WO2019150521A1 - Jet mill device - Google Patents

Jet mill device Download PDF

Info

Publication number
WO2019150521A1
WO2019150521A1 PCT/JP2018/003347 JP2018003347W WO2019150521A1 WO 2019150521 A1 WO2019150521 A1 WO 2019150521A1 JP 2018003347 W JP2018003347 W JP 2018003347W WO 2019150521 A1 WO2019150521 A1 WO 2019150521A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
protrusions
hollow chamber
jet mill
air flow
Prior art date
Application number
PCT/JP2018/003347
Other languages
French (fr)
Japanese (ja)
Inventor
功 大川
Original Assignee
株式会社Isaac
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Isaac filed Critical 株式会社Isaac
Priority to PCT/JP2018/003347 priority Critical patent/WO2019150521A1/en
Priority to JP2019568495A priority patent/JP6839307B2/en
Publication of WO2019150521A1 publication Critical patent/WO2019150521A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills

Definitions

  • the present invention relates to a jet mill apparatus for pulverizing an object to be crushed into fine powder.
  • a jet mill device As a conventional jet mill device, it has a plurality of jet nozzles embedded in a ring shape on the inner wall side surface of the cavity chamber, and is drawn into the cavity chamber using a high-speed swirling flow generated by high-pressure gas injected from the nozzle.
  • a jet mill apparatus for pulverizing the object to be crushed into fine particles wherein a concentric coaxial cylinder directed vertically upward is provided at a substantially central portion of the ceiling surface of the cavity chamber, and a negative generated in the inner cylinder portion of the coaxial cylinder.
  • a jet mill apparatus that draws an object to be crushed into a hollow chamber using pressure and extracts pulverized fine particles from the hollow chamber using positive pressure generated in the outer cylindrical portion of the coaxial cylinder. (See Patent Document 1).
  • a conventional jet mill device comprises a step of reacting the mixture in the reactor by a combustion synthesis method and a pulverization step of pulverizing the crude product after the reaction, and the pulverization step is ejected from a pulverization nozzle.
  • the crude product is accelerated by the jet stream formed in this manner, and the pulverization is advanced by collision or grinding of the accelerated crude products or by colliding the accelerated crude product with the collision plate.
  • a jet mill apparatus is known (see Patent Document 2).
  • An object of the present invention is to provide a jet mill apparatus capable of efficiently obtaining a sufficiently fine fine powder in a short time.
  • a jet mill apparatus is provided with a hollow chamber for pulverizing an object to be pulverized into a fine powder, an air flow generating unit that generates a swirling air flow in the hollow chamber, and the hollow chamber.
  • a plurality of first protrusions and a plurality of second protrusions provided in the hollow chamber, facing the plurality of first protrusions and moving relative to the plurality of first protrusions.
  • the object to be crushed inputted into the hollow chamber is swirled by the air flow generated by the air flow generation unit, and the plurality of first protrusions and the plurality of second protrusions It is characterized by being cut by an object, shaved and pulverized into a fine powder.
  • the plurality of first protrusions may be fixed in the cavity chamber, and the plurality of second protrusions may move in the cavity chamber.
  • the plurality of first protrusions are fixed to a wall portion of the cavity chamber and protrude toward the inside of the cavity chamber, and the plurality of second protrusions are the cavity chamber.
  • the plurality of second protrusions are fixed to the plurality of first protrusions by being fixed to a rotating body provided at the center of the first and projecting toward the outside of the hollow chamber and rotating the rotating body. May be moved relatively.
  • the plurality of first protrusions may generate an air flow generated by the air flow generation unit so as to raise fine powder swirl on the air flow generated by the air flow generation unit.
  • the plurality of second protrusions are arranged to be inclined with respect to the swirling direction of the air flow so as to raise the fine powder swirling on the air flow generated by the air flow generating unit. You may make it arrange
  • the air flow generation unit includes a plurality of injection nozzles that are fixed to a wall portion of the cavity chamber and inject an air flow in a swirl direction, and the plurality of injection nozzles are provided. Only the plurality of second protrusions may be provided in the region of the hollow chamber.
  • the plurality of first protrusions and / or the plurality of second protrusions may be made thinner in a direction of relative movement.
  • a pulverization method is a pulverization method for pulverizing an object to be pulverized into a fine powder, generating a swirling air flow in the cavity chamber for pulverizing the object to be pulverized, and inputting the air flow into the cavity chamber A plurality of first protrusions, a plurality of first protrusions, and a plurality of first protrusions that move relative to the plurality of first protrusions.
  • the second protrusion is characterized in that it is pulverized into a fine powder by cutting and scraping the object to be crushed by the air flow.
  • the plurality of first protrusions arranged to be inclined with respect to the swirl direction of the air flow raises the fine powder swirling on the air flow, and swirls the air flow. You may make it raise the fine powder swirled on the said airflow by the said several 2nd protrusion arrange
  • a hollow chamber for pulverizing an object to be pulverized an air flow generating unit that generates a swirling air flow in the hollow chamber, and a plurality of provided in the hollow chamber First projections and a plurality of second projections provided in the hollow chamber, facing the plurality of first projections and moving relative to the plurality of first projections
  • the object to be crushed inputted into the hollow chamber is swirled by the air flow generated by the air flow generation unit, and the plurality of first protrusions and the plurality of second protrusions Since it is cut and ground by pulverization into a fine powder, a sufficiently fine fine powder can be obtained efficiently in a short time.
  • a general pulverizer has fixed teeth and rotating teeth, and uses the moment of the rotating teeth to cut the resin sandwiched between the two blades. For example, there is one having a clearance between a fixed tooth and a rotating tooth of about 0.01 mm.
  • Such a general crusher is suitable for crushing to 2 mm or more. Even when trying to pulverize more finely, the resin and the blade are heated to high temperatures due to shearing heat generated during the resin pulverization, and the resin is melted and cut again, so that it is difficult to pulverize like a fine powder.
  • the next possible method is to freeze the material to be ground and grind it using a ball mill or the like.
  • a ball mill method a metal or ceramic ball is held in a cylindrical, sealed fixed container, and the ball freely moves by vibrating up and down, and the object to be ground is pulverized by the impact.
  • liquefied nitrogen is used to freeze the object to be crushed and its elastic force is lowered as much as possible, and then a ball mill or the like is used to grind the object to be crushed by the collision energy of metal balls.
  • a pulverized product can be obtained by such a method, it is necessary to freeze the material to be pulverized, resulting in poor productivity and high cost. Further, the particle size distribution of the pulverized product is wide, and a large number of particles having a size of about 500 ⁇ m are present.
  • the present inventor has come up with a grinding method capable of efficiently obtaining a sufficiently fine fine powder in a short time.
  • FIG. 1 is a photograph of the appearance of a jet mill apparatus according to this embodiment
  • FIG. 2 is a cross-sectional view of the jet mill apparatus according to this embodiment.
  • the jet mill device 10 of the present embodiment is provided on a rectangular parallelepiped base 20, a cylindrical pulverization unit 30 that pulverizes a material to be crushed into fine powder, and a pulverization unit 30.
  • the input / output unit 60 is configured to input an object to be pulverized into the pulverizing unit 30 and output the pulverized fine powder from the pulverizing unit 30.
  • a hollow chamber 31 is provided in which the pulverized material is pulverized.
  • the input / output unit 60 inputs the material to be crushed into the hollow chamber 31 of the pulverizing unit 30 and outputs the pulverized fine powder from the hollow chamber 31 of the pulverizing unit 30.
  • a compressed air tank 22 for sending compressed air to the hollow chamber 31 of the pulverizing unit 30 is provided at the lower part of the base unit 20.
  • a compressed air connection port 24 is formed in the lower center of the compressed air tank 22.
  • a compressor (not shown) that generates compressed air is connected to the compressed air connection port 24.
  • a plurality of compressed air feed pipes 26 that connect the compressed air tank 22 of the base unit 20 and the hollow chamber 31 of the crushing unit 30 are provided. In FIG. 1, illustration of the compressed air feed pipe 26 is omitted.
  • Compressed air generated by a compressor (not shown) is sent from the compressed air connection port 24 to the compressed air tank 22, and is sent to the cavity chamber 31 of the pulverization unit 30 by the compressed air feed pipe 26.
  • a rotation drive motor 28 is provided on the upper portion of the base 20.
  • the drive motor for rotation 28 rotates the rotating ring laminated body 32 of the crushing unit 30 described later.
  • FIG. 3 is a top view of the rotating ring laminate of the jet mill apparatus according to this embodiment
  • FIG. 4 is a perspective view of the protrusion ring and the rotating ring constituting the rotating ring laminate of the jet mill apparatus according to this embodiment
  • FIG. 5 is a perspective view showing a stacking state of protrusion rings constituting the rotating ring laminate of the jet mill apparatus according to the present embodiment
  • FIG. 6 is a rotating ring laminate of the jet mill apparatus according to the present embodiment. It is sectional drawing which shows the lamination
  • a rotating ring laminate 32 is provided at the center of the hollow chamber 31 of the grinding unit 30.
  • FIG. 3 is a view of the rotating ring laminate 32 as viewed from above.
  • a plurality of protrusions 32b protrude outward from the central ring laminate body 32a.
  • a plurality of protrusions 36b are provided at intervals of about 20 degrees.
  • the protrusion 32b has, for example, a rectangular plate shape having a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm.
  • One long side of the plate shape has a thin blade plate shape.
  • This plate-shaped member protrudes outward by, for example, 30.0 mm.
  • the rotating ring laminate 32 rotates in the direction of the arrow in FIG.
  • the blades of the protrusions 32b are attached so as to be in the direction of cutting the object to be crushed by this rotation.
  • the rotating ring laminate 32 is formed by alternately stacking the protrusion ring 36 shown in FIG. 4A and the rotating rings 34A and 34B shown in FIGS. 4B and 4C.
  • the protrusion ring 36 shown in FIG. 4 (a) is provided with a region through which the rotation shaft of the rotation drive motor 28 passes in the center.
  • a plurality of blade plates 38 are arranged radially from the center of the projection ring 36.
  • the arrangement of the protrusions 32b is fixed by being sandwiched between rotating rings 34A and 34B described later.
  • the portions of the plurality of blade plates 38 protruding from the rotating ring 34 become protrusions 32b.
  • three blade plates 38 are provided at intervals of about 120 degrees.
  • Each blade plate 38 has a blade plate shape in which one long side of the plate shape is thin and becomes a blade.
  • One long side of the thin plate shape serving as the blade of the blade plate 38 faces the counterclockwise direction that is the rotation direction of the rotating ring laminated body 32.
  • the protrusion ring 36 has an outer diameter of, for example, 100.0 mm, and a rotation shaft penetrating region having a diameter of about 10.0 mm is formed at the center.
  • the protrusion ring 36 has a thickness of 1.0 mm, for example.
  • the rotating ring 34A has an outer diameter of 40.0 mm, for example, and a hole 35 of 10.0 mm is formed at the center.
  • the rotating ring 34A is a thin rotating ring having a thickness of 5.0 mm, for example.
  • the rotating ring 34B has an outer diameter of 40.0 mm, for example, and a hole 35 of 10.0 mm is formed at the center.
  • the rotating ring 34A is a thick rotating ring having a thickness of 10.0 mm, for example.
  • FIG. 5 shows a stacked state of the protrusion ring 36 constituting the rotating ring stacked body 32.
  • the rotating ring laminate 32 is formed by alternately stacking the protrusion ring 36 shown in FIG. 4A and the rotating rings 34A and 34B shown in FIGS. 4B and 4C.
  • the projection ring 36 When the projection ring 36 is laminated, the projection ring 36 is laminated so that the positions of the three blade plates 38 arranged at intervals of 120 degrees are shifted in the clockwise direction as shown in FIG.
  • illustration of the rotating rings 34 ⁇ / b> A and 34 ⁇ / b> B to be stacked is omitted.
  • the protrusion ring 36B is laminated on the protrusion ring 36A shown in the lowermost part of FIG. 5 via rotating rings 34A and 34B (not shown). With respect to the protrusion 38 of the protrusion ring 36A, the protrusion 38 of the protrusion ring 36B laminated thereon is shifted 20 degrees clockwise.
  • the protrusion ring 36C is laminated on the protrusion ring 36B via rotating rings 34A and 34B (not shown).
  • the protrusion 38 of the protrusion ring 36C laminated thereon is shifted 20 degrees clockwise relative to the protrusion 38 of the protrusion ring 36B.
  • a protrusion ring 36D is laminated on the protrusion ring 36C via rotating rings 34A and 34B (not shown).
  • the protrusion 38 of the protrusion ring 36D laminated thereon is shifted 20 degrees clockwise relative to the protrusion 38 of the protrusion ring 36C.
  • a protrusion ring 36E is stacked on the protrusion ring 36D via rotating rings 34A and 34B (not shown).
  • the protrusion 38 of the protrusion ring 36E stacked on the protrusion 38 of the protrusion ring 36D is shifted 20 degrees clockwise.
  • a protrusion ring 36F is laminated on the protrusion ring 36E via rotating rings 34A and 34B (not shown).
  • the protrusion 38 of the protrusion ring 36F stacked on the protrusion 38 of the protrusion ring 36E is shifted 20 degrees clockwise.
  • the protrusion ring 36A is laminated on the protrusion ring 36F via rotating rings 34A and 34B (not shown). Similarly, the protrusion ring 36B, the protrusion ring 36C, the protrusion ring 36D, the protrusion ring 36E,.
  • FIG. 6 is an enlarged view of a part of FIG. 2, and shows a stacked state of the projection rings 36A to 36F of the rotating ring laminate 32 and the rotating rings 34A and 34B.
  • a projection ring 36A is laminated on the thin rotation ring 34A, a thin rotation ring 34A is laminated on the projection ring 36A, and a projection is formed on the thin rotation ring 34A.
  • the object ring 36B is stacked, the thin rotating ring 34A is stacked on the protrusion ring 36B, the protrusion ring 36C is stacked on the thin rotating ring 34A, and the thin rotating ring 34A is stacked on the protrusion ring 36C.
  • the protrusion ring 36D is stacked on the thin rotation ring 34A
  • the thick rotation ring 34B is stacked on the protrusion ring 36D
  • the protrusion ring 36E is stacked on the thick rotation ring 34B.
  • a thick rotating ring 34B is stacked on 36E
  • a protrusion ring 36F is stacked on the thick rotating ring 34B.
  • Thick rotating ring 34B is deposited on the 6F.
  • the protrusion rings 36A to 36F and the rotating rings 34A and 34B are laminated on the thick rotating ring 34B in the following order.
  • the plurality of protrusions 32b formed by the protrusion rings 36A to 36F of the rotating ring laminated body 32 assembled in this manner are arranged so as to be displaced in a spiral shape when viewed from the side and are positioned in the clockwise direction. 32b is displaced so as to be higher.
  • a plurality of protrusions 32b formed by the protrusion rings 36A to 36F are inclined in one direction with respect to a counterclockwise swirl flow generated by air injected from an injection hole 40d of an injection nozzle 40b described later.
  • the pulverized fine powder rides on a counterclockwise swirling flow like a tornado. Raise.
  • the plurality of protrusions 32b formed by the protrusion rings 36A to 36F of the assembled rotating ring laminate 32 are arranged so as to be spirally shifted when viewed from the side, and A configuration in which the protrusions 32b positioned in the counterclockwise direction are shifted so as to be higher is conceivable.
  • the plurality of protrusions 32b formed by the protrusion rings 36A to 36F are opposite to the present embodiment with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b described later. Tilted.
  • FIG. 7 is a top view of the fixed ring laminate of the jet mill apparatus according to the present embodiment
  • FIG. 8 is a plan view of an injection nozzle ring constituting the fixed ring stack of the jet mill apparatus according to the present embodiment
  • FIG. 9 is a plan view of the protrusion ring constituting the fixing ring laminate of the jet mill apparatus according to the present embodiment
  • FIG. 10 constitutes the protrusion ring of the fixing ring laminate of the jet mill apparatus according to the present embodiment.
  • FIG. 11 is a plan view of a fixing ring, FIG.
  • FIG. 11 is a plan view of a plurality of protrusions constituting the protrusion ring of the fixing ring laminate of the jet mill apparatus according to the present embodiment
  • FIG. 12 is a jet mill apparatus according to the present embodiment
  • FIG. 13 is an explanatory diagram of a laminated structure of protrusion rings of the fixing ring laminate of FIG. It is a sectional view illustrating a stacked state of Okoshibutsu ring.
  • a fixed ring laminated body 40 is provided around the central rotating ring laminated body 32.
  • FIG. 7 is a view of the fixed ring laminate 40 as viewed from above.
  • a plurality of injection nozzles 40b are provided in a donut-shaped ring laminated body 40a.
  • twelve injection nozzles 40b are provided at intervals of about 30 degrees.
  • the plurality of injection nozzles 40 b form an air flow generation unit that generates a swirling air flow in the cavity chamber 31.
  • a plurality of protrusions 40c protrude inward from the donut-shaped ring laminate body 40.
  • 18 protrusions 40c protrude at intervals of about 20 degrees.
  • the plurality of protrusions 40 c are provided on the ring laminate body 40 that functions as a wall portion of the cavity chamber 31.
  • the injection nozzle 40b has, for example, an injection hole 40d having a diameter of 1.0 mm and a length of 20.0 mm.
  • the injection hole 40d of the injection nozzle 40b is inclined to the right by, for example, 30 degrees from a straight line passing through the center of the ring laminated body 40a.
  • the air injected from the injection hole 40d of the injection nozzle 40b generates a counterclockwise swirling flow in the donut-shaped ring laminated body 40a as indicated by an arrow.
  • the inclination of the injection hole 40d of the injection nozzle 40b is preferably within a range of about 15 degrees to about 30 degrees from a straight line passing through the center of the ring laminated body 40a.
  • the protrusion 40c has, for example, a rectangular plate shape with a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm.
  • One long side of the plate shape has a thin blade plate shape.
  • This plate-shaped member protrudes inward by, for example, 30.0 mm.
  • the blades of the protrusions 40c are attached so as to cut the object to be crushed that is rotated by the swirl flow.
  • the fixing ring laminate 40 is formed by appropriately laminating the injection nozzle ring 42 shown in FIG. 8 and the projection ring 50 shown in FIG.
  • the 8 has a plurality of injection nozzles 46 fixed to an injection nozzle ring main body 44.
  • the injection nozzle ring main body 44 has, for example, a donut shape with an outer diameter of 400 mm and an inner diameter of 300 mm, and the thickness is, for example, 30.0 mm.
  • An injection hole 48 is formed in the injection nozzle 46.
  • the injection hole 48 has a diameter of 1.0 mm and a length of 20.0 mm, for example.
  • the injection hole 48 of the injection nozzle 46 is inclined to the right by, for example, 30 degrees from a straight line passing through the center of the injection nozzle ring main body 44.
  • the protrusion ring 50 shown in FIG. 9 is formed by fixing a plurality of protrusions 54 arranged as shown in FIG. 11 by a fixing ring 52 shown in FIG.
  • the fixing ring 52 has a thickness of 10.0 mm, for example.
  • the plurality of protrusions 54 shown in FIG. 11 have, for example, a rectangular plate shape with a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm. One long side of the plate shape has a thin blade plate shape.
  • the plurality of protrusions 54 are arranged as shown in FIG.
  • the blades of the projections 54 are arranged so as to cut the object to be crushed by the swirl flow.
  • the direction of the blade of the protrusion 54 forms an inclination of about 15 degrees with respect to a straight line passing through the center, for example. That is, the protrusion 54 is inclined in the swirl direction of the airflow generated by the airflow generator.
  • the inclination of the blade of the projection 54 is preferably within a range of about 15 degrees to about 30 degrees from a straight line passing through the center of the projection 54.
  • FIG. 12 shows a laminated structure of the protrusion ring of the fixed ring laminated body in the present embodiment.
  • three types of protrusion rings 50 of the fixed ring laminate 40 are prepared so that the pulverized fine powder rises like a tornado on a counterclockwise swirl flow, and these three types of The method of stacking the protrusion ring 50 is devised.
  • FIGS. 12A, 12B, and 12C three types of protrusion rings 50A to 50C are prepared as the protrusion rings 50 constituting the fixing ring laminate 40.
  • FIG. 12A, 12B, and 12C three types of protrusion rings 50A to 50C are prepared as the protrusion rings 50 constituting the fixing ring laminate 40.
  • the protrusion rings 50A to 50C are each provided with 18 protrusions 54 at equal intervals.
  • the mounting positions of the eighteen projections 54 with respect to the positions of the fixing holes 50a of the projection ring 50 are different.
  • the protrusion ring 50B of FIG. 12B is overlaid on the protrusion ring 50A of FIG. 12A (see the enlarged view of FIG. 12B).
  • the protrusion ring 50C of FIG. 12C is overlaid on the protrusion ring 50B of FIG. 12B (see the enlarged view of FIG. 12C).
  • the protrusion ring 50 of FIG. 12A is overlaid on the protrusion ring 50C of FIG.
  • the protrusion ring 50B of FIG. Z (b) is overlaid on the protrusion ring 50A of FIG. 12 (a).
  • the three types of protrusion rings 50A to 50C are sequentially overlapped.
  • FIG. 13 is an enlarged view of a part of FIG. 2, and shows a stacked state of the injection nozzle ring 42 of the fixed ring stacked body 49 and the projection rings 50A to 50C.
  • a projection ring 50A is laminated on the injection nozzle ring 42, a projection ring 50B is laminated on the projection ring 50A, and a projection is formed on the projection ring 50B.
  • the projection ring 50C is laminated, the projection ring 50A is laminated on the projection ring 50C, the projection ring 36B is laminated on the projection ring 50A, and the injection nozzle ring 42 is laminated on the projection ring 50D. Is done.
  • the projection rings 50A to 50C and the injection nozzle ring 42 are laminated on the injection nozzle ring 42 in the following order.
  • the protrusions 54 of the protrusion rings 50A to 50C are viewed from the side, the protrusions 54 become counterclockwise as the height increases. It is displaced in the direction.
  • the plurality of protrusions 54 of the protrusion rings 50A to 50C are inclined in one direction with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b.
  • the pulverized fine powder on the swirling flow swirling counterclockwise is raised like a tornado.
  • the pulverized fine powder accumulates in the lower portion of the cavity chamber 31 without the action of raising or lowering the pulverized fine powder on the swirling flow swirling counterclockwise. .
  • the projections 54 of the projection rings 50A to 50C are projected as the height increases when viewed from the side.
  • a configuration in which the object 54 is shifted in the clockwise direction is conceivable.
  • the plurality of protrusions 54 of the protrusion rings 50A to 50C are inclined in the opposite direction to the present embodiment with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b. Yes.
  • FIGS. 14 and 15 are views of the pulverizing unit of the jet mill apparatus according to the present embodiment as viewed from above.
  • FIG. 14 is a view of the pulverizing unit 30 in which the fixed ring laminated body 40 is provided around the central rotating ring laminated body 32 in the hollow chamber 31 of the pulverizing unit 30 as viewed from above.
  • the swirling flow indicated by the arrows by the plurality of injection nozzles 40b provided in the fixed ring laminate 40 is a region where the protrusion 32b of the rotating ring laminate 32 and the protrusion 40c of the fixed ring laminate 40 overlap in plan view.
  • FIG. 15 is a view of the pulverizing unit 30 provided with the fixed ring laminated body 40 around the central rotating ring laminated body 32 in the hollow chamber 31 of the pulverizing unit 30 as seen from above, as in FIG. 14.
  • illustration of the injection nozzle 40b provided in the fixed ring laminated body 40 is abbreviate
  • a thin rotating ring 34A, a thick rotating ring 34B, and a protrusion ring 36 are appropriately stacked to form a rotating ring laminate 32, and an injection nozzle ring 42, a protrusion ring 50,
  • the fixing ring laminated body 40 is formed by appropriately laminating the above.
  • the rotating ring laminate 32 and the fixed ring laminate 40 are configured to have the following relationship.
  • protrusions 32b of the rotating ring laminated body 32 are laminated from the lowermost part of the hollow chamber 31 of the grinding part 30, and one layer of the injection nozzle 40b of the fixed ring laminated body 40 is laminated at a corresponding position. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 32b and is pulverized.
  • protrusions 32b of the rotating ring laminate 32 are laminated, and one layer of the injection nozzle 40b of the fixed ring laminate 40 is laminated at a corresponding position.
  • the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 32b and is pulverized (see the enlarged view of the part A).
  • protrusions 32b of the rotating ring laminated body 32 are laminated, and five layers of protrusions 40c of the fixed ring laminated body 40 are laminated at corresponding positions.
  • Five layers of protrusions 40 c of the fixing ring stack 40 are inserted into the space between the six layers of protrusions 32 b of the rotating ring stack 32. In this region, the object to be crushed on the swirl flow is crushed so as to be sandwiched between the protrusion 32b and the protrusion 40c and cut.
  • the rotating ring laminated body 32 does not exist in the position corresponding to it. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 40c and is pulverized.
  • an input / output unit 60 is provided on the pulverization unit 30 to input a material to be pulverized into a cavity chamber 31 of the pulverization unit 30 and output the pulverized fine powder from the cavity chamber 31 of the pulverization unit 30. Is provided.
  • the input / output unit 60 is provided with a raw material input pipe 62 for supplying a material to be crushed into the hollow chamber 31 of the pulverization unit 30 and a fine powder discharge port 64 for discharging the pulverized fine powder. .
  • the raw material input pipe 62 is provided in the fine powder discharge port 64.
  • the mesh part 66 is provided in the connection part with the hollow chamber 31 of the grinding
  • FIG. The mesh portion 66 is formed with a predetermined density. Thereby, the fine powder pulverized to a predetermined density or less can be taken out.
  • a compressor (not shown) that generates compressed air is operated, and the compressed air in the compressed air tank 22 is sent through the compressed air connection port 24.
  • the compressed air is sent to the pulverizing unit 30 via the compressed air feed pipe 26, and is ejected from a plurality of injection nozzles 40 b provided in the fixed ring laminated body 40 to generate an air flow that swirls in the cavity chamber 31.
  • the drive motor 28 for rotation of the base unit 20 is driven to rotate the rotating ring laminated body 32 in the crushing unit 30 at a high speed.
  • the plurality of protrusions 32b of the rotating ring laminate 32 intersect with the plurality of protrusions 40c of the fixed ring laminate 40 at high speed.
  • the material to be crushed is charged into the hollow chamber 31 of the pulverizing unit 30 from the raw material input pipe 62 of the input / output unit 60.
  • the charged material to be crushed swirls in the hollow chamber 31 along the swirl flow formed in the hollow chamber 31.
  • the swirling object to be swirled is cut and cut by a plurality of protrusions 32b and a plurality of protrusions 40c that intersect at high speed, and is pulverized into fine powder.
  • the pulverized fine powder swirls at a high speed in the hollow chamber 31 along the swirling flow and rises in the hollow chamber 31 like a tornado.
  • fine powder that is smaller than the density of the mesh portion 66 provided at the connection portion with the hollow chamber 31 passes through the mesh portion 66 and is discharged to the outside from the fine powder discharge port 64. And collected as a fine powder as a product.
  • the new fine pulverization processing technology by the jet mill apparatus of the present embodiment is based on the concept of “shaving” rather than the concept of “pulverization”.
  • a cylinder having a jet nozzle for injecting compressed air and a projection having a predetermined shape in a container and having a ring in which a large number of spray nozzles are arranged and a ring to which the projection having a predetermined shape is fixed is layered.
  • the injection nozzles having the same angle with respect to the center are arranged concentrically.
  • a plurality of protrusions are arranged and fixed concentrically on the protrusion ring.
  • a strong tornado-like swirling flow is generated in the cylinder by injecting compressed air from a plurality of injection nozzles.
  • the object to be crushed takes a swirling flow and becomes a tornado-like high-speed floating substance.
  • the to-be-pulverized object to be crushed as a tornado-like high-speed floating object is finely cut by colliding with and contacting with many specially-shaped protrusions. At that time, the generated shearing heat and frictional heat are taken away by the swirling flow and discharged. For this reason, the protrusions and the cut resin particles can be kept at normal temperature and become fine particles.
  • thermoplastic resin which has been impossible until now.
  • the characteristics of the jet mill apparatus according to this embodiment are listed as follows. (1) It has a plurality of injection nozzles and special protrusions in a cylindrical shape. (2) Compressed air is injected from the injection nozzle, and a strong tornado-like swirl flow is generated. (3) The object to be crushed turns at high speed like a tornado. (4) The object to be crushed that has swung at high speed is cut by colliding with and contacting a specially shaped protrusion. (5) A mesh is installed on the upper part of the cylindrical main body, floats in a swirling flow until it reaches a specified particle diameter, and is repeatedly cut. (6) Shear heat and frictional heat can be discharged by the swirling flow and kept at room temperature.
  • the protrusion having a special shape has a clearance of 2.5 mm or more, so that the object to be crushed can smoothly float in a tornado shape.
  • the protrusion having a special shape has a clearance of 2.5 mm or more, so that the object to be crushed can smoothly float in a tornado shape.
  • finer particles can be achieved and the production efficiency can be improved.
  • the resin particle diameter can be reduced to 10 ⁇ m or less.
  • the pulverization part of the present embodiment is cylindrical, other shapes such as a spherical shape, a hemispherical shape, a conical shape, and a spindle shape may be used.
  • the number of injection nozzles, the installation position, the installation angle, the number of protrusions, the installation position, the installation angle, the number of stacks of various laminates, and the like of the present embodiment are not limited to the examples described in the present embodiment.
  • Injection nozzle ring body 46 ... Injection nozzle 48 ... Injection hole 50 . Projection rings 50A to 50C ... Projection Object ring 52 ... fixing ring 54 ... projection 60 ; input / output part 62 ... raw material input pipe 64 ... fine powder outlet 66 ... mesh part
  • the present invention can be used in the field of pulverizing an object to be pulverized to produce a fine powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

The invention pertains to a jet mill device that mills an object to be milled into a fine powder. The jet mill device has: a hollow chamber for milling the object to be milled into a fine powder; an air flow generating unit that generates an air flow to circulate inside the hollow chamber; a plurality of first projections that are provided in the hollow chamber; and a plurality of second projections that are provided in the hollow chamber, that face the plurality of first projections, and that move relative to the plurality of first projections. The object to be milled placed in the hollow chamber is circulated by the air flow generated by the air flow generating unit and is made into a fine powder by the plurality of first projections and the plurality of second projections.

Description

ジェットミル装置Jet mill equipment
 本発明は被粉砕物を微粉体に粉砕するジェットミル装置に関する。 The present invention relates to a jet mill apparatus for pulverizing an object to be crushed into fine powder.
 従来のジェットミル装置として、空洞室の内壁側面にリング状に埋設された複数のジェットノズルを有し、該ノズルから噴射された高圧気体により生ずる高速旋回流を用いて、空洞室内に抽入された被粉砕物を微小粒子に粉砕するジェットミル装置であって、空洞室の天井面の略中央部に鉛直上方向に向かう同心状の同軸円筒を設け、該同軸円筒の内筒部に生ずる負圧を利用して被粉砕物を空洞室内に抽入し、かつ該同軸円筒の外筒部に生ずる正圧を利用して空洞室内から粉砕された微小粒子を抽出するジェットミル装置が知られている(特許文献1参照)。 As a conventional jet mill device, it has a plurality of jet nozzles embedded in a ring shape on the inner wall side surface of the cavity chamber, and is drawn into the cavity chamber using a high-speed swirling flow generated by high-pressure gas injected from the nozzle. A jet mill apparatus for pulverizing the object to be crushed into fine particles, wherein a concentric coaxial cylinder directed vertically upward is provided at a substantially central portion of the ceiling surface of the cavity chamber, and a negative generated in the inner cylinder portion of the coaxial cylinder. There is known a jet mill apparatus that draws an object to be crushed into a hollow chamber using pressure and extracts pulverized fine particles from the hollow chamber using positive pressure generated in the outer cylindrical portion of the coaxial cylinder. (See Patent Document 1).
 また、従来のジェットミル装置として、反応装置内の混合物を燃焼合成法により反応させる工程と、反応後の粗生成物を粉砕する粉砕工程とを備えてなり、上記粉砕工程が粉砕ノズルより噴出させて形成されるジェット気流によって粗生成物を加速して、該加速された粗生成物同士の衝突や摩砕により、または衝突板に加速された粗生成物を衝突させることにより、粉砕を進行させるジェットミル装置が知られている(特許文献2参照)。 In addition, as a conventional jet mill device, it comprises a step of reacting the mixture in the reactor by a combustion synthesis method and a pulverization step of pulverizing the crude product after the reaction, and the pulverization step is ejected from a pulverization nozzle. The crude product is accelerated by the jet stream formed in this manner, and the pulverization is advanced by collision or grinding of the accelerated crude products or by colliding the accelerated crude product with the collision plate. A jet mill apparatus is known (see Patent Document 2).
特開2014-200721号公報JP 2014-200721 A 特開2007-054799号公報JP 2007-054799 A
 しかしながら、従来のジェットミル装置では、十分に微細な微粉体を短時間で効率よく得ることが困難であった。 However, with the conventional jet mill apparatus, it has been difficult to efficiently obtain a sufficiently fine fine powder in a short time.
 本発明の目的は、十分に微細な微粉体を短時間で効率よく得ることが可能なジェットミル装置を提供することにある。 An object of the present invention is to provide a jet mill apparatus capable of efficiently obtaining a sufficiently fine fine powder in a short time.
 本発明の一態様によるジェットミル装置は、被粉砕物を微粉体に粉砕するための空洞室と、前記空洞室内に旋回する空気流を生成する空気流生成部と、前記空洞室内に設けられた複数の第1の突起物と、前記空洞室内に設けられ、前記複数の第1の突起物に対向し、前記複数の第1の突起物に対して相対的に移動する複数の第2の突起物とを有し、前記空洞室内に入力された前記被粉砕物が、前記空気流生成部により生成された空気流により旋回され、前記複数の第1の突起物及び前記複数の第2の突起物により切断され削られて微粉体に粉砕されることを特徴とする。 A jet mill apparatus according to an aspect of the present invention is provided with a hollow chamber for pulverizing an object to be pulverized into a fine powder, an air flow generating unit that generates a swirling air flow in the hollow chamber, and the hollow chamber. A plurality of first protrusions and a plurality of second protrusions provided in the hollow chamber, facing the plurality of first protrusions and moving relative to the plurality of first protrusions. The object to be crushed inputted into the hollow chamber is swirled by the air flow generated by the air flow generation unit, and the plurality of first protrusions and the plurality of second protrusions It is characterized by being cut by an object, shaved and pulverized into a fine powder.
 上述したジェットミル装置において、前記複数の第1の突起物は、前記空洞室内に固定され、前記複数の第2の突起物は、前記空洞室内で移動するようにしてもよい。 In the jet mill apparatus described above, the plurality of first protrusions may be fixed in the cavity chamber, and the plurality of second protrusions may move in the cavity chamber.
 上述したジェットミル装置において、前記複数の第1の突起物は、前記空洞室の壁部に固定され、前記空洞室の内側に向かって突出し、前記複数の第2の突起物は、前記空洞室の中央に設けられた回転体に固定され、前記空洞室の外側に向かって突出し、前記回転体を回転させることにより、前記複数の第2の突起物を前記複数の第1の突起物に対して相対的に移動させるようにしてもよい。 In the jet mill apparatus described above, the plurality of first protrusions are fixed to a wall portion of the cavity chamber and protrude toward the inside of the cavity chamber, and the plurality of second protrusions are the cavity chamber. The plurality of second protrusions are fixed to the plurality of first protrusions by being fixed to a rotating body provided at the center of the first and projecting toward the outside of the hollow chamber and rotating the rotating body. May be moved relatively.
 上述したジェットミル装置において、前記複数の第1の突起物は、前記空気流生成部が生成する空気流に乗って旋回する微粉体を上昇させるように、前記空気流生成部が生成する空気流の旋回方向に対して傾斜して配置されており、前記複数の第2の突起物は、前記空気流生成部が生成する空気流に乗って旋回する微粉体を上昇させるように、前記空気流生成部が生成する空気流の旋回方向に対して傾斜して配置されようにしてもよい。 In the jet mill apparatus described above, the plurality of first protrusions may generate an air flow generated by the air flow generation unit so as to raise fine powder swirl on the air flow generated by the air flow generation unit. The plurality of second protrusions are arranged to be inclined with respect to the swirling direction of the air flow so as to raise the fine powder swirling on the air flow generated by the air flow generating unit. You may make it arrange | position incline with respect to the turning direction of the airflow which a production | generation part produces | generates.
 上述したジェットミル装置において、前記空気流生成部は、前記空洞室の壁部に固定され、旋回方向に空気流を噴射する複数の噴射ノズルを有し、前記複数の噴射ノズルが設けられた前記空洞室の領域には、前記複数の第2の突起物のみ設けられているようにしてもよい。 In the jet mill apparatus described above, the air flow generation unit includes a plurality of injection nozzles that are fixed to a wall portion of the cavity chamber and inject an air flow in a swirl direction, and the plurality of injection nozzles are provided. Only the plurality of second protrusions may be provided in the region of the hollow chamber.
 上述したジェットミル装置において、前記複数の第1の突起物及び/又は前記複数の第2の突起物は、相対的に移動する方向に向かって薄くなっているようにしてもよい。 In the jet mill apparatus described above, the plurality of first protrusions and / or the plurality of second protrusions may be made thinner in a direction of relative movement.
 本発明の一態様による粉砕方法は、被粉砕物を微粉体に粉砕する粉砕方法であって、前記被粉砕物を粉砕するための空洞室内に旋回する空気流を生成し、前記空洞室内に入力された前記被粉砕物を空気流により旋回させ、複数の第1の突起物と、前記複数の第1の突起物に対向し前記複数の第1の突起物に対して相対的に移動する複数の第2の突起物とにより、空気流により旋回された前記被粉砕物を切断し削ることにより微粉体に粉砕することを特徴とする。 A pulverization method according to an aspect of the present invention is a pulverization method for pulverizing an object to be pulverized into a fine powder, generating a swirling air flow in the cavity chamber for pulverizing the object to be pulverized, and inputting the air flow into the cavity chamber A plurality of first protrusions, a plurality of first protrusions, and a plurality of first protrusions that move relative to the plurality of first protrusions. The second protrusion is characterized in that it is pulverized into a fine powder by cutting and scraping the object to be crushed by the air flow.
 上述した粉砕方法において、前記空気流の旋回方向に対して傾斜して配置された前記複数の第1の突起物により、前記空気流に乗って旋回する微粉体を上昇させ、前記空気流の旋回方向に対して傾斜して配置された前記複数の第2の突起物により、前記空気流に乗って旋回する微粉体を上昇させるようにしてもよい。 In the pulverization method described above, the plurality of first protrusions arranged to be inclined with respect to the swirl direction of the air flow raises the fine powder swirling on the air flow, and swirls the air flow. You may make it raise the fine powder swirled on the said airflow by the said several 2nd protrusion arrange | positioned inclined with respect to the direction.
 以上の通り、本発明によれば、被粉砕物を微粉体に粉砕するための空洞室と、前記空洞室内に旋回する空気流を生成する空気流生成部と、前記空洞室内に設けられた複数の第1の突起物と、前記空洞室内に設けられ、前記複数の第1の突起物に対向し、前記複数の第1の突起物に対して相対的に移動する複数の第2の突起物とを有し、前記空洞室内に入力された前記被粉砕物が、前記空気流生成部により生成された空気流により旋回され、前記複数の第1の突起物及び前記複数の第2の突起物により切断され削られて微粉体に粉砕されるようにしたので、十分に微細な微粉体を短時間で効率よく得ることができる。 As described above, according to the present invention, a hollow chamber for pulverizing an object to be pulverized, an air flow generating unit that generates a swirling air flow in the hollow chamber, and a plurality of provided in the hollow chamber First projections and a plurality of second projections provided in the hollow chamber, facing the plurality of first projections and moving relative to the plurality of first projections The object to be crushed inputted into the hollow chamber is swirled by the air flow generated by the air flow generation unit, and the plurality of first protrusions and the plurality of second protrusions Since it is cut and ground by pulverization into a fine powder, a sufficiently fine fine powder can be obtained efficiently in a short time.
本発明の一実施形態によるジェットミル装置の外観を示す図である。It is a figure which shows the external appearance of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の断面図である。It is sectional drawing of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の回転リング積層体を上方から見た図である。It is the figure which looked at the rotating ring laminated body of the jet mill apparatus by one Embodiment of this invention from the upper direction. 本発明の一実施形態によるジェットミル装置の回転リング積層体を構成する突起物リングと回転リングの斜視図である。It is a perspective view of the protrusion ring and rotation ring which comprise the rotation ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の回転リング積層体を構成する突起物リングの積層状態を示す斜視図である。It is a perspective view which shows the lamination | stacking state of the protrusion ring which comprises the rotating ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の回転リング積層体の突起物リングと回転リングの積層状態を示す断面図である。It is sectional drawing which shows the lamination | stacking state of the protrusion ring and rotation ring of the rotation ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体を上方から見た図である。It is the figure which looked at the fixed ring laminated body of the jet mill apparatus by one Embodiment of this invention from upper direction. 本発明の一実施形態によるジェットミル装置の固定リング積層体を構成する噴射ノズルリングの平面図である。It is a top view of the injection nozzle ring which comprises the fixed ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体を構成する突起物リングの平面図である。It is a top view of the protrusion ring which comprises the fixed ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体の突起物リングを構成する固定リングの平面図である。It is a top view of the fixing ring which comprises the protrusion ring of the fixing ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体の突起物リングを構成する複数の突起物の平面図である。It is a top view of the some protrusion which comprises the protrusion ring of the fixing ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体の突起物リングの積層構造の説明図である。It is explanatory drawing of the laminated structure of the protrusion ring of the fixed ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の固定リング積層体の噴射ノズルリングと突起物リングの積層状態を示す断面図である。It is sectional drawing which shows the lamination | stacking state of the injection nozzle ring and projection ring of the fixed ring laminated body of the jet mill apparatus by one Embodiment of this invention. 本発明の一実施形態によるジェットミル装置の粉砕部を上方から見た図(その1)である。It is the figure (the 1) which looked at the grinding | pulverization part of the jet mill apparatus by one Embodiment of this invention from upper direction. 本発明の一実施形態によるジェットミル装置の粉砕部を上方から見た図(その2)である。It is the figure (the 2) which looked at the grinding | pulverization part of the jet mill apparatus by one Embodiment of this invention from upper direction.
 [提案されている粉砕方法]
 被粉砕物を粉砕する方法として次のようなものが提案されている。
[Proposed grinding method]
The following has been proposed as a method for pulverizing the object to be crushed.
 まず考えられるのは、一般的な粉砕機を用いる方法である。一般的な粉砕機とは、固定歯と回転歯を有し、回転歯のモーメントを利用し、両刃に挟まれた樹脂を切断するものである。例えば、固定歯と回転歯のクリアランスが0.01mm程度のものがある。 First of all, a method using a general grinder is conceivable. A general pulverizer has fixed teeth and rotating teeth, and uses the moment of the rotating teeth to cut the resin sandwiched between the two blades. For example, there is one having a clearance between a fixed tooth and a rotating tooth of about 0.01 mm.
 このような一般的な粉砕機は2mm真角以上に粉砕する事に適している。更に細かく粉砕しようとしても、樹脂粉砕時の剪断発熱により樹脂及び刃物が高温化し、樹脂が溶け切断された物が再び接着してしまい、微粉体のように細かく粉砕することは困難である。 Such a general crusher is suitable for crushing to 2 mm or more. Even when trying to pulverize more finely, the resin and the blade are heated to high temperatures due to shearing heat generated during the resin pulverization, and the resin is melted and cut again, so that it is difficult to pulverize like a fine powder.
 次に考えられるのは、被粉砕物を冷凍してボールミル等を用いて粉砕する方法である。ボールミルによる方法では、円筒形の密閉された一定容器内に金属もしくはセラミックの球を有し、上下に大きく振動する事によりボールが自由運動し、その衝撃により被粉砕物を粉砕する。この方法では、液化窒素を使用し被粉砕物を冷凍させてその弾性力を極力下げた上で、ボールミル等を使用し、金属球の衝突エネルギーにより被粉砕物を粉砕する。 The next possible method is to freeze the material to be ground and grind it using a ball mill or the like. In the ball mill method, a metal or ceramic ball is held in a cylindrical, sealed fixed container, and the ball freely moves by vibrating up and down, and the object to be ground is pulverized by the impact. In this method, liquefied nitrogen is used to freeze the object to be crushed and its elastic force is lowered as much as possible, and then a ball mill or the like is used to grind the object to be crushed by the collision energy of metal balls.
 このような方法により粉砕物を得ることはできるものの、被粉砕物を冷凍する必要があるため生産性が悪く、コスト高となる。また、粉砕物の粒度分布が広く、500μm程度の粒子が多数存在してり、微粉体とはいい難い。 Although a pulverized product can be obtained by such a method, it is necessary to freeze the material to be pulverized, resulting in poor productivity and high cost. Further, the particle size distribution of the pulverized product is wide, and a large number of particles having a size of about 500 μm are present.
 これら粉砕物に対して同じ工程を繰り返すことにより微粉化が可能ではあるが、10μm以下の微粉体にするには同じ工程を何度も繰り返す必要がありコストと効率の点で現実的でない。したがって、この粉砕方法では、20μm~500μm程度の粒度分布を持つ微粉体が限界とされている。 These powders can be pulverized by repeating the same process, but it is not practical in terms of cost and efficiency because the same process must be repeated many times in order to obtain a fine powder of 10 μm or less. Therefore, this pulverization method is limited to fine powder having a particle size distribution of about 20 μm to 500 μm.
 そこで、本願発明者は、粉砕方法について鋭意研究の結果、十分に微細な微粉体を短時間で効率よく得ることが可能な粉砕方法を考案するに至った。 Therefore, as a result of earnest research on the grinding method, the present inventor has come up with a grinding method capable of efficiently obtaining a sufficiently fine fine powder in a short time.
 [一実施形態]
 本発明の一実施形態によるジェットミル装置について図1乃至図15を用いて説明する。
[One Embodiment]
A jet mill apparatus according to an embodiment of the present invention will be described with reference to FIGS.
 (ジェットミル装置の構成)
 本実施形態によるジェットミル装置の構成の概略について図1及び図2を用いて説明する。図1は本実施形態によるジェットミル装置の外観写真であり、図2は本実施形態によるジェットミル装置の断面図である。
(Configuration of jet mill equipment)
An outline of the configuration of the jet mill apparatus according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a photograph of the appearance of a jet mill apparatus according to this embodiment, and FIG. 2 is a cross-sectional view of the jet mill apparatus according to this embodiment.
 本実施形態のジェットミル装置10は、直方体の基台部20と、基台部20上に設けられ、被粉砕物を微粉体に粉砕する円筒形の粉砕部30と、粉砕部30上に設けられ、粉砕部30に被粉砕物を入力し、粉砕された微粉体を粉砕部30から出力する入出力部60とから構成されている。 The jet mill device 10 of the present embodiment is provided on a rectangular parallelepiped base 20, a cylindrical pulverization unit 30 that pulverizes a material to be crushed into fine powder, and a pulverization unit 30. The input / output unit 60 is configured to input an object to be pulverized into the pulverizing unit 30 and output the pulverized fine powder from the pulverizing unit 30.
 粉砕部30内には、被粉砕物の粉砕処理が行われる空洞室31が設けられている。入出力部60は、粉砕部30の空洞室31に被粉砕物を入力し、粉砕された微粉体を粉砕部30の空洞室31から出力する。 In the pulverization unit 30, a hollow chamber 31 is provided in which the pulverized material is pulverized. The input / output unit 60 inputs the material to be crushed into the hollow chamber 31 of the pulverizing unit 30 and outputs the pulverized fine powder from the hollow chamber 31 of the pulverizing unit 30.
 (基台部)
 本実施形態によるジェットミル装置の基台部について図2を用いて説明する。
(Base)
The base part of the jet mill apparatus according to the present embodiment will be described with reference to FIG.
 基台部20の下部には、粉砕部30の空洞室31に圧縮空気を送りこむ圧縮空気タンク22が設けられている。圧縮空気タンク22の下部中央には圧縮空気接続口24が形成されている。圧縮空気接続口24には、圧縮空気を生成するコンプレッサー(図示せず)が接続されている。基台部20の圧縮空気タンク22と粉砕部30の空洞室31とを接続する複数の圧縮空気送り配管26が設けられている。図1では、圧縮空気送り配管26の図示を省略している。 A compressed air tank 22 for sending compressed air to the hollow chamber 31 of the pulverizing unit 30 is provided at the lower part of the base unit 20. A compressed air connection port 24 is formed in the lower center of the compressed air tank 22. A compressor (not shown) that generates compressed air is connected to the compressed air connection port 24. A plurality of compressed air feed pipes 26 that connect the compressed air tank 22 of the base unit 20 and the hollow chamber 31 of the crushing unit 30 are provided. In FIG. 1, illustration of the compressed air feed pipe 26 is omitted.
 コンプレッサー(図示せず)により生成された圧縮空気は、圧縮空気接続口24から圧縮空気タンク22に送られ、圧縮空気送り配管26により粉砕部30の空洞室31に送られる。 Compressed air generated by a compressor (not shown) is sent from the compressed air connection port 24 to the compressed air tank 22, and is sent to the cavity chamber 31 of the pulverization unit 30 by the compressed air feed pipe 26.
 基台部20の上部には回転用駆動モータ28が設けられている。回転用駆動モータ28は、後述する粉砕部30の回転リング積層体32を回転させる。 A rotation drive motor 28 is provided on the upper portion of the base 20. The drive motor for rotation 28 rotates the rotating ring laminated body 32 of the crushing unit 30 described later.
 (粉砕部:回転リング積層体)
 本実施形態によるジェットミル装置の回転リング積層体について図3乃至図6を用いて説明する。図3は本実施形態によるジェットミル装置の回転リング積層体を上方から見た図であり、図4は本実施形態によるジェットミル装置の回転リング積層体を構成する突起物リングと回転リングの斜視図であり、図5は本実施形態によるジェットミル装置の回転リング積層体を構成する突起物リングの積層状態を示す斜視図であり、図6は本実施形態によるジェットミル装置の回転リング積層体の突起物リングと回転リングの積層状態を示す断面図である。
(Crushing part: rotating ring laminate)
The rotating ring laminated body of the jet mill apparatus according to the present embodiment will be described with reference to FIGS. FIG. 3 is a top view of the rotating ring laminate of the jet mill apparatus according to this embodiment, and FIG. 4 is a perspective view of the protrusion ring and the rotating ring constituting the rotating ring laminate of the jet mill apparatus according to this embodiment. FIG. 5 is a perspective view showing a stacking state of protrusion rings constituting the rotating ring laminate of the jet mill apparatus according to the present embodiment, and FIG. 6 is a rotating ring laminate of the jet mill apparatus according to the present embodiment. It is sectional drawing which shows the lamination | stacking state of this protrusion ring and a rotation ring.
 粉砕部30の空洞室31の中央に回転リング積層体32が設けられている。 A rotating ring laminate 32 is provided at the center of the hollow chamber 31 of the grinding unit 30.
 図3は、回転リング積層体32を上方から見た図である。中央のリング積層体本体32aから、複数の突起物32bが外方に突出している。例えば、図3では複数の突起物36bが約20度間隔で設けられている。 FIG. 3 is a view of the rotating ring laminate 32 as viewed from above. A plurality of protrusions 32b protrude outward from the central ring laminate body 32a. For example, in FIG. 3, a plurality of protrusions 36b are provided at intervals of about 20 degrees.
 突起物32bは、例えば、幅5.0mm、長さ50.0mm、厚さ1.0mmの長方形の板形状である。板形状の一方の長辺が薄い刃板形状をしている。この板形状の部材が、例えば、30.0mmだけ外方に突出している。回転リング積層体32は図3の矢印の方向に回転する。突起物32bの刃は、この回転により、被粉砕物を切断する向きとなるように取り付けられる。 The protrusion 32b has, for example, a rectangular plate shape having a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm. One long side of the plate shape has a thin blade plate shape. This plate-shaped member protrudes outward by, for example, 30.0 mm. The rotating ring laminate 32 rotates in the direction of the arrow in FIG. The blades of the protrusions 32b are attached so as to be in the direction of cutting the object to be crushed by this rotation.
 回転リング積層体32は、図4(a)に示す突起物リング36と、図4(b)、(c)に示す回転リング34A、34Bのいずれかを交互に積層して形成されている。 The rotating ring laminate 32 is formed by alternately stacking the protrusion ring 36 shown in FIG. 4A and the rotating rings 34A and 34B shown in FIGS. 4B and 4C.
 図4(a)に示す突起物リング36は、中央に、回転用駆動モータ28の回転軸が貫通する領域を設ける。突起物リング36の中央から複数の刃板38が放射状に配置されている。後述する回転リング34A、34Bで挟むことにより、突起物32bの配置を固定している。回転リング34から突出した複数の刃板38の部分が突起物32bとなる。図4(a)では3個の刃板38が約120度間隔で設けられている。 The protrusion ring 36 shown in FIG. 4 (a) is provided with a region through which the rotation shaft of the rotation drive motor 28 passes in the center. A plurality of blade plates 38 are arranged radially from the center of the projection ring 36. The arrangement of the protrusions 32b is fixed by being sandwiched between rotating rings 34A and 34B described later. The portions of the plurality of blade plates 38 protruding from the rotating ring 34 become protrusions 32b. In FIG. 4A, three blade plates 38 are provided at intervals of about 120 degrees.
 各刃板38は、板形状の一方の長辺が薄くて刃となる刃板形状をしている。刃板38の刃となる、板形状の薄い一方の長辺は、回転リング積層体32の回転方向である反時計方向を向いている。 Each blade plate 38 has a blade plate shape in which one long side of the plate shape is thin and becomes a blade. One long side of the thin plate shape serving as the blade of the blade plate 38 faces the counterclockwise direction that is the rotation direction of the rotating ring laminated body 32.
 突起物リング36は、例えば、100.0mmの外径で、中央に直径10.0mm程度の回転軸貫通領域が形成されている。突起物リング36は、例えば、厚さが1.0mmである。 The protrusion ring 36 has an outer diameter of, for example, 100.0 mm, and a rotation shaft penetrating region having a diameter of about 10.0 mm is formed at the center. The protrusion ring 36 has a thickness of 1.0 mm, for example.
 図4(b)に示す回転リング34Aは、中央に、回転用駆動モータ28の回転軸が貫通する穴35が形成されている。回転リング34Aは、例えば、40.0mmの外径で、中央に10.0mmの穴35が形成されている。回転リング34Aには、例えば、厚さが5.0mmの薄い回転リングである。 4B is formed with a hole 35 through which the rotation shaft of the rotation drive motor 28 passes. The rotating ring 34A has an outer diameter of 40.0 mm, for example, and a hole 35 of 10.0 mm is formed at the center. The rotating ring 34A is a thin rotating ring having a thickness of 5.0 mm, for example.
 図4(c)に示す回転リング34Bは、中央に、回転用駆動モータ28の回転軸が貫通する穴35が形成されている。回転リング34Bは、例えば、40.0mmの外径で、中央に10.0mmの穴35が形成されている。回転リング34Aには、例えば、厚さが10.0mmの厚い回転リングである。 4C is formed with a hole 35 through which the rotation shaft of the rotation drive motor 28 passes. The rotating ring 34B has an outer diameter of 40.0 mm, for example, and a hole 35 of 10.0 mm is formed at the center. The rotating ring 34A is a thick rotating ring having a thickness of 10.0 mm, for example.
 図5に回転リング積層体32を構成する突起物リング36の積層状態を示す。 FIG. 5 shows a stacked state of the protrusion ring 36 constituting the rotating ring stacked body 32.
 回転リング積層体32は、図4(a)に示す突起物リング36と、図4(b)、(c)に示す回転リング34A、34Bのいずれかを交互に積層して形成されている。 The rotating ring laminate 32 is formed by alternately stacking the protrusion ring 36 shown in FIG. 4A and the rotating rings 34A and 34B shown in FIGS. 4B and 4C.
 突起物リング36を積層する際に、図5に示すように、120度間隔で配置された3個の刃板38の位置が時計方向にずれるように、突起物リング36を積層する。図5の説明図では、積層される回転リング34A、34Bの図示を省略している。 When the projection ring 36 is laminated, the projection ring 36 is laminated so that the positions of the three blade plates 38 arranged at intervals of 120 degrees are shifted in the clockwise direction as shown in FIG. In the explanatory view of FIG. 5, illustration of the rotating rings 34 </ b> A and 34 </ b> B to be stacked is omitted.
 図5の最下部に示された突起物リング36Aの上には回転リング34A、34B(図示せず)を介して突起物リング36Bが積層される。突起物リング36Aの突起物38に対して、その上に積層される突起物リング36Bの突起物38は20度時計方向にずれている。 The protrusion ring 36B is laminated on the protrusion ring 36A shown in the lowermost part of FIG. 5 via rotating rings 34A and 34B (not shown). With respect to the protrusion 38 of the protrusion ring 36A, the protrusion 38 of the protrusion ring 36B laminated thereon is shifted 20 degrees clockwise.
 突起物リング36Bの上には回転リング34A、34B(図示せず)を介して突起物リング36Cが積層される。突起物リング36Bの突起物38に対して、その上に積層される突起物リング36Cの突起物38は20度時計方向にずれている。 The protrusion ring 36C is laminated on the protrusion ring 36B via rotating rings 34A and 34B (not shown). The protrusion 38 of the protrusion ring 36C laminated thereon is shifted 20 degrees clockwise relative to the protrusion 38 of the protrusion ring 36B.
 突起物リング36Cの上には回転リング34A、34B(図示せず)を介して突起物リング36Dが積層される。突起物リング36Cの突起物38に対して、その上に積層される突起物リング36Dの突起物38は20度時計方向にずれている。 A protrusion ring 36D is laminated on the protrusion ring 36C via rotating rings 34A and 34B (not shown). The protrusion 38 of the protrusion ring 36D laminated thereon is shifted 20 degrees clockwise relative to the protrusion 38 of the protrusion ring 36C.
 突起物リング36Dの上には回転リング34A、34B(図示せず)を介して突起物リング36Eが積層される。突起物リング36Dの突起物38に対して、その上に積層される突起物リング36Eの突起物38は20度時計方向にずれている。 A protrusion ring 36E is stacked on the protrusion ring 36D via rotating rings 34A and 34B (not shown). The protrusion 38 of the protrusion ring 36E stacked on the protrusion 38 of the protrusion ring 36D is shifted 20 degrees clockwise.
 突起物リング36Eの上には回転リング34A、34B(図示せず)を介して突起物リング36Fが積層される。突起物リング36Eの突起物38に対して、その上に積層される突起物リング36Fの突起物38は20度時計方向にずれている。 A protrusion ring 36F is laminated on the protrusion ring 36E via rotating rings 34A and 34B (not shown). The protrusion 38 of the protrusion ring 36F stacked on the protrusion 38 of the protrusion ring 36E is shifted 20 degrees clockwise.
 突起物リング36Fの上には回転リング34A、34B(図示せず)を介して突起物リング36Aが積層される。同様にして、突起物リング36B、突起物リング36C、突起物リング36D、突起物リング36E、・・・・と積層される。 The protrusion ring 36A is laminated on the protrusion ring 36F via rotating rings 34A and 34B (not shown). Similarly, the protrusion ring 36B, the protrusion ring 36C, the protrusion ring 36D, the protrusion ring 36E,.
 図6は、図2の一部を拡大した図であり、回転リング積層体32の突起物リング36A~36Fと回転リング34A、34Bの積層状態を示している。 FIG. 6 is an enlarged view of a part of FIG. 2, and shows a stacked state of the projection rings 36A to 36F of the rotating ring laminate 32 and the rotating rings 34A and 34B.
 粉砕部30の空洞室31の最下部から、薄い回転リング34Aの上に突起物リング36Aが積層され、突起物リング36Aの上に薄い回転リング34Aが積層され、薄い回転リング34Aの上に突起物リング36Bが積層され、突起物リング36Bの上に薄い回転リング34Aが積層され、薄い回転リング34Aの上に突起物リング36Cが積層され、突起物リング36Cの上に薄い回転リング34Aが積層され、薄い回転リング34Aの上に突起物リング36Dが積層され、突起物リング36Dの上に厚い回転リング34Bが積層され、厚い回転リング34Bの上に突起物リング36Eが積層され、突起物リング36Eの上に厚い回転リング34Bが積層され、厚い回転リング34Bの上に突起物リング36Fが積層され、突起物リング36Fの上に厚い回転リング34Bが積層される。 From the lowest part of the hollow chamber 31 of the crushing part 30, a projection ring 36A is laminated on the thin rotation ring 34A, a thin rotation ring 34A is laminated on the projection ring 36A, and a projection is formed on the thin rotation ring 34A. The object ring 36B is stacked, the thin rotating ring 34A is stacked on the protrusion ring 36B, the protrusion ring 36C is stacked on the thin rotating ring 34A, and the thin rotating ring 34A is stacked on the protrusion ring 36C. The protrusion ring 36D is stacked on the thin rotation ring 34A, the thick rotation ring 34B is stacked on the protrusion ring 36D, and the protrusion ring 36E is stacked on the thick rotation ring 34B. A thick rotating ring 34B is stacked on 36E, and a protrusion ring 36F is stacked on the thick rotating ring 34B. Thick rotating ring 34B is deposited on the 6F.
 以下、この厚い回転リング34Bの上に、次の順番で、突起物リング36A~36Fと回転リング34A、34Bが積層される。 Hereinafter, the protrusion rings 36A to 36F and the rotating rings 34A and 34B are laminated on the thick rotating ring 34B in the following order.
 突起物リング36A、厚い回転リング34B、突起物リング36B、厚い回転リング34B、突起物リング36C、厚い回転リング34B、突起物リング36D、薄い回転リング34A、突起物リング36E、薄い回転リング34A、突起物リング36F、薄い回転リング34A;突起物リング36A、薄い回転リング34A、突起物リング36B、厚い回転リング34B、突起物リング36C、厚い回転リング34B、突起物リング36D、厚い回転リング34B、突起物リング36E、厚い回転リング34B、突起物リング36F、厚い回転リング34B;突起物リング36A、厚い回転リング34B、突起物リング36B、薄い回転リング34A、突起物リング36C、薄い回転リング34A、突起物リング36D、薄い回転リング34A、突起物リング36E、薄い回転リング34A、突起物リング36F、厚い回転リング34B;突起物リング36A、厚い回転リング34B、突起物リング36B、厚い回転リング34B、突起物リング36C、厚い回転リング34B、突起物リング36D、厚い回転リング34B、突起物リング36E、厚い回転リング34B、突起物リング36F、厚い回転リング34B;突起物リング36A、厚い回転リング34B、突起物リング36B、厚い回転リング34B。 Projection ring 36A, thick rotation ring 34B, projection ring 36B, thick rotation ring 34B, projection ring 36C, thick rotation ring 34B, projection ring 36D, thin rotation ring 34A, projection ring 36E, thin rotation ring 34A, Projection ring 36F, thin rotation ring 34A; projection ring 36A, thin rotation ring 34A, projection ring 36B, thick rotation ring 34B, projection ring 36C, thick rotation ring 34B, projection ring 36D, thick rotation ring 34B, Projection ring 36E, thick rotation ring 34B, projection ring 36F, thick rotation ring 34B; projection ring 36A, thick rotation ring 34B, projection ring 36B, thin rotation ring 34A, projection ring 36C, thin rotation ring 34A, Projection ring 36D, thin rotating ring 4A, projection ring 36E, thin rotation ring 34A, projection ring 36F, thick rotation ring 34B; projection ring 36A, thick rotation ring 34B, projection ring 36B, thick rotation ring 34B, projection ring 36C, thick rotation ring 34B, projection ring 36D, thick rotation ring 34B, projection ring 36E, thick rotation ring 34B, projection ring 36F, thick rotation ring 34B; projection ring 36A, thick rotation ring 34B, projection ring 36B, thick rotation ring 34B.
 このように組み立てられた回転リング積層体32の突起物リング36A~36Fによる複数の突起物32bは、側方から見た場合、螺旋状にずれて配置され、かつ、時計方向に位置する突起物32bの方が高くなるようにずれて配置されている。突起物リング36A~36Fによる複数の突起物32bは、後述する噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して一方向に傾いている。 The plurality of protrusions 32b formed by the protrusion rings 36A to 36F of the rotating ring laminated body 32 assembled in this manner are arranged so as to be displaced in a spiral shape when viewed from the side and are positioned in the clockwise direction. 32b is displaced so as to be higher. A plurality of protrusions 32b formed by the protrusion rings 36A to 36F are inclined in one direction with respect to a counterclockwise swirl flow generated by air injected from an injection hole 40d of an injection nozzle 40b described later.
 本実施形態では、複数の突起物32bが上述したように配置されているので、回転リング積層体32が回転すると、粉砕された微粉体を、反時計回りの旋回流に乗って竜巻のように上昇させる。 In the present embodiment, since the plurality of protrusions 32b are arranged as described above, when the rotating ring laminated body 32 rotates, the pulverized fine powder rides on a counterclockwise swirling flow like a tornado. Raise.
 これに対し、本実施形態の構成と異なり、組み立てられた回転リング積層体32の突起物リング36A~36Fによる複数の突起物32bが、側方から見て同じ位置に配置される構成が考えられる。この構成では、突起物リング36A~36Fによる複数の突起物32bは、後述する噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して傾いていない。 On the other hand, unlike the configuration of the present embodiment, a configuration in which the plurality of protrusions 32b formed by the protrusion rings 36A to 36F of the assembled rotating ring laminate 32 are arranged at the same position when viewed from the side is conceivable. . In this configuration, the plurality of protrusions 32b formed by the protrusion rings 36A to 36F are not inclined with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b described later.
 そのような構成の場合には、回転リング積層体32が回転しても、粉砕された微粉体を上昇させる作用も下降させる作用もなく、粉砕された微粉体は空洞室31の下部に堆積する。 In such a configuration, even if the rotating ring laminated body 32 rotates, the pulverized fine powder accumulates in the lower portion of the cavity chamber 31 without the action of raising or lowering the pulverized fine powder. .
 また、本実施形態の構成と異なり、組み立てられた回転リング積層体32の突起物リング36A~36Fによる複数の突起物32bが、側方から見た場合、螺旋状にずれて配置され、かつ、反時計方向に位置する突起物32bの方が高くなるようにずれて配置される構成が考えられる。突起物リング36A~36Fによる複数の突起物32bは、後述する噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して本実施形態とは逆方向に傾いている。 Further, unlike the configuration of the present embodiment, the plurality of protrusions 32b formed by the protrusion rings 36A to 36F of the assembled rotating ring laminate 32 are arranged so as to be spirally shifted when viewed from the side, and A configuration in which the protrusions 32b positioned in the counterclockwise direction are shifted so as to be higher is conceivable. The plurality of protrusions 32b formed by the protrusion rings 36A to 36F are opposite to the present embodiment with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b described later. Tilted.
 そのような構成の場合には、回転リング積層体32が回転すると、粉砕された微粉体を下降させる作用を奏し、粉砕された微粉体は空洞室31の下部に堆積する。 In such a configuration, when the rotating ring laminate 32 rotates, the pulverized fine powder is lowered, and the pulverized fine powder is deposited in the lower portion of the cavity chamber 31.
 (粉砕部:固定リング積層体)
 本実施形態によるジェットミル装置の固定リング積層体について図7乃至図13を用いて説明する。図7は本実施形態によるジェットミル装置の固定リング積層体を上方から見た図であり、図8は本実施形態によるジェットミル装置の固定リング積層体を構成する噴射ノズルリングの平面図であり、図9は本実施形態によるジェットミル装置の固定リング積層体を構成する突起物リングの平面図であり、図10は本実施形態によるジェットミル装置の固定リング積層体の突起物リングを構成する固定リングの平面図であり、図11は本実施形態によるジェットミル装置の固定リング積層体の突起物リングを構成する複数の突起物の平面図であり、図12は本実施形態によるジェットミル装置の固定リング積層体の突起物リングの積層構造の説明図であり、図13は本実施形態によるジェットミル装置の固定リング積層体の噴射ノズルリングと突起物リングの積層状態を示す断面図である。
(Crushing part: Fixed ring laminate)
The fixing ring laminated body of the jet mill apparatus according to the present embodiment will be described with reference to FIGS. FIG. 7 is a top view of the fixed ring laminate of the jet mill apparatus according to the present embodiment, and FIG. 8 is a plan view of an injection nozzle ring constituting the fixed ring stack of the jet mill apparatus according to the present embodiment. FIG. 9 is a plan view of the protrusion ring constituting the fixing ring laminate of the jet mill apparatus according to the present embodiment, and FIG. 10 constitutes the protrusion ring of the fixing ring laminate of the jet mill apparatus according to the present embodiment. FIG. 11 is a plan view of a fixing ring, FIG. 11 is a plan view of a plurality of protrusions constituting the protrusion ring of the fixing ring laminate of the jet mill apparatus according to the present embodiment, and FIG. 12 is a jet mill apparatus according to the present embodiment. FIG. 13 is an explanatory diagram of a laminated structure of protrusion rings of the fixing ring laminate of FIG. It is a sectional view illustrating a stacked state of Okoshibutsu ring.
 粉砕部30の空洞室31内には、中央の回転リング積層体32の周囲に固定リング積層体40が設けられている。 In the hollow chamber 31 of the pulverizing unit 30, a fixed ring laminated body 40 is provided around the central rotating ring laminated body 32.
 図7は、固定リング積層体40を上方から見た図である。ドーナツ状のリング積層体本体40aに複数の噴射ノズル40bが設けられている。例えば、図7では、12個の噴射ノズル40bが約30度間隔で設けられている。複数の噴射ノズル40bにより、空洞室31内に旋回する空気流を生成する空気流生成部を形成している。 FIG. 7 is a view of the fixed ring laminate 40 as viewed from above. A plurality of injection nozzles 40b are provided in a donut-shaped ring laminated body 40a. For example, in FIG. 7, twelve injection nozzles 40b are provided at intervals of about 30 degrees. The plurality of injection nozzles 40 b form an air flow generation unit that generates a swirling air flow in the cavity chamber 31.
 更に、ドーナツ状のリング積層体本体40から複数個の突起物40cが内方に突出している。例えば、図7では、18個の突起物40cが約20度間隔で突出している。複数個の突起物40cは、空洞室31の壁部として機能するリング積層体本体40に設けられている。 Furthermore, a plurality of protrusions 40c protrude inward from the donut-shaped ring laminate body 40. For example, in FIG. 7, 18 protrusions 40c protrude at intervals of about 20 degrees. The plurality of protrusions 40 c are provided on the ring laminate body 40 that functions as a wall portion of the cavity chamber 31.
 噴射ノズル40bは、例えば、直径1.0mmで、長さ20.0mmの噴射用穴40dが形成されている。噴射ノズル40bの噴射用穴40dは、リング積層体本体40aの中心を通る直線から、例えば、30度だけ右側に傾いている。噴射ノズル40bの噴射用穴40dから噴射された空気は、矢印で示すように、ドーナツ状のリング積層体本体40a内に反時計回りの旋回流を発生させる。 The injection nozzle 40b has, for example, an injection hole 40d having a diameter of 1.0 mm and a length of 20.0 mm. The injection hole 40d of the injection nozzle 40b is inclined to the right by, for example, 30 degrees from a straight line passing through the center of the ring laminated body 40a. The air injected from the injection hole 40d of the injection nozzle 40b generates a counterclockwise swirling flow in the donut-shaped ring laminated body 40a as indicated by an arrow.
 噴射ノズル40bの噴射用穴40dの傾きは、リング積層体本体40aの中心を通る直線から、約15度から約30度の範囲内であることが望ましい。 The inclination of the injection hole 40d of the injection nozzle 40b is preferably within a range of about 15 degrees to about 30 degrees from a straight line passing through the center of the ring laminated body 40a.
 突起物40cは、例えば、幅5.0mm、長さ50.0mm、厚さ1.0mmの長方形の板形状である。板形状の一方の長辺が薄い刃板形状をしている。この板形状の部材が、例えば、30.0mmだけ内方に突出している。突起物40cの刃は、旋回流により回転する被粉砕物を切断する向きとなるように取り付けられる。 The protrusion 40c has, for example, a rectangular plate shape with a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm. One long side of the plate shape has a thin blade plate shape. This plate-shaped member protrudes inward by, for example, 30.0 mm. The blades of the protrusions 40c are attached so as to cut the object to be crushed that is rotated by the swirl flow.
 固定リング積層体40は、図8に示す噴射ノズルリング42と、図9に示す突起物リング50とを適宜積層して形成されている。 The fixing ring laminate 40 is formed by appropriately laminating the injection nozzle ring 42 shown in FIG. 8 and the projection ring 50 shown in FIG.
 図8に示す噴射ノズルリング42は、噴射ノズルリング本体44に複数の噴射ノズル46が固定されている。噴射ノズルリング本体44は、例えば、外径が400mmで、内径が300mmのドーナッツ形状であり、厚さは、例えば、30.0mmである。 8 has a plurality of injection nozzles 46 fixed to an injection nozzle ring main body 44. The injection nozzle ring 42 shown in FIG. The injection nozzle ring main body 44 has, for example, a donut shape with an outer diameter of 400 mm and an inner diameter of 300 mm, and the thickness is, for example, 30.0 mm.
 噴射ノズル46には噴射用穴48が形成されている。噴射用穴48は、例えば、直径1.0mm、長さ20.0mmである。噴射ノズル46の噴射用穴48は、噴射ノズルリング本体44の中心を通る直線から、例えば、30度だけ右側に傾いている。 An injection hole 48 is formed in the injection nozzle 46. The injection hole 48 has a diameter of 1.0 mm and a length of 20.0 mm, for example. The injection hole 48 of the injection nozzle 46 is inclined to the right by, for example, 30 degrees from a straight line passing through the center of the injection nozzle ring main body 44.
 図9に示す突起物リング50は、図10に示す固定リング52により、図11に示すように配置された複数の突起物54を挟んで固定して形成されている。 The protrusion ring 50 shown in FIG. 9 is formed by fixing a plurality of protrusions 54 arranged as shown in FIG. 11 by a fixing ring 52 shown in FIG.
 図10に示す固定リング52は、例えば、外径が400mmで、内径が300mmのドーナツ形状である。固定リング52は、例えば、厚さが10.0mmである。 10 is, for example, a donut shape having an outer diameter of 400 mm and an inner diameter of 300 mm. The fixing ring 52 has a thickness of 10.0 mm, for example.
 図11に示す複数の突起物54は、例えば、幅5.0mm、長さ50.0mm、厚さ1.0mmの長方形の板形状である。板形状の一方の長辺が薄い刃板形状をしている。複数の突起物54は、図11に示すように配置されている。突起物54の刃は、旋回流により回転する被粉砕物を切断する向きとなるように配置されている。図11に示すように、突起物54の刃の方向が、中心を通る直線に対して、例えば、約15度の傾きを形成している。すなわち、突起物54は、空気流生成部が生成する空気流の旋回方向に傾斜している。 The plurality of protrusions 54 shown in FIG. 11 have, for example, a rectangular plate shape with a width of 5.0 mm, a length of 50.0 mm, and a thickness of 1.0 mm. One long side of the plate shape has a thin blade plate shape. The plurality of protrusions 54 are arranged as shown in FIG. The blades of the projections 54 are arranged so as to cut the object to be crushed by the swirl flow. As shown in FIG. 11, the direction of the blade of the protrusion 54 forms an inclination of about 15 degrees with respect to a straight line passing through the center, for example. That is, the protrusion 54 is inclined in the swirl direction of the airflow generated by the airflow generator.
 突起物54の刃の傾きは、突起物54の中心を通る直線から、約15度から約30度の範囲内であることが望ましい。 The inclination of the blade of the projection 54 is preferably within a range of about 15 degrees to about 30 degrees from a straight line passing through the center of the projection 54.
 図12に本実施形態における固定リング積層体の突起物リングの積層構造を示す。本実施形態では、粉砕された微粉体が反時計回りの旋回流に乗って竜巻のように上昇するように、固定リング積層体40の突起物リング50を3種類用意して、それら3種類の突起物リング50の積層方法を工夫している。 FIG. 12 shows a laminated structure of the protrusion ring of the fixed ring laminated body in the present embodiment. In the present embodiment, three types of protrusion rings 50 of the fixed ring laminate 40 are prepared so that the pulverized fine powder rises like a tornado on a counterclockwise swirl flow, and these three types of The method of stacking the protrusion ring 50 is devised.
 図12(a)、(b)、(c)に示すように、固定リング積層体40を構成する突起物リング50として、3種類の突起物リング50A~50Cを用意する。 As shown in FIGS. 12A, 12B, and 12C, three types of protrusion rings 50A to 50C are prepared as the protrusion rings 50 constituting the fixing ring laminate 40. FIG.
 突起物リング50A~50Cには、それぞれ、18個の突起物54が等間隔で設けられている。3種類の突起物リング50A~50Cでは、突起物リング50の固定用穴50aの位置に対する18個の突起物54の取り付け位置が異なっている。 The protrusion rings 50A to 50C are each provided with 18 protrusions 54 at equal intervals. In the three types of projection rings 50A to 50C, the mounting positions of the eighteen projections 54 with respect to the positions of the fixing holes 50a of the projection ring 50 are different.
 図12(a)の突起物リング50Aの突起物54の取り付け位置を基準として説明する。図12(b)の突起物リング50Bの18個の突起物54の取り付け位置は、図12(a)の突起物リング50Aの18個の突起物54を全体としてθ(=20/3度)だけ反時計方向に回転させたものである。図12(c)の突起物リング50Cの18個の突起物54は、図12(b)の突起物リング50Bの18個の突起物54を全体としてθ(=20/3度)だけ反時計方向に回転させたものである。すなわち、図12(c)の突起物リング50Cの18個の突起物54は、図12(a)の突起物リング50Aの18個の突起物54を全体として2θ(=2×(20/3)度)だけ反時計方向に回転させたものである。 The description will be made based on the attachment position of the protrusion 54 of the protrusion ring 50A in FIG. The mounting positions of the 18 protrusions 54 of the protrusion ring 50B in FIG. 12B are θ (= 20/3 degrees) as a whole with respect to the 18 protrusions 54 of the protrusion ring 50A in FIG. Only rotated counterclockwise. The 18 projections 54 of the projection ring 50C in FIG. 12C are counterclockwise by θ (= 20/3 degrees) as a whole with the 18 projections 54 in the projection ring 50B in FIG. 12B. It is rotated in the direction. That is, the 18 protrusions 54 of the protrusion ring 50C of FIG. 12C are the same as the 18 protrusions 54 of the protrusion ring 50A of FIG. 12A as 2θ (= 2 × (20/3) as a whole. ) Degree) and rotated counterclockwise.
 3種類の突起物リング50A~50Cを積層して、固定リング積層体40を組み立てる組み立て方法を説明する。 An assembly method for assembling the fixed ring laminate 40 by laminating three types of protrusion rings 50A to 50C will be described.
 まず、図12(a)の突起物リング50Aの上に、図12(b)の突起物リング50Bを重ね合わせる(図12(b)の拡大図参照)。次に、図12(b)の突起物リング50Bの上に、図12(c)の突起物リング50Cを重ね合わせる(図12(c)の拡大図参照)。次に、図12(c)の突起物リング50Cの上に、図12(a)の突起物リング50を重ね合わせる。次に、図12(a)の突起物リング50Aの上に、図Z(b)の突起物リング50Bを重ね合わせる。以下同様にして、3種類の突起物リング50A~50Cを順次重ね合わせる。 First, the protrusion ring 50B of FIG. 12B is overlaid on the protrusion ring 50A of FIG. 12A (see the enlarged view of FIG. 12B). Next, the protrusion ring 50C of FIG. 12C is overlaid on the protrusion ring 50B of FIG. 12B (see the enlarged view of FIG. 12C). Next, the protrusion ring 50 of FIG. 12A is overlaid on the protrusion ring 50C of FIG. Next, the protrusion ring 50B of FIG. Z (b) is overlaid on the protrusion ring 50A of FIG. 12 (a). In the same manner, the three types of protrusion rings 50A to 50C are sequentially overlapped.
 図13は、図2の一部を拡大した図であり、固定リング積層体49の噴射ノズルリング42と、突起物リング50A~50Cの積層状態を示している。 FIG. 13 is an enlarged view of a part of FIG. 2, and shows a stacked state of the injection nozzle ring 42 of the fixed ring stacked body 49 and the projection rings 50A to 50C.
 粉砕部30の空洞室31の最下部から、噴射ノズルリング42の上に突起物リング50Aが積層され、突起物リング50Aの上に突起物リング50Bが積層され、突起物リング50Bの上に突起物リング50Cが積層され、突起物リング50Cの上に突起物リング50Aが積層され、突起物リング50Aの上に突起物リング36Bが積層され、突起物リング50Dの上に噴射ノズルリング42が積層される。 From the lowest part of the hollow chamber 31 of the pulverizing unit 30, a projection ring 50A is laminated on the injection nozzle ring 42, a projection ring 50B is laminated on the projection ring 50A, and a projection is formed on the projection ring 50B. The projection ring 50C is laminated, the projection ring 50A is laminated on the projection ring 50C, the projection ring 36B is laminated on the projection ring 50A, and the injection nozzle ring 42 is laminated on the projection ring 50D. Is done.
 以下、この噴射ノズルリング42の上に、次の順番で、突起物リング50A~50Cと噴射ノズルリング42が積層される。 Hereinafter, the projection rings 50A to 50C and the injection nozzle ring 42 are laminated on the injection nozzle ring 42 in the following order.
 突起物リング50C、突起物リング50A、突起物リング50B、突起物リング50C、突起物リング50A、噴射ノズルリング42、突起物リング50B、突起物リング50C、突起物リング50A、突起物リング50B、突起物リング50C、突起物リング50A、突起物リング50B、突起物リング50C、突起物リング50A。 Projection ring 50C, projection ring 50A, projection ring 50B, projection ring 50C, projection ring 50A, injection nozzle ring 42, projection ring 50B, projection ring 50C, projection ring 50A, projection ring 50B, Projection ring 50C, projection ring 50A, projection ring 50B, projection ring 50C, projection ring 50A.
 このように組み立てられた積層構造の固定リング積層体40では、突起物リング50A~50Cの複数の突起物54が、側方から見た場合、高さが高くなるにつれて、突起物54が反時計方向にずれている。突起物リング50A~50Cの複数の突起物54が、噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して一方向に傾いている。 In the fixed ring laminated body 40 having the laminated structure thus assembled, when the plurality of protrusions 54 of the protrusion rings 50A to 50C are viewed from the side, the protrusions 54 become counterclockwise as the height increases. It is displaced in the direction. The plurality of protrusions 54 of the protrusion rings 50A to 50C are inclined in one direction with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b.
 本実施形態では、複数の突起物54が上述したように配置されているので、反時計方向に旋回する旋回流に乗った粉砕された微粉体を竜巻のように上昇させる。 In this embodiment, since the plurality of protrusions 54 are arranged as described above, the pulverized fine powder on the swirling flow swirling counterclockwise is raised like a tornado.
 これに対し、本実施形態の構成と異なり、突起物リング50A~50Cの複数の突起物54が、側方から見て同じ位置に配置される構成が考えられる。この構成では、突起物リング50A~50Cの複数の突起物54は、噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して傾いていない。 On the other hand, unlike the configuration of the present embodiment, a configuration in which the plurality of projections 54 of the projection rings 50A to 50C are arranged at the same position when viewed from the side is conceivable. In this configuration, the plurality of protrusions 54 of the protrusion rings 50A to 50C are not inclined with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b.
 そのような構成の場合には、反時計方向に旋回する旋回流に乗った粉砕された微粉体を上昇させる作用も下降させる作用もなく、粉砕された微粉体は空洞室31の下部に堆積する。 In such a configuration, the pulverized fine powder accumulates in the lower portion of the cavity chamber 31 without the action of raising or lowering the pulverized fine powder on the swirling flow swirling counterclockwise. .
 また、本実施形態の構成と異なり、組み立てられた積層構造の固定リング積層体40において、突起物リング50A~50Cの突起物54が、側方から見た場合、高さが高くなるにつれて、突起物54が時計方向にずれる構成が考えられる。突起物リング50A~50Cの複数の突起物54が、噴射ノズル40bの噴射用穴40dから噴射された空気により発生される反時計回りの旋回流に対して本実施形態とは逆方向に傾いている。 Further, unlike the configuration of the present embodiment, in the fixed ring laminate 40 of the assembled laminated structure, the projections 54 of the projection rings 50A to 50C are projected as the height increases when viewed from the side. A configuration in which the object 54 is shifted in the clockwise direction is conceivable. The plurality of protrusions 54 of the protrusion rings 50A to 50C are inclined in the opposite direction to the present embodiment with respect to the counterclockwise swirling flow generated by the air injected from the injection hole 40d of the injection nozzle 40b. Yes.
 そのような構成の場合には、反時計方向に旋回する旋回流に乗った粉砕された微粉体を下降させる作用が働き、粉砕された微粉体は空洞室31の下部に堆積する。 In the case of such a configuration, the action of lowering the pulverized fine powder riding on the swirling flow swirling counterclockwise works, and the pulverized fine powder accumulates in the lower part of the cavity chamber 31.
 (粉砕部:回転リング積層体と固定リング積層体の位置関係)
 本実施形態によるジェットミル装置の回転リング積層体と固定リング積層体の位置関係について図14及び図15を用いて説明する。図14及び図15は本実施形態によるジェットミル装置の粉砕部を上方から見た図である。
(Crushing part: Positional relationship between rotating ring laminate and fixed ring laminate)
The positional relationship between the rotating ring laminate and the fixed ring laminate of the jet mill apparatus according to the present embodiment will be described with reference to FIGS. 14 and 15. 14 and 15 are views of the pulverizing unit of the jet mill apparatus according to the present embodiment as viewed from above.
 図14は、粉砕部30の空洞室31内の中央の回転リング積層体32の周囲に固定リング積層体40が設けられた粉砕部30を上方から見た図である。 FIG. 14 is a view of the pulverizing unit 30 in which the fixed ring laminated body 40 is provided around the central rotating ring laminated body 32 in the hollow chamber 31 of the pulverizing unit 30 as viewed from above.
 回転リング積層体32の外方に突出した複数個の突起物32bと、固定リング積層体40の内方に突出した複数個の突起物40cが平面視において重なりあっている。固定リング積層体40に設けられた複数の噴射ノズル40bによる矢印でしめす旋回流が、回転リング積層体32の突起物32bと固定リング積層体40の突起物40cが平面視において重なりあった領域を流れている。 The plurality of protrusions 32b protruding outward of the rotating ring laminate 32 and the plurality of protrusions 40c protruding inward of the fixed ring laminate 40 overlap in plan view. The swirling flow indicated by the arrows by the plurality of injection nozzles 40b provided in the fixed ring laminate 40 is a region where the protrusion 32b of the rotating ring laminate 32 and the protrusion 40c of the fixed ring laminate 40 overlap in plan view. Flowing.
 図15は、図14と同様に、粉砕部30の空洞室31内の中央の回転リング積層体32の周囲に、固定リング積層体40が設けられた粉砕部30を上方から見た図であるが、固定リング積層体40に設けられた噴射ノズル40bの図示を省略している。 FIG. 15 is a view of the pulverizing unit 30 provided with the fixed ring laminated body 40 around the central rotating ring laminated body 32 in the hollow chamber 31 of the pulverizing unit 30 as seen from above, as in FIG. 14. However, illustration of the injection nozzle 40b provided in the fixed ring laminated body 40 is abbreviate | omitted.
 図2に示す実施例では、薄い回転リング34Aと、厚い回転リング34Bと、突起物リング36とを適宜積層して回転リング積層体32を形成し、噴射ノズルリング42と、突起物リング50とを適宜積層して固定リング積層体40を形成している。 In the embodiment shown in FIG. 2, a thin rotating ring 34A, a thick rotating ring 34B, and a protrusion ring 36 are appropriately stacked to form a rotating ring laminate 32, and an injection nozzle ring 42, a protrusion ring 50, The fixing ring laminated body 40 is formed by appropriately laminating the above.
 回転リング積層体32と固定リング積層体40とは、次のような関係となるように構成されている。 The rotating ring laminate 32 and the fixed ring laminate 40 are configured to have the following relationship.
 粉砕部30の空洞室31の最下部から、回転リング積層体32の突起物32bが4層積層され、それに対応する位置に、固定リング積層体40の噴射ノズル40bが1層積層されている。この領域では、噴射ノズル40bにより形成された旋回流に乗った被粉砕物が突起物32bに衝突して粉砕される。 Four layers of protrusions 32b of the rotating ring laminated body 32 are laminated from the lowermost part of the hollow chamber 31 of the grinding part 30, and one layer of the injection nozzle 40b of the fixed ring laminated body 40 is laminated at a corresponding position. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 32b and is pulverized.
 その上には、回転リング積層体32の突起物32bが6層積層され、それに対応する位置に、固定リング積層体40の突起物40cが5層積層されている。回転リング積層体32の6層の突起物32bの間の空間に、固定リング積層体40の5層の突起物40cが差し込まれている。この領域では、旋回流に乗った被粉砕物が突起物32bと突起物40cにより挟み込まれて切断するようにして粉砕される。 6 layers of protrusions 32b of the rotating ring laminated body 32 are laminated thereon, and 5 layers of protrusions 40c of the fixed ring laminated body 40 are laminated at corresponding positions. Five layers of protrusions 40 c of the fixing ring stack 40 are inserted into the space between the six layers of protrusions 32 b of the rotating ring stack 32. In this region, the object to be crushed on the swirl flow is crushed so as to be sandwiched between the protrusion 32b and the protrusion 40c and cut.
 更にその上には、回転リング積層体32の突起物32bが4層積層され、それに対応する位置に、固定リング積層体40の噴射ノズル40bが1層積層されている。この領域では、噴射ノズル40bにより形成された旋回流に乗った被粉砕物が突起物32bに衝突して粉砕される(A部拡大図参照)。 Further thereon, four layers of protrusions 32b of the rotating ring laminate 32 are laminated, and one layer of the injection nozzle 40b of the fixed ring laminate 40 is laminated at a corresponding position. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 32b and is pulverized (see the enlarged view of the part A).
 更にその上には、回転リング積層体32の突起物32bが6層積層され、それに対応する位置に、固定リング積層体40の突起物40cが5層積層されている。回転リング積層体32の6層の突起物32bの間の空間に、固定リング積層体40の5層の突起物40cが差し込まれている。この領域では、旋回流に乗った被粉砕物が突起物32bと突起物40cにより挟み込まれて切断するようにして粉砕される。 Further thereon, six layers of protrusions 32b of the rotating ring laminated body 32 are laminated, and five layers of protrusions 40c of the fixed ring laminated body 40 are laminated at corresponding positions. Five layers of protrusions 40 c of the fixing ring stack 40 are inserted into the space between the six layers of protrusions 32 b of the rotating ring stack 32. In this region, the object to be crushed on the swirl flow is crushed so as to be sandwiched between the protrusion 32b and the protrusion 40c and cut.
 更にその上には、回転リング積層体32の突起物32bが3層積層され、それに対応する位置に、固定リング積層体40の噴射ノズル40bが1層積層されている。この領域では、噴射ノズル40bにより形成された旋回流に乗った被粉砕物が突起物32bに衝突して粉砕される。 Further thereon, three layers of protrusions 32b of the rotating ring laminate 32 are laminated, and one layer of the injection nozzle 40b of the fixed ring laminate 40 is laminated at a corresponding position. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 32b and is pulverized.
 更にその上には、回転リング積層体32の突起物32bが8層積層され、それに対応する位置に、固定リング積層体40の突起物40cが8層積層されている。回転リング積層体32の8層の突起物32bの間の空間に、固定リング積層体40の8層の突起物40cが差し込まれている。この領域では、旋回流に乗った被粉砕物が突起物32bと突起物40cにより挟み込まれて切断するようにして粉砕される(B部拡大図参照)。 Further thereon, eight layers of protrusions 32b of the rotating ring laminate 32 are laminated, and eight layers of protrusions 40c of the fixed ring laminate 40 are laminated at corresponding positions. The eight layers of protrusions 40 c of the fixed ring stack 40 are inserted into the space between the eight layers of protrusions 32 b of the rotating ring stack 32. In this region, the object to be crushed on the swirl flow is crushed so as to be sandwiched and cut between the protrusions 32b and the protrusions 40c (see the enlarged view of part B).
 更にその上には、固定リング積層体40の突起物40cが3層積層されている。それに対応する位置に回転リング積層体32は存在しない。この領域では、噴射ノズル40bにより形成された旋回流に乗った被粉砕物が突起物40cに衝突して粉砕される。 Further thereon, three layers of protrusions 40c of the fixing ring laminate 40 are laminated. The rotating ring laminated body 32 does not exist in the position corresponding to it. In this region, the object to be crushed on the swirling flow formed by the injection nozzle 40b collides with the protrusion 40c and is pulverized.
 (入出力部)
 本実施形態によるジェットミル装置の入出力部について図2を用いて説明する。
(I / O section)
The input / output unit of the jet mill apparatus according to the present embodiment will be described with reference to FIG.
 図2に示すように、粉砕部30上には、粉砕部30の空洞室31に被粉砕物を入力し、粉砕された微粉体を粉砕部30の空洞室31から出力する入出力部60が設けられている。 As shown in FIG. 2, an input / output unit 60 is provided on the pulverization unit 30 to input a material to be pulverized into a cavity chamber 31 of the pulverization unit 30 and output the pulverized fine powder from the cavity chamber 31 of the pulverization unit 30. Is provided.
 入出力部60には、粉砕部30の空洞室31に被粉砕物を投入するための原料投入管62と、粉砕された微粉末を排出するための微粉末排出口64とが設けられている。なお、図1では原料投入管62が微粉末排出口64内に設けられている。 The input / output unit 60 is provided with a raw material input pipe 62 for supplying a material to be crushed into the hollow chamber 31 of the pulverization unit 30 and a fine powder discharge port 64 for discharging the pulverized fine powder. . In FIG. 1, the raw material input pipe 62 is provided in the fine powder discharge port 64.
 微粉末排出口64の粉砕部30の空洞室31との接続部にはメッシュ部66が設けられている。メッシュ部66は、所定の密度に形成されている。これにより所定の密度以下に粉砕された微粉体を外部に取り出すことができる。 The mesh part 66 is provided in the connection part with the hollow chamber 31 of the grinding | pulverization part 30 of the fine powder discharge port 64. FIG. The mesh portion 66 is formed with a predetermined density. Thereby, the fine powder pulverized to a predetermined density or less can be taken out.
 (ジェットミル装置の動作)
 本実施形態によるジェットミル装置の動作について説明する。
(Operation of jet mill equipment)
The operation of the jet mill apparatus according to the present embodiment will be described.
 まず、圧縮空気を生成するコンプレッサー(図示せず)を作動させ、圧縮空気接続口24を介して圧縮空気タンク22の圧縮空気を送り込む。圧縮空気は圧縮空気送り配管26を介して粉砕部30に送られ、固定リング積層体40に設けられた複数の噴射ノズル40bから噴出され、空洞室31内に旋回する空気流を生成する。 First, a compressor (not shown) that generates compressed air is operated, and the compressed air in the compressed air tank 22 is sent through the compressed air connection port 24. The compressed air is sent to the pulverizing unit 30 via the compressed air feed pipe 26, and is ejected from a plurality of injection nozzles 40 b provided in the fixed ring laminated body 40 to generate an air flow that swirls in the cavity chamber 31.
 同時に、基台部20の回転用駆動モータ28を駆動し、粉砕部30内の回転リング積層体32を高速で回転させる。これにより、回転リング積層体32の複数個の突起物32bが、固定リング積層体40の複数個の突起物40cと高速で交差する。 At the same time, the drive motor 28 for rotation of the base unit 20 is driven to rotate the rotating ring laminated body 32 in the crushing unit 30 at a high speed. Thereby, the plurality of protrusions 32b of the rotating ring laminate 32 intersect with the plurality of protrusions 40c of the fixed ring laminate 40 at high speed.
 次に、入出力部60の原料投入管62から粉砕部30の空洞室31内に被粉砕物を投入する。投入された被粉砕物は、空洞室31内に形成された旋回流にのって空洞室31内を旋回する。旋回する被粉砕物は、高速で交差する複数個の突起物32bと複数個の突起物40cにより切断され削られて微粉体に粉砕される。 Next, the material to be crushed is charged into the hollow chamber 31 of the pulverizing unit 30 from the raw material input pipe 62 of the input / output unit 60. The charged material to be crushed swirls in the hollow chamber 31 along the swirl flow formed in the hollow chamber 31. The swirling object to be swirled is cut and cut by a plurality of protrusions 32b and a plurality of protrusions 40c that intersect at high speed, and is pulverized into fine powder.
 粉砕された微粉体は旋回流にのって空洞室31内で高速に旋回し、竜巻のように空洞室31内を上昇する。旋回して上昇する微粉体のうち、空洞室31との接続部に設けられたメッシュ部66の密度よりも小さい微粉体は、メッシュ部66を透過して微粉末排出口64から外部に排出されて、製品としての微粉体として回収される。 The pulverized fine powder swirls at a high speed in the hollow chamber 31 along the swirling flow and rises in the hollow chamber 31 like a tornado. Of the fine powder that swirls and rises, fine powder that is smaller than the density of the mesh portion 66 provided at the connection portion with the hollow chamber 31 passes through the mesh portion 66 and is discharged to the outside from the fine powder discharge port 64. And collected as a fine powder as a product.
 (ジェットミル装置の概要と特徴)
 本実施形態によるジェットミル装置の概要について説明する。
(Outline and features of jet mill equipment)
An outline of the jet mill apparatus according to the present embodiment will be described.
 本実施形態のジェットミル装置による新たな微粉砕加工技術は、これまでの「粉砕」という概念よりは「削る」という概念にもとづくものである。 The new fine pulverization processing technology by the jet mill apparatus of the present embodiment is based on the concept of “shaving” rather than the concept of “pulverization”.
 容器内に圧縮空気を噴射する噴射ノズルと所定の形状の突起物を有し、噴射ノズルを多数配列したリングと所定の形状の突起物を固定したリングを階層化して円筒形状を形成する。噴射ノズルのリングには、中心に対し同一角度の噴射ノズルを同心円状に配置する。突起物のリングには、同心円状に複数の突起物を配置固定する。 A cylinder having a jet nozzle for injecting compressed air and a projection having a predetermined shape in a container and having a ring in which a large number of spray nozzles are arranged and a ring to which the projection having a predetermined shape is fixed is layered. In the ring of the injection nozzle, the injection nozzles having the same angle with respect to the center are arranged concentrically. A plurality of protrusions are arranged and fixed concentrically on the protrusion ring.
 複数配置した噴射ノズルより圧縮空気を噴射することで、円筒内に強力な竜巻状の旋回流を発生させる。その円筒内に被粉砕物を投入することで被粉砕物が、旋回流に乗り、竜巻状の高速な浮遊物となる。 ∙ A strong tornado-like swirling flow is generated in the cylinder by injecting compressed air from a plurality of injection nozzles. By putting the object to be crushed into the cylinder, the object to be crushed takes a swirling flow and becomes a tornado-like high-speed floating substance.
 竜巻状の高速な浮遊物となった被粉砕物は、多数配置された特殊な形状の突起物に衝突及び接触する事により、細かく切削される。その際、発生する剪断熱及び摩擦熱は、旋回流により奪われ排出され。このため、突起物や切削された樹脂の粒子は、常温を保つことができ更に微粒子となる。 The to-be-pulverized object to be crushed as a tornado-like high-speed floating object is finely cut by colliding with and contacting with many specially-shaped protrusions. At that time, the generated shearing heat and frictional heat are taken away by the swirling flow and discharged. For this reason, the protrusions and the cut resin particles can be kept at normal temperature and become fine particles.
 これにより、これまで不可能とされていた熱可塑性樹脂の微粉砕が可能となった。 This makes it possible to finely pulverize thermoplastic resin, which has been impossible until now.
 本実施形態によるジェットミル装置の特徴を列挙すると次の通りである。
(1)円筒状内に複数の噴射ノズルと特殊な突起物を有する。
(2)噴射ノズルより圧縮空気が噴射され、竜巻状の強力な旋回流が発生する。
(3)被粉砕物は、竜巻状に高速旋回する。
(4)高速旋回した被粉砕物は、特殊な形状の突起物に衝突及び接触することにより切削されていく。
(5)円筒状本体上部にメッシュを設置し、規定粒子径になるまで旋回流に浮遊し繰り返し切削される。
(6)剪断熱及び摩擦熱は、旋回流により排出され常温に保つことができる。
(7)樹脂の温度上昇が無い為、溶けずに微粉化ができる。
(8)特殊な形状の突起物は、2.5mm以上のクリアランスを持つことにより、被粉砕物がスムースに竜巻状に浮遊することができる。
(9)噴射ノズルリング,突起物固定リングを任意に階層化することにより、より微粒子化が図れ、生産効率が向上する。
(10)螺旋状に配置された特殊な形状の突起物を旋回流の中心で旋回流と同方向に回転させることにより、被粉砕物が竜巻状に均一に浮遊することができる。
(11)樹脂粒子径10μm以下の粉体化が可能である。
The characteristics of the jet mill apparatus according to this embodiment are listed as follows.
(1) It has a plurality of injection nozzles and special protrusions in a cylindrical shape.
(2) Compressed air is injected from the injection nozzle, and a strong tornado-like swirl flow is generated.
(3) The object to be crushed turns at high speed like a tornado.
(4) The object to be crushed that has swung at high speed is cut by colliding with and contacting a specially shaped protrusion.
(5) A mesh is installed on the upper part of the cylindrical main body, floats in a swirling flow until it reaches a specified particle diameter, and is repeatedly cut.
(6) Shear heat and frictional heat can be discharged by the swirling flow and kept at room temperature.
(7) Since there is no temperature rise of the resin, it can be pulverized without melting.
(8) The protrusion having a special shape has a clearance of 2.5 mm or more, so that the object to be crushed can smoothly float in a tornado shape.
(9) By making the injection nozzle ring and the projection fixing ring arbitrarily hierarchical, finer particles can be achieved and the production efficiency can be improved.
(10) By rotating a specially shaped protrusion arranged in a spiral shape in the same direction as the swirling flow at the center of the swirling flow, the object to be crushed can be floated uniformly in a tornado shape.
(11) The resin particle diameter can be reduced to 10 μm or less.
 [変形実施形態]
 本発明は上記実施形態に限らず種々の変形が可能である。
[Modified Embodiment]
The present invention is not limited to the above embodiment, and various modifications can be made.
 例えば、本実施形態の粉砕部は円筒状であったが、他の形状、例えば、球状、半球状、円錐状、紡錘体状であってもよい。 For example, although the pulverization part of the present embodiment is cylindrical, other shapes such as a spherical shape, a hemispherical shape, a conical shape, and a spindle shape may be used.
 本実施形態の噴射ノズルの本数、設置位置、設置角度、突起物の個数、設置位置、設置角度、各種積層体の積層数等は、本実施形態に記載された例示に限定されない。 The number of injection nozzles, the installation position, the installation angle, the number of protrusions, the installation position, the installation angle, the number of stacks of various laminates, and the like of the present embodiment are not limited to the examples described in the present embodiment.
10…ジェットミル装置
20…基台部
22…圧縮空気タンク
24…圧縮空気接続口
26…圧縮空気送り配管
28…回転用駆動モータ
30…粉砕部
31…空洞室
32…回転リング積層体
32a…リング積層体本体
32b…突起物
32c…突起物
34…回転リング
34A…薄い回転リング
34B…厚い回転リング
35…穴
36…突起物リング
36A~36F…部材
37…穴
38…刃板
40…固定リング積層体
40a…リング積層体本体
40b…噴射ノズル
40c…突起物
40d…噴射用穴
42…噴射ノズルリング
44…噴射ノズルリング本体
46…噴射ノズル
48…噴射用穴
50…突起物リング
50A~50C…突起物リング
52…固定リング
54…突起物
60…入出力部
62…原料投入管
64…微粉末排出口
66…メッシュ部
DESCRIPTION OF SYMBOLS 10 ... Jet mill apparatus 20 ... Base part 22 ... Compressed air tank 24 ... Compressed air connection port 26 ... Compressed air feed pipe 28 ... Rotation drive motor 30 ... Crushing part 31 ... Cavity chamber 32 ... Rotating ring laminated body 32a ... Ring Laminate body 32b ... projection 32c ... projection 34 ... rotation ring 34A ... thin rotation ring 34B ... thick rotation ring 35 ... hole 36 ... projection rings 36A-36F ... member 37 ... hole 38 ... blade plate 40 ... fixed ring laminate Body 40a ... Ring stack body 40b ... Injection nozzle 40c ... Projection 40d ... Injection hole 42 ... Injection nozzle ring 44 ... Injection nozzle ring body 46 ... Injection nozzle 48 ... Injection hole 50 ... Projection rings 50A to 50C ... Projection Object ring 52 ... fixing ring 54 ... projection 60 ... input / output part 62 ... raw material input pipe 64 ... fine powder outlet 66 ... mesh part
  本発明は、被粉砕物を粉砕して微粉体を生成する分野においてその利用が可能である。 The present invention can be used in the field of pulverizing an object to be pulverized to produce a fine powder.

Claims (8)

  1.  被粉砕物を微粉体に粉砕するための空洞室と、
     前記空洞室内に旋回する空気流を生成する空気流生成部と、
     前記空洞室内に設けられた複数の第1の突起物と、
     前記空洞室内に設けられ、前記複数の第1の突起物に対向し、前記複数の第1の突起物に対して相対的に移動する複数の第2の突起物とを有し、
     前記空洞室内に入力された前記被粉砕物が、前記空気流生成部により生成された空気流により旋回され、前記複数の第1の突起物及び前記複数の第2の突起物により微粉体にする
     ことを特徴とするジェットミル装置。
    A hollow chamber for pulverizing the material to be crushed into fine powder;
    An air flow generator for generating an air flow swirling in the hollow chamber;
    A plurality of first protrusions provided in the hollow chamber;
    A plurality of second protrusions provided in the hollow chamber, facing the plurality of first protrusions and moving relative to the plurality of first protrusions;
    The object to be crushed inputted into the hollow chamber is swirled by the air flow generated by the air flow generation unit, and is made into a fine powder by the plurality of first protrusions and the plurality of second protrusions. A jet mill device.
  2.  請求項1記載のジェットミル装置において、
     前記複数の第1の突起物は、前記空洞室内に固定され、
     前記複数の第2の突起物は、前記空洞室内で移動する
     ことを特徴とするジェットミル装置。
    The jet mill apparatus according to claim 1, wherein
    The plurality of first protrusions are fixed in the hollow chamber,
    The plurality of second protrusions move in the hollow chamber. A jet mill device, wherein:
  3.  請求項2記載のジェットミル装置において、
     前記複数の第1の突起物は、前記空洞室の壁部に固定され、前記空洞室の内側に向かって突出し、
     前記複数の第2の突起物は、前記空洞室の中央に設けられた回転体に固定され、前記空洞室の外側に向かって突出し、
     前記回転体を回転させることにより、前記複数の第2の突起物を前記複数の第1の突起物に対して相対的に移動させる
     ことを特徴とするジェットミル装置。
    The jet mill apparatus according to claim 2, wherein
    The plurality of first protrusions are fixed to a wall portion of the cavity chamber, protrude toward the inside of the cavity chamber,
    The plurality of second protrusions are fixed to a rotating body provided at the center of the hollow chamber, protrude toward the outside of the hollow chamber,
    The jet mill apparatus, wherein the plurality of second protrusions are moved relative to the plurality of first protrusions by rotating the rotating body.
  4.  請求項1乃至3のいずれか1項に記載のジェットミル装置において、
     前記複数の第1の突起物は、前記空気流生成部が生成する空気流に乗って旋回する微粉体を上昇させるように、前記空気流生成部が生成する空気流の旋回方向に対して傾斜して配置されており、
     前記複数の第2の突起物は、前記空気流生成部が生成する空気流に乗って旋回する微粉体を上昇させるように、前記空気流生成部が生成する空気流の旋回方向に対して傾斜して配置されている
     ことを特徴とするジェットミル装置。
    In the jet mill device according to any one of claims 1 to 3,
    The plurality of first protrusions are inclined with respect to the swirling direction of the airflow generated by the airflow generation unit so as to raise the fine powder swirling on the airflow generated by the airflow generation unit. Are arranged,
    The plurality of second protrusions are inclined with respect to the swirl direction of the airflow generated by the airflow generation unit so as to raise the fine powder swirling on the airflow generated by the airflow generation unit. A jet mill device characterized by being arranged as described above.
  5.  請求項1乃至4のいずれか1項に記載のジェットミル装置において、
     前記空気流生成部は、前記空洞室の壁部に固定され、旋回方向に空気流を噴射する複数の噴射ノズルを有し、
     前記複数の噴射ノズルが設けられた前記空洞室の領域には、前記複数の第2の突起物のみ設けられている
     ことを特徴とするジェットミル装置。
    In the jet mill device according to any one of claims 1 to 4,
    The air flow generation unit has a plurality of injection nozzles that are fixed to a wall portion of the hollow chamber and inject an air flow in a swirling direction,
    Only the plurality of second protrusions are provided in a region of the hollow chamber in which the plurality of injection nozzles are provided.
  6.  請求項1乃至5のいずれか1項に記載のジェットミル装置において、
     前記複数の第1の突起物及び/又は前記複数の第2の突起物は、相対的に移動する方向に向かって薄くなっている
     ことを特徴とするジェットミル装置。
    In the jet mill device according to any one of claims 1 to 5,
    The plurality of first protrusions and / or the plurality of second protrusions are thinner toward a relatively moving direction.
  7.  被粉砕物を微粉体に粉砕する粉砕方法であって、
     前記被粉砕物を粉砕するための空洞室内に旋回する空気流を生成し、前記空洞室内に入力された前記被粉砕物を空気流により旋回させ、
     複数の第1の突起物と、前記複数の第1の突起物に対向し前記複数の第1の突起物に対して相対的に移動する複数の第2の突起物とにより、空気流により旋回された前記被粉砕物を微粉体にする
     ことを特徴とする粉砕方法。
    A pulverization method for pulverizing an object to be crushed into fine powder,
    Generating a swirling air flow in the hollow chamber for crushing the pulverized material, swirling the pulverized material input in the hollow chamber by the air flow,
    The plurality of first protrusions and the plurality of second protrusions that face the plurality of first protrusions and move relative to the plurality of first protrusions are swirled by an air flow. The pulverized method is characterized in that the pulverized material to be pulverized is made into a fine powder.
  8.  請求項7記載の粉砕方法において、
     前記空気流の旋回方向に対して傾斜して配置された前記複数の第1の突起物により、前記空気流に乗って旋回する微粉体を上昇させ、
     前記空気流の旋回方向に対して傾斜して配置された前記複数の第2の突起物により、前記空気流に乗って旋回する微粉体を上昇させる
     ことを特徴とする粉砕方法。
    The grinding method according to claim 7, wherein
    With the plurality of first protrusions arranged to be inclined with respect to the swirl direction of the air flow, the fine powder swirling on the air flow is raised,
    The pulverization method characterized by raising the fine powder swirl on the air flow by the plurality of second protrusions arranged to be inclined with respect to the swirl direction of the air flow.
PCT/JP2018/003347 2018-02-01 2018-02-01 Jet mill device WO2019150521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/003347 WO2019150521A1 (en) 2018-02-01 2018-02-01 Jet mill device
JP2019568495A JP6839307B2 (en) 2018-02-01 2018-02-01 Jet mill equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003347 WO2019150521A1 (en) 2018-02-01 2018-02-01 Jet mill device

Publications (1)

Publication Number Publication Date
WO2019150521A1 true WO2019150521A1 (en) 2019-08-08

Family

ID=67478198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003347 WO2019150521A1 (en) 2018-02-01 2018-02-01 Jet mill device

Country Status (2)

Country Link
JP (1) JP6839307B2 (en)
WO (1) WO2019150521A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067655A1 (en) * 2021-10-18 2023-04-27 株式会社Isaac Jet mill device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102493A (en) * 1993-09-29 1995-04-18 V M C:Kk Method for dry process disintegration of waste paper and device therefor
US20120305683A1 (en) * 2008-12-25 2012-12-06 Arter Technology Limited Material Grinding Method and a Device for Carrying out Said Method
JP5816395B1 (en) * 2014-07-14 2015-11-18 株式会社ダイセル Method for crushing pulp for producing cellulose acetate and method for producing cellulose acetate
US20170252751A1 (en) * 2016-03-01 2017-09-07 Enagon Wave Technology, Llc Pressure Interference Wave Mill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102493A (en) * 1993-09-29 1995-04-18 V M C:Kk Method for dry process disintegration of waste paper and device therefor
US20120305683A1 (en) * 2008-12-25 2012-12-06 Arter Technology Limited Material Grinding Method and a Device for Carrying out Said Method
JP5816395B1 (en) * 2014-07-14 2015-11-18 株式会社ダイセル Method for crushing pulp for producing cellulose acetate and method for producing cellulose acetate
US20170252751A1 (en) * 2016-03-01 2017-09-07 Enagon Wave Technology, Llc Pressure Interference Wave Mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067655A1 (en) * 2021-10-18 2023-04-27 株式会社Isaac Jet mill device

Also Published As

Publication number Publication date
JPWO2019150521A1 (en) 2020-10-22
JP6839307B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
CN105833979A (en) Collision grinding type ultrafine smashing device
CN103987462B (en) Horizontal type Dry-crusher
WO2012014985A1 (en) Jet mill
WO2019150521A1 (en) Jet mill device
JP2011255268A (en) Fine particle manufacturing apparatus
CN103752388A (en) Environment-friendly and energy-saving eddy crusher
JP2015039555A (en) Mill device
JP2004050180A (en) Double odd-bel-like opening nozzle device for fluidization base layer jet mill
JP5660793B2 (en) Biomass pulverized material manufacturing apparatus and biomass pulverized material manufacturing method using the same
CN201055800Y (en) Double-turntable clash type pulverizer
KR20170055831A (en) Hybrid jettmill
KR20070080257A (en) Mill device
CN109604027B (en) Optional medicine processing reducing mechanism
CN218394018U (en) Air flow crusher
CN115672511A (en) Superfine grinding system of rhizome class traditional chinese medicine
CN113182048A (en) Supersonic speed jet milling device of three-dimensional rotary jet
CN111686880B (en) Double-stage ultrafine grinder
KR20010026714A (en) Microminiature powdering machine
JP2005131633A (en) Jet mill
WO2023067655A1 (en) Jet mill device
JP2004330072A (en) Dry crusher
JP2018075533A (en) Pulverization device
JP2020192506A (en) Crusher and crushing classifier
CN210146181U (en) Improved airflow crusher
JP2023028043A (en) Metal powder production method and lamination molding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568495

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903773

Country of ref document: EP

Kind code of ref document: A1