIGO(In-Ga-O系酸化物半導体)が挙げられる。半導体層13は、上記酸化物半導体材料を少なくとも1種用いることが好ましく、なかでもIGZOが好適に用いられる。半導体層13の厚みは、例えば、30nm以上200nm以下であり、好ましくは60nm以上150nm以下である。 The semiconductor layer 13 includes, for example, an oxide semiconductor material. Examples of the oxide semiconductor material include IGZO (In—Ga—Zn—O-based oxide semiconductor), ZTO (Zn—Sn—O-based oxide semiconductor; Zn 2 SnO 4 ), and IGZTO (In—Ga—Zn—). Examples thereof include Sn—O-based oxide semiconductors: InGaZnSnO), GTO (Ga—Sn—O-based oxide semiconductors; Ga 2 O 3 : SnO 2 ), and IGO (In—Ga—O-based oxide semiconductors). The semiconductor layer 13 preferably uses at least one of the above oxide semiconductor materials, and among them, IGZO is preferably used. The thickness of the semiconductor layer 13 is, for example, 30 nm to 200 nm, preferably 60 nm to 150 nm.
 光電変換層14は、光エネルギーを電気エネルギーに変換するものであり、例えば、700nm以上2500nm以下の波長域の光を吸収した際に生じる励起子が電子と正孔とに分離する場を提供するものである光電変換層14の厚みは、例えば、100nm以上1000nm以下であり、好ましくは300nm以上800nm以下である。 The photoelectric conversion layer 14 converts light energy into electric energy, and provides a field where excitons generated when absorbing light in a wavelength region of 700 nm to 2500 nm are separated into electrons and holes, for example. The thickness of the photoelectric conversion layer 14 which is a thing is 100 nm or more and 1000 nm or less, for example, Preferably it is 300 nm or more and 800 nm or less.
 光電変換層14は、半導体ナノ粒子(半導体ナノ粒子14X)を含み、例えば導電性高分子中に複数の半導体ナノ粒子14Xが分散された構成を有する。半導体ナノ粒子14Xは一般に数~数十nmの粒径を有する粒子であり、例えば、図5に示したように、コア部14aと、コア部14aの周囲に設けられたシェル層14bと、シェル層14bの表面に結合したリガンド部14cとを有する。なお、シェル層14bは必須ではなく、半導体ナノ粒子14Xは、コア部14aと、コア部14aの表面に結合したリガンド部14cとから構成されていてもよい。コア部14aを構成する材料としては、例えば、IV族半導体であるシリコン、セレンや、カルコパライト系化合物であるCuInGaSe、CuInSe2、CuInS2、CuAlS2、CuAlSe2、CuGaS2、CuGaSe2、CuZnSnSSe、ZnCuInSe、AgAlS2、AgAlSe2、AgInS2、AgInSe2や、III-V族化合物であるGaAs、InAs、InP、AlGaAs、InGaP、AlGaInPや、II-VI族化合物であるCdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、HgTeや、IV-VI族化合物であるPbO、PbS、PbSe、PbTe等の化合物半導体が挙げられる。シェル層14bを構成する材料としては、例えば、PbO、PbO2、Pb34、ZnS、ZnSe、ZnTe等が挙げられる。 The photoelectric conversion layer 14 includes semiconductor nanoparticles (semiconductor nanoparticles 14X) and has, for example, a configuration in which a plurality of semiconductor nanoparticles 14X are dispersed in a conductive polymer. The semiconductor nanoparticles 14X are generally particles having a particle size of several to several tens of nanometers. For example, as shown in FIG. 5, the core part 14a, a shell layer 14b provided around the core part 14a, and a shell And a ligand portion 14c bonded to the surface of the layer 14b. Note that the shell layer 14b is not essential, and the semiconductor nanoparticles 14X may be composed of a core portion 14a and a ligand portion 14c bonded to the surface of the core portion 14a. Examples of the material constituting the core portion 14a include silicon and selenium that are group IV semiconductors, and CuInGaSe, CuInSe 2 , CuInS 2 , CuAlS 2 , CuAlSe 2 , CuGaS 2 , CuGaSe 2 , CuZnSnSSe, and ZnCuInSe that are chalcopyrite compounds. , AgAlS 2 , AgAlSe 2 , AgInS 2 , AgInSe 2 , III-V group compounds GaAs, InAs, InP, AlGaAs, InGaP, AlGaInP, II-VI group compounds CdS, CdSe, CdTe, ZnO, ZnS ZnSe, ZnTe, HgTe, and compound semiconductors such as PbO, PbS, PbSe, and PbTe, which are IV-VI group compounds. Examples of the material constituting the shell layer 14b include PbO, PbO 2 , Pb 3 O 4 , ZnS, ZnSe, ZnTe, and the like.
 半導体ナノ粒子14Xは、粒径が材料のエキシトンーボーア半径の2倍よりも小さくなると量子閉じ込め効果によってバンドギャップが大きくなる。本実施の形態の半導体ナノ粒子14Xは、例えば3nm以上6nm以下の平均粒径を有することが好ましい。ここで、半導体ナノ粒子14Xの粒径とは、コア部14aまたは、コア部14aがシェル層14bによって覆われている場合にはシェル層14bを含むコア部14aの粒径とする。コア部14aおよびシェル層14bを含むコア部14aの大きさは、それらの合成時の原料供給量や反応条件で調整が可能である。リガンド部14cは、例えば、コア部14aまたはシェル層14bの表面に相互作用を及ぼす吸着基と、それに結合するアルキル鎖とから構成されている。アルキル鎖の炭素の数は例えば2~50であり、吸着基は例えばアミン、ホスホン、ホスフィン、カルボキシル、ヒドロキシル、チオールである。この他、塩素(Cl)、臭素(Br)およびヨウ素(I)等のハロゲン原子を用いてもよい。 The semiconductor nanoparticle 14X has a large band gap due to the quantum confinement effect when the particle size is smaller than twice the exciton-bohr radius of the material. The semiconductor nanoparticles 14X of the present embodiment preferably have an average particle size of, for example, 3 nm or more and 6 nm or less. Here, the particle size of the semiconductor nanoparticles 14X is the particle size of the core portion 14a or the core portion 14a including the shell layer 14b when the core portion 14a is covered by the shell layer 14b. The magnitude | size of the core part 14a containing the core part 14a and the shell layer 14b can be adjusted with the raw material supply amount at the time of those synthesis | combination, and reaction conditions. The ligand part 14c is composed of, for example, an adsorption group that interacts with the surface of the core part 14a or the shell layer 14b, and an alkyl chain that binds to the adsorption group. The number of carbons in the alkyl chain is, for example, 2 to 50, and the adsorbing group is, for example, amine, phosphone, phosphine, carboxyl, hydroxyl, thiol. In addition, halogen atoms such as chlorine (Cl), bromine (Br), and iodine (I) may be used.
 本実施の形態の光電変換層14は、上記のように、半導体層13の比誘電率に対して3未満となる比誘電率(εCQD)を有することが好ましく、換言すると、光電変換層14は、εCQD/εS<3を満たす比誘電率を有することが好ましい。例えば、半導体層13の比誘電率が10である場合には、光電変換層14の比誘電率は30未満であることが好ましい。これにより、光電変換層14に強い電界を印加することが可能となり、光電変換によって光電変換層14内に生じた電子-正孔対の再結合が抑制される。 As described above, the photoelectric conversion layer 14 of the present embodiment preferably has a relative dielectric constant (ε CQD ) that is less than 3 with respect to the relative dielectric constant of the semiconductor layer 13, in other words, the photoelectric conversion layer 14. Preferably has a dielectric constant satisfying ε CQD / ε S <3. For example, when the relative dielectric constant of the semiconductor layer 13 is 10, the relative dielectric constant of the photoelectric conversion layer 14 is preferably less than 30. This makes it possible to apply a strong electric field to the photoelectric conversion layer 14 and suppress recombination of electron-hole pairs generated in the photoelectric conversion layer 14 due to photoelectric conversion.
 光電変換層14の比誘電率は、例えば、用いる半導体ナノ粒子14Xの種類を変えることで制御することができる。また、光電変換層14の比誘電率は、光電変換層14中に含まれる半導体ナノ粒子14Xの体積比率を変えることで制御することができる。光電変換層14中に含まれる半導体ナノ粒子14Xの体積比率を変える方法としては、以下の3つが挙げられる。まず、1つ目の方法としては、半導体ナノ粒子14Xを構成するコア部14aの大きさを変えることが挙げられる。例えば、同じ長さのリガンド部14cを用いた場合、コア部14aの粒径を小さくすることで、半導体ナノ粒子14X内におけるコア部14aの体積比率は小さくなり、これを用いた光電変換層14の比誘電率は低下する。2つ目の方法としては、リガンド部14cの長さを変えることが挙げられる。例えば、同じ粒径のコア部14aを用いた場合、リガンド部14cの長さを長くすることで、半導体ナノ粒子14X内におけるコア部14aの体積比率は小さくなり、これを用いた光電変換層14の比誘電率は低下する。3つ目の方法としては、比誘電率がコア部14aよりも低い導電性材料をコア部14aと混合して光電変換層14を形成することが挙げられる。例えば、この導電性材料の混合比率を増加させることにより、光電変換層の比誘電率を下げることができる。 The relative dielectric constant of the photoelectric conversion layer 14 can be controlled, for example, by changing the type of the semiconductor nanoparticles 14X to be used. Moreover, the relative dielectric constant of the photoelectric conversion layer 14 can be controlled by changing the volume ratio of the semiconductor nanoparticles 14 </ b> X included in the photoelectric conversion layer 14. As a method for changing the volume ratio of the semiconductor nanoparticles 14X contained in the photoelectric conversion layer 14, the following three methods may be mentioned. First, the first method includes changing the size of the core portion 14a constituting the semiconductor nanoparticle 14X. For example, when the ligand portion 14c having the same length is used, the volume ratio of the core portion 14a in the semiconductor nanoparticle 14X is reduced by reducing the particle size of the core portion 14a, and the photoelectric conversion layer 14 using the same. The relative dielectric constant of decreases. The second method is to change the length of the ligand portion 14c. For example, when the core part 14a having the same particle diameter is used, by increasing the length of the ligand part 14c, the volume ratio of the core part 14a in the semiconductor nanoparticle 14X becomes small, and the photoelectric conversion layer 14 using the same. The relative dielectric constant of decreases. As a third method, a photoelectric conversion layer 14 may be formed by mixing a conductive material having a relative dielectric constant lower than that of the core portion 14a with the core portion 14a. For example, the relative dielectric constant of the photoelectric conversion layer can be lowered by increasing the mixing ratio of the conductive materials.
 なお、リガンド部14cの長さが長くなると半導体ナノ粒子14X間の伝導性および半導体ナノ粒子14Xと導電性高分子との間の伝導性が低下する虞がある。このため、例えば、上記2つ目の方法で用いるリガンド部14cには、例えば、アントラセン等のアセン類、下記式(1)に示したチオフェン化合物およびS-アデノシンメチオニン(SAM)等のキャリア伝導性を有するものを用いることが好ましい。上記3つ目の方法においてコア部14aと混合させる導電性材料は、リガンド部14cの代わりとして下記キャリア伝導性ポリマーを用い、コア部14aまたはシェル層14bで覆われたコア部14aと混合して用いるようにしてもよい。キャリア伝導性ポリマーとしては、例えば、PEDOT:PSS、低分子チオフェン系ポリマー、3-ヘキシルチオフェン(P3HT)、フェニルC61酪酸メチルエステル(PCBM)、Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b’]dithio-phene-2,6-diyl]](PCPDTBT)、poly(2,3-bis(2-hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)-dithieno[3,2-b:2‘,3'-d]pyrrotgle)(PDTPQx-HD)、ポリ[[4,8-ビス](2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4-5-b’]ジオフェン-2,6-ジル][3-フルオロ-2-[(2-エチルヘキシル)カルボニル]エチノ][3,4-b]チオフェンジル](PTB7)、poly[(9,9-di(3,3'-N,N’-trimethylammonium)propylfluorene)-alt-co-(9,9-dioctyl-fluorene) diiodide salt(PFN)等が挙げられる。 Note that if the length of the ligand portion 14c is increased, the conductivity between the semiconductor nanoparticles 14X and the conductivity between the semiconductor nanoparticles 14X and the conductive polymer may be reduced. For this reason, for example, the ligand part 14c used in the second method includes, for example, acenes such as anthracene, carrier conductivity such as thiophene compound represented by the following formula (1) and S-adenosine methionine (SAM) It is preferable to use one having The conductive material to be mixed with the core part 14a in the third method uses the following carrier conductive polymer instead of the ligand part 14c, and mixes with the core part 14a covered with the core part 14a or the shell layer 14b. You may make it use. Examples of the carrier conductive polymer include PEDOT: PSS, low molecular thiophene polymer, 3-hexylthiophene (P3HT), phenyl C61 butyric acid methyl ester (PCBM), Poly [2,1,3-benzothiadiazole-4,7- diyl [4,4-bis (2-ethylhexyl) -4H-cyclopenta [2,1-b: 3,4-b ′] dithio-phene-2,6-diyl]] (PCPDTBT), poly (2,3 -bis (2-hexyldecyl) quinoxaline-5,8-diyl-alt-N- (2-hexyldecyl) -dithieno [3,2-b: 2 ', 3'-d] pyrrotgle) (PDTPQx-HD), poly [[4,8-bis] (2-ethylhexyl) oxy] benzo [1,2-b: 4-5-b ′] diophen-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) ) Carbonyl] ethino] [3,4-b] thiophenzyl] (PTB7), poly [(9,9-di (3,3′-N, N′-trimethylammonium) propylfluorene) -alt-co- (9, 9-dioctyl-fluore ne) diiodide salt (PFN) and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上部電極15は、光透過性を有する導電性材料により構成されている。上部電極15は単位画素P毎に分離されていてもよいし、各単位画素Pに共通の電極として形成されていてもよい。上部電極15の厚みは、例えば、10nm~200nmである。 The upper electrode 15 is made of a light transmissive conductive material. The upper electrode 15 may be separated for each unit pixel P, or may be formed as a common electrode for each unit pixel P. The thickness of the upper electrode 15 is, for example, 10 nm to 200 nm.
 なお、光電変換層14と上部電極15との間には、他の層が設けられていてもよい。例えば、本実施の形態のように、信号電荷として電子を読み出す場合には、光電変換層14と上部電極15との間に、MoO3、WO3、V25のように仕事関数の大きな材料で構成される層を追加するようにしてもよい。これにより、下部電極11と上部電極15との間に発生する内部電界を強化することができる。 Note that another layer may be provided between the photoelectric conversion layer 14 and the upper electrode 15. For example, when electrons are read out as signal charges as in this embodiment, a work function such as MoO 3 , WO 3 , V 2 O 5 is large between the photoelectric conversion layer 14 and the upper electrode 15. A layer made of a material may be added. Thereby, an internal electric field generated between the lower electrode 11 and the upper electrode 15 can be strengthened.
 本実施の形態の光電変換素子10では、上部電極15側から光電変換素子10に入射した近赤外光Lは光電変換層14で吸収される。これによって生じた励起子は、例えば図6Aに示したように励起子分離して電子と正孔とに解離する。ここで発生した電荷(電子および正孔)は、キャリアの濃度差による拡散や、陽極(ここでは、上部電極15)と陰極(ここでは、下部電極11)との仕事関数の差による内部電界によって、例えば図6Bに示したように、それぞれ異なる電極へ運ばれる。電子および正孔の輸送方向は、下部電極11と上部電極15との間に電位を印加することによって制御される。ここでは、電子が信号電荷として下部電極11側に運ばれる。下部電極11側に運ばれた電子は、蓄積電極11B上の半導体層13内に蓄積されたのち、図6Cに示したように、読み出し電極11Aに向かって転送され、光電流として検出される。 In the photoelectric conversion element 10 of the present embodiment, the near infrared light L incident on the photoelectric conversion element 10 from the upper electrode 15 side is absorbed by the photoelectric conversion layer 14. The excitons generated thereby are separated into electrons and holes by exciton separation as shown in FIG. 6A, for example. The charges (electrons and holes) generated here are caused by diffusion due to the carrier concentration difference or an internal electric field due to the work function difference between the anode (here, the upper electrode 15) and the cathode (here, the lower electrode 11). For example, as shown in FIG. 6B, they are conveyed to different electrodes. The transport direction of electrons and holes is controlled by applying a potential between the lower electrode 11 and the upper electrode 15. Here, the electrons are carried as signal charges to the lower electrode 11 side. The electrons carried to the lower electrode 11 side are accumulated in the semiconductor layer 13 on the storage electrode 11B, and then transferred to the readout electrode 11A and detected as a photocurrent, as shown in FIG. 6C.
 半導体基板30の第2面30Bには、例えば、フローティングディフュージョン(浮遊拡散層)FD1(半導体基板30内の領域36B)アンプトランジスタ(変調素子)AMPと、リセットトランジスタRSTと、選択トランジスタSELと、多層配線40とが設けられている。多層配線40は、例えば、配線層41,42,43が絶縁層44内に積層された構成を有している。 The second surface 30B of the semiconductor substrate 30 includes, for example, a floating diffusion (floating diffusion layer) FD1 (region 36B in the semiconductor substrate 30) an amplifier transistor (modulation element) AMP, a reset transistor RST, a selection transistor SEL, and a multilayer Wiring 40 is provided. The multilayer wiring 40 has a configuration in which, for example, wiring layers 41, 42, and 43 are laminated in an insulating layer 44.
 なお、図面では、半導体基板30の第1面30A側を光入射側S1、第2面30B側を配線層側S2と表している。 In the drawing, the first surface 30A side of the semiconductor substrate 30 is represented as the light incident side S1, and the second surface 30B side is represented as the wiring layer side S2.
 半導体基板30の第1面30Aと下部電極11との間には、例えば、固定電荷を有する層(固定電荷層)16Aと、絶縁性を有する誘電体層16Bと、層間絶縁層17とが設けられている。上部電極15の上には、保護層18が設けられている。保護層18内には、例えば、読み出し電極11A上に、例えば遮光膜21が設けられている。この遮光膜21Aは、少なくとも蓄積電極11Bにはかからず、少なくとも光電変換層14と直接接している読み出し電極11Aの領域を覆うように設けられていればよい。例えば、蓄積電極11Bと同じ層に形成されている読み出し電極11Aよりも一回り大きく設けられていることが好ましい。また、例えば、蓄積電極11B上に、例えばカラーフィルタ22が設けられている。カラーフィルタ22は、例えば光電変換層14への可視光の入射を防ぐためのものであり、少なくとも蓄積電極11Bの領域を覆うように設けられていればよい。なお、図1では、遮光膜21およびカラーフィルタ22を保護層18の膜厚方向において異なる位置に設けた例を示したが、同じ位置に設けるようにしてもよい。保護層18の上方には、平坦化層(図示せず)やオンチップレンズ23等の光学部材が配設されている。 Between the first surface 30A of the semiconductor substrate 30 and the lower electrode 11, for example, a layer (fixed charge layer) 16A having a fixed charge, a dielectric layer 16B having an insulating property, and an interlayer insulating layer 17 are provided. It has been. A protective layer 18 is provided on the upper electrode 15. In the protective layer 18, for example, a light shielding film 21 is provided on the readout electrode 11A, for example. The light shielding film 21A does not extend to at least the storage electrode 11B, and may be provided so as to cover at least the region of the readout electrode 11A that is in direct contact with the photoelectric conversion layer 14. For example, it is preferable that the electrode is provided slightly larger than the readout electrode 11A formed in the same layer as the storage electrode 11B. For example, a color filter 22 is provided on the storage electrode 11B, for example. The color filter 22 is, for example, for preventing visible light from entering the photoelectric conversion layer 14 and may be provided so as to cover at least the region of the storage electrode 11B. Although FIG. 1 shows an example in which the light shielding film 21 and the color filter 22 are provided at different positions in the film thickness direction of the protective layer 18, they may be provided at the same position. Above the protective layer 18, optical members such as a planarizing layer (not shown) and an on-chip lens 23 are disposed.
 固定電荷層16Aは、正の固定電荷を有する膜でもよいし、負の固定電荷を有する膜でもよい。負の固定電荷を有する膜の材料としては、酸化ハフニウム、酸化アルミニウム、酸化ジルコニウム、酸化タンタル、酸化チタン等が挙げられる。また上記以外の材料としては酸化ランタン、酸化プラセオジム、酸化セリウム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化正孔ミウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化イットリウム、窒化アルミニウム膜、酸窒化ハフニウム膜または酸窒化アルミニウム膜等を用いてもよい。 The fixed charge layer 16A may be a film having a positive fixed charge or a film having a negative fixed charge. Examples of the material of the film having a negative fixed charge include hafnium oxide, aluminum oxide, zirconium oxide, tantalum oxide, and titanium oxide. In addition to the above materials, lanthanum oxide, praseodymium oxide, cerium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holeium oxide, thulium oxide, ytterbium oxide, lutetium oxide Alternatively, an yttrium oxide, an aluminum nitride film, a hafnium oxynitride film, an aluminum oxynitride film, or the like may be used.
 固定電荷層16Aは、2種類以上の膜を積層した構成を有していてもよい。それにより、例えば負の固定電荷を有する膜の場合には正孔蓄積層としての機能をさらに高めることが可能である。 The fixed charge layer 16A may have a configuration in which two or more kinds of films are stacked. Thereby, for example, in the case of a film having a negative fixed charge, the function as the hole accumulation layer can be further enhanced.
 誘電体層16Bの材料は特に限定されないが、例えば、シリコン酸化膜、TEOS、シリコン窒化膜、シリコン酸窒化膜等によって形成されている。 The material of the dielectric layer 16B is not particularly limited. For example, the dielectric layer 16B is formed of a silicon oxide film, TEOS, a silicon nitride film, a silicon oxynitride film, or the like.
 層間絶縁層17は、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。 The interlayer insulating layer 17 is constituted by, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these. .
 保護層18は、光透過性を有する材料により構成され、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン等のうちのいずれかよりなる単層膜、あるいはそれらのうちの2種以上よりなる積層膜により構成されている。保護層18の厚みは、例えば、100nm~30000nmである。 The protective layer 18 is made of a light-transmitting material, for example, a single layer film made of any of silicon oxide, silicon nitride, silicon oxynitride, or the like, or a laminated film made of two or more of them. It is comprised by. The thickness of the protective layer 18 is, for example, 100 nm to 30000 nm.
 半導体基板30の第1面30Aと第2面30Bとの間には、貫通電極34が設けられている。光電変換素子10は、この貫通電極34を介して、アンプトランジスタAMPのゲートGampと、フローティングディフュージョンFD1を兼ねるリセットトランジスタRST(リセットトランジスタTr1rst)の一方のソース/ドレイン領域36Bに接続されている。これにより、撮像素子1では、半導体基板30の第1面30A側の光電変換素子10で生じた信号電荷を、貫通電極34を介して半導体基板30の第2面30B側に良好に転送し、特性を高めることが可能となっている。 A through electrode 34 is provided between the first surface 30A and the second surface 30B of the semiconductor substrate 30. The photoelectric conversion element 10 is connected to the gate Gamp of the amplifier transistor AMP and one source / drain region 36B of the reset transistor RST (reset transistor Tr1rst) that also serves as the floating diffusion FD1 through the through electrode 34. Thereby, in the imaging device 1, the signal charge generated in the photoelectric conversion element 10 on the first surface 30A side of the semiconductor substrate 30 is favorably transferred to the second surface 30B side of the semiconductor substrate 30 through the through electrode 34, It is possible to improve the characteristics.
 貫通電極34の下端は、配線層41内の接続部41Aに接続されており、接続部41Aと、アンプトランジスタAMPのゲートGampとは、下部第1コンタクト45を介して接続されている。接続部41Aと、フローティングディフュージョンFD1(領域36B)とは、例えば、下部第2コンタクト46を介して接続されている。貫通電極34の上端は、例えば、パッド部39Aおよび上部第1コンタクト17Aを介して読み出し電極11Aに接続されている。 The lower end of the through electrode 34 is connected to a connection portion 41A in the wiring layer 41, and the connection portion 41A and the gate Gamp of the amplifier transistor AMP are connected via a lower first contact 45. The connection portion 41A and the floating diffusion FD1 (region 36B) are connected via, for example, the lower second contact 46. The upper end of the through electrode 34 is connected to the readout electrode 11A via, for example, the pad portion 39A and the upper first contact 17A.
 貫通電極34は、光電変換素子10とアンプトランジスタAMPのゲートGampおよびフローティングディフュージョンFD1とのコネクタとしての機能を有すると共に、光電変換素子10において生じた電荷(ここでは、電子)の伝送経路となるものである。 The through electrode 34 has a function as a connector between the photoelectric conversion element 10 and the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1, and serves as a transmission path for electric charges (here, electrons) generated in the photoelectric conversion element 10. It is.
 フローティングディフュージョンFD1(リセットトランジスタRSTの一方のソース/ドレイン領域36B)の隣にはリセットトランジスタRSTのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷を、リセットトランジスタRSTによりリセットすることが可能となる。 Next to the floating diffusion FD1 (one source / drain region 36B of the reset transistor RST), the reset gate Grst of the reset transistor RST is arranged. Thereby, the charge accumulated in the floating diffusion FD1 can be reset by the reset transistor RST.
 半導体基板30は、例えば、n型のシリコン(Si)基板により構成され、所定領域にpウェル31を有している。pウェル31の第2面30Bには、上述したアンプトランジスタAMPと、リセットトランジスタRSTと、選択トランジスタSEL等が設けられている。また、半導体基板30の周辺部には、ロジック回路等からなる周辺回路(図示せず)が設けられている。 The semiconductor substrate 30 is composed of, for example, an n-type silicon (Si) substrate and has a p-well 31 in a predetermined region. On the second surface 30B of the p-well 31, the above-described amplifier transistor AMP, reset transistor RST, selection transistor SEL, and the like are provided. In addition, a peripheral circuit (not shown) including a logic circuit or the like is provided in the peripheral portion of the semiconductor substrate 30.
 リセットトランジスタRST(リセットトランジスタTr1rst)は、光電変換素子10からフローティングディフュージョンFD1に転送された電荷をリセットするものであり、例えばMOSトランジスタにより構成されている。具体的には、リセットトランジスタTr1rstは、リセットゲートGrstと、チャネル形成領域36Aと、ソース/ドレイン領域36B,36Cとから構成されている。リセットゲートGrstは、リセット線RST1に接続され、リセットトランジスタTr1rstの一方のソース/ドレイン領域36Bは、フローティングディフュージョンFD1を兼ねている。リセットトランジスタTr1rstを構成する他方のソース/ドレイン領域36Cは、電源VDDに接続されている。 The reset transistor RST (reset transistor Tr1rst) resets the charge transferred from the photoelectric conversion element 10 to the floating diffusion FD1, and is configured by a MOS transistor, for example. Specifically, the reset transistor Tr1rst includes a reset gate Grst, a channel formation region 36A, and source / drain regions 36B and 36C. The reset gate Grst is connected to the reset line RST1, and one source / drain region 36B of the reset transistor Tr1rst also serves as the floating diffusion FD1. The other source / drain region 36C constituting the reset transistor Tr1rst is connected to the power supply VDD.
 アンプトランジスタAMPは、光電変換素子10で生じた電荷量を電圧に変調する変調素子であり、例えばMOSトランジスタにより構成されている。具体的には、アンプトランジスタAMPは、ゲートGampと、チャネル形成領域35Aと、ソース/ドレイン領域35B,35Cとから構成されている。ゲートGampは、下部第1コンタクト45、接続部41A、下部第2コンタクト46および貫通電極34等を介して、読み出し電極11AおよびリセットトランジスタTr1rstの一方のソース/ドレイン領域36B(フローティングディフュージョンFD1)に接続されている。また、一方のソース/ドレイン領域35Bは、リセットトランジスタTr1rstを構成する他方のソース/ドレイン領域36Cと、領域を共有しており、電源VDDに接続されている。 The amplifier transistor AMP is a modulation element that modulates the amount of charge generated in the photoelectric conversion element 10 into a voltage, and is configured by, for example, a MOS transistor. Specifically, the amplifier transistor AMP includes a gate Gamp, a channel formation region 35A, and source / drain regions 35B and 35C. The gate Gamp is connected to the read electrode 11A and one source / drain region 36B (floating diffusion FD1) of the reset transistor Tr1rst through the lower first contact 45, the connecting portion 41A, the lower second contact 46, the through electrode 34, and the like. Has been. Also, one source / drain region 35B shares a region with the other source / drain region 36C constituting the reset transistor Tr1rst and is connected to the power supply VDD.
 選択トランジスタSEL(選択トランジスタTR1sel)は、ゲートGselと、チャネル形成領域34Aと、ソース/ドレイン領域34B,34Cとから構成されている。ゲートGselは、選択線SEL1に接続されている。また、一方のソース/ドレイン領域34Bは、アンプトランジスタAMPを構成する他方のソース/ドレイン領域35Cと、領域を共有しており、他方のソース/ドレイン領域34Cは、信号線(データ出力線)VSL1に接続されている。 The selection transistor SEL (selection transistor TR1sel) includes a gate Gsel, a channel formation region 34A, and source / drain regions 34B and 34C. The gate Gsel is connected to the selection line SEL1. One source / drain region 34B shares a region with the other source / drain region 35C constituting the amplifier transistor AMP, and the other source / drain region 34C is a signal line (data output line) VSL1. It is connected to the.
 リセット線RST1、選択線SEL1は、それぞれ、駆動回路を構成する垂直駆動回路112に接続されている。信号線(データ出力線)VSL1は、駆動回路を構成するカラム信号処理回路113に接続されている。 The reset line RST1 and the selection line SEL1 are each connected to a vertical drive circuit 112 that constitutes a drive circuit. The signal line (data output line) VSL1 is connected to the column signal processing circuit 113 constituting the drive circuit.
 下部第1コンタクト45、上部第1コンタクト17A、上部第2コンタクト17Bおよび上部第3コンタクト17Cは、例えば、PDAS(Phosphorus Doped Amorphous Silicon)等のドープされたシリコン材料、または、アルミニウム(Al)、タングステン(W)、チタン(Ti)、コバルト(Co)、ハフニウム(Hf)、タンタル(Ta)等の金属材料により構成されている。 The lower first contact 45, the upper first contact 17A, the upper second contact 17B, and the upper third contact 17C are doped silicon materials such as PDAS (PhosphorusphorDoped Amorphous Silicon), or aluminum (Al), tungsten, for example. It is made of a metal material such as (W), titanium (Ti), cobalt (Co), hafnium (Hf), and tantalum (Ta).
(1-2.撮像素子の製造方法)
 本実施の形態の撮像素子1は、例えば、次のようにして製造することができる。
(1-2. Method for Manufacturing Image Sensor)
The image sensor 1 of the present embodiment can be manufactured as follows, for example.
 図7A~図7Eは、撮像素子1の製造方法を工程順に表したものである。まず、図7Aに示したように、半導体基板30内に、第1の導電型のウェルとして例えばpウェル31を形成する。半導体基板30の第1面30A近傍にはp+領域を形成する。 7A to 7E show the manufacturing method of the image sensor 1 in the order of steps. First, as shown in FIG. 7A, for example, a p-well 31 is formed as a first conductivity type well in the semiconductor substrate 30. A p + region is formed in the vicinity of the first surface 30 </ b> A of the semiconductor substrate 30.
 半導体基板30の第2面30Bには、同じく図7Aに示したように、例えばフローティングディフュージョンFD1となるn+領域を形成したのち、ゲート絶縁層32と、選択トランジスタSEL、アンプトランジスタAMPおよびリセットトランジスタRSTの各ゲートを含むゲート配線層47とを形成する。これにより、選択トランジスタSEL、アンプトランジスタAMPおよびリセットトランジスタRSTを形成する。更に、半導体基板30の第2面30B上に、下部第1コンタクト45、下部第2コンタクト46および接続部41Aを含む配線層41~43および絶縁層44からなる多層配線40を形成する。 Similarly, as shown in FIG. 7A, after forming an n + region that becomes the floating diffusion FD1, for example, the gate insulating layer 32, the selection transistor SEL, the amplifier transistor AMP, and the reset transistor RST are formed on the second surface 30B of the semiconductor substrate 30. And a gate wiring layer 47 including these gates. Thereby, the selection transistor SEL, the amplifier transistor AMP, and the reset transistor RST are formed. Further, the multilayer wiring 40 including the wiring layers 41 to 43 including the lower first contact 45, the lower second contact 46, and the connecting portion 41A and the insulating layer 44 is formed on the second surface 30B of the semiconductor substrate 30.
 半導体基板30の基体としては、例えば、半導体基板30と、埋込み酸化膜(図示せず)と、保持基板(図示せず)とを積層したSOI(Silicon on Insulator)基板を用いる。埋込み酸化膜および保持基板は、図7Aには図示しないが、半導体基板30の第1面30Aに接合されている。イオン注入後、アニール処理を行う。 As the base of the semiconductor substrate 30, for example, an SOI (Silicon On Insulator) substrate in which a semiconductor substrate 30, a buried oxide film (not shown), and a holding substrate (not shown) are stacked is used. Although not shown in FIG. 7A, the buried oxide film and the holding substrate are bonded to the first surface 30A of the semiconductor substrate 30. After ion implantation, annealing is performed.
 次いで、半導体基板30の第2面30B側(多層配線40側)に支持基板(図示せず)または他の半導体基体等を接合して、上下反転する。続いて、半導体基板30をSOI基板の埋込み酸化膜および保持基板から分離し、半導体基板30の第1面30Aを露出させる。以上の工程は、イオン注入およびCVD(Chemical Vapor Deposition)等、通常のCMOSプロセスで使用されている技術にて行うことが可能である。 Next, a support substrate (not shown) or another semiconductor substrate is joined to the second surface 30B side (multilayer wiring 40 side) of the semiconductor substrate 30 and turned upside down. Subsequently, the semiconductor substrate 30 is separated from the buried oxide film of the SOI substrate and the holding substrate, and the first surface 30A of the semiconductor substrate 30 is exposed. The above steps can be performed by techniques used in a normal CMOS process, such as ion implantation and CVD (Chemical Vapor Deposition).
 次いで、図7Bに示したように、例えばドライエッチングにより半導体基板30を第1面30A側から加工し、例えば環状の開口34Hを形成する。開口34Hの深さは、図7Bに示したように、半導体基板30の第1面30Aから第2面30Bまで貫通すると共に、例えば、接続部41Aまで達するものである。 Next, as shown in FIG. 7B, the semiconductor substrate 30 is processed from the first surface 30A side by dry etching, for example, to form, for example, an annular opening 34H. As shown in FIG. 7B, the depth of the opening 34H penetrates from the first surface 30A to the second surface 30B of the semiconductor substrate 30 and reaches, for example, the connection portion 41A.
 続いて、半導体基板30の第1面30Aおよび開口34Hの側面に、例えば負の固定電荷層16Aを形成する。負の固定電荷層16Aとして、2種類以上の膜を積層してもよい。それにより、正孔蓄積層としての機能をより高めることが可能となる。負の固定電荷層16Aを形成したのち、誘電体層16Bを形成する。次に、誘電体層16B上の所定の位置にパッド部39A,39B,39Cを形成したのち、誘電体層16Bおよびパッド部39A,39B,39C上に、層間絶縁層17を形成する。次いで、層間絶縁層17を成膜したのち、例えば、CMP(Chemical Mechanical Polishing)法を用いて層間絶縁層17の表面を平坦化する。 Subsequently, for example, a negative fixed charge layer 16A is formed on the first surface 30A of the semiconductor substrate 30 and the side surface of the opening 34H. Two or more types of films may be stacked as the negative fixed charge layer 16A. Thereby, the function as a hole accumulation layer can be further enhanced. After the negative fixed charge layer 16A is formed, the dielectric layer 16B is formed. Next, after the pad portions 39A, 39B, and 39C are formed at predetermined positions on the dielectric layer 16B, the interlayer insulating layer 17 is formed on the dielectric layer 16B and the pad portions 39A, 39B, and 39C. Next, after the interlayer insulating layer 17 is formed, the surface of the interlayer insulating layer 17 is planarized by using, for example, a CMP (Chemical-Mechanical-Polishing) method.
 続いて、図7Cに示したように、パッド部39A,39B,39C上の層間絶縁層17に、それぞれ開口18H1,18H2,18H3を形成したのち、この開口18H1,18H2,18H3に、例えばAl等の導電材料を埋め込み、上部第1コンタクト18A、上部第2コンタクト18Bおよび上部第3コンタクト18Cを形成する。 Subsequently, as shown in FIG. 7C, openings 18H1, 18H2, and 18H3 are respectively formed in the interlayer insulating layer 17 on the pad portions 39A, 39B, and 39C, and then, for example, Al or the like is formed in the openings 18H1, 18H2, and 18H3. Then, the upper first contact 18A, the upper second contact 18B, and the upper third contact 18C are formed.
 続いて、図7Dに示したように、層間絶縁層17上に導電膜21xを成膜したのち、導電膜21xの所定の位置(例えば、パッド部39A、パッド部39Bおよびパッド部39C上)にフォトレジストPRを形成する。その後、エッチングおよびフォトレジストPRを除去することで、図7Eに示した、読み出し電極A、蓄積電極11Bおよび転送電極11Cがパターニングされる。 Subsequently, as illustrated in FIG. 7D, after the conductive film 21x is formed on the interlayer insulating layer 17, the conductive film 21x is formed at predetermined positions (for example, on the pad portion 39A, the pad portion 39B, and the pad portion 39C). A photoresist PR is formed. Thereafter, the readout electrode A, the storage electrode 11B, and the transfer electrode 11C shown in FIG. 7E are patterned by etching and removing the photoresist PR.
 次いで、層間絶縁層17および読み出し電極11A、蓄積電極11Bおよび上部第3コンタクト18C上に絶縁層12を成膜したのち、読み出し電極11A上に開口12Hを設ける。この後、層間絶縁層17上に、半導体層13、光電変換層14、上部電極15、保護層19、遮光膜21およびカラーフィルタ22を形成する。最後に、平坦化層等の光学部材およびオンチップレンズ23を配設する。以上により、図1に示した撮像素子1が完成する。 Next, after forming the insulating layer 12 on the interlayer insulating layer 17, the readout electrode 11A, the storage electrode 11B, and the upper third contact 18C, an opening 12H is provided on the readout electrode 11A. Thereafter, the semiconductor layer 13, the photoelectric conversion layer 14, the upper electrode 15, the protective layer 19, the light shielding film 21, and the color filter 22 are formed on the interlayer insulating layer 17. Finally, an optical member such as a planarizing layer and an on-chip lens 23 are disposed. Thus, the image sensor 1 shown in FIG. 1 is completed.
(1-3.撮像素子の制御方法)
(光電変換素子10による信号の取得)
 本実施の形態の撮像素子1では、撮像素子1へ入射した光のうち近赤外領域の光が光電変換素子10において選択的に検出(吸収)され、光電変換される。
(1-3. Image Sensor Control Method)
(Signal acquisition by the photoelectric conversion element 10)
In the image sensor 1 of the present embodiment, light in the near infrared region of light incident on the image sensor 1 is selectively detected (absorbed) by the photoelectric conversion element 10 and subjected to photoelectric conversion.
 光電変換素子10は、貫通電極34を介して、アンプトランジスタAMPのゲートGampとフローティングディフュージョンFD1とに接続されている。よって、光電変換素子10で発生した電子-正孔対のうちの電子(信号電荷)が、下部電極11側から取り出され、貫通電極34を介して半導体基板30の第2面30B側へ転送され、フローティングディフュージョンFD1に蓄積される。これと同時に、アンプトランジスタAMPにより、光電変換素子10で生じた電荷量が電圧に変調される。 The photoelectric conversion element 10 is connected to the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1 through the through electrode 34. Therefore, electrons (signal charges) of the electron-hole pairs generated in the photoelectric conversion element 10 are taken out from the lower electrode 11 side and transferred to the second surface 30B side of the semiconductor substrate 30 through the through electrode 34. Are accumulated in the floating diffusion FD1. At the same time, the charge amount generated in the photoelectric conversion element 10 is modulated into a voltage by the amplifier transistor AMP.
 また、フローティングディフュージョンFD1の隣には、リセットトランジスタRSTのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷は、リセットトランジスタRSTによりリセットされる。 Further, a reset gate Grst of the reset transistor RST is disposed next to the floating diffusion FD1. Thereby, the electric charge accumulated in the floating diffusion FD1 is reset by the reset transistor RST.
 本実施の形態では、光電変換素子10が、貫通電極34を介して、アンプトランジスタAMPだけでなくフローティングディフュージョンFD1にも接続されているので、フローティングディフュージョンFD1に蓄積された電荷をリセットトランジスタRSTにより容易にリセットすることが可能となる。 In the present embodiment, since the photoelectric conversion element 10 is connected not only to the amplifier transistor AMP but also to the floating diffusion FD1 through the through electrode 34, the charge accumulated in the floating diffusion FD1 can be easily obtained by the reset transistor RST. It becomes possible to reset to.
 これに対して、貫通電極34とフローティングディフュージョンFD1とが接続されていない場合には、フローティングディフュージョンFD1に蓄積された電荷をリセットすることが困難となり、大きな電圧をかけて上部電極15側へ引き抜くことになる。そのため、光電変換層14がダメージを受けるおそれがある。また、短時間でのリセットを可能とする構造は暗時ノイズの増大を招き、トレードオフとなるため、この構造は困難である。 On the other hand, when the through electrode 34 and the floating diffusion FD1 are not connected, it becomes difficult to reset the charges accumulated in the floating diffusion FD1, and a large voltage is applied to pull out the charge to the upper electrode 15 side. become. For this reason, the photoelectric conversion layer 14 may be damaged. In addition, a structure that can be reset in a short time causes an increase in dark noise, which is a trade-off, so that this structure is difficult.
 図8は、光電変換素子10の一動作例を表したものである。(A)は、蓄積電極11Bにおける電位を示し、(B)は、フローティングディフュージョンFD1(読み出し電極11A)における電位を示し、(C)は、リセットトランジスタTR1rstのゲート(Gsel)における電位を示したものである。光電変換素子10では、読み出し電極11A、蓄積電極11Bおよび転送電極11Cは、それぞれ個別に電圧が印加されるようになっている。 FIG. 8 shows an operation example of the photoelectric conversion element 10. (A) shows the potential at the storage electrode 11B, (B) shows the potential at the floating diffusion FD1 (reading electrode 11A), and (C) shows the potential at the gate (Gsel) of the reset transistor TR1rst. It is. In the photoelectric conversion element 10, voltages are individually applied to the readout electrode 11A, the storage electrode 11B, and the transfer electrode 11C.
 光電変換素子10では、蓄積期間においては、駆動回路から読み出し電極11Aに電位V1が印加され、蓄積電極11Bに電位V2が印加される。ここで、電位V1,V2は、V1>V2とする。これにより、光電変換によって生じた信号電荷(ここでは、電子)は、蓄積電極11Bに引きつけられ、蓄積電極11Bと対向する半導体層13の領域に蓄積される(蓄積期間)。因みに、蓄積電極11Bと対向する半導体層13の領域の電位は、光電変換の時間経過に伴い、より正側の値となる。なお、正孔は上部電極15から駆動回路へと送出される。 In the photoelectric conversion element 10, during the accumulation period, the potential V1 is applied from the drive circuit to the readout electrode 11A, and the potential V2 is applied to the storage electrode 11B. Here, the potentials V1 and V2 satisfy V1> V2. As a result, signal charges (electrons here) generated by the photoelectric conversion are attracted to the storage electrode 11B and stored in the region of the semiconductor layer 13 facing the storage electrode 11B (storage period). Incidentally, the potential of the region of the semiconductor layer 13 facing the storage electrode 11B becomes a more positive value as the photoelectric conversion time elapses. The holes are sent from the upper electrode 15 to the drive circuit.
 光電変換素子10では、蓄積期間の後期においてリセット動作がなされる。具体的には、タイミングt1において、走査部は、リセット信号RSTの電圧を低レベルから高レベルに変化させる。これにより、単位画素Pでは、リセットトランジスタTR1rstがオン状態になり、その結果、フローティングディフュージョンFD1の電圧が電源電圧VDDに設定され、フローティングディフュージョンFD1の電圧がリセットされる(リセット期間)。 In the photoelectric conversion element 10, a reset operation is performed in the later stage of the accumulation period. Specifically, at timing t1, the scanning unit changes the voltage of the reset signal RST from a low level to a high level. Thereby, in the unit pixel P, the reset transistor TR1rst is turned on. As a result, the voltage of the floating diffusion FD1 is set to the power supply voltage VDD, and the voltage of the floating diffusion FD1 is reset (reset period).
 リセット動作の完了後、電荷の読み出しが行われる。具体的には、タイミングt2において、駆動回路から読み出し電極11Aには電位V3が印加され、蓄積電極11Bには電位V4が印加され、転送電極11Cには電位V5が印加される。ここで、電位V3,V4,V5は、V4>V5>V3とする。これにより、蓄積電極11Bに対応する領域に蓄積されていた信号電荷は、蓄積電極11B上から転送電極11Cおよび読み出し電極11Aの順に移動し、読み出し電極11AからフローティングディフュージョンFD1へと読み出される。即ち、半導体層13に蓄積された電荷が制御部に読み出される(転送期間)。 After the reset operation is completed, the charge is read out. Specifically, at timing t2, the potential V3 is applied from the drive circuit to the readout electrode 11A, the potential V4 is applied to the storage electrode 11B, and the potential V5 is applied to the transfer electrode 11C. Here, the potentials V3, V4, and V5 satisfy V4> V5> V3. Thereby, the signal charge accumulated in the region corresponding to the storage electrode 11B moves from the storage electrode 11B to the transfer electrode 11C and the readout electrode 11A in this order, and is read from the readout electrode 11A to the floating diffusion FD1. That is, the charge accumulated in the semiconductor layer 13 is read out to the control unit (transfer period).
 読み出し動作完了後、再び、駆動回路から読み出し電極11Aに電位V1が印加され、蓄積電極11Bに電位V2が印加される。これにより、光電変換によって生じた信号電荷は、蓄積電極11Bに引きつけられ、蓄積電極11Bと対向する半導体層13の領域に蓄積される(蓄積期間)。 After the read operation is completed, the potential V1 is again applied from the drive circuit to the read electrode 11A, and the potential V2 is applied to the storage electrode 11B. As a result, the signal charge generated by the photoelectric conversion is attracted to the storage electrode 11B and stored in the region of the semiconductor layer 13 facing the storage electrode 11B (storage period).
(1-4.作用・効果)
 前述したように、近年、近赤外光に感度を有する光電変換素子として、光電変換層に半導体ナノ粒子を用いた光電変換素子が開発されている。光電変換層に半導体ナノ粒子を用いた光電変換素子ではリセットノイズの観点から、例えば図9に示した光電変換素子1000のように、下部電極と光電変換層との間に半導体層が設けられている。半導体層は、光電変換層で発生した電荷を、下部電極を構成する電荷蓄積用電極上に蓄積すると共に、蓄積した電荷を電荷収集用電極に転送するためのものであり、例えば電荷の移動度が高いIGZO等の酸化物半導体材料を用いて形成されている。しかしながら、半導体層と半導体ナノ粒子を用いた光電変換層とが積層された光電変換素子では、暗電流の増加や量子効率の低下が懸念される。
(1-4. Action and effect)
As described above, in recent years, a photoelectric conversion element using semiconductor nanoparticles in a photoelectric conversion layer has been developed as a photoelectric conversion element having sensitivity to near infrared light. In the photoelectric conversion element using semiconductor nanoparticles in the photoelectric conversion layer, from the viewpoint of reset noise, a semiconductor layer is provided between the lower electrode and the photoelectric conversion layer, for example, like the photoelectric conversion element 1000 illustrated in FIG. Yes. The semiconductor layer is for accumulating the charge generated in the photoelectric conversion layer on the charge accumulation electrode constituting the lower electrode and transferring the accumulated charge to the charge collection electrode. For example, the mobility of the charge It is formed using an oxide semiconductor material such as high IGZO. However, in a photoelectric conversion element in which a semiconductor layer and a photoelectric conversion layer using semiconductor nanoparticles are stacked, there is a concern about an increase in dark current and a decrease in quantum efficiency.
 図9は、一般的な光電変換素子の光照射時における電極間のポテンシャル分布を表したものである。図9の横軸は光入射側に配置された電極と光電変換層との界面からの距離を示している。よって、膜厚0nmは光入射側に配置された電極との界面であり、膜厚300nmは光入射側とは反対側に配置された電極との界面であり、膜厚200nmは光電変換層と半導体層との界面に相当する。図9中の実線は、例えば、ドナー密度(ND)1015cm-3で比誘電率10を有する半導体層と、比誘電率30を有する光電変換層を用いた光電変換素子の電極間のポテンシャル分布を表したものである。図9中の破線は、例えば、ドナー密度(ND)1018cm-3で比誘電率10を有する半導体層と、比誘電率30を有する光電変換層を用いた光電変換素子の電極間のポテンシャル分布を表したものである。一般的な光電変換素子では、図9に示したように、半導体層に相当する膜厚200nm~300nmにおけるエネルギー変化と比較して光電変換層に相当する0nm~200nmの範囲内におけるエネルギー変化は小さく、光照射時に光電変換層に印加される内部電界が弱いことがわかる。また、接合される半導体層のキャリア密度(ドナー密度)が低いほど、光照射時に光電変換層に内部電界がかかりにくいことがわかる。 FIG. 9 shows a potential distribution between electrodes during light irradiation of a general photoelectric conversion element. The horizontal axis in FIG. 9 indicates the distance from the interface between the electrode disposed on the light incident side and the photoelectric conversion layer. Accordingly, the film thickness of 0 nm is an interface with the electrode disposed on the light incident side, the film thickness of 300 nm is the interface with the electrode disposed on the opposite side to the light incident side, and the film thickness of 200 nm is between the photoelectric conversion layer and This corresponds to the interface with the semiconductor layer. In Figure 9 the solid line, for example, a semiconductor layer having a dielectric constant 10 in donor concentration (N D) 10 15 cm -3 , between the electrodes of the photoelectric conversion device using a photoelectric conversion layer having a dielectric constant 30 It represents the potential distribution. The broken line in FIG. 9 indicates, for example, between the electrodes of a photoelectric conversion element using a semiconductor layer having a donor density (N D ) of 10 18 cm −3 and a relative dielectric constant of 10 and a photoelectric conversion layer having a relative dielectric constant of 30. It represents the potential distribution. In a general photoelectric conversion element, as shown in FIG. 9, the energy change in the range of 0 nm to 200 nm corresponding to the photoelectric conversion layer is small compared to the energy change in the film thickness of 200 nm to 300 nm corresponding to the semiconductor layer. It can be seen that the internal electric field applied to the photoelectric conversion layer during light irradiation is weak. It can also be seen that the lower the carrier density (donor density) of the semiconductor layer to be joined, the less the internal electric field is applied to the photoelectric conversion layer during light irradiation.
 光電変換素子の量子効率は、n型の半導体層と光電変換層とを積層させることで向上することが知られている。一方、光電変換によって生成した電荷を半導体層内に蓄積するために、光入射側とは反対側に、各々独立した複数の電極を設けた光電変換素子では、電荷の蓄積および転送動作のために半導体層を空乏化しておく必要がある。空乏化した半導体層と光電変換層とを積層すると、たがいの比誘電率の違いから、図9に示したように、光電変換層に内部電界がかかりにくくなる。よって、電荷の移動は拡散伝導に依存することになり、量子効率が低下する。 It is known that the quantum efficiency of a photoelectric conversion element is improved by laminating an n-type semiconductor layer and a photoelectric conversion layer. On the other hand, in order to accumulate charges generated by photoelectric conversion in the semiconductor layer, a photoelectric conversion element provided with a plurality of independent electrodes on the side opposite to the light incident side is used for charge accumulation and transfer operations. The semiconductor layer needs to be depleted. When the depleted semiconductor layer and the photoelectric conversion layer are stacked, an internal electric field is hardly applied to the photoelectric conversion layer as shown in FIG. 9 due to the difference in relative dielectric constant. Therefore, the charge transfer depends on diffusion conduction, and the quantum efficiency decreases.
 これに対して、本実施の形態の光電変換素子(光電変換素子10)では、光電変換層14の比誘電率(εCQD)を、半導体層13の比誘電率(εS)に対してεCQD/εS<3を満たすようにした。図10は光電変換素子10の光照射時における電極間のポテンシャル分布を表したものである。図10の横軸は、図9と同様に、光入射側に配置された電極(上部電極15)と光電変換層(光電変換層14)との界面からの距離を示している。よって、膜厚0nmは上部電極15との界面であり、膜厚300は下部電極11との界面であり、膜厚200nmは光電変換層14と半導体層13との界面に相当する。図10中の実線は、本実施の形態の光電変換層を用いた光電変換素子の電極間のポテンシャル分布を表したものである。図10中の破線は、比較例として、図9に示したドナー密度(ND)1015cm-3を有する半導体層を用いた光電変換素子の電極間のポテンシャル分布を表したものである。なお、比較例における光電変換層の比誘電率(εr)は30であるのに対して、本実施の形態の光電変換素子10の光電変換層14の比誘電率(εCQD)は15としている。半導体層の比誘電率(εr)は比較例および光電変換素子10共に10である。本実施の形態の光電変換素子10では、図10に示したように、比較例と比べて光照射時に光電変換層14に強い内部電界が印加されていることがわかる。よって、光電変換層14内に生じた電子の蓄積電極11Bへの輸送効率が向上し、光電変換層14内における電子-正孔対の再結合を抑制することが可能となる。 On the other hand, in the photoelectric conversion element (photoelectric conversion element 10) of the present embodiment, the relative dielectric constant (ε CQD ) of the photoelectric conversion layer 14 is ε with respect to the relative dielectric constant (ε S ) of the semiconductor layer 13. CQD / ε S <3 was satisfied. FIG. 10 shows the potential distribution between the electrodes when the photoelectric conversion element 10 is irradiated with light. The horizontal axis of FIG. 10 shows the distance from the interface between the electrode (upper electrode 15) and the photoelectric conversion layer (photoelectric conversion layer 14) arranged on the light incident side, as in FIG. Therefore, the film thickness of 0 nm is the interface with the upper electrode 15, the film thickness 300 is the interface with the lower electrode 11, and the film thickness of 200 nm corresponds to the interface between the photoelectric conversion layer 14 and the semiconductor layer 13. The solid line in FIG. 10 represents the potential distribution between the electrodes of the photoelectric conversion element using the photoelectric conversion layer of this embodiment. The broken line in FIG. 10 represents the potential distribution between the electrodes of the photoelectric conversion element using the semiconductor layer having the donor density (N D ) 10 15 cm −3 shown in FIG. 9 as a comparative example. In addition, while the relative dielectric constant (ε r ) of the photoelectric conversion layer in the comparative example is 30, the relative dielectric constant (ε CQD ) of the photoelectric conversion layer 14 of the photoelectric conversion element 10 of the present embodiment is 15. Yes. The relative dielectric constant (ε r ) of the semiconductor layer is 10 for both the comparative example and the photoelectric conversion element 10. In the photoelectric conversion element 10 of this Embodiment, as shown in FIG. 10, it turns out that the strong internal electric field is applied to the photoelectric converting layer 14 at the time of light irradiation compared with a comparative example. Therefore, the efficiency of transport of electrons generated in the photoelectric conversion layer 14 to the storage electrode 11B is improved, and recombination of electron-hole pairs in the photoelectric conversion layer 14 can be suppressed.
 以上により、本実施の形態では、本実施の形態では、光電変換層14の比誘電率を低下させて半導体層13の比誘電率(εS)に対して光電変換層14の比誘電率(εCQD)がεCQD/εS<3を満たすようにしたので、光電変換層14へ強い電界が印加される。よって、光電変換層14内における電荷の再結合が抑制され、量子効率を向上させることが可能となる。 As described above, in this embodiment, in this embodiment, the relative dielectric constant of the photoelectric conversion layer 14 is reduced with respect to the relative dielectric constant (ε S ) of the semiconductor layer 13 by reducing the relative dielectric constant of the photoelectric conversion layer 14. Since ε CQD ) satisfies ε CQD / ε S <3, a strong electric field is applied to the photoelectric conversion layer 14. Therefore, charge recombination in the photoelectric conversion layer 14 is suppressed, and quantum efficiency can be improved.
<2.適用例>
(適用例1)
 図11は、上記実施の形態において説明した撮像素子1を各画素に用いた撮像装置(撮像装置100)の全体構成を表したものである。この撮像装置100は、CMOSイメージセンサであり、半導体基板30上に、撮像エリアとしての画素部1aを有すると共に、この画素部1aの周辺領域に、例えば、行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる周辺回路部130を有している。
<2. Application example>
(Application example 1)
FIG. 11 illustrates the overall configuration of an imaging apparatus (imaging apparatus 100) that uses the imaging element 1 described in the above embodiment for each pixel. This imaging device 100 is a CMOS image sensor, and has a pixel unit 1a as an imaging area on a semiconductor substrate 30, and, for example, a row scanning unit 131, a horizontal selection unit 133, and the like in a peripheral region of the pixel unit 1a. A peripheral circuit unit 130 including a column scanning unit 134 and a system control unit 132 is provided.
 画素部1aは、例えば、行列状に2次元配置された複数の単位画素Pを有している。この単位画素Pには、例えば、画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。 The pixel unit 1a has, for example, a plurality of unit pixels P that are two-dimensionally arranged in a matrix. In the unit pixel P, for example, a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column. The pixel drive line Lread transmits a drive signal for reading a signal from the pixel. One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
 行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部1aの各単位画素Pを、例えば、行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各単位画素Pから出力される信号は、垂直信号線Lsigの各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。 The row scanning unit 131 is configured by a shift register, an address decoder, or the like, and is a pixel driving unit that drives each unit pixel P of the pixel unit 1a, for example, in units of rows. A signal output from each unit pixel P of the pixel row that is selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig. The horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
 列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線135に出力され、当該水平信号線135を通して半導体基板30の外部へ伝送される。 The column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel transmitted through each of the vertical signal lines Lsig is sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 30 through the horizontal signal line 135. .
 行走査部131、水平選択部133、列走査部134および水平信号線135からなる回路部分は、半導体基板30上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。 The circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 30 or provided in the external control IC. It may be. In addition, these circuit portions may be formed on another substrate connected by a cable or the like.
 システム制御部132は、半導体基板30の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、撮像装置100の内部情報等のデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134等の周辺回路の駆動制御を行う。 The system control unit 132 receives a clock given from the outside of the semiconductor substrate 30, data for instructing an operation mode, and the like, and outputs data such as internal information of the imaging apparatus 100. The system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Peripheral circuit drive control.
(適用例2)
 上記撮像装置100等は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図12に、その一例として、電子機器200(カメラ)の概略構成を示す。この電子機器200は、例えば、静止画または動画を撮影可能なビデオカメラであり、撮像装置100と、光学系(光学レンズ)210と、シャッタ装置211と、撮像装置100およびシャッタ装置211を駆動する駆動部213と、信号処理部212とを有する。
(Application example 2)
The imaging device 100 and the like can be applied to all types of electronic devices having an imaging function, such as a camera system such as a digital still camera and a video camera, and a mobile phone having an imaging function. FIG. 12 shows a schematic configuration of an electronic device 200 (camera) as an example. The electronic device 200 is, for example, a video camera capable of shooting a still image or a moving image, and drives the imaging device 100, an optical system (optical lens) 210, a shutter device 211, the imaging device 100, and the shutter device 211. A driving unit 213 and a signal processing unit 212 are included.
 光学系210は、被写体からの像光(入射光)を撮像装置100の画素部1aへ導くものである。この光学系210は、複数の光学レンズから構成されていてもよい。シャッタ装置211は、撮像装置100への光照射期間および遮光期間を制御するものである。駆動部213は、撮像装置100の転送動作およびシャッタ装置211のシャッタ動作を制御するものである。信号処理部212は、撮像装置100から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリ等の記憶媒体に記憶されるか、あるいは、モニタ等に出力される。 The optical system 210 guides image light (incident light) from a subject to the pixel unit 1a of the imaging apparatus 100. The optical system 210 may be composed of a plurality of optical lenses. The shutter device 211 controls a light irradiation period and a light shielding period for the imaging apparatus 100. The drive unit 213 controls the transfer operation of the imaging device 100 and the shutter operation of the shutter device 211. The signal processing unit 212 performs various signal processing on the signal output from the imaging apparatus 100. The video signal Dout after the signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
(適用例3)
<体内情報取得システムへの応用例>
 更に、本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
(Application example 3)
<Application example to in-vivo information acquisition system>
Furthermore, the technology (present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図13は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。 FIG. 13 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。 The in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。 The capsule endoscope 10100 is swallowed by the patient at the time of examination. The capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient. Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。 The external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。 In the in-vivo information acquisition system 10001, an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。 The configurations and functions of the capsule endoscope 10100 and the external control device 10200 will be described in more detail.
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。 The capsule endoscope 10100 includes a capsule-type casing 10101. In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
 光源部10111は、例えばLED(light emitting diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。 The light source unit 10111 includes a light source such as an LED (light-emitting diode), and irradiates the imaging field of the imaging unit 10112 with light.
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。 The image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。 The image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various types of signal processing on the image signal generated by the imaging unit 10112. The image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。 The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A. In addition, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。 The power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図13では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。 The power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115. In FIG. 13, in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111. The imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。 The control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted. The external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A. In the capsule endoscope 10100, for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200. In addition, an imaging condition (for example, a frame rate or an exposure value in the imaging unit 10112) can be changed by a control signal from the external control device 10200. Further, the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、ならびに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。 Further, the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device. As the image processing, for example, development processing (demosaic processing), image quality enhancement processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed. The external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data. Alternatively, the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部10112に適用され得る。これにより、検出精度が向上する。 Heretofore, an example of the in-vivo information acquisition system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to, for example, the imaging unit 10112 among the configurations described above. Thereby, detection accuracy improves.
(適用例4)
<内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
(Application example 4)
<Application example to endoscopic surgery system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図14は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 14 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
 図14では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 14 illustrates a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000. As shown in the figure, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU: “Camera Control Unit”) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 includes a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the operator's work space, the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111. Send in. The recorder 11207 is an apparatus capable of recording various types of information related to surgery. The printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 In addition, the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. In this case, laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. A so-called narrow-band light observation (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図15は、図14に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging device constituting the imaging unit 11402 may be one (so-called single plate type) or plural (so-called multi-plate type). In the case where the imaging unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 11402 is configured as a multi-plate type, a plurality of lens units 11401 can be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 is not necessarily provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、ならびに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of imaging, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto-Exposure) function, AF (Auto-Focus) function, and AWB (Auto-White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, communication is performed by wire using the transmission cable 11400. However, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部11402に適用され得る。撮像部11402に本開示に係る技術を適用することにより、検出精度が向上する。 In the foregoing, an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 11402 among the configurations described above. By applying the technique according to the present disclosure to the imaging unit 11402, the detection accuracy is improved.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology according to the present disclosure may be applied to, for example, a microscope surgery system and the like.
(適用例5)
<移動体への応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
(Application example 5)
<Application examples to mobile objects>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be any type of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). You may implement | achieve as an apparatus mounted in a body.
 図16は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 16 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図16に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example illustrated in FIG. 16, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 16, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図17は、撮像部12031の設置位置の例を示す図である。 FIG. 17 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図17では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 17, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図17には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 17 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
<3.実施例>
 次に、本開示の実施例について詳細に説明する。
<3. Example>
Next, examples of the present disclosure will be described in detail.
 以下の方法を用いて評価用サンプルを作製し、その外部量子効率(EQE)および光応答性を評価した。 The sample for evaluation was produced using the following method, and the external quantum efficiency (EQE) and photoresponsiveness were evaluated.
 まず、膜厚50nmのITO電極が設けられたガラス基板をUV/オゾン処理にて洗浄したのち、スパッタリンング法を用いてITO電極上にIGZOからなる厚さ100nmの半導体層を成膜した。続いて、この基板を大気中において350℃、1hrの熱処理を施すことでIGZOを空乏化させた。次に、半導体ナノ粒子としてオレイン酸がナノ粒子表面に配位したPbSナノ粒子を用い、これとP3HTをクロロホルム溶媒に分散させ、スピンコート法にて2500rpmの回転数で半導体層上に塗布して光電変換層を成膜した。なお、PbSナノ粒子およびP3HTのクロロホルム溶媒への添加量は、例えば成膜後の光電変換層中のPbSナノ粒子の体積割合を20%にする場合には、クロロホルム1mlに対してPbSナノ粒子を70mg、P3HTを30mg分散させる。体積割合はナノ粒子とP3HTとの分量に比例して調整が可能である。続いて、アセトニトリル溶媒にBDT(1,4-ベンゼンヂチオール)を濃度0.05モル/Lで分散させた溶液を滴下し、PbSナノ粒子のリガンドをオレイン酸からBDTへ交換した。この操作により、ナノ粒子間の距離が小さくなり、ナノ粒子間のキャリア伝導性が向上する。次に、アセトニトリルを滴下してオレイン酸等の余剰な有機物を洗浄したのち、不活性ガス雰囲気にて150℃、10分の熱処理を行い、残留溶媒の除去を行った。続いて、光電変換層上に、真空蒸着法を用いてMoO3膜を厚さ10nmで成膜し、さらにスパッタリング法を用いて50nmのITO膜を積層することで上部電極を形成した。以上により、1mm×1mmの光電変換領域を有する光電変換素子を作製した。 First, a glass substrate provided with an ITO electrode having a thickness of 50 nm was washed by UV / ozone treatment, and then a 100 nm thick semiconductor layer made of IGZO was formed on the ITO electrode by sputtering. Subsequently, the substrate was subjected to heat treatment at 350 ° C. for 1 hour in the atmosphere to deplete IGZO. Next, PbS nanoparticles in which oleic acid is coordinated on the surface of the nanoparticles are used as semiconductor nanoparticles, and this and P3HT are dispersed in a chloroform solvent and applied onto the semiconductor layer at a rotational speed of 2500 rpm by a spin coating method. A photoelectric conversion layer was formed. The amount of PbS nanoparticles and P3HT added to the chloroform solvent is such that, for example, when the volume ratio of PbS nanoparticles in the photoelectric conversion layer after film formation is 20%, PbS nanoparticles are added to 1 ml of chloroform. Disperse 70 mg, 30 mg of P3HT. The volume ratio can be adjusted in proportion to the amount of nanoparticles and P3HT. Subsequently, a solution of BDT (1,4-benzenedithiol) dispersed in acetonitrile solvent at a concentration of 0.05 mol / L was added dropwise to exchange the ligand of PbS nanoparticles from oleic acid to BDT. This operation reduces the distance between the nanoparticles and improves the carrier conductivity between the nanoparticles. Next, acetonitrile was added dropwise to wash away excess organic substances such as oleic acid, and then heat treatment was performed at 150 ° C. for 10 minutes in an inert gas atmosphere to remove the residual solvent. Subsequently, an MoO 3 film having a thickness of 10 nm was formed on the photoelectric conversion layer using a vacuum deposition method, and an ITO film having a thickness of 50 nm was further stacked using a sputtering method, thereby forming an upper electrode. Thus, a photoelectric conversion element having a 1 mm × 1 mm photoelectric conversion region was produced.
 同様の手法を用いて、PbSナノ粒子とP3HTの混合比率を変えたサンプルを複数作製した。なお、これらの光電変換層は各サンプルにおいて波長940nmにおける光吸収量が同等となるように膜厚を調整した。 Using a similar method, a plurality of samples with different mixing ratios of PbS nanoparticles and P3HT were produced. In addition, these photoelectric conversion layers adjusted the film thickness so that the light absorption amount in wavelength 940nm might become equivalent in each sample.
 図18Aは、PbSナノ粒子の体積比率を変えた光電変換層の比誘電率とEQEの関係を表したものである。図18Aでは、一般的な光電変換素子における光電変換層の比誘電率(εr)30を基準にしてEQEを規格化した。図18Bは、半導体層の比誘電率に対する光電変換層の比誘電率の比(εCQD/εS)とEQEとの関係を表したものである。図19は、これらのサンプルを用いて、光電変換層中の半導体ナノ粒子(PbSナノ粒子)の体積比率とEQEおよび光応答時間との関係を表したものである。 FIG. 18A shows the relationship between the relative dielectric constant and EQE of the photoelectric conversion layer in which the volume ratio of the PbS nanoparticles is changed. In FIG. 18A, EQE is normalized based on the relative dielectric constant (ε r ) 30 of the photoelectric conversion layer in a general photoelectric conversion element. FIG. 18B shows the relationship between the ratio of the relative permittivity of the photoelectric conversion layer to the relative permittivity of the semiconductor layer (ε CQD / ε S ) and EQE. FIG. 19 shows the relationship between the volume ratio of semiconductor nanoparticles (PbS nanoparticles) in the photoelectric conversion layer, EQE, and photoresponse time using these samples.
 光電変換層の比誘電率は、ITO電極が設けられたガラス基板に同様の手法を用いて光電変換層を形成し、上部電極をAlとした素子を別途作製し、素子の有効面積、光電変換層の膜厚およびインピーダンス解析によって得られる容量を用いて算出した。EQEは半導体パラメータアナライザを用いて評価した。具体的には、バンドパスフィルタを介してLED光源から光電変換素子に照射される光(波長940nm)の光量を10μW/cm2とし、電極間に印加される逆バイアス電圧を3Vとした場合の明電流値および暗電流値から、外部光電変換効率を算出した。光応答時間は、デジタルオシロスコープを用いて光照射時に観測される明電流値が、光を遮断してから立ち下がる変化を測定した。具体的には、940nmの波長の光を光量50μW/cm2で100ms照射し、電極間に印加される逆バイアス電圧を3Vとした。光遮断直後から電流値が光照射時の10%まで減衰するまでの時間を光応答性の指標として、これを光応答時間と定義した。 The relative permittivity of the photoelectric conversion layer is determined by forming a photoelectric conversion layer on a glass substrate provided with an ITO electrode using the same method, and separately preparing an element having an upper electrode made of Al. The effective area of the element, photoelectric conversion It calculated using the capacity | capacitance obtained by the film thickness and impedance analysis of a layer. EQE was evaluated using a semiconductor parameter analyzer. Specifically, the amount of light (wavelength 940 nm) irradiated from the LED light source to the photoelectric conversion element via the bandpass filter is 10 μW / cm 2 and the reverse bias voltage applied between the electrodes is 3 V. The external photoelectric conversion efficiency was calculated from the bright current value and the dark current value. The light response time was measured by using a digital oscilloscope to measure how the bright current value observed during light irradiation falls after the light is blocked. Specifically, light having a wavelength of 940 nm was irradiated for 100 ms at a light amount of 50 μW / cm 2 , and the reverse bias voltage applied between the electrodes was set to 3V. The time from immediately after the light interruption until the current value attenuates to 10% at the time of light irradiation was defined as the light response time, which was defined as the light response time.
 図18Aから、光電変換層の比誘電率の大きさに比例してEQEが低下していることがわかった。図中には、半導体層と光電変換層の物性パラメータが取り得る値の範囲内で最適化を行ったドリフト拡散モデルによるデバイスシミュレーション結果を実線で示した。図18Bには、これらの物性パラメータをもとに比誘電率が5~25の範囲の半導体層と、比誘電率が10~50の範囲の光電変換層との組み合わせにおいて得られた量子効率をデバイスシミュレーションによって求め、εCQD/εSに対してプロットした結果を示した。この結果から、半導体層の比誘電率の光電変換層の比誘電率に対する比はεCQD/εS<3であることが好ましいことがわかった。なお、より好ましくは、εCQD/εS<2.6である。図19からは、PbSナノ粒子の体積比率の増加に伴って、光応答時間が短くなることがわかった。これは、光電変換素子の光応答性はP3HTの正孔輸送性が律速となっており、P3HTの体積比率が減少したことによって光応答性が向上したものと推測できる。一方で、PbSナノ粒子の体積比率の増加と共にEQEの低下が確認された。これは、PbSナノ粒子の体積比率の増加に従って光電変換層の比誘電率が増大したためと推測できる。以上のことから、光応答性とEQEとを両立するためには、光電変換層中のPbSナノ粒子の体積比率は17%以上26%以下とすることが好ましいことがわかった。 FIG. 18A shows that EQE decreases in proportion to the relative dielectric constant of the photoelectric conversion layer. In the figure, the solid line shows the device simulation result by the drift diffusion model optimized within the range of values that the physical property parameters of the semiconductor layer and the photoelectric conversion layer can take. FIG. 18B shows the quantum efficiencies obtained by combining a semiconductor layer having a relative dielectric constant in the range of 5 to 25 and a photoelectric conversion layer having a relative dielectric constant in the range of 10 to 50 based on these physical property parameters. The results obtained by device simulation and plotted against ε CQD / ε S are shown. From this result, it was found that the ratio of the relative dielectric constant of the semiconductor layer to the relative dielectric constant of the photoelectric conversion layer is preferably ε CQD / ε S <3. More preferably, ε CQD / ε S <2.6. From FIG. 19, it was found that the photoresponse time was shortened with an increase in the volume ratio of the PbS nanoparticles. This can be presumed that the photoresponsiveness of the photoelectric conversion element is determined by the hole transporting property of P3HT, and the photoresponsiveness is improved by reducing the volume ratio of P3HT. On the other hand, a decrease in EQE was confirmed with an increase in the volume ratio of PbS nanoparticles. This can be presumed to be because the relative permittivity of the photoelectric conversion layer increased as the volume ratio of the PbS nanoparticles increased. From the above, it was found that the volume ratio of PbS nanoparticles in the photoelectric conversion layer is preferably 17% or more and 26% or less in order to achieve both photoresponsiveness and EQE.
 以上、実施の形態および適用例ならびに実施例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、撮像素子1内に近赤外領域の波長の光を光電変換する光電変換素子10を単独で用いた例を示したが、例えば可視光等、近赤外領域以外の波長の光を光電変換する他の光電変換素子と組み合わせて用いてもよい。他の光電変換素子としては、例えば、半導体基板30内に埋め込み形成される、所謂無機光電変換素子や、有機半導体材料を用いて光電変換層を形成した、所謂有機光電変換素子が挙げられる。 The embodiments, application examples, and examples have been described above, but the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible. For example, in the above-described embodiment, the example in which the photoelectric conversion element 10 that photoelectrically converts light having a wavelength in the near-infrared region is used alone in the imaging element 1 is shown. However, for example, visible light or the like other than the near-infrared region You may use in combination with the other photoelectric conversion element which photoelectrically converts the light of this wavelength. Examples of the other photoelectric conversion element include a so-called inorganic photoelectric conversion element embedded in the semiconductor substrate 30 and a so-called organic photoelectric conversion element in which a photoelectric conversion layer is formed using an organic semiconductor material.
 また、上記実施の形態等では、裏面照射型の撮像素子1の構成を例に挙げて説明したが、表面照射型の撮像素子にも適用可能である。更に、上記のように、他の光電変換素子と組み合わせて用いる場合には、所謂縦方向分光型の撮像素子として構成してもよいし、半導体基板上に、他の波長域の光を光電変換する光電変換素子を2次元配列(例えばベイヤー配列)させたものであってもよい。更にまた、例えば、多層配線側にメモリ素子等の他の機能素子が設けられた基板が積層されていてもよい。 In the above-described embodiment and the like, the configuration of the back-illuminated image sensor 1 is described as an example, but the present invention can also be applied to a front-illuminated image sensor. Furthermore, as described above, when used in combination with other photoelectric conversion elements, it may be configured as a so-called vertical spectral imaging element, or photoelectric conversion of light in other wavelength ranges on a semiconductor substrate. Alternatively, the photoelectric conversion elements may be two-dimensionally arrayed (for example, Bayer array). Furthermore, for example, a substrate on which another functional element such as a memory element is provided on the multilayer wiring side may be laminated.
 また、本開示の光電変換素子10および撮像素子1ならびに撮像装置100では、上記実施の形態等で説明した各構成要素を全て備えている必要はなく、また逆に他の層を備えていてもよい。 Further, the photoelectric conversion element 10, the imaging element 1, and the imaging apparatus 100 according to the present disclosure do not have to include all the constituent elements described in the above-described embodiments and the like, and conversely, may include other layers. Good.
 更にまた、本開示の技術は、撮像装置だけでなく、例えば太陽電池にも適用することが可能である。 Furthermore, the technology of the present disclosure can be applied not only to an imaging device but also to, for example, a solar battery.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は、以下のような構成であってもよい。
(1)
 互いに独立する複数の電極からなる第1電極と、
 前記第1電極と対向配置された第2電極と、
 半導体ナノ粒子を含むと共に、前記第1電極と前記第2電極との間に設けられた光電変換層と、
 酸化物半導体材料を含むと共に、前記第1電極と前記光電変換層との間に設けられた半導体層とを備え、
 前記光電変換層は、前記光電変換層の比誘電率をεCQD、前記半導体層の比誘電率をεSとした場合に、εCQD/εS<3を満たしている
 光電変換素子。
(2)
 前記半導体層は、1×1017cm-3以下のキャリア密度を有する、前記(1)に記載の光電変換素子。
(3)
 前記光電変換層は、さらに導電性高分子を含み、
 前記半導体ナノ粒子は、前記導電性高分子に分散されている、前記(1)または(2)に記載の光電変換素子。
(4)
 前記光電変換層内における半導体ナノ粒子の体積比率は17%以上26%以下である、前記(3)に記載の光電変換素子。
(5)
 前記半導体ナノ粒子は、コア部と、前記コア部の表面に結合したリガンド部とを有し、
 前記コア部は、PbS,PbSe、PbTe、CuInSe2,ZnCuInSe,CuInS2、HgTe,InAs,InSb,Ag2S,CuZnSnSSeのうちの少なくとも1種を含んで構成されている、前記(1)乃至(4)のうちのいずれかに記載の光電変換素子。
(6)
 前記半導体ナノ粒子は、さらに前記コア部の周囲に設けられたシェル層を有し、
 前記シェル層は、PbO,PbO2,Pb34,ZnS,ZnSe,ZnTeのうちの少なくとも1種を含んで構成されている、前記(5)に記載の光電変換素子。
(7)
 前記半導体層は、IGZO,ZTO,Zn2SnO4,InGaZnSnO,GTO,Ga23:SnO2およびIGOのうちの少なくとも1種を含む、前記(1)乃至(6)のうちのいずれかに記載の光電変換素子。
(8)
 前記第1電極は、チタン(Ti),銀(Ag),アルミニウム(Al),マグネシウム(Mg),クロム(Cr),ニッケル(Ni),タングステン(W)および銅(Cu)のいずれかを用いて形成され、
 前記第2電極は、酸化インジウムスズ(ITO)を用いて形成されている、前記(1)乃至(7)のうちのいずれかに記載の光電変換素子。
(9)
 前記第1電極と前記半導体層との間に絶縁層を有し、
 前記第1電極は、前記絶縁層に設けられた開口を介して前記光電変換層と電気的に接続されている電荷読み出し電極と、前記絶縁層を間に前記光電変換層と対向配置されている電荷蓄積電極とを有する、前記(1)乃至(8)のうちのいずれかに記載の光電変換素子。
(10)
 前記第1電極は、前記電荷読み出し電極と前記電荷蓄積電極との間に電荷転送電極を有する、前記(9)に記載の光電変換素子。
(11)
 前記第1電極を構成する前記複数の電極は、それぞれ個別に電圧が印加される、前記(1)乃至(10)のうちのいずれかに記載の光電変換素子。
(12)
 半導体基板をさらに備え、
 前記半導体基板の第1面側に、前記第1電極、前記半導体層、前記光電変換層および前記第2電極がこの順に設けられている、前記(1)乃至(11)のうちのいずれかに記載の光電変換素子。
(13)
 前記半導体基板は駆動回路を有し、前記第1電極を構成する前記複数の電極は、それぞれ、前記駆動回路に接続されている、前記(12)に記載の光電変換素子。
(14)
 前記半導体基板の前記第1面と対向する第2面側に多層配線層が形成されている、前記(12)または(13)に記載の光電変換素子。
(15)
 1または複数の光電変換素子がそれぞれ設けられている複数の画素を備え、
 前記光電変換素子は、
 互いに独立する複数の電極からなる第1電極と、
 前記第1電極と対向配置された第2電極と、
 半導体ナノ粒子を含むと共に、前記第1電極と前記第2電極との間に設けられた光電変換層と、
 酸化物半導体材料を含むと共に、前記第1電極と前記光電変換層との間に設けられた半導体層とを有し、
 前記光電変換層は、前記光電変換層の比誘電率をεCQD、前記半導体層の比誘電率をεSとした場合に、εCQD/εS<3を満たしている
 撮像装置。
The present disclosure may be configured as follows.
(1)
A first electrode comprising a plurality of electrodes independent from each other;
A second electrode disposed opposite to the first electrode;
A photoelectric conversion layer including semiconductor nanoparticles and provided between the first electrode and the second electrode;
Including an oxide semiconductor material, and a semiconductor layer provided between the first electrode and the photoelectric conversion layer,
The photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, the dielectric constant of the semiconductor layer in the case of the ε S, ε CQD / ε S < photoelectric conversion element meets 3.
(2)
The said semiconductor layer is a photoelectric conversion element as described in said (1) which has a carrier density of 1 * 10 < 17 > cm <-3> or less.
(3)
The photoelectric conversion layer further contains a conductive polymer,
The photoelectric conversion element according to (1) or (2), wherein the semiconductor nanoparticles are dispersed in the conductive polymer.
(4)
The photoelectric conversion element according to (3), wherein the volume ratio of the semiconductor nanoparticles in the photoelectric conversion layer is 17% or more and 26% or less.
(5)
The semiconductor nanoparticles have a core part and a ligand part bonded to the surface of the core part,
The core portion includes at least one of PbS, PbSe, PbTe, CuInSe 2 , ZnCuInSe, CuInS 2 , HgTe, InAs, InSb, Ag 2 S, CuZnSnSSe, (1) to (1) 4) The photoelectric conversion element according to any one of the above.
(6)
The semiconductor nanoparticles further have a shell layer provided around the core part,
The photoelectric conversion element according to (5), wherein the shell layer includes at least one of PbO, PbO 2 , Pb 3 O 4 , ZnS, ZnSe, and ZnTe.
(7)
In any one of (1) to (6), the semiconductor layer includes at least one of IGZO, ZTO, Zn 2 SnO 4 , InGaZnSnO, GTO, Ga 2 O 3 : SnO 2 and IGO. The photoelectric conversion element as described.
(8)
The first electrode is made of titanium (Ti), silver (Ag), aluminum (Al), magnesium (Mg), chromium (Cr), nickel (Ni), tungsten (W), or copper (Cu). Formed,
The photoelectric conversion element according to any one of (1) to (7), wherein the second electrode is formed using indium tin oxide (ITO).
(9)
Having an insulating layer between the first electrode and the semiconductor layer;
The first electrode is disposed opposite to the photoelectric conversion layer with a charge readout electrode electrically connected to the photoelectric conversion layer through an opening provided in the insulating layer, and the insulating layer interposed therebetween. The photoelectric conversion element according to any one of (1) to (8), comprising a charge storage electrode.
(10)
The photoelectric conversion element according to (9), wherein the first electrode includes a charge transfer electrode between the charge readout electrode and the charge storage electrode.
(11)
The photoelectric conversion element according to any one of (1) to (10), wherein a voltage is individually applied to each of the plurality of electrodes constituting the first electrode.
(12)
A semiconductor substrate;
In any one of (1) to (11), the first electrode, the semiconductor layer, the photoelectric conversion layer, and the second electrode are provided in this order on the first surface side of the semiconductor substrate. The photoelectric conversion element as described.
(13)
The photoelectric conversion element according to (12), wherein the semiconductor substrate includes a drive circuit, and each of the plurality of electrodes constituting the first electrode is connected to the drive circuit.
(14)
The photoelectric conversion device according to (12) or (13), wherein a multilayer wiring layer is formed on a second surface side facing the first surface of the semiconductor substrate.
(15)
Comprising a plurality of pixels each provided with one or more photoelectric conversion elements,
The photoelectric conversion element is
A first electrode comprising a plurality of electrodes independent from each other;
A second electrode disposed opposite to the first electrode;
A photoelectric conversion layer including semiconductor nanoparticles and provided between the first electrode and the second electrode;
Including an oxide semiconductor material, and having a semiconductor layer provided between the first electrode and the photoelectric conversion layer,
The photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, when the relative dielectric constant epsilon S of the semiconductor layer, ε CQD / ε S <3 was filled with and the imaging device.
 本出願は、日本国特許庁において2018年1月31日に出願された日本特許出願番号2018-015651号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2018-015651 filed on January 31, 2018 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (15)

  1.  互いに独立する複数の電極からなる第1電極と、
     前記第1電極と対向配置された第2電極と、
     半導体ナノ粒子を含むと共に、前記第1電極と前記第2電極との間に設けられた光電変換層と、
     酸化物半導体材料を含むと共に、前記第1電極と前記光電変換層との間に設けられた半導体層とを備え、
     前記光電変換層は、前記光電変換層の比誘電率をεCQD、前記半導体層の比誘電率をεSとした場合に、εCQD/εS<3を満たしている
     光電変換素子。
    A first electrode comprising a plurality of electrodes independent from each other;
    A second electrode disposed opposite to the first electrode;
    A photoelectric conversion layer including semiconductor nanoparticles and provided between the first electrode and the second electrode;
    Including an oxide semiconductor material, and a semiconductor layer provided between the first electrode and the photoelectric conversion layer,
    The photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, the dielectric constant of the semiconductor layer in the case of the ε S, ε CQD / ε S < photoelectric conversion element meets 3.
  2.  前記半導体層は、1×1017cm-3以下のキャリア密度を有する、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the semiconductor layer has a carrier density of 1 × 10 17 cm −3 or less.
  3.  前記光電変換層は、さらに導電性高分子を含み、
     前記半導体ナノ粒子は、前記導電性高分子に分散されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer further contains a conductive polymer,
    The photoelectric conversion element according to claim 1, wherein the semiconductor nanoparticles are dispersed in the conductive polymer.
  4.  前記光電変換層内における半導体ナノ粒子の体積比率は17%以上26%以下である、請求項3に記載の光電変換素子。 The photoelectric conversion element according to claim 3, wherein a volume ratio of the semiconductor nanoparticles in the photoelectric conversion layer is 17% or more and 26% or less.
  5.  前記半導体ナノ粒子は、コア部と、前記コア部の表面に結合したリガンド部とを有し、
     前記コア部は、PbS,PbSe,PbTe,CuInSe2,ZnCuInSe,CuInS2,HgTe,InAs,InSb,Ag2S,CuZnSnSSeのうちの少なくとも1種を含んで構成されている、請求項1に記載の光電変換素子。
    The semiconductor nanoparticles have a core part and a ligand part bonded to the surface of the core part,
    The core portion, PbS, PbSe, PbTe, CuInSe 2, ZnCuInSe, CuInS 2, HgTe, InAs, InSb, Ag 2 S, is configured to include at least one of CuZnSnSSe, according to claim 1 Photoelectric conversion element.
  6.  前記半導体ナノ粒子は、さらに前記コア部の周囲に設けられたシェル層を有し、
     前記シェル層は、PbO,PbO2,Pb34,ZnS,ZnSe,ZnTeのうちの少なくとも1種を含んで構成されている、請求項5に記載の光電変換素子。
    The semiconductor nanoparticles further have a shell layer provided around the core part,
    The photoelectric conversion element according to claim 5, wherein the shell layer includes at least one of PbO, PbO 2 , Pb 3 O 4 , ZnS, ZnSe, and ZnTe.
  7.  前記半導体層は、IGZO,ZTO,Zn2SnO4,InGaZnSnO,GTO,Ga23:SnO2およびIGOのうちの少なくとも1種を含む、請求項1に記載の光電変換素子。 2. The photoelectric conversion element according to claim 1, wherein the semiconductor layer includes at least one of IGZO, ZTO, Zn 2 SnO 4 , InGaZnSnO, GTO, Ga 2 O 3 : SnO 2 and IGO.
  8.  前記第1電極は、チタン(Ti),銀(Ag),アルミニウム(Al),マグネシウム(Mg),クロム(Cr),ニッケル(Ni),タングステン(W)および銅(Cu)のいずれかを用いて形成され、
     前記第2電極は、酸化インジウムスズ(ITO)を用いて形成されている、請求項1に記載の光電変換素子。
    The first electrode is made of titanium (Ti), silver (Ag), aluminum (Al), magnesium (Mg), chromium (Cr), nickel (Ni), tungsten (W), or copper (Cu). Formed,
    The photoelectric conversion element according to claim 1, wherein the second electrode is formed using indium tin oxide (ITO).
  9.  前記第1電極と前記半導体層との間に絶縁層を有し、
     前記第1電極は、前記絶縁層に設けられた開口を介して前記光電変換層と電気的に接続されている電荷読み出し電極と、前記絶縁層を間に前記光電変換層と対向配置されている電荷蓄積電極とを有する、請求項1に記載の光電変換素子。
    Having an insulating layer between the first electrode and the semiconductor layer;
    The first electrode is disposed opposite to the photoelectric conversion layer with a charge readout electrode electrically connected to the photoelectric conversion layer through an opening provided in the insulating layer, and the insulating layer interposed therebetween. The photoelectric conversion element according to claim 1, further comprising a charge storage electrode.
  10.  前記第1電極は、前記電荷読み出し電極と前記電荷蓄積電極との間に電荷転送電極を有する、請求項9に記載の光電変換素子。 The photoelectric conversion element according to claim 9, wherein the first electrode has a charge transfer electrode between the charge readout electrode and the charge storage electrode.
  11.  前記第1電極を構成する前記複数の電極は、それぞれ個別に電圧が印加される、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein a voltage is individually applied to each of the plurality of electrodes constituting the first electrode.
  12.  半導体基板をさらに備え、
     前記半導体基板の第1面側に、前記第1電極、前記半導体層、前記光電変換層および前記第2電極がこの順に設けられている、請求項1に記載の光電変換素子。
    A semiconductor substrate;
    2. The photoelectric conversion element according to claim 1, wherein the first electrode, the semiconductor layer, the photoelectric conversion layer, and the second electrode are provided in this order on the first surface side of the semiconductor substrate.
  13.  前記半導体基板は駆動回路を有し、前記第1電極を構成する前記複数の電極は、それぞれ、前記駆動回路に接続されている、請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, wherein the semiconductor substrate has a drive circuit, and the plurality of electrodes constituting the first electrode are respectively connected to the drive circuit.
  14.  前記半導体基板の前記第1面と対向する第2面側に多層配線層が形成されている、請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, wherein a multilayer wiring layer is formed on a second surface side facing the first surface of the semiconductor substrate.
  15.  1または複数の光電変換素子がそれぞれ設けられている複数の画素を備え、
     前記光電変換素子は、
     互いに独立する複数の電極からなる第1電極と、
     前記第1電極と対向配置された第2電極と、
     半導体ナノ粒子を含むと共に、前記第1電極と前記第2電極との間に設けられた光電変換層と、
     酸化物半導体材料を含むと共に、前記第1電極と前記光電変換層との間に設けられた半導体層とを有し、
     前記光電変換層は、前記光電変換層の比誘電率をεCQD、前記半導体層の比誘電率をεSとした場合に、εCQD/εS<3を満たしている
     撮像装置。
    Comprising a plurality of pixels each provided with one or more photoelectric conversion elements,
    The photoelectric conversion element is
    A first electrode comprising a plurality of electrodes independent from each other;
    A second electrode disposed opposite to the first electrode;
    A photoelectric conversion layer including semiconductor nanoparticles and provided between the first electrode and the second electrode;
    Including an oxide semiconductor material, and having a semiconductor layer provided between the first electrode and the photoelectric conversion layer,
    The photoelectric conversion layer, the dielectric constant of the photoelectric conversion layer epsilon CQD, when the relative dielectric constant epsilon S of the semiconductor layer, ε CQD / ε S <3 was filled with and the imaging device.
PCT/JP2019/001253 2018-01-31 2019-01-17 Photoelectric conversion element and image pickup device WO2019150971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015651 2018-01-31
JP2018015651 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150971A1 true WO2019150971A1 (en) 2019-08-08

Family

ID=67478726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001253 WO2019150971A1 (en) 2018-01-31 2019-01-17 Photoelectric conversion element and image pickup device

Country Status (1)

Country Link
WO (1) WO2019150971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200027A1 (en) 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214995A (en) * 1996-11-27 1998-08-11 Matsushita Electric Ind Co Ltd Optoelectronic material and its application device as well as manufacture of optoelectronic material
JP2010177392A (en) * 2009-01-29 2010-08-12 Sony Corp Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and imaging apparatus
US9099663B1 (en) * 2014-04-21 2015-08-04 Massachusetts Institute Of Technology Quantum dot solar cells with band alignment engineering
WO2017017238A1 (en) * 2015-07-28 2017-02-02 Nexdot Mid and far-infrared nanocrystals based photodetectors with enhanced performances
US20170084761A1 (en) * 2015-09-17 2017-03-23 Samsung Electronics Co., Ltd. Photoelectric device and electronic apparatus including the same
JP2017157816A (en) * 2016-03-01 2017-09-07 ソニー株式会社 Image pickup device, lamination type image pickup device, and solid state image pickup device, and driving method of solid state image pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214995A (en) * 1996-11-27 1998-08-11 Matsushita Electric Ind Co Ltd Optoelectronic material and its application device as well as manufacture of optoelectronic material
JP2010177392A (en) * 2009-01-29 2010-08-12 Sony Corp Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and imaging apparatus
US9099663B1 (en) * 2014-04-21 2015-08-04 Massachusetts Institute Of Technology Quantum dot solar cells with band alignment engineering
WO2017017238A1 (en) * 2015-07-28 2017-02-02 Nexdot Mid and far-infrared nanocrystals based photodetectors with enhanced performances
US20170084761A1 (en) * 2015-09-17 2017-03-23 Samsung Electronics Co., Ltd. Photoelectric device and electronic apparatus including the same
JP2017157816A (en) * 2016-03-01 2017-09-07 ソニー株式会社 Image pickup device, lamination type image pickup device, and solid state image pickup device, and driving method of solid state image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200027A1 (en) 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 Imaging device

Similar Documents

Publication Publication Date Title
JP7347216B2 (en) Photoelectric conversion element and imaging device
US11792541B2 (en) Solid-state imaging device and method of controlling solid-state imaging device
US11903226B2 (en) Photoelectric conversion element and imaging device
US11910624B2 (en) Solid-state imaging element and solid-state imaging device
CN112514073B (en) Image pickup element and image pickup device
US20210265582A1 (en) Photoelectric conversion element, solid-state imaging device, and electronic device
US20210193739A1 (en) Imaging element, electronic apparatus, and method of driving imaging element
JP2023162281A (en) Photoelectric conversion element and solid state image pickup device
US20210273006A1 (en) Imaging element and imaging device
US20230276641A1 (en) Photoelectric conversion element and imaging device
US20230101309A1 (en) Imaging element and imaging device
WO2019150971A1 (en) Photoelectric conversion element and image pickup device
WO2019150987A1 (en) Photoelectric conversion element and imaging device
US20220285442A1 (en) Imaging element and imaging device
US20210057649A1 (en) Photoelectric conversion element and imaging device
US11322703B2 (en) Photoelectric conversion element and solid-state imaging apparatus
WO2021153470A1 (en) Photoelectric conversion element and imaging element
US11968846B2 (en) Photoelectric conversion element and solid-state imaging apparatus
US20220223802A1 (en) Photoelectric conversion element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP