WO2019150930A1 - Glass - Google Patents

Glass Download PDF

Info

Publication number
WO2019150930A1
WO2019150930A1 PCT/JP2019/000856 JP2019000856W WO2019150930A1 WO 2019150930 A1 WO2019150930 A1 WO 2019150930A1 JP 2019000856 W JP2019000856 W JP 2019000856W WO 2019150930 A1 WO2019150930 A1 WO 2019150930A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
content
temperature
sro
Prior art date
Application number
PCT/JP2019/000856
Other languages
French (fr)
Japanese (ja)
Inventor
敦己 斉藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980004552.0A priority Critical patent/CN111164056A/en
Publication of WO2019150930A1 publication Critical patent/WO2019150930A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to glass, and more particularly, to a glass suitable for a carrier glass or the like used when producing an organic EL element on a substrate of an organic EL display or a polyimide substrate.
  • Organic EL displays are thin and excellent in moving picture display and have low power consumption, so they are used for mobile phone displays and the like.
  • organic EL displays using a polyimide substrate are lightweight and flexible, and therefore are being applied to various displays.
  • Glass plates are widely used as substrates for organic EL displays. And the glass plate is also used for the carrier glass used when producing an organic EL element on a polyimide substrate.
  • the following characteristics are mainly required for glass plates for these applications.
  • (1) The content of the alkali metal oxide is small in order to prevent a situation where alkali ions are diffused in the semiconductor material formed in the heat treatment step.
  • the strain point is high in order to reduce the amount of heat shrinkage.
  • the required characteristic (3) will be described in detail.
  • the amount of heat shrinkage is large, the pixel pitch of the TFT is displaced, which causes display defects.
  • the dimensional shrinkage is about several ppm.
  • thermal contraction becomes large, so that the heat processing temperature which a glass plate receives is high.
  • glass plates that are difficult to heat shrink are advantageous.
  • As a method for reducing the amount of heat shrinkage there is a method of performing an annealing treatment in the vicinity of an annealing point after forming a glass plate.
  • the annealing process takes a long time, the manufacturing cost of the glass plate increases.
  • Patent Document 1 discloses a glass plate having a high strain point.
  • a glass with a high strain point generally contains a large amount of hardly soluble SiO 2 or Al 2 O 3 , and therefore has low devitrification resistance and meltability (particularly batch solubility), and is inexpensive and high quality glass. Is difficult to produce stably. Therefore, it is difficult for the glass with a high strain point to satisfy the required property (2).
  • the present invention has been made in view of the above circumstances, and its technical problem is to create a glass that has a small amount of thermal shrinkage in the manufacturing process of p-Si • TFT and has high devitrification resistance and high melting property. It is.
  • the present inventor has found that the above technical problem can be solved by strictly regulating the glass composition of low alkali glass and the relationship between Al 2 O 3 and strain point.
  • the glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 O + Na 2 O + K 2 O 0 0.5%, MgO 0-8.5%, CaO 3.5-12%, SrO 0-2.5%, BaO 1-6%, and the strain point (° C.) of Al 2 O 3
  • the value divided by the content (mol%) is 51 or more.
  • “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • strain point refers to a value measured based on the method of ASTM C336.
  • the glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-1.3%, Li 2 O + Na 2 O + K 2 O. Contains 0 to 0.5%, MgO 0 to 3.2%, CaO 3.5 to 12%, SrO 0 to 2%, BaO 3.5 to 6%, and CaO- (SrO + BaO) 3.1% As described above, the molar ratio CaO / Al 2 O 3 is 1.05 or less, and the molar ratio SrO / BaO is 0.03 to 0.50.
  • CaO ⁇ (SrO + BaO) refers to a value obtained by subtracting the total amount of SrO and BaO from the content of CaO.
  • CaO / Al 2 O 3 refers to a value obtained by dividing the content of CaO by the content of Al 2 O 3 .
  • SrO / BaO refers to a value obtained by dividing the content of SrO by the content of BaO.
  • the glass of the present invention has a glass composition of mol%, SiO 2 67 to 73%, Al 2 O 3 12 to 15%, B 2 O 3 0 to less than 1.8%, Li 2 O + Na 2 O + K 2. O 0 to less than 0.5%, MgO 0 to 6%, CaO 5% or more, SrO 0 to 2%, BaO 3.5% or more, CaO- (SrO + BaO) 0.7% or more, molar ratio SrO / BaO is 0.38 or less, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 1.09 to 1.70, and the value obtained by dividing the strain point (° C.) by the content (mol%) of Al 2 O 3 55 or more.
  • (MgO + CaO + SrO + BaO) / Al 2 O 3 refers to a value obtained by dividing the total amount of MgO, CaO, SrO, and BaO by the content of Al 2 O 3 .
  • the glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 O + Na 2 O + K 2 O 0-0 It is preferable to contain 0.5%, MgO 0 to 8.5%, CaO 3.5 to 12%, SrO 0 to 2.5%, BaO 1 to 6%.
  • % means “mol%” unless otherwise specified.
  • SiO 2 is a component that forms a glass skeleton and increases the strain point. Furthermore, it is a component that enhances chemical resistance such as hydrochloric acid. On the other hand, when the amount of SiO 2 increases, the meltability is remarkably lowered or the HF etching rate is lowered. Therefore, the preferable lower limit range of SiO 2 is 67% or more, 68% or more, 69% or more, particularly 70% or more, and the preferable upper limit range is 73% or less, particularly 72% or less.
  • Al 2 O 3 is a component that increases the strain point and Young's modulus.
  • the preferred lower limit range of Al 2 O 3 is 10% or more, 11% or more, particularly 12% or more, and the preferred upper limit range is 15% or less, 14% or less, 13% or less, particularly 12.5% or less.
  • a small amount of B 2 O 3 is introduced to lower the meltability and molding viscosity, a relatively large amount of Al 2 O 3 can be introduced into the glass composition.
  • the content of Al 2 O 3 is preferably as small as possible.
  • B 2 O 3 is a component that improves the meltability and devitrification resistance, and is a component that lowers the molding temperature. On the other hand, when a large amount of B 2 O 3 is introduced, the strain point and Young's modulus also decrease.
  • the content of B 2 O 3 is preferably less than 3%, 2.5% or less, 2% or less, less than 1.8%, 1.3% or less, particularly 0.8% or less.
  • the introduction raw material of B 2 O 3 is a source of a lot of moisture in the glass. Therefore, the content of B 2 O 3 is preferably as small as possible from the viewpoint of reducing moisture. Furthermore, when producing a glass plate by complete electric melting without using combustion, the smaller the content of B 2 O 3 , the easier the glass batch to spread uniformly in the melting furnace, thereby improving the homogeneity of the molten glass. Can do.
  • Li 2 O, Na 2 O, and K 2 O are components that increase the meltability and decrease the electrical resistivity of the molten glass, but when Li 2 O, Na 2 O, and K 2 O increase, alkali ions The diffusion of the semiconductor material may cause contamination of the semiconductor material. Therefore, the total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 0.5%, 0 to less than 0.5%, 0.01 to 0.3%, 0.02 to 0.00. 2%, especially 0.03 to less than 0.1%.
  • the content of Na 2 O is preferably 0 to 0.3%, 0.01 to 0.3%, 0.02 to 0.2%, particularly 0.03 to less than 0.1%.
  • the content of K 2 O is preferably 0 to 0.3%, 0 to 0.2%, in particular 0 to less than 0.1%.
  • MgO is a component that increases meltability and Young's modulus.
  • MgO is a component that lowers the strain point.
  • the content of MgO is preferably as low as possible.
  • the content of MgO is preferably 0 to 8.5%, 0 to 6%, 0 to 5%, 0 to 3.2%, 0 to 3%, especially 0 to 1%.
  • the content of SiO 2 can be relatively small, and the content of Al 2 O 3 can be relatively large.
  • CaO is a component that enhances meltability and batch solubility.
  • CaO is a component that lowers the raw material cost because the introduced raw material is relatively inexpensive among alkaline earth metal oxides. Moreover, it is a component which suppresses precipitation of the devitrification crystal
  • the content of CaO is preferably 3.5 to 12%, 4 to 11%, 5 to 11%, particularly 5.5 to 11%.
  • SrO is a component that makes cristobalite difficult to precipitate during molding, and a component that lowers the melting temperature without significantly reducing the strain point.
  • the content of SrO is preferably 0 to 2.5%, 0 to 2%, particularly 0.1 to 1.3%.
  • BaO is a component that suppresses precipitation of devitrified crystals such as mullite and anorthite containing Al during molding in alkaline earth metal oxides.
  • the preferred lower limit range of BaO is 1% or more, 2% or more, 3% or more, particularly 3.5% or more, and the preferred upper limit range is 12% or less, 11% or less, 10% or less, 8% or less, particularly 6% or less.
  • Alkaline earth metal oxides are very important components for enhancing the strain point, devitrification resistance and meltability.
  • the strain point increases, but Al 2 O 3 -based devitrified crystals are likely to precipitate during molding, and the high-temperature viscosity becomes high, so that the meltability is likely to decrease. Therefore, the ratio of the total content of the alkaline earth metal oxide (MgO + CaO + SrO + BaO) and the content of Al 2 O 3 becomes very important. Specifically, when the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 increases, the meltability and formability are improved, but the strain point tends to decrease.
  • the preferable lower limit range of the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 0.95 or more, 1.00 or more, 1.05 or more, particularly 1.09 or more, and the preferable upper limit range is 1.70 or less. .
  • the molar ratio CaO / Al 2 O 3 is one of important indicators for maintaining a high strain point while ensuring meltability. In a composition region containing a large amount of CaO, it is important to design the composition so that the strain point does not decrease. Then, Al 2 O 3 is in the alkaline earth aluminosilicate glass which is a main component to increase the strain point other than SiO 2. From these viewpoints, the molar ratio CaO / Al 2 O 2 is preferably 1.09 or less, 1.07 or less, 1.05 or less, particularly 0.25 to 1.05.
  • CaO- (SrO + BaO) is preferably -3% or more, -1% or more, 0% or more, 0.7% or more, 2% or more, particularly 3.1 to 15%.
  • composition region containing a large amount of CaO it is important from the viewpoint of devitrification resistance to regulate the molar ratio SrO / BaO.
  • anorthite tends to precipitate as the initial phase as described above.
  • SrO is a component that raises the liquid phase temperature of anorthite
  • BaO is a component that lowers the liquidus temperature of anorthite. Therefore, the smaller the molar ratio SrO / BaO, the lower the liquid phase temperature of anorthite.
  • the preferred lower limit range of the molar ratio SrO / BaO is 0 or more, particularly 0.03 or more, and the preferred upper limit range is 0.70 or less, 0.63 or less, 0.50 or less, particularly 0.38 or less.
  • ZnO is a component that enhances the meltability.
  • the content of ZnO is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, particularly 0 to 0.2%.
  • P 2 O 5 is a component that lowers the liquidus temperature of the Al-based devitrified crystal. However, when P 2 O 5 increases, the strain point decreases, and cristobalite is likely to precipitate during molding. Therefore, the content of P 2 O 5 is preferably 0 to 1.5%, 0 to 1.2%, particularly 0 to less than 0.1%.
  • TiO 2 is a component that lowers the high-temperature viscosity and increases the meltability, and also suppresses solarization. However, when the amount of TiO 2 increases, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.1%, particularly 0 to 0.02%.
  • ZrO 2 , Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, when these components increase, the density tends to increase. Therefore, the contents of ZrO 2 , Y 2 O 3 , Nb 2 O 5 and La 2 O 3 are 0 to 5%, 0 to 3%, 0 to 1%, 0 to less than 0.1%, particularly 0 It is preferably less than 0.05%. Furthermore, the total amount of Y 2 O 3 and La 2 O 3 is preferably less than 0.1%.
  • SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.3%. When SnO 2 increases, SnO 2 devitrified crystals are likely to precipitate during molding.
  • metal powder such as F 2 , Cl 2 , SO 3 , C, Al, Si or the like can be added up to 2% as a fining agent. Further, it can be added as a refining agent, also CeO 2, etc. up to 1%.
  • the glass of the present invention does not completely eliminate the introduction of these components, but these components are used as much as possible from an environmental point of view.
  • the content is preferably 0.1% or less, and it is desirable that the content is not substantially contained.
  • “substantially does not contain As 2 O 3 ” refers to the case where the content of As 2 O 3 in the glass composition is less than 0.05%.
  • the content of Sb 2 O 3 is preferably 0.2% or less, particularly preferably 0.1% or less, and it is desirable that the Sb 2 O 3 content is not substantially contained.
  • “substantially does not contain Sb 2 O 3 ” refers to a case where the content of Sb 2 O 3 in the glass composition is less than 0.05%.
  • Fe 2 O 3 is a component that lowers the electrical resistivity of the molten glass.
  • the content of Fe 2 O 3 is preferably 0 to 0.2%, 0.001 to 0.1%, 0.005 to 0.05%, particularly 0.008 to 0.015%.
  • the content of Fe 2 O 3 is small, it becomes difficult to enjoy the effect of the above.
  • Fe 2 O 3 increases, the transmittance in the ultraviolet region tends to decrease, and the irradiation efficiency when using a laser in the ultraviolet region in the manufacturing process of the display tends to decrease.
  • the content of Fe 2 O 3 is preferably 0.020% or less, 0.015% or less, 0.011% or less, particularly 0.010% or less. .
  • the MgO raw material becomes the main mixing source of Fe 2 O 3 . Therefore, from the viewpoint of increasing the transmittance in the ultraviolet region, it is preferable to reduce the content of MgO as much as possible.
  • Cl has an effect of promoting the melting of the low alkali glass. If Cl is added, the melting temperature can be lowered and the action of the fining agent can be promoted. Further, Cl has an effect of lowering the ⁇ -OH value of the molten glass. However, when Cl increases, the strain point decreases and the environmental load increases. Therefore, the Cl content is preferably 0.5% or less, particularly 0.001 to 0.2%.
  • a raw material for introducing Cl a raw material such as an alkaline earth metal oxide chloride such as strontium chloride or aluminum chloride can be used as a raw material for introducing Cl.
  • the glass of the present invention preferably has the following characteristics.
  • the strain point is preferably 730 ° C. or higher, 735 ° C. or higher, 740 ° C. or higher, particularly 745 ° C. or higher. If the strain point is low, the glass plate is likely to be thermally contracted in the manufacturing process of the p-Si • TFT.
  • the density is preferably 2.71 g / cm 3 or less, 2.69 g / cm 3 or less, 2.67 g / cm 3 or less, particularly 2.64 g / cm 3 or less.
  • the density is high, the specific Young's modulus increases, the glass plate is easily bent by its own weight, and when used for a substrate, the mass of the organic EL display increases.
  • the ⁇ -OH value is preferably 0.30 / mm or less, 0.25 / mm or less, 0.20 / mm or less, 0.15 / mm or less, particularly 0.10 / mm or less. As the ⁇ -OH value increases, the strain point tends to decrease. If the ⁇ -OH value is excessively small, Cl in the glass may become excessive. Therefore, the ⁇ -OH value is preferably 0.01 / mm or more, particularly 0.02 / mm or more.
  • a glass material having a low moisture content is selected.
  • N 2 bubbling is performed in molten glass.
  • Adopt a small melting furnace. Increase the flow rate of the molten glass. (7) An electric melting method is adopted.
  • ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
  • T 2 Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm ⁇ 1
  • the liquidus temperature is preferably less than 1320 ° C, 1300 ° C or less, 1280 ° C or less, 1260 ° C or less, 1240 ° C or less, particularly 1220 ° C or less.
  • the “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (mesh opening 500 ⁇ m) and putting the glass powder remaining in 50 mesh (mesh opening 300 ⁇ m) in a platinum boat and keeping it in a temperature gradient furnace for 24 hours. The temperature at which the crystal (primary phase) precipitates is measured.
  • the liquid phase viscosity is preferably 10 4.5 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, 10 5.2 dPa ⁇ s or more, particularly 10 5.3 dPa ⁇ s or more. s or more.
  • the “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the temperature at a high temperature viscosity of 10 4.5 dPa ⁇ s is preferably less than 1320 ° C., 1310 ° C. or less, 1305 ° C. or less, particularly 1300 ° C. or less.
  • the temperature at a high temperature viscosity of 10 4.5 dPa ⁇ s corresponds to the molding temperature in the case of molding by the overflow downdraw method.
  • the molding temperature becomes high, the molded body tends to undergo creep deformation, and a high-quality glass plate cannot be produced stably.
  • the “temperature at a high temperature viscosity of 10 4.5 dPa ⁇ s” can be measured by a platinum ball pulling method.
  • ( ⁇ 2.5 ⁇ 4.0 ) / ⁇ 2.5 is preferably 0.158 or more, 0.163 or more, particularly 0.170 or more.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is generally an indicator of meltability, and the lower this temperature, the higher the meltability.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s inevitably increases.
  • “( ⁇ 2.5 ⁇ 4.0 ) / ⁇ 2.5 ” means a temperature obtained by subtracting the temperature at the high temperature viscosity of 10 4.0 dPa ⁇ s from the temperature at the high temperature viscosity of 10 2.5 dPa ⁇ s. It is a value divided by the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s.
  • the “temperature at high temperature viscosity of 10 2.5 dPa ⁇ s” and “temperature at high temperature viscosity of 10 4.0 dPa ⁇ s” can be measured by the platinum ball pulling method.
  • Specific modulus is preferably 29.5GPa / g ⁇ cm -3 or more, 29.7GPa / g ⁇ cm -3 or more, 30GPa / g ⁇ cm -3 or more, 31GPa / g ⁇ cm -3 or more, 31.5GPa / G ⁇ cm ⁇ 3 or more, particularly 32 GPa / g ⁇ cm ⁇ 3 or more.
  • Specific Young's modulus is a value obtained by dividing Young's modulus by density. The “Young's modulus” can be measured by a known resonance method.
  • the etching rate by HF is preferably 0.8 ⁇ m / min or more, 0.9 ⁇ m / min or more, particularly 1.0 ⁇ m / min or more.
  • HF hydrofluoric acid
  • the etching rate by HF is low, slimming takes time, which causes an increase in cost.
  • the “HF etching rate” refers to an etching depth when a mirror-polished glass surface is etched with a 10 mass% HF aqueous solution at 20 ° C. for 30 minutes.
  • the glass of the present invention has a flat plate shape and preferably has an overflow merging surface at the center in the thickness direction. That is, it is preferably formed by an overflow downdraw method.
  • the overflow down draw method is a method in which molten glass overflows from both sides of a wedge-shaped refractory, and the overflowed molten glass is stretched downward and formed into a flat plate shape while joining at the lower end of the wedge shape.
  • the surface to be the surface of the glass plate is not in contact with the refractory, and is formed in a free surface state. For this reason, the glass plate which is unpolished and has a good surface quality can be manufactured at low cost. Furthermore, it is easy to increase the area and thickness.
  • a glass plate can be formed by, for example, a slot down method, a redraw method, a float method, or a rollout method.
  • the thickness in the case of a glass plate
  • the thickness is not particularly limited, but is preferably 1.0 mm or less, 0.7 mm or less, 0.5 mm or less, particularly 0.05 to 0.4 mm. is there.
  • the smaller the wall thickness the easier it is to reduce the weight of the organic EL display.
  • the wall thickness can be adjusted by the flow rate during glass production, the forming speed (plate drawing speed), and the like.
  • the glass composition is SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 Glass formulated to contain O + Na 2 O + K 2 O 0-0.5%, MgO 0-8.5%, CaO 3.5-12%, SrO 0-2.5%, BaO 1-6%
  • the batch is put into a melting furnace and heated by energization with a heating electrode to obtain a molten glass, and the obtained molten glass is shaped into a flat plate having a thickness of 0.1 to 0.7 mm by an overflow down draw method. It is preferable to have the shaping
  • the manufacturing process of a glass plate generally includes a melting process, a clarification process, a supply process, a stirring process, and a forming process.
  • the melting step is a step of obtaining a molten glass by melting a glass batch prepared by mixing glass raw materials.
  • the clarification step is a step of clarifying the molten glass obtained in the melting step by the action of a clarifier or the like.
  • a supply process is a process of transferring a molten glass between each process.
  • the stirring step is a step of stirring and homogenizing the molten glass.
  • the forming step is a step of forming molten glass into a sheet glass. If necessary, a step other than the above, for example, a state adjusting step for adjusting the molten glass to a state suitable for molding may be introduced after the stirring step.
  • the ⁇ -OH value is 0.30 / mm or less, 0.25 / mm or less, 0.20 / mm or less, 0.15 / mm or less, In particular, it becomes easy to regulate to 0.10 / mm or less. Furthermore, when conducting heating with a heating electrode, the amount of energy per mass for obtaining molten glass is reduced and the amount of molten volatiles is reduced, so that the environmental load can be reduced.
  • the smaller the moisture content in the glass batch the easier it is to reduce the moisture content in the glass plate. Then, the introduction material of B 2 O 3 is liable to be contaminated source of greatest moisture. Therefore, from the viewpoint of producing a low moisture glass plate, it is preferable to reduce the content of B 2 O 3 as much as possible. Further, the smaller the moisture content in the glass batch, the easier it is for the glass batch to spread uniformly in the melting kiln, so that it becomes easier to produce a homogeneous and high-quality glass plate.
  • the electric heating by the heating electrode is performed by applying an AC voltage to the heating electrode provided at the bottom or side of the melting kiln so as to contact the molten glass in the melting kiln.
  • the material used for the heating electrode is preferably one having heat resistance and corrosion resistance against molten glass, for example, tin oxide, molybdenum, platinum, rhodium, etc. can be used. In particular, from the viewpoint of freedom of installation in the furnace, molybdenum Is preferred.
  • the glass of the present invention contains a small amount of alkali metal oxide, the electrical resistivity is high. Therefore, when applying current heating by the heating electrode to the low alkali glass, current flows not only in the molten glass but also in the refractory constituting the melting kiln, and the refractory constituting the melting kiln may be damaged early. is there.
  • a zirconia refractory having a high electrical resistivity, particularly a zirconia electroformed brick, as a refractory in the furnace, and a component that lowers the electrical resistivity in molten glass (glass composition) It is preferable to introduce a small amount of Li 2 O, Na 2 O, K 2 O, Fe 2 O 3 and the like, and particularly a small amount of Li 2 O, Na 2 O, K 2 O and the like are introduced (for example, 0.01% by mass). As described above, it is particularly preferable to be 0.02% by mass or more.
  • the content of Fe 2 O 3 is preferably 0.005 to 0.03% by mass, 0.008 to 0.025% by mass, and particularly preferably 0.01 to 0.02% by mass. Further, the content of ZrO 2 in the zirconia refractory is preferably 85% by mass or more, particularly 90% by mass or more.
  • Tables 1 to 6 show examples of the present invention (sample Nos. 1 to 91). In the table, “NA” means not measured.
  • a glass batch in which glass raw materials were prepared so as to have the glass composition shown in the table was placed in a platinum crucible and melted at 1600 to 1650 ° C. for 24 hours.
  • the mixture was stirred and homogenized using a platinum stirrer.
  • the molten glass was poured onto a carbon plate, formed into a plate shape, and then annealed at a temperature near the annealing point for 1 hour.
  • the density ⁇ For each of the obtained samples, the density ⁇ , the average thermal expansion coefficient ⁇ in the temperature range of 30 to 380 ° C., the ⁇ -OH value, the strain point Ps, the annealing point Ta, the softening point Ts, and the high temperature viscosity of 10 4.5 dPa ⁇ s.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the average coefficient of thermal expansion ⁇ in the temperature range of 30 to 380 ° C. is a value measured with a dilatometer.
  • the ⁇ -OH value is a value measured by the above method.
  • strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the methods of ASTM C336 and C338.
  • the temperatures at high temperature viscosities of 10 4.5 dPa ⁇ s, 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, and 10 2.5 dPa ⁇ s are values measured by the platinum ball pulling method.
  • the liquid phase viscosity log ⁇ at TL is a value obtained by measuring the viscosity of the glass at the liquid phase temperature TL by a platinum ball pulling method.
  • the liquid phase temperature TL passes through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), puts the glass powder remaining in 50 mesh (a sieve opening of 300 ⁇ m) in a platinum boat, and holds it in a temperature gradient furnace for 24 hours. This is a value obtained by measuring the temperature at which crystals (initial phase) precipitate.
  • the Young's modulus E and the rigidity modulus G are values measured using a well-known resonance method.
  • the Poisson's ratio is a value calculated from Young's modulus E and rigidity modulus G.
  • Specific Young's modulus E / ⁇ is a value obtained by dividing Young's modulus by density.
  • the etching rate of HF is an etching depth when a mirror-polished glass surface is etched with a 10 mass% HF aqueous solution at 20 ° C. for 30 minutes.
  • sample No. Nos. 1 to 91 have a low alkali metal oxide content, a strain point Ps of 734 ° C. or higher, a temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s of 1693 ° C. or lower, and a liquid phase viscosity of 10 4.32 dPa ⁇ s. That was all. Therefore, sample no. Nos. 1 to 91 are considered to be suitable for carrier glass used when an organic EL element is produced on a substrate of an organic EL display or a polyimide substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A glass according to the present invention is characterized by having a glass composition that contains 67-73 mol% of SiO2, 10-15 mol% of Al2O3, 0-3 (exclusive of 3) mol% of B2O3, 0-0.5 mol% of Li2O+Na2O+K2O, 0-8.5 mol% of MgO, 3.5-12mol% of CaO, 0-2.5mol% of SrO, and 1-6mol% of BaO, wherein a value obtained by dividing a strain point (°C) by the content (mol%) of Al2O3 is 51 or more.

Description

ガラスGlass
 本発明は、ガラスに関し、特に、有機ELディスプレイの基板、ポリイミド基板上に有機EL素子を作製する際に用いられるキャリアガラス等に好適なガラスに関する。 The present invention relates to glass, and more particularly, to a glass suitable for a carrier glass or the like used when producing an organic EL element on a substrate of an organic EL display or a polyimide substrate.
 有機ELディスプレイ等の電子デバイスは、薄型で動画表示に優れ、消費電力が少ないため、携帯電話のディスプレイ等に使用されている。また、ポリイミド基板を用いた有機ELディスプレイは、軽量で柔軟性を兼ね備えるため、様々なディスプレイへの応用が進んでいる。 Electronic devices such as organic EL displays are thin and excellent in moving picture display and have low power consumption, so they are used for mobile phone displays and the like. In addition, organic EL displays using a polyimide substrate are lightweight and flexible, and therefore are being applied to various displays.
 有機ELディスプレイの基板には、ガラス板が広く使用されている。そして、ポリイミド基板上に有機EL素子を作製する際に用いられるキャリアガラスにもガラス板が使用されている。これらの用途のガラス板には、主に以下の特性が要求される。
(1)熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止するため、アルカリ金属酸化物の含有量が少ないこと。
(2)ガラス板を低廉化するため、生産性に優れること、特に耐失透性や溶融性に優れること。
(3)p-Si・TFTの製造工程において、熱収縮量を低減するため、歪点が高いこと。
Glass plates are widely used as substrates for organic EL displays. And the glass plate is also used for the carrier glass used when producing an organic EL element on a polyimide substrate. The following characteristics are mainly required for glass plates for these applications.
(1) The content of the alkali metal oxide is small in order to prevent a situation where alkali ions are diffused in the semiconductor material formed in the heat treatment step.
(2) In order to reduce the cost of the glass plate, it is excellent in productivity, particularly excellent in devitrification resistance and meltability.
(3) In the manufacturing process of p-Si • TFT, the strain point is high in order to reduce the amount of heat shrinkage.
特表2009-525942号公報Special table 2009-525942
 上記要求特性(3)について詳述すると、p-Si・TFTの成膜工程には400~600℃の熱処理工程が存在し、この熱処理工程でガラス板に熱収縮と呼ばれる微小な寸法変化が生じる。熱収縮量が大きいと、TFTの画素ピッチにズレが生じて、表示不良の原因となる。有機ELディスプレイの場合、数ppm程度の寸法収縮でも表示不良となる虞がある。なお、ガラス板が受ける熱処理温度が高い程、熱収縮が大きくなる。 The required characteristic (3) will be described in detail. There is a heat treatment step of 400 to 600 ° C. in the film formation process of the p-Si • TFT, and a minute dimensional change called heat shrinkage occurs in this heat treatment step. . When the amount of heat shrinkage is large, the pixel pitch of the TFT is displaced, which causes display defects. In the case of an organic EL display, there is a possibility that a display defect may occur even if the dimensional shrinkage is about several ppm. In addition, thermal contraction becomes large, so that the heat processing temperature which a glass plate receives is high.
 またポリイミド基板上に有機EL素子を作製する際に用いられるキャリアガラスの場合でも、有機EL素子をガラス板上に作製する場合と同様の温度の熱処理工程を経由する。そして、ガラス板の熱収縮量が大きいと、その熱収縮がポリイミド基板に伝わるため、画素ピッチにズレを惹起させる。 Further, even in the case of a carrier glass used when producing an organic EL element on a polyimide substrate, it goes through a heat treatment step at the same temperature as when producing the organic EL element on a glass plate. If the amount of heat shrinkage of the glass plate is large, the heat shrinkage is transmitted to the polyimide substrate, thereby causing a shift in the pixel pitch.
 上記から分かるように、これらの用途では、熱収縮し難いガラス板が有利になる。熱収縮量を低減する方法として、ガラス板を成形した後、アニール点付近でアニール処理を行う方法がある。しかし、アニール処理は長時間を要するため、ガラス板の製造コストが高騰してしまう。 As can be seen from the above, in these applications, glass plates that are difficult to heat shrink are advantageous. As a method for reducing the amount of heat shrinkage, there is a method of performing an annealing treatment in the vicinity of an annealing point after forming a glass plate. However, since the annealing process takes a long time, the manufacturing cost of the glass plate increases.
 他の方法として、ガラス板の歪点を高める方法がある。歪点が高い程、p-Si・TFTの製造工程で熱収縮が生じ難くなる。例えば、特許文献1には、高歪点のガラス板が開示されている。 Another method is to increase the strain point of the glass plate. As the strain point is higher, thermal shrinkage is less likely to occur in the manufacturing process of the p-Si • TFT. For example, Patent Document 1 discloses a glass plate having a high strain point.
 しかしながら、高歪点のガラスは、一般的に難溶性のSiOやAlを多量に含むため、耐失透性や溶融性(特にバッチ溶解性)が低く、安価で高品位のガラスを安定して製造することが困難である。よって、高歪点のガラスは、上記要求特性(2)を満たすことが困難である。 However, a glass with a high strain point generally contains a large amount of hardly soluble SiO 2 or Al 2 O 3 , and therefore has low devitrification resistance and meltability (particularly batch solubility), and is inexpensive and high quality glass. Is difficult to produce stably. Therefore, it is difficult for the glass with a high strain point to satisfy the required property (2).
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、p-Si・TFTの製造工程で熱収縮量が小さく、しかも耐失透性や溶融性が高いガラスを創案することである。 The present invention has been made in view of the above circumstances, and its technical problem is to create a glass that has a small amount of thermal shrinkage in the manufacturing process of p-Si • TFT and has high devitrification resistance and high melting property. It is.
 本発明者は、種々の実験を繰り返した結果、低アルカリガラスのガラス組成と、Alと歪点の関係とを厳密に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明のガラスは、ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~3%未満、LiO+NaO+KO 0~0.5%、MgO 0~8.5%、CaO 3.5~12%、SrO 0~2.5%、BaO 1~6%を含有し、歪点(℃)をAlの含有量(モル%)で除した値が51以上であることを特徴とする。ここで、「LiO+NaO+KO」とは、LiO、NaO及びKOの合量を指す。「歪点」は、ASTM C336の方法に基づいて測定した値を指す。 As a result of repeating various experiments, the present inventor has found that the above technical problem can be solved by strictly regulating the glass composition of low alkali glass and the relationship between Al 2 O 3 and strain point. This is proposed as the present invention. That is, the glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 O + Na 2 O + K 2 O 0 0.5%, MgO 0-8.5%, CaO 3.5-12%, SrO 0-2.5%, BaO 1-6%, and the strain point (° C.) of Al 2 O 3 The value divided by the content (mol%) is 51 or more. Here, “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O. “Strain point” refers to a value measured based on the method of ASTM C336.
 また、本発明のガラスは、ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~1.3%、LiO+NaO+KO 0~0.5%、MgO 0~3.2%、CaO 3.5~12%、SrO 0~2%、BaO 3.5~6%を含有し、CaO-(SrO+BaO)が3.1%以上、モル比CaO/Alが1.05以下、モル比SrO/BaOが0.03~0.50であることを特徴とする。ここで、「CaO-(SrO+BaO)」は、CaOの含有量からSrOとBaOの合量を減じた値を指す。「CaO/Al」は、CaOの含有量をAlの含有量で除した値を指す。「SrO/BaO」は、SrOの含有量をBaOの含有量で除した値を指す。 The glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-1.3%, Li 2 O + Na 2 O + K 2 O. Contains 0 to 0.5%, MgO 0 to 3.2%, CaO 3.5 to 12%, SrO 0 to 2%, BaO 3.5 to 6%, and CaO- (SrO + BaO) 3.1% As described above, the molar ratio CaO / Al 2 O 3 is 1.05 or less, and the molar ratio SrO / BaO is 0.03 to 0.50. Here, “CaO− (SrO + BaO)” refers to a value obtained by subtracting the total amount of SrO and BaO from the content of CaO. “CaO / Al 2 O 3 ” refers to a value obtained by dividing the content of CaO by the content of Al 2 O 3 . “SrO / BaO” refers to a value obtained by dividing the content of SrO by the content of BaO.
 また、本発明のガラスは、ガラス組成として、モル%で、SiO 67~73%、Al 12~15%、B 0~1.8%未満、LiO+NaO+KO 0~0.5%未満、MgO 0~6%、CaO 5%以上、SrO 0~2%、BaO 3.5%以上を含有し、CaO-(SrO+BaO)が0.7%以上、モル比SrO/BaOが0.38以下、モル比(MgO+CaO+SrO+BaO)/Alが1.09~1.70、歪点(℃)をAlの含有量(モル%)で除した値が55以上であることを特徴とする。ここで、「(MgO+CaO+SrO+BaO)/Al」は、MgO、CaO、SrO及びBaOの合量をAlの含有量で除した値を指す。 The glass of the present invention has a glass composition of mol%, SiO 2 67 to 73%, Al 2 O 3 12 to 15%, B 2 O 3 0 to less than 1.8%, Li 2 O + Na 2 O + K 2. O 0 to less than 0.5%, MgO 0 to 6%, CaO 5% or more, SrO 0 to 2%, BaO 3.5% or more, CaO- (SrO + BaO) 0.7% or more, molar ratio SrO / BaO is 0.38 or less, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 1.09 to 1.70, and the value obtained by dividing the strain point (° C.) by the content (mol%) of Al 2 O 3 55 or more. Here, “(MgO + CaO + SrO + BaO) / Al 2 O 3 ” refers to a value obtained by dividing the total amount of MgO, CaO, SrO, and BaO by the content of Al 2 O 3 .
 本発明のガラスは、ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~3%未満、LiO+NaO+KO 0~0.5%、MgO 0~8.5%、CaO 3.5~12%、SrO 0~2.5%、BaO 1~6%を含有することが好ましい。上記のように各成分の含有範囲を規定した理由を以下に示す。各成分の含有範囲の説明において、%表示は、特に断りがない限り、モル%を意味する。 The glass of the present invention has a glass composition of mol%, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 O + Na 2 O + K 2 O 0-0 It is preferable to contain 0.5%, MgO 0 to 8.5%, CaO 3.5 to 12%, SrO 0 to 2.5%, BaO 1 to 6%. The reason for defining the content range of each component as described above is shown below. In the description of the content range of each component, “%” means “mol%” unless otherwise specified.
 SiOは、ガラス骨格を形成すると共に、歪点を高める成分である。更に塩酸等の耐薬品性を高める成分である。一方、SiOが多くなると、溶融性が著しく低下したり、HFエッチングレートが低下してしまう。よって、SiOの好適な下限範囲は67%以上、68%以上、69%以上、特に70%以上であり、好適な上限範囲は73%以下、特に72%以下である。 SiO 2 is a component that forms a glass skeleton and increases the strain point. Furthermore, it is a component that enhances chemical resistance such as hydrochloric acid. On the other hand, when the amount of SiO 2 increases, the meltability is remarkably lowered or the HF etching rate is lowered. Therefore, the preferable lower limit range of SiO 2 is 67% or more, 68% or more, 69% or more, particularly 70% or more, and the preferable upper limit range is 73% or less, particularly 72% or less.
 Alは、歪点やヤング率を高める成分である。一方、Alが多くなると、初期溶融時のバッチ溶解性が低下したり、成形温度が上昇してしまう。Alの好適な下限範囲は10%以上、11%以上、特に12%以上であり、好適な上限範囲は15%以下、14%以下、13%以下、特に12.5%以下である。なお、少量のBを導入して、溶融性や成形粘度を低下させる場合、ガラス組成中にAlを比較的多く導入することができる。一方、Bを殆ど含まない場合、ガラス組成中にAlをあまり多く導入することができない。その場合、Alの含有量は、なるべく少ない方が好ましい。 Al 2 O 3 is a component that increases the strain point and Young's modulus. On the other hand, when Al 2 O 3 is increased, batch solubility at the time of initial melting is lowered, and a molding temperature is increased. The preferred lower limit range of Al 2 O 3 is 10% or more, 11% or more, particularly 12% or more, and the preferred upper limit range is 15% or less, 14% or less, 13% or less, particularly 12.5% or less. . In addition, when a small amount of B 2 O 3 is introduced to lower the meltability and molding viscosity, a relatively large amount of Al 2 O 3 can be introduced into the glass composition. On the other hand, when almost no B 2 O 3 is contained, too much Al 2 O 3 cannot be introduced into the glass composition. In that case, the content of Al 2 O 3 is preferably as small as possible.
 Bは、溶融性と耐失透性を高める成分であり、また成形温度を低下させる成分である。一方、Bを多く導入すると、歪点やヤング率も低下してしまう。Bの含有量は、好ましくは3%未満、2.5%以下、2%以下、1.8%未満、1.3%以下、特に0.8%以下である。 B 2 O 3 is a component that improves the meltability and devitrification resistance, and is a component that lowers the molding temperature. On the other hand, when a large amount of B 2 O 3 is introduced, the strain point and Young's modulus also decrease. The content of B 2 O 3 is preferably less than 3%, 2.5% or less, 2% or less, less than 1.8%, 1.3% or less, particularly 0.8% or less.
 詳細は後述するが、Bの導入原料は、ガラス中の多くの水分の混入源である。よって、Bの含有量は、低水分化の観点から、なるべく少ない方が好ましい。更に燃焼を用いずに完全電気溶融でガラス板を製造する場合、Bの含有量が少ない程、ガラスバッチが溶融窯内に一様に広がり易くなり、溶融ガラスの均質性を高めることができる。 Although the details will be described later, the introduction raw material of B 2 O 3 is a source of a lot of moisture in the glass. Therefore, the content of B 2 O 3 is preferably as small as possible from the viewpoint of reducing moisture. Furthermore, when producing a glass plate by complete electric melting without using combustion, the smaller the content of B 2 O 3 , the easier the glass batch to spread uniformly in the melting furnace, thereby improving the homogeneity of the molten glass. Can do.
 LiO、NaO及びKOは、溶融性を高めると共に、溶融ガラスの電気抵抗率を低下させる成分であるが、LiO、NaO及びKOが多くなると、アルカリイオンの拡散によって半導体物質の汚染を引き起こす虞がある。よって、LiO、NaO及びKOの合量は、好ましくは0~0.5%、0~0.5%未満、0.01~0.3%、0.02~0.2%、特に0.03~0.1%未満である。またNaOの含有量は、好ましくは0~0.3%、0.01~0.3%、0.02~0.2%、特に0.03~0.1%未満である。KOの含有量は、好ましくは0~0.3%、0~0.2%、特に0~0.1%未満である。 Li 2 O, Na 2 O, and K 2 O are components that increase the meltability and decrease the electrical resistivity of the molten glass, but when Li 2 O, Na 2 O, and K 2 O increase, alkali ions The diffusion of the semiconductor material may cause contamination of the semiconductor material. Therefore, the total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 0.5%, 0 to less than 0.5%, 0.01 to 0.3%, 0.02 to 0.00. 2%, especially 0.03 to less than 0.1%. The content of Na 2 O is preferably 0 to 0.3%, 0.01 to 0.3%, 0.02 to 0.2%, particularly 0.03 to less than 0.1%. The content of K 2 O is preferably 0 to 0.3%, 0 to 0.2%, in particular 0 to less than 0.1%.
 MgOは、溶融性やヤング率を高める成分である。一方、MgOは、歪点を低下させる成分である。溶融温度や成形温度を低下させるためにAlを減量する場合、高歪点を維持するためにSiOを多く導入する必要がある。そのようなSiOを多く含む組成領域でMgOを多く導入すると、成形時にクリストバライトが析出し易くなり、更に歪点も低下し易くなる。よって、この場合、MgOの含有量はなるべく少ない方が好ましく、MgOの含有量は、好ましくは0~8.5%、0~6%、0~5%、0~3.2%、0~3%、特に0~1%である。また、溶融温度や成形温度を低下させるために少量のBを導入する場合には、SiOの含有量を比較的少なく、Alの含有量を比較的多くすることができる。この場合、MgOを積極的に導入する方が好ましく、MgOの含有量は、好ましくは1~8.5%、2~6%、特に2.5~5%である。 MgO is a component that increases meltability and Young's modulus. On the other hand, MgO is a component that lowers the strain point. When reducing the amount of Al 2 O 3 in order to reduce the melting temperature and the molding temperature, it is necessary to introduce a large amount of SiO 2 in order to maintain a high strain point. When a large amount of MgO is introduced in such a composition region containing a large amount of SiO 2 , cristobalite is likely to precipitate during molding, and the strain point is likely to be lowered. Therefore, in this case, the content of MgO is preferably as low as possible. The content of MgO is preferably 0 to 8.5%, 0 to 6%, 0 to 5%, 0 to 3.2%, 0 to 3%, especially 0 to 1%. In addition, when a small amount of B 2 O 3 is introduced in order to lower the melting temperature and the molding temperature, the content of SiO 2 can be relatively small, and the content of Al 2 O 3 can be relatively large. . In this case, it is preferable to positively introduce MgO, and the content of MgO is preferably 1 to 8.5%, 2 to 6%, particularly 2.5 to 5%.
 CaOは、溶融性やバッチ溶解性を高める成分である。またCaOは、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。またMgを含む失透結晶の析出を抑制する成分である。一方、CaOが多くなると、成形時にCaを含む長石系の失透結晶(例えばアノーサイト)が析出し易くなる。よって、CaOの含有量は、好ましくは3.5~12%、4~11%、5~11%、特に5.5~11%である。 CaO is a component that enhances meltability and batch solubility. CaO is a component that lowers the raw material cost because the introduced raw material is relatively inexpensive among alkaline earth metal oxides. Moreover, it is a component which suppresses precipitation of the devitrification crystal | crystallization containing Mg. On the other hand, when CaO increases, feldspar-based devitrification crystals (for example, anorthite) containing Ca are likely to precipitate during molding. Therefore, the content of CaO is preferably 3.5 to 12%, 4 to 11%, 5 to 11%, particularly 5.5 to 11%.
 SrOは、成形時にクリストバライトを析出し難くする成分であり、また歪点をあまり下げずに溶融温度を低下させる成分である。一方、SrOが多くなると、密度が高くなり、ヤング率が低下し易くなる。また初相としてアノーサイトが析出し易い組成領域において、SrOが多くなると、液相温度が低下して、ガラス板の生産性が低下し易くなる。よって、SrOの含有量は、好ましくは0~2.5%、0~2%、特に0.1~1.3%である。 SrO is a component that makes cristobalite difficult to precipitate during molding, and a component that lowers the melting temperature without significantly reducing the strain point. On the other hand, when SrO increases, the density increases and the Young's modulus tends to decrease. Further, in a composition region where anorthite tends to precipitate as the initial phase, when SrO increases, the liquidus temperature decreases, and the productivity of the glass plate tends to decrease. Therefore, the content of SrO is preferably 0 to 2.5%, 0 to 2%, particularly 0.1 to 1.3%.
 BaOは、アルカリ土類金属酸化物の中では、成形時にAlを含むムライトやアノーサイト等の失透結晶の析出を抑制する成分である。一方、BaOが多くなると、密度が高くなり、ヤング率が低下し易くなる。BaOの好適な下限範囲は1%以上、2%以上、3%以上、特に3.5%以上であり、好適な上限範囲は12%以下、11%以下、10%以下、8%以下、特に6%以下である。 BaO is a component that suppresses precipitation of devitrified crystals such as mullite and anorthite containing Al during molding in alkaline earth metal oxides. On the other hand, when BaO increases, the density increases and the Young's modulus tends to decrease. The preferred lower limit range of BaO is 1% or more, 2% or more, 3% or more, particularly 3.5% or more, and the preferred upper limit range is 12% or less, 11% or less, 10% or less, 8% or less, particularly 6% or less.
 アルカリ土類金属酸化物は、歪点、耐失透性、溶融性を高めるために非常に重要な成分である。アルカリ土類金属酸化物が少ないと、歪点が上昇するが、成形時にAl系の失透結晶の析出し易くなり、また高温粘性が高くなって、溶融性が低下し易くなる。よって、アルカリ土類金属酸化物の合量(MgO+CaO+SrO+BaO)とAlの含有量の比率は非常に重要になる。具体的には、モル比(MgO+CaO+SrO+BaO)/Alが大きくなると、溶融性や成形性は向上するが歪点が低下し易くなり、逆にこの値が小さくなると、歪点は高くなるが溶融性や成形性が低下する傾向にある。よって、モル比(MgO+CaO+SrO+BaO)/Alの好適な下限範囲は0.95以上、1.00以上、1.05以上、特に1.09以上、好適な上限範囲は1.70以下である。 Alkaline earth metal oxides are very important components for enhancing the strain point, devitrification resistance and meltability. When the amount of alkaline earth metal oxide is small, the strain point increases, but Al 2 O 3 -based devitrified crystals are likely to precipitate during molding, and the high-temperature viscosity becomes high, so that the meltability is likely to decrease. Therefore, the ratio of the total content of the alkaline earth metal oxide (MgO + CaO + SrO + BaO) and the content of Al 2 O 3 becomes very important. Specifically, when the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 increases, the meltability and formability are improved, but the strain point tends to decrease. Conversely, when this value decreases, the strain point increases. The meltability and moldability tend to be reduced. Therefore, the preferable lower limit range of the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 0.95 or more, 1.00 or more, 1.05 or more, particularly 1.09 or more, and the preferable upper limit range is 1.70 or less. .
 モル比CaO/Alは、溶融性を担保しつつ、高歪点を維持するために重要な指標の一つである。CaOを多く含む組成領域では、歪点が低下しないように組成設計することが重要になる。そして、Alは、アルカリ土類アルミノシリケートガラスではSiO以外に歪点を上げる主要成分である。これらの観点から、モル比CaO/Alは、好ましくは1.09以下、1.07以下、1.05以下、特に0.25~1.05である。 The molar ratio CaO / Al 2 O 3 is one of important indicators for maintaining a high strain point while ensuring meltability. In a composition region containing a large amount of CaO, it is important to design the composition so that the strain point does not decrease. Then, Al 2 O 3 is in the alkaline earth aluminosilicate glass which is a main component to increase the strain point other than SiO 2. From these viewpoints, the molar ratio CaO / Al 2 O 2 is preferably 1.09 or less, 1.07 or less, 1.05 or less, particularly 0.25 to 1.05.
 製造負荷を低下させつつ、高歪点のガラスを作製するためには、アルカリ土類金属酸化物の4成分をの配合比率が非常に重要になる。この観点から、CaO-(SrO+BaO)は、好ましくは-3%以上、-1%以上、0%以上、0.7%以上、2%以上、特に3.1~15%である。CaO-(SrO+BaO)が多くなると、溶融温度や成形温度が低下して、ガラス板の生産性を高めることができる。 In order to produce a glass with a high strain point while reducing the production load, the blending ratio of the four components of the alkaline earth metal oxide is very important. From this point of view, CaO- (SrO + BaO) is preferably -3% or more, -1% or more, 0% or more, 0.7% or more, 2% or more, particularly 3.1 to 15%. When the amount of CaO- (SrO + BaO) increases, the melting temperature and the molding temperature decrease, and the productivity of the glass plate can be increased.
 CaOを多く含む組成領域において、モル比SrO/BaOを規制することは、耐失透性の観点から重要になる。具体的には、CaOを多く含む組成領域では、前述の通り、初相としてアノーサイトが析出し易くなる。アルカリ土類金属酸化物の中で、SrOはアノーサイトの液相温度を上昇させる成分であり、BaOはアノーサイトの液相温度を低下させる成分である。よって、モル比SrO/BaOは小さい程、アノーサイトの液相温度が低下する。しかし、SrOを全く導入しないと、成形時にクリストバライト等の失透結晶が析出し易くなる。以上の点を踏まえると、モル比SrO/BaOの好適な下限範囲は0以上、特に0.03以上であり、好適な上限範囲は0.70以下、0.63以下、0.50以下、特に0.38以下である。 In the composition region containing a large amount of CaO, it is important from the viewpoint of devitrification resistance to regulate the molar ratio SrO / BaO. Specifically, in the composition region containing a large amount of CaO, anorthite tends to precipitate as the initial phase as described above. Among alkaline earth metal oxides, SrO is a component that raises the liquid phase temperature of anorthite, and BaO is a component that lowers the liquidus temperature of anorthite. Therefore, the smaller the molar ratio SrO / BaO, the lower the liquid phase temperature of anorthite. However, if SrO is not introduced at all, devitrifying crystals such as cristobalite are likely to precipitate during molding. In view of the above points, the preferred lower limit range of the molar ratio SrO / BaO is 0 or more, particularly 0.03 or more, and the preferred upper limit range is 0.70 or less, 0.63 or less, 0.50 or less, particularly 0.38 or less.
 上記成分以外にも、例えば、以下の成分を導入してもよい。 In addition to the above components, for example, the following components may be introduced.
 ZnOは、溶融性を高める成分であるが、ZnOが多くなると、ガラスが失透し易くなり、また歪点が低下し易くなる。よって、ZnOの含有量は、好ましくは0~5%、0~3%、0~0.5%、特に0~0.2%である。 ZnO is a component that enhances the meltability. However, when the amount of ZnO increases, the glass tends to devitrify and the strain point tends to decrease. Therefore, the content of ZnO is preferably 0 to 5%, 0 to 3%, 0 to 0.5%, particularly 0 to 0.2%.
 Pは、Al系失透結晶の液相温度を低下させる成分であるが、Pが多くなると、歪点が低下してしまい、成形時にクリストバライトが析出し易くなる。よって、Pの含有量は、好ましくは0~1.5%、0~1.2%、特に0~0.1%未満である。 P 2 O 5 is a component that lowers the liquidus temperature of the Al-based devitrified crystal. However, when P 2 O 5 increases, the strain point decreases, and cristobalite is likely to precipitate during molding. Therefore, the content of P 2 O 5 is preferably 0 to 1.5%, 0 to 1.2%, particularly 0 to less than 0.1%.
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分である。しかし、TiOが多くなると、ガラスが着色して、透過率が低下し易くなる。よって、TiOの含有量は、好ましくは0~5%、0~3%、0~1%、0~0.1%、特に0~0.02%である。 TiO 2 is a component that lowers the high-temperature viscosity and increases the meltability, and also suppresses solarization. However, when the amount of TiO 2 increases, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.1%, particularly 0 to 0.02%.
 ZrO、Y、Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分が多くなると、密度が上昇し易くなる。よって、ZrO、Y、Nb、Laの含有量は、それぞれ0~5%、0~3%、0~1%、0~0.1%未満、特に0~0.05%未満が好ましい。更にYとLaの合量は0.1%未満が好ましい。 ZrO 2 , Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, when these components increase, the density tends to increase. Therefore, the contents of ZrO 2 , Y 2 O 3 , Nb 2 O 5 and La 2 O 3 are 0 to 5%, 0 to 3%, 0 to 1%, 0 to less than 0.1%, particularly 0 It is preferably less than 0.05%. Furthermore, the total amount of Y 2 O 3 and La 2 O 3 is preferably less than 0.1%.
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は、好ましくは0~1%、0.001~1%、0.01~0.5%、特に0.05~0.3%である。SnOが多くなると、成形時にSnOの失透結晶が析出し易くなる。 SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity. The content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly 0.05 to 0.3%. When SnO 2 increases, SnO 2 devitrified crystals are likely to precipitate during molding.
 ガラス特性が損なわれない限り、清澄剤として、F、Cl、SO、C、或いはAl、Si等の金属粉末を2%まで添加することができる。また、清澄剤として、CeO等も1%まで添加することができる。 As long as the glass properties are not impaired, metal powder such as F 2 , Cl 2 , SO 3 , C, Al, Si or the like can be added up to 2% as a fining agent. Further, it can be added as a refining agent, also CeO 2, etc. up to 1%.
 AsとSbは、清澄剤として有効であり、本発明のガラスは、これらの成分の導入を完全に排除するものではないが、環境的観点から、これらの成分を極力使用しないことが好ましい。更にAsが多くなると、耐ソラリゼーション性が低下する傾向にあるため、その含有量は0.1%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にAsを含有しない」とは、ガラス組成中のAsの含有量が0.05%未満の場合を指す。また、Sbの含有量は0.2%以下、特に0.1%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が0.05%未満の場合を指す。 As 2 O 3 and Sb 2 O 3 are effective as fining agents, and the glass of the present invention does not completely eliminate the introduction of these components, but these components are used as much as possible from an environmental point of view. Preferably not. Further, as As 2 O 3 increases, the solarization resistance tends to decrease. Therefore, the content is preferably 0.1% or less, and it is desirable that the content is not substantially contained. Here, “substantially does not contain As 2 O 3 ” refers to the case where the content of As 2 O 3 in the glass composition is less than 0.05%. Further, the content of Sb 2 O 3 is preferably 0.2% or less, particularly preferably 0.1% or less, and it is desirable that the Sb 2 O 3 content is not substantially contained. Here, “substantially does not contain Sb 2 O 3 ” refers to a case where the content of Sb 2 O 3 in the glass composition is less than 0.05%.
 Feは、溶融ガラスの電気抵抗率を低下させる成分である。Feの含有量は、好ましくは0~0.2%、0.001~0.1%、0.005~0.05%、特に0.008~0.015%である。Feの含有量が少ないと、上記の効果を享受し難くなる。一方、Feが多くなると、紫外域での透過率が低下し易くなり、ディスプレイの製造工程で紫外域のレーザーを使用する際の照射効率が低下し易くなる。なお、電気溶融を行う場合、Feを積極的に導入する方が好ましく、その場合、Feの含有量は0.005~0.03%、0.008~0.025%、特に0.01~0.02%が好ましい。また、紫外域での透過率を高めたい場合、Feの含有量は、好ましくは0.020%以下、0.015%以下、0.011%以下、特に0.010%以下である。 Fe 2 O 3 is a component that lowers the electrical resistivity of the molten glass. The content of Fe 2 O 3 is preferably 0 to 0.2%, 0.001 to 0.1%, 0.005 to 0.05%, particularly 0.008 to 0.015%. When the content of Fe 2 O 3 is small, it becomes difficult to enjoy the effect of the above. On the other hand, when Fe 2 O 3 increases, the transmittance in the ultraviolet region tends to decrease, and the irradiation efficiency when using a laser in the ultraviolet region in the manufacturing process of the display tends to decrease. In addition, when performing electric melting, it is preferable to introduce Fe 2 O 3 positively, and in that case, the content of Fe 2 O 3 is 0.005 to 0.03%, 0.008 to 0.025%. In particular, 0.01 to 0.02% is preferable. Further, when it is desired to increase the transmittance in the ultraviolet region, the content of Fe 2 O 3 is preferably 0.020% or less, 0.015% or less, 0.011% or less, particularly 0.010% or less. .
 またFeに関連して、MgOの導入原料は、Feの主な混入源になる。よって、紫外域での透過率を高める観点から、MgOの含有量をなるべく少なくする方が好ましい。 Further, in relation to Fe 2 O 3 , the MgO raw material becomes the main mixing source of Fe 2 O 3 . Therefore, from the viewpoint of increasing the transmittance in the ultraviolet region, it is preferable to reduce the content of MgO as much as possible.
 Clは、低アルカリガラスの溶融を促進する効果があり、Clを添加すれば、溶融温度を低温化できると共に、清澄剤の作用を促進することができる。またClは、溶融ガラスのβ-OH値を低下させる効果を有する。しかし、Clが多くなると、歪点が低下し、また環境負荷が増大する。よって、Clの含有量は、好ましくは0.5%以下、特に0.001~0.2%である。なお、Clの導入原料として、塩化ストロンチウム等のアルカリ土類金属酸化物の塩化物、或いは塩化アルミニウム等の原料を使用することができる。 Cl has an effect of promoting the melting of the low alkali glass. If Cl is added, the melting temperature can be lowered and the action of the fining agent can be promoted. Further, Cl has an effect of lowering the β-OH value of the molten glass. However, when Cl increases, the strain point decreases and the environmental load increases. Therefore, the Cl content is preferably 0.5% or less, particularly 0.001 to 0.2%. In addition, as a raw material for introducing Cl, a raw material such as an alkaline earth metal oxide chloride such as strontium chloride or aluminum chloride can be used.
 本発明のガラスは、以下の特性を有することが好ましい。 The glass of the present invention preferably has the following characteristics.
 歪点は、好ましくは730℃以上、735℃以上、740℃以上、特に745℃以上である。歪点が低いと、p-Si・TFTの製造工程において、ガラス板が熱収縮し易くなる。 The strain point is preferably 730 ° C. or higher, 735 ° C. or higher, 740 ° C. or higher, particularly 745 ° C. or higher. If the strain point is low, the glass plate is likely to be thermally contracted in the manufacturing process of the p-Si • TFT.
 p-Si・TFTの製造工程で熱収縮量が小さく、しかも溶融性が高いガラスを得る上で、歪点とバッチ溶解性を同時に高めることが重要になる。一方、Alは、バッチ溶解性を大幅に低下させる成分である。よって、歪点(℃)をAlの含有量(モル%)で除した値を大きくすることが上記観点から重要になり、歪点(℃)をAlの含有量(モル%)で除した値は、好ましくは51以上、53以上、特に55~80である。 In order to obtain a glass having a small amount of thermal shrinkage and high meltability in the manufacturing process of p-Si • TFT, it is important to simultaneously improve the strain point and batch solubility. On the other hand, Al 2 O 3 is a component that greatly reduces batch solubility. Therefore, it is important from the above viewpoint to increase the value obtained by dividing the strain point (° C.) by the content (mol%) of Al 2 O 3 , and the strain point (° C.) is changed to the content (mol) of Al 2 O 3. %) Is preferably 51 or more, 53 or more, in particular 55 to 80.
 密度は、好ましくは2.71g/cm以下、2.69g/cm以下、2.67g/cm以下、特に2.64g/cm以下である。密度が高いと、比ヤング率が高くなり、ガラス板が自重で撓み易くなると共に、基板に用いる場合、有機ELディスプレイの質量が増加してしまう。 The density is preferably 2.71 g / cm 3 or less, 2.69 g / cm 3 or less, 2.67 g / cm 3 or less, particularly 2.64 g / cm 3 or less. When the density is high, the specific Young's modulus increases, the glass plate is easily bent by its own weight, and when used for a substrate, the mass of the organic EL display increases.
 β-OH値を低下させると、歪点を高めることができる。β-OH値は、好ましくは0.30/mm以下、0.25/mm以下、0.20/mm以下、0.15/mm以下、特に0.10/mm以下である。β-OH値が大きくなると、歪点が低下し易くなる。なお、β-OH値が過度に小さくする場合、ガラス中のClが過剰な状態になる虞がある。よって、β-OH値は、好ましくは0.01/mm以上、特に0.02/mm以上である。 歪 Lowering the β-OH value can increase the strain point. The β-OH value is preferably 0.30 / mm or less, 0.25 / mm or less, 0.20 / mm or less, 0.15 / mm or less, particularly 0.10 / mm or less. As the β-OH value increases, the strain point tends to decrease. If the β-OH value is excessively small, Cl in the glass may become excessive. Therefore, the β-OH value is preferably 0.01 / mm or more, particularly 0.02 / mm or more.
 β-OH値を低下させる方法として、以下の方法が挙げられる。(1)低水分量のガラス原料を選択する。(2)ガラス中の水分量を減少させる成分(Cl、SO等)を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でNバブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を速くする。(7)電気溶融法を採用する。 As a method for reducing the β-OH value, the following methods may be mentioned. (1) A glass material having a low moisture content is selected. (2) Add a component (Cl, SO 3 or the like) that reduces the amount of moisture in the glass. (3) Reduce the amount of moisture in the furnace atmosphere. (4) N 2 bubbling is performed in molten glass. (5) Adopt a small melting furnace. (6) Increase the flow rate of the molten glass. (7) An electric melting method is adopted.
 ここで、「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
β-OH値 = (1/X)log(T/T
X:ガラス肉厚(mm)
:参照波長3846cm-1における透過率(%)
:水酸基吸収波長3600cm-1付近における最小透過率(%)
Here, “β-OH value” refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
β-OH value = (1 / X) log (T 1 / T 2 )
X: Glass wall thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
 液相温度は、好ましくは1320℃未満、1300℃以下、1280℃以下、1260℃以下、1240℃以下、特に1220℃以下である。液相温度が高いと、オーバーフローダウンドロー法等による成形時に失透結晶が析出して、ガラス板の生産性が低下する。なお、「液相温度」は、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持して、結晶(初相)の析出する温度を測定した値を指す。 The liquidus temperature is preferably less than 1320 ° C, 1300 ° C or less, 1280 ° C or less, 1260 ° C or less, 1240 ° C or less, particularly 1220 ° C or less. When the liquidus temperature is high, devitrified crystals are precipitated during forming by the overflow down draw method or the like, and the productivity of the glass plate is lowered. The “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (mesh opening 500 μm) and putting the glass powder remaining in 50 mesh (mesh opening 300 μm) in a platinum boat and keeping it in a temperature gradient furnace for 24 hours. The temperature at which the crystal (primary phase) precipitates is measured.
 液相粘度は、好ましくは104.5dPa・s以上、104.8dPa・s以上、105.0dPa・s以上、105.2dPa・s以上、特に105.3dPa・s以上である。液相粘度が低いと、オーバーフローダウンドロー法等による成形時に失透結晶が析出して、ガラス板の生産性が低下する。なお、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。 The liquid phase viscosity is preferably 10 4.5 dPa · s or more, 10 4.8 dPa · s or more, 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, particularly 10 5.3 dPa · s or more. s or more. When the liquid phase viscosity is low, devitrified crystals are deposited during forming by the overflow down draw method or the like, and the productivity of the glass plate is lowered. The “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
 高温粘度104.5dPa・sにおける温度は、好ましくは1320℃未満、1310℃以下、1305℃以下、特に1300℃以下である。高温粘度104.5dPa・sにおける温度は、オーバーフローダウンドロー法で成形する場合の成形温度に相当する。成形温度が高くなると、成形体のクリープ変形が進み易くなり、高品位のガラス板を安定して生産できなくなる。クリープ変形が進んだものを交換してガラス板を生産することも可能であるが、成形体は非常に高価であるため、ガラス板の製造コストが上昇してしまう。なお、「高温粘度104.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 The temperature at a high temperature viscosity of 10 4.5 dPa · s is preferably less than 1320 ° C., 1310 ° C. or less, 1305 ° C. or less, particularly 1300 ° C. or less. The temperature at a high temperature viscosity of 10 4.5 dPa · s corresponds to the molding temperature in the case of molding by the overflow downdraw method. When the molding temperature becomes high, the molded body tends to undergo creep deformation, and a high-quality glass plate cannot be produced stably. Although it is possible to produce a glass plate by exchanging one that has undergone creep deformation, since the molded body is very expensive, the manufacturing cost of the glass plate increases. The “temperature at a high temperature viscosity of 10 4.5 dPa · s” can be measured by a platinum ball pulling method.
 高温粘度102.5dPa・sにおける温度をη2.5、高温粘度104.0dPa・sにおける温度をη4.0とした時、(η2.5-η4.0)/η2.5は、好ましくは0.158以上、0.163以上、特に0.170以上である。高温粘度102.5dPa・sにおける温度は、一般的に溶融性の指標になり、この温度が低い程、溶融性が高くなる。しかし、本発明のように高歪点を追求して組成設計すると、どうしても高温粘度102.5dPa・sにおける温度は高くなってしまう。そして、清澄容器(清澄パイプ)で白金等の耐熱金属を用いる場合、このような高融点のガラスでは、白金の耐熱限界から清澄に十分な温度まで清澄容器(清澄パイプ)を昇温することが難しくなる。しかし、このような場合であっても、高温粘度102.5dPa・sにおける温度付近での粘度変化に対する温度変化が大きいと、プロセスウィンドウが広くなるため、泡品位を高める上で有利になる。なお、「(η2.5-η4.0)/η2.5」は、高温粘度102.5dPa・sにおける温度から高温粘度104.0dPa・sにおける温度を減じた温度を高温粘度102.5dPa・sにおける温度で除した値である。また、「高温粘度102.5dPa・sにおける温度」と「高温粘度104.0dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 When the temperature at a high temperature viscosity of 10 2.5 dPa · s is η 2.5 and the temperature at a high temperature viscosity of 10 4.0 dPa · s is η 4.0 , (η 2.5 −η 4.0 ) / η 2.5 is preferably 0.158 or more, 0.163 or more, particularly 0.170 or more. The temperature at a high temperature viscosity of 10 2.5 dPa · s is generally an indicator of meltability, and the lower this temperature, the higher the meltability. However, if a composition is designed in pursuit of a high strain point as in the present invention, the temperature at a high temperature viscosity of 10 2.5 dPa · s inevitably increases. And when using a heat-resistant metal such as platinum in a clarification container (clarification pipe), with such a high melting point glass, the temperature of the clarification container (clarification pipe) can be raised from the heat resistance limit of platinum to a temperature sufficient for clarification. It becomes difficult. However, even in such a case, if the temperature change with respect to the viscosity change in the vicinity of the temperature at a high temperature viscosity of 10 2.5 dPa · s is large, the process window becomes wide, which is advantageous in improving the foam quality. . “(Η 2.5 −η 4.0 ) / η 2.5 ” means a temperature obtained by subtracting the temperature at the high temperature viscosity of 10 4.0 dPa · s from the temperature at the high temperature viscosity of 10 2.5 dPa · s. It is a value divided by the temperature at a high temperature viscosity of 10 2.5 dPa · s. The “temperature at high temperature viscosity of 10 2.5 dPa · s” and “temperature at high temperature viscosity of 10 4.0 dPa · s” can be measured by the platinum ball pulling method.
 比ヤング率は、好ましくは29.5GPa/g・cm-3以上、29.7GPa/g・cm-3以上、30GPa/g・cm-3以上、31GPa/g・cm-3以上、31.5GPa/g・cm-3以上、特に32GPa/g・cm-3以上である。比ヤング率が低いと、ガラス板が自重で撓み易くなり、p-Si・TFTの成膜工程時にガラス板が破損し易くなる。なお、「比ヤング率」は、ヤング率を密度で除した値である。また、「ヤング率」は、周知の共振法で測定可能である。 Specific modulus is preferably 29.5GPa / g · cm -3 or more, 29.7GPa / g · cm -3 or more, 30GPa / g · cm -3 or more, 31GPa / g · cm -3 or more, 31.5GPa / G · cm −3 or more, particularly 32 GPa / g · cm −3 or more. When the specific Young's modulus is low, the glass plate is easily bent by its own weight, and the glass plate is easily damaged during the p-Si · TFT film forming process. “Specific Young's modulus” is a value obtained by dividing Young's modulus by density. The “Young's modulus” can be measured by a known resonance method.
 HFによるエッチングレートは、好ましくは0.8μm/分以上、0.9μm/分以上、特に1.0μm/分以上である。ガラス板を携帯端末等の基板に用いる場合、フッ酸(HF)エッチングにより薄板化(スリミング)される。HFによるエッチングレートが低いと、スリミングに時間がかかってしまい、コストアップの要因になる。ここで、「HFのエッチングレート」は、鏡面研磨したガラス表面について、20℃の10質量%HF水溶液により30分間の条件でエッチングした時のエッチング深さを指す。 The etching rate by HF is preferably 0.8 μm / min or more, 0.9 μm / min or more, particularly 1.0 μm / min or more. When a glass plate is used for a substrate of a mobile terminal or the like, the glass plate is thinned by hydrofluoric acid (HF) etching. If the etching rate by HF is low, slimming takes time, which causes an increase in cost. Here, the “HF etching rate” refers to an etching depth when a mirror-polished glass surface is etched with a 10 mass% HF aqueous solution at 20 ° C. for 30 minutes.
 本発明のガラスは、平板形状であり、板厚方向の中央部にオーバーフロー合流面を有することが好ましい。つまりオーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法とは、楔形の耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを楔形の下端で合流させながら、下方に延伸成形して平板形状に成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。更に大面積化や薄肉化も容易である。 The glass of the present invention has a flat plate shape and preferably has an overflow merging surface at the center in the thickness direction. That is, it is preferably formed by an overflow downdraw method. The overflow down draw method is a method in which molten glass overflows from both sides of a wedge-shaped refractory, and the overflowed molten glass is stretched downward and formed into a flat plate shape while joining at the lower end of the wedge shape. In the overflow down draw method, the surface to be the surface of the glass plate is not in contact with the refractory, and is formed in a free surface state. For this reason, the glass plate which is unpolished and has a good surface quality can be manufactured at low cost. Furthermore, it is easy to increase the area and thickness.
 オーバーフローダウンドロー法以外にも、例えば、スロットダウン法、リドロー法、フロート法、ロールアウト法でガラス板を成形することも可能である。 In addition to the overflow downdraw method, a glass plate can be formed by, for example, a slot down method, a redraw method, a float method, or a rollout method.
 本発明のガラスにおいて、肉厚(ガラス板の場合、板厚)は、特に限定されないが、好ましくは1.0mm以下、0.7mm以下、0.5mm以下、特に0.05~0.4mmである。肉厚が小さい程、有機ELディスプレイを軽量化し易くなる。なお、肉厚は、ガラス製造時の流量や成形速度(板引き速度)等で調整可能である。 In the glass of the present invention, the thickness (in the case of a glass plate) is not particularly limited, but is preferably 1.0 mm or less, 0.7 mm or less, 0.5 mm or less, particularly 0.05 to 0.4 mm. is there. The smaller the wall thickness, the easier it is to reduce the weight of the organic EL display. The wall thickness can be adjusted by the flow rate during glass production, the forming speed (plate drawing speed), and the like.
 本発明のガラスを工業的に製造する方法としては、ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~3%未満、LiO+NaO+KO 0~0.5%、MgO 0~8.5%、CaO 3.5~12%、SrO 0~2.5%、BaO 1~6%を含有するように調合されたガラスバッチを溶融炉に投入し、加熱電極による通電加熱を行うことにより、溶融ガラスを得る溶融工程と、得られた溶融ガラスをオーバーフローダウンドロー法により板厚0.1~0.7mmの平板形状のガラスに成形する成形工程と、を有することが好ましい。 As a method for industrially producing the glass of the present invention, the glass composition is SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-3%, Li 2 Glass formulated to contain O + Na 2 O + K 2 O 0-0.5%, MgO 0-8.5%, CaO 3.5-12%, SrO 0-2.5%, BaO 1-6% The batch is put into a melting furnace and heated by energization with a heating electrode to obtain a molten glass, and the obtained molten glass is shaped into a flat plate having a thickness of 0.1 to 0.7 mm by an overflow down draw method. It is preferable to have the shaping | molding process shape | molded to glass.
 ガラス板の製造工程は、一般的に、溶融工程、清澄工程、供給工程、攪拌工程、成形工程を含む。溶融工程は、ガラス原料を調合したガラスバッチを溶融し、溶融ガラスを得る工程である。清澄工程は、溶融工程で得られた溶融ガラスを清澄剤等の働きによって清澄する工程である。供給工程は、各工程間に溶融ガラスを移送する工程である。攪拌工程は、溶融ガラスを攪拌し、均質化する工程である。成形工程は、溶融ガラスを板状ガラスに成形する工程である。なお、必要に応じて、上記以外の工程、例えば溶融ガラスを成形に適した状態に調節する状態調節工程を攪拌工程後に取り入れてもよい。 The manufacturing process of a glass plate generally includes a melting process, a clarification process, a supply process, a stirring process, and a forming process. The melting step is a step of obtaining a molten glass by melting a glass batch prepared by mixing glass raw materials. The clarification step is a step of clarifying the molten glass obtained in the melting step by the action of a clarifier or the like. A supply process is a process of transferring a molten glass between each process. The stirring step is a step of stirring and homogenizing the molten glass. The forming step is a step of forming molten glass into a sheet glass. If necessary, a step other than the above, for example, a state adjusting step for adjusting the molten glass to a state suitable for molding may be introduced after the stirring step.
 従来の低アルカリガラスを工業的に製造する場合、一般的に、バーナーの燃焼炎による加熱により溶融されていた。バーナーは、通常、溶融窯の上方に配置されており、燃料として化石燃料、具体的には重油等の液体燃料やLPG等の気体燃料等が使用されている。燃焼炎は、化石燃料と酸素ガスと混合することにより得ることができる。しかし、この方法では、溶融時に溶融ガラス中に多くの水分が混入するため、β-OH値が上昇し易くなる。よって、本発明のガラスを製造するに当たり、加熱電極による通電加熱を行うことが好ましく、バーナーの燃焼炎による加熱を行わずに、加熱電極による通電加熱で溶融すること、つまり完全電気溶融であることが好ましい。これにより、溶融時に溶融ガラス中に水分が混入し難くなるため、β-OH値を0.30/mm以下、0.25/mm以下、0.20/mm以下、0.15/mm以下、特に0.10/mm以下に規制し易くなる。更に、加熱電極による通電加熱を行うと、溶融ガラスを得るための質量当たりのエネルギー量が低下すると共に、溶融揮発物が少なくなるため、環境負荷を低減することができる。 When industrially producing conventional low alkali glass, it is generally melted by heating with a burner flame. The burner is usually disposed above the melting kiln, and fossil fuel, specifically liquid fuel such as heavy oil, gaseous fuel such as LPG, or the like is used as the fuel. The combustion flame can be obtained by mixing fossil fuel and oxygen gas. However, in this method, since a large amount of moisture is mixed in the molten glass at the time of melting, the β-OH value tends to increase. Therefore, in producing the glass of the present invention, it is preferable to conduct current heating with a heating electrode, and melting with current heating with a heating electrode without heating with a burner combustion flame, that is, complete electric melting. Is preferred. This makes it difficult for moisture to be mixed into the molten glass during melting, so that the β-OH value is 0.30 / mm or less, 0.25 / mm or less, 0.20 / mm or less, 0.15 / mm or less, In particular, it becomes easy to regulate to 0.10 / mm or less. Furthermore, when conducting heating with a heating electrode, the amount of energy per mass for obtaining molten glass is reduced and the amount of molten volatiles is reduced, so that the environmental load can be reduced.
 更にこの通電加熱に関し、ガラスバッチ中の水分量が少ない程、ガラス板中の水分量を低減し易くなる。そして、Bの導入原料は、最大の水分の混入源になり易い。よって、低水分のガラス板を製造する観点から、Bの含有量をなるべく少なくする方が好ましい。またガラスバッチ中の水分量が少ない程、ガラスバッチが溶融窯内に一様に広がり易くなるため、均質で高品位のガラス板を製造し易くなる。 Furthermore, regarding this energization heating, the smaller the moisture content in the glass batch, the easier it is to reduce the moisture content in the glass plate. Then, the introduction material of B 2 O 3 is liable to be contaminated source of greatest moisture. Therefore, from the viewpoint of producing a low moisture glass plate, it is preferable to reduce the content of B 2 O 3 as much as possible. Further, the smaller the moisture content in the glass batch, the easier it is for the glass batch to spread uniformly in the melting kiln, so that it becomes easier to produce a homogeneous and high-quality glass plate.
 加熱電極による通電加熱は、溶融窯内の溶融ガラスに接触するように、溶融窯の底部又は側部に設けられた加熱電極に交流電圧を印加することにより行うことが好ましい。加熱電極に使用する材料は、耐熱性と溶融ガラスに対する耐食性を備えるものが好ましく、例えば、酸化錫、モリブデン、白金、ロジウム等が使用可能であり、特に炉内設置の自由度の観点から、モリブデンが好ましい。 It is preferable that the electric heating by the heating electrode is performed by applying an AC voltage to the heating electrode provided at the bottom or side of the melting kiln so as to contact the molten glass in the melting kiln. The material used for the heating electrode is preferably one having heat resistance and corrosion resistance against molten glass, for example, tin oxide, molybdenum, platinum, rhodium, etc. can be used. In particular, from the viewpoint of freedom of installation in the furnace, molybdenum Is preferred.
 本発明のガラスは、アルカリ金属酸化物の含有量が少量であるため、電気抵抗率が高い。よって、加熱電極による通電加熱を低アルカリガラスに適用する場合、溶融ガラスだけでなく、溶融窯を構成する耐火物にも電流が流れて、溶融窯を構成する耐火物が早期に損傷する虞がある。これを防ぐため、炉内耐火物として、電気抵抗率が高いジルコニア系耐火物、特にジルコニア電鋳レンガを使用することが好ましく、また溶融ガラス(ガラス組成)中に電気抵抗率を低下させる成分(LiO、NaO、KO、Fe等)を少量導入することが好ましく、特にLiO、NaO、KO等を少量導入(例えば、0.01質量%以上、特に0.02質量%以上)することが好ましい。またFeの含有量は0.005~0.03質量%、0.008~0.025質量%、特に0.01~0.02質量%が好ましい。更に、ジルコニア系耐火物中のZrOの含有量は、好ましくは85質量%以上、特に90質量%以上である。 Since the glass of the present invention contains a small amount of alkali metal oxide, the electrical resistivity is high. Therefore, when applying current heating by the heating electrode to the low alkali glass, current flows not only in the molten glass but also in the refractory constituting the melting kiln, and the refractory constituting the melting kiln may be damaged early. is there. In order to prevent this, it is preferable to use a zirconia refractory having a high electrical resistivity, particularly a zirconia electroformed brick, as a refractory in the furnace, and a component that lowers the electrical resistivity in molten glass (glass composition) ( It is preferable to introduce a small amount of Li 2 O, Na 2 O, K 2 O, Fe 2 O 3 and the like, and particularly a small amount of Li 2 O, Na 2 O, K 2 O and the like are introduced (for example, 0.01% by mass). As described above, it is particularly preferable to be 0.02% by mass or more. The content of Fe 2 O 3 is preferably 0.005 to 0.03% by mass, 0.008 to 0.025% by mass, and particularly preferably 0.01 to 0.02% by mass. Further, the content of ZrO 2 in the zirconia refractory is preferably 85% by mass or more, particularly 90% by mass or more.
 以下、本発明を実施例に基づいて説明する。但し、以下の実施例は例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. However, the following examples are illustrative. The present invention is not limited to the following examples.
 表1~6は、本発明の実施例(試料No.1~91)を示している。なお、表中で「N.A.」は、未測定であることを意味する。 Tables 1 to 6 show examples of the present invention (sample Nos. 1 to 91). In the table, “NA” means not measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1600~1650℃で24時間溶融した。ガラスバッチの溶解にあたっては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した後、アニール点付近の温度で1時間アニールした。得られた各試料について、密度ρ、30~380℃の温度範囲における平均熱膨張係数α、β-OH値、歪点Ps、アニール点Ta、軟化点Ts、高温粘度104.5dPa・sにおける温度、高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度、液相粘度logηatTL、ヤング率E、剛性率G、ポアソン比γ、比ヤング率E/ρ、HFのエッチングレート(HF etching rate)を評価した。 First, a glass batch in which glass raw materials were prepared so as to have the glass composition shown in the table was placed in a platinum crucible and melted at 1600 to 1650 ° C. for 24 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured onto a carbon plate, formed into a plate shape, and then annealed at a temperature near the annealing point for 1 hour. For each of the obtained samples, the density ρ, the average thermal expansion coefficient α in the temperature range of 30 to 380 ° C., the β-OH value, the strain point Ps, the annealing point Ta, the softening point Ts, and the high temperature viscosity of 10 4.5 dPa · s. , Temperature at high temperature viscosity 10 4.0 dPa · s, temperature at high temperature viscosity 10 3.0 dPa · s, temperature at high temperature viscosity 10 2.5 dPa · s, liquid phase viscosity logηatTL, Young's modulus E, rigidity G, Poisson's ratio γ, specific Young's modulus E / ρ, and HF etching rate (HF etching rate) were evaluated.
 密度ρは、周知のアルキメデス法によって測定した値である。 The density ρ is a value measured by the well-known Archimedes method.
 30~380℃の温度範囲における平均熱膨張係数αは、ディラトメーターで測定した値である。 The average coefficient of thermal expansion α in the temperature range of 30 to 380 ° C. is a value measured with a dilatometer.
 β-OH値は、上記の方法によって測定した値である。 The β-OH value is a value measured by the above method.
 歪点Ps、アニール点Ta、軟化点Tsは、ASTM C336及びC338の方法に基づいて測定した値である。 The strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the methods of ASTM C336 and C338.
 高温粘度104.5dPa・s、104.0dPa・s、103.0dPa・s及び102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperatures at high temperature viscosities of 10 4.5 dPa · s, 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s are values measured by the platinum ball pulling method.
 液相粘度logηatTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。液相温度TLは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持して、結晶(初相)の析出する温度を測定した値である。 The liquid phase viscosity log η at TL is a value obtained by measuring the viscosity of the glass at the liquid phase temperature TL by a platinum ball pulling method. The liquid phase temperature TL passes through a standard sieve 30 mesh (a sieve opening of 500 μm), puts the glass powder remaining in 50 mesh (a sieve opening of 300 μm) in a platinum boat, and holds it in a temperature gradient furnace for 24 hours. This is a value obtained by measuring the temperature at which crystals (initial phase) precipitate.
 ヤング率E、剛性率Gは、周知の共振法を用いて測定した値である。ポアソン比は、ヤング率Eと剛性率Gから算出される値である。比ヤング率E/ρは、ヤング率を密度で割った値である。 The Young's modulus E and the rigidity modulus G are values measured using a well-known resonance method. The Poisson's ratio is a value calculated from Young's modulus E and rigidity modulus G. Specific Young's modulus E / ρ is a value obtained by dividing Young's modulus by density.
 HFのエッチングレートは、鏡面研磨したガラス表面について、20℃の10質量%HF水溶液により30分間の条件でエッチングした時のエッチング深さである。 The etching rate of HF is an etching depth when a mirror-polished glass surface is etched with a 10 mass% HF aqueous solution at 20 ° C. for 30 minutes.
 表1~9から明らかなように、試料No.1~91は、アルカリ金属酸化物の含有量が少なく、歪点Psが734℃以上、高温粘度102.5dPa・sにおける温度が1693℃以下、液相粘度が104.32dPa・s以上であった。よって、試料No.1~91は、有機ELディスプレイの基板、ポリイミド基板上に有機EL素子を作製する際に用いられるキャリアガラスに好適であると考えられる。 As is apparent from Tables 1 to 9, the sample No. Nos. 1 to 91 have a low alkali metal oxide content, a strain point Ps of 734 ° C. or higher, a temperature at a high temperature viscosity of 10 2.5 dPa · s of 1693 ° C. or lower, and a liquid phase viscosity of 10 4.32 dPa · s. That was all. Therefore, sample no. Nos. 1 to 91 are considered to be suitable for carrier glass used when an organic EL element is produced on a substrate of an organic EL display or a polyimide substrate.

Claims (3)

  1.  ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~3%未満、LiO+NaO+KO 0~0.5%、MgO 0~8.5%、CaO 3.5~12%、SrO 0~2.5%、BaO 1~6%を含有し、歪点(℃)をAlの含有量(モル%)で除した値が51以上であることを特徴とするガラス。 As a glass composition, SiO 2 67 to 73%, Al 2 O 3 10 to 15%, B 2 O 3 0 to less than 3%, Li 2 O + Na 2 O + K 2 O 0 to 0.5%, MgO 0 in mol%. -8.5%, CaO 3.5-12%, SrO 0-2.5%, BaO 1-6%, and the strain point (° C) divided by the Al 2 O 3 content (mol%). Glass having a measured value of 51 or more.
  2.  ガラス組成として、モル%で、SiO 67~73%、Al 10~15%、B 0~1.3%、LiO+NaO+KO 0~0.5%、MgO 0~3.2%、CaO 3.5~12%、SrO 0~2%、BaO 3.5~6%を含有し、CaO-(SrO+BaO)が3.1%以上、モル比CaO/Alが1.05以下、モル比SrO/BaOが0.03~0.50であることを特徴とするガラス。 As a glass composition, SiO 2 67-73%, Al 2 O 3 10-15%, B 2 O 3 0-1.3%, Li 2 O + Na 2 O + K 2 O 0-0.5%, MgO 0 to 3.2%, CaO 3.5 to 12%, SrO 0 to 2%, BaO 3.5 to 6%, CaO- (SrO + BaO) is 3.1% or more, molar ratio CaO / Al 2 A glass characterized by having an O 3 of 1.05 or less and a molar ratio SrO / BaO of 0.03 to 0.50.
  3.  ガラス組成として、モル%で、SiO 67~73%、Al 12~15%、B 0~1.8%未満、LiO+NaO+KO 0~0.5%未満、MgO 0~6%、CaO 5%以上、SrO 0~2%、BaO 3.5%以上を含有し、CaO-(SrO+BaO)が0.7%以上、モル比SrO/BaOが0.38以下、モル比(MgO+CaO+SrO+BaO)/Alが1.09~1.70、歪点(℃)をAlの含有量(モル%)で除した値が55以上であることを特徴とするガラス。 As glass composition, SiO 2 67-73%, Al 2 O 3 12-15%, B 2 O 3 0-1.8%, Li 2 O + Na 2 O + K 2 O 0-0.5% in mol% MgO 0-6%, CaO 5% or more, SrO 0-2%, BaO 3.5% or more, CaO- (SrO + BaO) 0.7% or more, and molar ratio SrO / BaO is 0.38 or less The molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 1.09 to 1.70, and the value obtained by dividing the strain point (° C.) by the content (mol%) of Al 2 O 3 is 55 or more. Glass to do.
PCT/JP2019/000856 2018-01-31 2019-01-15 Glass WO2019150930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980004552.0A CN111164056A (en) 2018-01-31 2019-01-15 Glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014351 2018-01-31
JP2018014351A JP7418947B2 (en) 2018-01-31 2018-01-31 glass

Publications (1)

Publication Number Publication Date
WO2019150930A1 true WO2019150930A1 (en) 2019-08-08

Family

ID=67479707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000856 WO2019150930A1 (en) 2018-01-31 2019-01-15 Glass

Country Status (4)

Country Link
JP (2) JP7418947B2 (en)
CN (1) CN111164056A (en)
TW (2) TW202330418A (en)
WO (1) WO2019150930A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034492A1 (en) * 2022-08-10 2024-02-15 日本電気硝子株式会社 Non-alkali glass plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236759A (en) * 2011-04-25 2012-12-06 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal lens
JP2016113361A (en) * 2014-12-12 2016-06-23 日本電気硝子株式会社 Alkali-free glass
WO2016159345A1 (en) * 2015-04-03 2016-10-06 日本電気硝子株式会社 Glass
JP2016183091A (en) * 2015-03-10 2016-10-20 日本電気硝子株式会社 Glass substrate
WO2016185976A1 (en) * 2015-05-18 2016-11-24 日本電気硝子株式会社 Non-alkali glass substrate
WO2017122576A1 (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Glass

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833919B2 (en) * 2006-02-10 2010-11-16 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
JP6037117B2 (en) * 2012-12-14 2016-11-30 日本電気硝子株式会社 Glass and glass substrate
JP5914453B2 (en) * 2012-12-28 2016-05-11 AvanStrate株式会社 Glass substrate for display and manufacturing method thereof
JP6575223B2 (en) * 2014-08-27 2019-09-18 Agc株式会社 Alkali-free glass
CN115417596A (en) * 2014-10-31 2022-12-02 康宁股份有限公司 Dimensionally stable rapid etching of glass
CN107207322A (en) * 2015-04-03 2017-09-26 日本电气硝子株式会社 Glass
CN107406303A (en) * 2015-06-02 2017-11-28 日本电气硝子株式会社 Glass
JP6852962B2 (en) * 2015-06-02 2021-03-31 日本電気硝子株式会社 Glass
CN109133615B (en) * 2015-06-30 2022-05-10 安瀚视特控股株式会社 Glass substrate for display and method for manufacturing same
CN107709257A (en) * 2015-06-30 2018-02-16 安瀚视特控股株式会社 Glass substrate for display and its manufacture method
JP6587969B2 (en) 2016-03-31 2019-10-09 AvanStrate株式会社 Glass substrate for magnetic recording medium and method for producing the same
JP7103219B2 (en) * 2016-05-27 2022-07-20 Agc株式会社 Glass for magnetic recording medium, glass substrate for magnetic recording medium and magnetic disk
JP6906277B2 (en) * 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236759A (en) * 2011-04-25 2012-12-06 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal lens
JP2016113361A (en) * 2014-12-12 2016-06-23 日本電気硝子株式会社 Alkali-free glass
JP2016183091A (en) * 2015-03-10 2016-10-20 日本電気硝子株式会社 Glass substrate
WO2016159345A1 (en) * 2015-04-03 2016-10-06 日本電気硝子株式会社 Glass
WO2016185976A1 (en) * 2015-05-18 2016-11-24 日本電気硝子株式会社 Non-alkali glass substrate
WO2017122576A1 (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Glass

Also Published As

Publication number Publication date
JP2019131429A (en) 2019-08-08
TWI798332B (en) 2023-04-11
TW201934510A (en) 2019-09-01
JP7418947B2 (en) 2024-01-22
JP2022105215A (en) 2022-07-12
TW202330418A (en) 2023-08-01
CN111164056A (en) 2020-05-15

Similar Documents

Publication Publication Date Title
JPWO2016185976A1 (en) Alkali-free glass substrate
JP6983377B2 (en) Glass
JP7197978B2 (en) glass
JP7121345B2 (en) glass
JP2022121511A (en) glass
CN113045197A (en) Glass
US20230146789A1 (en) Glass
JP2022105215A (en) Glass
JP2020063168A (en) Alkali-free glass plate
TWI838725B (en) Glass
WO2021002189A1 (en) Glass substrate
WO2021029217A1 (en) Glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746866

Country of ref document: EP

Kind code of ref document: A1