WO2019150564A1 - Dna replication method using oligonucleotide having sulfonamide skeleton as template - Google Patents

Dna replication method using oligonucleotide having sulfonamide skeleton as template Download PDF

Info

Publication number
WO2019150564A1
WO2019150564A1 PCT/JP2018/003693 JP2018003693W WO2019150564A1 WO 2019150564 A1 WO2019150564 A1 WO 2019150564A1 JP 2018003693 W JP2018003693 W JP 2018003693W WO 2019150564 A1 WO2019150564 A1 WO 2019150564A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
template
compound
nucleobase
Prior art date
Application number
PCT/JP2018/003693
Other languages
French (fr)
Japanese (ja)
Inventor
清尾 康志
慶昭 正木
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2019568531A priority Critical patent/JPWO2019150564A1/en
Priority to PCT/JP2018/003693 priority patent/WO2019150564A1/en
Publication of WO2019150564A1 publication Critical patent/WO2019150564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for synthesizing ODN by synthesizing oligodeoxynucleotide (ODN) having sulfonamide bonded with non-natural internucleotide and using this as a template.
  • ODN oligodeoxynucleotide
  • a method of synthesizing an artificial gene by linking chemically synthesized oligodeoxynucleotides (ODN) using a DNA synthase, a restriction enzyme, or a ligase has attracted attention in the fields of synthetic biology and molecular biology.
  • ODN chemically synthesized oligodeoxynucleotides
  • the upper limit of oligodeoxynucleotides that can be used for this purpose is about 150 bases, and longer oligonucleotides have low purity due to incomplete coupling and side reactions during oligonucleotide synthesis, and DNA synthase When it is replicated by PCR, a mixture of artificial genes containing undesired sequences is generated.
  • Non-Patent Documents 1 and 2 are examples of enzymes such as DNA ligase and RNA ligase.
  • a 3′-modified ODN having a reactive residue at the 3 ′ end and a 5′-modified ODN having a reactive residue at the 5 ′ end are linked without using an enzyme.
  • a chemical ligation method has been reported.
  • the modified ODN synthesized in this way contains a non-natural internucleotide bond that is different from the natural phosphodiester bond. If this modified ODN can be used as a template, a natural ODN can be synthesized by a DNA synthase. It is useful as a method for synthesizing natural ODN having a long chain length.
  • modified ODN for example, Brown et al.
  • An object of the present invention is to provide a method for synthesizing an oligodeoxynucleotide (ODN) having a non-natural internucleotide bond that can be used in a chemical ligation method.
  • ODN oligodeoxynucleotide
  • ODN oligodeoxynucleotide
  • R 1 is represented by formula II:
  • R 2 is a compound of formula III:
  • n represents an integer of 0 or more, provided that m and n cannot be 0 at the same time; and B n represents the same or different nucleobase corresponding to each integer of n
  • It is a compound represented by A method of synthesizing oligodeoxynucleotides with a DNA synthase using a compound having a sulfonamide skeleton represented by
  • the method further includes a method of synthesizing the compound represented by Formula I, wherein Formula IV:
  • the method further includes a method of synthesizing the compound represented by Formula V, wherein Formula IV:
  • Y represents an azolyl group
  • Z represents a nucleobase which may have a protecting group
  • R 3 represents a protecting group for phosphoric acid
  • R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom
  • the method according to the above [2] comprising a step of synthesizing using a nucleic acid solid phase synthesis method or a liquid phase synthesis method by a phosphoramidite method using a compound represented by the formula:
  • Y represents an azolyl group
  • Z represents a nucleobase which may have a protecting group
  • R 3 represents a protecting group for phosphoric acid
  • R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom,
  • a ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom
  • a long-chain natural oligodeoxynucleotide can be synthesized by providing an oligodeoxynucleotide (ODN) having a sulfonamide bonded to a non-natural internucleotide.
  • FIG. 1 shows an anion exchange HPLC chart after purification of template (S).
  • FIG. 2 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after the complete chain length extension reaction using the Klenow fragment exo ⁇ .
  • Lane 1 primer DNA 1; lane 2: primer DNA 1 + template (P); lane 3: primer DNA 1 + template (S).
  • FIG. 3 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after the complete chain length extension reaction using the Klenow fragment exo ⁇ .
  • FIG. 1 shows an anion exchange HPLC chart after purification of template (S).
  • FIG. 2 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after the complete chain length extension reaction using the Klenow fragment exo ⁇ .
  • Lane 1 primer DNA 1; lane 2: primer DNA 1 + template (P); lane 3:
  • Lane 5 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after a single base extension reaction using the Klenow fragment exo ⁇ .
  • Lane 1 Primer DNA2; Lane 2: Primer DNA2 + Template (S) + dATP, 1 minute; Lane 3: Primer DNA2 + Template (S) + dGTP, 1 minute; Lane 4: Primer DNA2 + Template (S) + dTTP, 1 minute; Lane 5 : Primer DNA2 + Template (S) + dCTP, 1 minute; Lane 6: Primer DNA2 + Template (S) + dATP, 2 minutes; Lane 7: Primer DNA2 + Template (S) + dGTP, 2 minutes; Lane 8: Primer DNA2 + Template (S) + dTTP 2 minutes; Lane 9: Primer DNA2 + Template (S) + dCTP, 2 minutes; Lane 10: Primer DNA2 + Template (S) + dATP, 5 minutes; Lane 11: Primer DNA2 + Template Preparative (S) + dGTP
  • An oligodeoxynucleotide can be synthesized by a DNA synthase using a compound having a sulfonamide skeleton represented by
  • nucleobase refers to a moiety in a deoxyribonucleotide other than a deoxyribose moiety and a 3′- or 5′-phosphate moiety, or a moiety in a deoxyribonucleoside other than a deoxyribose moiety.
  • the nucleobase can be adenine, guanine, thymine, or cytosine.
  • R 1 in formula I may be an oligodeoxynucleotide composed of zero or one or more nucleotide units. Typically R 1 is of formula II:
  • m represents an integer of 0 or more, provided that m is not 0 when R is 0 in R 2 in formula III described later; B m represents the same or different nucleobase corresponding to each integer of m; and X represents a hydrogen atom, a phosphate group, a pyrophosphate group, or a triphosphate group
  • B m represents the same or different nucleobase corresponding to each integer of m; and X represents a hydrogen atom, a phosphate group, a pyrophosphate group, or a triphosphate group
  • M is typically an integer from 0 to 1,000,000 and is not limited to 0 to 500,000, 0 to 300,000, 0 to 200,000, 0 to 150,000, 0 to 100,000, 0 to 50,000, 0 to 30,000, 0 to 20,000, 0 to 10,000, 0 to 5,000, 0 to 3,000, 0 to 1,000, 0 to It may be 500, 0 to 300, 0 to 100, or the like.
  • B m represents a nucleobase, but shall conform to the definition for “nucleobase” in formula I.
  • B 1 to B 5 (5) are the same nucleobase. Meaning that it may be a nucleobase or may be an independently selected nucleobase.
  • R 2 in Formula I may be an oligodeoxy (ribo) nucleotide composed of zero or one or more nucleoside units.
  • R 2 is of formula III:
  • n represents an integer of 0 or more, provided that when m is 0 in R 1 in Formula II described above, n is not 0; B n represents the same or different nucleobase corresponding to each integer of n)
  • the compound represented by these may be sufficient.
  • N is typically an integer from 0 to 1,000,000, and is not limited to 0 to 500,000, 0 to 300,000, 0 to 200,000, 0 to 150,000, 0 to 100,000, 0 to 50,000, 0 to 30,000, 0 to 20,000, 0 to 10,000, 0 to 5,000, 0 to 3,000, 0 to 1,000, 0 to It may be 500, 0 to 300, 0 to 100, or the like.
  • B n represents a nucleobase, but shall follow the definition for “nucleobase” in formula I.
  • B 1 to B 5 (5) are the same nucleobase. Meaning that it may be a nucleobase or may be an independently selected nucleobase.
  • R 1 and R 2 are typically oligodeoxynucleotides, but methods for the synthesis and chemical modification of oligodeoxynucleotides are known to those skilled in the art, eg, Uhlmann, E., et. al., (1990), Chem. Rev., 90: 543; “Protocols for Oligonucleotides and Analogs” Synthesis and Properties & Synthesis and Analytical Techniques. ”S. Agrawal ed., Humana Press, Totowa, USA, 1993; Crooke, ST, et al. (1996) Annu. Rev. Pharmacol. Toxicol., 36: 107-129; and Hunziker, J., et al., (1995), Mod. Synth. Methods, 7: 331-417. Has been.
  • a template strand for oligodeoxynucleotide synthesized by DNA synthase can be prepared by linking R 1 and R 2 .
  • a template chain is characterized by having a sulfonamide skeleton in the chain.
  • formula IV the following formula IV:
  • an “azolyl group” is a saturated or unsaturated heterocyclic group having a hetero atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom as a ring member atom. , One in which at least one of the different atoms is a nitrogen atom.
  • Azolyl groups include, but are not limited to, imidazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, benzoimidazolyl, benzotriazolyl, and the like, and any carbon atom in the ring Those having a substituent are also included.
  • the method of the present invention synthesizes an oligodeoxynucleotide (ODN) with a nucleic acid synthase (eg, DNA synthase) and an appropriate primer using a compound having a sulfonamide skeleton represented by Formula I as a template strand (or Elongate).
  • ODN oligodeoxynucleotide
  • nucleic acid synthase eg, DNA synthase
  • an appropriate primer esized a compound having a sulfonamide skeleton represented by Formula I as a template strand (or Elongate).
  • nucleic acid synthase refers to any enzyme that has the ability to synthesize nucleic acids.
  • nucleic acid synthase examples include, but are not limited to, DNA synthase (for example, DNA-dependent DNA synthase, RNA-dependent DNA synthase), RNA synthase, and the like. It should be understood that both DNA-dependent DNA synthase and RNA-dependent DNA synthase may be detected regardless of DNA or RNA.
  • DNA synthetase examples include, but are not limited to, Escherichia coli-derived DNA polymerase I, DNA polymerase I Klenow fragment, Taq polymerase, KLA-Taq polymerase, KOD polymerase, Vent polymerase, Pfu polymerase, T4 DNA polymerase, and the like. be able to.
  • a thermostable DNA synthase may be used in the extension reaction, and examples thereof include exTaq, Q5, KOD, KOD ', Deep vent and the like.
  • “synthesizing” or “extending” an oligodeoxynucleotide refers to any reaction in which the nucleic acid extends at least one nucleotide when referring to the nucleic acid.
  • the extension reaction is performed using the polymerase as described above, since a nucleotide is usually introduced based on a template, a specific sequence is extended in a nucleic acid to be extended such as a nucleic acid to be labeled.
  • the extension reaction consists of (i) hybridization (annealing) reaction between the target nucleic acid and its complementary strand and the nucleic acid primer and nucleic acid probe, and (ii) primer strand extension reaction and probe degradation reaction by nucleic acid synthase.
  • Reactions (i) and (ii) can be carried out in an aqueous solution containing a suitable buffer such as, for example, Tris-HCl buffer.
  • a suitable buffer such as, for example, Tris-HCl buffer.
  • This hybridization reaction can typically be performed at 55-75 ° C, but is not limited.
  • Enzymatic reactions can typically be performed at 37 ° C, but are not limited.
  • the denaturation of the primer extension product can be carried out by, for example, subjecting the solution containing the primer chain extension product obtained by the extension reaction to a heat treatment at 94 to 95 ° C. for 0.5 to 1 minute.
  • the above-described extension reaction and denaturation may be repeated a plurality of times under the same conditions as described above until the target nucleic acid (labeled nucleic acid) reaches a desired amount. If the above steps are performed n times, the target nucleic acid amount is theoretically amplified to 2n-1 times the original.
  • Extension reactions as described above are well known to those skilled in the art, such as Sambrook, J., E Fritsch, E. and T Maniatis, Molecular Cloning: A Laboratory Manual 3rd. ColdSpring Harbor Laboratory Press: Please refer to.
  • Such an extension reaction can be carried out simply and efficiently by using a commercially available apparatus for PCR (polymerase chain reaction) (for example, sold by Applied Biosystems).
  • Y represents an azolyl group (as defined in formula V);
  • Z represents a nucleobase which may have a protecting group;
  • R 3 represents a protecting group for phosphoric acid;
  • R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom,
  • a ring may be formed by bonding through one or more atoms from the group consisting of sulfur atom and silicon atom) Is provided.
  • the method of synthesizing the compound represented by the formula V using the compound represented by the compound VI is specifically described in Example 5 as described later.
  • R 3 can be a protecting group for phosphoric acid, for example, a substituent that is eliminated by hydrogenolysis, elimination reaction, nucleophilic substitution reaction, or hydrolysis. Is preferred. Examples of such a protecting group may be a general protecting group for phosphoric acid as described in Greenes' Protective Groups in Organic Chemistry, Fifth edition (John Wiley & Sons, 2014), etc.
  • a benzene ring such as a methyl group, a trimethylsilylethyl group, an ethyl group having a substituent such as a 2-cyanoethyl group, a benzene ring such as a 2-nitrobenzyl group, or a naphthyl ring
  • a substituent on a benzene ring such as a phenylethyl group and a 2-chlorophenyl group which may have a substituent on a benzene ring such as a naphthylmethyl group and a 4-nitrophenylethyl group which may have a group.
  • the phenyl group which may have is mentioned.
  • groups that have a nucleophilic group in the protecting group such as a 4-methylthiobutyl group or N-formyl-N-methylaminoethyl group, and are deprotected while cyclizing.
  • Z represents a nucleobase that may have a protecting group.
  • the protecting group herein is not limited as long as it is a protecting group that can be used for nucleic acid synthesis described in Current Protocols in Nucleic Acid Chemistry Unit2.1 “Nucleobase Protection of Deoxyribo- and Ribonucleosides” Iyer, R. P.
  • Examples of such protection include acyl groups such as benzoyl group, acetyl group and isobutyryl group, and amidine type protecting groups such as N, N-dimethylaminomethylene group for the amino group of adenine, cytosine and guanine. It is done.
  • an acyl group such as a benzoyl group or a benzyl group may be introduced at the O4 position of thymine with respect to the imino group of thymine.
  • R 4 and R 5 may represent the same or different “linear or branched alkyl group having 1 to 6 carbon atoms”, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl Tert-butyl, pentyl, isopentyl, neopentyl, hexyl and the like.
  • R 4 and R 5 may be directly bonded to form a ring, and examples thereof include a pyrrolidine ring and a piperidine ring.
  • R 4 and R 5 may be bonded via one or more of an oxygen atom, a sulfur atom or a silicon atom, and examples thereof include a morpholine ring and a thiamorpholine ring. It is done.
  • the synthetic reagents and organic solvents used in this example were those purchased from Tokyo Chemical Industry, Wako Pure Chemical Industries, Kanto Chemical, and Sigma Aldrich unless otherwise specified.
  • a template (S) was synthesized by an automatic DNA synthesizer (nS-8II; Gene Design) using a commercially available deoxynucleotide phosphoramidite (Glen Rsearch Inc.). After completion of the synthesis, deprotection and cleaving from the solid support were carried out in a tritylon state using 28% aqueous ammonia at 55 ° C. for 12 hours. Subsequently, the target product was fractionated by reverse phase HPLC.
  • Example 1 Klenow fragment exo - with full length extension reaction the following primers and template were performed using complete chain extension reaction.
  • Primer DNA1 FAM-5′-d (CATGGGGCGCATGGGG) (SEQ ID NO: 2)
  • TT in sequence indicates thymidine dimer linked by sulfonamide
  • Primer DNA 0.1 ⁇ M Template (P) or Template (S) 0.1 ⁇ M dNTP (N A, T, G, C) 10 ⁇ M each Klenow fragment exo - 0.025 U / ⁇ L
  • the reaction solution was electrophoresed with 20% PAGE containing 7M urea to analyze the reaction product.
  • the results are shown in FIG. As shown in FIG. 2, it can be seen that the extension reaction was successfully performed by using template (P) (lane 2) and template (S) (lane 3). Looking at lane 3, the phosphodiester and -1mer bands were also detected, but a completely extended band was detected as in lane 2.
  • piece exo + (Takara) was added, and reaction was performed at 37 degreeC for 30 minutes. The final concentration of the added material is as follows. Primer DNA 0.1 ⁇ M Template (P) or Template (S) 0.1 ⁇ M dNTP (N A, T, G, C) 10 ⁇ M each Klenow fragment exo + 0.025 U / ⁇ L
  • the reaction solution was electrophoresed on 20% PAGE containing 7M urea, and the reaction product was analyzed.
  • the results are shown in FIG. As shown in FIG. 3, it can be seen that the extension reaction was successfully performed by using template (P) (lane 2) and template (S) (lane 3). Since exo + with proofreading activity was able to synthesize the full length, the nucleotide synthesis introduced at the position of the sulfonamide template was not mistaken for misincorporation and cut out, and DNA synthesis was extended to the end I understand.
  • Example 3 Full chain length extension reaction using thermostable DNA synthase
  • reaction solution was electrophoresed on 20% PAGE containing 7M urea, and the reaction product was analyzed.
  • the results are shown in FIG. As shown in FIG. 5, chain extension was confirmed only when dATP capable of forming Watson-Crick base pairing with thymine in TT of template (S) was added.

Abstract

The present invention pertains to a method for synthesizing an oligodeoxynucleotide (ODN), said method comprising synthesizing an ODN which has a sulfonamide bonded thereto via a non-natural internucleotide linkage and using the thus synthesized ODN as a template in a DNA synthetase reaction.

Description

スルホンアミド骨格をもつオリゴヌクレオチドを鋳型として用いたDNA複製法DNA replication method using oligonucleotide with sulfonamide skeleton as template
 本発明は、スルホンアミドを非天然型インターヌクレオチド結合して有するオリゴデオキシヌクレオチド(ODN)を合成し、これを鋳型として用いたDNA合成酵素反応によるODNの合成法に関する。 The present invention relates to a method for synthesizing ODN by synthesizing oligodeoxynucleotide (ODN) having sulfonamide bonded with non-natural internucleotide and using this as a template.
 化学合成したオリゴデオキシヌクレオチド(ODN)をDNA合成酵素、制限酵素、リガーゼを用いて連結し、人工遺伝子を合成する方法が合成生物学や分子生物学の分野で注目されている。しかし、この目的に用いることのできる、オリゴデオキシヌクレオチドは約150塩基が上限であり、これ以上長いオリゴヌクレオチドは不完全なカップリングとオリゴヌクレオチド合成時の副反応のため純度が低く、DNA合成酵素やPCR法により複製すると、望まない配列を含む人工遺伝子の混合物が生成する。そこで、より長いODNを合成するための方法としてDNAリガーゼやRNAリガーゼなどの酵素を用いて短いODN断片を連結する方法が古くから知られているが、これらの酵素法は大量合成へのスケールアップが困難である(非特許文献1および2)。 A method of synthesizing an artificial gene by linking chemically synthesized oligodeoxynucleotides (ODN) using a DNA synthase, a restriction enzyme, or a ligase has attracted attention in the fields of synthetic biology and molecular biology. However, the upper limit of oligodeoxynucleotides that can be used for this purpose is about 150 bases, and longer oligonucleotides have low purity due to incomplete coupling and side reactions during oligonucleotide synthesis, and DNA synthase When it is replicated by PCR, a mixture of artificial genes containing undesired sequences is generated. Therefore, as a method for synthesizing longer ODNs, methods for linking short ODN fragments using enzymes such as DNA ligase and RNA ligase have been known for a long time, but these enzyme methods are scaled up to mass synthesis. Is difficult (Non-Patent Documents 1 and 2).
 そこで、このような酵素法に替わる方法として、3’末端に反応性残基を有する3’修飾ODNと5’末端に反応性残基を有する5’修飾ODNとを酵素を用いずに連結するケミカルライゲーション法が報告されている。このようにして合成した修飾ODNは天然型のリン酸ジエステル結合とは異なる非天然型のインターヌクレオチド結合を含むが、この修飾ODNを鋳型として、DNA合成酵素により天然型ODNを合成することができれば、鎖長の長い天然型ODNの合成法として有用である。 Thus, as an alternative to such an enzymatic method, a 3′-modified ODN having a reactive residue at the 3 ′ end and a 5′-modified ODN having a reactive residue at the 5 ′ end are linked without using an enzyme. A chemical ligation method has been reported. The modified ODN synthesized in this way contains a non-natural internucleotide bond that is different from the natural phosphodiester bond. If this modified ODN can be used as a template, a natural ODN can be synthesized by a DNA synthase. It is useful as a method for synthesizing natural ODN having a long chain length.
 そのような修飾ODNとしては、例えば、Brownらは、3’アジドODNと5’アルキンODNとを銅触媒の存在下クリック反応で連結して、ホスホジエステル結合の代わりにトリアゾール結合を有する修飾ODNを合成し、それを鋳型としてPCR反応をすることで天然型ODNを合成することを報告している(非特許文献1および2)。 As such a modified ODN, for example, Brown et al., A modified ODN having a triazole bond instead of a phosphodiester bond by linking 3 ′ azido ODN and 5 ′ alkyne ODN in the presence of a copper catalyst in a click reaction. It has been reported that natural ODN is synthesized by synthesizing it and performing PCR reaction using it as a template (Non-patent Documents 1 and 2).
 また、3’アジドODNと5’アルキンODNの代わりに、3’アジドオリゴリボヌクレオチド(ORN)と5’アルキンORNを用いて、同様のケミカルライゲーションを行い、逆転写酵素により天然型ODNを合成する方法も報告されている(特許文献1)。しかしながら、これらの方法で使用されるクリック反応においては、反応の進行に銅イオンが触媒として用いられているため、合成した天然型ODNを生物学的用途に用いる場合、銅イオンを完全に取り除く必要がある。そこで、銅イオンなどの触媒を用いずに連結可能であり、かつDNA合成酵素や逆転写酵素の働きを阻害しない非天然型インターヌクレオチド結合があれば、ケミカルライゲーション法を用いた長鎖ODNの合成に有用である。 Further, instead of 3 ′ azido ODN and 5 ′ alkyne ODN, the same chemical ligation is performed using 3 ′ azido oligoribonucleotide (ORN) and 5 ′ alkyne ORN, and natural ODN is synthesized by reverse transcriptase. A method has also been reported (Patent Document 1). However, in the click reaction used in these methods, copper ions are used as a catalyst for the progress of the reaction. Therefore, when the synthesized natural ODN is used for biological applications, it is necessary to completely remove the copper ions. There is. Therefore, if there is a non-natural internucleotide bond that can be linked without using a catalyst such as copper ion and does not inhibit the function of DNA synthase or reverse transcriptase, synthesis of long-chain ODN using the chemical ligation method Useful for.
国際公開第WO2015/177520号International Publication No. WO2015 / 177520
 本発明は、ケミカルライゲーション法に使用され得る非天然型インターヌクレオチド結合して有するオリゴデオキシヌクレオチド(ODN)を合成する方法を提供することを目的とする。 An object of the present invention is to provide a method for synthesizing an oligodeoxynucleotide (ODN) having a non-natural internucleotide bond that can be used in a chemical ligation method.
 この目的を達成するために、鋭意検討を重ねた結果、本発明者らは、下記のスルホンアミド: As a result of intensive studies to achieve this object, the present inventors have obtained the following sulfonamides:
Figure JPOXMLDOC01-appb-C000009
を非天然型インターヌクレオチド結合として有するオリゴデオキシヌクレオチド(ODN)が、DNA合成酵素によるODN合成における鋳型として機能することを見出し、本発明を完成するに至った。これまで、スルホンアミド結合を有する人工核酸について、過去に報告があるが(E. B. McElroy, R. Bandaru, J. Huang, T. S. Widlanski, Bioorg. Med. Chem. 1994, 4, 1071-1076; R. C. Reynolds, P. A. Crooks, J. A. Maddry, M. S. Akhtar, J. A. Montgomery, J. A. Secrist III, J. Org. Chem. 1992, 57, 1983-1985; C. Glemarecl, R. C. Reynolds, P. A. Crooks, J. A. Maddryz, M.S. Akhtar, J.A. Montgomeryz, J.A. Secrist III, J. Chattopadhyayal, Tetrahedron 1993, 49, 2287-2298)。しかしながら、このような人工核酸がDNA合成酵素の鋳型として機能するという報告はない(A. Shivalingam, A. E. S. Tyburn, A. H. El-Sagheer, T. Brown, J. Am. Chem. Soc. 2017, 139,1575-1583)。
Figure JPOXMLDOC01-appb-C000009
It was found that oligodeoxynucleotide (ODN) having a non-natural internucleotide bond functions as a template in ODN synthesis by DNA synthase, and the present invention has been completed. So far, artificial nucleic acids having sulfonamide bonds have been reported in the past (EB McElroy, R. Bandaru, J. Huang, TS Widlanski, Bioorg. Med. Chem. 1994, 4, 1071-1076; RC Reynolds, PA Crooks, JA Maddry, MS Akhtar, JA Montgomery, JA Secrist III, J. Org. Chem. 1992, 57, 1983-1985; C. Glemarecl, RC Reynolds, PA Crooks, JA Maddryz, MS Akhtar, JA Montgomeryz, JA Secrist III, J. Chattopadhyayal, Tetrahedron 1993, 49, 2287-2298). However, there is no report that such artificial nucleic acid functions as a template for DNA synthase (A. Shivalingam, AES Tyburn, AH El-Sagheer, T. Brown, J. Am. Chem. Soc. 2017, 139, 1575). -1583).
 本発明は、好ましくは以下の態様を含む。
 [1]式I:
The present invention preferably includes the following aspects.
[1] Formula I:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
〔式中、
 B1およびB2は、同一または異なる核酸塩基を表し;
 R1は、式II:
[Where,
B 1 and B 2 represent the same or different nucleobases;
R 1 is represented by formula II:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、
 mは、0以上の整数を表し;
 Bmは、前記mの各整数に対応して同一または異なる核酸塩基を表し;および
 Xは、水素原子、リン酸基、ピロリン酸基、またはトリリン酸基を表す)
で表される化合物であり;および
 R2は、式III:
(Where
m represents an integer of 0 or more;
B m represents the same or different nucleobase corresponding to each integer of m; and X represents a hydrogen atom, a phosphate group, a pyrophosphate group, or a triphosphate group)
And R 2 is a compound of formula III:
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、
 nは、0以上の整数を表し、ただし、mおよびnは同時に0にはならない;および
 Bnは、前記nの各整数に対応して同一または異なる核酸塩基を表す)
で表される化合物である〕
で表されるスルホンアミド骨格を有する化合物を鋳型鎖として用いて、DNA合成酵素によりオリゴデオキシヌクレオチドを合成する方法。
(Where
n represents an integer of 0 or more, provided that m and n cannot be 0 at the same time; and B n represents the same or different nucleobase corresponding to each integer of n)
It is a compound represented by
A method of synthesizing oligodeoxynucleotides with a DNA synthase using a compound having a sulfonamide skeleton represented by
 [2]前記式Iで表される化合物を合成する方法をさらに含み、ここで、式IV: [2] The method further includes a method of synthesizing the compound represented by Formula I, wherein Formula IV:
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
〔式中、
 B1およびR1は、式Iにおいて定義される通りである〕
で表される化合物と、式V:
[Where,
B 1 and R 1 are as defined in Formula I)
And a compound of formula V:
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
〔式中、
 B2およびR2は、式Iにおける定義の通りであり;および
 Yは、アゾリル基を表す〕
で表される化合物とを反応させるステップを含む、上記[1]に記載の方法。
[Where,
B 2 and R 2 are as defined in Formula I; and Y represents an azolyl group]
The method as described in said [1] including the step with which the compound represented by these is made to react.
 [3]前記式Vで表される化合物を合成する方法をさらに含み、ここで、式IV: [3] The method further includes a method of synthesizing the compound represented by Formula V, wherein Formula IV:
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
〔式中、
 Yは、アゾリル基を表し;
 Zは、保護基を有してもよい核酸塩基を表し;
 R3は、リン酸の保護基を表し;
 R4およびR5は、同一または異なって、炭素数1~6の直線状または分岐状のアルキル基を表し、あるいは
 R4およびR5は、直接結合して環を形成し、または酸素原子、硫黄原子およびケイ素原子からなる群から1以上の原子を介して結合して環を形成してもよい〕
で表される化合物を出発原料として、ホスホロアミダイト法による核酸固相合成法もしくは液相合成法を用いて合成する
ステップを含む、上記[2]に記載の方法。
[Where,
Y represents an azolyl group;
Z represents a nucleobase which may have a protecting group;
R 3 represents a protecting group for phosphoric acid;
R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom)
The method according to the above [2], comprising a step of synthesizing using a nucleic acid solid phase synthesis method or a liquid phase synthesis method by a phosphoramidite method using a compound represented by the formula:
 [4]式V: [4] Formula V:
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
〔式中、
 R2およびB2は、式Iにおける定義の通りであり;および
 Yは、アゾリル基を表す〕
で表される化合物を製造するための、以下の式VI:
[Where,
R 2 and B 2 are as defined in Formula I; and Y represents an azolyl group.
To produce a compound of formula VI:
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
〔式中、
 Yは、アゾリル基を表し;
 Zは、保護基を有してもよい核酸塩基を表し;
 R3は、リン酸の保護基を表し;
 R4およびR5は、同一または異なって、炭素数1~6の直線状または分岐状のアルキル基を表し、あるいは
 R4およびR5は、直接結合して環を形成し、または酸素原子、硫黄原子およびケイ素原子からなる群から1以上の原子を介して結合して環を形成してもよい〕
で表される化合物。
[Where,
Y represents an azolyl group;
Z represents a nucleobase which may have a protecting group;
R 3 represents a protecting group for phosphoric acid;
R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom)
A compound represented by
 本発明により、スルホンアミドを非天然型インターヌクレオチド結合して有するオリゴデオキシヌクレオチド(ODN)を提供することにより、長鎖の長い天然型オリゴデオキシヌクレオチド(ODN)を合成することが可能となる。 According to the present invention, a long-chain natural oligodeoxynucleotide (ODN) can be synthesized by providing an oligodeoxynucleotide (ODN) having a sulfonamide bonded to a non-natural internucleotide.
図1は、テンプレート(S)の精製後の陰イオン交換HPLCチャートを示す。FIG. 1 shows an anion exchange HPLC chart after purification of template (S). 図2は、Klenow断片exo-を用いた完全鎖長伸長反応後、20%PAGEで泳動し反応物を解析した結果を示す。レーン1:プライマーDNA1;レーン2:プライマーDNA1+テンプレート(P);レーン3:プライマーDNA1+テンプレート(S)。FIG. 2 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after the complete chain length extension reaction using the Klenow fragment exo . Lane 1: primer DNA 1; lane 2: primer DNA 1 + template (P); lane 3: primer DNA 1 + template (S). 図3は、Klenow断片exo-を用いた完全鎖長伸長反応後、20%PAGEで泳動し反応物を解析した結果を示す。レーン1:プライマーDNA1;レーン2:プライマーDNA1+テンプレート(P);レーン3:プライマーDNA1+テンプレート(S)。FIG. 3 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after the complete chain length extension reaction using the Klenow fragment exo . Lane 1: primer DNA 1; lane 2: primer DNA 1 + template (P); lane 3: primer DNA 1 + template (S). 図4は、耐熱性DNA合成酵素としてexTaq(Takara)、KOD’(Toyobo)、Deep vent(New England Bio Labs)を用いた完全鎖長伸長反応後、20%PAGEで泳動し反応物を解析した結果を示す。レーン1:プライマーDNA1;レーン2:プライマーDNA1+テンプレート(P)+exTaq;レーン3:プライマーDNA1+テンプレート(S)+exTaq;レーン4:プライマーDNA1+テンプレート(P)+KOD’;レーン5:プライマーDNA1+テンプレート(S)+KOD’;レーン6:プライマーDNA1+テンプレート(P)+Deep vent;レーン7:プライマーDNA1+テンプレート(S)+Deep vent。FIG. 4 shows the reaction product analyzed by 20% PAGE after a full chain length extension reaction using exTaq (Takara), KOD '(Toyobo), Deep vent (New England Bio Labs) as a thermostable DNA synthase. Results are shown. Lane 1: primer DNA 1; lane 2: primer DNA 1 + template (P) + exTaq; lane 3: primer DNA 1 + template (S) + exTaq; lane 4: primer DNA 1 + template (P) + KOD ′; lane 5: primer DNA 1 + template (S) + KOD '; Lane 6: Primer DNA1 + Template (P) + Deep vent; Lane 7: Primer DNA1 + Template (S) + Deep vent. 図5は、Klenow断片exo-を用いた一塩基伸長反応後、20%PAGEで泳動し反応物を解析した結果を示す。レーン1:プライマーDNA2;レーン2:プライマーDNA2+テンプレート(S)+dATP、1分;レーン3:プライマーDNA2+テンプレート(S)+dGTP、1分;レーン4:プライマーDNA2+テンプレート(S)+dTTP、1分;レーン5:プライマーDNA2+テンプレート(S)+dCTP、1分;レーン6:プライマーDNA2+テンプレート(S)+dATP、2分;レーン7:プライマーDNA2+テンプレート(S)+dGTP、2分;レーン8:プライマーDNA2+テンプレート(S)+dTTP、2分;レーン9:プライマーDNA2+テンプレート(S)+dCTP、2分;レーン10:プライマーDNA2+テンプレート(S)+dATP、5分;レーン11:プライマーDNA2+テンプレート(S)+dGTP、5分;レーン12:プライマーDNA2+テンプレート(S)+dTTP、5分;レーン13:プライマーDNA2+テンプレート(S)+dCTP、5分。FIG. 5 shows the result of analyzing the reaction product after electrophoresis with 20% PAGE after a single base extension reaction using the Klenow fragment exo . Lane 1: Primer DNA2; Lane 2: Primer DNA2 + Template (S) + dATP, 1 minute; Lane 3: Primer DNA2 + Template (S) + dGTP, 1 minute; Lane 4: Primer DNA2 + Template (S) + dTTP, 1 minute; Lane 5 : Primer DNA2 + Template (S) + dCTP, 1 minute; Lane 6: Primer DNA2 + Template (S) + dATP, 2 minutes; Lane 7: Primer DNA2 + Template (S) + dGTP, 2 minutes; Lane 8: Primer DNA2 + Template (S) + dTTP 2 minutes; Lane 9: Primer DNA2 + Template (S) + dCTP, 2 minutes; Lane 10: Primer DNA2 + Template (S) + dATP, 5 minutes; Lane 11: Primer DNA2 + Template Preparative (S) + dGTP, 5 minutes; lane 12: Primer DNA 2 + template (S) + dTTP, 5 min; Lane 13: Primer DNA 2 + template (S) + dCTP, 5 minutes.
 本発明によれば、下記式I: According to the present invention, the following formula I:
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
〔式中、B1およびB2は、同一または異なる核酸塩基を表し、また、後述するようにR1およびR2は、ヌクレオチドまたはヌクレオシドを表す〕
で表されるスルホンアミド骨格を有する化合物を鋳型鎖として用いて、DNA合成酵素によりオリゴデオキシヌクレオチド(ODN)を合成することができる。
[Wherein B 1 and B 2 represent the same or different nucleobases, and R 1 and R 2 represent nucleotides or nucleosides as described later]
An oligodeoxynucleotide (ODN) can be synthesized by a DNA synthase using a compound having a sulfonamide skeleton represented by
 本明細書中で使用するとき、用語「核酸塩基」とは、デオキシリボース部分および3’-または5’-リン酸部分以外のデオキシリボヌクレオチド中の部分、あるいはデオキシリボース部分以外のデオキシリボヌクレオシド中の部分をいう。具体的には、核酸塩基は、アデニン、グアニン、チミン、またはシトシンであり得る。 As used herein, the term “nucleobase” refers to a moiety in a deoxyribonucleotide other than a deoxyribose moiety and a 3′- or 5′-phosphate moiety, or a moiety in a deoxyribonucleoside other than a deoxyribose moiety. Say. Specifically, the nucleobase can be adenine, guanine, thymine, or cytosine.
 式I中のR1は、0または1つ以上のヌクレオチド単位で構成されるオリゴデオキシヌクレオチドであってもよい。典型的には、R1は、式II: R 1 in formula I may be an oligodeoxynucleotide composed of zero or one or more nucleotide units. Typically R 1 is of formula II:
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、
 mは、0以上の整数を表すが、ただし、後述する式III中のR2においてnが0である場合、mは0ではない;
 Bmは、前記mの各整数に対応して同一または異なる核酸塩基を表し;および
 Xは、水素原子、リン酸基、ピロリン酸基、またはトリリン酸基を表す)
で表される化合物であってもよい。
(Where
m represents an integer of 0 or more, provided that m is not 0 when R is 0 in R 2 in formula III described later;
B m represents the same or different nucleobase corresponding to each integer of m; and X represents a hydrogen atom, a phosphate group, a pyrophosphate group, or a triphosphate group)
The compound represented by these may be sufficient.
 「m」は、典型的には、0~1,000,000の整数であり、限定されないが、0~500,000、0~300,000、0~200,000、0~150,000、0~100,000、0~50,000、0~30,000、0~20,000、0~10,000、0~5,000、0~3,000、0~1,000、0~500、0~300、0~100等であってもよい。 “M” is typically an integer from 0 to 1,000,000 and is not limited to 0 to 500,000, 0 to 300,000, 0 to 200,000, 0 to 150,000, 0 to 100,000, 0 to 50,000, 0 to 30,000, 0 to 20,000, 0 to 10,000, 0 to 5,000, 0 to 3,000, 0 to 1,000, 0 to It may be 500, 0 to 300, 0 to 100, or the like.
 「Bm」は、核酸塩基を表すが、式I中の「核酸塩基」についての定義に従うものとする。また、「mの各整数に対応して同一または異なる核酸塩基を表し」については、例えば、mが「5」である場合、B1~B5(5つ)は、同一の核酸塩基であってもよく、または独立して選択された核酸塩基であってもよいことを意味する。 “B m ” represents a nucleobase, but shall conform to the definition for “nucleobase” in formula I. For “representing the same or different nucleobase corresponding to each integer of m”, for example, when m is “5”, B 1 to B 5 (5) are the same nucleobase. Meaning that it may be a nucleobase or may be an independently selected nucleobase.
 式I中のR2は、0または1つ以上のヌクレオシド単位で構成されるオリゴデオキシ(リボ)ヌクレオチドであってもよい。典型的には、R2は、式III: R 2 in Formula I may be an oligodeoxy (ribo) nucleotide composed of zero or one or more nucleoside units. Typically R 2 is of formula III:
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、
 nは、0以上の整数を表すが、ただし、上述する式II中のR1においてmが0である場合、nは0ではない;
 Bnは、前記nの各整数に対応して同一または異なる核酸塩基を表す)
で表される化合物であってもよい。
(Where
n represents an integer of 0 or more, provided that when m is 0 in R 1 in Formula II described above, n is not 0;
B n represents the same or different nucleobase corresponding to each integer of n)
The compound represented by these may be sufficient.
 「n」は、典型的には、0~1,000,000の整数であり、限定されないが、0~500,000、0~300,000、0~200,000、0~150,000、0~100,000、0~50,000、0~30,000、0~20,000、0~10,000、0~5,000、0~3,000、0~1,000、0~500、0~300、0~100等であってもよい。 “N” is typically an integer from 0 to 1,000,000, and is not limited to 0 to 500,000, 0 to 300,000, 0 to 200,000, 0 to 150,000, 0 to 100,000, 0 to 50,000, 0 to 30,000, 0 to 20,000, 0 to 10,000, 0 to 5,000, 0 to 3,000, 0 to 1,000, 0 to It may be 500, 0 to 300, 0 to 100, or the like.
 「Bn」は、核酸塩基を表すが、式I中の「核酸塩基」についての定義に従うものとする。また、「nの各整数に対応して同一または異なる核酸塩基を表し」については、例えば、mが「5」である場合、B1~B5(5つ)は、同一の核酸塩基であってもよく、または独立して選択された核酸塩基であってもよいことを意味する。 “B n ” represents a nucleobase, but shall follow the definition for “nucleobase” in formula I. For “representing the same or different nucleobase corresponding to each integer of n”, for example, when m is “5”, B 1 to B 5 (5) are the same nucleobase. Meaning that it may be a nucleobase or may be an independently selected nucleobase.
 上記R1およびR2は、典型的には、オリゴデオキシヌクレオチドであるが、オリゴデオキシヌクレオチドの合成および化学修飾のための方法は、当業者に知られており、例えば、Uhlmann, E., et al., (1990), Chem. Rev., 90: 543; “Protocols for Oligonucleotides and Analogs」Synthesis and Properties & Synthesis and Analytical Techniques.” S. Agrawal ed., Humana Press, Totowa, USA, 1993; Crooke, S. T., et al. (1996) Annu. Rev. Pharmacol. Toxicol., 36: 107-129; およびHunziker, J., et al., (1995), Mod. Synth. Methods, 7: 331-417において記述されている。 The above R 1 and R 2 are typically oligodeoxynucleotides, but methods for the synthesis and chemical modification of oligodeoxynucleotides are known to those skilled in the art, eg, Uhlmann, E., et. al., (1990), Chem. Rev., 90: 543; “Protocols for Oligonucleotides and Analogs” Synthesis and Properties & Synthesis and Analytical Techniques. ”S. Agrawal ed., Humana Press, Totowa, USA, 1993; Crooke, ST, et al. (1996) Annu. Rev. Pharmacol. Toxicol., 36: 107-129; and Hunziker, J., et al., (1995), Mod. Synth. Methods, 7: 331-417. Has been.
 さらに、R1およびR2を連結させることによってDNA合成酵素によって合成されるオリゴデオキシヌクレオチド用の鋳型鎖を調製することができる。本発明によれば、このような鋳型鎖は、鎖中にスルホンアミド骨格を有することを特徴とするが、例えば、下記の式IV: Furthermore, a template strand for oligodeoxynucleotide synthesized by DNA synthase can be prepared by linking R 1 and R 2 . According to the present invention, such a template chain is characterized by having a sulfonamide skeleton in the chain. For example, the following formula IV:
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
〔式中、B1およびR1は、本明細書において式Iについて定義される通りであるが、ただし、後述する式V中のR2においてnが0である場合、mは0ではない〕
で表される化合物と、下記の式V:
[Wherein B 1 and R 1 are as defined herein for Formula I, provided that m is not 0 when n is 0 in R 2 in Formula V described below]
And the following formula V:
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
〔式中、B2およびR2は、本明細書において式Iについて定義の通りであるが、ただし、上記式IV中のR1においてmが0である場合、nは0ではない;Yは、アゾリル基を表す〕
で表される化合物において、アミン基とアゾリル基とを置換させることによって提供され得る。置換反応は、当業者であれば周知の方法により行うことができる。本明細書で使用するとき、「アゾリル基」は、環員原子として、窒素原子、硫黄原子、および酸素原子からなる群から選択される異種原子を有する飽和または不飽和複素環式基であって、異種原子のうち少なくとも1つが窒素原子であるものをいう。アゾリル基としては、限定されないが、イミダゾリル、ピラゾリル、1,2,3-トリアゾリル、1,2,4-トリアゾリル、テトラゾリル、ベンゾイミダゾリル、ベンゾトリアゾリルなどが挙げられ、環内の炭素原子に任意の置換基を有するものも含まれる。
[Wherein B 2 and R 2 are as defined herein for formula I, except that when m is 0 in R 1 in formula IV above, n is not 0; Represents an azolyl group)
In the compound represented by the formula, it can be provided by substituting an amine group and an azolyl group. The substitution reaction can be carried out by those skilled in the art by a well-known method. As used herein, an “azolyl group” is a saturated or unsaturated heterocyclic group having a hetero atom selected from the group consisting of a nitrogen atom, a sulfur atom, and an oxygen atom as a ring member atom. , One in which at least one of the different atoms is a nitrogen atom. Azolyl groups include, but are not limited to, imidazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, benzoimidazolyl, benzotriazolyl, and the like, and any carbon atom in the ring Those having a substituent are also included.
 本発明の方法は、式Iで表されるスルホンアミド骨格を有する化合物を鋳型鎖として用いて、核酸合成酵素(例えば、DNA合成酵素)および適切なプライマーによりオリゴデオキシヌクレオチド(ODN)を合成(または伸長)することができる。本明細書において使用するとき、「核酸合成酵素」とは、核酸を合成する能力を有する任意の酵素をいう。ヌクレオチドを縮合させてポリヌクレオチドにする反応を触媒する酵素の総称である。このような核酸合成酵素としては、例えば、DNA合成酵素(例えば、DNA依存性DNA合成酵素、RNA依存性DNA合成酵素)、RNA合成酵素などを挙げることができるが、それらに限定されない。なお、DNA依存性DNA合成酵素およびRNA依存性DNA合成酵素はいずれも、検出するのはDNAおよびRNAを問わないことが理解される。このようなDNA合成酵素としては、限定されないが、Escherichiacoli由来のDNAポリメラーゼI、DNAポリメラーゼIクレノウフラグメント、Taqポリメラーゼ、KLA-Taqポリメラーゼ、KODポリメラーゼ、Ventポリメラーゼ、Pfuポリメラーゼ、T4 DNAポリメラーゼなどを挙げることができる。また、本発明によれば、伸長反応において耐熱性DNA合成酵素を使用してもよく、このような例としては、exTaq、Q5、KOD、KOD’、Deep vent等が挙げられる。 The method of the present invention synthesizes an oligodeoxynucleotide (ODN) with a nucleic acid synthase (eg, DNA synthase) and an appropriate primer using a compound having a sulfonamide skeleton represented by Formula I as a template strand (or Elongate). As used herein, “nucleic acid synthase” refers to any enzyme that has the ability to synthesize nucleic acids. A generic term for enzymes that catalyze the reaction of condensing nucleotides into polynucleotides. Examples of such nucleic acid synthase include, but are not limited to, DNA synthase (for example, DNA-dependent DNA synthase, RNA-dependent DNA synthase), RNA synthase, and the like. It should be understood that both DNA-dependent DNA synthase and RNA-dependent DNA synthase may be detected regardless of DNA or RNA. Examples of such DNA synthetase include, but are not limited to, Escherichia coli-derived DNA polymerase I, DNA polymerase I Klenow fragment, Taq polymerase, KLA-Taq polymerase, KOD polymerase, Vent polymerase, Pfu polymerase, T4 DNA polymerase, and the like. be able to. In addition, according to the present invention, a thermostable DNA synthase may be used in the extension reaction, and examples thereof include exTaq, Q5, KOD, KOD ', Deep vent and the like.
 本明細書において、オリゴデオキシヌクレオチドを「合成」または「伸長」させるとは、核酸について言及するとき、その核酸が少なくとも1ヌクレオチド伸びるような任意の反応をいう。上述したようなポリメラーゼを用いて伸長反応を行う場合、通常、鋳型に基づいてヌクレオチドが導入されることから、特定の配列が標識対象核酸などの伸長すべき核酸において伸長することになる。伸長反応は、(i)標的核酸およびその相補鎖と核酸プライマーおよび核酸プローブとのハイブリダイゼーション(アニーリング)反応と、(ii)核酸合成酵素によるプライマー鎖の伸長反応およびプローブの分解反応からなり、これら反応(i)および(ii)は、例えばトリス塩酸緩衝液等の適切な緩衝液を含む水溶液中で実施することができる。このハイブリダイゼーション反応は、典型的には、55~75℃で実施することができるが、限定されない。酵素反応は、典型的には、37℃で実施することができるが、限定されない。また、プライマー伸長産物の変性は、上記伸長反応で得られるプライマー鎖伸長産物を含む溶液を、例えば94~95℃で0.5~1分間加熱処理するなどを行うことによって実施することができる。なお、標的核酸の増幅は、例えば、その標的核酸(標識対象核酸)が所望の量になるまで、工程上記伸長反応および変性を上記と同様の条件下で複数回繰り返せばよい。上記工程をn回行えば、理論的には標的核酸量は当初の2n-1倍にまで増幅されることとなる。 As used herein, “synthesizing” or “extending” an oligodeoxynucleotide refers to any reaction in which the nucleic acid extends at least one nucleotide when referring to the nucleic acid. When the extension reaction is performed using the polymerase as described above, since a nucleotide is usually introduced based on a template, a specific sequence is extended in a nucleic acid to be extended such as a nucleic acid to be labeled. The extension reaction consists of (i) hybridization (annealing) reaction between the target nucleic acid and its complementary strand and the nucleic acid primer and nucleic acid probe, and (ii) primer strand extension reaction and probe degradation reaction by nucleic acid synthase. Reactions (i) and (ii) can be carried out in an aqueous solution containing a suitable buffer such as, for example, Tris-HCl buffer. This hybridization reaction can typically be performed at 55-75 ° C, but is not limited. Enzymatic reactions can typically be performed at 37 ° C, but are not limited. The denaturation of the primer extension product can be carried out by, for example, subjecting the solution containing the primer chain extension product obtained by the extension reaction to a heat treatment at 94 to 95 ° C. for 0.5 to 1 minute. In the amplification of the target nucleic acid, for example, the above-described extension reaction and denaturation may be repeated a plurality of times under the same conditions as described above until the target nucleic acid (labeled nucleic acid) reaches a desired amount. If the above steps are performed n times, the target nucleic acid amount is theoretically amplified to 2n-1 times the original.
 上述したような伸長反応は、当業者に周知であり、例えば、Sambrook, J., E Fritsch, E. and T Maniatis, Molecular Cloning: A Laboratory Manual 3rd. ColdSpring HarborLaboratory Press: Cold Spring Harbor(2001)などを参照されたい。なお、このような伸長反応は、市販のPCR(ポリメラーゼ連鎖反応)のための装置(例えば、Applied Biosystemsから販売されている)を用いれば、簡便かつ効率的に実施することができる。 Extension reactions as described above are well known to those skilled in the art, such as Sambrook, J., E Fritsch, E. and T Maniatis, Molecular Cloning: A Laboratory Manual 3rd. ColdSpring Harbor Laboratory Press: Please refer to. Such an extension reaction can be carried out simply and efficiently by using a commercially available apparatus for PCR (polymerase chain reaction) (for example, sold by Applied Biosystems).
 本発明によれば、上記の式Vを合成するための式VI: According to the present invention, the formula VI for synthesizing the above formula V:
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
〔式中、
 Yは、アゾリル基(式Vにおいておいて定義される通りである)を表し;
 Zは、保護基を有していてもよい核酸塩基を表し;
 R3は、リン酸の保護基を表し;
 R4およびR5は、同一または異なって、炭素数1~6の直線状または分岐状のアルキル基を表し、あるいは
 R4およびR5は、直接結合して環を形成し、または酸素原子、硫黄原子およびケイ素原子からなる群から1以上の原子を介して結合して環を形成してもよい)
で表される化合物が提供される。なお、化合物VIで表される化合物を用いて、式Vで表される化合物を合成する方法は、後述するように実施例5に具体的に記載されている。
[Where,
Y represents an azolyl group (as defined in formula V);
Z represents a nucleobase which may have a protecting group;
R 3 represents a protecting group for phosphoric acid;
R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding through one or more atoms from the group consisting of sulfur atom and silicon atom)
Is provided. In addition, the method of synthesizing the compound represented by the formula V using the compound represented by the compound VI is specifically described in Example 5 as described later.
 上記の式VI中の「R3」に関して、R3は、リン酸の保護基であり得て、例えば、加水素分解、脱離反応、求核置換反応、または加水分解により脱離する置換基が好ましい。このような保護基の例としては、Greenes’ Protective Groups in Organic Chemistry, Fifth edition (John Wiley&Sons, 2014)などに記載されるようなリン酸の一般的な保護基であればよく、例えば、限定されないが、メチル基、トリメチルシリルエチル基、2-シアノエチル基などの置換基を有するエチル基、2-ニトロベンジル基などのベンゼン環上に置換基を有していてもよいベンジル基、ナフチル環上に置換基を有していてもよいナフチルメチル基、4-ニトロフェニルエチル基などのベンゼン環上に置換基を有していてもよいフェニルエチル基、2-クロロフェニル基などのベンゼン環上に置換基を有してもよいフェニル基が挙げられる。また、4-メチルチオブチル基やN-ホルミル-N―メチルアミノエチル基などのように保護基内に求核性のある基を有し、環化しながら脱保護される基も含まれる。 With respect to “R 3 ” in Formula VI above, R 3 can be a protecting group for phosphoric acid, for example, a substituent that is eliminated by hydrogenolysis, elimination reaction, nucleophilic substitution reaction, or hydrolysis. Is preferred. Examples of such a protecting group may be a general protecting group for phosphoric acid as described in Greenes' Protective Groups in Organic Chemistry, Fifth edition (John Wiley & Sons, 2014), etc. Substituted on a benzene ring such as a methyl group, a trimethylsilylethyl group, an ethyl group having a substituent such as a 2-cyanoethyl group, a benzene ring such as a 2-nitrobenzyl group, or a naphthyl ring A substituent on a benzene ring such as a phenylethyl group and a 2-chlorophenyl group which may have a substituent on a benzene ring such as a naphthylmethyl group and a 4-nitrophenylethyl group which may have a group. The phenyl group which may have is mentioned. Also included are groups that have a nucleophilic group in the protecting group, such as a 4-methylthiobutyl group or N-formyl-N-methylaminoethyl group, and are deprotected while cyclizing.
 上記の式VI中の「Z」に関して、Zは保護基を有してもよい核酸塩基を表す。ここでいう保護基とは、例えば、Current Protocols in Nucleic Acid Chemistry Unit2.1“Nucleobase Protection of Deoxyribo- and Ribonucleosides” Iyer, R. Pなどに記載の核酸合成に用い得る保護基であれば限定されない。このような保護としては、例えば、アデニン、シトシン、グアニンのアミノ基に対してはベンゾイル基、アセチル基、イソブチリル基などのアシル基やN,N-ジメチルアミノメチレン基などのアミジン型保護基が挙げられる。また、チミンのイミノ基に対してベンゾイル基などのアシル基やチミンのO4位にベンジル基などを導入してもよい。 Referring to “Z” in Formula VI above, Z represents a nucleobase that may have a protecting group. The protecting group herein is not limited as long as it is a protecting group that can be used for nucleic acid synthesis described in Current Protocols in Nucleic Acid Chemistry Unit2.1 “Nucleobase Protection of Deoxyribo- and Ribonucleosides” Iyer, R. P. Examples of such protection include acyl groups such as benzoyl group, acetyl group and isobutyryl group, and amidine type protecting groups such as N, N-dimethylaminomethylene group for the amino group of adenine, cytosine and guanine. It is done. Further, an acyl group such as a benzoyl group or a benzyl group may be introduced at the O4 position of thymine with respect to the imino group of thymine.
 R4およびR5は、同一または異なってもよい「炭素数1~6の直線状または分岐状のアルキル基」を表すが、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシルなどが挙げられる。 R 4 and R 5 may represent the same or different “linear or branched alkyl group having 1 to 6 carbon atoms”, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl Tert-butyl, pentyl, isopentyl, neopentyl, hexyl and the like.
 また、R4およびR5は、直接結合して環を形成してもよく、例えば、ピロリジン環、ピペリジン環などが挙げられる。一方、R4およびR5が環を形成する場合に、酸素原子、硫黄原子またはケイ素原子のうちの1以上の原子を介して結合してもよく、例えば、モルホリン環状、チアモルホリン環などが挙げられる。 R 4 and R 5 may be directly bonded to form a ring, and examples thereof include a pyrrolidine ring and a piperidine ring. On the other hand, when R 4 and R 5 form a ring, they may be bonded via one or more of an oxygen atom, a sulfur atom or a silicon atom, and examples thereof include a morpholine ring and a thiamorpholine ring. It is done.
 以下、本発明を実施例に基づいて、より具体的に説明する。なお本発明はこれらの実施
例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・
変更を加えることができ、それらは本発明の技術的範囲に含まれる。
Hereinafter, the present invention will be described more specifically based on examples. The present invention is not limited to these examples. Those skilled in the art can easily modify or modify the present invention based on the description in this specification.
Changes can be made and are within the scope of the invention.
 本実施例で使用した合成試薬および有機溶媒等は、特に言及がない限り、東京化成工業、和光純薬工業、関東化学、シグマアルドリッチで購入したものを使用した。 The synthetic reagents and organic solvents used in this example were those purchased from Tokyo Chemical Industry, Wako Pure Chemical Industries, Kanto Chemical, and Sigma Aldrich unless otherwise specified.
[原料合成例1]テンプレート(S):3’-d(GTACCCGCCGTACCCGAATTCCTGCTGCTT)-5’(配列番号1)の合成
 McElroyらの方法(McElroy, E. B.; Bandaru, R.; Huang, J.; Widlanski, T. S., Bioorg. Med. Chem. Lett. 1994, 4, 1071)により下記の化合物Xを合成した。なお、テンプレート名に示される「S」は、スルホンアミドを指し、配列中の下線を付した「TT」は、スルホンアミドで連結されたチミジン二量体を示す。
[Raw Material Synthesis Example 1] Template (S): Synthesis of 3′-d (GTACCCGCCGTACCCGAA TT CCTCGCTCTT) -5 ′ (SEQ ID NO: 1) McElroy et al. (McElroy, EB; Bandaru, R .; Huang, J .; Widlanski , TS, Bioorg. Med. Chem. Lett. 1994, 4, 1071). “S” shown in the template name indicates sulfonamide, and “TT” underlined in the sequence indicates a thymidine dimer linked by sulfonamide.
Figure JPOXMLDOC01-appb-C000024
      X
Figure JPOXMLDOC01-appb-C000024
X
 次に、市販のデオキシヌクレオチドホスホロアミダイト(Glen Rsearch Inc.)を用いてDNA自動合成機(nS-8II;ジーンデザイン社)によりテンプレート(S)を合成した。合成終了後、28%アンモニア水を用いて、55℃で12時間かけて脱保護と固相担体からの切り出しをトリチルオンの状態で行った。続いて、逆相HPLCにて目的物を分取した。分取した後、逆相カートリッジカラム(Sep-Pak C18 Plus Cartridge;Waters)にチャージし、カートリッジ上で2%トリフルオロ酢酸水溶液にてDMTr基を除去した後、25%アセトニトリル/水で溶出した。溶出したオリゴヌクレオチドを再度陰イオン交換HPLC(Gen-PakTM FAX(Waters,4.6×150mm)、カラム温度50℃において、溶出溶媒として25mM リン酸ナトリウム緩衝液(pH6.0)に1M塩化ナトリウム、25mMリン酸ナトリウム緩衝液(pH6.0)を加え濃度勾配をかけて流した)で精製した後、脱塩した。テンプレート(S)の精製後の陰イオン交換HPLCチャートを図1に示す。MALDI―TOF-MS calcd. [M+H]+ 9066.552, found 9067.649。 Next, a template (S) was synthesized by an automatic DNA synthesizer (nS-8II; Gene Design) using a commercially available deoxynucleotide phosphoramidite (Glen Rsearch Inc.). After completion of the synthesis, deprotection and cleaving from the solid support were carried out in a tritylon state using 28% aqueous ammonia at 55 ° C. for 12 hours. Subsequently, the target product was fractionated by reverse phase HPLC. After separation, the mixture was charged into a reverse phase cartridge column (Sep-Pak C18 Plus Cartridge; Waters), DMTr group was removed on the cartridge with 2% aqueous trifluoroacetic acid solution, and then eluted with 25% acetonitrile / water. The eluted oligonucleotide was once again subjected to anion exchange HPLC (Gen-Pak ™ FAX (Waters, 4.6 × 150 mm) at a column temperature of 50 ° C. in 25 mM sodium phosphate buffer (pH 6.0) as an elution solvent, After purifying with 25 mM sodium phosphate buffer (pH 6.0 and flushed with a concentration gradient), desalting was performed. An anion exchange HPLC chart after purification of the template (S) is shown in FIG. MALDI—TOF-MS calcd. [M + H] + 9066.552, found 9067.649.
[原料合成例2]:3’-O-(tert-ブチルジメチルシリル)-5’-デオキシ-5’-(イミダゾリルスルホニルメチル)チミジン(化合物XX)の合成 [Raw Material Synthesis Example 2]: Synthesis of 3'-O- (tert-butyldimethylsilyl) -5'-deoxy-5 '-(imidazolylsulfonylmethyl) thymidine (Compound XX)
Figure JPOXMLDOC01-appb-C000025
    XX
Figure JPOXMLDOC01-appb-C000025
XX
 McElroyらの方法(Huang, J.; McElroy, E. B.; Widlanski, T.S., J. Org. Chem. 1994, 59, 3520)により合成した3’-O-(tert-ブチルジメチルシリル)-5’-デオキシ-5’-スルホメチルチミジンのナトリウム塩(700mg、1.54mmol)をアセトン(15mL)に溶解した。ここに18-クラウン-6-エーテル(20mg、0.077mmol)と塩化シアヌル(424mg、2.31mmol)を加え、68℃で6時間反応させた。その後、イミダゾール(7.2g、133mmol)を加え、室温で1時間反応させた。反応系をセライトで濾過し、濾液を減圧下濃縮した。残渣に5gのシリカゲルを加えた後、30gのシリカゲル上に静置し、80%酢酸エチル-20%ヘキサンにて目的物を溶出した。目的物を含むフラクションを濃縮し化合物XXを700mg(94%)で得た。
1H NMR (500 MHz, CDCl3) δ 10.08 (s, 1H), 7.96 (s, 1H), 7.26 (s, 1H), 7.15 (s, 1H), 6.92 (s, 1H), 5.95 (t, J = 1.5 Hz, 1H), 4.14 (dd, J = 6.0, 5.0 Hz, 1H), 3.72-3.65 (m, 1H), 3.61-3.52 (m, 1H), 3.47-3.36 (m, 1H), 2.37-2.27 (m, 1H), 2.24-2.13 (m, 1H), 2.13-2.03 (m, 1H), 2.00-1.87 (m, 1H), 1.90 (s, 3H), 0.83 (s, 9H), 0.03 (s, 6H) ; 13C NMR (101 MHz, CDCl3) δ 163.99, 150.48, 137.07, 136.45, 131.46, 117.79, 111.60, 86.60, 83.19, 74.47, 52.68, 39.61, 26.70, 25.71, 17.91, 12.59, -4.55, -4.80 ; ESI-TOF mass : calcd for C20H32N4O6SSi [M+Na]+ 507.1704, found 507.1693.
3'-O- (tert-butyldimethylsilyl) -5'-deoxy synthesized by the method of McElroy et al. (Huang, J .; McElroy, EB; Widlanski, TS, J. Org. Chem. 1994, 59, 3520) The sodium salt of -5′-sulfomethylthymidine (700 mg, 1.54 mmol) was dissolved in acetone (15 mL). 18-Crown-6-ether (20 mg, 0.077 mmol) and cyanuric chloride (424 mg, 2.31 mmol) were added thereto and reacted at 68 ° C. for 6 hours. Thereafter, imidazole (7.2 g, 133 mmol) was added and reacted at room temperature for 1 hour. The reaction system was filtered through celite, and the filtrate was concentrated under reduced pressure. After adding 5 g of silica gel to the residue, the mixture was allowed to stand on 30 g of silica gel, and the target product was eluted with 80% ethyl acetate-20% hexane. Fractions containing the desired product were concentrated to obtain 700 mg (94%) of compound XX.
1 H NMR (500 MHz, CDCl3) δ 10.08 (s, 1H), 7.96 (s, 1H), 7.26 (s, 1H), 7.15 (s, 1H), 6.92 (s, 1H), 5.95 (t, J = 1.5 Hz, 1H), 4.14 (dd, J = 6.0, 5.0 Hz, 1H), 3.72-3.65 (m, 1H), 3.61-3.52 (m, 1H), 3.47-3.36 (m, 1H), 2.37- 2.27 (m, 1H), 2.24-2.13 (m, 1H), 2.13-2.03 (m, 1H), 2.00-1.87 (m, 1H), 1.90 (s, 3H), 0.83 (s, 9H), 0.03 ( s, 6H); 13C NMR (101 MHz, CDCl3) δ 163.99, 150.48, 137.07, 136.45, 131.46, 117.79, 111.60, 86.60, 83.19, 74.47, 52.68, 39.61, 26.70, 25.71, 17.91, 12.59, -4.55,- 4.80; ESI-TOF mass: calcd for C 20 H 32 N 4 O 6 SSi [M + Na] + 507.1704, found 507.1693.
[原料合成例3]:5’-デオキシ-5’-(イミダゾリルスルホニルメチル)チミジン(化合物XXX)の合成 [Raw Material Synthesis Example 3]: Synthesis of 5'-deoxy-5 '-(imidazolylsulfonylmethyl) thymidine (Compound XXX)
Figure JPOXMLDOC01-appb-C000026
   XXX
Figure JPOXMLDOC01-appb-C000026
XXX
 化合物XX(30mg、0.062mmol)をテトラヒドロフラン(620μL)に溶解し、1M フッ化テトラブチルアンモニウム テトラヒドロフラン溶液(68μL、0.068mmol)を加え、室温で25分反応させた。反応系に酢酸(3.9μL 0.06mmol)とトリメチルエトキシシラン(280μL、1.86mmol)を加え、反応を停止した。1時間後、酢酸エチル10mLを加え、飽和重曹水2mLで3回、飽和食塩水2mLで1回洗浄した。水層を酢酸エチル10mLで3回抽出した後、有機層を集め無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過に除き、濾液を減圧下濃縮した後、残渣を8gのシリカゲル上にチャージし、7%メタノール/塩化メチレンで溶出した。目的物を含むフラクションを濃縮し化合物XXX(16mg、70%)を得た。
1H NMR (500 MHz, DMSO-d6) δ 11.32 (s, 1H), 8.19 (s, 1H), 7.68 (s, 1H), 7.37 (s, 1H), 7.18 (s, 1H), 6.09 (t, J = 7.0 Hz, 1H), 5.44-5.32 (br, 1H), 4.12-4.05 (m, 1H), 3.95-3.77 (m, 2H), 3.66-3.60 (m, 1H), 2.26-2.18 (m, 1H), 2.06-1.93 (m, 2H), 1.90-1.80 (m, 1H), 1.79 (s, 3H) ; 13C NMR (126 MHz, DMSO-d6) δ 163.67, 150.40, 137.26, 136.29, 130.60, 118.52, 109.94, 83.48, 82.98, 72.50, 51.43, 38.00, 26.49, 12.09 ; ESI-TOF mass : calcd for C14H18N4O6S [M+Na]+ 393.0839, found 393.0832.
Compound XX (30 mg, 0.062 mmol) was dissolved in tetrahydrofuran (620 μL), 1M tetrabutylammonium fluoride tetrahydrofuran solution (68 μL, 0.068 mmol) was added, and the mixture was reacted at room temperature for 25 minutes. Acetic acid (3.9 μL 0.06 mmol) and trimethylethoxysilane (280 μL, 1.86 mmol) were added to the reaction system to stop the reaction. After 1 hour, 10 mL of ethyl acetate was added, and the mixture was washed 3 times with 2 mL of saturated aqueous sodium bicarbonate and once with 2 mL of saturated brine. The aqueous layer was extracted 3 times with 10 mL of ethyl acetate, and then the organic layers were collected and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was charged onto 8 g of silica gel and eluted with 7% methanol / methylene chloride. Fractions containing the desired product were concentrated to give compound XXX (16 mg, 70%).
1 H NMR (500 MHz, DMSO-d6) δ 11.32 (s, 1H), 8.19 (s, 1H), 7.68 (s, 1H), 7.37 (s, 1H), 7.18 (s, 1H), 6.09 (t , J = 7.0 Hz, 1H), 5.44-5.32 (br, 1H), 4.12-4.05 (m, 1H), 3.95-3.77 (m, 2H), 3.66-3.60 (m, 1H), 2.26-2.18 (m , 1H), 2.06-1.93 (m, 2H), 1.90-1.80 (m, 1H), 1.79 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 163.67, 150.40, 137.26, 136.29, 130.60, 118.52, 109.94, 83.48, 82.98, 72.50, 51.43, 38.00, 26.49, 12.09; ESI-TOF mass: calcd for C 14 H 18 N 4 O 6 S [M + Na] + 393.0839, found 393.0832.
実施例1:Klenow断片exo - を用いた完全鎖長伸長反応
 以下のプライマーおよびテンプレートを用いて、完全鎖伸長反応を行った。
 プライマーDNA1:FAM-5’-d(CATGGGCGGCATGGG)(配列番号2)
 テンプレート(P):3’-d(GTACCCGCCGTACCCGAATTCCTGCTGCTT)-5’(配列番号1)(「P」は、リン酸ジエステルを指す)
 テンプレート(S):3’-d(GTACCCGCCGTACCCGAATTCCTGCTGCTT)-5’(配列番号1)
(配列中の「TT」は、スルホンアミドで連結されたチミジン二量体を示す)
Example 1: Klenow fragment exo - with full length extension reaction the following primers and template were performed using complete chain extension reaction.
Primer DNA1: FAM-5′-d (CATGGGGCGCATGGGG) (SEQ ID NO: 2)
Template (P): 3′-d (GTACCCGCCGTACCCGAGATCTCCTCGCTTT) -5 ′ (SEQ ID NO: 1) (“P” refers to phosphodiester)
Template (S): 3′-d (GTACCCGCCGTACCCGAA TT CCTGCTGCTT) -5 ′ (SEQ ID NO: 1)
(" TT " in sequence indicates thymidine dimer linked by sulfonamide)
 プライマーDNA1、テンプレート(P)またはテンプレート(S)、dNTP(N=A,T,G,C)を市販の酵素に添付されているKlenow断片exo-緩衝液10μLに溶解し、Klenow断片exo-(New England Bio Labs)を加えて37℃で30分間反応を行った。加えた物質の最終濃度は以下の通りである。
 プライマーDNA 0.1μM
 テンプレート(P)またはテンプレート(S) 0.1μM
 dNTP(N=A,T,G,C) 各10μM
 Klenow断片exo- 0.025U/μL
Primer DNA1, template (P) or template (S), dNTP (N = A, T, G, C) are dissolved in 10 μL of Klenow fragment exo buffer attached to a commercially available enzyme, and Klenow fragment exo ( (New England Bio Labs) was added, and the reaction was performed at 37 ° C. for 30 minutes. The final concentration of the added material is as follows.
Primer DNA 0.1 μM
Template (P) or Template (S) 0.1 μM
dNTP (N = A, T, G, C) 10 μM each
Klenow fragment exo - 0.025 U / μL
 反応終了後、反応液を7M尿素を含む20%PAGEで泳動し反応物を解析した。結果を図2に示す。図2に示されるように、テンプレート(P)(レーン2)およびテンプレート(S)(レーン3)を用いることにより、伸長反応が首尾よく行われたことがわかる。レーン3を見ると、リン酸ジエステルと-1merのバンドも検出されているが、レーン2と同様に完全伸長したバンドが検出された。 After completion of the reaction, the reaction solution was electrophoresed with 20% PAGE containing 7M urea to analyze the reaction product. The results are shown in FIG. As shown in FIG. 2, it can be seen that the extension reaction was successfully performed by using template (P) (lane 2) and template (S) (lane 3). Looking at lane 3, the phosphodiester and -1mer bands were also detected, but a completely extended band was detected as in lane 2.
実施例2:Klenow断片exo + を用いた完全鎖長伸長反応
 実施例1で用いたプライマーDNA1、テンプレート(P)またはテンプレート(S)、dNTP(N=A,T,G,C)を市販の酵素に添付しているKlenow断片exo+緩衝液10μLに溶解し、Klenow断片exo+(Takara)を加えて37℃で30分間反応を行った。加えた物質の最終濃度は以下の通りである。
 プライマーDNA 0.1μM
 テンプレート(P)またはテンプレート(S) 0.1μM
 dNTP(N=A,T,G,C) 各10μM
 Klenow断片exo+0.025U/μL
Example 2: Full length extension reaction using Klenow fragment exo + Primer DNA1, template (P) or template (S), dNTP (N = A, T, G, C) used in Example 1 are commercially available It melt | dissolved in 10 microliters of Klenow fragment | piece exo + buffer attached to the enzyme, Klenow fragment | piece exo + (Takara) was added, and reaction was performed at 37 degreeC for 30 minutes. The final concentration of the added material is as follows.
Primer DNA 0.1 μM
Template (P) or Template (S) 0.1 μM
dNTP (N = A, T, G, C) 10 μM each
Klenow fragment exo + 0.025 U / μL
 反応終了後、反応液を7M尿素を含む20%PAGEで泳動し反応物を解析した。結果を図3に示す。図3に示されるように、テンプレート(P)(レーン2)およびテンプレート(S)(レーン3)を用いることにより、伸長反応が首尾よく行われたことがわかる。校正活性を有するexo+でも完全長が合成できたことから、スルホンアミドテンプレートの位置に導入されたヌクレオチド残基をミス取り込みと誤認されて切り出されることなく、DNA合成が最後まで伸長していることが分かる。 After completion of the reaction, the reaction solution was electrophoresed on 20% PAGE containing 7M urea, and the reaction product was analyzed. The results are shown in FIG. As shown in FIG. 3, it can be seen that the extension reaction was successfully performed by using template (P) (lane 2) and template (S) (lane 3). Since exo + with proofreading activity was able to synthesize the full length, the nucleotide synthesis introduced at the position of the sulfonamide template was not mistaken for misincorporation and cut out, and DNA synthesis was extended to the end I understand.
実施例3:耐熱性DNA合成酵素を用いた完全鎖長伸長反応
 実施例1で用いたプライマーDNA、テンプレート(P)またはテンプレート(S)、dNTP(N=A,T,G,C)を市販の酵素に添付している推奨緩衝液10μLに溶解し、耐熱性酵素を加えて50℃で30分間反応を行った。加えた物質の最終濃度は以下の通りである。
 プレートDNA 0.1μM
 テンプレート(P)またはTemplate(S) 0.1μM
 dNTP(N=A,T,G,C) 各10μM
 酵素 0.025U/μL
Example 3: Full chain length extension reaction using thermostable DNA synthase The primer DNA, template (P) or template (S), and dNTP (N = A, T, G, C) used in Example 1 are commercially available. Was dissolved in 10 μL of the recommended buffer attached to the enzyme, and a thermostable enzyme was added, followed by reaction at 50 ° C. for 30 minutes. The final concentration of the added material is as follows.
Plate DNA 0.1 μM
Template (P) or Template (S) 0.1 μM
dNTP (N = A, T, G, C) 10 μM each
Enzyme 0.025 U / μL
 exTaq(レーン3)、KOD’(レーン5)、vent(レーン7)に関して、テンプレート(P)とテンプレート(S)において同じ生成物が得られた。 For exTaq (lane 3), KOD '(lane 5), and vent (lane 7), the same product was obtained in template (P) and template (S).
実施例4:Klenow断片exo - を用いた一塩基伸長反応
 以下のプライマーおよびテンプレートを用いて、一塩基伸長反応を行った。
 プライマーDNA2:FAM-5‘-d(CATGGGCGGCATGGGCTT)(配列番号3)
 テンプレート(P):3’-d(GTACCCGCCGTACCCGAATTCCTGCTGCTT)-5’(配列番号1)
 テンプレート(S):3’-d(GTACCCGCCGTACCCGAATTCCTGCTGCTT)-5’(配列番号1)
Example 4 Single Base Extension Reaction Using Klenow Fragment exo − A single base extension reaction was performed using the following primers and template.
Primer DNA2: FAM-5′-d (CATGGGGCGCATGGGCTT) (SEQ ID NO: 3)
Template (P): 3′-d (GTACCCGCCGTACCCCGAATTCCTGTCGCTT) -5 ′ (SEQ ID NO: 1)
Template (S): 3′-d (GTACCCGCCGTACCCGAA TT CCTGCTGCTT) -5 ′ (SEQ ID NO: 1)
 プライマーDNA2、テンプレート(P)またはテンプレート(S)、dNTP(N=A,T,G,Cのうちいずれか1つ)を市販の酵素に添付しているKlenow断片exo-緩衝液10μLに溶解し、Klenow断片exo-を加えて37℃で1~5分間反応を行った。加えた物質の最終濃度は以下の通りである。
 プライマーDNA 0.1μM
 テンプレート(P)またはTemplate(S) 0.1μM
 dNTP(N=A,T,G,Cのうちいずれか1つ) 1μM
 Klenow断片exo- 0.01U/μL
Primer DNA2, template (P) or template (S), and dNTP (N = A, T, G, or C) are dissolved in 10 μL of Klenow fragment exo-buffer attached to a commercially available enzyme. , Klenow fragment exo was added, and the reaction was carried out at 37 ° C. for 1 to 5 minutes. The final concentration of the added material is as follows.
Primer DNA 0.1 μM
Template (P) or Template (S) 0.1 μM
dNTP (N = A, T, G, or C) 1 μM
Klenow fragment exo - 0.01 U / μL
 反応終了後、反応液を7M尿素を含む20%PAGEで泳動し反応物を解析した。結果を図5に示す。図5に示されるように、テンプレート(S)のTT中のチミンとワトソンクリック塩基対を形成し得るdATPを加えた場合のみ、鎖伸長が確認された。 After completion of the reaction, the reaction solution was electrophoresed on 20% PAGE containing 7M urea, and the reaction product was analyzed. The results are shown in FIG. As shown in FIG. 5, chain extension was confirmed only when dATP capable of forming Watson-Crick base pairing with thymine in TT of template (S) was added.
実施例5:5’-デオキシ-5’-(イミダゾリルスルホニルメチル)チミジン3’―(2-シアノエチル N,N―ジイソプロピルホスホロアミダイト)(化合物XXXX)の合成Example 5: Synthesis of 5'-deoxy-5 '-(imidazolylsulfonylmethyl) thymidine 3'-(2-cyanoethyl N, N-diisopropyl phosphoramidite) (Compound XXXX)
Figure JPOXMLDOC01-appb-C000027
    XXXX
Figure JPOXMLDOC01-appb-C000027
XXXX
 化合物XXX(30mg、0.062mmol)をテトラヒドロフラン(620μL)に溶解し、1M フッ化テトラブチルアンモニウム テトラヒドロフラン溶液(68μL、0.068mmol)を加え、室温で25分反応させた。反応系に酢酸(3.9μL、0.06mmol)とトリメチルエトキシシラン(280μL、1.86mmol)を加え、反応を停止した。1時間後、酢酸エチル10mLを加え、飽和重曹水2mLで3回、飽和食塩水2mLで1回洗浄した。水層を酢酸エチル10mLで3回抽出した後、有機層を集め無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過に除き、濾液を減圧下濃縮した後、残渣を8gのシリカゲルを上にチャージし、7%メタノール/塩化メチレンで溶出した。目的物を含むフラクションを濃縮し化合物XXX(16mg、70%)を得た。
1H NMR (500 MHz, CDCl3) δ 9.95-9.65 (br, 1H), 8.00-7.93 (m, 1H), 7.35-7.27 (m, 1H), 7.15 (s, 1H), 6.96 (s, 1H), 6.10-6.01 (m, 1H), 4.36-4.26 (m, 1H), 3.94-3.76 (m, 3H), 3.71-3.63 (m, 1H), 3.61-3.38 (m, 4H), 2.77-2.54 (m, 2H), 2.46-2.29 (m, 2H), 2.27-2.10 (m, 1H), 2.07-1.96 (m, 1H), 1.95-1.81 (m, 3H), 1.18-1.08 (m, 12H) ; 13C NMR (101 MHz, CDCl3) δ 163.87, 150.51, 150.46, 137.12, 137.04, 136.28, 135.95, 131.44, 131.35, 118.01, 117.90, 117.87, 117.80, 111.83, 111.81, 85.96, 85.84, 82.30, 82.26, 81.96, 81.89, 75.79, 75.64, 75.58, 75.43, 58.01, 57.92, 57.81, 57.73, 52.65, 52.60, 43.45, 43.41, 43.33, 43.29, 38.26, 38.20, 26.85, 26.82, 24.67, 24.61, 24.54, 20.57, 20.53, 20.50, 20.45, 12.51, 12.49 ; 31P NMR (203 MHz, CDCl3) : δ 149.4, -148.7 ; ESI-TOF mass : calcd for C23H35N6O7PS [M+Na]+ 593.1918, found 593.1905
Compound XXX (30 mg, 0.062 mmol) was dissolved in tetrahydrofuran (620 μL), 1M tetrabutylammonium fluoride tetrahydrofuran solution (68 μL, 0.068 mmol) was added, and the mixture was reacted at room temperature for 25 minutes. Acetic acid (3.9 μL, 0.06 mmol) and trimethylethoxysilane (280 μL, 1.86 mmol) were added to the reaction system to stop the reaction. After 1 hour, 10 mL of ethyl acetate was added, and the mixture was washed 3 times with 2 mL of saturated aqueous sodium bicarbonate and once with 2 mL of saturated brine. The aqueous layer was extracted 3 times with 10 mL of ethyl acetate, and then the organic layers were collected and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was charged with 8 g of silica gel and eluted with 7% methanol / methylene chloride. Fractions containing the desired product were concentrated to give compound XXX (16 mg, 70%).
1 H NMR (500 MHz, CDCl3) δ 9.95-9.65 (br, 1H), 8.00-7.93 (m, 1H), 7.35-7.27 (m, 1H), 7.15 (s, 1H), 6.96 (s, 1H) , 6.10-6.01 (m, 1H), 4.36-4.26 (m, 1H), 3.94-3.76 (m, 3H), 3.71-3.63 (m, 1H), 3.61-3.38 (m, 4H), 2.77-2.54 ( m, 2H), 2.46-2.29 (m, 2H), 2.27-2.10 (m, 1H), 2.07-1.96 (m, 1H), 1.95-1.81 (m, 3H), 1.18-1.08 (m, 12H); 13C NMR (101 MHz, CDCl3) δ 163.87, 150.51, 150.46, 137.12, 137.04, 136.28, 135.95, 131.44, 131.35, 118.01, 117.90, 117.87, 117.80, 111.83, 111.81, 85.96, 85.84, 82.30, 82.26, 81.96, 81.89 , 75.79, 75.64, 75.58, 75.43, 58.01, 57.92, 57.81, 57.73, 52.65, 52.60, 43.45, 43.41, 43.33, 43.29, 38.26, 38.20, 26.85, 26.82, 24.67, 24.61, 24.54, 20.57, 20.53, 20.50, 20.45 , 12.51, 12.49; 31P NMR (203 MHz, CDCl3): δ 149.4, -148.7; ESI-TOF mass: calcd for C 23 H 35 N 6 O 7 PS [M + Na] + 593.1918, found 593.1905

Claims (4)

  1.  式I:
    Figure JPOXMLDOC01-appb-C000001
    〔式中、
     B1およびB2は、同一または異なる核酸塩基を表し;
     R1は、式II:
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     mは、0以上の整数を表し;
     Bmは、前記mの各整数に対応して同一または異なる核酸塩基を表し;および
     Xは、水素原子、リン酸基、ピロリン酸基、またはトリリン酸基を表す)
    で表される化合物であり;および
     R2は、式III:
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     nは、0以上の整数を表し、ただし、mおよびnは同時に0にはならない;および
     Bnは、前記nの各整数に対応して同一または異なる核酸塩基を表す)
    で表される化合物である〕
    で表されるスルホンアミド骨格を有する化合物を鋳型鎖として用いて、DNA合成酵素によりオリゴデオキシヌクレオチドを合成する方法。
    Formula I:
    Figure JPOXMLDOC01-appb-C000001
    [Where,
    B 1 and B 2 represent the same or different nucleobases;
    R 1 is represented by formula II:
    Figure JPOXMLDOC01-appb-C000002
    (Where
    m represents an integer of 0 or more;
    B m represents the same or different nucleobase corresponding to each integer of m; and X represents a hydrogen atom, a phosphate group, a pyrophosphate group, or a triphosphate group)
    And R 2 is a compound of formula III:
    Figure JPOXMLDOC01-appb-C000003
    (Where
    n represents an integer of 0 or more, provided that m and n cannot be 0 at the same time; and B n represents the same or different nucleobase corresponding to each integer of n)
    It is a compound represented by
    A method of synthesizing oligodeoxynucleotides with a DNA synthase using a compound having a sulfonamide skeleton represented by
  2.  前記式Iで表される化合物を合成する方法をさらに含み、ここで、式IV:
    Figure JPOXMLDOC01-appb-C000004
    〔式中、
     B1およびR1は、式Iにおいて定義される通りである〕
    で表される化合物と、式V:
    Figure JPOXMLDOC01-appb-C000005
    〔式中、
     B2およびR2は、式Iにおける定義の通りであり;および
     Yは、アゾリル基を表す〕
    で表される化合物とを反応させるステップを含む、請求項1に記載の方法。
    The method further includes a method of synthesizing the compound represented by Formula I, wherein Formula IV:
    Figure JPOXMLDOC01-appb-C000004
    [Where,
    B 1 and R 1 are as defined in Formula I)
    And a compound of formula V:
    Figure JPOXMLDOC01-appb-C000005
    [Where,
    B 2 and R 2 are as defined in Formula I; and Y represents an azolyl group]
    The method of Claim 1 including the process with the compound represented by these.
  3.  前記式Vで表される化合物を合成する方法をさらに含み、ここで、式VI:
    Figure JPOXMLDOC01-appb-C000006
    〔式中、
     Yは、アゾリル基を表し;
     Zは、保護基を有してもよい核酸塩基を表し;
     R3は、リン酸の保護基を表し;
     R4およびR5は、同一または異なって、炭素数1~6の直線状または分岐状のアルキル基を表し、あるいは
     R4およびR5は、直接結合して環を形成し、または酸素原子、硫黄原子およびケイ素原子からなる群から1以上の原子を介して結合して環を形成してもよい〕
    で表される化合物を出発原料として、ホスホロアミダイト法による核酸固相合成法もしくは液相合成法を用いて合成するステップを含む、請求項2に記載の方法。
    The method further includes a method of synthesizing the compound represented by Formula V, wherein Formula VI:
    Figure JPOXMLDOC01-appb-C000006
    [Where,
    Y represents an azolyl group;
    Z represents a nucleobase which may have a protecting group;
    R 3 represents a protecting group for phosphoric acid;
    R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom)
    The method of Claim 2 including the step of synthesize | combining using the nucleic acid solid-phase synthesis method or liquid phase synthesis method by the phosphoramidite method using the compound represented by these as a starting material.
  4.  式V:
    Figure JPOXMLDOC01-appb-C000007
    〔式中、
     R2およびB2は、式Iにおける定義の通りであり;および
     Yは、アゾリル基を表す〕
    で表される化合物を製造するための、以下の式VI:
    Figure JPOXMLDOC01-appb-C000008
    〔式中、
     Yは、アゾリル基を表し;
     Zは、保護基を有してもよい核酸塩基を表し;
     R3は、リン酸の保護基を表し;
     R4およびR5は、同一または異なって、炭素数1~6の直線状または分岐状のアルキル基を表し、あるいは
     R4およびR5は、直接結合して環を形成し、または酸素原子、硫黄原子およびケイ素原子からなる群から1以上の原子を介して結合して環を形成してもよい〕
    で表される化合物。
    Formula V:
    Figure JPOXMLDOC01-appb-C000007
    [Where,
    R 2 and B 2 are as defined in Formula I; and Y represents an azolyl group.
    To produce a compound of formula VI:
    Figure JPOXMLDOC01-appb-C000008
    [Where,
    Y represents an azolyl group;
    Z represents a nucleobase which may have a protecting group;
    R 3 represents a protecting group for phosphoric acid;
    R 4 and R 5 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms, or R 4 and R 5 are directly bonded to form a ring, or an oxygen atom, A ring may be formed by bonding via one or more atoms from the group consisting of a sulfur atom and a silicon atom)
    A compound represented by
PCT/JP2018/003693 2018-02-02 2018-02-02 Dna replication method using oligonucleotide having sulfonamide skeleton as template WO2019150564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019568531A JPWO2019150564A1 (en) 2018-02-02 2018-02-02 DNA replication method using an oligonucleotide having a sulfonamide skeleton as a template
PCT/JP2018/003693 WO2019150564A1 (en) 2018-02-02 2018-02-02 Dna replication method using oligonucleotide having sulfonamide skeleton as template

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003693 WO2019150564A1 (en) 2018-02-02 2018-02-02 Dna replication method using oligonucleotide having sulfonamide skeleton as template

Publications (1)

Publication Number Publication Date
WO2019150564A1 true WO2019150564A1 (en) 2019-08-08

Family

ID=67479715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003693 WO2019150564A1 (en) 2018-02-02 2018-02-02 Dna replication method using oligonucleotide having sulfonamide skeleton as template

Country Status (2)

Country Link
JP (1) JPWO2019150564A1 (en)
WO (1) WO2019150564A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505704A (en) * 1990-09-20 1994-06-30 ギリアド サイエンシズ,インコーポレイテッド Modified internucleoside linkages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505704A (en) * 1990-09-20 1994-06-30 ギリアド サイエンシズ,インコーポレイテッド Modified internucleoside linkages

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KITAGAWA, RYO ET AL.: "Synthesis and Characteristics of Nucleotide Derivatives Having Sulfonamide Skeletons", PROCEEDINGS OF THE CSJ ANNUAL SPRING MEETING ( CD-ROM), vol. 96, no. 4, 2016 *
MCELROY, E. B. ET AL.: "Synthesis and Physical Properties of Sulfonamide-Containing Oligonucleotides", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 4, no. 8, 1994, pages 1071 - 1076, XP026615488 *
SEKIYA, SHOTA ET AL.: "Novel Synthesis Method for Artificial Nucleic Acids Linked by Sulfonamide Bonds", PROCEEDINGS OF THE CSJ ANNUAL SPRING MEETING ( CD-ROM), vol. 97, no. 4, 2017 *

Also Published As

Publication number Publication date
JPWO2019150564A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP7082174B2 (en) Compositions and Methods for Synthesizing RNA with 5'Caps
US5965364A (en) Method for selecting functional deoxyribonucleotide derivatives
US8846883B2 (en) Oligonucleotide ligation
AU2001267638B2 (en) Combinatorial production of nucleotide and nucleoside (xitp)analogues
JPH06511492A (en) Oligonucleotides with chiral phosphorus bonds
HU223669B1 (en) Modified primers
WO2010110775A1 (en) Reagents for reversibly terminating primer extension
JP2011521930A (en) RNA chemical synthesis method
JP3893057B2 (en) Novel nucleic acid base pair
JPH1099088A (en) Amplification of nucleic acid
CN114008063A (en) Modified nucleotides and methods for DNA and RNA polymerization and sequencing
WO2007102581A1 (en) 2'-hydroxyl-modified ribonucleoside derivative
US20190015439A1 (en) Dinucleotides
WO2019150564A1 (en) Dna replication method using oligonucleotide having sulfonamide skeleton as template
EP4028537A1 (en) Template-free enzymatic polynucleotide synthesis using photocleavable linkages
WO2019048881A1 (en) Oligonucleotides comprising triazole and (phosphor)amidate internucleoside linkages, method for the preparation and uses thereof
Watts et al. Synthesis of nucleic acids
WO2022175685A1 (en) Modified guanines
US10059735B1 (en) Nucleoside heterocycle that binds to both thymidine and cytidine
WO2021205156A2 (en) 5-position modified pyrimidines
Godovikova et al. Tamara M. Ivanova, Sergey L. Grochovsky, Tatyana V. Nasedkina, Lubov S. Victorova, and Andrey I. Poletaev Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Lavrentiev av. 8, Russia, Novosibirsk State University, Pirogova av. 2
TW200530396A (en) Methods for identifying SNPs
WO2017048147A1 (en) The method of synthesis and purification of a nucleoside and/or a nucleotide, a modified nucleoside and/or nucleotide, a dna molecule and an oligonucleotide library comprising said modified nucleoside and/or nucleotide and the use of said oligonucleotide library

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903552

Country of ref document: EP

Kind code of ref document: A1