WO2019150670A1 - Nanocrystal array structure immobilization substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure immobilization substrate - Google Patents

Nanocrystal array structure immobilization substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure immobilization substrate Download PDF

Info

Publication number
WO2019150670A1
WO2019150670A1 PCT/JP2018/039422 JP2018039422W WO2019150670A1 WO 2019150670 A1 WO2019150670 A1 WO 2019150670A1 JP 2018039422 W JP2018039422 W JP 2018039422W WO 2019150670 A1 WO2019150670 A1 WO 2019150670A1
Authority
WO
WIPO (PCT)
Prior art keywords
array structure
nanocrystal
substrate
solvent
nanocrystals
Prior art date
Application number
PCT/JP2018/039422
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 板坂
憲一 三村
加藤 一実
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019568862A priority Critical patent/JP6966805B2/en
Publication of WO2019150670A1 publication Critical patent/WO2019150670A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium

Definitions

  • the present invention relates to a nanocrystal array structure-immobilized substrate, a method for producing a nanocrystal array structure, and a method for producing a nanocrystal array structure-immobilized substrate.
  • Nanocrystals such as barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ) express characteristic physical properties due to size, and are expected to be applied as new materials.
  • BaTiO 3 barium titanate
  • strontium titanate SrTiO 3
  • Patent Document 1 discloses a method of forming (fixing) a nanocrystal array structure in which nanocrystals are arrayed on a substrate.
  • a nanocrystal array structure is formed on a substrate by capillary action by immersing the substrate in a dispersion in which nanocrystals are dispersed in a nonpolar solvent and then pulling it up.
  • a dispersion in which nanocrystals are dispersed in a nonpolar solvent it has been confirmed that many cracks are generated in the nanocrystal array structure in the process of evaporating the nonpolar solvent. For this reason, there is a problem that it is difficult to obtain a nanocrystal array structure having a practical size of several hundred ⁇ m or more in the direction along the substrate surface.
  • the present invention has been made in view of the above-described situation, and a nanocrystal array structure in which a nanocrystal array structure in which nanocrystals are arrayed is formed (immobilized) on a substrate with a larger area is fixed. It aims at providing the manufacturing method of a board
  • the nanocrystal arrangement structure forming substrate of the present invention has the following configuration.
  • a substrate, and a nanocrystal array structure in which nanocrystals are arranged on one surface of the substrate, and a coverage of the nanocrystal array structure on one surface of the substrate is 85% or more and 100% or less, and
  • a formation area of the nanocrystal array structure along one surface of the substrate is 10,000 ⁇ m 2 or more.
  • the substrate includes at least one of glass, semiconductor, metal, metal oxide, polymer, paper, and rubber.
  • the method for producing a nanocrystal array structure of the present invention has the following configuration.
  • the first solvent and the second solvent are a polar medium and a nonpolar medium, or a nonpolar medium and a polar medium, respectively, and the first solvent and the second solvent are not miscible with each other. It is preferable.
  • affinity is imparted to the second solvent by covering the surface of the nanocrystals with the surfactant.
  • the surfactant is at least one selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Is preferred.
  • the manufacturing method of the nanocrystal arrangement structure fixed substrate of the present invention has the following configuration.
  • a method for producing a nanocrystal array structure-immobilized substrate in which a nanocrystal array structure in which nanocrystals are arrayed on one surface of the substrate is immobilized, wherein a surface active agent is developed on the surface of a first solvent.
  • the transfer step may be repeated a plurality of times, and a plurality of the nanocrystal array structures may be laminated on one surface of the substrate.
  • a nanocrystal array structure-immobilized substrate in which a nanocrystal array structure in which nanocrystals are arrayed is formed (immobilized) on a substrate with a larger area a method for producing a nanocrystal array structure, It is possible to provide a method for producing a nanocrystal array structure-immobilized substrate.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 2.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 3.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 4.
  • the term “nanocrystal” refers to, for example, a hexahedral crystal, that is, a so-called nanocube, or an incomplete hexahedral shape in which the apex of the hexahedron is chamfered simultaneously in the nanocube synthesis or manufacturing process.
  • crystallization of is also included.
  • the size is not particularly limited as long as it is a nanometer size in which barium titanate or strontium titanate can be formed into a hexahedron, for example, about 1 to 20 nm.
  • an example of a method for producing nanocrystals will be described.
  • a method for producing barium titanate nanocrystals which are examples of nanocrystals
  • an aqueous barium hydroxide solution, an aqueous solution of a water-soluble titanium complex, an aqueous sodium hydroxide solution, an amine compound, and an organic carboxylic acid are mixed.
  • the solution can be obtained by heating the solution.
  • the molar ratio (barium: titanium) of barium contained in the aqueous barium hydroxide solution and titanium contained in the aqueous solution of the water-soluble titanium complex is preferably in the range of 1: 2 to 2: 1.
  • a compound in which a ligand is removed from a titanium atom after being dissolved in water to form a bond between a titanium atom and an oxygen atom can be used.
  • a compound for example, titanium bis (ammonium lactate) dihydroxide (“TALH”), and a ligand is glycolic acid (HOCH 2 COOH) (NH 4 ) 6 [Ti 4 (C 2 H 2 O 3 ) 4 (C 2 H 3 O 3 ) 2 (O 2 ) 4 O 2 ] ⁇ 6H 2 O
  • the ligand is citric acid ((CH 2 COOH) 2 C (OH) COOH ) (NH 4 ) 8 [Ti 4 (C 6 H 4 O 7 ) 4 (O 2 ) 4 ] ⁇ 8H 2 O
  • the ligand is malic acid (CH 2 CHOH (COOH) 2 ) or tartaric acid ( And a titanium complex such as (CHOH) 2 (COOH) 2 ).
  • the nanocrystal array structure-immobilized substrate of the present invention is manufactured using the nanocrystals thus obtained.
  • a dispersion liquid in which such nanocrystals are dispersed in a second solvent described later is used.
  • the nanocrystal array structure fixed substrate of the present invention is composed of a substrate and a nanocrystal array structure formed on one surface (surface) of the substrate.
  • the nanocrystal array structure is composed of a large number of nanocrystals arranged (aligned) along a predetermined plane.
  • arranged nanocrystals refers to a state in which nanocrystals are regularly arranged, and is different from a state in which nanocrystals are simply stacked and deposited at random.
  • the coverage of the nanocrystal array structure body on one surface of the substrate is 85% or more and 100% or less.
  • the formation area of the nanocrystal arrangement structure along one surface of the substrate is 10,000 ⁇ m 2 or more. And there are no cracks or voids having a size of 100 nm or more in width.
  • the upper limit of the formation area of the nanocrystal array structure depends on the area of the substrate.
  • Nanocrystals constituting the nanocrystal array structure of the nanocrystal array structure immobilization substrate include titanate compounds such as barium titanate, strontium titanate, barium zirconate titanate, lead titanate, zirconate titanate. Lead etc. are mentioned.
  • FIG. 1 is a schematic diagram showing stepwise a method for manufacturing a nanocrystal array structure-immobilized substrate including a method for manufacturing a nanocrystal array structure.
  • the 1st solvent 11 is put into the liquid tank 10 (refer Fig.1 (a)).
  • the first solvent either a polar medium or a nonpolar medium is used.
  • a polar medium is used as the first solvent 11
  • a nonpolar medium is used for the second solvent 12 described later.
  • a nonpolar medium is used as the second solvent 12 described later.
  • water is used as the first solvent 11.
  • the surfactant 13 is developed on the liquid surface of the first solvent 11 (see FIG. 1B). Thereby, the arrangement
  • any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used.
  • a carboxylic acid-based surfactant such as oleic acid is preferably exemplified.
  • the surfactant 13 is removed from the volatile developing solvent, For example, it is preferable to develop the surfactant 13 by diluting with toluene or the like and dropping it onto the liquid surface of the first solvent 11 to volatilize all of the toluene.
  • the nanocrystal 15 produced in advance is dispersed in the second solvent 12 to form a dispersion 16 (dispersion preparation step: see FIG. 1C).
  • a polar medium or a nonpolar medium is used as the second solvent 12.
  • a volatile organic solvent is used as the second solvent 12.
  • mesitylene (1,3,5-trimethylbenzene) is used as the second solvent 12.
  • a nanocrystal made of barium titanate is used as the nanocrystal 15.
  • the concentration of the nanocrystals 15 contained in the dispersion liquid 16 (the mass of the nanocrystals 15 used as the mass of the second solvent 12) can be arbitrarily set.
  • the body can be laminated in two or more layers.
  • the dispersion liquid 16 obtained in the dispersion liquid preparation step is dropped onto the alignment medium liquid 14 obtained in the arrangement medium liquid preparation step (dispersion liquid droplet lowering step: see FIG. 1 (d)).
  • the dispersion liquid 16 is well stirred immediately before dropping, and the nanocrystals 15 are uniformly dispersed in the second solvent 12.
  • the dropping amount of the dispersion liquid 16 may be adjusted according to the area of one surface of the substrate to be used later.
  • FIG. 2 is an explanatory view showing an operation after the dispersion liquid is dropped onto the alignment medium liquid obtained by developing the surfactant in the first solvent.
  • the dispersion liquid 16 When the dispersion liquid 16 is dropped into the alignment medium liquid 14, the dispersion liquid 16 containing the second solvent 12 made of mesitylene (specific gravity 0.83) having a lighter specific gravity than the first solvent 11 made of water becomes the liquid surface of the alignment medium liquid 14.
  • the surfactant 13 on the surface of the first solvent 11 constituting the arrangement medium liquid 14 is spread by the dispersion liquid 16 and spreads so that the dispersion liquid 16 is in direct contact with the surface of the first solvent 11.
  • the surface is surrounded by the surfactant 13.
  • the nanocrystal 15 dispersed in the dispersion liquid 16 sinks to the bottom of the second solvent, that is, the surface of the first solvent 11, and at the same time, mesitylene as the second solvent 12 volatilizes. (Array structure forming step: see FIG. 1E).
  • the nanocrystals 15 are aligned on the surface of the first solvent 11 by capillary action caused by the volatilization of the second solvent 12. Further, the nanocrystals 15 are collected around the second solvent 12 by the cohesive force (external pressure) of the surfactant 13 spreading so as to surround the periphery of the nanocrystals 15 on the surface of the first solvent 11. Thereby, the nanocrystal arrangement structure 21 in which the nanocrystals 15 are arranged (aligned) on the surface of the first solvent 11 is obtained.
  • Such a nanocrystal array structure 21 has a single-layer nanocrystal array structure extending in a thickness corresponding to one nanocrystal according to the concentration of the nanocrystal 15 dispersed in the dispersion liquid 16, or a nanocrystal in the vertical direction. Stacked multilayer nanocrystal array structures can be created separately.
  • the substrate 22 is made to face the alignment medium liquid 14 having the nanocrystal array structure 21 formed on the surface thereof, and the nanocrystal array structure 21 is transferred to one surface (surface) 22a of the substrate 22 (transfer process: FIG. 1 (f)).
  • a multilayered nanocrystal array structure in which nanocrystals are stacked in the vertical direction can also be formed by repeatedly performing the process from the dispersed droplet dropping process to the transfer process on one substrate 22.
  • the nanocrystal array structure-immobilized substrate 20 in which the nanocrystal array structure 21 is immobilized (formed) on one surface (surface) 22a of the substrate 22 is obtained.
  • the thus obtained nanocrystal array structure-immobilized substrate 20 has a coverage of the nanocrystal array structure 21 with respect to the one surface 22a of the substrate 22 of 85% or more and 100% or less, and extends along the one surface 22a of the substrate 22.
  • the formation area of the nanocrystal array structure 21 is 10,000 ⁇ m 2 or more. And there are no cracks or voids having a size of 100 nm or more in width.
  • the upper limit of the formation area of the nanocrystal arrangement structure 21 depends on the area of the substrate.
  • the first solvent 11 in which the surfactant 13 is developed By spreading the dispersion liquid 16 containing the nanocrystals 15, the surfactant 13 serves to collect and arrange the nanocrystals 15 on the first solvent 11. Thereby, the nanocrystal arrangement structure 21 in which the nanocrystals 15 are uniformly arranged (aligned) in a large area can be obtained.
  • the nanocrystal array structure 21 formed in this way onto one surface (surface) 22a of the substrate 22, the nanocrystal array structure having a large area of the nanocrystal array structure 21 without cracks or scratches is fixed.
  • the substrate 20 can be obtained.
  • sodium hydroxide (Na (OH)) aqueous solution is added as a pH adjuster.
  • Ammonia which is often used as a pH adjuster in hydrothermal synthesis, is unlikely to have sufficiently strong base conditions that facilitate the synthesis (although it does not become a stronger base even if ammonia is added to pH 14 conditions), sodium hydroxide ( If Na (OH)) is used, sufficient basic conditions are obtained, and synthesis of barium titanate nanocrystals is likely to proceed.
  • any carboxylic acid having a long carbon chain such as decanoic acid (capric acid) CH 3 (CH 2 ) 8 COOH can be used without including a double bond.
  • 3 and 4 are TEM images of barium titanate nanocrystals synthesized under the conditions shown in the above example. 3 and 4 were obtained using JEOL-2100 (300 kV) manufactured by JEOL Ltd.
  • the sample for TEM image observation of barium titanate nanocrystals is removed by dropping the supernatant in the autoclave onto a TEM grid (substrate) placed on the filter paper and absorbing the solvent in the dropped supernatant on the filter paper.
  • the TEM grid is made of carbon coated with carbon (a structure in which a mesh is supported by a collodion film).
  • the lattice spacing of the nanocrystals is determined from the spot positions of the respective points in the electron diffraction spot image of FIG. 4, and 4.04 ⁇ corresponding to the (100) plane and (001) plane of the barium titanate single crystal. A spot of 85 mm was obtained. From the TEM images of FIGS. 3 and 4 and their electron diffraction spot images, it was confirmed that the nanocrystals of barium titanate were synthesized by the synthesis method described above. Moreover, it was identified by barium titanate by the X-ray powder diffraction method that the (100) diffraction line appeared at around 22 ° and the (200) diffraction line appeared at around 44 °.
  • the strontium titanate nanocrystal-containing solution is transferred from the autoclave to a dedicated container, and the container is centrifuged (5300 rpm (first rotation speed), 3 minutes (first rotation time)), and placed at the bottom of the container.
  • the precipitated barium titanate nanocrystals were collected.
  • the centrifuge used was H9RH type manufactured by Kokusan Co., Ltd.
  • the nanocrystals of barium titanate obtained as described above were applied to a dispersion used in the method for producing a nanocrystal array structure described below.
  • Example 1 Water is added as a first solvent to a glass petri dish having an inner diameter of about 7 cm to a height of several centimeters. Next, 40 ⁇ l of a solution obtained by diluting oleic acid as a surfactant with toluene (nonpolar solvent) having a volume ratio of 1000 times was dropped onto the water surface with a microsyringe. Toluene was completely evaporated to form an alignment medium liquid in which a surfactant was developed on the surface of water.
  • toluene nonpolar solvent
  • a dispersion was formed by dispersing barium titanate nanocrystals (crystal size 15 to 20 nm) produced by the above-described method in mesitylene as the second solvent. And 40 microliters of dispersion liquids were dripped at the arrangement
  • the barium titanate nanocrystal array structure thus obtained was transferred onto the surface of the substrate by a horizontal adhesion method.
  • the substrate surface is attached to the liquid surface at an angle such that the substrate surface is horizontal with respect to the liquid surface, and the substrate is lifted and dried as it is, so that suspended matter on the liquid surface is applied to the substrate surface.
  • FIG. 5 is a scanning electron microscope (SEM) photograph (overall image, enlarged image) of the barium titanate nanocrystal array structure formed on the silicon substrate. From the overall image of this photograph, it was confirmed that the barium titanate nanocrystal array structure had a size of several hundred ⁇ m as a whole, and no cracks (cracks) on the micrometer scale were observed. In addition, each small square that can be confirmed in the magnified image is a barium titanate nanocrystal. From this magnified image, the barium titanate nanostructure is a monolayer film formed by an ordered arrangement of barium titanate nanocrystals. Was confirmed.
  • SEM scanning electron microscope
  • Example 2 In Example 2, the concentration of barium titanate nanocrystals in the dispersion was 5 times higher than in Example 1. The other conditions are the same as in the first embodiment.
  • FIG. 6 shows an SEM photograph of the barium titanate nanocrystal array structure formed on the silicon substrate obtained in Example 2. According to the photograph in FIG. 6, it is confirmed that by increasing the concentration of nanocrystals in the dispersion liquid, not only a single layer film but also a nanocrystal array structure having a stacked structure in which nanocrystal arrays are stacked in two layers can be obtained. It was done.
  • Example 3 In Example 3, a sapphire substrate, a strontium titanate (STO) substrate, a strontium ruthenate-coated (SRO / STO) substrate, and a gold-coated mica (Au / Mica) substrate were used. The other conditions are the same as in the first embodiment.
  • FIG. 7 shows SEM photographs of nanocrystal array structures formed on each of these four types of substrates. According to the photograph in FIG. 7, it was confirmed that a nanocrystal array structure composed of a regular array of nanocrystals can be formed on the substrate surface regardless of the material of the substrate.
  • Example 4 is that the transmission electron microscope (TEM) grid is used as the substrate, and that the substrate is not washed with ethanol before transferring the nanocrystal array structure to the substrate. Different. The other conditions are the same as in the first embodiment.
  • a TEM grid as a substrate has a structure in which holes having a diameter of about 2 nm are formed at equal intervals in a silicon nitride membrane having a thickness of 50 nm.
  • FIG. 8 the SEM photograph of the nanocrystal arrangement

Abstract

Provided are: a nanocrystal array structure immobilization substrate which forms (immobilizes) a nanocrystal array structure, wherein nanocrystals are aligned, on a substrate in a larger area; a method for producing a nanocrystal array structure; and a method for producing a nanocrystal array structure immobilization substrate. A method for producing a nanocrystal array structure according to the present invention comprises: an alignment medium liquid preparation step for forming an alignment medium liquid wherein a surfactant is spread out on the surface of a first solvent; a dispersion liquid preparation step for forming a dispersion wherein the nanocrystals are dispersed in a second solvent; a dispersion liquid dropping step for dropping the dispersion liquid on the surface of the alignment medium liquid; and an array structure formation step for forming a nanocrystal array structure, wherein the nanocrystals are aligned, on the surface of the alignment medium liquid by vaporizing the second solvent.

Description

ナノ結晶配列構造体固定化基板、ナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法Nanocrystal array structure-immobilized substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure-immobilized substrate
 この発明は、ナノ結晶配列構造体固定化基板、ナノ結晶配列構造体の製造方法、およびナノ結晶配列構造体固定化基板の製造方法に関する。 The present invention relates to a nanocrystal array structure-immobilized substrate, a method for producing a nanocrystal array structure, and a method for producing a nanocrystal array structure-immobilized substrate.
 チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(SrTiO)などのナノ結晶(ナノクリスタル)は、サイズに起因した特徴的な物性を発現し、新規材料としての応用が期待されている。こうしたナノ結晶を電子デバイス等に応用するために、基板上にナノ結晶を整列(配列)させる技術の確立が望まれている。例えば、特許文献1には、基板上にナノ結晶を配列させたナノ結晶配列構造体を形成(固定化)する方法が開示されている。 Nanocrystals (nanocrystals) such as barium titanate (BaTiO 3 ) and strontium titanate (SrTiO 3 ) express characteristic physical properties due to size, and are expected to be applied as new materials. In order to apply such nanocrystals to electronic devices and the like, establishment of a technique for aligning (arranging) nanocrystals on a substrate is desired. For example, Patent Document 1 discloses a method of forming (fixing) a nanocrystal array structure in which nanocrystals are arrayed on a substrate.
国際公開第2016/060042号International Publication No. 2016/060042
 特許文献1に開示されている方法では、ナノ結晶を非極性溶媒に分散させた分散液に基板を浸漬してから引き上げることで、毛管現象によって基板上にナノ結晶配列構造体を形成している。しかしながら、こうした方法では、非極性溶媒が蒸発する過程でナノ結晶配列構造体に多数のクラックが生じることが確認されている。このため、基板表面に沿った方向において、数百μm以上の実用的なサイズのナノ結晶配列構造体を得ることが困難であるという課題があった。 In the method disclosed in Patent Document 1, a nanocrystal array structure is formed on a substrate by capillary action by immersing the substrate in a dispersion in which nanocrystals are dispersed in a nonpolar solvent and then pulling it up. . However, in such a method, it has been confirmed that many cracks are generated in the nanocrystal array structure in the process of evaporating the nonpolar solvent. For this reason, there is a problem that it is difficult to obtain a nanocrystal array structure having a practical size of several hundred μm or more in the direction along the substrate surface.
 本発明は、前述した状況に鑑みてなされたものであって、ナノ結晶を配列させたナノ結晶配列構造体を、より大きな面積で基板上に形成(固定化)するナノ結晶配列構造体固定化基板、ナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described situation, and a nanocrystal array structure in which a nanocrystal array structure in which nanocrystals are arrayed is formed (immobilized) on a substrate with a larger area is fixed. It aims at providing the manufacturing method of a board | substrate, a nanocrystal arrangement structure body, and a nanocrystal arrangement structure fixed board | substrate.
 すなわち、本発明のナノ結晶配列構造体形成基板は、以下の構成を有する。
 基板と、該基板の一面にナノ結晶を配列させたナノ結晶配列構造体と、を備え、前記基板の一面に対する前記ナノ結晶配列構造体の被覆率は85%以上、100%以下であり、かつ前記基板の一面に沿った前記ナノ結晶配列構造体の形成面積は10000μm以上であることを特徴とする。
That is, the nanocrystal arrangement structure forming substrate of the present invention has the following configuration.
A substrate, and a nanocrystal array structure in which nanocrystals are arranged on one surface of the substrate, and a coverage of the nanocrystal array structure on one surface of the substrate is 85% or more and 100% or less, and A formation area of the nanocrystal array structure along one surface of the substrate is 10,000 μm 2 or more.
 また、本発明では、前記基板は、ガラス、半導体、金属、金属酸化物、ポリマー、紙、およびゴムのうち、少なくとも1つを含むことが好ましい。 In the present invention, it is preferable that the substrate includes at least one of glass, semiconductor, metal, metal oxide, polymer, paper, and rubber.
 本発明のナノ結晶配列構造体の製造方法は、以下の構成を有する。
 第1溶媒の表面に界面活性剤を展開させた配列媒体液を形成する配列媒体液調製工程と、第2溶媒にナノ結晶を分散させた分散液を形成する分散液調製工程と、前記配列媒体液の表面に前記分散液を滴下する分散液滴下工程と、前記第2溶媒を気化させ、前記配列媒体液の表面に前記ナノ結晶を配列させたナノ結晶配列構造体を形成する配列構造体形成工程と、を有することを特徴とする。
The method for producing a nanocrystal array structure of the present invention has the following configuration.
An alignment medium liquid preparation step for forming an alignment medium liquid in which a surfactant is developed on the surface of the first solvent, a dispersion preparation step for forming a dispersion liquid in which nanocrystals are dispersed in a second solvent, and the alignment medium Dispersing droplet lowering step for dropping the dispersion liquid on the surface of the liquid, and forming an array structure that evaporates the second solvent and forms a nanocrystal array structure in which the nanocrystals are arrayed on the surface of the array medium liquid And a process.
 また、本発明では、前記第1溶媒および前記第2溶媒は、それぞれ極性媒体および非極性媒体、または非極性媒体および極性媒体であり、前記第1溶媒と前記第2溶媒とは、互いに混和しないことが好ましい。 In the present invention, the first solvent and the second solvent are a polar medium and a nonpolar medium, or a nonpolar medium and a polar medium, respectively, and the first solvent and the second solvent are not miscible with each other. It is preferable.
 また、本発明は、前記配列構造体形成工程では、前記分散液に含まれる前記ナノ結晶の濃度に応じて、前記配列媒体液の表面に配列させる前記ナノ結晶配列構造体の鉛直方向の積み数を調整することが好ましい。 In the array structure forming step, the number of stacks in the vertical direction of the nanocrystal array structures arranged on the surface of the array medium liquid according to the concentration of the nanocrystals contained in the dispersion liquid Is preferably adjusted.
 また、本発明では、前記配列構造体形成工程において、前記ナノ結晶の表面を前記界面活性剤で覆うことにより、前記第2溶媒に対して親和性を付与することが好ましい。 In the present invention, it is preferable that in the array structure forming step, affinity is imparted to the second solvent by covering the surface of the nanocrystals with the surfactant.
 また、本発明では、前記界面活性剤は、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、及び非イオン界面活性剤からなる群より選択されるうちの少なくとも1種であることが好ましい。 In the present invention, the surfactant is at least one selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Is preferred.
 本発明のナノ結晶配列構造体固定化基板の製造方法は、以下の構成を有する。
 基板の一面にナノ結晶を配列させたナノ結晶配列構造体を固定化したナノ結晶配列構造体固定化基板の製造方法であって、第1溶媒の表面に界面活性剤を展開させた配列媒体液を形成する配列媒体液調製工程と、第2溶媒に前記ナノ結晶を分散させた分散液を形成する分散液調製工程と、前記配列媒体液の表面に前記分散液を滴下する分散液滴下工程と、
 前記第2溶媒を気化させ、前記配列媒体液の表面に前記ナノ結晶を配列させたナノ結晶配列構造体を形成する配列構造体形成工程と、前記配列構造体形成工程を経て前記配列媒体液の表面に形成された前記ナノ結晶配列構造体を基板の一面に転写させる転写工程を備えたことを特徴とする。
The manufacturing method of the nanocrystal arrangement structure fixed substrate of the present invention has the following configuration.
A method for producing a nanocrystal array structure-immobilized substrate in which a nanocrystal array structure in which nanocrystals are arrayed on one surface of the substrate is immobilized, wherein a surface active agent is developed on the surface of a first solvent. An alignment medium liquid preparation step for forming the dispersion medium, a dispersion liquid preparation step for forming a dispersion liquid in which the nanocrystals are dispersed in a second solvent, and a dispersion liquid dropping step for dropping the dispersion liquid on the surface of the alignment medium liquid; ,
An array structure forming step of vaporizing the second solvent to form a nanocrystal array structure in which the nanocrystals are arrayed on a surface of the array medium liquid; and A transfer step of transferring the nanocrystal array structure formed on the surface to one surface of the substrate is provided.
 また、本発明では、前記転写工程を複数回繰り返し、前記基板の一面に複数の前記ナノ結晶配列構造体を積層させてもよい。 In the present invention, the transfer step may be repeated a plurality of times, and a plurality of the nanocrystal array structures may be laminated on one surface of the substrate.
 本発明によれば、ナノ結晶を配列させたナノ結晶配列構造体を、より大きな面積で基板上に形成(固定化)するナノ結晶配列構造体固定化基板、ナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法を提供することが可能になる。 According to the present invention, a nanocrystal array structure-immobilized substrate in which a nanocrystal array structure in which nanocrystals are arrayed is formed (immobilized) on a substrate with a larger area, a method for producing a nanocrystal array structure, It is possible to provide a method for producing a nanocrystal array structure-immobilized substrate.
ナノ結晶配列構造体の製造方法を含むナノ結晶配列構造体固定化基板の製造方法を段階的に示した模式図である。It is the schematic diagram which showed the manufacturing method of the nanocrystal arrangement structure fixed board | substrate including the manufacturing method of a nanocrystal arrangement structure in steps. 第1溶媒に界面活性剤を展開させてなる配列媒体液に対して、分散液を滴下した後の作用を示す説明図である。It is explanatory drawing which shows the effect | action after dripping a dispersion liquid with respect to the arrangement | sequence medium liquid formed by developing surfactant in the 1st solvent. チタン酸バリウムナノ結晶のTEM像である。It is a TEM image of a barium titanate nanocrystal. チタン酸バリウムナノ結晶のTEM像である。It is a TEM image of a barium titanate nanocrystal. 実施例1で作製したチタン酸バリウムナノ結晶配列構造体の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 1. FIG. 実施例2で作製したチタン酸バリウムナノ結晶配列構造体の走査型電子顕微鏡(SEM)写真である。4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 2. FIG. 実施例3で作製したチタン酸バリウムナノ結晶配列構造体の走査型電子顕微鏡(SEM)写真である。4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 3. FIG. 実施例4で作製したチタン酸バリウムナノ結晶配列構造体の走査型電子顕微鏡(SEM)写真である。4 is a scanning electron microscope (SEM) photograph of the barium titanate nanocrystal array structure produced in Example 4. FIG.
 以下、図面を参照して、本発明の一実施形態のナノ結晶配列構造体固定化基板、ナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, a nanocrystal array structure-immobilized substrate, a method of manufacturing a nanocrystal array structure, and a method of manufacturing a nanocrystal array structure-immobilized substrate according to an embodiment of the present invention will be described with reference to the drawings. Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the dimensional ratio of each component is the same as the actual one. Not necessarily.
 本発明において「ナノ結晶」とは、例えば、六面体状の結晶である、いわゆるナノキューブの他、ナノキューブの合成若しくは作製工程において同時に生成される、六面体の頂点が面取りされた不完全な六面体状の結晶をも含む。なお、この六面体の頂点が面取りされた不完全な六面体状の結晶は六面体状の結晶になる途上のものである。また、そのサイズとしては、例えば、チタン酸バリウムやチタン酸ストロンチウムが六面体状になりえるナノメートルサイズであれば、サイズは限定しないが、例えば1~20nm程度である。 In the present invention, the term “nanocrystal” refers to, for example, a hexahedral crystal, that is, a so-called nanocube, or an incomplete hexahedral shape in which the apex of the hexahedron is chamfered simultaneously in the nanocube synthesis or manufacturing process. The crystal | crystallization of is also included. The incomplete hexahedral crystal whose chamfered chamfered apex is in the process of becoming a hexahedral crystal. The size is not particularly limited as long as it is a nanometer size in which barium titanate or strontium titanate can be formed into a hexahedron, for example, about 1 to 20 nm.
 まず最初に、ナノ結晶の製造方法の一例を説明する。例えば、ナノ結晶の一例であるチタン酸バリウムナノ結晶の製造方法としては、水酸化バリウム水溶液と、水溶性チタン錯体の水溶液と、水酸化ナトリウム水溶液と、アミン化合物と、有機カルボン酸とを混合して溶液を得て、前記溶液を加熱することにより合成できる。 First, an example of a method for producing nanocrystals will be described. For example, as a method for producing barium titanate nanocrystals, which are examples of nanocrystals, an aqueous barium hydroxide solution, an aqueous solution of a water-soluble titanium complex, an aqueous sodium hydroxide solution, an amine compound, and an organic carboxylic acid are mixed. The solution can be obtained by heating the solution.
 水酸化バリウム水溶液に含まれるバリウムと、水溶性チタン錯体の水溶液に含まれるチタンとのモル比(バリウム:チタン)は1:2~2:1の範囲であることが好ましい。 The molar ratio (barium: titanium) of barium contained in the aqueous barium hydroxide solution and titanium contained in the aqueous solution of the water-soluble titanium complex is preferably in the range of 1: 2 to 2: 1.
 本発明の水溶性チタン錯体としては、水に溶解された後チタン原子から配位子がはずれてチタン原子と酸素原子との結合が形成されるような化合物を用いることができる。そのような化合物としては、例えばチタニウムビス(アンモニウムラクテート)ジヒドロキシド(Titanium bis(ammonium lactate) dihydroxide、「TALH」)、配位子がグリコール酸(HOCH2COOH)である(NH4)6[Ti4(C2H2O3)4(C2H3O3)2(O2)4O2]・6H2O、配位子がクエン酸((CH2COOH)2C(OH)COOH)である(NH4)8[Ti4(C6H4O7)4(O2)4]・8H2O、又は配位子がリンゴ酸(CH2CHOH(COOH)2)若しくは酒石酸((CHOH)2(COOH)2)であるチタン錯体などが挙げられる。 As the water-soluble titanium complex of the present invention, a compound in which a ligand is removed from a titanium atom after being dissolved in water to form a bond between a titanium atom and an oxygen atom can be used. As such a compound, for example, titanium bis (ammonium lactate) dihydroxide (“TALH”), and a ligand is glycolic acid (HOCH 2 COOH) (NH 4 ) 6 [Ti 4 (C 2 H 2 O 3 ) 4 (C 2 H 3 O 3 ) 2 (O 2 ) 4 O 2 ] ・ 6H 2 O, the ligand is citric acid ((CH 2 COOH) 2 C (OH) COOH ) (NH 4 ) 8 [Ti 4 (C 6 H 4 O 7 ) 4 (O 2 ) 4 ] · 8H 2 O, or the ligand is malic acid (CH 2 CHOH (COOH) 2 ) or tartaric acid ( And a titanium complex such as (CHOH) 2 (COOH) 2 ).
 このようにして得られたナノ結晶を用いて、本発明のナノ結晶配列構造体固定化基板を製造する。ナノ結晶配列構造体を製造する際には、こうしたナノ結晶を後述する第2溶媒に分散させた分散液を用いる。 The nanocrystal array structure-immobilized substrate of the present invention is manufactured using the nanocrystals thus obtained. In producing the nanocrystal array structure, a dispersion liquid in which such nanocrystals are dispersed in a second solvent described later is used.
 本発明のナノ結晶配列構造体固定化基板は、基板と、この基板の一面(表面)に形成されたナノ結晶配列構造体と、から構成されている。ナノ結晶配列構造体は、多数のナノ結晶を所定面に沿って配列(整列)させたものからなる。
 なお、本発明で言う「ナノ結晶を配列させた」とは、ナノ結晶を規則的に整列させた状態を示し、ナノ結晶を単にランダムに積み重ねて堆積させた状態とは異なる。
The nanocrystal array structure fixed substrate of the present invention is composed of a substrate and a nanocrystal array structure formed on one surface (surface) of the substrate. The nanocrystal array structure is composed of a large number of nanocrystals arranged (aligned) along a predetermined plane.
In the present invention, “arranged nanocrystals” refers to a state in which nanocrystals are regularly arranged, and is different from a state in which nanocrystals are simply stacked and deposited at random.
 本発明のナノ結晶配列構造体固定化基板は、基板の一面に対するナノ結晶配列構造体の被覆率が85%以上、100%以下である。また、基板の一面に沿ったナノ結晶配列構造体の形成面積は10000μm以上である。そして、幅100nm以上のサイズの亀裂やボイドが存在しない。なお、ナノ結晶配列構造体の形成面積の上限は、基板の面積に依存する。 In the nanocrystal array structure-immobilized substrate of the present invention, the coverage of the nanocrystal array structure body on one surface of the substrate is 85% or more and 100% or less. Moreover, the formation area of the nanocrystal arrangement structure along one surface of the substrate is 10,000 μm 2 or more. And there are no cracks or voids having a size of 100 nm or more in width. The upper limit of the formation area of the nanocrystal array structure depends on the area of the substrate.
 ナノ結晶配列構造体固定化基板のナノ結晶配列構造体を構成するナノ結晶としては、チタン酸化合物、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛などが挙げられる。 Nanocrystals constituting the nanocrystal array structure of the nanocrystal array structure immobilization substrate include titanate compounds such as barium titanate, strontium titanate, barium zirconate titanate, lead titanate, zirconate titanate. Lead etc. are mentioned.
 次に、本発明のナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法を説明する。
 図1は、ナノ結晶配列構造体の製造方法を含むナノ結晶配列構造体固定化基板の製造方法を段階的に示した模式図である。
 まず最初に、液槽10に第1溶媒11を入れる(図1(a)参照)。第1溶媒としては、極性媒体または非極性媒体のいずれかを用いる。第1溶媒11として極性媒体を用いる際には、後述する第2溶媒12には非極性媒体を用いる。また、第1溶媒11として非極性媒体を用いる際には、後述する第2溶媒12には極性媒体を用いる。本実施形態では、第1溶媒11として水を用いている。
Next, the manufacturing method of the nanocrystal arrangement structure body of this invention and the manufacturing method of a nanocrystal arrangement structure fixed board | substrate are demonstrated.
FIG. 1 is a schematic diagram showing stepwise a method for manufacturing a nanocrystal array structure-immobilized substrate including a method for manufacturing a nanocrystal array structure.
First, the 1st solvent 11 is put into the liquid tank 10 (refer Fig.1 (a)). As the first solvent, either a polar medium or a nonpolar medium is used. When a polar medium is used as the first solvent 11, a nonpolar medium is used for the second solvent 12 described later. When a nonpolar medium is used as the first solvent 11, a polar medium is used as the second solvent 12 described later. In the present embodiment, water is used as the first solvent 11.
 次に、この第1溶媒11の液面に界面活性剤13を展開させる(図1(b)参照)。これにより、第1溶媒11に界面活性剤13を展開させた配列媒体液14を得る(配列媒体液調製工程)。 Next, the surfactant 13 is developed on the liquid surface of the first solvent 11 (see FIG. 1B). Thereby, the arrangement | sequence medium liquid 14 which developed the surfactant 13 in the 1st solvent 11 is obtained (alignment medium liquid preparation process).
 配列媒体液14を構成する界面活性剤13としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤の何れも用いることができる。界面活性剤13の具体例としては、カルボン酸系の界面活性剤、例えばオレイン酸が好ましく挙げられる。 As the surfactant 13 constituting the alignment medium liquid 14, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant can be used. As a specific example of the surfactant 13, a carboxylic acid-based surfactant such as oleic acid is preferably exemplified.
 なお、配列媒体液調製工程においては、第1溶媒11よりも極めて少量の界面活性剤13を第1溶媒11の液面にムラなく展開させるために、界面活性剤13を揮発性の展開溶媒、例えばトルエンなどで希釈してこれを第1溶媒11の液面に滴下し、トルエンを全て揮発させることで、界面活性剤13を展開することが好ましい。 In the alignment medium liquid preparation step, in order to develop a very small amount of the surfactant 13 on the liquid surface of the first solvent 11 more uniformly than the first solvent 11, the surfactant 13 is removed from the volatile developing solvent, For example, it is preferable to develop the surfactant 13 by diluting with toluene or the like and dropping it onto the liquid surface of the first solvent 11 to volatilize all of the toluene.
 次に、予め製造したナノ結晶15を第2溶媒12に分散させ、分散液16を形成する(分散液調製工程:図1(c)参照)。第2溶媒12としては、極性媒体または非極性媒体のいずれかを用いる。具体的には、例えば、揮発性の有機溶媒を用いる。本実施形態では、第2溶媒12としてメシチレン(1,3,5-trimethylbenzene)を用いている。また、本実施形態では、ナノ結晶15として、チタン酸バリウムからなるナノ結晶を用いている。 Next, the nanocrystal 15 produced in advance is dispersed in the second solvent 12 to form a dispersion 16 (dispersion preparation step: see FIG. 1C). As the second solvent 12, either a polar medium or a nonpolar medium is used. Specifically, for example, a volatile organic solvent is used. In the present embodiment, mesitylene (1,3,5-trimethylbenzene) is used as the second solvent 12. In the present embodiment, a nanocrystal made of barium titanate is used as the nanocrystal 15.
 分散液16に含まれるナノ結晶15の濃度(第2溶媒12の質量にするナノ結晶15の質量)は、任意に設定可能であるが、こうしたナノ結晶15の濃度を高めて、ナノ結晶配列構造体を2層以上に積層することができる。 The concentration of the nanocrystals 15 contained in the dispersion liquid 16 (the mass of the nanocrystals 15 used as the mass of the second solvent 12) can be arbitrarily set. The body can be laminated in two or more layers.
 次に、分散液調製工程で得られた分散液16を、配列媒体液調製工程で得られた配列媒体液14に滴下する(分散液滴下工程:図1(d)参照)。分散液16は、滴下直前に良く撹拌し、ナノ結晶15を第2溶媒12中に均一に分散させておく。なお、分散液16の滴下量は、後ほど用いる基板の一面の面積などに応じて調整すればよい。 Next, the dispersion liquid 16 obtained in the dispersion liquid preparation step is dropped onto the alignment medium liquid 14 obtained in the arrangement medium liquid preparation step (dispersion liquid droplet lowering step: see FIG. 1 (d)). The dispersion liquid 16 is well stirred immediately before dropping, and the nanocrystals 15 are uniformly dispersed in the second solvent 12. The dropping amount of the dispersion liquid 16 may be adjusted according to the area of one surface of the substrate to be used later.
 図2は、第1溶媒に界面活性剤を展開させてなる配列媒体液に対して、分散液を滴下した後の作用を示す説明図である。
 配列媒体液14に分散液16を滴下させると、水からなる第1溶媒11よりも比重の軽いメシチレン(比重0.83)からなる第2溶媒12を含む分散液16は、配列媒体液14の液面に広がる。この時、配列媒体液14を構成する、第1溶媒11の表面の界面活性剤13は、分散液16によって押し広げられ、分散液16が第1溶媒11の表面に直接接するように広がり、その周囲を界面活性剤13が取り囲む状態になる。
FIG. 2 is an explanatory view showing an operation after the dispersion liquid is dropped onto the alignment medium liquid obtained by developing the surfactant in the first solvent.
When the dispersion liquid 16 is dropped into the alignment medium liquid 14, the dispersion liquid 16 containing the second solvent 12 made of mesitylene (specific gravity 0.83) having a lighter specific gravity than the first solvent 11 made of water becomes the liquid surface of the alignment medium liquid 14. To spread. At this time, the surfactant 13 on the surface of the first solvent 11 constituting the arrangement medium liquid 14 is spread by the dispersion liquid 16 and spreads so that the dispersion liquid 16 is in direct contact with the surface of the first solvent 11. The surface is surrounded by the surfactant 13.
 そして、この状態で暫く静置させると、分散液16に分散していたナノ結晶15が第2溶媒の底部、即ち第1溶媒11の表面まで沈み、同時に第2溶媒12であるメシチレンが揮発する(配列構造体形成工程:図1(e)参照)。 Then, when allowed to stand for a while in this state, the nanocrystal 15 dispersed in the dispersion liquid 16 sinks to the bottom of the second solvent, that is, the surface of the first solvent 11, and at the same time, mesitylene as the second solvent 12 volatilizes. (Array structure forming step: see FIG. 1E).
 この時、ナノ結晶15は、第2溶媒12の揮発によって生じる毛管現象によって、第1溶媒11の表面に整列する。また、第1溶媒11の表面にあるナノ結晶15の周囲を取り囲むように広がる界面活性剤13の凝集力(外圧)によって、ナノ結晶15が第2溶媒12の周囲に集められる。これにより、第1溶媒11の表面に、ナノ結晶15が配列(整列)したナノ結晶配列構造体21が得られる。 At this time, the nanocrystals 15 are aligned on the surface of the first solvent 11 by capillary action caused by the volatilization of the second solvent 12. Further, the nanocrystals 15 are collected around the second solvent 12 by the cohesive force (external pressure) of the surfactant 13 spreading so as to surround the periphery of the nanocrystals 15 on the surface of the first solvent 11. Thereby, the nanocrystal arrangement structure 21 in which the nanocrystals 15 are arranged (aligned) on the surface of the first solvent 11 is obtained.
 こうしたナノ結晶配列構造体21は、分散液16に分散させたナノ結晶15の濃度に応じて、ナノ結晶1つ分の厚みで広がる単層のナノ結晶配列構造体や、鉛直方向にナノ結晶が積み重なった複層のナノ結晶配列構造体などを作り分けることができる。 Such a nanocrystal array structure 21 has a single-layer nanocrystal array structure extending in a thickness corresponding to one nanocrystal according to the concentration of the nanocrystal 15 dispersed in the dispersion liquid 16, or a nanocrystal in the vertical direction. Stacked multilayer nanocrystal array structures can be created separately.
 この後、ナノ結晶配列構造体21が表面に形成されている配列媒体液14に基板22を対面させ、基板22の一面(表面)22aにナノ結晶配列構造体21を転写させる(転写工程:図1(f)参照)。
 なお、分散液滴下工程から転写工程までを、1つの基板22に対して繰り返し実行することによっても、鉛直方向にナノ結晶が積み重なった複層のナノ結晶配列構造体を形成することができる。
 以上のような工程によって、基板22の一面(表面)22aにナノ結晶配列構造体21が固定化(形成)されたナノ結晶配列構造体固定化基板20が得られる。
Thereafter, the substrate 22 is made to face the alignment medium liquid 14 having the nanocrystal array structure 21 formed on the surface thereof, and the nanocrystal array structure 21 is transferred to one surface (surface) 22a of the substrate 22 (transfer process: FIG. 1 (f)).
It should be noted that a multilayered nanocrystal array structure in which nanocrystals are stacked in the vertical direction can also be formed by repeatedly performing the process from the dispersed droplet dropping process to the transfer process on one substrate 22.
Through the steps as described above, the nanocrystal array structure-immobilized substrate 20 in which the nanocrystal array structure 21 is immobilized (formed) on one surface (surface) 22a of the substrate 22 is obtained.
 こうして得られたナノ結晶配列構造体固定化基板20は、基板22の一面22aに対するナノ結晶配列構造体21の被覆率が85%以上、100%以下であり、かつ基板22の一面22aに沿ったナノ結晶配列構造体21の形成面積が10000μm以上である。そして、幅100nm以上のサイズの亀裂やボイドが存在しない。なお、ナノ結晶配列構造体21の形成面積の上限は、基板の面積に依存する。 The thus obtained nanocrystal array structure-immobilized substrate 20 has a coverage of the nanocrystal array structure 21 with respect to the one surface 22a of the substrate 22 of 85% or more and 100% or less, and extends along the one surface 22a of the substrate 22. The formation area of the nanocrystal array structure 21 is 10,000 μm 2 or more. And there are no cracks or voids having a size of 100 nm or more in width. In addition, the upper limit of the formation area of the nanocrystal arrangement structure 21 depends on the area of the substrate.
 以上、詳細に説明したように、本発明のナノ結晶配列構造体の製造方法、ナノ結晶配列構造体固定化基板の製造方法によれば、界面活性剤13を展開させた第1溶媒11に、ナノ結晶15を含む分散液16を広げることで、界面活性剤13が第1溶媒11上でナノ結晶15を集めて配列させる役割を果たす。これによって、ナノ結晶15を大きな面積で均一に配列(整列)させたナノ結晶配列構造体21を得ることができる。 As described above in detail, according to the method for producing a nanocrystal array structure and the method for producing a nanocrystal array structure-immobilized substrate according to the present invention, the first solvent 11 in which the surfactant 13 is developed, By spreading the dispersion liquid 16 containing the nanocrystals 15, the surfactant 13 serves to collect and arrange the nanocrystals 15 on the first solvent 11. Thereby, the nanocrystal arrangement structure 21 in which the nanocrystals 15 are uniformly arranged (aligned) in a large area can be obtained.
 また、こうして形成したナノ結晶配列構造体21を、基板22の一面(表面)22aに転写させることによって、ヒビや傷のない大きな面積のナノ結晶配列構造体21をもつナノ結晶配列構造体固定化基板20を得ることができる。 Further, by transferring the nanocrystal array structure 21 formed in this way onto one surface (surface) 22a of the substrate 22, the nanocrystal array structure having a large area of the nanocrystal array structure 21 without cracks or scratches is fixed. The substrate 20 can be obtained.
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
 以下、本発明のナノ結晶配列構造体のより具体的な製造例を述べる。
〔ナノ結晶の合成〕
 ナノ結晶の一例として、チタン酸バリウムナノ結晶の具体的な合成方法を記載する。
 水酸化バリウム水溶液と、水溶性チタン錯体の水溶液と、水酸化ナトリウム水溶液と、アミン化合物と、有機カルボン酸とを混合して溶液を得て、その溶液を加熱して合成することにより、チタン酸バリウムナノ結晶を得ることができる。この合成は、上記加熱を、容器を密閉する等により加圧した状態で行う水熱合成により行うのが好ましい。
Hereinafter, more specific production examples of the nanocrystal array structure of the present invention will be described.
(Synthesis of nanocrystals)
A specific method for synthesizing barium titanate nanocrystals will be described as an example of nanocrystals.
An aqueous solution of barium hydroxide, an aqueous solution of a water-soluble titanium complex, an aqueous solution of sodium hydroxide, an amine compound, and an organic carboxylic acid are mixed to obtain a solution. Barium nanocrystals can be obtained. This synthesis is preferably performed by hydrothermal synthesis in which the heating is performed in a pressurized state such as by sealing the container.
 0.05mol/L(0.05M)の水酸化バリウム水溶液(Ba(OH))24mlと、TALH(水溶性チタン錯体)0.72mlと、オレイン酸(OLA)(有機カルボン酸)3.8mlと、tert-ブチルアミン(アミン化合物)1.28mlと、1mol/L(1M)の水酸化ナトリウム(Na(OH))水溶液6mlとをオートクレーブに入れて混合した。ここで、水酸化バリウム水溶液とTALHはBa:Ti=1:1に、また、Ba:OLA:tert-ブチルアミン=1:8:8になるように混合した。密閉したオートクレーブを200℃で72時間加熱した後、室温まで冷却して、チタン酸バリウムナノ結晶を合成した。 24 ml of 0.05 mol / L (0.05 M) barium hydroxide aqueous solution (Ba (OH) 2 ), 0.72 ml of TALH (water-soluble titanium complex), and 3.8 ml of oleic acid (OLA) (organic carboxylic acid) Then, 1.28 ml of tert-butylamine (amine compound) and 6 ml of a 1 mol / L (1M) aqueous solution of sodium hydroxide (Na (OH)) were placed in an autoclave and mixed. Here, the aqueous barium hydroxide solution and TALH were mixed so that Ba: Ti = 1: 1 and Ba: OLA: tert-butylamine = 1: 8: 8. The sealed autoclave was heated at 200 ° C. for 72 hours and then cooled to room temperature to synthesize barium titanate nanocrystals.
 ここで、水酸化ナトリウム(Na(OH))水溶液はpH調整剤として添加している。
水熱合成においてpH調整剤としてよく用いられるアンモニアでは合成が進みやすい十分な強塩基条件になりにくいが(pH14の条件にさらにアンモニアを加えてもより強塩基にはならないが)、水酸化ナトリウム(Na(OH))を用いれば十分な強塩基条件になり、チタン酸バリウムナノ結晶の合成が進みやすい。
Here, sodium hydroxide (Na (OH)) aqueous solution is added as a pH adjuster.
Ammonia, which is often used as a pH adjuster in hydrothermal synthesis, is unlikely to have sufficiently strong base conditions that facilitate the synthesis (although it does not become a stronger base even if ammonia is added to pH 14 conditions), sodium hydroxide ( If Na (OH)) is used, sufficient basic conditions are obtained, and synthesis of barium titanate nanocrystals is likely to proceed.
 有機カルボン酸としては、デカン酸(カプリン酸)CH(CHCOOH等の炭素鎖が長いカルボン酸であれば、二重結合を含まなくても用いることができる。 As the organic carboxylic acid, any carboxylic acid having a long carbon chain such as decanoic acid (capric acid) CH 3 (CH 2 ) 8 COOH can be used without including a double bond.
 図3及び図4は、上述の例で示した条件により合成したチタン酸バリウムナノ結晶のTEM像である。
 図3及び図4は日本電子株式会社製JEOL-2100(300kV)を用いて得たものである。
 チタン酸バリウムナノ結晶のTEM像観察用のサンプルは、オートクレーブ内の上澄み液を濾紙上に配置したTEMグリッド(基板)上に滴下し、滴下した上澄み液中の溶媒を濾紙に吸収させて除去して作製した。TEMグリッドはカーボンで被覆した銅(メッシュをコロジオン膜で支持した構造)からなる。
3 and 4 are TEM images of barium titanate nanocrystals synthesized under the conditions shown in the above example.
3 and 4 were obtained using JEOL-2100 (300 kV) manufactured by JEOL Ltd.
The sample for TEM image observation of barium titanate nanocrystals is removed by dropping the supernatant in the autoclave onto a TEM grid (substrate) placed on the filter paper and absorbing the solvent in the dropped supernatant on the filter paper. Made. The TEM grid is made of carbon coated with carbon (a structure in which a mesh is supported by a collodion film).
 図4の電子回折スポット像の各点のスポットの位置からそのナノ結晶の格子面間隔を決定し、チタン酸バリウム単結晶の(100)面、(001)面に対応する4.04Å、2.85Åのスポットが得られた。
 図3及び図4のTEM像及びその電子回折スポット像から、上述の合成方法により、チタン酸バリウムのナノ結晶が合成されていることが確認された。
 また、X線粉末回折法により、(100)回折線が22°付近に、また、(200)回折線が44°付近に現れることによってもチタン酸バリウムであることを同定した。
The lattice spacing of the nanocrystals is determined from the spot positions of the respective points in the electron diffraction spot image of FIG. 4, and 4.04Å corresponding to the (100) plane and (001) plane of the barium titanate single crystal. A spot of 85 mm was obtained.
From the TEM images of FIGS. 3 and 4 and their electron diffraction spot images, it was confirmed that the nanocrystals of barium titanate were synthesized by the synthesis method described above.
Moreover, it was identified by barium titanate by the X-ray powder diffraction method that the (100) diffraction line appeared at around 22 ° and the (200) diffraction line appeared at around 44 °.
 次いで、オートクレーブからチタン酸ストロンチウムナノ結晶含有溶液を専用の容器に移して、その容器を遠心分離(5300rpm(第1の回転速度)、3分間(第1の回転時間))し、容器の底に沈殿したチタン酸バリウムナノ結晶を回収した。遠心分離機は株式会社コクサン製のH9RH型を用いた。
 以上のようにして得られたチタン酸バリウムのナノ結晶を、以下に述べるナノ結晶配列構造体の製造方法で用いる分散液に適用した。
Next, the strontium titanate nanocrystal-containing solution is transferred from the autoclave to a dedicated container, and the container is centrifuged (5300 rpm (first rotation speed), 3 minutes (first rotation time)), and placed at the bottom of the container. The precipitated barium titanate nanocrystals were collected. The centrifuge used was H9RH type manufactured by Kokusan Co., Ltd.
The nanocrystals of barium titanate obtained as described above were applied to a dispersion used in the method for producing a nanocrystal array structure described below.
〔ナノ結晶配列構造体固定化基板の製造〕
(実施例1)
 まず、内径約7cmのガラス製のシャーレに数センチの高さまで第1溶媒として水を張る。次に、その水面に、界面活性剤としてオレイン酸を体積比1000倍のトルエン(非極性溶媒)で希釈した溶液40μlをマイクロシリンジで滴下した。トルエンを完全に蒸発させて、水の表面に界面活性剤を展開させた配列媒体液を形成した。
[Manufacture of nanocrystal array structure immobilization substrate]
(Example 1)
First, water is added as a first solvent to a glass petri dish having an inner diameter of about 7 cm to a height of several centimeters. Next, 40 μl of a solution obtained by diluting oleic acid as a surfactant with toluene (nonpolar solvent) having a volume ratio of 1000 times was dropped onto the water surface with a microsyringe. Toluene was completely evaporated to form an alignment medium liquid in which a surfactant was developed on the surface of water.
 また、第2溶媒としてメシチレンに、前述した方法で製造したチタン酸バリウムナノ結晶(結晶サイズ15~20nm)を分散させて分散液を形成した。
 そして、シャーレ中の配列媒体液に、分散液40μlを滴下し、シャーレに蓋をしてメシチレンが完全に蒸発するまで静置した。メシチレンが完全に蒸発した後、水面には、チタン酸バリウムナノ結晶配列構造体が浮遊した状態で得られた。
In addition, a dispersion was formed by dispersing barium titanate nanocrystals (crystal size 15 to 20 nm) produced by the above-described method in mesitylene as the second solvent.
And 40 microliters of dispersion liquids were dripped at the arrangement | sequence medium liquid in a petri dish, the petri dish was covered, and it left still until mesitylene evaporated completely. After the mesitylene was completely evaporated, the barium titanate nanocrystal array structure was floated on the water surface.
 こうして得られたチタン酸バリウムナノ結晶配列構造体を、水平付着法によって基板の表面に転写した。水平付着法とは、基板表面が液面に対して水平になるような角度で、液面に基板表面を付着させ、そのまま基板を引き上げて乾燥させることで、液面の浮遊物を基板表面に転写する手法である。基板はシリコンを使用し、転写を行う前にエタノール中で超音波洗浄をして大気乾燥させた。
 以上の手順で、シリコン基板にチタン酸バリウムナノ結晶配列構造体を形成したナノ結晶配列構造体固定化基板が得られた。
The barium titanate nanocrystal array structure thus obtained was transferred onto the surface of the substrate by a horizontal adhesion method. In the horizontal adhesion method, the substrate surface is attached to the liquid surface at an angle such that the substrate surface is horizontal with respect to the liquid surface, and the substrate is lifted and dried as it is, so that suspended matter on the liquid surface is applied to the substrate surface. It is a technique to transcribe. Silicon was used for the substrate, and it was air-dried by ultrasonic cleaning in ethanol before transfer.
Through the above procedure, a nanocrystal array structure-immobilized substrate having a barium titanate nanocrystal array structure formed on a silicon substrate was obtained.
 図5はシリコン基板上に形成したチタン酸バリウムナノ結晶配列構造体の走査型電子顕微鏡(SEM)写真(全体像、拡大像)である。この写真の全体像から、チタン酸バリウムナノ結晶配列構造体が全体として数百μmの大きさを持つこと、及びマイクロメートルスケールの亀裂(ヒビ)が見られないことが確認された。また、拡大像で確認できる小さな四角のひとつひとつがチタン酸バリウムナノ結晶であり、この拡大像から、チタン酸バリウムナノ構造体がチタン酸バリウムナノ結晶の規則配列によって形成される単層膜であることが確認された。 FIG. 5 is a scanning electron microscope (SEM) photograph (overall image, enlarged image) of the barium titanate nanocrystal array structure formed on the silicon substrate. From the overall image of this photograph, it was confirmed that the barium titanate nanocrystal array structure had a size of several hundred μm as a whole, and no cracks (cracks) on the micrometer scale were observed. In addition, each small square that can be confirmed in the magnified image is a barium titanate nanocrystal. From this magnified image, the barium titanate nanostructure is a monolayer film formed by an ordered arrangement of barium titanate nanocrystals. Was confirmed.
(実施例2)
 実施例2は、分散液中のチタン酸バリウムナノ結晶の濃度を、実施例1よりも5倍高くした。これ以外の条件は実施例1と同様である。
 図6に、実施例2で得られた、シリコン基板上に形成したチタン酸バリウムナノ結晶配列構造体のSEM写真を示す。図6の写真によれば、分散液中のナノ結晶の濃度を上げることにより、単層膜だけでなく、ナノ結晶配列が二層重なった積層構造のナノ結晶配列構造体が得られることが確認された。
(Example 2)
In Example 2, the concentration of barium titanate nanocrystals in the dispersion was 5 times higher than in Example 1. The other conditions are the same as in the first embodiment.
FIG. 6 shows an SEM photograph of the barium titanate nanocrystal array structure formed on the silicon substrate obtained in Example 2. According to the photograph in FIG. 6, it is confirmed that by increasing the concentration of nanocrystals in the dispersion liquid, not only a single layer film but also a nanocrystal array structure having a stacked structure in which nanocrystal arrays are stacked in two layers can be obtained. It was done.
(実施例3)
 実施例3は、基板としてサファイア基板、チタン酸ストロンチウム(STO)基板、ルテニウム酸ストロンチウムコート(SRO/STO)基板、及び金コート雲母(Au/Mica)基板を用いた。これ以外の条件は実施例1と同様である。
 図7に、これら4種類の基板のそれぞれに形成したナノ結晶配列構造体のSEM写真を示す。図7の写真によれば、基板の材質を問わずナノ結晶の規則配列からなるナノ結晶配列構造体を基板表面に形成可能であることが確認された。
Example 3
In Example 3, a sapphire substrate, a strontium titanate (STO) substrate, a strontium ruthenate-coated (SRO / STO) substrate, and a gold-coated mica (Au / Mica) substrate were used. The other conditions are the same as in the first embodiment.
FIG. 7 shows SEM photographs of nanocrystal array structures formed on each of these four types of substrates. According to the photograph in FIG. 7, it was confirmed that a nanocrystal array structure composed of a regular array of nanocrystals can be formed on the substrate surface regardless of the material of the substrate.
(実施例4)
 実施例4は、基板として透過電子顕微鏡(TEM)用グリッドを用いていること、及びこの基板へのナノ結晶配列構造体の転写前に、基板にエタノール洗浄を施していないことが実施例1と異なる。これ以外の条件は実施例1と同様である。
 基板であるTEMグリッドは厚さ50nmの窒化ケイ素メンブレンに直径約2nmの孔が等間隔に形成された構造を有する。図8に、TEMグリッドの孔内に形成したナノ結晶配列構造体のSEM写真を示す。図8の写真によれば、平坦な基板上ではなく、孔内の中空領域にもナノ結晶の規則配列からなるナノ結晶配列構造体が形成可能であることが確認された。
Example 4
Example 4 is that the transmission electron microscope (TEM) grid is used as the substrate, and that the substrate is not washed with ethanol before transferring the nanocrystal array structure to the substrate. Different. The other conditions are the same as in the first embodiment.
A TEM grid as a substrate has a structure in which holes having a diameter of about 2 nm are formed at equal intervals in a silicon nitride membrane having a thickness of 50 nm. In FIG. 8, the SEM photograph of the nanocrystal arrangement | sequence structure formed in the hole of a TEM grid is shown. According to the photograph of FIG. 8, it was confirmed that a nanocrystal array structure composed of a regular array of nanocrystals can be formed not in a flat substrate but also in a hollow region in the hole.
 10…液槽
 11…第1溶媒
 12…第2溶媒
 13…界面活性剤
 14…配列媒体液
 15…ナノ結晶
 16…分散液
 20…ナノ結晶配列構造体固定化基板
 21…ナノ結晶配列構造体
 22…基板
DESCRIPTION OF SYMBOLS 10 ... Liquid tank 11 ... 1st solvent 12 ... 2nd solvent 13 ... Surfactant 14 ... Array medium liquid 15 ... Nanocrystal 16 ... Dispersion liquid 20 ... Nanocrystal array structure fixed substrate 21 ... Nanocrystal array structure 22 …substrate

Claims (9)

  1.  基板と、該基板の一面にナノ結晶を配列させたナノ結晶配列構造体と、を備え、前記基板の一面に対する前記ナノ結晶配列構造体の被覆率は85%以上、100%以下であり、かつ前記基板の一面に沿った前記ナノ結晶配列構造体の形成面積は10000μm以上であることを特徴とするナノ結晶配列構造体固定化基板。 A substrate, and a nanocrystal array structure in which nanocrystals are arranged on one surface of the substrate, and a coverage of the nanocrystal array structure on one surface of the substrate is 85% or more and 100% or less, and The formation area of the nanocrystal arrangement structure along one surface of the substrate is 10,000 μm 2 or more, and the nanocrystal arrangement structure immobilization substrate is characterized in that
  2.  前記基板は、ガラス、半導体、金属、金属酸化物、ポリマー、紙、およびゴムのうち、少なくとも1つを含むことを特徴とする請求項1記載のナノ結晶配列構造体固定化基板。 2. The nanocrystal array structure-immobilized substrate according to claim 1, wherein the substrate includes at least one of glass, semiconductor, metal, metal oxide, polymer, paper, and rubber.
  3.  第1溶媒の表面に界面活性剤を展開させた配列媒体液を調製する配列媒体液調製工程と、
     第2溶媒にナノ結晶を分散させた分散液を調製する分散液調製工程と、
     前記配列媒体液の表面に前記分散液を滴下する分散液滴下工程と、
     前記第2溶媒を気化させ、前記配列媒体液の表面に前記ナノ結晶を配列させたナノ結晶配列構造体を形成する配列構造体形成工程と、を有することを特徴とするナノ結晶配列構造体の製造方法。
    An alignment medium liquid preparation step of preparing an alignment medium liquid in which a surfactant is developed on the surface of the first solvent;
    A dispersion preparation step of preparing a dispersion in which nanocrystals are dispersed in a second solvent;
    A dispersion liquid dropping step of dripping the dispersion onto the surface of the array medium liquid;
    An array structure forming step of evaporating the second solvent and forming a nanocrystal array structure in which the nanocrystals are arrayed on the surface of the array medium liquid. Production method.
  4.  前記第1溶媒および前記第2溶媒は、それぞれ極性媒体および非極性媒体、または非極性媒体および極性媒体であり、前記第1溶媒と前記第2溶媒とは、互いに混和しないことを特徴とする請求項3に記載のナノ結晶配列構造体の製造方法。 The first solvent and the second solvent are a polar medium and a nonpolar medium, or a nonpolar medium and a polar medium, respectively, and the first solvent and the second solvent are immiscible with each other. Item 4. A method for producing a nanocrystal array structure according to Item 3.
  5.  前記配列構造体形成工程では、前記分散液に含まれる前記ナノ結晶の濃度に応じて、前記配列媒体液の表面に配列させる前記ナノ結晶配列構造体の鉛直方向の積み数を調整することを特徴とする請求項3または4に記載のナノ結晶配列構造体の製造方法。 In the array structure forming step, the vertical stack number of the nanocrystal array structures arranged on the surface of the array medium liquid is adjusted according to the concentration of the nanocrystals contained in the dispersion. The method for producing a nanocrystal array structure according to claim 3 or 4.
  6.  前記配列構造体形成工程において、前記ナノ結晶の表面を前記界面活性剤で覆うことにより、前記第2溶媒に対して親和性を付与することを特徴とする請求項3ないし5いずれか一項に記載のナノ結晶配列構造体の製造方法。 6. The affinity for the second solvent is imparted by covering the surface of the nanocrystals with the surfactant in the array structure forming step. 6. A method for producing the described nanocrystal array structure.
  7.  前記界面活性剤は、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、及び非イオン界面活性剤からなる群より選択される少なくとも1種であることを特徴とする請求項3ないし6いずれか一項に記載のナノ結晶配列構造体の製造方法。 The surfactant is at least one selected from the group consisting of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. 6. The method for producing a nanocrystal array structure according to any one of claims 6 to 10.
  8.  基板の一面にナノ結晶を配列させたナノ結晶配列構造体を固定化したナノ結晶配列構造体固定化基板の製造方法であって、
     第1溶媒の表面に界面活性剤を展開させた配列媒体液を調製する配列媒体液調製工程と、
     第2溶媒に前記ナノ結晶を分散させた分散液を調製する分散液調製工程と、
     前記配列媒体液の表面に前記分散液を滴下する分散液滴下工程と、
     前記第2溶媒を気化させ、前記配列媒体液の表面に前記ナノ結晶を配列させたナノ結晶配列構造体を形成する配列構造体形成工程と、
     前記配列構造体形成工程を経て前記配列媒体液の表面に形成された前記ナノ結晶配列構造体を基板の一面に転写させる転写工程を備えたことを特徴とするナノ結晶配列構造体固定化基板の製造方法。
    A method for producing a nanocrystal array structure-immobilized substrate in which a nanocrystal array structure in which nanocrystals are arranged on one surface of the substrate is immobilized,
    An alignment medium liquid preparation step of preparing an alignment medium liquid in which a surfactant is developed on the surface of the first solvent;
    A dispersion preparation step of preparing a dispersion in which the nanocrystals are dispersed in a second solvent;
    A dispersion liquid dropping step of dripping the dispersion onto the surface of the array medium liquid;
    An array structure forming step of forming a nanocrystal array structure in which the second solvent is vaporized and the nanocrystals are arrayed on the surface of the array medium liquid;
    A nanocrystal array structure-immobilized substrate comprising a transfer step of transferring the nanocrystal array structure formed on the surface of the array medium liquid through the array structure forming step onto one surface of the substrate. Production method.
  9.  前記転写工程を複数回繰り返し、前記基板の一面に複数の前記ナノ結晶配列構造体を積み上げることを特徴とする請求項8記載のナノ結晶配列構造体固定化基板の製造方法。 The method for producing a nanocrystal array structure-immobilized substrate according to claim 8, wherein the transfer step is repeated a plurality of times, and a plurality of nanocrystal array structures are stacked on one surface of the substrate.
PCT/JP2018/039422 2018-01-30 2018-10-24 Nanocrystal array structure immobilization substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure immobilization substrate WO2019150670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568862A JP6966805B2 (en) 2018-01-30 2018-10-24 Manufacturing method of nanocrystal array structure, manufacturing method of nanocrystal array structure immobilized substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013935 2018-01-30
JP2018-013935 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019150670A1 true WO2019150670A1 (en) 2019-08-08

Family

ID=67478151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039422 WO2019150670A1 (en) 2018-01-30 2018-10-24 Nanocrystal array structure immobilization substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure immobilization substrate

Country Status (2)

Country Link
JP (1) JP6966805B2 (en)
WO (1) WO2019150670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411225B2 (en) 2020-07-03 2024-01-11 国立研究開発法人産業技術総合研究所 Ceramic capacitor and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171671A (en) * 1986-09-24 1988-07-15 エクソン リサーチ アンド エンヂニアリング コムパニー Manufacture of large area-two-dimensional arranged article of tightly packaged colloidal particle
JPH07185311A (en) * 1992-10-28 1995-07-25 Res Dev Corp Of Japan Method for producing two-dimensional particle thin film
CN101245162A (en) * 2008-03-27 2008-08-20 复旦大学 Method for manufacturing self-assembly polyalcohol colloid crystal with adjustable structure
US20090225310A1 (en) * 2003-07-28 2009-09-10 The Regents Of The University Of California Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater
US20130199995A1 (en) * 2010-10-27 2013-08-08 University Of Florida Research Foundation Inc. Porous polymer membranes, methods of making, and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171671A (en) * 1986-09-24 1988-07-15 エクソン リサーチ アンド エンヂニアリング コムパニー Manufacture of large area-two-dimensional arranged article of tightly packaged colloidal particle
JPH07185311A (en) * 1992-10-28 1995-07-25 Res Dev Corp Of Japan Method for producing two-dimensional particle thin film
US20090225310A1 (en) * 2003-07-28 2009-09-10 The Regents Of The University Of California Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater
CN101245162A (en) * 2008-03-27 2008-08-20 复旦大学 Method for manufacturing self-assembly polyalcohol colloid crystal with adjustable structure
US20130199995A1 (en) * 2010-10-27 2013-08-08 University Of Florida Research Foundation Inc. Porous polymer membranes, methods of making, and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIMURA, K ET AL.: "Piezoresponse properties of orderly assemblies of BaTiOand SrTiOnanocube single crystals", APPLIED PHYSICS LETTERS, vol. 101, 2 July 2012 (2012-07-02), pages 12901 - 12901-4, XP012163759 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411225B2 (en) 2020-07-03 2024-01-11 国立研究開発法人産業技術総合研究所 Ceramic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JPWO2019150670A1 (en) 2021-02-12
JP6966805B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US7752997B1 (en) Apparatus and method for nanoscale pattern generation
KR101341259B1 (en) Method for arranging fine particles on substrate by physical pressure
US20170348728A1 (en) Prevention of hydrophobic dewetting through nanoparticle surface treatment
JP5618087B2 (en) Nanocrystal array method, nanocrystal film manufacturing method, nanocrystal film-coated substrate, and manufacturing method thereof
KR20190097863A (en) Microbubble integrated structure and method of manufacturing the same
WO2019150670A1 (en) Nanocrystal array structure immobilization substrate, method for producing nanocrystal array structure, and method for producing nanocrystal array structure immobilization substrate
Kashyap et al. Deposition of thin films by chemical solution-assisted techniques
JP6422989B2 (en) Method for arranging nanocrystals, method for producing nanocrystal structures, substrate for forming nanocrystal structures, and method for producing substrate for forming nanocrystal structures
JP2003183849A (en) Porous structure, structure and their manufacturing processes
JP6473232B2 (en) Vertical alignment made possible by the shell and precision assembly of closely packed colloidal crystal films
Okada et al. Titanate nanofunnel brushes: toward functional interfacial applications
CN108528078B (en) Nanostructure transfer printing method and method for preparing multilayer nanostructure by using stacking method
CN103601209B (en) A kind of method of ordered fabrication zeolite crystal layer
KR20210071176A (en) Manufacturing method of mxene film
KR101006823B1 (en) Method for manufacturing polymer thin film structure having nanowires embedded therein
Alehdaghi et al. Facile preparation of various ZnO nanostructures via ultrasonic mist vapor deposition: a systematic investigation about the effects of growth parameters
JP7411225B2 (en) Ceramic capacitor and its manufacturing method
CN110540372B (en) Non-close-packed silicon dioxide ring nano array and preparation method thereof
KR101590315B1 (en) Hollow nanocapsules containing piezoelectric material, manufacturing method thereof and carrier using the same
JP3207886B2 (en) Method for producing metal oxide thin film
JP2018149734A (en) Structure including zeolite-containing film and production method of structure including zeolite-containing film
WO2022185629A1 (en) Dispersion manufacturing method, metal oxide particle manufacturing method, and ceramic sheet manufacturing method
KR20050075073A (en) A method of forming quantum layer and patterned structure by multiple dip-coating processes
KR20120139892A (en) Method for patterning thin film using viscoelastic flow and substrate patterned the thin film
Schneller Freestanding and embedded ferroelectric nanograins by advanced chemical solution deposition methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904446

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019568862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904446

Country of ref document: EP

Kind code of ref document: A1