WO2019150784A1 - Metallic structure corrosion evaluating system - Google Patents

Metallic structure corrosion evaluating system Download PDF

Info

Publication number
WO2019150784A1
WO2019150784A1 PCT/JP2018/045988 JP2018045988W WO2019150784A1 WO 2019150784 A1 WO2019150784 A1 WO 2019150784A1 JP 2018045988 W JP2018045988 W JP 2018045988W WO 2019150784 A1 WO2019150784 A1 WO 2019150784A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
unit
data
metal structure
measurement data
Prior art date
Application number
PCT/JP2018/045988
Other languages
French (fr)
Japanese (ja)
Inventor
真聡 鈴木
コーテット アウン
剛司 山崎
勝 小西
児島 克典
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2019568915A priority Critical patent/JP6823208B2/en
Publication of WO2019150784A1 publication Critical patent/WO2019150784A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Definitions

  • the present invention relates to a metal structure corrosion evaluation system, and is particularly suitable for application to a metal structure corrosion evaluation system for evaluating the corrosion state of a metal structure due to stray current.
  • the method for evaluating the effect of stray current on the structure near the rail is to measure the rail potential and calculate the magnitude of stray current from the rail potential using a model to corrode the reinforcing bars in the structure.
  • a method for estimating the state and a method for evaluating the corrosion state by directly observing the state of the reinforcing bar of the structure.
  • measures are taken to prevent corrosion due to stray current and the effect is evaluated (see Patent Document 1).
  • Non-Patent Document 1 by measuring the potential of the reinforcing bars in the concrete structure and evaluating the magnitude, it is possible to determine whether or not stray current from the DC electric railway may cause corrosion to the structure.
  • the present invention has been made in consideration of the above points, and intends to propose a metal structure corrosion evaluation system capable of highly reliably evaluating the corrosion state of a metal structure due to stray current while reducing the influence of disturbance. Is.
  • a measurement terminal electrically connected to a metal structure inside concrete, a reference electrode embedded in the concrete, the measurement terminal and the reference electrode, A potentiometer that measures the potential difference between them and outputs measurement data representing the potential difference; a compensation unit that performs a calculation process using a weighted moving average for the measurement data; and the measurement data that has been subjected to the calculation process And an analysis and evaluation section for evaluating the corrosion state of the metal structure by analyzing the above.
  • FIG. 1 is a block diagram showing a schematic configuration example of a metal structure corrosion evaluation system 1 according to a first embodiment.
  • the metal structure corrosion evaluation system 1 includes at least one measurement unit, a data communication unit 14, and an arithmetic processing unit 11.
  • the measurement unit is installed near the target of potential measurement for evaluating the corrosion of metal structures.
  • the measurement unit may perform potential measurement at one point as described later, or may perform potential measurement at a plurality of points (for example, several hundreds).
  • three measurement units 200A, 200B, and 200C are provided.
  • the three measurement units 200A, 200B, and 200C are connected to the arithmetic processing unit 11 via the data communication unit 14 that performs data communication wirelessly.
  • the data communication unit 14 may perform data communication with priority, and the arithmetic processing unit 11 may be replaced by a so-called SCADA (Supervision Control And Data Acquisition). Since these three measurement units 200A, 200B, and 200C have substantially the same configuration as the three data communication units 14, the measurement unit 200A will be mainly described below as an example. In the present embodiment, for example, it is assumed that a reinforcing bar 102 exists as a metal structure inside the concrete 101 embedded in the ground.
  • the measurement unit 200A includes a measurement terminal 21, a reference electrode 22, a potentiometer 23, an electric wire 24, and a data transmitter 13.
  • the measurement terminal 21 is provided on the reinforcing bar 102.
  • the reference electrode 22 is provided inside the concrete 101 near the reinforcing bar 102.
  • the potentiometer 23 measures the potential difference between the reference electrode 22 embedded in the concrete 101 and the measurement terminal 21 connected to the reinforcing bar 102.
  • the data transmitter 13 transmits data relating to the measured potential difference to the arithmetic processing unit 11 via the data communication unit 14.
  • the arithmetic processing unit 11 includes a data reception / storage unit 31, a noise compensation unit 32, and an analysis and evaluation unit 33.
  • the data receiving / storing unit 31 receives and stores data (hereinafter referred to as “measurement data”) relating to the potential difference transmitted from each of the measurement units 200A to 200C.
  • the potential shift indicates a potential difference measured every time at a certain point.
  • the noise compensation unit 32 can perform calculation processing related to noise compensation using a weighted moving average on the stored measurement data, and obtain measurement data in which the influence of disturbance such as noise is reduced.
  • the weighted moving average is a method of calculating an average by assigning different weights to individual measurement data, and weighting is greater for new measurement data than for past measurement data.
  • the noise compensation is performed by the noise compensation unit 32 in this manner, for example, depending on whether or not the measurement unit 200A or the like is placed in a dusty place because the stray current easily flows based on the measurement data.
  • some measurement units 200B are located near the sea and the flowability of the stray current changes, the flowability of the stray current changes according to the amount of train traffic day and night, This is to cope with changes in the easiness of flow of stray current depending on whether it is rainy or dry.
  • the analysis and evaluation unit 33 performs data analysis based on the noise-compensated measurement data, and evaluates corrosion of the reinforcing bar 102 as a metal structure due to stray current.
  • IEC62128-2 2013 states that there is no problem even with a metal structure that is not anticorrosive unless the potential shift of the reinforcing bar 102 exceeds +200 mV in a time zone with the highest traffic volume.
  • FIG. 2 is a flowchart showing an example of noise compensation calculation processing using a weighted moving average.
  • the noise compensation unit 32 calculates a weight from the measurement data (Ste S2).
  • the weight data calculated in this way is accumulated / updated (step S3).
  • the noise compensator 32 uses the weight data, the noise compensator 32 performs a weighted moving average on the measured measurement data (step S4), and the measurement data (“weighted” in which the weighted moving average calculated in this way is performed. (Also referred to as “moving average data”) is accumulated and updated (step S5).
  • the analysis and evaluation unit 33 analyzes the measurement data in which the weighted moving average calculated in this way (also referred to as “weighted moving average data”) is performed, and the measurement data regarding the potential difference for each time such as day and night is calculated. A potential shift that is a potential difference is obtained, the corrosion state of the reinforcing bar 102 is evaluated as an example of a metal structure (step S6), and the evaluation result is visually output to a display unit (not shown) (step S7).
  • the noise compensation calculation process is performed using the weighted moving average of the calculation processing device 11. Since the data analysis / evaluation can be performed on the basis of the data in which the influence of the implemented disturbance is reduced, the metal structure corrosion evaluation system 1 with higher reliability can be provided.
  • the metal structure corrosion evaluation system according to the second embodiment has substantially the same configuration as the metal structure corrosion evaluation system 1 according to the first embodiment, and has the same operation. Therefore, the description of the same configuration and operation will be omitted by using the same reference numerals, and the difference between them will be mainly described below.
  • FIG. 3 is a block diagram showing a schematic configuration example of the metal structure corrosion evaluation system 1A according to the second embodiment.
  • the metal structure corrosion evaluation system 1A is the same as the first embodiment in that it includes a measurement terminal 21, a reference electrode 22, a potentiometer 23, an electric wire 24, and a data transmitter 13.
  • 200A to 200C are different in that a distributed arithmetic processing unit 12 including a noise compensation unit 32 is provided.
  • the arithmetic processing unit 12 is expressed as “distributed” because the measurement data from each of the measurement units 200A to 200C is calculated in the first embodiment.
  • one noise compensation unit 32 performs arithmetic processing intensively, whereas in the second embodiment, the noise compensation units 32 are distributed and arranged in each of the measurement units 200A to 200C. Because it is.
  • the noise compensation unit 32 may not be mounted on the arithmetic processing unit 11. In this way, the burden on the arithmetic processing unit 11 is reduced, the processing load on the data reception / storage unit 31 and the analysis and evaluation unit 33 is reduced, and the corrosion status of the metal structure is grasped by using more positioning units. can do.
  • the distributed processing unit 12 performs a noise compensation calculation process using a weighted moving average on the potential data representing the potential of the measurement terminal 21 measured by the potentiometer 23, Convert to potential data with reduced influence of disturbance.
  • the data transmitter 13 transmits the converted potential data to the arithmetic processing unit 11 via the data communication unit 14 in this way.
  • the arithmetic processing unit 11 may be replaced by so-called SCADA.
  • the arithmetic processing unit 11 receives and stores the converted potential data transmitted from each of the measurement units 200A to 200C, and analyzes the converted potential data to thereby rebar as an example of a metal structure caused by stray current. The corrosion status of 102 is evaluated.
  • the same effect as that of the first embodiment can be obtained.
  • data reception / storage, analysis, and evaluation can be performed. Since the load of the arithmetic processing unit 11 (or SCADA) to be implemented can be reduced, an inexpensive configuration with a relatively low capacity can be adopted, while not only a reduction in size can be realized, but also a larger number of units can be realized. It becomes possible to evaluate the corrosion state of the metal structure in detail and accurately using a measurement unit (corresponding to the measurement unit 200A or the like).
  • the present invention can be widely applied to metal structure corrosion evaluation systems for evaluating the corrosion state of metal structures due to stray current.

Abstract

This metallic structure corrosion evaluating system is provided with: a measurement terminal electrically connected to a metallic structure in concrete; a reference electrode buried in the concrete; a potentiometer which measures a potential difference between the measurement terminal and the reference electrode and outputs measurement data indicating the potential difference; a compensation unit which performs calculation processing on the measurement data by using a weighted moving average; and an analysis/evaluation unit which analyzes the measurement data, on which the calculation processing has been performed, and evaluates the state of corrosion of the metallic structure.

Description

金属構造物腐食評価システムMetal structure corrosion evaluation system
 本発明は、金属構造物腐食評価システムに関し、特に、迷走電流による金属構造物の腐食状況を評価する金属構造物腐食評価システムに適用して好適なものである。 The present invention relates to a metal structure corrosion evaluation system, and is particularly suitable for application to a metal structure corrosion evaluation system for evaluating the corrosion state of a metal structure due to stray current.
 直流電気鉄道では、電車を運行するために架線を介して電車へ電流を通電することにより動力を供給している。電車へ通電された電流は、その後レールを介して電力の供給元である変電所へと戻される。この時、変電所へ戻される電流がレールから大地に漏れ出して、近隣の地中に埋設されたコンクリート構造物中の鉄筋や金属管等の金属構造物を流れる現象が発生する。このレール以外の大地、鉄筋等を流れる電流は迷走電流と呼ばれる。この迷走電流が電蝕と呼ばれる金属の腐食を発生させることが知られており、これにより埋設済の金属管に穴が開いたり、鉄筋コンクリート等の構造物の強度を低下させたりするおそれがある。 In DC electric railways, power is supplied by energizing a train through an overhead line to operate the train. The current supplied to the train is then returned to the substation that is the power supply source via the rail. At this time, the current returned to the substation leaks from the rail to the ground, and a phenomenon occurs in which the metal flows such as reinforcing bars and metal pipes in the concrete structure buried in the nearby ground. The current flowing through the ground, the reinforcing bars, etc. other than this rail is called stray current. This stray current is known to cause metal corrosion called electro-corrosion, which may cause a hole in a buried metal tube or reduce the strength of a structure such as reinforced concrete.
 迷走電流によるレール近傍の構造物への影響を評価するための方法としては、レール電位を測定し、そのレール電位から迷走電流の大きさに関してモデルを用いて算出することにより構造物の鉄筋の腐食状況を推定する方法や構造物の鉄筋の状態を直接観測して腐食状況を評価する方法が知られている。また、その他にも、迷走電流による腐食を防止するための対策を実施し、その効果を評価する場合もある(特許文献1参照)。 The method for evaluating the effect of stray current on the structure near the rail is to measure the rail potential and calculate the magnitude of stray current from the rail potential using a model to corrode the reinforcing bars in the structure. There are known a method for estimating the state and a method for evaluating the corrosion state by directly observing the state of the reinforcing bar of the structure. In addition, there are cases where measures are taken to prevent corrosion due to stray current and the effect is evaluated (see Patent Document 1).
 また、従来の手法では、コンクリート構造物中の鉄筋の電位を測定してその大小を評価することで、直流電気鉄道による迷走電流が構造物に対して腐食を発生させるおそれがあるか否かを判断している(非特許文献1参照)。 Also, in the conventional method, by measuring the potential of the reinforcing bars in the concrete structure and evaluating the magnitude, it is possible to determine whether or not stray current from the DC electric railway may cause corrosion to the structure. (See Non-Patent Document 1).
特開平04-095868号公報Japanese Patent Laid-Open No. 04-095868
 上述した従来の手法では、コンクリート中の鉄筋の電位を測定する必要があるが、この電位は、mVオーダーと微弱なものである。大電流が流れる電車線路近傍では大きなノイズが発生するおそれがあり、外乱の影響を受けやすい。そのため、測定データはノイズの影響を受ける可能性があり、高い信頼性で評価を実施することが困難であった。 In the conventional method described above, it is necessary to measure the potential of a reinforcing bar in concrete, but this potential is as weak as mV. In the vicinity of a train line through which a large current flows, there is a risk of generating large noises, which are easily affected by disturbances. Therefore, measurement data may be affected by noise, and it is difficult to perform evaluation with high reliability.
 本発明は以上の点を考慮してなされたもので、外乱の影響を軽減しつつ迷走電流による金属構造物の腐食状況を高い信頼性で評価可能な金属構造物腐食評価システムを提案しようとするものである。 The present invention has been made in consideration of the above points, and intends to propose a metal structure corrosion evaluation system capable of highly reliably evaluating the corrosion state of a metal structure due to stray current while reducing the influence of disturbance. Is.
 かかる課題を解決するため、本発明においては、コンクリートの内部の金属構造物に電気的に接続された測定端子と、前記コンクリートの内部に埋設された参照電極と、前記測定端子と前記参照電極との間の電位差を測定して前記電位差を表す測定データを出力する電位差計と、前記測定データに関して加重移動平均を用いて演算処理を実施する補償部と、前記演算処理が実施された前記測定データを解析して前記金属構造物の腐食状況を評価する解析及び評価部と、を備えることを特徴とする。 In order to solve such a problem, in the present invention, a measurement terminal electrically connected to a metal structure inside concrete, a reference electrode embedded in the concrete, the measurement terminal and the reference electrode, A potentiometer that measures the potential difference between them and outputs measurement data representing the potential difference; a compensation unit that performs a calculation process using a weighted moving average for the measurement data; and the measurement data that has been subjected to the calculation process And an analysis and evaluation section for evaluating the corrosion state of the metal structure by analyzing the above.
 本発明によれば、外乱の影響を軽減しつつ迷走電流による金属構造物の腐食状況を高い信頼性で評価することができる。 According to the present invention, it is possible to evaluate the corrosion state of a metal structure due to stray current with high reliability while reducing the influence of disturbance.
第1の実施の形態に係る金属構造物腐食評価システムの概略構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of the metal structure corrosion evaluation system which concerns on 1st Embodiment. 第1の実施の形態における演算処理装置による加重移動平均を用いたノイズ補償を示すフローチャートである。It is a flowchart which shows the noise compensation using the weighted moving average by the arithmetic processing unit in 1st Embodiment. 第2の実施の形態における金属構造物腐食評価システムの概略構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of the metal structure corrosion evaluation system in 2nd Embodiment.
 以下、図面について、本発明の一実施の形態について詳述する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 (1)第1の実施の形態
 図1は、第1の実施の形態に係る金属構造物腐食評価システム1の概要構成例を示すブロック図である。この金属構造物腐食評価システム1は、少なくとも1つの測定ユニット、データ通信部14及び演算処理装置11を備えている。
(1) First Embodiment FIG. 1 is a block diagram showing a schematic configuration example of a metal structure corrosion evaluation system 1 according to a first embodiment. The metal structure corrosion evaluation system 1 includes at least one measurement unit, a data communication unit 14, and an arithmetic processing unit 11.
 測定ユニットは、金属構造物の腐食について評価するための電位測定の対象の近辺に設置される。この測定ユニットは、1つの地点で、後述するように電位測定を実施することもあれば、複数の地点(例えば数百箇所)で電位測定を実施することもある。本実施の形態では、一例として3つの測定ユニット200A,200B,200Cを設けることを例示する。 The measurement unit is installed near the target of potential measurement for evaluating the corrosion of metal structures. The measurement unit may perform potential measurement at one point as described later, or may perform potential measurement at a plurality of points (for example, several hundreds). In the present embodiment, as an example, three measurement units 200A, 200B, and 200C are provided.
 3つの測定ユニット200A,200B,200Cは、それぞれ無線によってデータ通信を行うデータ通信部14を介して演算処理装置11に接続されている。なお、このデータ通信部14は、優先によってデータ通信を行っても良く、演算処理装置11は、いわゆるSCADA(Supervisory Control And Data Acquisition)で代用しても良い。これら3つの測定ユニット200A,200B,200Cは、3つのデータ通信部14と同様、互いにほぼ同様な構成であるため、以下では、主として測定ユニット200Aを例示して説明する。本実施の形態では、例えば、地中に埋設されているコンクリート101の内部に金属構造物として鉄筋102が存在しているものとする。 The three measurement units 200A, 200B, and 200C are connected to the arithmetic processing unit 11 via the data communication unit 14 that performs data communication wirelessly. The data communication unit 14 may perform data communication with priority, and the arithmetic processing unit 11 may be replaced by a so-called SCADA (Supervision Control And Data Acquisition). Since these three measurement units 200A, 200B, and 200C have substantially the same configuration as the three data communication units 14, the measurement unit 200A will be mainly described below as an example. In the present embodiment, for example, it is assumed that a reinforcing bar 102 exists as a metal structure inside the concrete 101 embedded in the ground.
 測定ユニット200Aは、測定端子21、参照電極22、電位差計23、電線24及びデータ送信器13を備えている。測定端子21は、鉄筋102に設けられている。参照電極22は、鉄筋102近傍のコンクリート101の内部に設けられている。 The measurement unit 200A includes a measurement terminal 21, a reference electrode 22, a potentiometer 23, an electric wire 24, and a data transmitter 13. The measurement terminal 21 is provided on the reinforcing bar 102. The reference electrode 22 is provided inside the concrete 101 near the reinforcing bar 102.
 電位差計23は、コンクリート101中に埋設された参照電極22と、鉄筋102に接続された測定端子21との間の電位差を測定する。データ送信器13は、測定された電位差に関するデータをデータ通信部14を介して演算処理装置11に対して送信する。 The potentiometer 23 measures the potential difference between the reference electrode 22 embedded in the concrete 101 and the measurement terminal 21 connected to the reinforcing bar 102. The data transmitter 13 transmits data relating to the measured potential difference to the arithmetic processing unit 11 via the data communication unit 14.
 演算処理装置11は、データ受信・保存部31、ノイズ補償部32及び解析及び評価部33を備えている。データ受信・保存部31は、各測定ユニット200A~200Cから各々送信される電位差に関するデータ(以下「測定データ」という)を受信し、保存する。なお、以下の説明において電位シフトとは、ある同一地点における時間ごとに計測された電位差を示している。 The arithmetic processing unit 11 includes a data reception / storage unit 31, a noise compensation unit 32, and an analysis and evaluation unit 33. The data receiving / storing unit 31 receives and stores data (hereinafter referred to as “measurement data”) relating to the potential difference transmitted from each of the measurement units 200A to 200C. In the following description, the potential shift indicates a potential difference measured every time at a certain point.
 ノイズ補償部32は、この保存した測定データに対して加重移動平均を用いたノイズ補償に関する演算処理を実施し、例えばノイズのような外乱の影響を軽減した測定データを得ることができる。加重移動平均は、個々の測定データに対して異なる重みづけをして平均を算出する手法であり、新しい測定データに対しては過去の測定データよりも大きな重み付けを実施する。 The noise compensation unit 32 can perform calculation processing related to noise compensation using a weighted moving average on the stored measurement data, and obtain measurement data in which the influence of disturbance such as noise is reduced. The weighted moving average is a method of calculating an average by assigning different weights to individual measurement data, and weighting is greater for new measurement data than for past measurement data.
 このようにノイズ補償部32によってノイズ補償を実施するのは、例えば、測定ユニット200Aなどがほこりの多い場所に配置されているか否かに応じて、上記測定データに基づく迷走電流の流れやすさが変わったり、例えば、一部の測定ユニット200Bが海の近くに配置されており迷走電流の流れやすさが変わったり、昼夜で電車の通行量に応じて迷走電流の流れやすさが変わったり、季節に応じて雨期か乾期かに応じて迷走電流の流れやすさが変わったりすることに対応するためである。 The noise compensation is performed by the noise compensation unit 32 in this manner, for example, depending on whether or not the measurement unit 200A or the like is placed in a dusty place because the stray current easily flows based on the measurement data. For example, some measurement units 200B are located near the sea and the flowability of the stray current changes, the flowability of the stray current changes according to the amount of train traffic day and night, This is to cope with changes in the easiness of flow of stray current depending on whether it is rainy or dry.
 解析及び評価部33は、このノイズ補償済の測定データを基にデータ解析を実施し、迷走電流による金属構造物としての鉄筋102の腐食について評価する。なお、IEC62128-2:2013では、最も交通量が多い時間帯における鉄筋102の電位シフトが+200mVを超えなければ、防食されていない金属構造物でも問題がないとされている。 The analysis and evaluation unit 33 performs data analysis based on the noise-compensated measurement data, and evaluates corrosion of the reinforcing bar 102 as a metal structure due to stray current. Note that IEC62128-2: 2013 states that there is no problem even with a metal structure that is not anticorrosive unless the potential shift of the reinforcing bar 102 exceeds +200 mV in a time zone with the highest traffic volume.
 図2は、加重移動平均を用いたノイズ補償演算処理の一例を示すフローチャートである。演算処理装置11では、データ受信・保存部31が、各測定ユニット200A、200B,200Cから受信した測定データを保存すると(ステップS1)、ノイズ補償部32が、その測定データから重みを算出する(ステップS2)。 FIG. 2 is a flowchart showing an example of noise compensation calculation processing using a weighted moving average. In the arithmetic processing unit 11, when the data reception / storage unit 31 stores the measurement data received from each of the measurement units 200A, 200B, and 200C (step S1), the noise compensation unit 32 calculates a weight from the measurement data ( Step S2).
 このように算出された重みデータは蓄積・更新される(ステップS3)。ノイズ補償部32は、その重みデータを用いて、測定済の測定データに対して加重移動平均を実施し(ステップS4)、このように算出された加重移動平均が実施された測定データ(「加重移動平均データ」ともいう)を蓄積し、更新する(ステップS5)。 The weight data calculated in this way is accumulated / updated (step S3). Using the weight data, the noise compensator 32 performs a weighted moving average on the measured measurement data (step S4), and the measurement data (“weighted” in which the weighted moving average calculated in this way is performed. (Also referred to as “moving average data”) is accumulated and updated (step S5).
 解析及び評価部33は、このように算出された加重移動平均が実施された測定データ(「加重移動平均データ」ともいう)を解析し、例えば昼夜のような時間ごとの電位差に関する測定データ同士の電位差である電位シフトを求め、金属構造物の一例として鉄筋102の腐食状況を評価し(ステップS6)、その評価結果を図示しない表示部に視覚的に出力する(ステップS7)。 The analysis and evaluation unit 33 analyzes the measurement data in which the weighted moving average calculated in this way (also referred to as “weighted moving average data”) is performed, and the measurement data regarding the potential difference for each time such as day and night is calculated. A potential shift that is a potential difference is obtained, the corrosion state of the reinforcing bar 102 is evaluated as an example of a metal structure (step S6), and the evaluation result is visually output to a display unit (not shown) (step S7).
 以上のように本実施の形態によれば、測定ユニット200A~200Cで測定された測定データが多くのノイズ成分を含んでいても、演算処理装置11の加重移動平均を用いてノイズ補償演算処理を実施した外乱の影響を軽減したデータを基にデータ解析・評価を実施できるため、より信頼性の高い金属構造物腐食評価システム1を提供することができる。 As described above, according to the present embodiment, even when the measurement data measured by the measurement units 200A to 200C includes many noise components, the noise compensation calculation process is performed using the weighted moving average of the calculation processing device 11. Since the data analysis / evaluation can be performed on the basis of the data in which the influence of the implemented disturbance is reduced, the metal structure corrosion evaluation system 1 with higher reliability can be provided.
 (2)第2の実施の形態
 第2の実施の形態に係る金属構造物腐食評価システムは、第1の実施の形態に係る金属構造物腐食評価システム1とほぼ同様の構成であり同様の動作であるため、同様の構成及び動作については同一の符号を用いて説明を省略し、以下両者の相違点を中心として説明する。
(2) Second Embodiment The metal structure corrosion evaluation system according to the second embodiment has substantially the same configuration as the metal structure corrosion evaluation system 1 according to the first embodiment, and has the same operation. Therefore, the description of the same configuration and operation will be omitted by using the same reference numerals, and the difference between them will be mainly described below.
 図3は、第2の実施の形態に係る金属構造物腐食評価システム1Aの概要構成例を示すブロック図である。金属構造物腐食評価システム1Aは、測定端子21、参照電極22、電位差計23、電線24及びデータ送信器13を備えている点で、第1の実施の形態と同様であるが、各測定ユニット200A~200Cに、ノイズ補償部32を含む分散型演算処理装置12が設けられている点が異なっている。 FIG. 3 is a block diagram showing a schematic configuration example of the metal structure corrosion evaluation system 1A according to the second embodiment. The metal structure corrosion evaluation system 1A is the same as the first embodiment in that it includes a measurement terminal 21, a reference electrode 22, a potentiometer 23, an electric wire 24, and a data transmitter 13. 200A to 200C are different in that a distributed arithmetic processing unit 12 including a noise compensation unit 32 is provided.
 なお、ここで、第2の実施の形態において演算処理装置12を「分散型」と表現しているのは、第1の実施の形態においては、各測定ユニット200A~200Cからの測定データを演算処理装置11において1つのノイズ補償部32が集中的に演算処理を実施するのに対して、第2の実施の形態では、各測定ユニット200A~200Cにノイズ補償部32が分散して配置されているためである。 Here, in the second embodiment, the arithmetic processing unit 12 is expressed as “distributed” because the measurement data from each of the measurement units 200A to 200C is calculated in the first embodiment. In the processing apparatus 11, one noise compensation unit 32 performs arithmetic processing intensively, whereas in the second embodiment, the noise compensation units 32 are distributed and arranged in each of the measurement units 200A to 200C. Because it is.
 以上のような事情から、第2の実施の形態では、演算処理装置11にはノイズ補償部32を搭載しなくても良い。このようにすると、演算処理装置11の負担を軽減し、データ受信・保存部31及び解析及び評価部33における処理負担を軽減し、より多くの測位ユニットを用いて金属構造物の腐食状況を把握することができる。 From the above situation, in the second embodiment, the noise compensation unit 32 may not be mounted on the arithmetic processing unit 11. In this way, the burden on the arithmetic processing unit 11 is reduced, the processing load on the data reception / storage unit 31 and the analysis and evaluation unit 33 is reduced, and the corrosion status of the metal structure is grasped by using more positioning units. can do.
 この金属構造物腐食評価システム1Aでは、分散型演算処理装置12が、電位差計23にて測定された測定端子21の電位を表す電位データについて加重移動平均を用いたノイズ補償演算処理を実施し、外乱の影響を軽減した電位データに変換する。 In this metal structure corrosion evaluation system 1A, the distributed processing unit 12 performs a noise compensation calculation process using a weighted moving average on the potential data representing the potential of the measurement terminal 21 measured by the potentiometer 23, Convert to potential data with reduced influence of disturbance.
 データ送信器13は、このように変換後の電位データをデータ通信部14を介して演算処理装置11に送信する。なお、前述したように、この演算処理装置11はいわゆるSCADAで代用しても良いことは云うまでもない。 The data transmitter 13 transmits the converted potential data to the arithmetic processing unit 11 via the data communication unit 14 in this way. As described above, it goes without saying that the arithmetic processing unit 11 may be replaced by so-called SCADA.
 演算処理装置11は、各測定ユニット200A~200Cから送信された変換後の電位データを受信、保存し、この変換後の電位データを解析することで、迷走電流による金属構造物の一例としての鉄筋102の腐食状況について評価する。 The arithmetic processing unit 11 receives and stores the converted potential data transmitted from each of the measurement units 200A to 200C, and analyzes the converted potential data to thereby rebar as an example of a metal structure caused by stray current. The corrosion status of 102 is evaluated.
 以上のような第2の実施の形態によれば、第1の実施形態と同様の効果を得ることができる一方、第1の実施形態と比較した場合、データの受信・保存、解析及び評価を実施する演算処理装置11(またはSCADA)の負荷を軽減することができるため、比較的低能力の安価な構成を採用可能である一方、小型化を実現することができるばかりでなく、より多数の測定ユニット(上記測定ユニット200Aなどに相当)を用いて詳細かつ正確に金属構造物の腐食状況について評価することができるようになる。 According to the second embodiment as described above, the same effect as that of the first embodiment can be obtained. On the other hand, when compared with the first embodiment, data reception / storage, analysis, and evaluation can be performed. Since the load of the arithmetic processing unit 11 (or SCADA) to be implemented can be reduced, an inexpensive configuration with a relatively low capacity can be adopted, while not only a reduction in size can be realized, but also a larger number of units can be realized. It becomes possible to evaluate the corrosion state of the metal structure in detail and accurately using a measurement unit (corresponding to the measurement unit 200A or the like).
 (3)その他の実施形態
 上記実施形態は、本発明を説明するための例示であり、本発明をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その趣旨を逸脱しない限り、様々な形態で実施することができる。例えば、上記実施形態では、各種プログラムの処理をシーケンシャルに説明したが、特にこれにこだわるものではない。従って、処理結果に矛盾が生じない限り、処理の順序を入れ替え又は並行動作するように構成しても良い。
(3) Other Embodiments The above embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to these embodiments. The present invention can be implemented in various forms without departing from the spirit of the present invention. For example, in the above-described embodiment, the processing of various programs is described sequentially, but this is not particularly concerned. Therefore, as long as there is no contradiction in the processing result, the processing order may be changed or the operation may be performed in parallel.
 本発明は、迷走電流による金属構造物の腐食状況を評価する金属構造物腐食評価システムに広く適用することができる。 The present invention can be widely applied to metal structure corrosion evaluation systems for evaluating the corrosion state of metal structures due to stray current.
 1,1A……金属構造物腐食評価システム、11……演算処理装置、12……分散型演算処理装置、13……データ送信器、14……データ通信部、21……測定端子、22……参照電極、23……電位差計、24……電線、101……コンクリート、102……鉄筋、200A~200C……測定ユニット。 DESCRIPTION OF SYMBOLS 1,1A ... Metal structure corrosion evaluation system, 11 ... Processing unit, 12 ... Distributed processing unit, 13 ... Data transmitter, 14 ... Data communication part, 21 ... Measurement terminal, 22 ... Reference electrode, 23 ... Potentiometer, 24 ... Electric wire, 101 ... Concrete, 102 ... Rebar, 200A-200C ... Measurement unit.

Claims (3)

  1.  コンクリートの内部の金属構造物に電気的に接続された測定端子と、
     前記コンクリートの内部に埋設された参照電極と、
     前記測定端子と前記参照電極との間の電位差を測定して前記電位差を表す測定データを出力する電位差計と、
     前記測定データに関して加重移動平均を用いて演算処理を実施する補償部と、
     前記演算処理が実施された前記測定データを解析して前記金属構造物の腐食状況を評価する解析及び評価部と、
     を備えることを特徴とする金属構造物腐食評価システム。
    A measurement terminal electrically connected to a metal structure inside the concrete;
    A reference electrode embedded in the concrete;
    A potentiometer that measures a potential difference between the measurement terminal and the reference electrode and outputs measurement data representing the potential difference; and
    A compensation unit that performs arithmetic processing using a weighted moving average with respect to the measurement data;
    An analysis and evaluation unit that analyzes the measurement data subjected to the arithmetic processing and evaluates the corrosion state of the metal structure;
    A metal structure corrosion evaluation system comprising:
  2.  前記測定端子と、前記参照電極と、前記電位差計と、前記測定データを送信するためのデータ通信部と、を含む少なくとも1つの測定ユニットと、
     前記データ通信部を介して受け取った前記測定データに関して加重移動平均を用いて演算処理を実施する前記補償部と、前記解析及び評価部と、を含む演算処理装置と、
     を備えることを特徴とする請求項1に記載の金属構造物腐食評価システム。
    At least one measurement unit including the measurement terminal, the reference electrode, the potentiometer, and a data communication unit for transmitting the measurement data;
    An arithmetic processing unit including the compensation unit that performs arithmetic processing using a weighted moving average for the measurement data received via the data communication unit, and the analysis and evaluation unit;
    The metal structure corrosion evaluation system according to claim 1, comprising:
  3.  前記測定端子と、前記参照電極と、前記電位差計と、前記測定データに関して加重移動平均を用いて演算処理を実施する前記補償部と、前記演算処理が実施済の前記測定データを送信するためのデータ通信部と、を含む少なくとも1つの測定ユニットと、
     前記データ通信部を介して受け取った前記演算処理が実施済の前記測定データを解析して前記金属構造物の腐食状況を評価する解析及び補償部手段と、を含む演算処理装置と、
     を備えることを特徴とする請求項1に記載の金属構造物腐食評価システム。
    The measurement terminal, the reference electrode, the potentiometer, the compensation unit that performs a calculation process using a weighted moving average with respect to the measurement data, and the measurement data for which the calculation process has been performed. At least one measurement unit including a data communication unit;
    An arithmetic processing unit including analysis and compensation unit means for analyzing the measurement data received through the data communication unit and analyzing the measured data to evaluate the corrosion state of the metal structure;
    The metal structure corrosion evaluation system according to claim 1, comprising:
PCT/JP2018/045988 2018-02-05 2018-12-13 Metallic structure corrosion evaluating system WO2019150784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568915A JP6823208B2 (en) 2018-02-05 2018-12-13 Metal structure corrosion evaluation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018018721 2018-02-05
JP2018-018721 2018-02-05

Publications (1)

Publication Number Publication Date
WO2019150784A1 true WO2019150784A1 (en) 2019-08-08

Family

ID=67479245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045988 WO2019150784A1 (en) 2018-02-05 2018-12-13 Metallic structure corrosion evaluating system

Country Status (2)

Country Link
JP (1) JP6823208B2 (en)
WO (1) WO2019150784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763898A (en) * 2019-10-16 2020-02-07 西南交通大学 Method for acquiring stray current distribution of metro vehicle section
CN110836922A (en) * 2019-11-18 2020-02-25 上海地铁维护保障有限公司供电分公司 Device for detecting working state of reference electrode and working method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102530805B1 (en) * 2021-08-10 2023-05-10 주식회사 엘지유플러스 Pipe corrosion mointoring method and system thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028733A (en) * 1988-04-04 1990-01-12 Nakagawa Boshoku Kogyo Kk Evaluation of corrosion of steel material in concrete
JPH0495868A (en) * 1990-08-13 1992-03-27 Tokyo Gas Co Ltd Evaluation method of electric protection effect of underground buried pipe
CN2614347Y (en) * 2003-04-11 2004-05-05 中国矿业大学 On-line monitoring device for stray current of subway
JP2004176103A (en) * 2002-11-26 2004-06-24 Tokyo Gas Co Ltd System and method of countermeasure to electrolytic corrosion in embedded structure
JP2006145492A (en) * 2004-11-24 2006-06-08 Tokyo Gas Co Ltd Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
JP2008032421A (en) * 2006-07-26 2008-02-14 Osaka Gas Co Ltd Numerical analyzing method of corrosive or corrosion-proof environment
JP2008281355A (en) * 2007-05-08 2008-11-20 Jfe Engineering Kk Corrosion risk evaluation method, maintenance plan creation method, corrosion risk evaluation program, maintenance plan creation program, corrosion risk evaluation device, and maintenance plan creation device
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028733A (en) * 1988-04-04 1990-01-12 Nakagawa Boshoku Kogyo Kk Evaluation of corrosion of steel material in concrete
JPH0495868A (en) * 1990-08-13 1992-03-27 Tokyo Gas Co Ltd Evaluation method of electric protection effect of underground buried pipe
JP2004176103A (en) * 2002-11-26 2004-06-24 Tokyo Gas Co Ltd System and method of countermeasure to electrolytic corrosion in embedded structure
CN2614347Y (en) * 2003-04-11 2004-05-05 中国矿业大学 On-line monitoring device for stray current of subway
JP2006145492A (en) * 2004-11-24 2006-06-08 Tokyo Gas Co Ltd Measurement evaluation method and device for stray current corrosion risk of cathode-protected burial metal
JP2008032421A (en) * 2006-07-26 2008-02-14 Osaka Gas Co Ltd Numerical analyzing method of corrosive or corrosion-proof environment
JP2008281355A (en) * 2007-05-08 2008-11-20 Jfe Engineering Kk Corrosion risk evaluation method, maintenance plan creation method, corrosion risk evaluation program, maintenance plan creation program, corrosion risk evaluation device, and maintenance plan creation device
JP2015040707A (en) * 2013-08-20 2015-03-02 株式会社ナカボーテック Reference electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763898A (en) * 2019-10-16 2020-02-07 西南交通大学 Method for acquiring stray current distribution of metro vehicle section
CN110763898B (en) * 2019-10-16 2021-04-09 西南交通大学 Method for acquiring stray current distribution of metro vehicle section
CN110836922A (en) * 2019-11-18 2020-02-25 上海地铁维护保障有限公司供电分公司 Device for detecting working state of reference electrode and working method thereof
CN110836922B (en) * 2019-11-18 2022-03-15 上海地铁维护保障有限公司供电分公司 Device for detecting working state of reference electrode and working method thereof

Also Published As

Publication number Publication date
JPWO2019150784A1 (en) 2020-11-19
JP6823208B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2019150784A1 (en) Metallic structure corrosion evaluating system
Wang et al. Real-time defect detection of high-speed train wheels by using Bayesian forecasting and dynamic model
JP6125559B2 (en) Railway vehicle damage estimation method
US8395376B2 (en) Method and apparatus for magnetic response imaging
JP2015098686A (en) Preventive maintenance monitoring system of structure
US10324118B2 (en) Apparatus and method for correcting power usage measurements
AU2015392675A1 (en) Fully continuous ground measurement method and system for wheel rail vertical force
JP4250549B2 (en) Soundness evaluation measurement method, evaluation measurement program, evaluation measurement apparatus for conduit and incidental equipment
KR101299706B1 (en) Asset management system for sewer pipe
US20200232102A1 (en) Method and system for autonomous measurement of transmission line EMF for pipeline cathodic protection systems
JP4797001B2 (en) Pipeline cathodic protection system and cathodic protection management method
KR101090957B1 (en) The return current ratio measurement system for real time leakage current monitoring on the dc railway system
CN101646936A (en) Building structure monitoring
RU2568232C2 (en) System for monitoring stress-strain state of main pipelines
KR101329364B1 (en) Realtime monitoring apparatus for rail using position sensor and accelerometer of system for magnetic levitation train
KR100592845B1 (en) Detecting device for overhead transmission line fault location
Casas Assessment and monitoring of existing bridges to avoid unnecessary strengthening or replacement
AU2014202937A1 (en) Device for measurement and management of the mechanical tension of a long welded rail
JP4932759B2 (en) Corrosion risk measurement and evaluation method for buried metal pipelines
KR101692448B1 (en) Smart monitoring device of a anticorrosion infrastructure
JP4913628B2 (en) Structure monitoring apparatus and monitoring method
JP6045524B2 (en) AC corrosion risk measurement evaluation method and measurement evaluation system for buried metal bodies
JP6338722B1 (en) Measurement and evaluation method for DC stray current corrosion risk
Rupp et al. High‐speed drive‐by monitoring: field testing with an intercity express train (ICE)
US20080218377A1 (en) Cathodic Integrety Monitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903792

Country of ref document: EP

Kind code of ref document: A1