WO2019150780A1 - Coating agent, laminate and method for producing laminate - Google Patents

Coating agent, laminate and method for producing laminate Download PDF

Info

Publication number
WO2019150780A1
WO2019150780A1 PCT/JP2018/045881 JP2018045881W WO2019150780A1 WO 2019150780 A1 WO2019150780 A1 WO 2019150780A1 JP 2018045881 W JP2018045881 W JP 2018045881W WO 2019150780 A1 WO2019150780 A1 WO 2019150780A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
inorganic oxide
coating agent
refractive index
coating
Prior art date
Application number
PCT/JP2018/045881
Other languages
French (fr)
Japanese (ja)
Inventor
明希 中道
北村 拓也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019150780A1 publication Critical patent/WO2019150780A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present disclosure relates to a coating agent, a laminate, and a method for manufacturing the laminate.
  • Patent Document 1 does not require a baking process, and is a laminate that can maintain antifouling properties, antifogging properties, and adhesion to a resin base material for a long period of time even in an environment where the temperature difference is severe.
  • An antifouling layer made of a coating composition is formed on the outermost surface of the composite containing at least a resin substrate, and the coating composition comprises (A) a metal oxide, (B) polymer emulsion particles, and (C) A laminate containing a hydrolyzable silicon compound and having a surface tension of 15 to 40 mN / m is disclosed.
  • Patent Document 2 discloses a hydrophilic member that is formed on the substrate and has hydrophilicity as a hydrophilic member that is not easily clouded and that is resistant to water droplets and dirt while maintaining sufficient film hardness and durability.
  • a hydrophilic film comprising at least an inorganic amorphous substance, the hydrophilic film in a state in which excess water is removed by attaching water to the hydrophilic film and maintaining the film vertically.
  • a hydrophilic member is disclosed in which the weight of the water film attached to the conductive coating is 0.25 to 0.50 g per 10 cm 2 .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-205736
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-318084
  • the coating is formed from the viewpoint of improving the antifogging property and the like of the laminate.
  • the coating liquid (hereinafter referred to as “coating agent”) may contain a siloxane compound and silica particles (see, for example, Example 1 of Patent Document 1 above).
  • a coating agent containing a siloxane compound and silica particles is used, particularly when the film to be formed is thin (for example, when the film is 2 ⁇ m or less), In some cases, rainbow-like unevenness (hereinafter referred to as “rainbow unevenness”) due to interference occurs.
  • the refractive index of silica particles is low.
  • the refractive index of the silica particles is about 1.43.
  • the refractive index of the coating tends to be lower than 1.43 due to voids present in the coating.
  • the subject of 1 aspect of this indication is providing the coating agent which is excellent in anti-fogging property, the rainbow nonuniformity is suppressed, and the laminated body with which haze was reduced can be manufactured.
  • the subject of the other aspect of this indication is providing the laminated body which was excellent in anti-fogging property, the rainbow nonuniformity was suppressed, and the haze was reduced, and its manufacturing method.
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 20.
  • the dispersion medium (D) contains a solvent having a boiling point of 120 ° C. or higher.
  • the dispersion medium (D) contains water.
  • a condensation catalyst (E) containing a metal chelate compound further comprising a condensation catalyst (E) containing a metal chelate compound.
  • ⁇ 6> The coating agent according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the inorganic oxide particles (B) is 50% by mass or more based on the total solid content of the coating agent.
  • the inorganic oxide particles (B) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  • the inorganic oxide particles (B) include inorganic oxide particles having a refractive index of 2.00 or more.
  • a method for producing a laminate including a step of applying a coating agent according to any one of ⁇ 1> to ⁇ 9> on a substrate and drying to form a film.
  • the manufacturing method of the laminated body as described in ⁇ 10> whose ⁇ 11> base material is a glass base material, a polycarbonate base material, or a (meth) acrylic resin base material.
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 20.
  • the inorganic oxide particles (B1) include silica particles.
  • the inorganic oxide particles (B1) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  • the inorganic oxide particles (B1) include inorganic oxide particles having a refractive index of 2.00 or more.
  • the laminate according to ⁇ 16> wherein the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
  • the substrate is a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
  • a coating agent that is excellent in antifogging property, suppresses rainbow unevenness, and can produce a laminate with reduced haze.
  • a laminated body that is excellent in anti-fogging property, that suppresses rainbow unevenness and has reduced haze, and a method for manufacturing the same are provided.
  • a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, the plurality of components present in the composition unless otherwise specified. It means the total amount.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. .
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the refractive index means a refractive index at a wavelength of 550 nm.
  • the refractive index can be measured using, for example, an ellipsometer VUV-VASE (manufactured by JA Woollam Japan Co., Ltd.).
  • (meth) acrylic resin is a concept including both acrylic resin and methacrylic resin
  • (meth) acrylic acid is a concept including both acrylic acid and methacrylic acid.
  • Acrylic acid ester is a concept including both acrylic acid ester and methacrylic acid ester.
  • the coating agent according to the present disclosure includes at least one of a compound represented by the following formula (1) and a hydrolysis condensate of a compound represented by the following formula (1) (hereinafter referred to as “compound represented by formula (1)”). And at least one of the hydrolysis condensates thereof), inorganic oxide particles (B) containing inorganic oxide particles having a refractive index of 1.60 or more, and polymer dispersion having an acid group An agent (C) and a dispersion medium (D) are contained.
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 20.
  • the coating agent according to the present disclosure it is possible to produce a laminate having excellent antifogging properties, suppressing rainbow unevenness, and reducing haze.
  • the reason why this effect is achieved is assumed as follows.
  • the coating agent according to the present disclosure is not limited for the following reasons.
  • the coating agent which concerns on this indication is used for formation of the film in the laminated body containing a base material and a film.
  • the coating agent contains the siloxane compound (A) containing at least one of the compound represented by the formula (1) and its hydrolysis condensate and the inorganic oxide particles (B), the hydrophilicity of the coating film And voids are formed between the inorganic oxide particles. As a result, the antifogging property of the laminate is improved.
  • the coating agent contains inorganic oxide particles (hereinafter also referred to as “high refractive index particles”) having a refractive index higher than that of silica particles (refractive index 1.43) and having a refractive index of 1.60 or more.
  • the rainbow nonuniformity of a laminated body is suppressed.
  • the coating agent containing the siloxane compound (A) contains high refractive index particles, the haze of the resulting laminate may increase. Possible reasons for this increase in haze include aggregation of high refractive index particles and gelation of the siloxane compound (A).
  • the reason for the gelation of the siloxane compound (A) is that since the high refractive index particles have basicity, the pH of the mixture of the high refractive index particles and the siloxane compound (A) is changed to the siloxane compound (A). ) In the basic region which is the gelation region.
  • the haze of the laminated body mentioned above is reduced by containing the polymer dispersing agent (C) which has an acid group.
  • the reason why the haze is reduced is that at least a part of the surface of the high refractive index particles is covered with the polymer dispersant (C) having an acid group, thereby suppressing aggregation of the high refractive index particles ( That is, the dispersion stability of the high refractive index particles is improved) and the gelation of the siloxane compound (A) is suppressed.
  • the reason why the gelation of the siloxane compound (A) is suppressed is that at least a part of the surface of the basic high-refractive-index particles is coated with the polymer dispersant (C) having an acid group. It is considered that the basicity of the refractive index particles is weakened, and as a result, the pH of the mixture of the high refractive index particles and the siloxane compound (A) deviates from the gelation region (basic region) of the siloxane compound (A). .
  • the siloxane compound (A), the inorganic oxide particles (B) including the inorganic oxide particles having a refractive index of 1.60 or more, and the polymer dispersion having an acid group produces an effect of producing a laminate having excellent antifogging property, suppressing rainbow unevenness and reducing haze.
  • the function of the dispersion medium (D) in the coating agent according to the present disclosure is a function as a dispersion medium for the inorganic oxide particles (B) and the like and a function of maintaining the liquid state of the coating agent.
  • the effect of suppressing rainbow unevenness by the coating agent according to the present disclosure is particularly effective when a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate is used as a substrate for forming a film. Played. This is because the refractive indexes of the glass substrate, the polycarbonate substrate, and the (meth) acrylic resin substrate are about 1.55, about 1.59, and about 1.49, respectively, and are contained in the film. This is probably because the refractive index of the high refractive index particles is the same as or lower than the refractive index (refractive index of 1.60 or more).
  • the coating agent according to the present disclosure can be applied to any application that requires anti-fogging properties, rainbow unevenness suppression, and haze reduction.
  • Applications of the coating agent according to the present disclosure include formation of a coating on an automobile lamp (eg, head lamp, tail lamp, turn signal lamp, etc.); formation of a coating on an automobile glass (eg, windshield); surveillance camera, lighting, and building material , Formation of a coating on a sign, glasses, goggles and the like;
  • the coating agent which concerns on this indication contains the siloxane compound (A) containing at least one of the compound represented by Formula (1), and its hydrolysis-condensation product.
  • the “siloxane compound (A)” means the entire siloxane compound contained in the coating agent according to the present disclosure.
  • the siloxane compound (A) exhibits a function of binding other components such as the inorganic oxide particles (B) in the resulting film (that is, a function as a binder). By exhibiting the function as the binder, the hydrophilicity of the resulting coating is improved, and voids are formed between the inorganic oxide particles (B) in the coating.
  • the antifogging property of the film is improved, and as a result, the antifogging property of the laminate is improved. Further, the function of the siloxane compound (A) as the binder is exhibited, and the above-described function of the polymer dispersant (C) having an acid group is exhibited, thereby suppressing the haze of the coating. As a result, haze of the laminate is suppressed.
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 20.
  • the compound represented by Formula (1) has a structure in which at least a part is hydrolyzed by coexisting with water. Specifically, by the reaction of the compound represented by the formula (1) with water, OR 1 , OR 2 , OR 3 , and OR 4 bonded to the silicon atom in the formula (1). A hydrolyzate having a structure in which at least one is substituted with a hydroxy group is produced.
  • the hydrolysis-condensation product of the compound represented by Formula (1) is a compound produced by condensing a plurality of molecules of hydrolysis product.
  • hydrolysis condensate of compound represented by formula (1) includes hydrolysis and condensation of the compound represented by formula (1) (hereinafter also referred to as “hydrolysis condensation”). As well as the product obtained by performing hydrolysis condensation several times on the compound represented by the formula (1) (for example, the compound represented by the formula (1)). Also included are products 2 obtained by further hydrolytic condensation of product 1 obtained by one hydrolytic condensation, products 3 obtained by further hydrolytic condensation of product 2, and the like.
  • the siloxane compound (A) may contain at least one of the compound represented by the formula (1) and at least one of the hydrolysis condensates, or may contain both. .
  • the monovalent organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 , and R 4 may be linear or branched. It may be annular.
  • Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
  • Examples of the alkyl group when R 1 , R 2 , R 3 , or R 4 represents an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- A pentyl group, an n-hexyl group, a cyclohexyl group and the like can be mentioned.
  • the compound represented by the formula (1) is hydrolyzed by setting the monovalent organic group in R 1 to R 4 , preferably the alkyl group having 1 to 6 carbon atoms. Property is improved.
  • R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 or 2 carbon atoms. More preferably.
  • N in the general formula (1) represents an integer of 1 to 20.
  • n 1 or more, the reactivity of the compound represented by the formula (1) can be easily controlled, and, for example, a film having excellent surface hydrophilicity can be formed.
  • n 20 or less, the viscosity of the coating agent does not become too high, and handling properties and uniform coating properties are improved.
  • n is preferably from 3 to 12, more preferably from 5 to 10, from the viewpoint of easy control of the hydrolysis reaction.
  • a commercial item can be used as a compound represented by Formula (1).
  • MKC (registered trademark) silicate MS51 [R 1 , R 2 , R 3 , and R 4 of Mitsubishi Chemical Corporation]: methyl group, average of n 5
  • MKC® silicate MS56 [R 1 , R 2 , R 3 , and R 4 : methyl group, average of n: 11]
  • MKC® silicate MS57 [R 1 , R 2 , R 3 and R 4 : methyl group, average of n: 13]
  • MKC® silicate MS56S [R 1 , R 2 , R 3 , and R 4 : methyl group, average of n: 16]
  • MKC (registered) Trademark) Methyl silicate 53A [R 1 , R 2 , R 3 , and R 4 : Methyl group, average of n: 7]
  • MKC® ethyl silicate 40 [R 1 , R 2 , R 3
  • the terminal group of the compound represented by the formula (1) (that is, —OR 1 , —OR 2 , —OR 3 , or —OR 4 ) is not necessarily used.
  • the terminal group of the compound represented by the formula (1) that is, —OR 1 , —OR 2 , —OR 3 , or —OR 4 ) is not necessarily used.
  • the weight average molecular weight of the compound represented by the formula (1) is preferably in the range of 300 to 1500, more preferably in the range of 500 to 1200.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC). Specifically, HLC-8120GPC, SC-8020 (Tosoh Corporation) is used, TSKgel and SuperHM-H (Tosoh Corporation, 6.0 mm ID ⁇ 15 cm) are used as columns, and tetrahydrofuran (THF) is used as an eluent. ). Further, the conditions are as follows: sample concentration is 0.5 mass%, flow rate is 0.6 ml / min, sample injection amount is 10 ⁇ l (microliter), measurement temperature is 40 ° C., and a differential refractometer (RI) detector is used. Can be done.
  • GPC gel permeation chromatography
  • the calibration curves are Tosoh's “polystyrene standard sample TSK standard”: “A-500”, “F-1”, “F-10”, “F-80”, “F-380”, “A-2500” Those prepared from 10 samples of “F-4”, “F-40”, “F-128”, and “F-700” can be used.
  • the siloxane compound (A) may contain at least one of a siloxane compound other than the compound represented by the formula (1) (hereinafter referred to as “siloxane compound X”) and a hydrolysis condensate of the siloxane compound X.
  • siloxane compound X examples include quaternary alkoxysilane compounds (excluding compounds corresponding to the compound represented by the formula (1)), tertiary alkoxysilane compounds, and the like.
  • the total content of the compound represented by formula (1) and the hydrolysis condensate thereof in the coating agent is preferably 5% by mass to 50% by mass with respect to the total solid content of the coating agent, and 10% by mass to 40% by mass. % Is more preferable, and 15% by mass to 35% by mass is even more preferable.
  • the total solid content of the coating agent means all components obtained by removing the dispersion medium (D) from the coating agent (hereinafter the same).
  • the proportion of the compound represented by the formula (1) and the hydrolysis condensate thereof in the siloxane compound (A) is preferably 60% by mass or more, More preferably, it is 80 mass% or more, and it is still more preferable that it is 90 mass% or more.
  • the content of the siloxane compound (A) in the coating agent is preferably 5% by mass to 50% by mass, preferably 10% by mass to the total solid content of the coating agent. 40% by mass is more preferable, and 15% by mass to 35% by mass is even more preferable.
  • the coating agent according to the present disclosure contains inorganic oxide particles (B).
  • the “inorganic oxide particles (B)” means the entire inorganic oxide particles contained in the coating agent according to the present disclosure.
  • the coating agent according to the present disclosure may contain only one kind of inorganic oxide particles, or may contain two or more kinds.
  • the inorganic oxide particles (B) contribute to improving the antifogging property of the coating film and the laminate, improving the strength (for example, scratch resistance) of the coating film, and improving the transparency of the coating film and the laminate.
  • the metal in the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
  • the metal oxide particles Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, Nb, Mo, W, Zn, B Oxide particles containing atoms such as Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferred.
  • a metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
  • the surface of the inorganic oxide particles (B) may be treated with an organic material from the viewpoint of imparting dispersion stability.
  • the average primary particle diameter of the inorganic oxide particles (B) is preferably 1 nm to 200 nm, more preferably 3 nm to 80 nm, still more preferably 5 nm to 50 nm, and further preferably 5 nm to 20 nm. preferable.
  • the average primary particle diameter of particles refers to the arithmetic average of 200 particles measured by an electron microscope.
  • the equivalent circle diameter calculated from the projected area is taken as the diameter.
  • the inorganic oxide particles (B) particularly preferably include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  • the reason for this is considered to be that the size of the voids in the coating is made more appropriate.
  • the proportion of the inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm in the inorganic oxide particles (B) is preferably 60. It is at least mass%, more preferably at least 80 mass%.
  • the content of the inorganic oxide particles (B) in the coating agent according to the present disclosure is 30% by mass or more based on the total solid content of the coating agent from the viewpoint of further improving the antifogging property of the laminate. Preferably, it is more preferably 40% by mass or more, and further preferably 50% by mass or more. Further, the content of the inorganic oxide particles (B) in the coating agent according to the present disclosure is preferably 80% by mass or less based on the total solid content of the coating agent from the viewpoint of storage stability of the coating agent. 70% by mass or less, more preferably 60% by mass or less.
  • a dispersion of inorganic oxide particles (B) may be used.
  • the dispersion can be prepared by mixing and / or dispersing the inorganic oxide particles (B) in a suitable dispersant and solvent using a mixing device such as a ball mill or a rod mill.
  • the inorganic oxide particles (B) may be synthesized in a liquid phase using a precursor of inorganic oxide particles in an appropriate solvent, and the resulting sol may be used as a dispersion of the inorganic oxide particles (B).
  • the solvent used for the preparation of the dispersion liquid include a dispersion medium (D) described below (preferably water or an alcohol solvent).
  • a solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the inorganic oxide particles (B) include high refractive index particles (that is, inorganic oxide particles having a refractive index of 1.60 or more). As described above, the high refractive index particles contribute to the suppression of rainbow unevenness of the laminate. The high refractive index particles also contribute to improving the antifogging property of the laminate.
  • the inorganic oxide particles (B) may contain only one kind of high refractive index particles, or may contain two or more kinds.
  • the refractive index of the high refractive index particles is preferably 1.70 or more, more preferably 1.80 or more, further preferably 1.90 or more, and further preferably 2.00 or more.
  • the upper limit of the refractive index of the high refractive index particles is not particularly limited, but examples of the upper limit include 2.80.
  • aluminum oxide particles (refractive index 1.77), niobium oxide particles (refractive index 2.30), titanium oxide particles (refractive index 2.50-2.70), titanium composite oxide particles ( Refractive index 2.30-2.70), zinc oxide particles (refractive index 2.10), cerium oxide particles (refractive index 2.10), zirconium oxide particles (refractive index 2.10), indium / tin oxide particles (Refractive index of about 2.0) or antimony / tin oxide particles (refractive index of about 2.0) are preferable. Yes.
  • the average primary particle diameter of the high refractive index particles is preferably 1 nm to 200 nm, more preferably 3 nm to 80 nm, still more preferably 5 nm to 50 nm, still more preferably 5 nm to 20 nm.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is preferably 3% by mass or more based on the total solid content of the coating agent from the viewpoint of further suppressing rainbow unevenness of the laminate. % Or more is more preferable, and 5 mass% or more is still more preferable.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is preferably 60% by mass or less, and more preferably 50% by mass or less, based on the total solid content of the coating agent.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is 30% by mass or more with respect to the total solid content of the coating agent. Is preferable, and it is more preferable that it is 40 mass% or more.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is 60% by mass or less with respect to the total solid content of the coating agent. Is preferable, and it is more preferable that it is 50 mass% or less.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is the total solid content of the coating agent. On the other hand, it is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more.
  • the content of the high refractive index particles in the coating agent according to the present disclosure is the total solid content of the coating agent. On the other hand, it is preferable that it is 50 mass% or less, and it is more preferable that it is 45 mass% or less.
  • the inorganic oxide particles (B) preferably contain at least one kind of inorganic oxide particles having a refractive index of 2.00 or more as high refractive index particles. Thereby, the rainbow nonuniformity of a laminated body is suppressed more.
  • the proportion of the inorganic oxide particles having a refractive index of 2.00 or more in the high refractive index particles is preferably 50% by mass or more, more preferably 60% by mass or more, and 80% by mass or more. More preferably it is.
  • the inorganic oxide particles having a refractive index of 2.00 or more are preferably at least one selected from the group consisting of niobium oxide particles, titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
  • the inorganic oxide particles having a refractive index of 2.00 or more are more preferably at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles. Thereby, the haze of a laminated body is reduced more.
  • the inorganic oxide particles (B) may contain not only high refractive index particles but also inorganic oxide particles having a refractive index of less than 1.60 (for example, the following silica particles (refractive index 1.43)).
  • the inorganic oxide particles (B) preferably contain at least one silica particle. Thereby, the anti-fogging property of a laminated body improves more. This reason is considered to be because the hydrophilicity of the coating is further improved.
  • silica particles examples include fumed silica and colloidal silica.
  • Fumed silica can be obtained by reacting a compound containing a silicon atom (hereinafter also referred to as “silicon compound”) with oxygen and hydrogen in a gas phase.
  • silicon compound used as a raw material examples include silicon halide (for example, silicon chloride).
  • Colloidal silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed.
  • the raw material compound for colloidal silica include alkoxy silicon (for example, tetraethoxysilane), halogenated silane compound (for example, diphenyldichlorosilane) and the like.
  • the shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, a bead shape, or a shape in which two or more of these are combined.
  • spherical as used herein includes not only true spherical shapes but also spheroids, oval shapes, and the like.
  • Silica particles are also available as commercial products.
  • Commercially available silica particles include AEROSIL (registered trademark) series from Evonik, Snowtex (registered trademark) series (for example, Snowtex O) from Nissan Chemical Industries, Ltd., and Nalco (registered from Nalco Chemical). (Trademark) series (for example, Nalco 8699), Quartron PL series (for example, PL-1) of Fuso Chemistry, and the like.
  • the average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 50 nm or less, and more preferably 30 nm or less from the viewpoint of good film properties of the formed film and low haze. More preferably, it is particularly preferably 20 nm or less.
  • the lower limit of the average primary particle diameter of the silica particles is not particularly limited, but is preferably 2 nm or more from the viewpoint of handleability, and is 5 nm or more from the viewpoint of easy formation of voids for developing antifogging properties. More preferably, 10 nm or more is more preferable.
  • the average primary particle diameter of the silica particles is preferably 10 nm to 20 nm from the viewpoint of improving antifogging properties and stain resistance.
  • inorganic oxide particle (B) may contain only 1 type of silica particles, and may contain 2 or more types. When two or more types of silica particles are included, particles having at least one of size and shape different from each other may be included.
  • the content of the silica particles in the coating agent is 10% by mass with respect to the total solid content of the coating agent from the viewpoint of further improving the antifogging property of the laminate.
  • the above is preferable, 30 mass% or more is more preferable, and 40 mass% or more is still more preferable.
  • the upper limit of the content of the silica particles is preferably 70% by mass and more preferably 60% by mass with respect to the total solid content of the coating layer from the viewpoint of storage stability of the coating agent.
  • the coating agent according to the present disclosure contains a polymer dispersant (C) having an acid group.
  • the polymer dispersant (C) having an acid group contributes to a reduction in haze of the laminate.
  • the “polymer dispersant having an acid group (C)” means the entire polymer dispersant having an acid group contained in the coating agent according to the present disclosure.
  • the coating agent which concerns on this indication may contain only 1 type of polymer dispersing agents which have an acid group, and may contain 2 or more types.
  • the acid group in the polymer dispersant (C) having an acid group is not limited as long as it is an acid group having a dispersion performance (that is, adsorption performance) with respect to the inorganic oxide particles (B) (for example, high refractive index particles).
  • a dispersion performance that is, adsorption performance
  • the inorganic oxide particles (B) for example, high refractive index particles.
  • a carboxy group, a sulfonic acid group, and a phosphoric acid group are mentioned.
  • the acid value of the polymer dispersant (C) having an acid group is such that the adsorption performance for the inorganic oxide particles (B) (for example, high refractive index particles) and the inorganic oxide particles (B) (for example, high refractive index particles) From the viewpoint of improving dispersibility, it is preferably 180 mgKOH / g or less, and more preferably 100 mgKOH / g or less.
  • the lower limit of the acid value is not particularly limited, but is preferably 3 mgKOH / g or more.
  • the acid value of the polymer dispersant (C) having an acid group can be measured by titration of an indicator. Specifically, according to the method described in JIS K K0070, the solid content of the polymer dispersant having an acid group is 1 g. It can be calculated by measuring the number of mg of potassium hydroxide that neutralizes the acid component therein.
  • the weight average molecular weight (Mw) of the polymer dispersant (C) having an acid group is preferably 1000 to 200000, more preferably 1000 to 50000, and further preferably 5000 to 30000.
  • a commercially available product may be used as the polymer dispersant (C) having an acid group.
  • Commercially available polymer dispersants having acid groups include, for example, DISPERBYK (registered trademark) -2015 (acid group: carboxy group, acid value: 10 mgKOH / g), DISPERBYK (registered trademark) -2010 (acid group) manufactured by BYK Chemie. : Carboxy group, acid value: 20 mg KOH / g), DISPERBYK (registered trademark) -194 (acid group: carboxy group, acid value: 70 mg KOH / g), Aron (registered trademark) A-6012 (acid) of Toagosei Co., Ltd.
  • the content of the polymer dispersant (C) in the coating agent is preferably in the range of 10% by mass to 60% by mass, and in the range of 20% by mass to 50% by mass with respect to the inorganic oxide particles (B).
  • the range of 20% by mass to 40% by mass is more preferable.
  • the coating agent according to the present disclosure contains a dispersion medium (D).
  • the “dispersion medium (D)” means the entire dispersion medium contained in the coating agent according to the present disclosure.
  • the coating agent according to the present disclosure may contain only one type of dispersion medium, or may contain two or more types.
  • the content of the dispersion medium (D) in the coating agent according to the present disclosure is preferably 80% by mass to 99% by mass, more preferably 85% by mass to 99% by mass, and more preferably 90% by mass to 98% by mass with respect to the total amount of the coating agent. More preferred is mass%.
  • the dispersion medium (D) preferably contains water.
  • water ion-exchanged water, pure water, distilled water, and the like are preferable from the viewpoint of fewer impurities.
  • the content of water in the dispersion medium (D) is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 45% by mass with respect to the total amount of the dispersion medium (D). % Is more preferable.
  • the dispersion medium (D) may contain at least one organic solvent having a boiling point of less than 120 ° C.
  • organic solvents having a boiling point of less than 120 ° C. include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3- Alcohol solvents such as pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, neopentanol, cyclopentanol, 1-hexanol, cyclohexanol; Glycol ether solvents such as dipropylene glycol methyl ether; Ether solvents such as isopropyl ether, 1,4-dioxane, tert-butyl methyl ether, tetrahydrofuran, 2-methyl
  • an alcohol solvent is preferable from the viewpoint of low surface energy and enhancing spreadability of the coating agent.
  • the alcohol solvent refers to a solvent having a structure in which one hydroxy group is substituted for one carbon atom of a hydrocarbon.
  • the content of the organic solvent having a boiling point of less than 120 ° C. in the dispersion medium (D) is 10% by mass to 60% with respect to the total amount of the dispersion medium (D). % By mass is preferable, 20% by mass to 50% by mass is more preferable, and 25% by mass to 45% by mass is still more preferable.
  • the dispersion medium (D) preferably contains a solvent having a boiling point of 120 ° C. or higher (hereinafter also referred to as “high boiling solvent”).
  • high boiling solvent a solvent having a boiling point of 120 ° C. or higher
  • the boiling point of the high boiling point solvent is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of further improving the leveling property of the coating and obtaining a laminate having a lower haze.
  • the upper limit of the boiling point of the high boiling point solvent is preferably 230 ° C. from the point of suppressing poor drying of the film by the coating agent.
  • Examples of the high boiling point solvent include the following. The numerical value in parentheses after the high boiling point solvent shown below indicates the boiling point.
  • Alcohol solvents such as 1,3-butanediol (207 ° C.), 1,4-butanediol (228 ° C.), benzyl alcohol (205 ° C.), terpionol (217 ° C.);
  • Glycol solvents such as ethylene glycol (197 ° C.), diethylene glycol (244 ° C.), triethylene glycol (287 ° C.), propylene glycol (187 ° C.), dipropylene glycol (230 ° C.); Diethylene glycol monomethyl ether (194 ° C), diethylene glycol monoethyl ether (202 ° C), diethylene glycol monobutyl ether (231 ° C), triethylene glycol monomethyl ether (249 ° C), propylene glycol monomethyl ether (121 ° C), propylene glycol monobutyl ether (170 °
  • Glycol ether solvents such as diethylene glycol dimethyl ether (162 ° C.), diethylene glycol ethyl methyl ether (176 ° C.), diethylene glycol isopropyl methyl ether (179 ° C.), triethylene glycol dimethyl ether (216 ° C.); Ester solvents such as ethylene glycol monomethyl ether acetate (145 ° C), diethylene glycol monoethyl ether acetate (217 ° C), ethyl acetate (154 ° C), ethyl lactate (154 ° C), 3-methoxybutyl acetate (172 ° C); Ketone solvents such as diacetone alcohol (169 ° C.), cyclohexanone (156 ° C.), cyclopentanone (131 ° C.); Etc.
  • Ether solvents such as diethylene glycol dimethyl ether (162 ° C.), diethylene glycol ethyl methyl ether (176 ° C.
  • the glycol solvent refers to a solvent having a structure in which one hydroxyl group is substituted on each of two or more carbon atoms of a hydrocarbon.
  • the glycol ether solvent refers to a solvent having a structure having one hydroxy group and at least one ether group in one molecule.
  • the ether solvent refers to a solvent having a structure having at least one ether group without having a hydroxy group or an ester group in one molecule.
  • the ester solvent refers to a solvent having a structure having at least one ester group in one molecule.
  • the ketone solvent refers to a solvent having a structure having at least one ketone group in one molecule.
  • the high boiling point solvent it is preferable to use a glycol ether solvent from the viewpoint that the surface energy is low and the leveling property of the film is further improved. For the same reason, it is preferable to use a solvent having a branched alkyl group as the high boiling point solvent contained in the coating agent.
  • the dispersion medium (D) may contain only one kind of high boiling point solvent or may contain two or more kinds.
  • the dispersion medium (D) contains two or more high boiling solvents, it is preferable to contain a glycol ether solvent as one of them. By including the glycol ether solvent, the leveling property of the coating is further improved.
  • the content of the high boiling point solvent in the dispersion medium (D) is preferably 10% by mass to 60% by mass, and 20% by mass with respect to the total amount of the dispersion medium (D). Is more preferably from 50% by weight, and even more preferably from 20% by weight to 40% by weight.
  • the coating agent according to the present disclosure preferably further contains a condensation catalyst (E) containing a metal chelate compound.
  • the “condensation catalyst (E)” means the entire condensation catalyst contained in the coating agent.
  • the coating agent according to the present disclosure may contain only one type of condensation catalyst that is a metal chelate compound. It may be good and may contain 2 or more types.
  • the coating agent according to the present disclosure may contain at least one condensation catalyst other than the metal chelate compound.
  • the coating agent according to the present disclosure further contains a condensation catalyst (E) containing a metal chelate compound
  • the haze of the laminate is further reduced, and the antifogging property of the laminate is further improved.
  • the reason for this is considered to be that the condensation reaction of the siloxane compound (A) is further enhanced, and as a result, the leveling property of the film is improved and the film forming property of the film is further improved.
  • condensation catalysts that are metal chelate compounds include aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetate) ), Zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate) and titanium bis (butoxy) bis (acetylacetonate); and the like.
  • aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetate) ), Zirconium chelate compounds such as zirconium bis (butoxy
  • condensation catalysts other than metal chelate compounds include organotin compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin dioctate; aluminum alkoxides such as aluminum ethylate, aluminum isopropylate, and aluminum sec-butyrate; titanium (IV) ethoxide, And titanium alkoxides such as titanium isopropoxide and titanium (IV) n-butoxide; zirconium alkoxides such as zirconium (IV) ethoxide, zirconium (IV) n-propoxide and zirconium (IV) n-butoxide;
  • condensation catalyst other than the metal chelate compound examples include an acid catalyst and an alkali catalyst.
  • Acid catalysts include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, chloroacetic acid, formic acid, oxalic acid, toluenesulfonic acid, xylenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, dodecyl
  • examples thereof include benzenesulfonic acid, polyphosphate, and metaphosphate, and phosphoric acid, toluenesulfonic acid, polyphosphate, and metaphosphate are preferable.
  • the alkali catalyst include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, sodium hydrogen carbonate, urea and the like, and sodium hydrogen carbonate or urea is preferable.
  • the coating agent according to the present disclosure includes a condensation catalyst that is a metal chelate compound
  • the content of the condensation catalyst that is a metal chelate compound is 0.1% by mass to 30% by mass with respect to the total solid content of the coating agent. It is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 10% by mass.
  • the proportion of the condensation catalyst in the condensation catalyst (E) is preferably 60% by mass or more, and 70 More preferably, it is more than 80 mass%, and still more preferably 80 mass% or more.
  • the content of the condensation catalyst (E) (that is, the content of the entire condensation catalyst contained) is 0 with respect to the total solid content of the coating agent. It is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and still more preferably 3% by mass to 10% by mass.
  • the coating agent which concerns on this indication may contain other components other than the component mentioned above.
  • other components include adhesion assistants, antistatic agents, ultraviolet absorbers, antioxidants, surfactants (for example, nonionic surfactants), and the like.
  • nonionic surfactant examples include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like. More specific examples of nonionic surfactants include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester, and the like.
  • nonionic surfactant A commercially available product may be used as the nonionic surfactant.
  • nonionic surfactants include EMALEX (registered trademark) 715 (HLB value: 15.6), EMALEX (registered trademark) 720 (HLB value: 16.5), EMALEX (Japan Emulsion Co., Ltd.).
  • HLB value is a value that is defined by the following formula (I) by the Griffin method (all revised edition, introduction to surfactants, p128) and obtained by arithmetic.
  • HLB value of surfactant (molecular weight of hydrophilic group portion / molecular weight of surfactant) ⁇ 20 (I)
  • the HLB value of the nonionic surfactant is preferably 15.5 or more, more preferably 16 or more, still more preferably 17 or more, and particularly preferably 18 or more.
  • the upper limit of the HLB value of a nonionic surfactant is not specifically limited, For example, 20 or less is preferable.
  • the coating agent which concerns on this indication may be prepared by mixing each component mentioned above.
  • the following method is mentioned as an example of a preparation method.
  • a compound represented by the formula (1) and water are mixed to produce a hydrolysis condensate of the compound represented by the formula (1), and a liquid containing the hydrolysis condensate (hereinafter referred to as “liquid A”).
  • the liquid A may contain components other than the compound represented by the formula (1), the hydrolysis condensate, and water.
  • inorganic oxide particles (B), a polymer dispersant (C) having an acid group, a dispersion medium (D), and, if necessary, other such as a condensation catalyst (E) The coating agent which concerns on this indication is obtained by adding the component of.
  • a dispersion hereinafter, also referred to as “raw material dispersion” of components (for example, high refractive index particles) other than the dispersion medium (D) is used.
  • the dispersion medium in the raw material dispersion is also included in the dispersion medium (D) (the entire dispersion medium included in the coating agent).
  • the storage container for the coating agent according to the present disclosure is not particularly limited, and may be a metal container such as a Ito can or a royal can, or a resin container such as polyethylene or polypropylene. Glass containers such as coat bottles and gallon bottles may be used.
  • the storage temperature of the coating agent according to the present disclosure is preferably 0 ° C. or higher and 50 ° C. or lower.
  • the manufacturing method of the laminated body which concerns on this indication includes the process (henceforth a "film formation process”) which apply
  • This manufacturing method may include other processes other than the film forming process.
  • This manufacturing method includes a film forming step in which a coating agent according to the present disclosure is applied onto a substrate and dried to form a film.
  • the substrate is preferably a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
  • the (meth) acrylic resin in the (meth) acrylic resin substrate represents a resin containing a structural unit derived from a (meth) acrylic ester.
  • the (meth) acrylic resin one kind of (meth) acrylic acid ester homopolymer, two or more kinds of (meth) acrylic acid ester copolymers, one or more kinds of (meth) acrylic acid esters and one kind Examples thereof include copolymers with other monomers (for example, (meth) acrylic acid).
  • a resin containing a structural unit derived from methyl (meth) acrylate is preferable, and a homopolymer of methyl methacrylate (PMMA) is particularly preferable.
  • the base material a composite material formed from a plurality of materials can be used.
  • the material of the base material may include glass and a resin material, a composite material in which glass and a resin material are mixed to be composited, a resin composite material in which a plurality of types of resin materials are kneaded or bonded, and the like. Good.
  • a substrate having a refractive index of 1.45 to 1.70 (more preferably 1.49 to 1.59) is preferable.
  • the base material which has transparency is preferable.
  • having transparency means that the transmittance of visible light having a wavelength of 400 nm to 700 nm is 80% or more (preferably 90% or more).
  • the thickness and shape of the substrate are not particularly limited, and are appropriately set according to the application target. Further, the surface of the base material may be subjected to a surface treatment as necessary. There is no restriction
  • the coating method may be determined according to the shape, size, thickness of the coating, etc., for example, spray coating, brush coating, roller coating, bar coating, dip coating (so-called dip coating), etc.
  • the known coating method can be applied.
  • spray coating is preferable when applying to three-dimensional structures having various surface shapes such as curved surfaces and unevenness.
  • heat drying is preferred in which the coating film is dried by heating.
  • the heat drying temperature is preferably 40 ° C. to 150 ° C., more preferably 60 ° C. to 150 ° C., and still more preferably 90 ° C. to 150 ° C.
  • the temperature here means the temperature of the surface of the coating film.
  • the surface temperature of the coating film can be measured with an infrared thermometer or the like.
  • the heat drying time is preferably 1 minute to 60 minutes, and more preferably 5 minutes to 40 minutes.
  • the coating film may be allowed to stand at a temperature of 15 ° C. or higher and lower than 40 ° C. for a time of 1 second or longer and 3 minutes or shorter.
  • a heating apparatus an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
  • the laminate according to the present disclosure includes a base material and a coating film disposed on the base material, and the coating film includes a siloxane condensate (A1) including a hydrolysis condensate of a compound represented by the following formula (1): And a laminate containing inorganic oxide particles (B1) containing inorganic oxide particles having a refractive index of 1.60 or more and a polymer dispersant (C1) having an acid group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 20.
  • the coating film may be disposed on a part of the base material, or may be disposed on the entire base material. Moreover, the coating film may be disposed in direct contact with the base material, or may be disposed on the base material via another layer (for example, an undercoat layer).
  • the preferred embodiment of the substrate is the same as the preferred embodiment of the substrate in the method for producing a laminate described above.
  • the siloxane condensate (A1) includes a hydrolysis condensate of the compound represented by the formula (1).
  • the compound represented by the formula (1) which is a raw material of the siloxane condensate (A1) has the same meaning as the compound represented by the formula (1) in the coating agent according to the present disclosure, and the preferred embodiment is also the same.
  • the concept of “hydrolysis condensate of compound represented by formula (1)” includes only a product obtained by subjecting the compound represented by formula (1) to one hydrolysis condensation.
  • a product obtained by subjecting the compound represented by the formula (1) to hydrolytic condensation multiple times is also included. Therefore, for example, the coating in the laminate according to the present disclosure is a coating agent according to the present disclosure, and a hydrolysis condensate (hereinafter referred to as “hydrolysis condensate X1”) of the compound represented by the formula (1)
  • the “hydrolysis condensate of the compound represented by the formula (1)” is a hydrolyzed product.
  • the decomposition condensate X1 may be a hydrolysis condensate obtained by further hydrolytic condensation one or more times.
  • the inorganic oxide particles (B1) and the polymer dispersant (C1) having an acid group in the coating agent according to the present disclosure have the inorganic oxide particles (B) and the acid group in the coating agent according to the present disclosure, respectively. It is synonymous with a polymer dispersing agent (C), and its preferable aspect is also the same.
  • the film in the laminate according to the present disclosure may contain other components other than the siloxane condensate (A1), the inorganic oxide particles (B1), and the polymer dispersant (C1) having an acid group. Examples of the other components include components in the coating agent according to the present disclosure.
  • the preferred embodiments of the components of the coating film in the laminate according to the present disclosure include the solid content (that is, the siloxane compound (A) and the dispersion medium ( This is the same as the preferred embodiment of the component (other than D). Therefore, for the preferred embodiments of the film components (excluding the siloxane condensate (A1)) in the laminate according to the present disclosure, the description of the coating agent according to the present disclosure can be referred to as appropriate. However, “the total solid content of the coating agent” in the description of the coating agent according to the present disclosure is read as “the total solid content of the coating film”.
  • the total solid content of the coating means all components excluding the dispersion medium (D) in the coating when the dispersion medium (D) remains in the coating, and the dispersion medium in the coating When (D) does not remain, it means all components of the coating (hereinafter the same).
  • the content of the hydrolysis-condensation product of the compound represented by the formula (1) in the coating in the laminate according to the present disclosure is preferably 5% by mass to 50% by mass with respect to the total solid content of the coating, and is preferably 10% by mass to 40% by mass is more preferable, and 15% by mass to 30% by mass is even more preferable.
  • the proportion of the hydrolysis condensate of the compound represented by formula (1) in the siloxane condensate (A1) is preferably 60% by mass or more, more preferably 80% by mass or more, and 90% by mass. % Or more is more preferable.
  • the content of the siloxane condensate (A1) in the coating in the laminate according to the present disclosure is preferably 5% by mass to 50% by mass, and more preferably 10% by mass to 40% by mass with respect to the total solid content of the coating. More preferably, the content is 15% by mass to 30% by mass.
  • the laminate according to the present disclosure includes the following preferred embodiments.
  • the aspect in which an inorganic oxide particle (B1) contains a silica particle. A mode in which the content of the inorganic oxide particles (B1) is 50% by mass or more based on the total solid content of the coating.
  • the inorganic oxide particles (B1) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  • a mode in which the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
  • the aspect whose base material is a glass base material, a polycarbonate base material, or a (meth) acrylic resin base material.
  • the thickness of the coating is not particularly limited.
  • the thickness of the coating is preferably 10 nm to 2000 nm, more preferably 10 nm to 1000 nm, and still more preferably 50 nm to 1000 nm.
  • the thickness of the coating is 10 nm or more, it is advantageous in terms of ease of forming the coating.
  • the thickness of the coating is 2000 nm or less, it is advantageous in that cracks in the coating can be suppressed.
  • the film in the laminated body which concerns on this indication has a space
  • the voids can exist mainly between the inorganic oxide particles (B1) in the coating.
  • that the coating has voids means that the porosity of the coating is 5% or more.
  • the porosity of the coating is preferably 5% to 50%, more preferably 10% to 50%.
  • the porosity of the coating is a value measured using an automatic porosimeter (Shimadzu Corporation, Autopore IV 9520).
  • the haze of the laminated body which concerns on this indication is 2.0% or less.
  • the haze is a measured value obtained using a haze meter (for example, “NDH 5000” manufactured by Nippon Denshoku Industries Co., Ltd.).
  • % means “mass%” unless otherwise specified.
  • “High refractive index particles” means inorganic oxide particles having a refractive index of 1.60 or more
  • high boiling point solvents mean solvents having a boiling point of 120 ° C. or more.
  • solvent means an organic solvent other than the high boiling point solvent.
  • Example 1 ⁇ Preparation of liquid A> MKC (registered trademark) silicate MS51 (siloxane compound represented by the formula (1), Mitsubishi Chemical Corporation) and ethanol were mixed. Next, ion-exchanged water (hereinafter simply referred to as “water”) is added thereto, and the mixture is stirred at room temperature (25 ° C., the same shall apply hereinafter) for 24 hours or longer to hydrolyze the siloxane compound represented by the formula (1). A liquid A containing the siloxane compound (A) containing the condensate (composition: siloxane compound (A) 27%, water 50%, and ethanol 23%) was obtained.
  • MKC registered trademark silicate MS51 (siloxane compound represented by the formula (1), Mitsubishi Chemical Corporation) and ethanol were mixed.
  • water ion-exchanged water
  • Liquid A Bilal (registered trademark) Al-ML15 (dispersion of aluminum oxide particles as high refractive index particles, solid content: 15%, dispersion medium: water), DISPERBYK (registered trademark) -2015 (acid group)
  • aqueous solution of a polymer dispersant having a carboxy group, solid content 40% As an aqueous solution of a polymer dispersant having a carboxy group, solid content 40%), water, and ethanol, the composition shown in Table 2 (the composition of the solid content, the composition of the dispersion medium (D), and A coating agent having a solid content concentration) was obtained.
  • each component siloxane compound (A), high refractive index particles in inorganic oxide particles (B), and polymer dispersant (C) having an acid group
  • the material abbreviations (MS51, Al-ML15, and BYK2015) corresponding to are shown.
  • the amount of each component in the “Composition of solid content” column indicates the amount of each component (solid content in the corresponding material).
  • the notation “48” next to “Al-ML15” means that the amount of solids (ie, alumina particles) in Al-ML15 is 48% by mass with respect to the total solids of the coating agent.
  • BYK2015 the amount of solids in BYK2015 (that is, the polymer dispersant having a carboxy group) is 25% by mass with respect to the total solids of the coating agent. It means that.
  • MS51 the amount of MS51 which is a material of the siloxane compound (A) is 27% by mass with respect to the total solid content of the coating agent.
  • the above coating agent was spray gun (Anest Iwata (Anesto Iwata (Asahi Glass Co., Ltd., Carbo Glass C-110, thickness: 0.5 mm, A4 size)) on one side of the coating agent. Co., Ltd., W-101-101G), allowed to stand at 30 ° C. for 1 minute, and then dried at 120 ° C. for 20 minutes to form a film having a dried film thickness of 300 nm on the substrate. Coating with a spray gun was performed under the following conditions, and the discharge amount was appropriately adjusted according to the liquid composition. As described above, a laminate composed of the base material and the coating film disposed on the base material was obtained. -Painting conditions with a spray gun- Distance between spray nozzle and substrate: 150mm Nozzle diameter: 1.0mm ⁇ Air pressure: 0.15 MPa Ejection amount: 95 ml / min
  • haze was measured using the haze meter NDH5000 (Nippon Denshoku Industries Co., Ltd.). The haze was measured by placing a light source on the film side of the laminate. Based on the obtained results, the haze of the laminate was evaluated according to the following evaluation criteria. If the haze is greater than 2.0%, the rainbow unevenness described later cannot be evaluated.
  • -Evaluation criteria for haze- 5 The haze of the laminate is 0.3% or less. 4: The haze of the laminate is greater than 0.3% and 1.0% or less. 3: The haze of the laminate is greater than 1.0% and not more than 2.0%. 2: The haze of the laminate is greater than 2.0% and 3.0% or less. 1: The haze of the laminate is greater than 3.0%.
  • -Evaluation criteria for anti-fogging properties- 5 There is no cloudiness on the film, and a clean water film is formed on the film. 4: The film is not cloudy and a water film is formed on the film, but the formed water film is slightly shaken. 3: The film is not cloudy and a water film is formed on the film, but the formed water film is shaking. 2: A water film is unevenly formed on the coating. 1: A water film is not formed on a film and a film becomes cloudy.
  • Examples 2 to 24 and 27 to 29 The same as in Example 1 except that the type and amount of materials used are appropriately changed so that the composition of the solid content, the composition of the dispersion medium (D), and the solid content concentration shown in Table 2 below are obtained. The operation was performed. The results are shown in Table 2. In Examples 2 to 24 and 27 to 29, the silica particles, the condensation catalyst (E), and the high boiling point solvent are all mixed with the liquid A at the stage after the preparation of the liquid A containing the siloxane compound (A). By doing so, it was included in the coating agent.
  • Example 25 and 26 The same operation as in Example 21 was performed except that the type of the substrate was changed as shown in Table 2. The results are shown in Table 2.
  • glass and PMMA the following glass substrates and PMMA substrates were used, respectively.
  • Glass... Glass substrate Non-alkali glass “OA-10” manufactured by Nippon Electric Glass Co., Ltd., thickness 1 mm
  • PMMA Polymethylmethacrylate (PMMA) base material
  • Comoglas (registered trademark) manufactured by Kuraray Co., Ltd., thickness 1 mm
  • Comparative Examples 1 to 3 The same as in Example 1 except that the type and amount of materials used are appropriately changed so that the composition of the solid content, the composition of the dispersion medium (D), and the solid content concentration shown in Table 2 below are obtained. The operation was performed. The results are shown in Table 2. In Comparative Examples 1 to 3, the silica particles, the condensation catalyst (E), and other components were all contained in the coating agent by mixing with the liquid A at the stage of “preparation of the coating agent”.
  • Each material in Table 2 is as follows.
  • -Raw material of siloxane compound (A) compound represented by formula (1)
  • MS51 MKC (registered trademark) silicate MS51 (R 1 , R 2 , R 3 , and R 4 in formula (1): methyl group, average of n: 5, Mitsubishi Chemical Corporation)
  • TEOS Tetraethoxysilane (Tokyo Chemical Industry Co., Ltd.)
  • BYK2015: DISPERBYK (registered trademark) -2015 aqueous solution of polymer dispersant having a carboxy group, solid content 40%, acid value: 10 mgKOH / g, Big Chemie Japan Co., Ltd.
  • BYK180: DISPERBYK (registered trademark) -180 aqueous solution of polymer dispersant having a phosphate group, solid content 40%, acid value: 94 mgKOH / g, Big Chemie Japan Co., Ltd.
  • Example 2 From the comparison between Example 1 and Example 2, it can be seen that when the inorganic oxide particles (B) contain silica particles (Example 2), the antifogging property of the laminate is further improved. This reason is considered to be because the hydrophilicity of the coating is further improved.
  • Example 1 From the comparison between Example 1 and Examples 3 and 4, when the dispersion medium (D) contains a high-boiling solvent (Examples 3 and 4), the haze of the laminate is further reduced and anti-fogging is achieved. It can be seen that the property is further improved. The reason for this is considered to be that the leveling property (smoothness) of the coating is improved during drying after application of the coating agent.
  • Example 5 From a comparison between Example 1 and Example 5, when the coating agent contains a condensation catalyst (E) containing a metal chelate compound (Example 5), the haze of the laminate is further reduced and the coating is prevented. It turns out that cloudiness improves more. The reason for this is considered to be that the leveling property (smoothness) of the coating is improved during drying after application of the coating agent.
  • a condensation catalyst (E) containing a metal chelate compound Example 5
  • Example 6 From the comparison between Example 1 and Example 6, when the content of the inorganic oxide particles (B) is 50% by mass or more based on the total solid content of the coating agent (Example 6), a laminate is obtained. It can be seen that the antifogging property of the toner is further improved. The reason for this is considered to be that the void amount of the coating is made more appropriate.
  • Example 1 From the comparison between Example 1 and Examples 8 to 10, when the inorganic oxide particles (B) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm (Examples 8 to 10), a laminate is obtained. It can be seen that the antifogging property of the toner is further improved. The reason is considered to be that the void size of the coating is made more appropriate.
  • the inorganic oxide particles (B) contain inorganic oxide particles having a refractive index of 2.00 or more as high refractive index particles (Examples 12 to 15). It can be seen that rainbow unevenness of the laminate is further suppressed.
  • the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles. It can be seen that in some cases (Examples 13 to 15), the haze of the laminate is further improved.

Abstract

The present invention provides: a coating agent which contains (A) a siloxane compound that contains at least one of a compound represented by formula (1) and a hydrolysis-condensation product of a compound represented by formula (1), (B) inorganic oxide particles that include inorganic oxide particles having a refractive index of 1.60 or more, (C) a polymer dispersant that has an acid group, and (D) a dispersion medium; and applications of this coating agent. In formula (1), each of R1, R2, R3 and R4 independently represents a monovalent organic group having 1-6 carbon atoms; and n represents an integer of 1-20. AA Formula (1)

Description

コート剤、積層体、及び積層体の製造方法COATING AGENT, LAMINATE, AND METHOD FOR PRODUCING LAMINATE
 本開示は、コート剤、積層体、及び積層体の製造方法に関する。 The present disclosure relates to a coating agent, a laminate, and a method for manufacturing the laminate.
 従来より、基材の防曇(即ち、曇り抑制)等を目的とし、基材に対して被膜を形成する技術に関して検討されている。 Conventionally, a technique for forming a coating on a base material has been studied for the purpose of anti-fogging (that is, suppression of fogging) of the base material.
 例えば、特許文献1には、焼き付け工程が不要であり、温度差が激しい環境下においても、防汚性、防曇性、及び樹脂基材に対する密着性を長期間維持することができる積層体として、少なくとも樹脂基材を含む複合体の最表面に、コーティング組成物よりなる防汚層が形成されており、上記コーティング組成物が、(A)金属酸化物、(B)重合体エマルジョン粒子、及び(C)加水分解性珪素化合物を含み、表面張力が15~40mN/mである積層体が開示されている。 For example, Patent Document 1 does not require a baking process, and is a laminate that can maintain antifouling properties, antifogging properties, and adhesion to a resin base material for a long period of time even in an environment where the temperature difference is severe. An antifouling layer made of a coating composition is formed on the outermost surface of the composite containing at least a resin substrate, and the coating composition comprises (A) a metal oxide, (B) polymer emulsion particles, and (C) A laminate containing a hydrolyzable silicon compound and having a surface tension of 15 to 40 mN / m is disclosed.
 また、特許文献2には、十分な膜硬度および耐久性を保持しながら、曇りにくく、かつ水滴や汚れが付着しにくい親水性部材として、基材と、上記基材上に形成され、親水性無機非晶質物質を少なくとも含んでなる親水性被膜とを含んでなり、上記親水性被膜に水を付着し、かつ上記被膜を垂直に保持することにより余剰の水を除去した状態における、上記親水性被膜に付着した水膜の重量が10cmあたり0.25~0.50gである親水性部材が開示されている。 Patent Document 2 discloses a hydrophilic member that is formed on the substrate and has hydrophilicity as a hydrophilic member that is not easily clouded and that is resistant to water droplets and dirt while maintaining sufficient film hardness and durability. A hydrophilic film comprising at least an inorganic amorphous substance, the hydrophilic film in a state in which excess water is removed by attaching water to the hydrophilic film and maintaining the film vertically. A hydrophilic member is disclosed in which the weight of the water film attached to the conductive coating is 0.25 to 0.50 g per 10 cm 2 .
 特許文献1:特開2014-205736号公報
 特許文献2:特開2000-318084号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2014-205736 Patent Document 2: Japanese Patent Application Laid-Open No. 2000-318084
 上述した、基材に対して被膜を形成する技術(即ち、基材と被膜とを含む積層体を製造する技術)において、積層体の防曇性等を向上させる観点から、上記被膜を形成するための塗布液(以下、「コート剤」という)に、シロキサン化合物と、シリカ粒子と、を含有させることがある(例えば、上記特許文献1の実施例1参照)。
 しかし、シロキサン化合物とシリカ粒子とを含有するコート剤を用いた場合、特に形成する被膜の膜厚が薄い場合(例えば膜厚が2μm以下である場合)において、製造される積層体に、光の干渉に起因する虹状のムラ(以下、「虹ムラ」という)が発生する場合がある。虹ムラの一因として、シリカ粒子の屈折率が低いことが考えられる。ここで、シリカ粒子の屈折率は1.43程度である。被膜の屈折率は、被膜内に存在する空隙に起因し、1.43よりも更に低くなる傾向がある。
In the above-described technique for forming a coating on a substrate (ie, a technique for producing a laminate including a substrate and a coating), the coating is formed from the viewpoint of improving the antifogging property and the like of the laminate. The coating liquid (hereinafter referred to as “coating agent”) may contain a siloxane compound and silica particles (see, for example, Example 1 of Patent Document 1 above).
However, when a coating agent containing a siloxane compound and silica particles is used, particularly when the film to be formed is thin (for example, when the film is 2 μm or less), In some cases, rainbow-like unevenness (hereinafter referred to as “rainbow unevenness”) due to interference occurs. As a cause of rainbow unevenness, it can be considered that the refractive index of silica particles is low. Here, the refractive index of the silica particles is about 1.43. The refractive index of the coating tends to be lower than 1.43 due to voids present in the coating.
 虹ムラを抑制する方法としては、コート剤中に、屈折率が1.60以上である無機酸化物粒子を含有させることが考えられる。
 しかし、本発明者等の検討により、コート剤中に、屈折率が1.60以上である無機酸化物粒子を含有させた場合、得られる積層体のヘイズが上昇する場合があることが判明した。
As a method for suppressing rainbow unevenness, it is conceivable to include inorganic oxide particles having a refractive index of 1.60 or more in the coating agent.
However, as a result of studies by the present inventors, it has been found that when the coating agent contains inorganic oxide particles having a refractive index of 1.60 or more, the haze of the resulting laminate may increase. .
 本開示の一態様の課題は、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体を製造できるコート剤を提供することである。
 本開示の他の態様の課題は、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体及びその製造方法を提供することである。
The subject of 1 aspect of this indication is providing the coating agent which is excellent in anti-fogging property, the rainbow nonuniformity is suppressed, and the laminated body with which haze was reduced can be manufactured.
The subject of the other aspect of this indication is providing the laminated body which was excellent in anti-fogging property, the rainbow nonuniformity was suppressed, and the haze was reduced, and its manufacturing method.
 課題を解決するための具体的手段は、以下の態様を含む。
<1> 下記式(1)で表される化合物及び下記式(1)で表される化合物の加水分解縮合物の少なくとも一方を含むシロキサン化合物(A)と、
 屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B)と、
 酸基を有するポリマー分散剤(C)と、
 分散媒(D)と、
を含有するコート剤。
Specific means for solving the problems include the following aspects.
<1> A siloxane compound (A) containing at least one of a compound represented by the following formula (1) and a hydrolysis condensate of a compound represented by the following formula (1);
Inorganic oxide particles (B) containing inorganic oxide particles having a refractive index of 1.60 or more;
A polymer dispersant (C) having an acid group;
A dispersion medium (D);
Containing a coating agent.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
<2> 無機酸化物粒子(B)が、シリカ粒子を含む<1>に記載のコート剤。
<3> 分散媒(D)が、沸点120℃以上の溶剤を含む<1>又は<2>に記載のコート剤。
<4> 分散媒(D)が、水を含む<1>~<3>のいずれか1つに記載のコート剤。
<5> 更に、金属キレート化合物を含む縮合触媒(E)を含有する<1>~<4>のいずれか1つに記載のコート剤。
<6> 無機酸化物粒子(B)の含有量が、コート剤の全固形分に対して50質量%以上である<1>~<5>のいずれか1つに記載のコート剤。
<7> 無機酸化物粒子(B)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含む<1>~<6>のいずれか1つに記載のコート剤。
<8> 無機酸化物粒子(B)が、屈折率2.00以上の無機酸化物粒子を含む<1>~<7>のいずれか1つに記載のコート剤。
<9> 屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である<8>に記載のコート剤。
<10> 基材上に、<1>~<9>のいずれか1つに記載のコート剤を塗布し、乾燥させて被膜を形成する工程を含む積層体の製造方法。
<11> 基材が、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材である<10>に記載の積層体の製造方法。
<12> 基材と基材上に配置された被膜とを含み、
 被膜が、
 下記式(1)で表される化合物の加水分解縮合物を含むシロキサン縮合体(A1)と、
 屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B1)と、
 酸基を有するポリマー分散剤(C1)と、
を含有する積層体。
<2> The coating agent according to <1>, wherein the inorganic oxide particles (B) include silica particles.
<3> The coating agent according to <1> or <2>, wherein the dispersion medium (D) contains a solvent having a boiling point of 120 ° C. or higher.
<4> The coating agent according to any one of <1> to <3>, wherein the dispersion medium (D) contains water.
<5> The coating agent according to any one of <1> to <4>, further comprising a condensation catalyst (E) containing a metal chelate compound.
<6> The coating agent according to any one of <1> to <5>, wherein the content of the inorganic oxide particles (B) is 50% by mass or more based on the total solid content of the coating agent.
<7> The coating agent according to any one of <1> to <6>, wherein the inorganic oxide particles (B) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
<8> The coating agent according to any one of <1> to <7>, wherein the inorganic oxide particles (B) include inorganic oxide particles having a refractive index of 2.00 or more.
<9> The coating agent according to <8>, wherein the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
<10> A method for producing a laminate including a step of applying a coating agent according to any one of <1> to <9> on a substrate and drying to form a film.
The manufacturing method of the laminated body as described in <10> whose <11> base material is a glass base material, a polycarbonate base material, or a (meth) acrylic resin base material.
<12> including a base material and a film disposed on the base material,
The film is
A siloxane condensate (A1) containing a hydrolysis condensate of the compound represented by the following formula (1);
Inorganic oxide particles (B1) containing inorganic oxide particles having a refractive index of 1.60 or more;
A polymer dispersant (C1) having an acid group;
A laminate containing
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
<13> 無機酸化物粒子(B1)が、シリカ粒子を含む<12>に記載の積層体。
<14> 無機酸化物粒子(B1)の含有量が、被膜の全固形分に対して50質量%以上である<12>又は<13>に記載の積層体。
<15> 無機酸化物粒子(B1)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含む<12>~<14>のいずれか1つに記載の積層体。
<16> 無機酸化物粒子(B1)が、屈折率2.00以上の無機酸化物粒子を含む<12>~<15>のいずれか1つに記載の積層体。
<17> 屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である<16>に記載の積層体。
<18> 基材が、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材である<12>~<17>のいずれか1つに記載の積層体。
<13> The laminate according to <12>, wherein the inorganic oxide particles (B1) include silica particles.
The laminated body as described in <12> or <13> whose content of <14> inorganic oxide particle (B1) is 50 mass% or more with respect to the total solid of a film.
<15> The laminate according to any one of <12> to <14>, wherein the inorganic oxide particles (B1) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
<16> The laminate according to any one of <12> to <15>, wherein the inorganic oxide particles (B1) include inorganic oxide particles having a refractive index of 2.00 or more.
<17> The laminate according to <16>, wherein the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
<18> The laminate according to any one of <12> to <17>, wherein the substrate is a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
 本開示の一態様によれば、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体を製造できるコート剤が提供される。
 本開示の他の態様によれば、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体及びその製造方法が提供される。
According to one embodiment of the present disclosure, there is provided a coating agent that is excellent in antifogging property, suppresses rainbow unevenness, and can produce a laminate with reduced haze.
According to another aspect of the present disclosure, a laminated body that is excellent in anti-fogging property, that suppresses rainbow unevenness and has reduced haze, and a method for manufacturing the same are provided.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する複数の成分の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、屈折率とは、波長550nmにおける屈折率を意味する。屈折率は、例えば、エリプソメーターVUV-VASE(ジェー・エー・ウーラム・ジャパン(株)製)を用いて測定できる。
 本開示において、(メタ)アクリル樹脂とは、アクリル樹脂及びメタクリル樹脂の両方を包含する概念であり、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸の両方を包含する概念であり、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を包含する概念である。
In the present disclosure, a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the present disclosure, when referring to the amount of each component in the composition, when there are a plurality of substances corresponding to each component in the composition, the plurality of components present in the composition unless otherwise specified. It means the total amount.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, the refractive index means a refractive index at a wavelength of 550 nm. The refractive index can be measured using, for example, an ellipsometer VUV-VASE (manufactured by JA Woollam Japan Co., Ltd.).
In the present disclosure, (meth) acrylic resin is a concept including both acrylic resin and methacrylic resin, and (meth) acrylic acid is a concept including both acrylic acid and methacrylic acid. ) Acrylic acid ester is a concept including both acrylic acid ester and methacrylic acid ester.
〔コート剤〕
 本開示に係るコート剤は、下記式(1)で表される化合物及び下記式(1)で表される化合物の加水分解縮合物の少なくとも一方(以下、「式(1)で表される化合物及びその加水分解縮合物の少なくとも一方」ともいう)を含むシロキサン化合物(A)と、屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B)と、酸基を有するポリマー分散剤(C)と、分散媒(D)と、を含有する。
[Coating agent]
The coating agent according to the present disclosure includes at least one of a compound represented by the following formula (1) and a hydrolysis condensate of a compound represented by the following formula (1) (hereinafter referred to as “compound represented by formula (1)”). And at least one of the hydrolysis condensates thereof), inorganic oxide particles (B) containing inorganic oxide particles having a refractive index of 1.60 or more, and polymer dispersion having an acid group An agent (C) and a dispersion medium (D) are contained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
 本開示に係るコート剤によれば、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体を製造できる。
 かかる効果が奏される理由は、以下のように推測される。但し、本開示に係るコート剤は、以下の理由によって限定されることはない。
According to the coating agent according to the present disclosure, it is possible to produce a laminate having excellent antifogging properties, suppressing rainbow unevenness, and reducing haze.
The reason why this effect is achieved is assumed as follows. However, the coating agent according to the present disclosure is not limited for the following reasons.
 本開示に係るコート剤は、基材と被膜とを含む積層体における被膜の形成に用いられる。
 コート剤が、式(1)で表される化合物及びその加水分解縮合物の少なくとも一方を含むシロキサン化合物(A)と、無機酸化物粒子(B)と、を含有することにより、被膜の親水性が向上し、かつ、無機酸化物粒子間に空隙が形成される。その結果、積層体の防曇性が向上する。
 更に、コート剤が、シリカ粒子(屈折率1.43)と比較して屈折率が高い、屈折率1.60以上の無機酸化物粒子(以下、「高屈折率粒子」ともいう)を含有することにより、積層体の虹ムラが抑制される。
 しかし、シロキサン化合物(A)を含有するコート剤が高屈折率粒子を含有する場合、得られる積層体のヘイズが上昇する場合がある。このヘイズ上昇の理由としては、高屈折率粒子が凝集すること、シロキサン化合物(A)のゲル化が生じること、等が考えられる。シロキサン化合物(A)のゲル化が生じる理由としては、高屈折率粒子が塩基性を有しているために、高屈折率粒子とシロキサン化合物(A)との混合物のpHが、シロキサン化合物(A)のゲル化領域である塩基性領域に含まれることが考えられる。
 本開示に係るコート剤では、酸基を有するポリマー分散剤(C)を含有することにより、上述した積層体のヘイズが低減される。ヘイズが低減される理由としては、高屈折率粒子の表面の少なくとも一部が、酸基を有するポリマー分散剤(C)によって被覆されることにより、高屈折率粒子の凝集が抑制されること(即ち、高屈折率粒子の分散安定性が向上すること)、シロキサン化合物(A)のゲル化が抑制されること、等が考えられる。シロキサン化合物(A)のゲル化が抑制される理由としては、塩基性を有する高屈折率粒子の表面の少なくとも一部が、酸基を有するポリマー分散剤(C)によって被覆されることにより、高屈折率粒子の塩基性が弱められ、その結果、高屈折率粒子とシロキサン化合物(A)との混合物のpHが、シロキサン化合物(A)のゲル化領域(塩基性領域)から外れることが考えられる。
The coating agent which concerns on this indication is used for formation of the film in the laminated body containing a base material and a film.
When the coating agent contains the siloxane compound (A) containing at least one of the compound represented by the formula (1) and its hydrolysis condensate and the inorganic oxide particles (B), the hydrophilicity of the coating film And voids are formed between the inorganic oxide particles. As a result, the antifogging property of the laminate is improved.
Further, the coating agent contains inorganic oxide particles (hereinafter also referred to as “high refractive index particles”) having a refractive index higher than that of silica particles (refractive index 1.43) and having a refractive index of 1.60 or more. Thereby, the rainbow nonuniformity of a laminated body is suppressed.
However, when the coating agent containing the siloxane compound (A) contains high refractive index particles, the haze of the resulting laminate may increase. Possible reasons for this increase in haze include aggregation of high refractive index particles and gelation of the siloxane compound (A). The reason for the gelation of the siloxane compound (A) is that since the high refractive index particles have basicity, the pH of the mixture of the high refractive index particles and the siloxane compound (A) is changed to the siloxane compound (A). ) In the basic region which is the gelation region.
In the coating agent which concerns on this indication, the haze of the laminated body mentioned above is reduced by containing the polymer dispersing agent (C) which has an acid group. The reason why the haze is reduced is that at least a part of the surface of the high refractive index particles is covered with the polymer dispersant (C) having an acid group, thereby suppressing aggregation of the high refractive index particles ( That is, the dispersion stability of the high refractive index particles is improved) and the gelation of the siloxane compound (A) is suppressed. The reason why the gelation of the siloxane compound (A) is suppressed is that at least a part of the surface of the basic high-refractive-index particles is coated with the polymer dispersant (C) having an acid group. It is considered that the basicity of the refractive index particles is weakened, and as a result, the pH of the mixture of the high refractive index particles and the siloxane compound (A) deviates from the gelation region (basic region) of the siloxane compound (A). .
 以上のように、本開示に係るコート剤によれば、シロキサン化合物(A)と、屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B)と、酸基を有するポリマー分散剤(C)と、の組み合わせにより、防曇性に優れ、虹ムラが抑制され、ヘイズが低減された積層体を製造できるという効果が奏される。
 本開示に係るコート剤における分散媒(D)の機能は、言うまでもないが、無機酸化物粒子(B)等に対する分散媒としての機能及びコート剤の液体状態を維持する機能である。
As described above, according to the coating agent according to the present disclosure, the siloxane compound (A), the inorganic oxide particles (B) including the inorganic oxide particles having a refractive index of 1.60 or more, and the polymer dispersion having an acid group The combination with the agent (C) produces an effect of producing a laminate having excellent antifogging property, suppressing rainbow unevenness and reducing haze.
It goes without saying that the function of the dispersion medium (D) in the coating agent according to the present disclosure is a function as a dispersion medium for the inorganic oxide particles (B) and the like and a function of maintaining the liquid state of the coating agent.
 本開示に係るコート剤による虹ムラ抑制の効果は、被膜を形成するための基材として、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材を用いた場合に、特に効果的に奏される。
 この理由は、ガラス基材、ポリカーボネート基材、及び(メタ)アクリル樹脂基材の屈折率が、それぞれ、1.55程度、1.59程度、及び1.49程度であり、被膜に含有される高屈折率粒子の屈折率(屈折率1.60以上)と同程度か又はそれ以下であるためと考えられる。
The effect of suppressing rainbow unevenness by the coating agent according to the present disclosure is particularly effective when a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate is used as a substrate for forming a film. Played.
This is because the refractive indexes of the glass substrate, the polycarbonate substrate, and the (meth) acrylic resin substrate are about 1.55, about 1.59, and about 1.49, respectively, and are contained in the film. This is probably because the refractive index of the high refractive index particles is the same as or lower than the refractive index (refractive index of 1.60 or more).
 本開示に係るコート剤は、防曇性、虹ムラ抑制、及びヘイズ低減が求められるあらゆる用途に適用可能である。
 本開示に係るコート剤の用途としては、自動車のランプ(例えば、ヘッドランプ、テールランプ、ウインカーランプなど)に対する被膜の形成;自動車のガラス(例えばフロントガラス)に対する被膜の形成;監視カメラ、照明、建材、標識、眼鏡、ゴーグル等に対する被膜の形成;等が挙げられる。
The coating agent according to the present disclosure can be applied to any application that requires anti-fogging properties, rainbow unevenness suppression, and haze reduction.
Applications of the coating agent according to the present disclosure include formation of a coating on an automobile lamp (eg, head lamp, tail lamp, turn signal lamp, etc.); formation of a coating on an automobile glass (eg, windshield); surveillance camera, lighting, and building material , Formation of a coating on a sign, glasses, goggles and the like;
 以下、本開示に係るコート剤が含有し得る各成分について説明する。 Hereinafter, each component that the coating agent according to the present disclosure may contain will be described.
<シロキサン化合物(A)>
 本開示に係るコート剤は、式(1)で表される化合物及びその加水分解縮合物の少なくとも一方を含むシロキサン化合物(A)を含有する。
 ここで、「シロキサン化合物(A)」とは、本開示に係るコート剤に含まれるシロキサン化合物全体を意味する。
 シロキサン化合物(A)は、得られる被膜中において、無機酸化物粒子(B)等の他の成分同士を結着させる機能(即ち、バインダーとしての機能)を発揮する。このバインダーとしての機能が発揮されることにより、得られる被膜の親水性が向上し、かつ、被膜中の無機酸化物粒子(B)間に空隙が形成される。被膜の親水性が向上すること、及び、被膜中に空隙が形成されることにより、被膜の防曇性が向上し、その結果、積層体の防曇性が向上する。
 更に、シロキサン化合物(A)の上記バインダーとしての機能が発揮されること、及び、酸基を有するポリマー分散剤(C)の前述した機能が発揮されることにより、被膜のヘイズが抑制され、その結果、積層体のヘイズが抑制される。
<Siloxane compound (A)>
The coating agent which concerns on this indication contains the siloxane compound (A) containing at least one of the compound represented by Formula (1), and its hydrolysis-condensation product.
Here, the “siloxane compound (A)” means the entire siloxane compound contained in the coating agent according to the present disclosure.
The siloxane compound (A) exhibits a function of binding other components such as the inorganic oxide particles (B) in the resulting film (that is, a function as a binder). By exhibiting the function as the binder, the hydrophilicity of the resulting coating is improved, and voids are formed between the inorganic oxide particles (B) in the coating. By improving the hydrophilicity of the film and forming voids in the film, the antifogging property of the film is improved, and as a result, the antifogging property of the laminate is improved.
Further, the function of the siloxane compound (A) as the binder is exhibited, and the above-described function of the polymer dispersant (C) having an acid group is exhibited, thereby suppressing the haze of the coating. As a result, haze of the laminate is suppressed.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
 式(1)で表される化合物は、水と共存することで、少なくとも一部が加水分解される構造を有する。具体的には、式(1)で表される化合物と水とが反応することにより、式(1)中のケイ素原子に結合している、OR、OR、OR、及びORの少なくとも一つがヒドロキシ基に置換された構造を有する加水分解物が生成される。
 式(1)で表される化合物の加水分解縮合物は、複数分子の加水分解物が縮合して生成される化合物である。
The compound represented by Formula (1) has a structure in which at least a part is hydrolyzed by coexisting with water. Specifically, by the reaction of the compound represented by the formula (1) with water, OR 1 , OR 2 , OR 3 , and OR 4 bonded to the silicon atom in the formula (1). A hydrolyzate having a structure in which at least one is substituted with a hydroxy group is produced.
The hydrolysis-condensation product of the compound represented by Formula (1) is a compound produced by condensing a plurality of molecules of hydrolysis product.
 本開示において、「式(1)で表される化合物の加水分解縮合物」の概念には、式(1)で表される化合物が加水分解及び縮合(以下、「加水分解縮合」ともいう)を1回行って得られた生成物だけでなく、式(1)で表される化合物が加水分解縮合を複数回行って得られた生成物(例えば、式(1)で表される化合物が加水分解縮合を1回行って得られた生成物1が更に加水分解縮合して得られた生成物2、生成物2が更に加水分解縮合して得られた生成物3、等)も包含される。 In the present disclosure, the concept of “hydrolysis condensate of compound represented by formula (1)” includes hydrolysis and condensation of the compound represented by formula (1) (hereinafter also referred to as “hydrolysis condensation”). As well as the product obtained by performing hydrolysis condensation several times on the compound represented by the formula (1) (for example, the compound represented by the formula (1)). Also included are products 2 obtained by further hydrolytic condensation of product 1 obtained by one hydrolytic condensation, products 3 obtained by further hydrolytic condensation of product 2, and the like. The
 シロキサン化合物(A)は、式(1)で表される化合物の少なくとも1種及び上記加水分解縮合物の少なくとも1種のいずれか一方を含んでいてもよいし、両方を含んでいていてもよい。 The siloxane compound (A) may contain at least one of the compound represented by the formula (1) and at least one of the hydrolysis condensates, or may contain both. .
 式(1)中、R、R、R、及びRにおける炭素数1~6の1価の有機基は、直鎖状であってもよく、分岐を有していてもよく、環状であってもよい。1価の有機基としては、アルキル基、アルケニル基等が挙げられ、アルキル基であることが好ましい。
 R、R、R、又はRがアルキル基を表す場合のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、tert―ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。
 式(1)で表される化合物においてR~Rにおける1価の有機基、好ましくはアルキル基の炭素数を1~6とすることにより、式(1)で表される化合物は加水分解性が良好となる。なお、加水分解性がより良好であるという観点からは、R~Rは、それぞれ独立に炭素数1~4のアルキル基であることがより好ましく、炭素数1又は2のアルキル基であることが更に好ましい。
In the formula (1), the monovalent organic group having 1 to 6 carbon atoms in R 1 , R 2 , R 3 , and R 4 may be linear or branched. It may be annular. Examples of the monovalent organic group include an alkyl group and an alkenyl group, and an alkyl group is preferable.
Examples of the alkyl group when R 1 , R 2 , R 3 , or R 4 represents an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n- A pentyl group, an n-hexyl group, a cyclohexyl group and the like can be mentioned.
In the compound represented by the formula (1), the compound represented by the formula (1) is hydrolyzed by setting the monovalent organic group in R 1 to R 4 , preferably the alkyl group having 1 to 6 carbon atoms. Property is improved. From the viewpoint of better hydrolyzability, R 1 to R 4 are more preferably each independently an alkyl group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 or 2 carbon atoms. More preferably.
 一般式(1)におけるnは、1~20の整数を表す。nが1以上であると、式(1)で表される化合物の反応性を制御し易く、例えば、表面親水性に優れた被膜を形成することができる。nが20以下であると、コート剤の粘度が高くなりすぎず、ハンドリング性及び均一塗布性が良好となる。nは、加水分解反応を制御し易くする観点から、3~12であることが好ましく、5~10であることがより好ましい。 N in the general formula (1) represents an integer of 1 to 20. When n is 1 or more, the reactivity of the compound represented by the formula (1) can be easily controlled, and, for example, a film having excellent surface hydrophilicity can be formed. When n is 20 or less, the viscosity of the coating agent does not become too high, and handling properties and uniform coating properties are improved. n is preferably from 3 to 12, more preferably from 5 to 10, from the viewpoint of easy control of the hydrolysis reaction.
 下記表1に、式(1)で表される化合物の具体例を、式(1)におけるR、R、R、及びR、並びにnにより記載する。但し、式(1)で表される化合物は、表1に記載の具体例に限定されるものではない。 In Table 1 below, specific examples of the compound represented by the formula (1) are described by R 1 , R 2 , R 3 , R 4 and n in the formula (1). However, the compound represented by Formula (1) is not limited to the specific examples described in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 式(1)で表される化合物としては、市販品を用いることができる。
 式(1)で表される化合物の市販品の例としては、三菱ケミカル(株)のMKC(登録商標)シリケートMS51〔R、R、R、及びR:メチル基、nの平均:5〕、MKC(登録商標)シリケートMS56〔R、R、R、及びR:メチル基、nの平均:11〕、MKC(登録商標)シリケートMS57〔R、R、R、及びR:メチル基、nの平均:13〕、MKC(登録商標)シリケートMS56S〔R、R、R、及びR:メチル基、nの平均:16〕、MKC(登録商標)メチルシリケート53A〔R、R、R、及びR:メチル基、nの平均:7〕、MKC(登録商標)エチルシリケート40〔R、R、R、及びR:エチル基、nの平均:5〕、MKC(登録商標)エチルシリケート48〔R、R、R、及びR:エチル基、nの平均:10〕、MKC(登録商標)EMS485〔R、R、R、及びR:メチル基及びエチル基が50%ずつ、nの平均:10〕、東京化成工業(株)のテトラエトキシシラン等が挙げられる。
A commercial item can be used as a compound represented by Formula (1).
As an example of a commercial item of the compound represented by the formula (1), MKC (registered trademark) silicate MS51 [R 1 , R 2 , R 3 , and R 4 of Mitsubishi Chemical Corporation]: methyl group, average of n 5], MKC® silicate MS56 [R 1 , R 2 , R 3 , and R 4 : methyl group, average of n: 11], MKC® silicate MS57 [R 1 , R 2 , R 3 and R 4 : methyl group, average of n: 13], MKC® silicate MS56S [R 1 , R 2 , R 3 , and R 4 : methyl group, average of n: 16], MKC (registered) Trademark) Methyl silicate 53A [R 1 , R 2 , R 3 , and R 4 : Methyl group, average of n: 7], MKC® ethyl silicate 40 [R 1 , R 2 , R 3 , and R 4 : Ethyl group, average of n: 5], M C (R) Ethyl silicate 48 [R 1, R 2, R 3, and R 4: an ethyl group, the average of n: 10], MKC (R) EMS485 [R 1, R 2, R 3, and R 4 : 50% each of methyl group and ethyl group, average n: 10], tetraethoxysilane of Tokyo Chemical Industry Co., Ltd. and the like.
 なお、式(1)で表される化合物の加水分解縮合物において、必ずしも式(1)で表される化合物の末端基(即ち、-OR、-OR、-OR、又は-OR)が全て反応している必要はないが、例えば、コート剤により形成された被膜の親水性をより高めるという観点からは、より多くの末端基が反応していることが好ましい。 In addition, in the hydrolysis condensate of the compound represented by the formula (1), the terminal group of the compound represented by the formula (1) (that is, —OR 1 , —OR 2 , —OR 3 , or —OR 4 ) is not necessarily used. However, from the viewpoint of increasing the hydrophilicity of the film formed by the coating agent, it is preferable that more terminal groups are reacted.
 式(1)で表される化合物の重量平均分子量は、300~1500の範囲が好ましく、500~1200の範囲がより好ましい。 The weight average molecular weight of the compound represented by the formula (1) is preferably in the range of 300 to 1500, more preferably in the range of 500 to 1200.
 なお、本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)で測定できる。具体的には、HLC-8120GPC、SC-8020(東ソー株式会社)を用い、カラムとして、TSKgel、SuperHM-H(東ソー株式会社、6.0mmID×15cm)を2本用い、溶離液としてテトラヒドロフラン(THF)を用いて測定できる。また、条件としては、試料濃度を0.5質量%、流速を0.6ml/min、サンプル注入量を10μl(マイクロリットル)、測定温度を40℃とし、示差屈折計(RI)検出器を用いて行なうことができる。検量線は、東ソー社「polystyrene標準試料TSK standard」:「A-500」、「F-1」、「F-10」、「F-80」、「F-380」、「A-2500」、「F-4」、「F-40」、「F-128」、「F-700」の10サンプルから作製されたものを用いることができる。 In the present disclosure, the weight average molecular weight can be measured by gel permeation chromatography (GPC). Specifically, HLC-8120GPC, SC-8020 (Tosoh Corporation) is used, TSKgel and SuperHM-H (Tosoh Corporation, 6.0 mm ID × 15 cm) are used as columns, and tetrahydrofuran (THF) is used as an eluent. ). Further, the conditions are as follows: sample concentration is 0.5 mass%, flow rate is 0.6 ml / min, sample injection amount is 10 μl (microliter), measurement temperature is 40 ° C., and a differential refractometer (RI) detector is used. Can be done. The calibration curves are Tosoh's “polystyrene standard sample TSK standard”: “A-500”, “F-1”, “F-10”, “F-80”, “F-380”, “A-2500” Those prepared from 10 samples of “F-4”, “F-40”, “F-128”, and “F-700” can be used.
 シロキサン化合物(A)は、式(1)で表される化合物以外のシロキサン化合物(以下、「シロキサン化合物X」とする)及びシロキサン化合物Xの加水分解縮合物の少なくとも一方を含んでいてもよい。
 シロキサン化合物Xとしては、4級アルコキシシラン化合物(但し、式(1)で表される化合物に該当する化合物を除く)、3級アルコキシシラン化合物等が挙げられる。
The siloxane compound (A) may contain at least one of a siloxane compound other than the compound represented by the formula (1) (hereinafter referred to as “siloxane compound X”) and a hydrolysis condensate of the siloxane compound X.
Examples of the siloxane compound X include quaternary alkoxysilane compounds (excluding compounds corresponding to the compound represented by the formula (1)), tertiary alkoxysilane compounds, and the like.
 コート剤における式(1)で表される化合物及びその加水分解縮合物の合計含有量は、コート剤の全固形分に対して、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、15質量%~35質量%が更に好ましい。 The total content of the compound represented by formula (1) and the hydrolysis condensate thereof in the coating agent is preferably 5% by mass to 50% by mass with respect to the total solid content of the coating agent, and 10% by mass to 40% by mass. % Is more preferable, and 15% by mass to 35% by mass is even more preferable.
 ここで、コート剤の全固形分とは、コート剤から分散媒(D)を除いた全成分を意味する(以下、同様とする)。 Here, the total solid content of the coating agent means all components obtained by removing the dispersion medium (D) from the coating agent (hereinafter the same).
 シロキサン化合物(A)(即ち、コート剤に含有されるシロキサン化合物全体)に占める、式(1)で表される化合物及びその加水分解縮合物の割合は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。 The proportion of the compound represented by the formula (1) and the hydrolysis condensate thereof in the siloxane compound (A) (that is, the entire siloxane compound contained in the coating agent) is preferably 60% by mass or more, More preferably, it is 80 mass% or more, and it is still more preferable that it is 90 mass% or more.
 コート剤におけるシロキサン化合物(A)(即ち、コート剤に含有されるシロキサン化合物全体)の含有量は、コート剤の全固形分に対して、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、15質量%~35質量%が更に好ましい。 The content of the siloxane compound (A) in the coating agent (that is, the entire siloxane compound contained in the coating agent) is preferably 5% by mass to 50% by mass, preferably 10% by mass to the total solid content of the coating agent. 40% by mass is more preferable, and 15% by mass to 35% by mass is even more preferable.
<無機酸化物粒子(B)>
 本開示に係るコート剤は、無機酸化物粒子(B)を含有する。
 ここで、「無機酸化物粒子(B)」とは、本開示に係るコート剤に含まれる無機酸化物粒子全体を意味する。
 本開示に係るコート剤は、無機酸化物粒子を、1種のみ含有していてもよいし、2種以上含有していてもよい。
 無機酸化物粒子(B)は、被膜及び積層体の防曇性向上、被膜の強度(例えば耐傷性)向上、並びに、被膜及び積層体の透明性向上に寄与する。
<Inorganic oxide particles (B)>
The coating agent according to the present disclosure contains inorganic oxide particles (B).
Here, the “inorganic oxide particles (B)” means the entire inorganic oxide particles contained in the coating agent according to the present disclosure.
The coating agent according to the present disclosure may contain only one kind of inorganic oxide particles, or may contain two or more kinds.
The inorganic oxide particles (B) contribute to improving the antifogging property of the coating film and the laminate, improving the strength (for example, scratch resistance) of the coating film, and improving the transparency of the coating film and the laminate.
 無機酸化物粒子(B)としては、金属酸化物粒子が好ましい。
 ここで、金属酸化物粒子における金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれるものとする。
 金属酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む酸化物粒子が好ましい。
 また、金属酸化物粒子は、1種単独で使用してもよいし、2種以上を併用することもできる。
As the inorganic oxide particles (B), metal oxide particles are preferable.
Here, the metal in the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
As the metal oxide particles, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, Nb, Mo, W, Zn, B Oxide particles containing atoms such as Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferred.
Moreover, a metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
 無機酸化物粒子(B)は、分散安定性付与の観点から、表面が有機材料で処理されていてもよい。 The surface of the inorganic oxide particles (B) may be treated with an organic material from the viewpoint of imparting dispersion stability.
 コート剤及び被膜の透明性の観点から、無機酸化物粒子(B)の平均一次粒子径は、1nm~200nmが好ましく、3nm~80nmがより好ましく、5nm~50nmが更に好ましく、5nm~20nmが更に好ましい。 From the viewpoint of the transparency of the coating agent and the coating, the average primary particle diameter of the inorganic oxide particles (B) is preferably 1 nm to 200 nm, more preferably 3 nm to 80 nm, still more preferably 5 nm to 50 nm, and further preferably 5 nm to 20 nm. preferable.
 本明細書中、粒子の平均一次粒子径は、電子顕微鏡により任意の粒子200個の粒子径を測定し、その算術平均をいう。また、粒子の形状が球形でない場合には、投影面積から算出した円相当径を径とする。 In the present specification, the average primary particle diameter of particles refers to the arithmetic average of 200 particles measured by an electron microscope. When the particle shape is not spherical, the equivalent circle diameter calculated from the projected area is taken as the diameter.
 無機酸化物粒子(B)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含むことが特に好ましい。これにより、積層体の防曇性がより向上する。この理由は、被膜中の空隙のサイズがより適正化されるためと考えられる。
 この場合、無機酸化物粒子(B)(即ち、コート剤に含有される無機酸化物粒子全体)中に占める、平均一次粒子径が5nm~20nmである無機酸化物粒子の割合は、好ましくは60質量%以上であり、より好ましくは80質量%以上である。
The inorganic oxide particles (B) particularly preferably include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm. Thereby, the anti-fogging property of a laminated body improves more. The reason for this is considered to be that the size of the voids in the coating is made more appropriate.
In this case, the proportion of the inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm in the inorganic oxide particles (B) (that is, the entire inorganic oxide particles contained in the coating agent) is preferably 60. It is at least mass%, more preferably at least 80 mass%.
 本開示に係るコート剤における無機酸化物粒子(B)の含有量は、積層体の防曇性をより向上させる観点から、コート剤の全固形分に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。
 また、本開示に係るコート剤における無機酸化物粒子(B)の含有量は、コート剤の保存安定性の観点から、コート剤の全固形分に対して、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。
The content of the inorganic oxide particles (B) in the coating agent according to the present disclosure is 30% by mass or more based on the total solid content of the coating agent from the viewpoint of further improving the antifogging property of the laminate. Preferably, it is more preferably 40% by mass or more, and further preferably 50% by mass or more.
Further, the content of the inorganic oxide particles (B) in the coating agent according to the present disclosure is preferably 80% by mass or less based on the total solid content of the coating agent from the viewpoint of storage stability of the coating agent. 70% by mass or less, more preferably 60% by mass or less.
 本開示に係るコート剤を調製する場合、無機酸化物粒子(B)の分散液を用いてもよい。分散液は、無機酸化物粒子(B)を、適当な分散剤及び溶剤中でボールミル、ロッドミル等の混合装置を用いて混合及び/又は分散することにより調製できる。
 また、適当な溶媒中で無機酸化物粒子の前駆体を用いて無機酸化物粒子(B)を液相合成し、得られたゾルを、無機酸化物粒子(B)の分散液として用いてもよい。
 上記分散液の調製に使用される溶剤としては、例えば、後述する分散媒(D)(好ましくは水又はアルコール系溶剤)を挙げることができる。溶剤は、1種単独又は2種以上を混合して使用することができる。
When preparing the coating agent according to the present disclosure, a dispersion of inorganic oxide particles (B) may be used. The dispersion can be prepared by mixing and / or dispersing the inorganic oxide particles (B) in a suitable dispersant and solvent using a mixing device such as a ball mill or a rod mill.
Alternatively, the inorganic oxide particles (B) may be synthesized in a liquid phase using a precursor of inorganic oxide particles in an appropriate solvent, and the resulting sol may be used as a dispersion of the inorganic oxide particles (B). Good.
Examples of the solvent used for the preparation of the dispersion liquid include a dispersion medium (D) described below (preferably water or an alcohol solvent). A solvent can be used individually by 1 type or in mixture of 2 or more types.
(高屈折率粒子)
 無機酸化物粒子(B)は、高屈折率粒子(即ち、屈折率1.60以上の無機酸化物粒子)を含む。
 高屈折率粒子は、前述のとおり、積層体の虹ムラ抑制に寄与する。また、高屈折率粒子は、積層体の防曇性向上にも寄与する。
 無機酸化物粒子(B)は、高屈折率粒子を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。
(High refractive index particles)
The inorganic oxide particles (B) include high refractive index particles (that is, inorganic oxide particles having a refractive index of 1.60 or more).
As described above, the high refractive index particles contribute to the suppression of rainbow unevenness of the laminate. The high refractive index particles also contribute to improving the antifogging property of the laminate.
The inorganic oxide particles (B) may contain only one kind of high refractive index particles, or may contain two or more kinds.
 高屈折率粒子の屈折率としては、1.70以上が好ましく、1.80以上がより好ましく、1.90以上が更に好ましく、2.00以上が更に好ましい。
 高屈折率粒子の屈折率の上限は特に限定されないが、上限として、例えば、2.80が挙げられる。
The refractive index of the high refractive index particles is preferably 1.70 or more, more preferably 1.80 or more, further preferably 1.90 or more, and further preferably 2.00 or more.
The upper limit of the refractive index of the high refractive index particles is not particularly limited, but examples of the upper limit include 2.80.
 高屈折率粒子としては、酸化アルミニウム粒子(屈折率1.77)、酸化ニオブ粒子(屈折率2.30)、酸化チタン粒子(屈折率2.50~2.70)、チタン複合酸化物粒子(屈折率2.30~2.70)、酸化亜鉛粒子(屈折率2.10)、酸化セリウム粒子(屈折率2.10)、酸化ジルコニウム粒子(屈折率2.10)、インジウム/スズ酸化物粒子(屈折率2.0程度)、又は、アンチモン/スズ酸化物粒子(屈折率2.0程度)が好ましい。
い。
As the high refractive index particles, aluminum oxide particles (refractive index 1.77), niobium oxide particles (refractive index 2.30), titanium oxide particles (refractive index 2.50-2.70), titanium composite oxide particles ( Refractive index 2.30-2.70), zinc oxide particles (refractive index 2.10), cerium oxide particles (refractive index 2.10), zirconium oxide particles (refractive index 2.10), indium / tin oxide particles (Refractive index of about 2.0) or antimony / tin oxide particles (refractive index of about 2.0) are preferable.
Yes.
 高屈折率粒子の平均一次粒子径は、1nm~200nmが好ましく、3nm~80nmがより好ましく、5nm~50nmが更に好ましく、5nm~20nmが更に好ましい。 The average primary particle diameter of the high refractive index particles is preferably 1 nm to 200 nm, more preferably 3 nm to 80 nm, still more preferably 5 nm to 50 nm, still more preferably 5 nm to 20 nm.
 本開示に係るコート剤における高屈折率粒子の含有量は、積層体の虹ムラをより抑制する観点から、コート剤の全固形分に対して、3質量%以上であることが好ましく、4質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。
 また、本開示に係るコート剤における高屈折率粒子の含有量は、コート剤の全固形分に対して、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
The content of the high refractive index particles in the coating agent according to the present disclosure is preferably 3% by mass or more based on the total solid content of the coating agent from the viewpoint of further suppressing rainbow unevenness of the laminate. % Or more is more preferable, and 5 mass% or more is still more preferable.
In addition, the content of the high refractive index particles in the coating agent according to the present disclosure is preferably 60% by mass or less, and more preferably 50% by mass or less, based on the total solid content of the coating agent.
 無機酸化物粒子(B)が高屈折率粒子のみを含む場合、本開示に係るコート剤における高屈折率粒子の含有量は、コート剤の全固形分に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。
 無機酸化物粒子(B)が高屈折率粒子のみを含む場合、本開示に係るコート剤における高屈折率粒子の含有量は、コート剤の全固形分に対して、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。
 無機酸化物粒子(B)が高屈折率粒子および高屈折率粒子以外の無機酸化物粒子を含む場合、本開示に係るコート剤における高屈折率粒子の含有量は、コート剤の全固形分に対して、3質量%以上であることが好ましく、4質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。
 無機酸化物粒子(B)が高屈折率粒子および高屈折率粒子以外の無機酸化物粒子を含む場合、本開示に係るコート剤における高屈折率粒子の含有量は、コート剤の全固形分に対して、50質量%以下であることが好ましく、45質量%以下であることがより好ましい。
When the inorganic oxide particles (B) include only high refractive index particles, the content of the high refractive index particles in the coating agent according to the present disclosure is 30% by mass or more with respect to the total solid content of the coating agent. Is preferable, and it is more preferable that it is 40 mass% or more.
When the inorganic oxide particles (B) include only high refractive index particles, the content of the high refractive index particles in the coating agent according to the present disclosure is 60% by mass or less with respect to the total solid content of the coating agent. Is preferable, and it is more preferable that it is 50 mass% or less.
When the inorganic oxide particles (B) include high refractive index particles and inorganic oxide particles other than the high refractive index particles, the content of the high refractive index particles in the coating agent according to the present disclosure is the total solid content of the coating agent. On the other hand, it is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more.
When the inorganic oxide particles (B) include high refractive index particles and inorganic oxide particles other than the high refractive index particles, the content of the high refractive index particles in the coating agent according to the present disclosure is the total solid content of the coating agent. On the other hand, it is preferable that it is 50 mass% or less, and it is more preferable that it is 45 mass% or less.
 無機酸化物粒子(B)は、高屈折率粒子として、屈折率2.00以上の無機酸化物粒子を少なくとも1種含むことが好ましい。これにより、積層体の虹ムラがより抑制される。
 この場合、高屈折率粒子に占める屈折率2.00以上の無機酸化物粒子の割合は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
The inorganic oxide particles (B) preferably contain at least one kind of inorganic oxide particles having a refractive index of 2.00 or more as high refractive index particles. Thereby, the rainbow nonuniformity of a laminated body is suppressed more.
In this case, the proportion of the inorganic oxide particles having a refractive index of 2.00 or more in the high refractive index particles is preferably 50% by mass or more, more preferably 60% by mass or more, and 80% by mass or more. More preferably it is.
 屈折率2.00以上の無機酸化物粒子としては、酸化ニオブ粒子、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種であることが好ましい。 The inorganic oxide particles having a refractive index of 2.00 or more are preferably at least one selected from the group consisting of niobium oxide particles, titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
 屈折率2.00以上の無機酸化物粒子としては、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種であることがより好ましい。これにより、積層体のヘイズがより低減される。 The inorganic oxide particles having a refractive index of 2.00 or more are more preferably at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles. Thereby, the haze of a laminated body is reduced more.
 無機酸化物粒子(B)は、高屈折率粒子だけでなく、屈折率1.60未満の無機酸化物粒子(例えば、下記のシリカ粒子(屈折率1.43))を含有してもよい。 The inorganic oxide particles (B) may contain not only high refractive index particles but also inorganic oxide particles having a refractive index of less than 1.60 (for example, the following silica particles (refractive index 1.43)).
(シリカ粒子)
 無機酸化物粒子(B)は、シリカ粒子を少なくとも1種含むことが好ましい。
 これにより、積層体の防曇性がより向上する。この理由は、被膜の親水性がより向上するためと考えられる。
(Silica particles)
The inorganic oxide particles (B) preferably contain at least one silica particle.
Thereby, the anti-fogging property of a laminated body improves more. This reason is considered to be because the hydrophilicity of the coating is further improved.
 シリカ粒子としては、例えば、ヒュームドシリカ、コロイダルシリカ等が挙げられる。
 ヒュームドシリカは、ケイ素原子を含む化合物(以下、「ケイ素化合物」ともいう)を気相中で酸素及び水素と反応させることによって得ることができる。原料となるケイ素化合物としては、例えば、ハロゲン化ケイ素(例えば、塩化ケイ素)等が挙げられる。
 コロイダルシリカは、原料化合物を加水分解及び縮合するゾルゲル法により合成することができる。コロイダルシリカの原料化合物としては、例えば、アルコキシケイ素(例えば、テトラエトキシシラン)、ハロゲン化シラン化合物(例えば、ジフェニルジクロロシラン)等が挙げられる。
Examples of the silica particles include fumed silica and colloidal silica.
Fumed silica can be obtained by reacting a compound containing a silicon atom (hereinafter also referred to as “silicon compound”) with oxygen and hydrogen in a gas phase. Examples of the silicon compound used as a raw material include silicon halide (for example, silicon chloride).
Colloidal silica can be synthesized by a sol-gel method in which a raw material compound is hydrolyzed and condensed. Examples of the raw material compound for colloidal silica include alkoxy silicon (for example, tetraethoxysilane), halogenated silane compound (for example, diphenyldichlorosilane) and the like.
 シリカ粒子の形状は、特に限定はなく、球状、板状、針状、数珠状、又はこれらの2種類以上が合体した形状が挙げられる。なお、ここでいう球状とは、真球状の他、回転楕円体、卵形等の形状である場合も含む。 The shape of the silica particles is not particularly limited, and examples thereof include a spherical shape, a plate shape, a needle shape, a bead shape, or a shape in which two or more of these are combined. The term “spherical” as used herein includes not only true spherical shapes but also spheroids, oval shapes, and the like.
 シリカ粒子は市販品としても入手可能である。
 シリカ粒子の市販品としては、エボニック社のAEROSIL(登録商標)シリーズ、日産化学工業(株)のスノーテックス(登録商標)シリーズ(例えばスノーテックスOなど)、ナルコケミカル社のナルコ(Nalco)(登録商標)シリーズ(例えばNalco8699など)、扶桑化学者社のクォートロンPLシリーズ(例えばPL-1)などが挙げられる。
Silica particles are also available as commercial products.
Commercially available silica particles include AEROSIL (registered trademark) series from Evonik, Snowtex (registered trademark) series (for example, Snowtex O) from Nissan Chemical Industries, Ltd., and Nalco (registered from Nalco Chemical). (Trademark) series (for example, Nalco 8699), Quartron PL series (for example, PL-1) of Fuso Chemistry, and the like.
 シリカ粒子の平均一次粒子径は、形成される被膜の膜性が良好であり、ヘイズを低める点から、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが更に好ましく、20nm以下であることが特に好ましい。また、シリカ粒子の平均一次粒子径の下限は、特に限定されないが、取り扱い性の点から、2nm以上が好ましく、防曇性を発現させるための空隙の形成し易さの点から、5nm以上がより好ましく、10nm以上がより好ましい。
 特に、シリカ粒子の平均一次粒子径は、防曇性及び耐汚染性の向上の点からは、10nm~20nmが好ましい。
The average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 50 nm or less, and more preferably 30 nm or less from the viewpoint of good film properties of the formed film and low haze. More preferably, it is particularly preferably 20 nm or less. The lower limit of the average primary particle diameter of the silica particles is not particularly limited, but is preferably 2 nm or more from the viewpoint of handleability, and is 5 nm or more from the viewpoint of easy formation of voids for developing antifogging properties. More preferably, 10 nm or more is more preferable.
In particular, the average primary particle diameter of the silica particles is preferably 10 nm to 20 nm from the viewpoint of improving antifogging properties and stain resistance.
 無機酸化物粒子(B)がシリカ粒子を含む場合、無機酸化物粒子(B)は、シリカ粒子を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 シリカ粒子を2種以上含む場合は、サイズ又は形状の少なくともいずれかが互いに異なる粒子を含んでいてもよい。
When inorganic oxide particle (B) contains a silica particle, inorganic oxide particle (B) may contain only 1 type of silica particles, and may contain 2 or more types.
When two or more types of silica particles are included, particles having at least one of size and shape different from each other may be included.
 無機酸化物粒子(B)がシリカ粒子を含む場合、コート剤におけるシリカ粒子の含有量は、積層体の防曇性をより向上させる観点から、コート剤の全固形分に対して、10質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましい。
 また、シリカ粒子の含有量の上限は、コート剤の保存安定性等の観点から、コート層の全固形分に対して、70質量%が好ましく、60質量%がより好ましい。
When the inorganic oxide particles (B) include silica particles, the content of the silica particles in the coating agent is 10% by mass with respect to the total solid content of the coating agent from the viewpoint of further improving the antifogging property of the laminate. The above is preferable, 30 mass% or more is more preferable, and 40 mass% or more is still more preferable.
Further, the upper limit of the content of the silica particles is preferably 70% by mass and more preferably 60% by mass with respect to the total solid content of the coating layer from the viewpoint of storage stability of the coating agent.
<酸基を有するポリマー分散剤(C)>
 本開示に係るコート剤は、酸基を有するポリマー分散剤(C)を含有する。
 酸基を有するポリマー分散剤(C)は、積層体のヘイズ低減に寄与する。
 ここで、「酸基を有するポリマー分散剤(C)」とは、本開示に係るコート剤に含まれる酸基を有するポリマー分散剤全体を意味する。
 本開示に係るコート剤は、酸基を有するポリマー分散剤を1種のみ含有していてもよいし、2種以上含有していてもよい。
<Polymer dispersant having acid group (C)>
The coating agent according to the present disclosure contains a polymer dispersant (C) having an acid group.
The polymer dispersant (C) having an acid group contributes to a reduction in haze of the laminate.
Here, the “polymer dispersant having an acid group (C)” means the entire polymer dispersant having an acid group contained in the coating agent according to the present disclosure.
The coating agent which concerns on this indication may contain only 1 type of polymer dispersing agents which have an acid group, and may contain 2 or more types.
 酸基を有するポリマー分散剤(C)における酸基としては、無機酸化物粒子(B)(例えば高屈折率粒子)に対し分散性能(即ち、吸着性能)を有する酸基であれば制限はなく、例えば、カルボキシ基、スルホン酸基、及びリン酸基が挙げられる。 The acid group in the polymer dispersant (C) having an acid group is not limited as long as it is an acid group having a dispersion performance (that is, adsorption performance) with respect to the inorganic oxide particles (B) (for example, high refractive index particles). For example, a carboxy group, a sulfonic acid group, and a phosphoric acid group are mentioned.
 酸基を有するポリマー分散剤(C)の酸価は、無機酸化物粒子(B)(例えば高屈折率粒子)に対する吸着性能の発現及び無機酸化物粒子(B)(例えば高屈折率粒子)の分散性向上の観点から、180mgKOH/g以下であることが好ましく、100mgKOH/g以下であることがより好ましい。
 なお、酸価の下限値は特に限定されないが、3mgKOH/g以上とすることが好ましい。
The acid value of the polymer dispersant (C) having an acid group is such that the adsorption performance for the inorganic oxide particles (B) (for example, high refractive index particles) and the inorganic oxide particles (B) (for example, high refractive index particles) From the viewpoint of improving dispersibility, it is preferably 180 mgKOH / g or less, and more preferably 100 mgKOH / g or less.
The lower limit of the acid value is not particularly limited, but is preferably 3 mgKOH / g or more.
 酸基を有するポリマー分散剤(C)の酸価は、指示薬の滴定により測定することができ、具体的には、JIS K 0070に記載の方法に従い、酸基を有するポリマー分散剤の固形分1g中の酸成分を中和する水酸化カリウムのmg数を測定して算出することができる。 The acid value of the polymer dispersant (C) having an acid group can be measured by titration of an indicator. Specifically, according to the method described in JIS K K0070, the solid content of the polymer dispersant having an acid group is 1 g. It can be calculated by measuring the number of mg of potassium hydroxide that neutralizes the acid component therein.
 また、酸基を有するポリマー分散剤(C)の重量平均分子量(Mw)は、好ましくは1000~200000であり、より好ましくは1000~50000であり、更に好ましくは5000~30000である。 In addition, the weight average molecular weight (Mw) of the polymer dispersant (C) having an acid group is preferably 1000 to 200000, more preferably 1000 to 50000, and further preferably 5000 to 30000.
 酸基を有するポリマー分散剤(C)としては、市販品を用いてもよい。
 酸基を有するポリマー分散剤の市販品としては、例えば、ビックケミー社のDISPERBYK(登録商標)-2015(酸基:カルボキシ基、酸価:10mgKOH/g)、DISPERBYK(登録商標)-2010(酸基:カルボキシ基、酸価:20mgKOH/g)、DISPERBYK(登録商標)-194(酸基:カルボキシ基、酸価:70mgKOH/g)、東亞合成(株)のアロン(登録商標)A-6012(酸基:スルホン酸基、重量平均分子量:10000)、アロン(登録商標)A-6001(酸基:カルボキシ基、pH:7~9(水溶液濃度)、重量平均分子量:8000)、アロン(登録商標)SD-10(酸基:カルボキシ基、pH:2~5(水溶液濃度)、重量平均分子量:10000)、エボニック社のTEGO(登録商標)Dispers651(酸基:リン酸基、酸価:30mgKOH/g)等が挙げられる。
A commercially available product may be used as the polymer dispersant (C) having an acid group.
Commercially available polymer dispersants having acid groups include, for example, DISPERBYK (registered trademark) -2015 (acid group: carboxy group, acid value: 10 mgKOH / g), DISPERBYK (registered trademark) -2010 (acid group) manufactured by BYK Chemie. : Carboxy group, acid value: 20 mg KOH / g), DISPERBYK (registered trademark) -194 (acid group: carboxy group, acid value: 70 mg KOH / g), Aron (registered trademark) A-6012 (acid) of Toagosei Co., Ltd. Group: sulfonic acid group, weight average molecular weight: 10,000), Aron (registered trademark) A-6001 (acid group: carboxy group, pH: 7 to 9 (aqueous solution concentration), weight average molecular weight: 8000), Aron (registered trademark) SD-10 (acid group: carboxy group, pH: 2 to 5 (concentration in aqueous solution), weight average molecular weight: 10,000), T of Evonik GO (TM) Dispers651 (acid group: phosphoric acid group, acid value: 30 mgKOH / g), and the like.
 コート剤におけるポリマー分散剤(C)の含有量は、無機酸化物粒子(B)に対して、10質量%~60質量%の範囲であることが好ましく、20質量%~50質量%の範囲が好ましく、20質量%~40質量%の範囲が更に好ましい。 The content of the polymer dispersant (C) in the coating agent is preferably in the range of 10% by mass to 60% by mass, and in the range of 20% by mass to 50% by mass with respect to the inorganic oxide particles (B). The range of 20% by mass to 40% by mass is more preferable.
<分散媒(D)>
 本開示に係るコート剤は、分散媒(D)を含有する。
 ここで、「分散媒(D)」とは、本開示に係るコート剤に含まれる分散媒全体を意味する。
 本開示に係るコート剤は、分散媒を1種のみ含有していてもよいし、2種以上含有していてもよい。
<Dispersion medium (D)>
The coating agent according to the present disclosure contains a dispersion medium (D).
Here, the “dispersion medium (D)” means the entire dispersion medium contained in the coating agent according to the present disclosure.
The coating agent according to the present disclosure may contain only one type of dispersion medium, or may contain two or more types.
 本開示に係るコート剤における分散媒(D)の含有量は、コート剤の全量に対し、80質量%~99質量%が好ましく、85質量%~99質量%がより好ましく、90質量%~98質量%が更に好ましい。 The content of the dispersion medium (D) in the coating agent according to the present disclosure is preferably 80% by mass to 99% by mass, more preferably 85% by mass to 99% by mass, and more preferably 90% by mass to 98% by mass with respect to the total amount of the coating agent. More preferred is mass%.
(水)
 分散媒(D)は、水を含むことが好ましい。
 水としては、不純物がより少ないという観点から、イオン交換水、純水、蒸留水等が好ましい。
(water)
The dispersion medium (D) preferably contains water.
As water, ion-exchanged water, pure water, distilled water, and the like are preferable from the viewpoint of fewer impurities.
 分散媒(D)における水の含有量は、分散媒(D)の全量に対して、10質量%~60質量%が好ましく、20質量%~50質量%がより好ましく、25質量%~45質量%が更に好ましい。 The content of water in the dispersion medium (D) is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 45% by mass with respect to the total amount of the dispersion medium (D). % Is more preferable.
(沸点120℃未満の有機溶剤)
 分散媒(D)は、沸点120℃未満の有機溶剤を少なくとも1種含有してもよい。
 沸点120℃未満の有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、ネオペンタノール、シクロペンタノール、1-ヘキサノール、シクロヘキサノール等のアルコール系溶剤;
 ジプロピレングリコールメチルエーテル等のグリコールエーテル系溶剤;
 イソプロピルエーテル、1,4-ジオキサン、tert-ブチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,2-ジメトキシエタン、ジエチルエーテル等のエーテル系溶剤; 
 アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;
等が挙げられる。
 沸点120℃未満の有機溶剤としては、表面エネルギーが低く、コート剤の塗れ広がり性を高められる観点から、アルコール系溶剤が好ましい。
 ここで、アルコール系溶剤とは、炭化水素の一つの炭素原子に一つヒドロキシ基が置換した構造の溶剤を指す。
(Organic solvent with boiling point less than 120 ° C)
The dispersion medium (D) may contain at least one organic solvent having a boiling point of less than 120 ° C.
Examples of organic solvents having a boiling point of less than 120 ° C. include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3- Alcohol solvents such as pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, neopentanol, cyclopentanol, 1-hexanol, cyclohexanol;
Glycol ether solvents such as dipropylene glycol methyl ether;
Ether solvents such as isopropyl ether, 1,4-dioxane, tert-butyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, diethyl ether;
Ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone;
Etc.
As the organic solvent having a boiling point of less than 120 ° C., an alcohol solvent is preferable from the viewpoint of low surface energy and enhancing spreadability of the coating agent.
Here, the alcohol solvent refers to a solvent having a structure in which one hydroxy group is substituted for one carbon atom of a hydrocarbon.
 分散媒(D)が沸点120℃未満の有機溶剤を含む場合、分散媒(D)における沸点120℃未満の有機溶剤の含有量は、分散媒(D)の全量に対し、10質量%~60質量%が好ましく、20質量%~50質量%がより好ましく、25質量%~45質量%が更に好ましい。 When the dispersion medium (D) contains an organic solvent having a boiling point of less than 120 ° C., the content of the organic solvent having a boiling point of less than 120 ° C. in the dispersion medium (D) is 10% by mass to 60% with respect to the total amount of the dispersion medium (D). % By mass is preferable, 20% by mass to 50% by mass is more preferable, and 25% by mass to 45% by mass is still more preferable.
(沸点120℃以上の溶剤)
 分散媒(D)は、沸点120℃以上の溶剤(以下、「高沸点溶剤」ともいう)を含むことが好ましい。
 これにより、被膜のレベリング性(平坦性)が向上する。これにより、積層体のヘイズがより低減され、かつ、積層体の防曇性がより向上する。
(Solvent with boiling point of 120 ° C or higher)
The dispersion medium (D) preferably contains a solvent having a boiling point of 120 ° C. or higher (hereinafter also referred to as “high boiling solvent”).
Thereby, the leveling property (flatness) of a film improves. Thereby, the haze of a laminated body is reduced more and the anti-fogging property of a laminated body improves more.
 高沸点溶剤の沸点は、被膜のレベリング性をより高め、ヘイズのより低い積層体を得る観点から、140℃以上が好ましく、150℃以上がより好ましい。
 なお、コート剤による被膜の乾燥不良を抑制する点からは、高沸点溶剤の沸点の上限は、230℃が好ましい。
The boiling point of the high boiling point solvent is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of further improving the leveling property of the coating and obtaining a laminate having a lower haze.
In addition, the upper limit of the boiling point of the high boiling point solvent is preferably 230 ° C. from the point of suppressing poor drying of the film by the coating agent.
 高沸点溶剤としては、例えば、以下に示すものが挙げられる。以下に示す高沸点溶剤の後ろの括弧内の数値は沸点を示す。
 1,3-ブタンジオール(207℃)、1,4-ブタンジオール(228℃)、ベンジルアルコール(205℃)、テルピオネール(217℃)等のアルコール系溶剤;
 エチレングリコール(197℃)、ジエチレングリコール(244℃)、トリエチレングリコール(287℃)、プロピレングリコール(187℃)、ジプロピレングリコール(230℃)等のグリコール系溶剤;
 ジエチレングリコールモノメチルエーテル(194℃)、ジエチレングリコールモノエチルエーテル(202℃)、ジエチレングリコールモノブチルエーテル(231℃)、トリエチレングリコールモノメチルエーテル(249℃)、プロピレングリコールモノメチルエーテル(121℃)、プロピレングリコールモノブチルエーテル(170℃)、プロピレングリコールモノプロピルエーテル(150℃)、3-メトキシ-3-メチル-1-ブタノール(174℃)、ジエチレングリコールモノへキシルエーテル(261℃以上)、プロピレングリコールモノメチルエーテルプロピオネート(160℃)、メチルセロソルブ(エチレングリコールモノメチルエーテル、125℃)、エチルセロソルブ(エチレングリコールモノエチルエーテル、135℃)、ブチルセロソルブ(エチレングリコールモノブチルエーテル、171℃)、エチレングリコール-モノ-tert-ブチルエーテル(153℃)、トリプロピレングリコールモノメチルエーテル(243℃)、ジプロピレングリコールモノメチルエーテル(188℃)等のグリコールエーテル系溶剤;
 ジエチレングリコールジメチルエーテル(162℃)、ジエチレングリコールエチルメチルエーテル(176℃)、ジエチレングリコールイソプロピルメチルエーテル(179℃)、トリエチレングリコールジメチルエーテル(216℃)等のエーテル系溶剤;
 エチレングリコールモノメチルエーテルアセテート(145℃)、ジエチレングリコールモノエチルエーテルアセテート(217℃)、酢酸エチル(154℃)、乳酸エチル(154℃)、酢酸3-メトキシブチル(172℃)等のエステル系溶剤;
 ジアセトンアルコール(169℃)、シクロヘキサノン(156℃)、シクロペンタノン(131℃)等のケトン系溶剤;
等が挙げられる。
Examples of the high boiling point solvent include the following. The numerical value in parentheses after the high boiling point solvent shown below indicates the boiling point.
Alcohol solvents such as 1,3-butanediol (207 ° C.), 1,4-butanediol (228 ° C.), benzyl alcohol (205 ° C.), terpionol (217 ° C.);
Glycol solvents such as ethylene glycol (197 ° C.), diethylene glycol (244 ° C.), triethylene glycol (287 ° C.), propylene glycol (187 ° C.), dipropylene glycol (230 ° C.);
Diethylene glycol monomethyl ether (194 ° C), diethylene glycol monoethyl ether (202 ° C), diethylene glycol monobutyl ether (231 ° C), triethylene glycol monomethyl ether (249 ° C), propylene glycol monomethyl ether (121 ° C), propylene glycol monobutyl ether (170 ° C), propylene glycol monopropyl ether (150 ° C), 3-methoxy-3-methyl-1-butanol (174 ° C), diethylene glycol monohexyl ether (over 261 ° C), propylene glycol monomethyl ether propionate (160 ° C) ), Methyl cellosolve (ethylene glycol monomethyl ether, 125 ° C.), ethyl cellosolve (ethylene glycol monoethyl ether) 135 ° C), butyl cellosolve (ethylene glycol monobutyl ether, 171 ° C), ethylene glycol mono-tert-butyl ether (153 ° C), tripropylene glycol monomethyl ether (243 ° C), dipropylene glycol monomethyl ether (188 ° C), etc. Glycol ether solvents;
Ether solvents such as diethylene glycol dimethyl ether (162 ° C.), diethylene glycol ethyl methyl ether (176 ° C.), diethylene glycol isopropyl methyl ether (179 ° C.), triethylene glycol dimethyl ether (216 ° C.);
Ester solvents such as ethylene glycol monomethyl ether acetate (145 ° C), diethylene glycol monoethyl ether acetate (217 ° C), ethyl acetate (154 ° C), ethyl lactate (154 ° C), 3-methoxybutyl acetate (172 ° C);
Ketone solvents such as diacetone alcohol (169 ° C.), cyclohexanone (156 ° C.), cyclopentanone (131 ° C.);
Etc.
 ここで、グリコール系溶剤とは、炭化水素の2つ以上の炭素原子にそれぞれ1つずつヒドロキシ基が置換した構造の溶剤をいう。
 グリコールエーテル系溶剤とは、一分子内に一つのヒドロキシ基と少なくとも一つのエーテル基を有する構造の溶剤を指す。
 エーテル系溶剤とは、一分子内にヒドロキシ基又はエステル基を有さず、少なくとも一つエーテル基を有する構造の溶剤を指す。
 エステル系溶剤とは、一分子内に少なくとも一つエステル基を有する構造の溶剤を指す。
 ケトン系溶剤とは、一分子内に少なくとも一つケトン基を有する構造の溶剤を指す。
Here, the glycol solvent refers to a solvent having a structure in which one hydroxyl group is substituted on each of two or more carbon atoms of a hydrocarbon.
The glycol ether solvent refers to a solvent having a structure having one hydroxy group and at least one ether group in one molecule.
The ether solvent refers to a solvent having a structure having at least one ether group without having a hydroxy group or an ester group in one molecule.
The ester solvent refers to a solvent having a structure having at least one ester group in one molecule.
The ketone solvent refers to a solvent having a structure having at least one ketone group in one molecule.
 高沸点溶剤としては、表面エネルギーが低く、被膜のレベリング性がより高められる点から、グリコールエーテル系溶剤を用いることが好ましい。
 また、同様の理由から、コート剤に含まれる高沸点溶剤としては、分岐アルキル基を有する溶剤を用いることが好ましい。
As the high boiling point solvent, it is preferable to use a glycol ether solvent from the viewpoint that the surface energy is low and the leveling property of the film is further improved.
For the same reason, it is preferable to use a solvent having a branched alkyl group as the high boiling point solvent contained in the coating agent.
 分散媒(D)は、高沸点溶剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 分散媒(D)が高沸点溶剤を2種以上含む場合は、そのうちの1種としてグリコールエーテル系溶剤を含むことが好ましい。グリコールエーテル系溶剤を含むことで、被膜のレベリング性がより高められる。
The dispersion medium (D) may contain only one kind of high boiling point solvent or may contain two or more kinds.
When the dispersion medium (D) contains two or more high boiling solvents, it is preferable to contain a glycol ether solvent as one of them. By including the glycol ether solvent, the leveling property of the coating is further improved.
 分散媒(D)が高沸点溶剤を含む場合、分散媒(D)における高沸点溶剤の含有量は、分散媒(D)の全量に対し、10質量%~60質量%が好ましく、20質量%~50質量%がより好ましく、20質量%~40質量%が更に好ましい。 When the dispersion medium (D) includes a high boiling point solvent, the content of the high boiling point solvent in the dispersion medium (D) is preferably 10% by mass to 60% by mass, and 20% by mass with respect to the total amount of the dispersion medium (D). Is more preferably from 50% by weight, and even more preferably from 20% by weight to 40% by weight.
<縮合触媒(E)>
 本開示に係るコート剤は、更に、金属キレート化合物を含む縮合触媒(E)を含有することが好ましい。
 ここで、「縮合触媒(E)」とは、コート剤に含まれる縮合触媒全体を意味する。
 本開示に係るコート剤が、更に、金属キレート化合物を含む縮合触媒(E)を含有する場合、本開示に係るコート剤は、金属キレート化合物である縮合触媒を、1種のみ含有していてもよいし、2種以上含有していてもよい。また、本開示に係るコート剤は、金属キレート化合物以外の縮合触媒を少なくとも1種含有していてもよい。
<Condensation catalyst (E)>
The coating agent according to the present disclosure preferably further contains a condensation catalyst (E) containing a metal chelate compound.
Here, the “condensation catalyst (E)” means the entire condensation catalyst contained in the coating agent.
When the coating agent according to the present disclosure further contains a condensation catalyst (E) containing a metal chelate compound, the coating agent according to the present disclosure may contain only one type of condensation catalyst that is a metal chelate compound. It may be good and may contain 2 or more types. The coating agent according to the present disclosure may contain at least one condensation catalyst other than the metal chelate compound.
 本開示に係るコート剤は、更に、金属キレート化合物を含む縮合触媒(E)を含有する場合には、積層体のヘイズがより低減され、積層体の防曇性がより向上する。この理由は、シロキサン化合物(A)の縮合反応がより高められ、その結果、被膜のレベリング性が向上し、かつ、被膜の造膜性がより向上するためと考えられる。 When the coating agent according to the present disclosure further contains a condensation catalyst (E) containing a metal chelate compound, the haze of the laminate is further reduced, and the antifogging property of the laminate is further improved. The reason for this is considered to be that the condensation reaction of the siloxane compound (A) is further enhanced, and as a result, the leveling property of the film is improved and the film forming property of the film is further improved.
 金属キレート化合物である縮合触媒としては、アルミニウムビス(エチルアセトアセテート)モノ(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムエチルアセトアセテートジイソプロピレートなどのアルミニウムキレート化合物;ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)などのジルコニウムキレート化合物;チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)などのチタニウムキレート化合物;等が挙げられる。 Examples of condensation catalysts that are metal chelate compounds include aluminum chelate compounds such as aluminum bis (ethylacetoacetate) mono (acetylacetonate), aluminum tris (acetylacetonate), aluminum ethylacetoacetate diisopropylate; zirconium tetrakis (acetylacetate) ), Zirconium chelate compounds such as zirconium bis (butoxy) bis (acetylacetonate); titanium chelate compounds such as titanium tetrakis (acetylacetonate) and titanium bis (butoxy) bis (acetylacetonate); and the like.
 金属キレート化合物以外の縮合触媒としては、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクチエートなどの有機スズ化合物;アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムsec-ブチレートなどのアルミニウムアルコキシド;チタン(IV)エトキシド、チタンイソプロポキシド、チタン(IV)n-ブトキシドなどのチタンアルコキシド;ジルコニウム(IV)エトキシド、ジルコニウム(IV)n-プロポキシド、ジルコニウム(IV)n-ブトキシドなどのジルコニウムアルコキシド;等が挙げられる。 Examples of condensation catalysts other than metal chelate compounds include organotin compounds such as dibutyltin diacetate, dibutyltin dilaurate, and dibutyltin dioctate; aluminum alkoxides such as aluminum ethylate, aluminum isopropylate, and aluminum sec-butyrate; titanium (IV) ethoxide, And titanium alkoxides such as titanium isopropoxide and titanium (IV) n-butoxide; zirconium alkoxides such as zirconium (IV) ethoxide, zirconium (IV) n-propoxide and zirconium (IV) n-butoxide;
 金属キレート化合物以外の縮合触媒としては、酸触媒及びアルカリ触媒も挙げられる。
 酸触媒としては、硝酸、塩酸、硫酸、酢酸、リン酸、クロロ酢酸、蟻酸、シュウ酸、トルエンスルホン酸、キシレンスルホン酸、クメンスルホン酸、ジノニルナフタレンモノスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸、ポリリン酸塩、メタリン酸塩などが挙げられ、リン酸、トルエンスルホン酸、ポリリン酸塩、又はメタリン酸塩が好ましい。
 アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、炭酸水素ナトリウム、尿素などが挙げられ、炭酸水素ナトリウム又は尿素が好ましい。
Examples of the condensation catalyst other than the metal chelate compound include an acid catalyst and an alkali catalyst.
Acid catalysts include nitric acid, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, chloroacetic acid, formic acid, oxalic acid, toluenesulfonic acid, xylenesulfonic acid, cumenesulfonic acid, dinonylnaphthalene monosulfonic acid, dinonylnaphthalenedisulfonic acid, dodecyl Examples thereof include benzenesulfonic acid, polyphosphate, and metaphosphate, and phosphoric acid, toluenesulfonic acid, polyphosphate, and metaphosphate are preferable.
Examples of the alkali catalyst include sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, sodium hydrogen carbonate, urea and the like, and sodium hydrogen carbonate or urea is preferable.
 本開示に係るコート剤が金属キレート化合物である縮合触媒を含む場合、金属キレート化合物である縮合触媒の含有量は、コート剤の全固形分に対して、0.1質量%~30質量%が好ましく、2質量%~20質量%がより好ましく、3質量%~10質量%が更に好ましい。 When the coating agent according to the present disclosure includes a condensation catalyst that is a metal chelate compound, the content of the condensation catalyst that is a metal chelate compound is 0.1% by mass to 30% by mass with respect to the total solid content of the coating agent. It is preferably 2% by mass to 20% by mass, more preferably 3% by mass to 10% by mass.
 本開示に係るコート剤が縮合触媒(E)を含む場合、縮合触媒(E)(即ち、含有される縮合触媒全体)に占める縮合触媒の割合は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。 When the coating agent according to the present disclosure includes the condensation catalyst (E), the proportion of the condensation catalyst in the condensation catalyst (E) (that is, the entire condensation catalyst contained) is preferably 60% by mass or more, and 70 More preferably, it is more than 80 mass%, and still more preferably 80 mass% or more.
 本開示に係るコート剤が縮合触媒(E)を含む場合、縮合触媒(E)の含有量(即ち、含有される縮合触媒全体の含有量)は、コート剤の全固形分に対して、0.1質量%~30質量%が好ましく、2質量%~20質量%がより好ましく、3質量%~10質量%が更に好ましい。 When the coating agent according to the present disclosure includes the condensation catalyst (E), the content of the condensation catalyst (E) (that is, the content of the entire condensation catalyst contained) is 0 with respect to the total solid content of the coating agent. It is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and still more preferably 3% by mass to 10% by mass.
<その他の成分>
 本開示に係るコート剤は、上述した成分以外のその他の成分を含有していてもよい。
 その他の成分としては、密着助剤、帯電防止剤、紫外線吸収剤、酸化防止剤、界面活性剤(例えばノニオン界面活性剤)、等が挙げられる。
<Other ingredients>
The coating agent which concerns on this indication may contain other components other than the component mentioned above.
Examples of other components include adhesion assistants, antistatic agents, ultraviolet absorbers, antioxidants, surfactants (for example, nonionic surfactants), and the like.
 ノニオン界面活性剤としては、ポリアルキレングリコールモノアルキルエーテル、ポリアルキレングリコールモノアルキルエステル、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテル等が挙げられる。
 ノニオン界面活性剤のより具体的な例としては、ポリエチレングリコールモノラウリルエーテル、ポリエチレングリコールモノステアリルエーテル、ポリエチレングリコールモノセチルエーテル、ポリエチレングリコールモノラウリルエステル、ポリエチレングリコールモノステアリルエステル等が挙げられる。
Examples of the nonionic surfactant include polyalkylene glycol monoalkyl ether, polyalkylene glycol monoalkyl ester, polyalkylene glycol monoalkyl ester / monoalkyl ether, and the like.
More specific examples of nonionic surfactants include polyethylene glycol monolauryl ether, polyethylene glycol monostearyl ether, polyethylene glycol monocetyl ether, polyethylene glycol monolauryl ester, polyethylene glycol monostearyl ester, and the like.
 ノニオン界面活性剤としては、市販品を用いてもよい。
 ノニオン界面活性剤の市販品の例としては、日本エマルジョン(株)のEMALEX(登録商標) 715(HLB値:15.6)、EMALEX(登録商標) 720(HLB値:16.5)、EMALEX(登録商標) 730(HLB値:17.5)、EMALEX(登録商標) 750(HLB値:18.4)(いずれも商品名、ポリオキシエチレンラウリルエーテル)、花王(株)のレオドールTW-P120(商品名、ポリオキシエチレンソルビタンモノパルミテート、HLB値:15.6)、三洋化成工業(株)のPEG2000(商品名、HLB値:19.9)等が挙げられる。
 ここで、HLB値は、グリフィン法(全訂版 新・界面活性剤入門、p128)により以下の式(I)で定義され、算術により求められる値である。
 界面活性剤のHLB値=(親水基部分の分子量/界面活性剤の分子量)×20 (I)
 ノニオン界面活性剤のHLB値は、15.5以上であることが好ましく、16以上であることがより好ましく、17以上であることが更に好ましく、18以上であることが特に好ましい。
 ノニオン界面活性剤のHLB値の上限は、特に限定されず、例えば、20以下が好ましい。
A commercially available product may be used as the nonionic surfactant.
Examples of commercially available nonionic surfactants include EMALEX (registered trademark) 715 (HLB value: 15.6), EMALEX (registered trademark) 720 (HLB value: 16.5), EMALEX (Japan Emulsion Co., Ltd.). (Registered Trademark) 730 (HLB value: 17.5), EMALEX (Registered Trademark) 750 (HLB value: 18.4) (both trade names, polyoxyethylene lauryl ether), Leodol TW-P120 (trade name) of Kao Corporation Product name, polyoxyethylene sorbitan monopalmitate, HLB value: 15.6), PEG2000 (trade name, HLB value: 19.9) of Sanyo Chemical Industries, Ltd., and the like.
Here, the HLB value is a value that is defined by the following formula (I) by the Griffin method (all revised edition, introduction to surfactants, p128) and obtained by arithmetic.
HLB value of surfactant = (molecular weight of hydrophilic group portion / molecular weight of surfactant) × 20 (I)
The HLB value of the nonionic surfactant is preferably 15.5 or more, more preferably 16 or more, still more preferably 17 or more, and particularly preferably 18 or more.
The upper limit of the HLB value of a nonionic surfactant is not specifically limited, For example, 20 or less is preferable.
<コート剤の調製方法等>
 本開示に係るコート剤は、上述した各成分を混合することにより調製され得る。
 調製方法の一例として、以下の方法が挙げられる。
 まず、式(1)で表される化合物と水とを混合し、式(1)で表される化合物の加水分解縮合物を生成させ、この加水分解縮合物を含む液体(以下、「液体A」ともいう)を調製する。液体Aは、式(1)で表される化合物、上記加水分解縮合物、及び水以外の成分を含んでいてもよい。
 次に、得られた液体Aに対し、無機酸化物粒子(B)、酸基を有するポリマー分散剤(C)、及び分散媒(D)、並びに必要に応じ、縮合触媒(E)等のその他の成分を添加することにより、本開示に係るコート剤を得る。
 なお、言うまでも無いが、本開示に係るコート剤を調製する際に、分散媒(D)以外の成分(例えば高屈折率粒子)の分散液(以下、「原料分散液」ともいう)を用いる場合には、この原料分散液中の分散媒も、分散媒(D)(コート剤に含まれる分散媒全体)に含まれる。
<Method for preparing coating agent>
The coating agent which concerns on this indication may be prepared by mixing each component mentioned above.
The following method is mentioned as an example of a preparation method.
First, a compound represented by the formula (1) and water are mixed to produce a hydrolysis condensate of the compound represented by the formula (1), and a liquid containing the hydrolysis condensate (hereinafter referred to as “liquid A”). Is also prepared). The liquid A may contain components other than the compound represented by the formula (1), the hydrolysis condensate, and water.
Next, with respect to the obtained liquid A, inorganic oxide particles (B), a polymer dispersant (C) having an acid group, a dispersion medium (D), and, if necessary, other such as a condensation catalyst (E) The coating agent which concerns on this indication is obtained by adding the component of.
Needless to say, when preparing the coating agent according to the present disclosure, a dispersion (hereinafter, also referred to as “raw material dispersion”) of components (for example, high refractive index particles) other than the dispersion medium (D) is used. When used, the dispersion medium in the raw material dispersion is also included in the dispersion medium (D) (the entire dispersion medium included in the coating agent).
 本開示に係るコート剤の保管容器としては、特に限定されず、一斗缶、ローヤル缶等の金属製容器であってもよいし、ポリエチレン、ポリプロピレン等の樹脂製の容器であってもよいし、コート瓶、ガロン瓶等のガラス製の容器であってもよい。
 本開示に係るコート剤の保管温度は、0℃以上50℃以下であることが好ましい。
The storage container for the coating agent according to the present disclosure is not particularly limited, and may be a metal container such as a Ito can or a royal can, or a resin container such as polyethylene or polypropylene. Glass containers such as coat bottles and gallon bottles may be used.
The storage temperature of the coating agent according to the present disclosure is preferably 0 ° C. or higher and 50 ° C. or lower.
〔積層体の製造方法〕
 本開示に係る積層体の製造方法は、基材上に、本開示に係るコート剤を塗布し、乾燥させて被膜を形成する工程(以下、「被膜形成工程」ともいう)を含む。
 本製造方法は、被膜形成工程以外のその他の工程を含んでいてもよい。
[Method for producing laminate]
The manufacturing method of the laminated body which concerns on this indication includes the process (henceforth a "film formation process") which apply | coats the coating agent which concerns on this indication on a base material, and makes it dry and forms a film.
This manufacturing method may include other processes other than the film forming process.
<被膜形成工程>
 本製造方法は、基材上に、本開示に係るコート剤を塗布し、乾燥させて被膜を形成する被膜形成工程を含む。
<Film formation process>
This manufacturing method includes a film forming step in which a coating agent according to the present disclosure is applied onto a substrate and dried to form a film.
 基材としては、前述したとおり、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材であることが好ましい。
 ここで、(メタ)アクリル樹脂基材における(メタ)アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構造単位を含む樹脂を表す。
 (メタ)アクリル樹脂としては、1種の(メタ)アクリル酸エステルの単独重合体、2種以上の(メタ)アクリル酸エステルの共重合体、1種以上の(メタ)アクリル酸エステルと1種以上のその他のモノマー(例えば(メタ)アクリル酸)との共重合体、等が挙げられる。
 (メタ)アクリル樹脂としては、(メタ)アクリル酸メチルに由来する構造単位を含む樹脂が好ましく、メタクリル酸メチルの単独重合体(PMMA)が特に好ましい。
As described above, the substrate is preferably a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
Here, the (meth) acrylic resin in the (meth) acrylic resin substrate represents a resin containing a structural unit derived from a (meth) acrylic ester.
As the (meth) acrylic resin, one kind of (meth) acrylic acid ester homopolymer, two or more kinds of (meth) acrylic acid ester copolymers, one or more kinds of (meth) acrylic acid esters and one kind Examples thereof include copolymers with other monomers (for example, (meth) acrylic acid).
As the (meth) acrylic resin, a resin containing a structural unit derived from methyl (meth) acrylate is preferable, and a homopolymer of methyl methacrylate (PMMA) is particularly preferable.
 また、基材の材料としては、複数の材料から形成される複合材料を用いることもできる。例えば、基材の材料は、ガラス及び樹脂材料を含み、ガラスと樹脂材料とが混在して複合化した複合材、複数種の樹脂材料が混練又は貼合された樹脂複合材等であってもよい。 Also, as the base material, a composite material formed from a plurality of materials can be used. For example, the material of the base material may include glass and a resin material, a composite material in which glass and a resin material are mixed to be composited, a resin composite material in which a plurality of types of resin materials are kneaded or bonded, and the like. Good.
 また、基材としては、屈折率が1.45~1.70(より好ましくは1.49~1.59)である基材が好ましい。 Further, as the substrate, a substrate having a refractive index of 1.45 to 1.70 (more preferably 1.49 to 1.59) is preferable.
 また、基材としては、透明性を有する基材が好ましい。
 ここで、透明性を有するとは、波長400nm~700nmの可視光の透過率が、80%以上(好ましくは90%以上)であることを意味する。
Moreover, as a base material, the base material which has transparency is preferable.
Here, having transparency means that the transmittance of visible light having a wavelength of 400 nm to 700 nm is 80% or more (preferably 90% or more).
 基材の厚さ及び形状は、特に限定されず、適用対象に応じて、適宜設定される。
 また、基材の表面には、必要に応じ、表面処理が施されていてもよい。表面処理方法としては、特に制限はなく、公知の方法を用いることができる。
The thickness and shape of the substrate are not particularly limited, and are appropriately set according to the application target.
Further, the surface of the base material may be subjected to a surface treatment as necessary. There is no restriction | limiting in particular as a surface treatment method, A well-known method can be used.
 塗布の方法としては、基材の形状、大きさ、被膜の厚み等に応じて決定されればよく、例えば、スプレー塗布、刷毛塗布、ローラー塗布、バー塗布、ディップ塗布(所謂、浸漬塗布)等の公知の塗布法を適用することができる。
 これらの中でも、曲面、凹凸等の様々な表面形状を有する立体構造体へ塗布する場合には、スプレー塗布が好ましい。
The coating method may be determined according to the shape, size, thickness of the coating, etc., for example, spray coating, brush coating, roller coating, bar coating, dip coating (so-called dip coating), etc. The known coating method can be applied.
Among these, spray coating is preferable when applying to three-dimensional structures having various surface shapes such as curved surfaces and unevenness.
 コート剤の塗布によって得られた塗膜を乾燥させる方法としては、塗膜を加熱することによって乾燥させる、加熱乾燥が好ましい。
 加熱乾燥の温度としては、40℃~150℃が好ましく、60℃~150℃がより好ましく、90℃~150℃が更に好ましい。
 ここでいう温度は、塗膜の表面を温度を意味する。塗膜の表面の温度は、赤外線温度計等により測定することができる。
 加熱乾燥の時間としては、1分~60分が好ましく、5分~40分がより好ましい。
 加熱乾燥を行う前に、例えば、15℃以上40℃未満の温度で、1秒以上3分以下の時間、塗膜を静置させてもよい。
As a method of drying the coating film obtained by applying the coating agent, heat drying is preferred in which the coating film is dried by heating.
The heat drying temperature is preferably 40 ° C. to 150 ° C., more preferably 60 ° C. to 150 ° C., and still more preferably 90 ° C. to 150 ° C.
The temperature here means the temperature of the surface of the coating film. The surface temperature of the coating film can be measured with an infrared thermometer or the like.
The heat drying time is preferably 1 minute to 60 minutes, and more preferably 5 minutes to 40 minutes.
Before performing heat drying, for example, the coating film may be allowed to stand at a temperature of 15 ° C. or higher and lower than 40 ° C. for a time of 1 second or longer and 3 minutes or shorter.
 加熱乾燥は、公知の加熱装置を用いて行ってもよい。
 加熱装置としては、オーブン、電気炉等の他、製造ラインに合わせて独自に作製した加熱装置を用いることができる。
You may perform heat drying using a well-known heating apparatus.
As the heating device, an oven, an electric furnace, or the like, or a heating device uniquely manufactured according to the production line can be used.
〔積層体〕
 本開示に係る積層体は、基材と基材上に配置された被膜とを含み、被膜が、下記式(1)で表される化合物の加水分解縮合物を含むシロキサン縮合体(A1)と、屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B1)と、酸基を有するポリマー分散剤(C1)と、を含有する積層体である。
[Laminate]
The laminate according to the present disclosure includes a base material and a coating film disposed on the base material, and the coating film includes a siloxane condensate (A1) including a hydrolysis condensate of a compound represented by the following formula (1): And a laminate containing inorganic oxide particles (B1) containing inorganic oxide particles having a refractive index of 1.60 or more and a polymer dispersant (C1) having an acid group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
 本開示に係る積層体において、被膜は、基材の一部の上に配置されていてもよいし、基材の全体の上に配置されていてもよい。
 また、被膜は、基材に直接接して配置されていてもよいし、基材に対し他の層(例えば下塗り層)を介して配置されていてもよい。
In the laminate according to the present disclosure, the coating film may be disposed on a part of the base material, or may be disposed on the entire base material.
Moreover, the coating film may be disposed in direct contact with the base material, or may be disposed on the base material via another layer (for example, an undercoat layer).
 本開示に係る積層体において、基材の好ましい態様については、前述の積層体の製造方法における基材の好ましい態様と同様である。 In the laminate according to the present disclosure, the preferred embodiment of the substrate is the same as the preferred embodiment of the substrate in the method for producing a laminate described above.
 本開示に係る積層体における被膜において、シロキサン縮合体(A1)は、式(1)で表される化合物の加水分解縮合物を含む。
 シロキサン縮合体(A1)の原料である式(1)で表される化合物は、本開示に係るコート剤における式(1)で表される化合物と同義であり、好ましい態様も同様である。
In the coating film in the laminate according to the present disclosure, the siloxane condensate (A1) includes a hydrolysis condensate of the compound represented by the formula (1).
The compound represented by the formula (1) which is a raw material of the siloxane condensate (A1) has the same meaning as the compound represented by the formula (1) in the coating agent according to the present disclosure, and the preferred embodiment is also the same.
 前述したとおり、「式(1)で表される化合物の加水分解縮合物」の概念には、式(1)で表される化合物が加水分解縮合を1回行って得られた生成物だけでなく、式(1)で表される化合物が加水分解縮合を複数回行って得られた生成物も包含される。
 従って、例えば、本開示に係る積層体における被膜が、本開示に係るコート剤であって、かつ、式(1)で表される化合物の加水分解縮合物(以下、「加水分解縮合物X1」とする)を含む態様のコート剤を塗布し、乾燥させて形成されたものである場合、シロキサン縮合体(A1)における「式(1)で表される化合物の加水分解縮合物」は、加水分解縮合物X1が更に1回以上加水分解縮合して得られた加水分解縮合物である場合がある。
As described above, the concept of “hydrolysis condensate of compound represented by formula (1)” includes only a product obtained by subjecting the compound represented by formula (1) to one hydrolysis condensation. In addition, a product obtained by subjecting the compound represented by the formula (1) to hydrolytic condensation multiple times is also included.
Therefore, for example, the coating in the laminate according to the present disclosure is a coating agent according to the present disclosure, and a hydrolysis condensate (hereinafter referred to as “hydrolysis condensate X1”) of the compound represented by the formula (1) In the siloxane condensate (A1), the “hydrolysis condensate of the compound represented by the formula (1)” is a hydrolyzed product. The decomposition condensate X1 may be a hydrolysis condensate obtained by further hydrolytic condensation one or more times.
 本開示に係るコート剤における無機酸化物粒子(B1)及び酸基を有するポリマー分散剤(C1)については、それぞれ、本開示に係るコート剤における、無機酸化物粒子(B)及び酸基を有するポリマー分散剤(C)と同義であり、好ましい態様もそれぞれ同様である。
 本開示に係る積層体における被膜は、シロキサン縮合体(A1)、無機酸化物粒子(B1)、及び酸基を有するポリマー分散剤(C1)以外のその他の成分を含んでいてもよい。その他の成分としては、本開示に係るコート剤における成分が挙げられる。
The inorganic oxide particles (B1) and the polymer dispersant (C1) having an acid group in the coating agent according to the present disclosure have the inorganic oxide particles (B) and the acid group in the coating agent according to the present disclosure, respectively. It is synonymous with a polymer dispersing agent (C), and its preferable aspect is also the same.
The film in the laminate according to the present disclosure may contain other components other than the siloxane condensate (A1), the inorganic oxide particles (B1), and the polymer dispersant (C1) having an acid group. Examples of the other components include components in the coating agent according to the present disclosure.
 要するに、本開示に係る積層体における被膜の成分(但し、シロキサン縮合体(A1)を除く)の好ましい態様は、本開示に係るコート剤における固形分(即ち、シロキサン化合物(A)及び分散媒(D)以外の成分)の好ましい態様と同様である。
 従って、本開示に係る積層体における被膜の成分(但し、シロキサン縮合体(A1)を除く)の好ましい態様については、前述の本開示に係るコート剤の記載を適宜参照できる。但し、前述の本開示に係るコート剤の記載における「コート剤の全固形分」は、「被膜の全固形分」と読み替える。
 ここで、被膜の全固形分とは、被膜中に分散媒(D)が残存している場合には、被膜中の分散媒(D)を除いた全成分を意味し、被膜中に分散媒(D)が残存していない場合には、被膜の全成分を意味する(以下、同様とする)。
In short, the preferred embodiments of the components of the coating film in the laminate according to the present disclosure (excluding the siloxane condensate (A1)) include the solid content (that is, the siloxane compound (A) and the dispersion medium ( This is the same as the preferred embodiment of the component (other than D).
Therefore, for the preferred embodiments of the film components (excluding the siloxane condensate (A1)) in the laminate according to the present disclosure, the description of the coating agent according to the present disclosure can be referred to as appropriate. However, “the total solid content of the coating agent” in the description of the coating agent according to the present disclosure is read as “the total solid content of the coating film”.
Here, the total solid content of the coating means all components excluding the dispersion medium (D) in the coating when the dispersion medium (D) remains in the coating, and the dispersion medium in the coating When (D) does not remain, it means all components of the coating (hereinafter the same).
 本開示に係る積層体における被膜における式(1)で表される化合物の加水分解縮合物の含有量は、被膜の全固形分に対し、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、15質量%~30質量%が更に好ましい。
 シロキサン縮合体(A1)に占める、式(1)で表される化合物の加水分解縮合物の割合は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 また、本開示に係る積層体における被膜におけるシロキサン縮合体(A1)の含有量は、被膜の全固形分に対し、5質量%~50質量%が好ましく、10質量%~40質量%がより好ましく、15質量%~30質量%が更に好ましい。
The content of the hydrolysis-condensation product of the compound represented by the formula (1) in the coating in the laminate according to the present disclosure is preferably 5% by mass to 50% by mass with respect to the total solid content of the coating, and is preferably 10% by mass to 40% by mass is more preferable, and 15% by mass to 30% by mass is even more preferable.
The proportion of the hydrolysis condensate of the compound represented by formula (1) in the siloxane condensate (A1) is preferably 60% by mass or more, more preferably 80% by mass or more, and 90% by mass. % Or more is more preferable.
In addition, the content of the siloxane condensate (A1) in the coating in the laminate according to the present disclosure is preferably 5% by mass to 50% by mass, and more preferably 10% by mass to 40% by mass with respect to the total solid content of the coating. More preferably, the content is 15% by mass to 30% by mass.
 本開示に係る積層体には、以下の好ましい態様が含まれる。
 無機酸化物粒子(B1)が、シリカ粒子を含む態様。
 無機酸化物粒子(B1)の含有量が、被膜の全固形分に対して50質量%以上である態様。
 無機酸化物粒子(B1)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含む態様。
 無機酸化物粒子(B1)が、屈折率2.00以上の無機酸化物粒子を含む態様。
 屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である態様。
 基材が、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材である態様。
The laminate according to the present disclosure includes the following preferred embodiments.
The aspect in which an inorganic oxide particle (B1) contains a silica particle.
A mode in which the content of the inorganic oxide particles (B1) is 50% by mass or more based on the total solid content of the coating.
The inorganic oxide particles (B1) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
The aspect in which an inorganic oxide particle (B1) contains the inorganic oxide particle of refractive index 2.00 or more.
A mode in which the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
The aspect whose base material is a glass base material, a polycarbonate base material, or a (meth) acrylic resin base material.
 本開示に係る積層体において、被膜の厚さには特に制限はない。
 被膜の厚さは、10nm~2000nmが好ましく、10nm~1000nmがより好ましく、50nm~1000nmが更に好ましい。
 被膜の厚さが10nm以上であると、被膜の形成しやすさの点で有利である。
 被膜の厚さが2000nm以下であると、被膜のクラックを抑制できる点で有利である。
In the laminate according to the present disclosure, the thickness of the coating is not particularly limited.
The thickness of the coating is preferably 10 nm to 2000 nm, more preferably 10 nm to 1000 nm, and still more preferably 50 nm to 1000 nm.
When the thickness of the coating is 10 nm or more, it is advantageous in terms of ease of forming the coating.
When the thickness of the coating is 2000 nm or less, it is advantageous in that cracks in the coating can be suppressed.
 また、本開示に係る積層体における被膜は、積層体の防曇性をより向上させる観点から、空隙を有することが好ましい。空隙は、主として被膜中の無機酸化物粒子(B1)間に存在し得る。
 ここで、被膜が空隙を有するとは、被膜の空隙率が5%以上であることを意味する。
 被膜の空隙率は、好ましくは5%~50%であり、より好ましくは10%~50%である。
 被膜の空隙率は、自動ポロシメータ((株)島津製作所、オートポアIV 9520)を用いて測定される値である。
Moreover, it is preferable that the film in the laminated body which concerns on this indication has a space | gap from a viewpoint of improving the anti-fogging property of a laminated body more. The voids can exist mainly between the inorganic oxide particles (B1) in the coating.
Here, that the coating has voids means that the porosity of the coating is 5% or more.
The porosity of the coating is preferably 5% to 50%, more preferably 10% to 50%.
The porosity of the coating is a value measured using an automatic porosimeter (Shimadzu Corporation, Autopore IV 9520).
 また、本開示に係る積層体のヘイズは、2.0%以下であることが好ましい。
 ヘイズは、ヘイズメーター(例えば、日本電色工業(株)の「NDH 5000」)を用いて得られる測定値である。
Moreover, it is preferable that the haze of the laminated body which concerns on this indication is 2.0% or less.
The haze is a measured value obtained using a haze meter (for example, “NDH 5000” manufactured by Nippon Denshoku Industries Co., Ltd.).
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
 以下、「%」とは、特に断りのない限り、「質量%」を意味する。
 また、「高屈折率粒子」とは、屈折率が1.60以上である無機酸化物粒子を意味し、「高沸点溶剤」とは、沸点が120℃以上である溶剤を意味し、「その他の溶剤」とは、高沸点溶剤以外の有機溶剤を意味する。
Examples of the present disclosure will be described below, but the present disclosure is not limited to the following examples.
Hereinafter, “%” means “mass%” unless otherwise specified.
“High refractive index particles” means inorganic oxide particles having a refractive index of 1.60 or more, and “high boiling point solvents” mean solvents having a boiling point of 120 ° C. or more. The term “solvent” means an organic solvent other than the high boiling point solvent.
〔実施例1〕
<液体Aの調製>
 MKC(登録商標)シリケートMS51(式(1)で表されるシロキサン化合物、三菱ケミカル(株))及びエタノールを混合した。次いでここに、イオン交換水(以下、単に「水」とする)を加え、室温(25℃、以下同様)で24時間以上撹拌することにより、式(1)で表されるシロキサン化合物の加水分解縮合物を含むシロキサン化合物(A)を含有する液体A(組成:シロキサン化合物(A)27%、水50%、及びエタノール23%)を得た。
[Example 1]
<Preparation of liquid A>
MKC (registered trademark) silicate MS51 (siloxane compound represented by the formula (1), Mitsubishi Chemical Corporation) and ethanol were mixed. Next, ion-exchanged water (hereinafter simply referred to as “water”) is added thereto, and the mixture is stirred at room temperature (25 ° C., the same shall apply hereinafter) for 24 hours or longer to hydrolyze the siloxane compound represented by the formula (1). A liquid A containing the siloxane compound (A) containing the condensate (composition: siloxane compound (A) 27%, water 50%, and ethanol 23%) was obtained.
<コート剤の調製>
 上記液体Aと、バイラール(登録商標)Al-ML15(高屈折率粒子である酸化アルミニウム粒子の分散液、固形分:15%、分散媒:水)と、DISPERBYK(登録商標)-2015(酸基としてカルボキシ基を有するポリマー分散剤の水溶液、固形分40%)と、水と、エタノールと、を混合することにより、表2に示す組成(固形分の組成、分散媒(D)の組成、及び固形分濃度)を有するコート剤を得た。
<Preparation of coating agent>
Liquid A, Bilal (registered trademark) Al-ML15 (dispersion of aluminum oxide particles as high refractive index particles, solid content: 15%, dispersion medium: water), DISPERBYK (registered trademark) -2015 (acid group) As an aqueous solution of a polymer dispersant having a carboxy group, solid content 40%), water, and ethanol, the composition shown in Table 2 (the composition of the solid content, the composition of the dispersion medium (D), and A coating agent having a solid content concentration) was obtained.
 表2中、空欄は、該当する成分を含有しないことを意味する。
 表2中、「固形分の組成」欄には、各成分(シロキサン化合物(A)、無機酸化物粒子(B)中の高屈折率粒子、及び、酸基を有するポリマー分散剤(C))に対応する素材の略称(MS51、Al-ML15、及び、BYK2015)を示す。
 表2中、「固形分の組成」欄における各成分の量は、各成分(対応する素材中の固形分)の量を示す。
 例えば、「Al-ML15」の隣の「48」との表記は、Al-ML15中の固形分(即ち、アルミナ粒子)の量が、コート剤の全固形分に対し、48質量%であることを意味し、「BYK2015」の隣の「25」との表記は、BYK2015中の固形分(即ち、カルボキシ基を有するポリマー分散剤)の量が、コート剤の全固形分に対し、25質量%であることを意味する。「MS51」の隣の「27」との表記は、シロキサン化合物(A)の素材であるMS51の量が、コート剤の全固形分に対し、27質量%であることを意味する。
In Table 2, a blank means that the corresponding component is not contained.
In Table 2, in the “Solid content” column, each component (siloxane compound (A), high refractive index particles in inorganic oxide particles (B), and polymer dispersant (C) having an acid group) The material abbreviations (MS51, Al-ML15, and BYK2015) corresponding to are shown.
In Table 2, the amount of each component in the “Composition of solid content” column indicates the amount of each component (solid content in the corresponding material).
For example, the notation “48” next to “Al-ML15” means that the amount of solids (ie, alumina particles) in Al-ML15 is 48% by mass with respect to the total solids of the coating agent. And the notation of “25” next to “BYK2015” means that the amount of solids in BYK2015 (that is, the polymer dispersant having a carboxy group) is 25% by mass with respect to the total solids of the coating agent. It means that. The notation of “27” next to “MS51” means that the amount of MS51 which is a material of the siloxane compound (A) is 27% by mass with respect to the total solid content of the coating agent.
<積層体の製造>
 上記コート剤を、基材としてのポリカーボネート(PC)基材(旭硝子(株)、カーボグラスC-110、厚さ:0.5mm、A4サイズ)の片方の面上に、スプレーガン(アネスト岩田(株)、W-101-101G)により塗装し、30℃で1分間静置した後、120℃で20分間乾燥させ、基材上に乾燥後の膜厚が300nmである被膜を形成した。スプレーガンによる塗装は下記の条件で用い、吐出量を液組成に合わせて適宜調整して行った。以上により、基材と基材上に配置された被膜とからなる積層体を得た。
-スプレーガンによる塗装条件-
 スプレーノズルと基材との距離:150mm
 ノズル口径:1.0mmφ
 エア圧:0.15MPa
 噴出量:95ml/min
<Manufacture of laminates>
The above coating agent was spray gun (Anest Iwata (Anesto Iwata (Asahi Glass Co., Ltd., Carbo Glass C-110, thickness: 0.5 mm, A4 size)) on one side of the coating agent. Co., Ltd., W-101-101G), allowed to stand at 30 ° C. for 1 minute, and then dried at 120 ° C. for 20 minutes to form a film having a dried film thickness of 300 nm on the substrate. Coating with a spray gun was performed under the following conditions, and the discharge amount was appropriately adjusted according to the liquid composition. As described above, a laminate composed of the base material and the coating film disposed on the base material was obtained.
-Painting conditions with a spray gun-
Distance between spray nozzle and substrate: 150mm
Nozzle diameter: 1.0mmφ
Air pressure: 0.15 MPa
Ejection amount: 95 ml / min
<積層体の評価>
 得られた積層体について、以下の評価を実施した。
 結果を表2に示す。
<Evaluation of laminate>
The following evaluation was implemented about the obtained laminated body.
The results are shown in Table 2.
(ヘイズ)
 積層体について、ヘイズメーターNDH 5000(日本電色工業(株))を用い、ヘイズを測定した。ヘイズの測定は、積層体における被膜側に光源を配置して測定を行った。得られた結果に基づき、下記評価基準に従い、積層体のヘイズを評価した。
 なお、ヘイズが2.0%より大きい場合、後述の虹ムラの評価を行うことができない。
(Haze)
About a laminated body, haze was measured using the haze meter NDH5000 (Nippon Denshoku Industries Co., Ltd.). The haze was measured by placing a light source on the film side of the laminate. Based on the obtained results, the haze of the laminate was evaluated according to the following evaluation criteria.
If the haze is greater than 2.0%, the rainbow unevenness described later cannot be evaluated.
-ヘイズの評価基準-
5:積層体のヘイズが0.3%以下である。
4:積層体のヘイズが0.3%より大きく1.0%以下である。
3:積層体のヘイズが1.0%より大きく2.0%以下である。
2:積層体のヘイズが2.0%より大きく3.0%以下である。
1:積層体のヘイズが3.0%より大きい。
-Evaluation criteria for haze-
5: The haze of the laminate is 0.3% or less.
4: The haze of the laminate is greater than 0.3% and 1.0% or less.
3: The haze of the laminate is greater than 1.0% and not more than 2.0%.
2: The haze of the laminate is greater than 2.0% and 3.0% or less.
1: The haze of the laminate is greater than 3.0%.
(虹ムラ)
 積層体における被膜側を、様々な角度から目視で観察し、下記評価基準に従い、虹ムラを評価した。
(Rainbow unevenness)
The film side of the laminate was visually observed from various angles, and rainbow unevenness was evaluated according to the following evaluation criteria.
-虹ムラの評価基準-
5:どの角度から見た場合にも、まったく虹ムラが視認されない。
4:見る角度によってごく薄い虹ムラが視認されることがあるが、ほとんどの角度において虹ムラが視認されない。
3:見る角度によって虹ムラが視認されることがあるが、虹ムラが視認される角度の範囲と比較して、虹ムラが視認されない角度の範囲の方が広い。
2:ほとんどの角度から見た場合に虹ムラが視認される(但し、1に該当する場合を除く)。
1:どの角度から見た場合も虹ムラが視認される。
-Evaluation criteria for rainbow unevenness-
5: No rainbow unevenness is seen at all from any angle.
4: Although very thin rainbow unevenness may be visually recognized depending on the viewing angle, rainbow unevenness is not visually recognized at most angles.
3: The rainbow unevenness may be visually recognized depending on the viewing angle, but the angle range where the rainbow unevenness is not visually recognized is wider than the range of the angle where the rainbow unevenness is visually recognized.
2: Rainbow irregularities are visible when viewed from almost any angle (except for cases corresponding to 1).
1: Rainbow irregularities are visible when viewed from any angle.
(防曇性)
 積層体における被膜に対し、60℃に加熱した水から発生する蒸気を、水面から20mmの距離で1分間当て、その後の被膜の曇り具合を目視で観察し、下記評価基準に従い、防曇性を評価した。
(Anti-fogging property)
Vapor generated from water heated to 60 ° C. is applied to the coating in the laminated body at a distance of 20 mm from the water surface for 1 minute, and the fogging of the subsequent coating is visually observed. evaluated.
-防曇性の評価基準-
5:被膜に全く曇りがなく、被膜上にきれいな水膜が形成される。
4:被膜に曇りがなく、被膜上に水膜が形成されるが、形成された水膜が僅かに揺らいでいる。
3:被膜に曇りがなく、被膜上に水膜が形成されるが、形成された水膜が揺らいでいる。
2:被膜上に水膜が不均一に形成される。
1:被膜上に水膜が形成されず、被膜が曇る。
-Evaluation criteria for anti-fogging properties-
5: There is no cloudiness on the film, and a clean water film is formed on the film.
4: The film is not cloudy and a water film is formed on the film, but the formed water film is slightly shaken.
3: The film is not cloudy and a water film is formed on the film, but the formed water film is shaking.
2: A water film is unevenly formed on the coating.
1: A water film is not formed on a film and a film becomes cloudy.
〔実施例2~24及び27~29〕
 下記表2に記載の、固形分の組成、分散媒(D)の組成、及び固形分濃度になるように、使用する素材の種類及び使用量を適宜変更したこと以外は実施例1と同様の操作を行った。
 結果を表2に示す。
 実施例2~24及び27~29において、シリカ粒子、縮合触媒(E)、及び高沸点溶剤は、いずれも、シロキサン化合物(A)を含有する液体Aの調製後の段階で、液体Aと混合することにより、コート剤に含有させた。
[Examples 2 to 24 and 27 to 29]
The same as in Example 1 except that the type and amount of materials used are appropriately changed so that the composition of the solid content, the composition of the dispersion medium (D), and the solid content concentration shown in Table 2 below are obtained. The operation was performed.
The results are shown in Table 2.
In Examples 2 to 24 and 27 to 29, the silica particles, the condensation catalyst (E), and the high boiling point solvent are all mixed with the liquid A at the stage after the preparation of the liquid A containing the siloxane compound (A). By doing so, it was included in the coating agent.
〔実施例25及び26〕
 基材の種類を表2に示すように変更したこと以外は実施例21と同様の操作を行った。
 結果を表2に示す。
 実施例25及び26において、ガラス及びPMMAとしては、それぞれ、以下のガラス基材及びPMMA基材を用いた。
 ガラス  … ガラス基材(日本電気硝子(株)製の無アルカリガラス「OA-10」、厚さ1mm)
 PMMA … ポリメチルメタクリレート(PMMA)基材((株)クラレ製の「コモグラス(登録商標)」、厚さ1mm)
[Examples 25 and 26]
The same operation as in Example 21 was performed except that the type of the substrate was changed as shown in Table 2.
The results are shown in Table 2.
In Examples 25 and 26, as glass and PMMA, the following glass substrates and PMMA substrates were used, respectively.
Glass… Glass substrate (Non-alkali glass “OA-10” manufactured by Nippon Electric Glass Co., Ltd., thickness 1 mm)
PMMA ... Polymethylmethacrylate (PMMA) base material ("Comoglas (registered trademark)" manufactured by Kuraray Co., Ltd., thickness 1 mm)
〔比較例1~3〕
 下記表2に記載の、固形分の組成、分散媒(D)の組成、及び固形分濃度になるように、使用する素材の種類及び使用量を適宜変更したこと以外は実施例1と同様の操作を行った。
 結果を表2に示す。
 比較例1~3において、シリカ粒子、縮合触媒(E)、及びその他成分は、いずれも、「コート剤の調製」の段階で、液体Aと混合することにより、コート剤に含有させた。
[Comparative Examples 1 to 3]
The same as in Example 1 except that the type and amount of materials used are appropriately changed so that the composition of the solid content, the composition of the dispersion medium (D), and the solid content concentration shown in Table 2 below are obtained. The operation was performed.
The results are shown in Table 2.
In Comparative Examples 1 to 3, the silica particles, the condensation catalyst (E), and other components were all contained in the coating agent by mixing with the liquid A at the stage of “preparation of the coating agent”.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2中の各素材は以下のとおりである。
-シロキサン化合物(A)の素材(式(1)で表される化合物)-
・MS51:MKC(登録商標)シリケートMS51(式(1)におけるR、R、R、及びR:メチル基、nの平均:5、三菱ケミカル(株))
・TEOS:テトラエトキシシラン(東京化成工業(株))
Each material in Table 2 is as follows.
-Raw material of siloxane compound (A) (compound represented by formula (1))-
MS51: MKC (registered trademark) silicate MS51 (R 1 , R 2 , R 3 , and R 4 in formula (1): methyl group, average of n: 5, Mitsubishi Chemical Corporation)
・ TEOS: Tetraethoxysilane (Tokyo Chemical Industry Co., Ltd.)
-無機酸化物粒子(B)の素材-
--高屈折率粒子の素材--
・Al-ML15:バイラール(登録商標)Al-ML15(屈折率が1.77であり平均一次粒子径が5nm未満である酸化アルミニウム粒子の分散液、固形分:15%、分散媒:水、多木化学(株))
・Al-C20:バイラール(登録商標)Al-C20(屈折率が1.77であり平均一次粒子径が15nm~20nmである酸化アルミニウム粒子の分散液、固形分:20%、分散媒:水、多木化学(株))
・AS-L10:バイラール(登録商標)AS-L10(屈折率が1.63であり平均一次粒子径が5nm~50nmである酸化アルミニウム・酸化ケイ素複合粒子の分散液、固形分:10%、分散媒:水、多木化学(株))
・Nb-G6600:バイラール(登録商標)Nb-G6600(屈折率が2.30であり平均一次粒子径が5nm以下である酸化ニオブ粒子の分散液、固形分:6%、分散媒:水、多木化学(株))
・TKS-203:TKS-203(屈折率が2.50~2.70であり平均一次粒子径が6nmである酸化チタン粒子の分散液、固形分:20%、分散媒:水、テイカ(株))
・B-10:ニードラール(登録商標)B-10(屈折率が2.10であり平均一次粒子径が8nmである酸化セリウム粒子の分散液、固形分:10%、分散媒:水、多木化学(株))
・SZR-W:SZR-W(屈折率が2.10であり平均一次粒子径が5nmである酸化ジルコニウム粒子の分散液、固形分:30%、分散媒:水、堺化学(株))
--シリカ粒子の素材--
・ST-OXS:スノーテックス(登録商標)OXS(屈折率が1.43であり平均一次粒子径が4nm~6nmであるシリカ粒子の水分散液、固形分10%、日産化学工業(株))
・ST-O33:スノーテックス(登録商標)O33(屈折率が1.43であり平均一次粒子径が10nm~15nmであるシリカ粒子の水分散液、固形分15%、日産化学工業(株))
-Material of inorganic oxide particles (B)-
--- Materials of high refractive index particles--
Al-ML15: Vilaral (registered trademark) Al-ML15 (a dispersion of aluminum oxide particles having a refractive index of 1.77 and an average primary particle diameter of less than 5 nm, solid content: 15%, dispersion medium: water, many Ki Chemical Co., Ltd.)
Al-C20: BIRAL (registered trademark) Al-C20 (a dispersion of aluminum oxide particles having a refractive index of 1.77 and an average primary particle diameter of 15 nm to 20 nm, solid content: 20%, dispersion medium: water, Taki Chemical Co., Ltd.)
AS-L10: Viral (registered trademark) AS-L10 (a dispersion of aluminum oxide / silicon oxide composite particles having a refractive index of 1.63 and an average primary particle diameter of 5 nm to 50 nm, solid content: 10%, dispersion Medium: Water, Taki Chemical Co., Ltd.)
Nb-G6600: Bayal (registered trademark) Nb-G6600 (dispersion liquid of niobium oxide particles having a refractive index of 2.30 and an average primary particle diameter of 5 nm or less, solid content: 6%, dispersion medium: water, many Ki Chemical Co., Ltd.)
TKS-203: TKS-203 (dispersion liquid of titanium oxide particles having a refractive index of 2.50 to 2.70 and an average primary particle diameter of 6 nm, solid content: 20%, dispersion medium: water, Teika Corporation ))
B-10: Niedral (registered trademark) B-10 (dispersion of cerium oxide particles having a refractive index of 2.10 and an average primary particle diameter of 8 nm, solid content: 10%, dispersion medium: water, Taki Chemical Co., Ltd.)
SZR-W: SZR-W (dispersion of zirconium oxide particles having a refractive index of 2.10 and an average primary particle diameter of 5 nm, solid content: 30%, dispersion medium: water, Sakai Chemical Co., Ltd.)
--Material of silica particles--
ST-OXS: Snowtex (registered trademark) OXS (aqueous dispersion of silica particles having a refractive index of 1.43 and an average primary particle diameter of 4 nm to 6 nm, solid content of 10%, Nissan Chemical Industries, Ltd.)
ST-O33: Snowtex (registered trademark) O33 (aqueous dispersion of silica particles having a refractive index of 1.43 and an average primary particle diameter of 10 nm to 15 nm, solid content 15%, Nissan Chemical Industries, Ltd.)
-酸基を有するポリマー分散剤の素材-
・BYK2015:DISPERBYK(登録商標)-2015(カルボキシ基を有するポリマー分散剤の水溶液、固形分40%、酸価:10mgKOH/g、ビックケミージャパン(株))
・BYK180:DISPERBYK(登録商標)-180(リン酸基を有するポリマー分散剤の水溶液、固形分40%、酸価:94mgKOH/g、ビックケミージャパン(株))
・A-6012:アロン(登録商標)A-6012(スルホン酸基を有するポリマー分散剤の水溶液、固形分40%、重量平均分子量:10000、東亞合成(株))
-Materials for polymer dispersants with acid groups-
BYK2015: DISPERBYK (registered trademark) -2015 (aqueous solution of polymer dispersant having a carboxy group, solid content 40%, acid value: 10 mgKOH / g, Big Chemie Japan Co., Ltd.)
BYK180: DISPERBYK (registered trademark) -180 (aqueous solution of polymer dispersant having a phosphate group, solid content 40%, acid value: 94 mgKOH / g, Big Chemie Japan Co., Ltd.)
A-6012: Aron (registered trademark) A-6012 (aqueous solution of a polymer dispersant having a sulfonic acid group, solid content 40%, weight average molecular weight: 10,000, Toagosei Co., Ltd.)
-縮合触媒(E)の素材-
・AL-D:アルミキレートD(アルミニウムキレート化合物の76%水溶液、川研ファインケミカル(株))
-Material of condensation catalyst (E)-
AL-D: Aluminum chelate D (76% aqueous solution of aluminum chelate compound, Kawaken Fine Chemical Co., Ltd.)
-その他の成分-
・PVA:ポリビニルアルコール(重量平均分子量:20000、東京化成工業(株))
-Other ingredients-
-PVA: polyvinyl alcohol (weight average molecular weight: 20000, Tokyo Chemical Industry Co., Ltd.)
-高沸点溶剤-
・MFG:プロピレングリコールモノメチルエーテル(沸点121℃、表面張力27.7、東京化成工業(株))
・ETB:エチレングリコール-モノ-tert-ブチルエーテル(沸点153℃、表面張力24.6、東京化成工業(株))
-High boiling point solvent-
MFG: propylene glycol monomethyl ether (boiling point 121 ° C., surface tension 27.7, Tokyo Chemical Industry Co., Ltd.)
ETB: ethylene glycol mono-tert-butyl ether (boiling point 153 ° C., surface tension 24.6, Tokyo Chemical Industry Co., Ltd.)
-その他の溶剤-
・EtOH:エタノール(沸点78℃、東京化成工業(株))
-水-
・水:イオン交換水(沸点100℃)
-Other solvents-
EtOH: ethanol (boiling point 78 ° C., Tokyo Chemical Industry Co., Ltd.)
-water-
Water: ion exchange water (boiling point 100 ° C.)
 表2に示すように、シロキサン化合物(A)と、高屈折率粒子を含む無機酸化物粒子(B)と、酸基を有するポリマー分散剤(C)と、分散媒(D)と、を含有するコート剤を用いた実施例1~29の積層体は、防曇性に優れ、ヘイズが低減され、虹ムラが抑制されていた。 As shown in Table 2, containing a siloxane compound (A), inorganic oxide particles (B) containing high refractive index particles, a polymer dispersant (C) having an acid group, and a dispersion medium (D) The laminates of Examples 1 to 29 using the coating agent having excellent antifogging properties, haze reduction, and rainbow unevenness were suppressed.
 実施例1~29に対し、高屈折率粒子を含有しないコート剤を用いた比較例1の積層体では、虹ムラが悪化した。
 酸基を有するポリマー分散剤(C)を含有しないコート剤を用いて製造された比較例2の積層体では、ヘイズが上昇した。
 シロキサン化合物(A)を含有しないコート剤を用いて製造された比較例3の積層体では、防曇性が低下し、かつ、ヘイズが上昇した。
Compared with Examples 1 to 29, the rainbow unevenness deteriorated in the laminate of Comparative Example 1 using a coating agent containing no high refractive index particles.
In the laminate of Comparative Example 2 produced using a coating agent that does not contain the polymer dispersant (C) having an acid group, the haze increased.
In the laminate of Comparative Example 3 produced using a coating agent containing no siloxane compound (A), the antifogging property was lowered and the haze was increased.
 実施例1と実施例2との対比より、無機酸化物粒子(B)がシリカ粒子を含む場合(実施例2)には、積層体の防曇性がより向上することがわかる。この理由は、被膜の親水性がより向上するためと考えられる。 From the comparison between Example 1 and Example 2, it can be seen that when the inorganic oxide particles (B) contain silica particles (Example 2), the antifogging property of the laminate is further improved. This reason is considered to be because the hydrophilicity of the coating is further improved.
 実施例1と実施例3及び4との対比より、分散媒(D)が、高沸点溶剤を含む場合(実施例3及び4)には、積層体のヘイズがより低減され、かつ、防曇性がより向上することがわかる。この理由は、コート剤の塗布後の乾燥時における、被膜のレベリング性(平滑性)が向上するためと考えられる。 From the comparison between Example 1 and Examples 3 and 4, when the dispersion medium (D) contains a high-boiling solvent (Examples 3 and 4), the haze of the laminate is further reduced and anti-fogging is achieved. It can be seen that the property is further improved. The reason for this is considered to be that the leveling property (smoothness) of the coating is improved during drying after application of the coating agent.
 実施例1と実施例5との対比より、コート剤が、金属キレート化合物を含む縮合触媒(E)を含有する場合(実施例5)には、積層体のヘイズがより低減され、かつ、防曇性がより向上することがわかる。この理由は、コート剤の塗布後の乾燥時における、被膜のレベリング性(平滑性)が向上するためと考えられる。 From a comparison between Example 1 and Example 5, when the coating agent contains a condensation catalyst (E) containing a metal chelate compound (Example 5), the haze of the laminate is further reduced and the coating is prevented. It turns out that cloudiness improves more. The reason for this is considered to be that the leveling property (smoothness) of the coating is improved during drying after application of the coating agent.
 実施例1と実施例6との対比より、無機酸化物粒子(B)の含有量が、コート剤の全固形分に対して50質量%以上である場合(実施例6)には、積層体の防曇性がより向上することがわかる。この理由は、被膜の空隙量がより適正化されるためと考えられる。 From the comparison between Example 1 and Example 6, when the content of the inorganic oxide particles (B) is 50% by mass or more based on the total solid content of the coating agent (Example 6), a laminate is obtained. It can be seen that the antifogging property of the toner is further improved. The reason for this is considered to be that the void amount of the coating is made more appropriate.
 実施例1と実施例8~10との対比より、無機酸化物粒子(B)が、平均一次粒子径5nm~20nmの無機酸化物粒子を含む場合(実施例8~10)には、積層体の防曇性がより向上することがわかる。この理由は、被膜の空隙サイズがより適正化されるためと考えられる。 From the comparison between Example 1 and Examples 8 to 10, when the inorganic oxide particles (B) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm (Examples 8 to 10), a laminate is obtained. It can be seen that the antifogging property of the toner is further improved. The reason is considered to be that the void size of the coating is made more appropriate.
 実施例1と実施例12~15との対比より、無機酸化物粒子(B)が、高屈折率粒子として、屈折率2.00以上の無機酸化物粒子を含む場合(実施例12~15)には、積層体の虹ムラがより抑制されることがわかる。 From the comparison between Example 1 and Examples 12 to 15, the inorganic oxide particles (B) contain inorganic oxide particles having a refractive index of 2.00 or more as high refractive index particles (Examples 12 to 15). It can be seen that rainbow unevenness of the laminate is further suppressed.
 実施例12と実施例13~15との対比より、屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である場合(実施例13~15)である場合には、積層体のヘイズがより向上することがわかる。 From a comparison between Example 12 and Examples 13 to 15, the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles. It can be seen that in some cases (Examples 13 to 15), the haze of the laminate is further improved.
 次に、実施例1~29における積層体の断面の透過型電子顕微鏡(SEM)画像を取得し、得られた断面SEM画像を画像処理ソフト(例えば、Wayne Rasband製、ImageJ)で2値化処理し、2値化処理された断面SEM画像に基づき、実施例1~29における被膜の空隙率を測定した。
 その結果、実施例1~10及び12~29では、被膜の空隙率が14%であり、実施例11では、被膜の空隙率が21%であった。
Next, transmission electron microscope (SEM) images of the cross sections of the laminates in Examples 1 to 29 were acquired, and the obtained cross-sectional SEM images were binarized using image processing software (for example, ImageJ, manufactured by Wayne Rasband). Based on the binarized cross-sectional SEM images, the porosity of the coatings in Examples 1 to 29 were measured.
As a result, in Examples 1 to 10 and 12 to 29, the porosity of the coating was 14%, and in Example 11, the porosity of the coating was 21%.
 2018年1月31日に出願された日本国特許出願2018-014679号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-014679 filed on Jan. 31, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (18)

  1.  下記式(1)で表される化合物及び下記式(1)で表される化合物の加水分解縮合物の少なくとも一方を含むシロキサン化合物(A)と、
     屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B)と、
     酸基を有するポリマー分散剤(C)と、
     分散媒(D)と、
    を含有するコート剤。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。
    A siloxane compound (A) containing at least one of a compound represented by the following formula (1) and a hydrolysis condensate of the compound represented by the following formula (1);
    Inorganic oxide particles (B) containing inorganic oxide particles having a refractive index of 1.60 or more;
    A polymer dispersant (C) having an acid group;
    A dispersion medium (D);
    Containing a coating agent.
    Figure JPOXMLDOC01-appb-C000001

    In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
  2.  前記無機酸化物粒子(B)が、シリカ粒子を含む請求項1に記載のコート剤。 The coating agent according to claim 1, wherein the inorganic oxide particles (B) contain silica particles.
  3.  前記分散媒(D)が、沸点120℃以上の溶剤を含む請求項1又は請求項2に記載のコート剤。 The coating agent according to claim 1 or 2, wherein the dispersion medium (D) contains a solvent having a boiling point of 120 ° C or higher.
  4.  前記分散媒(D)が、水を含む請求項1~請求項3のいずれか1項に記載のコート剤。 The coating agent according to any one of claims 1 to 3, wherein the dispersion medium (D) contains water.
  5.  更に、金属キレート化合物を含む縮合触媒(E)を含有する請求項1~請求項4のいずれか1項に記載のコート剤。 The coating agent according to any one of claims 1 to 4, further comprising a condensation catalyst (E) containing a metal chelate compound.
  6.  前記無機酸化物粒子(B)の含有量が、コート剤の全固形分に対して50質量%以上である請求項1~請求項5のいずれか1項に記載のコート剤。 The coating agent according to any one of claims 1 to 5, wherein the content of the inorganic oxide particles (B) is 50% by mass or more based on the total solid content of the coating agent.
  7.  前記無機酸化物粒子(B)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含む請求項1~請求項6のいずれか1項に記載のコート剤。 The coating agent according to any one of claims 1 to 6, wherein the inorganic oxide particles (B) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  8.  前記無機酸化物粒子(B)が、屈折率2.00以上の無機酸化物粒子を含む請求項1~請求項7のいずれか1項に記載のコート剤。 The coating agent according to any one of claims 1 to 7, wherein the inorganic oxide particles (B) contain inorganic oxide particles having a refractive index of 2.00 or more.
  9.  前記屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である請求項8に記載のコート剤。 The coating agent according to claim 8, wherein the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
  10.  基材上に、請求項1~請求項9のいずれか1項に記載のコート剤を塗布し、乾燥させて被膜を形成する工程を含む積層体の製造方法。 A method for producing a laminate comprising a step of applying a coating agent according to any one of claims 1 to 9 on a substrate and drying to form a coating film.
  11.  前記基材が、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材である請求項10に記載の積層体の製造方法。 The method for producing a laminate according to claim 10, wherein the substrate is a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
  12.  基材と前記基材上に配置された被膜とを含み、
     前記被膜が、
     下記式(1)で表される化合物の加水分解縮合物を含むシロキサン縮合体(A1)と、
     屈折率1.60以上の無機酸化物粒子を含む無機酸化物粒子(B1)と、
     酸基を有するポリマー分散剤(C1)と、
    を含有する積層体。
    Figure JPOXMLDOC01-appb-C000002

     式(1)中、R、R、R、及びRは、それぞれ独立に、炭素数1~6の1価の有機基を表す。nは、1~20の整数を表す。
    A substrate and a coating disposed on the substrate;
    The coating is
    A siloxane condensate (A1) containing a hydrolysis condensate of the compound represented by the following formula (1);
    Inorganic oxide particles (B1) containing inorganic oxide particles having a refractive index of 1.60 or more;
    A polymer dispersant (C1) having an acid group;
    A laminate containing
    Figure JPOXMLDOC01-appb-C000002

    In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a monovalent organic group having 1 to 6 carbon atoms. n represents an integer of 1 to 20.
  13.  前記無機酸化物粒子(B1)が、シリカ粒子を含む請求項12に記載の積層体。 The laminate according to claim 12, wherein the inorganic oxide particles (B1) include silica particles.
  14.  前記無機酸化物粒子(B1)の含有量が、前記被膜の全固形分に対して50質量%以上である請求項12又は請求項13に記載の積層体。 The laminate according to claim 12 or 13, wherein the content of the inorganic oxide particles (B1) is 50% by mass or more based on the total solid content of the coating film.
  15.  前記無機酸化物粒子(B1)は、平均一次粒子径が5nm~20nmである無機酸化物粒子を含む請求項12~請求項14のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 14, wherein the inorganic oxide particles (B1) include inorganic oxide particles having an average primary particle diameter of 5 nm to 20 nm.
  16.  前記無機酸化物粒子(B1)が、屈折率2.00以上の無機酸化物粒子を含む請求項12~請求項15のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 15, wherein the inorganic oxide particles (B1) include inorganic oxide particles having a refractive index of 2.00 or more.
  17.  前記屈折率2.00以上の無機酸化物粒子が、酸化チタン粒子、酸化セリウム粒子、及び酸化ジルコニウム粒子からなる群から選択される少なくとも1種である請求項16に記載の積層体。 The laminate according to claim 16, wherein the inorganic oxide particles having a refractive index of 2.00 or more are at least one selected from the group consisting of titanium oxide particles, cerium oxide particles, and zirconium oxide particles.
  18.  前記基材が、ガラス基材、ポリカーボネート基材、又は(メタ)アクリル樹脂基材である請求項12~請求項17のいずれか1項に記載の積層体。 The laminate according to any one of claims 12 to 17, wherein the substrate is a glass substrate, a polycarbonate substrate, or a (meth) acrylic resin substrate.
PCT/JP2018/045881 2018-01-31 2018-12-13 Coating agent, laminate and method for producing laminate WO2019150780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014679 2018-01-31
JP2018-014679 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150780A1 true WO2019150780A1 (en) 2019-08-08

Family

ID=67479007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045881 WO2019150780A1 (en) 2018-01-31 2018-12-13 Coating agent, laminate and method for producing laminate

Country Status (1)

Country Link
WO (1) WO2019150780A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226635A (en) * 2000-02-10 2001-08-21 Sakai Chem Ind Co Ltd Paint, method of forming coating film, and coating film formed by the method
WO2011059101A1 (en) * 2009-11-16 2011-05-19 タムネットワーク株式会社 Photocatalyst coating
WO2012128332A1 (en) * 2011-03-24 2012-09-27 旭硝子株式会社 Liquid composition, method for producing same, and glass article
WO2015186360A1 (en) * 2014-06-05 2015-12-10 日本板硝子株式会社 Transparent article with antifog film
WO2018092543A1 (en) * 2016-11-15 2018-05-24 富士フイルム株式会社 Laminate, method for producing same and composition for anti-fog coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226635A (en) * 2000-02-10 2001-08-21 Sakai Chem Ind Co Ltd Paint, method of forming coating film, and coating film formed by the method
WO2011059101A1 (en) * 2009-11-16 2011-05-19 タムネットワーク株式会社 Photocatalyst coating
WO2012128332A1 (en) * 2011-03-24 2012-09-27 旭硝子株式会社 Liquid composition, method for producing same, and glass article
WO2015186360A1 (en) * 2014-06-05 2015-12-10 日本板硝子株式会社 Transparent article with antifog film
WO2018092543A1 (en) * 2016-11-15 2018-05-24 富士フイルム株式会社 Laminate, method for producing same and composition for anti-fog coating

Similar Documents

Publication Publication Date Title
EP2990838B1 (en) Substrate having antireflective layer
WO2018092543A1 (en) Laminate, method for producing same and composition for anti-fog coating
US10301214B2 (en) Liquid composition, glass article and method of forming coating film
JP6698836B2 (en) Film forming composition and method for producing laminated body
KR20140009383A (en) Liquid composition, method for producing same, and glass article
JP6702814B2 (en) Antifogging layer forming composition, laminate, and method for producing laminate
EP2899243B1 (en) Liquid composition and glass article
WO2012141150A1 (en) Functional article, article for transport equipment, article for construction, and composition for coating
WO2018092544A1 (en) Laminated body
JP7200233B2 (en) Coating agent, antifogging film, method for producing antifogging film, and laminate
JP6617699B2 (en) Glass article
JP6721822B2 (en) Hydrophilic coating, hydrophilic film-forming article, coating solution for forming hydrophilic film, and method for producing hydrophilic film-forming article
WO2019150780A1 (en) Coating agent, laminate and method for producing laminate
JP2014214063A (en) Silica-based porous film, article having silica-based porous film, and method for producing the same article
WO2019082768A1 (en) Coating agent, antifogging film, method for producing antifogging film, and laminate
JP5337360B2 (en) Coating composition, cured film and resin laminate
JPWO2007119805A1 (en) Coating liquid for coating formation containing phosphoric ester compound and antireflection film
JP2020105467A (en) Coating agent, anti-fogging film, method for producing anti-fogging film, and laminate
JPWO2017217513A1 (en) Film-forming composition, laminate, and method for producing laminate
WO2015166863A1 (en) Liquid composition, and glass article
JP2007091873A (en) Composition for water-repellant coating with low index of refraction
JP7065980B2 (en) Laminate
JP2018135232A (en) Infrared shielding member, transparent substrate with infrared shielding member and method for producing transparent substrate with infrared shielding member
JP2017136696A (en) Transparent substrate with coating film
JP2021038284A (en) Coating liquid, anti-fogging film, laminate, and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP