WO2019150501A1 - Friction material, friction material composition and friction member - Google Patents

Friction material, friction material composition and friction member Download PDF

Info

Publication number
WO2019150501A1
WO2019150501A1 PCT/JP2018/003257 JP2018003257W WO2019150501A1 WO 2019150501 A1 WO2019150501 A1 WO 2019150501A1 JP 2018003257 W JP2018003257 W JP 2018003257W WO 2019150501 A1 WO2019150501 A1 WO 2019150501A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
friction material
friction
content
material composition
Prior art date
Application number
PCT/JP2018/003257
Other languages
French (fr)
Japanese (ja)
Inventor
蔵 藤岡
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/003257 priority Critical patent/WO2019150501A1/en
Priority to JP2019568486A priority patent/JPWO2019150501A1/en
Publication of WO2019150501A1 publication Critical patent/WO2019150501A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Definitions

  • the present invention relates to a friction material, a friction material composition, and a friction member.
  • friction materials such as disc brake pads and brake linings are used for braking. These friction materials play a role of braking by friction with a disk rotor, a brake drum, or the like which is a counterpart material. For this reason, friction materials not only require an appropriate coefficient of friction (effectiveness characteristics) according to the conditions of use, but also make it difficult for brake noise to occur (squeal characteristics), and the friction material has a long life (wear resistance). Etc. are required.
  • Friction materials include semi-metallic materials containing 30 to 60% by mass of steel fibers as a fiber base material, raw steel materials containing less than 30% by mass of steel fibers, and NAO (Non-Asbestos Organic) materials that do not contain steel fibers. Broadly divided. However, friction materials containing a small amount of steel fibers may be classified as NAO materials.
  • NAO material does not contain steel fibers, it has a feature that it is less aggressive to the disk rotor as the counterpart material than semi-metallic material and low steel material. Because of these advantages, NAO materials that are effective in Japan, the United States, etc., and have a good balance between squealing and wear resistance, are currently mainstream. On the other hand, in Europe, low steel materials were often used from the viewpoint of maintaining a friction coefficient during high-speed braking, but in recent years, NAO materials are less prone to tire wheel dirt and brake noise in order to respond to a higher-grade market. Are increasingly being used.
  • the NAO material generally contains copper in a powder or fiber state.
  • friction materials containing copper, copper alloys, and the like contain copper in wear powder generated during braking, and thus have been suggested to possibly contaminate rivers, lakes, and the like. For this reason, in California, Washington, etc. in the United States, there is a bill that prohibits the sale of friction materials containing more than 5% by mass of copper after 2021, and the addition of 0.5% by mass of copper after 2023, and the assembly into new cars. In response to this, there is an urgent need to develop a NAO material that does not contain copper or has a low copper content.
  • One of the typical functions of copper is to impart thermal conductivity. Since copper has high thermal conductivity, wear caused by excessive temperature rise is suppressed by diffusing heat generated during braking from the friction interface.
  • the second typical function of copper is protection of the friction interface during high-temperature braking. Since copper has high ductility and malleability, it extends to the friction material surface by braking to form a coating. As a result, it is possible to reduce friction material wear during high-speed and high-temperature braking and to develop a stable friction coefficient. Further, since the copper spreading film can easily hold the abrasive, a good friction coefficient can be expressed even in the low-speed and low-temperature braking region. Therefore, in order to develop a NAO material that does not contain copper or has a low copper content, a copper replacement technique is required from the viewpoints of improving the thermal conductivity, protecting the interface, and holding the abrasive. .
  • Patent Documents 1 and 2 In such a movement, friction materials that do not contain copper or have a low copper content are being studied (for example, Patent Documents 1 and 2).
  • JP2015-205959A Japanese Patent Laying-Open No. 2015-059125
  • a typical example of the friction coefficient variation is a decrease in the friction coefficient in a low-speed and low-temperature braking region in a friction material that does not contain copper.
  • the friction material not containing copper it is difficult to form a transfer film on the surface of the disk rotor in the low-speed and low-temperature braking region, and it is difficult to exhibit the effect of holding the abrasive.
  • the aggressiveness to the disk rotor due to the grinding action and the shear drag generated between the iron component derived from the disk rotor and the disk rotor are reduced, so that the friction coefficient tends to be lower than in the normal case.
  • the braking distance becomes long and the braking force is reduced, so that the driver's comfort is impaired.
  • an increase in the coefficient of friction variation during one braking in low-speed low-temperature braking is a typical example in which the coefficient of friction varies.
  • the friction material containing no copper has a low ability to discharge wear powder generated during braking, and the wear powder tends to accumulate at the friction interface between the friction material and the disk rotor.
  • the powder resistance at the friction interface is increased, and the coefficient of variation of the friction coefficient is increased.
  • problems such as squealing occur when the brake is applied and the driver's comfort is impaired.
  • Patent Documents 1 and 2 focus only on the high thermal conductivity and high-temperature lubricity of copper, and only complement the friction characteristics during high-speed and high-temperature braking.
  • the stability of the friction coefficient in the low-speed low-temperature braking region and other friction characteristics are not taken into consideration.
  • the present invention does not contain copper, or even if it contains copper, the content thereof is 0.5% by mass or less as a copper element, and the composition is low in environmental and human harm, and is excellent in a low-speed low-temperature braking region. It is an object of the present invention to provide a friction material, a friction material composition, and a friction member using the friction material that achieve both stability of the friction coefficient and an excellent friction coefficient in a normal braking range.
  • the present inventor has found that a friction material containing a specific inorganic fiber in a specific ratio is stable in the low-temperature low-temperature braking region and in the normal braking region. It has been found that the friction coefficient is highly compatible. That is, the present invention relates to the following [1] to [21]. [1] Even if copper is not included or the content thereof is a friction material of 0.5 mass% or less as a copper element, the inorganic fiber (X1) having biosolubility is 100 mass of the total friction material. % Friction material containing 5.0 mass% or more and less than 10.0 mass%.
  • the friction material according to [3], wherein the inorganic fiber (X2) has a calcium oxide content of 15 to 30% by mass and a magnesium oxide content of 3 to 20% by mass.
  • the above [12] to [12] further containing 4 to 10% by weight of zirconium silicate having an average particle size of 0.4 to 2 ⁇ m as an inorganic filler with respect to 100% by weight of the total amount of the friction material composition. 16].
  • the inorganic filler contains non-acicular titanate having an average particle diameter of 2 to 50 ⁇ m in an amount of 15 to 25% by mass with respect to 100% by mass of the total amount of the friction material composition.
  • copper does not contain, or even if contained, the content is 0.5% by mass or less as a copper element, and the composition is low in environmental and human harm, and is excellent in a low-speed low-temperature braking region. It is possible to provide a friction material, a friction material composition, and a friction member using the friction material, which have both the stability of the friction coefficient and the excellent friction coefficient in the normal braking range.
  • the friction material, friction material composition, and friction member of this embodiment are explained in full detail, this invention is not limited to the following embodiment.
  • the friction material and friction material composition of this embodiment do not contain asbestos, and are a so-called non-asbestos friction material and non-asbestos friction material composition.
  • the friction material according to the first embodiment of the present invention does not contain copper, or even if it contains copper, the content of the friction material is 0.5 mass% or less as a copper element, and is an inorganic fiber having biosolubility.
  • (X1) is a friction material containing 5.0% by mass or more and less than 10.0% by mass with respect to 100% by mass of the total amount of the friction material.
  • the friction material according to the second embodiment of the present invention does not contain copper, or even if it contains copper, the content is a friction material of 0.5 mass% or less as a copper element, and contains calcium oxide and magnesium oxide.
  • friction material of this embodiment it refers to both the friction material according to the first embodiment and the friction material according to the second embodiment.
  • the friction material of this embodiment does not contain copper, the content is 0.5 mass% or less as a copper element, and is very trace amount. For this reason, the friction material of this embodiment becomes a thing with a low environmental hazard and a human body hazard.
  • said "copper” is copper element contained in copper, such as a fiber form and a powder form; copper alloy, a copper compound, etc.
  • "copper content” is content with respect to 100 mass% of friction material whole quantity. Show.
  • the copper content is preferably less than 0.5% by mass, more preferably 0.3% by mass or less, and more preferably 0.1% by mass with respect to 100% by mass of the total amount of the friction material, from the viewpoints of environmental hazards and human injury. % Or less is more preferable, and it is particularly preferable not to contain copper.
  • the friction material of this embodiment contains 1 or more types selected from the group which consists of a fiber base material, an inorganic filler, an organic filler, and a binder.
  • the friction material of this embodiment contains 1 or more types selected from the group which consists of a fiber base material, an inorganic filler, an organic filler, and a binder.
  • the friction material according to the first embodiment uses, as a fiber base material, an inorganic fiber (X1) having biosolubility (hereinafter, also simply referred to as “inorganic fiber (X1)”) relative to 100 mass% of the total amount of the friction material. 5.0 mass% or more and less than 10.0 mass%.
  • the friction material according to the second embodiment includes, as a fiber base material, inorganic fibers (X2) containing calcium oxide and magnesium oxide (hereinafter, also simply referred to as “inorganic fibers (X2)”). To 5.0% by mass to less than 10.0% by mass.
  • the inorganic fiber (X1) and the inorganic fiber (X2) may be the same or different.
  • inorganic fiber (X1) and inorganic fiber (X2) may be used individually by 1 type, respectively, and may use 2 or more types together.
  • inorganic fibers (X) the description common to the inorganic fibers (X1) and the inorganic fibers (X2) will be referred to as “inorganic fibers (X)”.
  • the inorganic fiber (X1) is an inorganic fiber having biosolubility.
  • the term “inorganic fiber having biosolubility” as used herein means that it is characterized in that even when it is taken into the human body, it is partially decomposed in a short time and discharged outside the body, and examples thereof include biosoluble mineral fibers. .
  • the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, Inorganic fibers satisfying a mass half-life of fibers of 20 ⁇ m or more within 40 days, or no evidence of excessive carcinogenicity in intraperitoneal tests, or related pathogenicity and tumor development in long-term respiratory tests (EU Directive 97/69 / EC NotaQ (exclusion of carcinogenicity)).
  • examples of such inorganic fibers (X1) include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O-based fibers, and the like.
  • the inorganic fiber (X1) preferably has a composition of an inorganic fiber (X2) described later.
  • the inorganic fiber (X2) is an inorganic fiber containing calcium oxide (hereinafter also referred to as “CaO”) and magnesium oxide (hereinafter also referred to as “MgO”).
  • the “inorganic fiber containing CaO and MgO” means an inorganic fiber containing CaO and MgO as components constituting one fiber, and the same applies to each component other than CaO and MgO described later. It is.
  • content of each component in the following inorganic fiber (X2) is content based on 100 mass% of inorganic fiber (X2) whole quantity.
  • the CaO content in the inorganic fibers (X2) is preferably 15 to 30% by mass, more preferably 17 to 25% by mass, and further preferably 18 to 22% by mass.
  • the content of MgO in the inorganic fiber (X2) is preferably 3 to 20% by mass, more preferably 4 to 15% by mass, and further preferably 5 to 8% by mass.
  • the total content of CaO and MgO in the inorganic fiber (X2) is preferably 18 to 40% by mass, more preferably 22 to 35% by mass, and further preferably 25 to 30% by mass.
  • the inorganic fiber (X2) preferably contains other oxides other than CaO and MgO.
  • other oxides include SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, TiO 2 , P 2 O 5 , MnO, Fe 2 O 3 and the like.
  • it preferably contains SiO 2, Al 2 O 3, Fe 2 O 3.
  • Inorganic fibers (X2) is, when it contains one or more selected from the group consisting of SiO 2, Al 2 O 3 and Fe 2 O 3, the content in the inorganic fibers (X2) in are as follows .
  • the content of SiO 2 is preferably 30 to 50% by mass, more preferably 35 to 47% by mass, and further preferably 40 to 45% by mass.
  • the content of Al 2 O 3 is preferably 10 to 30% by mass, more preferably 13 to 25% by mass, and further preferably 15 to 20% by mass.
  • the content of Fe 2 O 3 is preferably 1 to 10% by mass, more preferably 2 to 9% by mass, and further preferably 4 to 8% by mass.
  • the total content of CaO, MgO, SiO 2 , Al 2 O 3 and Fe 2 O 3 in the inorganic fiber (X2) is preferably 90% by mass or more, more preferably 93% by mass or more, and further more preferably 95% by mass or more. preferable. Further, the total content may be 100% by mass or less, 98% by mass or less, or 97% by mass or less.
  • the inorganic fiber (X2) further contains one or more selected from the group consisting of Na 2 O, K 2 O, TiO 2 , P 2 O 5 and MnO
  • its inclusion in the inorganic fiber (X2) The amounts are as follows.
  • the content of Na 2 O is preferably 1 to 5% by mass, more preferably 1.5 to 4% by mass, and still more preferably 2 to 3% by mass.
  • the content of K 2 O is preferably 0.1 to 1.5% by mass, more preferably 0.2 to 1.2% by mass, and further preferably 0.4 to 0.8% by mass.
  • the content of TiO 2 is preferably 0.2 to 3% by mass, more preferably 0.7 to 2% by mass, and further preferably 1 to 1.5% by mass.
  • the content of P 2 O 5 is preferably 0.01 to 1% by mass, more preferably 0.1 to 0.5% by mass, and further preferably 0.15 to 0.3% by mass.
  • the content of MnO is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass, and further preferably 0.07 to 0.2% by mass.
  • the total content of one or more selected from the group consisting of Na 2 O, K 2 O, TiO 2 , P 2 O 5 and MnO in the inorganic fiber (X2) is preferably 0.5 to 10% by mass, It is more preferably 2 to 7% by mass, and further preferably 3 to 5% by mass.
  • the contents of CaO, MgO and other oxides in the inorganic fiber (X) can be measured by fluorescent X-ray analysis. Moreover, content of the said oxide can be made into content of each oxide converted from content of atoms other than oxygen which forms an oxide.
  • the average fiber length of the inorganic fiber (X) is preferably from 100 to 800 ⁇ m, more preferably from 140 to 500 ⁇ m, still more preferably from 170 to 300 ⁇ m.
  • the average fiber diameter of the inorganic fiber (X) is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and further preferably 3 to 6 ⁇ m.
  • the stability of the friction coefficient can be improved without causing adverse effects such as a significant increase in rotor attack.
  • the average fiber length and the average fiber diameter mean a number average fiber length or a number average fiber diameter indicating an average value of the length or diameter of the corresponding fiber.
  • the average fiber length of 200 ⁇ m indicates that 50 fibers used as a raw material of the friction material composition are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 ⁇ m.
  • Content of the inorganic fiber (X) in the friction material of this embodiment is 5.0 mass% or more and less than 10.0 mass% with respect to 100 mass% of friction material whole quantity.
  • content of the inorganic fiber (X) is in the above range, high friction coefficient stability is obtained in the low-speed and low-temperature braking region, the coefficient of friction fluctuation during one braking is reduced, and excellent friction is obtained in the normal braking region. A coefficient is obtained.
  • the content of the inorganic fiber (X) is less than 5.0% by mass, the coefficient of friction variation during one braking is increased, although the coefficient of friction stability in the low-speed and low-temperature braking region is ensured.
  • the content of the inorganic fiber (X) in the friction material of the present embodiment is preferably 5.0 to 9.9% by mass with respect to 100% by mass of the total friction material, and 7.0 to 9 0.7% by mass is more preferable, and 8.5 to 9.5% by mass is more preferable.
  • the friction material of this embodiment contains 1 or more types selected from the group which consists of organic fiber, another inorganic fiber, and metal fiber besides inorganic fiber (X). These fiber base materials exhibit a reinforcing action in the friction material.
  • organic fiber, other inorganic fiber, and metal fiber may be used individually by 1 type, respectively, and may use 2 or more types together.
  • the friction material of this embodiment does not contain the metal fiber from the viewpoint of not excessively increasing the aggressiveness to the disk rotor which is the counterpart material, or the content thereof is 100% by mass of the total friction material. The content is preferably 0.5% by mass or less.
  • organic fibers examples include aramid fibers, acrylic fibers, and cellulose fibers. Among these, an aramid fiber is preferable from the viewpoints of heat resistance, a reinforcing effect, and appropriate provision of voids.
  • the aramid fiber can use the well-known thing currently used for the friction material.
  • the average fiber length of the organic fibers is, for example, 650 to 1500 ⁇ m, and preferably 1000 to 1300 ⁇ m. The method for measuring the average fiber length is the same as described above.
  • the friction material of the present embodiment contains organic fibers, the content thereof is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the total friction material, and 2 to 2%. More preferably, 4% by mass.
  • inorganic fibers examples include ceramic fibers, biodegradable ceramic fibers, mineral fibers, carbon fibers, glass fibers, and potassium titanate fibers.
  • ceramic fiber and carbon fiber from the viewpoint of toughness of the inorganic fiber.
  • the friction material of this embodiment may not contain other inorganic fibers according to the desired performance.
  • metal fiber is not included in the definition of inorganic fiber.
  • the total content of the fiber base material in the friction material of the present embodiment is preferably 6 to 20% by mass, more preferably 7 to 17% by mass, and 8 to 15% by mass with respect to 100% by mass of the total friction material. Further preferred. When the total content of the fiber base is within the above range, higher friction coefficient stability is obtained in the low-speed and low-temperature braking region and the normal braking region.
  • the friction material of the present embodiment preferably contains an inorganic filler.
  • the inorganic filler include titanate, wollastonite, metal powder, graphite, various oxides used as an abrasive, and other inorganic fillers.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the friction material of the present embodiment does not contain metal powder from the viewpoint of not excessively increasing the aggressiveness to the disk rotor as the counterpart material, or the content thereof is 100% by mass of the total friction material. The content is preferably 0.5% by mass or less.
  • titanate The friction material of this embodiment preferably contains titanate as an inorganic filler. Since titanate has a low Mohs hardness of about 4 and a relatively high melting point of 1000 ° C. or higher, an increase in wear of the friction material can be reduced by interposing at the friction interface during high-speed high-temperature braking.
  • titanates include 6 potassium titanate, 8 potassium titanate, lithium potassium titanate, magnesium potassium titanate, and sodium titanate. Of these, potassium hexatitanate and potassium potassium titanate are preferable from the viewpoint of the stability of the friction coefficient in the low-speed low-temperature braking region.
  • One titanate may be used alone, or two or more may be used in combination. From the viewpoint of wear resistance during high-speed high-temperature braking, one type of titanate may be used alone. preferable.
  • the titanate is preferably not acicular from the viewpoint of human harm. That is, it is preferable that the friction material of this embodiment contains non-acicular titanate.
  • a non-acicular titanate means a plate-like titanate having a polygonal shape, a circle shape, an ellipse shape, or the like, or an indefinite shape titanate.
  • the average particle size of titanate is preferably 2 to 50 ⁇ m, more preferably 2.2 to 40 ⁇ m, and even more preferably 2.5 to 30 ⁇ m.
  • the average particle diameter in this specification means a median diameter (D50) and can be measured using a method such as laser diffraction particle size distribution measurement.
  • a laser diffraction / scattering particle size distribution measuring device for example, a laser diffraction / scattering particle size distribution measuring device, trade name: LA-920 (manufactured by Horiba, Ltd.) can be used. Moreover, it can also measure by sieve classification represented by JIS B4130 etc.
  • the content thereof is preferably 15 to 25% by mass, more preferably 15 to 22% by mass, and more preferably 15 to 20% with respect to 100% by mass of the total friction material. More preferred is mass%.
  • the titanate content is equal to or higher than the above lower limit value, excellent wear resistance during high-speed high-temperature braking is obtained, and a sufficient friction coefficient retention effect is obtained. It is possible to suppress a decrease in the friction coefficient.
  • non-acicular titanate having an average particle diameter of 2 to 50 ⁇ m is 15 to 25 mass with respect to 100 mass% of the total friction material. % Content is particularly preferable.
  • Wollastonite is a silicate mineral represented by CaSiO 3 and has, for example, a needle shape or a long column shape.
  • the average aspect ratio (average length / average diameter or thickness) of wollastonite is preferably 3 or more, more preferably 4 to 12, and still more preferably 5 to 8.
  • the average aspect ratio means a D50 value (cumulative median of volume distribution), and can be measured by, for example, a dynamic image analysis method.
  • the average length of wollastonite is preferably 100 to 500 ⁇ m, more preferably 150 to 450 ⁇ m, and even more preferably 200 to 400 ⁇ m from the viewpoint of imparting strength to the friction material.
  • the content thereof is preferably 2 to 10% by mass, more preferably 3 to 8% by mass with respect to 100% by mass of the total friction material, and 4 to 7 More preferred is mass%.
  • the friction material of this embodiment may contain zirconium silicate, triiron tetraoxide, triiron dioxide, bismuth oxide, zirconium oxide, or the like as an abrasive. Among these, zirconium silicate and zirconium oxide are preferable.
  • Zirconium silicate has a high Mohs hardness of 6 to 7.5 and is effective in developing a friction coefficient by grinding.
  • the average particle size of zirconium silicate is preferably 0.2 to 2 ⁇ m, more preferably 0.3 to 2 ⁇ m, and further preferably 0.4 to 2 ⁇ m.
  • the content thereof is preferably 4 to 10% by mass and more preferably 5 to 10% by mass with respect to 100% by mass of the total friction material.
  • the friction material of this embodiment may contain 4 to 10% by mass of zirconium silicate having an average particle size of 0.4 to 2 ⁇ m with respect to 100% by mass of the total friction material. Particularly preferred.
  • the friction material of this embodiment may not contain a zirconium silicate according to the desired performance.
  • the average particle diameter of zirconium oxide is preferably 1 to 14 ⁇ m, more preferably 5 to 10 ⁇ m, and still more preferably 8 to 9 ⁇ m.
  • the content thereof is preferably 10 to 20% by mass, more preferably 12 to 19% by mass, and more preferably 14 to 18% by mass with respect to 100% by mass of the total friction material. % Is more preferable.
  • the content of zirconium oxide is not less than the above lower limit value, it has excellent wear resistance during high-speed high-temperature braking, and a sufficient friction coefficient retention effect is obtained. A decrease in coefficient can be suppressed.
  • the friction material of the present embodiment preferably contains graphite. By containing graphite, excellent thermal conductivity can be imparted to the friction material.
  • the average particle diameter of graphite is preferably 100 to 600 ⁇ m, more preferably 200 to 450 ⁇ m, and further preferably 300 to 350 ⁇ m.
  • the content thereof is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the total friction material, and 2 to 4%. More preferred is mass%.
  • the average particle diameter and content of graphite are in the above ranges, it is possible to achieve both good thermal conductivity imparting to the friction material and retention of the friction coefficient.
  • inorganic fillers include magnesium oxide, antimony trisulfide, zirconium hydroxide, tin sulfide, molybdenum disulfide, bismuth sulfide, zinc sulfide, iron sulfide, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate , Barium sulfate, coke, ⁇ alumina, ⁇ alumina, mica, vermiculite, calcium sulfate, mullite, chromite, titanium oxide, silica and the like.
  • zinc sulfide, mica, calcium hydroxide, and barium sulfate are preferable.
  • general materials used for friction materials can be used.
  • the content thereof is preferably 0.5 to 5% by mass and more preferably 1.5 to 3% by mass with respect to 100% by mass of the total friction material.
  • the average particle diameter of zinc sulfide is preferably 0.05 to 5 ⁇ m, more preferably 0.08 to 1 ⁇ m, and further preferably 0.1 to 0.3 ⁇ m.
  • the content is preferably 1 to 10% by mass and more preferably 3 to 7% by mass with respect to 100% by mass of the total friction material.
  • the average particle diameter of mica is preferably 5 to 100 ⁇ m, more preferably 10 to 60 ⁇ m, and further preferably 12 to 20 ⁇ m.
  • the content thereof is preferably 0.01 to 1% by mass, and 0.05 to 0.3% by mass with respect to 100% by mass of the total friction material. More preferred.
  • the average particle size of calcium hydroxide is preferably 10 to 300 ⁇ m, more preferably 30 to 200 ⁇ m, and still more preferably 50 to 100 ⁇ m.
  • the content thereof is preferably 10 to 35% by mass, and more preferably 12 to 30% by mass with respect to 100% by mass of the total friction material.
  • the average particle diameter of barium sulfate is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
  • the total content thereof is preferably 12 to 50% by mass, more preferably 15 to 40% by mass with respect to 100% by mass of the total friction material. 20 to 35% by mass is more preferable.
  • the total content of the inorganic filler in the friction material of the present embodiment is preferably 50 to 85% by mass, more preferably 65 to 80% by mass, and 70 to 77% by mass with respect to 100% by mass of the total friction material. Further preferred.
  • the friction material of the present embodiment preferably contains an organic filler.
  • the organic filler is included as a friction modifier for improving the sound vibration performance, wear resistance and the like of the friction material.
  • An organic filler may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the organic filler include cashew dust and rubber components.
  • cashew dust for example, any cashew dust can be used as long as it is usually used for a friction material obtained by pulverizing and curing cashew nut shell oil.
  • the cashew dust is preferably unmodified cashew dust.
  • the average particle size of cashew dust is preferably 50 to 600 ⁇ m, more preferably 70 to 550 ⁇ m, and still more preferably 100 to 500 ⁇ m.
  • the content thereof is preferably 2 to 10% by mass, more preferably 4 to 8% by mass with respect to 100% by mass of the total friction material, and 5 to 7% by mass. % Is more preferable.
  • the content of cashew dust is in the above range, sound vibration performance such as squealing due to low elasticity of the friction material can be improved.
  • the rubber component known materials used for friction materials can be used, and examples thereof include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber) and the like.
  • the content thereof is preferably 0.2 to 10% by mass, more preferably 0.5 to 5% by mass, with respect to 100% by mass of the total friction material. It is more preferably 1 to 3% by mass.
  • the friction material of the present embodiment preferably contains one or more selected from the group consisting of cashew dust and a rubber component, and more preferably used in combination with cashew dust and a rubber component.
  • the cashew dust coated with the rubber component may be used. From the viewpoint of sound vibration performance, the cashew dust and the rubber component may be blended separately. Good.
  • the content thereof is preferably 2 to 20% by mass, more preferably 3 to 12% by mass with respect to 100% by mass of the total amount of the friction material. More preferred is mass%.
  • the content of the organic filler is within the above range, sound vibration performance such as squealing due to low elasticity of the friction material is improved, and deterioration in heat resistance and strength reduction due to thermal history can be avoided.
  • the friction material of this embodiment preferably further contains a binder.
  • the binding material provides strength by integrating an organic filler, a fiber base material, and the like contained in the friction material.
  • a binder may be used individually by 1 type and may be used in combination of 2 or more type.
  • a thermosetting resin usually used for a friction material can be used.
  • the thermosetting resin include various modified phenol resins such as phenol resin, acrylic rubber-modified phenol resin, silicone-modified phenol resin, cashew-modified phenol resin, epoxy-modified phenol resin, and alkylbenzene-modified phenol resin.
  • a silicone-modified phenol resin is preferable from the viewpoint of improving the water repellency at the friction interface.
  • silicone-modified phenol resin a phenol resin in which silicone oil or silicone rubber is dispersed is preferable.
  • the silicone-modified phenol resin may be used alone, but may be used in combination with a thermosetting resin other than the above-described silicone-modified phenol resin, and is preferably used in combination with an acrylic rubber-modified phenol resin.
  • the content of the binder in the friction material of the present embodiment is preferably 5 to 10% by mass, more preferably 6 to 10% by mass, and even more preferably 7 to 9% by mass with respect to 100% by mass of the total friction material.
  • the content of the binder is within the above range, it is possible to further suppress a decrease in strength of the friction material, and it is possible to suppress deterioration in sound vibration performance such as squeal due to a decrease in the porosity of the friction material and an increase in the elastic modulus. .
  • the friction material of the present embodiment may contain other materials other than the above components as necessary.
  • the friction material of this embodiment can be manufactured by a generally used method.
  • a manufacturing method of the friction material of this embodiment the method of heat-pressing and manufacturing the friction material composition which satisfies the composition of the friction material of this embodiment is mentioned, for example.
  • the friction material composition of the present embodiment to be described later is uniformly mixed using a mixer such as a Laedige (registered trademark) mixer, a pressure kneader, an Eirich (registered trademark) mixer, and the mixture is mixed.
  • Preliminary molding is performed with a molding die, and the obtained preform is molded under conditions of a molding temperature of 140 to 150 ° C., a molding pressure of 30 to 45 MPa, and a molding time of 3 to 6 minutes.
  • a heat treatment method at 3 ° C. for 3 to 4 hours can be mentioned.
  • the friction material of this embodiment is used in the following aspects (1) to (3), for example.
  • Friction material only configuration Friction member having a back metal and the friction material of the present embodiment to be a friction surface formed on the back metal (3)
  • the back metal A structure in which a primer layer for the purpose of surface modification for enhancing the adhesion effect of the backing metal and an adhesive layer for the purpose of bonding the backing metal and the friction member are further interposed between the friction member and the friction member.
  • the backing metal is used to improve the mechanical strength of the friction member. Examples of the material include metals such as iron and stainless steel; fiber reinforced plastics such as inorganic fiber reinforced plastics and carbon fiber reinforced plastics. .
  • the primer layer and the adhesive layer may be those used for friction members such as brake shoes.
  • the friction material of this embodiment is suitable as a friction material for disc brake pads and brake linings for automobiles.
  • the friction material of this embodiment can be used also as friction materials, such as a clutch facing, an electromagnetic brake, a holding brake, by giving processes, such as a shaping
  • the friction material of this embodiment is suitable for a brake pad for a passenger car mounted on a control brake such as a regenerative brake because it can exhibit a stable friction coefficient in a low-speed low-temperature braking region. That is, according to the present invention, it is possible to provide a passenger vehicle such as an electric vehicle or a hybrid vehicle equipped with a control brake using the friction material of the present embodiment.
  • the friction material of the present embodiment is excellent in stability of friction coefficient, wear resistance at high temperature, etc., it is useful as a “upholstery material” for friction members such as disc brake pads and brake linings. It can also be molded and used as a “underlaying material” for the member.
  • the “upper material” is a friction material that becomes the friction surface of the friction member
  • the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.
  • the friction material composition according to the first embodiment of the present invention does not contain copper, or even if it contains copper, the content thereof is a friction material composition of 0.5% by mass or less as copper element, and is biosoluble.
  • the friction material composition according to the second embodiment of the present invention does not contain copper, or even if it contains copper, the content thereof is a friction material composition of 0.5% by mass or less as a copper element. It is a friction material composition containing 5.0 mass% or more and less than 10.0 mass% of inorganic fibers (X2) containing magnesium oxide with respect to 100 mass% of the total friction material.
  • the term “friction material composition of the present embodiment” refers to both the friction material composition according to the first embodiment and the friction material composition according to the second embodiment.
  • the kind of each component contained in the friction material composition of this embodiment, and its manufacturing method are demonstrated similarly to the friction material of the said embodiment, The suitable aspect is altogether the same.
  • the preferable range of the content of each component in the friction material composition is the same as the preferable range described in the friction material of the present embodiment, but the reference of the content is “100% by mass of the total friction material composition”.
  • this invention also provides the friction material formed by shape
  • the friction material formed by molding the friction material composition of the present embodiment includes, for example, a method of hot-pressing a preform formed by preforming the friction material composition of the present embodiment, and the friction material composition of the present embodiment. It can be produced by a method such as direct hot pressing, heat treatment as necessary, and thermosetting the binder.
  • the specific manufacturing method is as described in the manufacturing method of the friction material of the present embodiment and the examples described later.
  • Examples 1 to 12 and Comparative Examples 1 to 3 [Production of disc brake pads]
  • the materials were blended according to the blending amounts (% by mass) shown in Table 1, and the friction material compositions of Examples 1 to 12 and Comparative Examples 1 to 3 were obtained.
  • the friction material composition is mixed with a Ladige (registered trademark) mixer (manufactured by Matsubo Co., Ltd., trade name: Ladige mixer M20), and the mixture is preformed with a molding press (manufactured by Oji Machinery Co., Ltd.). did.
  • Ladige registered trademark
  • the obtained preform is molded using a molding press (manufactured by Sanki Seiko Co., Ltd.) under the conditions of a molding temperature of 150 ° C., a molding pressure of 30 MPa, and a molding time of 5 minutes, and a backing metal (manufactured by Hitachi Automotive Systems). Together with heating and pressing. Subsequently, the obtained molded product was heat-treated at 200 ° C. for 4 hours, polished using a rotary polishing machine, subjected to scorch treatment at 500 ° C., and a disc brake pad (friction material thickness 9 mm, friction material projected area). 52 cm 2 ) was obtained.
  • a molding press manufactured by Sanki Seiko Co., Ltd.
  • Resin A Silicone-modified phenolic resin (PR54529 manufactured by Sumitomo Bakelite Co., Ltd.)
  • Resin B Acrylic rubber modified phenolic resin (PR55291A manufactured by Sumitomo Bakelite Co., Ltd.)
  • Cashew dust average particle size of 100 to 500 ⁇ m (FF2600 manufactured by Tohoku Kako Co., Ltd.) ⁇ Rubber component (tire rubber powder): Powder TPA manufactured by Carquest Co., Ltd.
  • Copper fiber Average fiber length 3000 ⁇ m ⁇ Aramid fiber: Average fiber length 1170 ⁇ m
  • Mineral fiber A Mineral fiber having biosolubility Average fiber length: 230 ⁇ 50 ⁇ m Average fiber diameter: 5.5 ⁇ m CaO content: 21.3 mass% MgO content: 6.0% by mass Other components: SiO 2 (42.5 mass%), Al 2 O 3 (18.0 mass%), TiO 2 (1.5 mass%), Fe 2 O 3 (7.9 mass%), Na 2 O (2.0 wt%), K 2 O (0.5 wt%), P 2 O 5 ( 0.2 wt%), MnO (0.1 wt%)
  • Mineral fiber B Mineral fiber having biological solubility Average fiber length: 650 ⁇ 150 ⁇ m Average fiber diameter: 5.5 ⁇ m CaO content: 21.3 mass% MgO content: 6.0% by mass Other components: SiO 2 (42.5 mass%), Al 2 O 3 (18.0 mass%), TiO 2 (1.5 mass%), Fe 2 O 3 (7.9 mass%), Na 2 O (2.0 wt%)
  • Potassium titanate A Potassium titanate 8 (average particle size 3.5 ⁇ m, shape: irregular) -Potassium titanate B: Potassium titanate (average particle size 6 ⁇ m, shape: columnar) -Potassium titanate C: Potassium titanate 6 (average particle size 27 ⁇ m, shape: irregular) Potassium titanate D: Potassium titanate 6 (average particle size 30 ⁇ m, shape: irregular) -Potassium titanate E: Potassium titanate 6 (average particle diameter 46 ⁇ m, shape: irregular) ⁇ Lithium potassium titanate: average particle size 2.5 ⁇ m, shape: plate shape, wollastonite: average length 300 ⁇ m, aspect ratio: 6 Graphite: average particle size 300 to 350 ⁇ m (4058 manufactured by TIMCAL) ⁇ Zirconium oxide: Average particle size 8-9 ⁇ m ⁇ Zirconium silicate A: average particle size of 1 to 2 ⁇ m (MZ1000B, manufactured by
  • the friction material, friction material composition and friction member of the present invention can express a stable coefficient of friction in a low-speed and low-temperature braking region without using copper having a high environmental load compared to conventional products, and are excellent in a normal braking region. Since it has a friction coefficient, it is suitable not only for general passenger cars but also for brake pads for passenger cars equipped with a control brake such as a regenerative brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Braking Arrangements (AREA)

Abstract

The present invention pertains to: a friction material which does not contain copper or when containing copper, contains an amount at which the copper element content constitutes no more than 0.5 mass%, the friction material also containing biosoluble inorganic fibers (X1) in an amount which constitutes at least 5.0 mass% and less than 10.0 mass%; and a friction material which does not contain copper or when containing copper, contains an amount at which the copper element content constitutes no more than 0.5 mass%, the friction material also containing inorganic fibers (X2) which contain calcium oxide and magnesium oxide and constitute at least 5.0 mass% and less than 10.0 mass%.

Description

摩擦材、摩擦材組成物及び摩擦部材Friction material, friction material composition, and friction member
 本発明は、摩擦材、摩擦材組成物及び摩擦部材に関する。 The present invention relates to a friction material, a friction material composition, and a friction member.
 自動車等には、制動のためにディスクブレーキパッド、ブレーキライニング等の摩擦材が使用されている。これらの摩擦材は、相手材となるディスクロータ、ブレーキドラム等と摩擦することによって制動の役割を果たす。そのため摩擦材には、使用条件に応じた適切な摩擦係数(効き特性)が求められるだけではなく、ブレーキ鳴きが発生しにくいこと(鳴き特性)、摩擦材の寿命が長いこと(耐摩耗性)等が要求される。 In automobiles, friction materials such as disc brake pads and brake linings are used for braking. These friction materials play a role of braking by friction with a disk rotor, a brake drum, or the like which is a counterpart material. For this reason, friction materials not only require an appropriate coefficient of friction (effectiveness characteristics) according to the conditions of use, but also make it difficult for brake noise to occur (squeal characteristics), and the friction material has a long life (wear resistance). Etc. are required.
 摩擦材は繊維基材としてスチール繊維を30~60質量%含有するセミメタリック材と、スチール繊維を30質量%未満含有するロースチール材と、スチール繊維を含有しないNAО(Non-Asbestos Organic)材に大別される。ただし、スチール繊維を微量に含有する摩擦材もNAО材に分類されることがある。 Friction materials include semi-metallic materials containing 30 to 60% by mass of steel fibers as a fiber base material, raw steel materials containing less than 30% by mass of steel fibers, and NAO (Non-Asbestos Organic) materials that do not contain steel fibers. Broadly divided. However, friction materials containing a small amount of steel fibers may be classified as NAO materials.
 NAО材はスチール繊維を含有しないため、セミメタリック材及びロースチール材と比較して、相手材であるディスクロータへの攻撃性が低いという特徴がある。このような利点から、現在、日本、米国等では効き、鳴き及び耐摩耗性のバランスに優れるNAО材が主流となっている。一方、欧州では高速制動時の摩擦係数保持の観点からロースチール材が用いられることが多かったが、近年は市場の高級志向化に応えるべく、タイヤのホイール汚れ及びブレーキ鳴きが発生しにくいNAО材が用いられることが増えてきている。 Since NAO material does not contain steel fibers, it has a feature that it is less aggressive to the disk rotor as the counterpart material than semi-metallic material and low steel material. Because of these advantages, NAO materials that are effective in Japan, the United States, etc., and have a good balance between squealing and wear resistance, are currently mainstream. On the other hand, in Europe, low steel materials were often used from the viewpoint of maintaining a friction coefficient during high-speed braking, but in recent years, NAO materials are less prone to tire wheel dirt and brake noise in order to respond to a higher-grade market. Are increasingly being used.
 NAO材は、粉末又は繊維の状態の銅を含有するものが一般的である。しかし、銅、銅合金等を含有する摩擦材は、制動時に発生する摩耗粉中に銅を含むため、河川、湖等を汚染する可能性が示唆されている。そのため、米国のカリフォルニア州、ワシントン州等では2021年以降は銅を5質量%以上、2023年以降は銅を0.5質量%以上含有する摩擦材の販売及び新車への組み付けを禁止する法案が可決されており、これに対応するため銅を含有しない、又は銅の含有量が少ないNAO材の開発が急務となっている。 The NAO material generally contains copper in a powder or fiber state. However, friction materials containing copper, copper alloys, and the like contain copper in wear powder generated during braking, and thus have been suggested to possibly contaminate rivers, lakes, and the like. For this reason, in California, Washington, etc. in the United States, there is a bill that prohibits the sale of friction materials containing more than 5% by mass of copper after 2021, and the addition of 0.5% by mass of copper after 2023, and the assembly into new cars. In response to this, there is an urgent need to develop a NAO material that does not contain copper or has a low copper content.
 銅の代表的な機能の1つ目として、熱伝導率の付与が挙げられる。銅は熱伝導率が高いため、制動時に発生した熱を摩擦界面から拡散させることで、過度の温度上昇による摩耗を抑制する。
 銅の代表的な機能の2つ目として、高温制動時における摩擦界面の保護が挙げられる。
 銅は延性及び展性が高いため、制動によって摩擦材表面に延びて被膜を形成する。その結果、高速高温制動時に摩擦材の摩耗を低減すると共に、安定した摩擦係数の発現が可能となる。また、銅の延展膜が研削材を保持しやすくなるので、低速低温制動域においても良好な摩擦係数を発現可能となる。
 したがって、銅を含有しない、又は銅の含有量が少ないNAO材を開発するためには、上記のような熱伝導率の向上、界面保護及び研削材保持の観点から、銅代替技術が必要となる。
One of the typical functions of copper is to impart thermal conductivity. Since copper has high thermal conductivity, wear caused by excessive temperature rise is suppressed by diffusing heat generated during braking from the friction interface.
The second typical function of copper is protection of the friction interface during high-temperature braking.
Since copper has high ductility and malleability, it extends to the friction material surface by braking to form a coating. As a result, it is possible to reduce friction material wear during high-speed and high-temperature braking and to develop a stable friction coefficient. Further, since the copper spreading film can easily hold the abrasive, a good friction coefficient can be expressed even in the low-speed and low-temperature braking region.
Therefore, in order to develop a NAO material that does not contain copper or has a low copper content, a copper replacement technique is required from the viewpoints of improving the thermal conductivity, protecting the interface, and holding the abrasive. .
 このような動きの中、銅を含有しない、又は銅の含有量が少ない摩擦材について検討されている(例えば、特許文献1、2等)。 In such a movement, friction materials that do not contain copper or have a low copper content are being studied (for example, Patent Documents 1 and 2).
特開2015-205959号公報JP2015-205959A 特開2015-059125号公報Japanese Patent Laying-Open No. 2015-059125
 また、近年、上記の銅代替とは別の観点で重要な課題が発生している。それは、回生ブレーキに代表される制御ブレーキへの適合性である。従来の油圧ブレーキでは、ドライバーがブレーキペダルからの入力を微調整することで、車両の制動力を適時調整してきた。
 しかし、制御ブレーキでは、制動の一部をシステム側が担うため、摩擦材が発現する摩擦係数が極端に変動してしまうと、制御に不具合が生じてしまう。例えば、摩擦係数が極端に低下すると、制動距離が長くなり過ぎて最悪の場合事故の原因となり得る。したがって、制御ブレーキの精度を高めるためには、摩擦材が発現する摩擦係数がいかなるときも安定していることが極めて重要である。
In recent years, important issues have arisen from a viewpoint different from the above copper replacement. It is adaptability to a control brake represented by a regenerative brake. In conventional hydraulic brakes, the driver has adjusted the braking force of the vehicle in a timely manner by finely adjusting the input from the brake pedal.
However, in the control brake, since the system side takes part of the braking, if the friction coefficient expressed by the friction material fluctuates extremely, a problem occurs in the control. For example, if the friction coefficient is extremely reduced, the braking distance becomes too long, which may cause an accident in the worst case. Therefore, in order to increase the accuracy of the control brake, it is extremely important that the friction coefficient expressed by the friction material is stable at any time.
 摩擦係数が変動する代表例として、銅を含有しない摩擦材における低速低温制動域の摩擦係数低下が挙げられる。銅を含有しない摩擦材では、低速低温制動域においてディスクロータ表面に移着膜を形成し難く、研削材保持の効果を発現し難い。その結果、研削作用によるディスクロータへの攻撃性及びディスクロータ由来の鉄成分とディスクロータの間に生じるせん断抗力が低下するので、通常時に比べて摩擦係数が低下する傾向にある。その場合、上記のように、制動距離が長くなり、ブレーキ力が低下してしまうなどの不具合が生じ、ドライバーの快適性が損なわれてしまう。 A typical example of the friction coefficient variation is a decrease in the friction coefficient in a low-speed and low-temperature braking region in a friction material that does not contain copper. In the friction material not containing copper, it is difficult to form a transfer film on the surface of the disk rotor in the low-speed and low-temperature braking region, and it is difficult to exhibit the effect of holding the abrasive. As a result, the aggressiveness to the disk rotor due to the grinding action and the shear drag generated between the iron component derived from the disk rotor and the disk rotor are reduced, so that the friction coefficient tends to be lower than in the normal case. In this case, as described above, the braking distance becomes long and the braking force is reduced, so that the driver's comfort is impaired.
 また、低速低温制動における一制動中の摩擦係数変動率の増大も、摩擦係数が変動する代表例として挙げられる。銅を含有しない摩擦材では、制動時に発生した摩耗粉の排出性が低く、摩耗粉が摩擦材とディスクロータとの摩擦界面に堆積しやすい。その結果、摩擦界面での粉体抵抗が上がるため、摩擦係数の変動率が大きくなる。これにより、ブレーキをかけた停止際に鳴きが発生するなどの不具合が生じ、ドライバーの快適性が損なわれる。 In addition, an increase in the coefficient of friction variation during one braking in low-speed low-temperature braking is a typical example in which the coefficient of friction varies. The friction material containing no copper has a low ability to discharge wear powder generated during braking, and the wear powder tends to accumulate at the friction interface between the friction material and the disk rotor. As a result, the powder resistance at the friction interface is increased, and the coefficient of variation of the friction coefficient is increased. As a result, problems such as squealing occur when the brake is applied and the driver's comfort is impaired.
 このような観点から考えると、特許文献1及び2に開示されている技術は、銅の高い熱伝導率性及び高温潤滑性に着目した、高速高温制動時の摩擦特性の補完のみを課題とするものであり、低速低温制動域の摩擦係数の安定性及びその他の摩擦特性については考慮されていない。 From this point of view, the techniques disclosed in Patent Documents 1 and 2 focus only on the high thermal conductivity and high-temperature lubricity of copper, and only complement the friction characteristics during high-speed and high-temperature braking. However, the stability of the friction coefficient in the low-speed low-temperature braking region and other friction characteristics are not taken into consideration.
 そこで、本発明は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の環境有害性及び人体有害性が低い組成で、低速低温制動域における優れた摩擦係数の安定性と、通常制動域における優れた摩擦係数とを両立する摩擦材、摩擦材組成物、該摩擦材を用いた摩擦部材を提供することを目的とする。 Therefore, the present invention does not contain copper, or even if it contains copper, the content thereof is 0.5% by mass or less as a copper element, and the composition is low in environmental and human harm, and is excellent in a low-speed low-temperature braking region. It is an object of the present invention to provide a friction material, a friction material composition, and a friction member using the friction material that achieve both stability of the friction coefficient and an excellent friction coefficient in a normal braking range.
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、特定の無機繊維を特定比率で含有させた摩擦材が、低速低温制動域の摩擦係数の安定性と、通常制動域の摩擦係数とを高度に両立するものとなることを見出した。すなわち、本発明は、下記[1]~[21]に関する。
[1]銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、生体溶解性を有する無機繊維(X1)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材。
[2]前記無機繊維(X1)の平均繊維長が、100~800μmである、上記[1]に記載の摩擦材。
[3]銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材。
[4]前記無機繊維(X2)中における、酸化カルシウムの含有量が15~30質量%であり、酸化マグネシウムの含有量が3~20質量%である、上記[3]に記載の摩擦材。
[5]前記無機繊維(X2)中における、酸化カルシウム及び酸化マグネシウムの総含有量が、18~40質量%である、上記[3]又は[4]に記載の摩擦材。
[6]さらに、無機充填材として、平均粒子径が0.4~2μmの珪酸ジルコニウムを、摩擦材全量100質量%に対して、4~10質量%含有する、上記[1]~[5]のいずれかに記載の摩擦材。
[7]さらに、無機充填材として、非針状であって平均粒子径が2~50μmのチタン酸塩を、摩擦材全量100質量%に対して、15~25質量%含有する、上記[1]~[6]のいずれかに記載の摩擦材。
[8]さらに、無機充填材として、酸化ジルコニウムを、摩擦材全量100質量%に対して、10~20質量%含有する、上記[1]~[7]のいずれかに記載の摩擦材。
[9]さらに、無機充填材として、ウォラストナイトを、摩擦材全量100質量%に対して、2~10質量%含有する、上記[1]~[8]のいずれかに記載の摩擦材。
[10]金属粉を含まない、又は含んでいてもその含有量が、摩擦材全量100質量%に対して、0.5質量%以下である、上記[1]~[9]のいずれかに記載の摩擦材。
[11]上記[1]~[10]のいずれかに記載の摩擦材と裏金とを一体化してなる摩擦部材。
[12]銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、生体溶解性を有する無機繊維(X1)を、摩擦材組成物全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材組成物。
[13]前記無機繊維(X1)の平均繊維長が、100~800μmである、上記[12]に記載の摩擦材組成物。
[14]銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材組成物全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材組成物。
[15]前記無機繊維(X2)中における、酸化カルシウムの含有量が15~30質量%であり、酸化マグネシウムの含有量が3~20質量%である、上記[14]に記載の摩擦材組成物。
[16]前記無機繊維(X2)中における、酸化カルシウム及び酸化マグネシウムの総含有量が、18~40質量%である、上記[14]又は[15]に記載の摩擦材組成物。
[17]さらに、無機充填材として、平均粒子径が0.4~2μmの珪酸ジルコニウムを、摩擦材組成物全量100質量%に対して、4~10質量%含有する、上記[12]~[16]のいずれかに記載の摩擦材組成物。
[18]さらに、無機充填材として、非針状であって平均粒子径が2~50μmのチタン酸塩を、摩擦材組成物全量100質量%に対して、15~25質量%含有する、上記[12]~[17]のいずれかに記載の摩擦材組成物。
[19]さらに、無機充填材として、酸化ジルコニウムを、摩擦材組成物全量100質量%に対して、10~20質量%含有する、上記[12]~[18]のいずれかに記載の摩擦材組成物。
[20]さらに、無機充填材として、ウォラストナイトを、摩擦材組成物全量100質量%に対して、2~10質量%含有する、上記[12]~[19]のいずれかに記載の摩擦材組成物。
[21]金属粉を含まない、又は含んでいてもその含有量が、摩擦材組成物全量100質量%に対して、0.5質量%以下である、上記[12]~[20]のいずれかに記載の摩擦材組成物。
As a result of intensive research to achieve the above object, the present inventor has found that a friction material containing a specific inorganic fiber in a specific ratio is stable in the low-temperature low-temperature braking region and in the normal braking region. It has been found that the friction coefficient is highly compatible. That is, the present invention relates to the following [1] to [21].
[1] Even if copper is not included or the content thereof is a friction material of 0.5 mass% or less as a copper element, the inorganic fiber (X1) having biosolubility is 100 mass of the total friction material. % Friction material containing 5.0 mass% or more and less than 10.0 mass%.
[2] The friction material according to [1], wherein the inorganic fiber (X1) has an average fiber length of 100 to 800 μm.
[3] A friction material that does not contain copper or that contains copper, and whose content is 0.5 mass% or less as a copper element, and that contains calcium oxide and magnesium oxide. A friction material containing 5.0% by mass or more and less than 10.0% by mass with respect to the total amount of 100% by mass.
[4] The friction material according to [3], wherein the inorganic fiber (X2) has a calcium oxide content of 15 to 30% by mass and a magnesium oxide content of 3 to 20% by mass.
[5] The friction material according to [3] or [4], wherein the total content of calcium oxide and magnesium oxide in the inorganic fiber (X2) is 18 to 40% by mass.
[6] The above [1] to [5], further comprising 4 to 10% by mass of zirconium silicate having an average particle diameter of 0.4 to 2 μm as an inorganic filler with respect to 100% by mass of the total friction material. The friction material according to any one of the above.
[7] The above [1] further contains 15 to 25% by mass of a non-acicular titanate having an average particle diameter of 2 to 50 μm as an inorganic filler with respect to 100% by mass of the total friction material. ] To [6].
[8] The friction material according to any one of [1] to [7], further comprising 10 to 20% by mass of zirconium oxide as an inorganic filler with respect to 100% by mass of the total friction material.
[9] The friction material according to any one of [1] to [8], further comprising 2 to 10% by mass of wollastonite as an inorganic filler with respect to 100% by mass of the total friction material.
[10] Any of the above [1] to [9], wherein the metal powder is not included or the content thereof is 0.5% by mass or less with respect to 100% by mass of the total amount of the friction material. The friction material described.
[11] A friction member obtained by integrating the friction material according to any one of [1] to [10] and a back metal.
[12] A friction material composition that does not contain copper, or that contains copper, and whose content is 0.5% by mass or less as a copper element, and that has bio-soluble inorganic fibers (X1). A friction material composition containing 5.0% by mass or more and less than 10.0% by mass with respect to 100% by mass of the total amount of the object.
[13] The friction material composition according to [12], wherein the inorganic fiber (X1) has an average fiber length of 100 to 800 μm.
[14] A friction material composition that does not contain copper or contains copper, and the content thereof is 0.5 mass% or less as a copper element, and contains inorganic fibers (X2) containing calcium oxide and magnesium oxide. A friction material composition containing 5.0% by mass or more and less than 10.0% by mass with respect to 100% by mass of the total amount of the friction material composition.
[15] The friction material composition according to [14], wherein the inorganic fiber (X2) has a calcium oxide content of 15 to 30% by mass and a magnesium oxide content of 3 to 20% by mass. object.
[16] The friction material composition according to [14] or [15], wherein the total content of calcium oxide and magnesium oxide in the inorganic fiber (X2) is 18 to 40% by mass.
[17] The above [12] to [12], further containing 4 to 10% by weight of zirconium silicate having an average particle size of 0.4 to 2 μm as an inorganic filler with respect to 100% by weight of the total amount of the friction material composition. 16]. The friction material composition according to any one of 16).
[18] Further, the inorganic filler contains non-acicular titanate having an average particle diameter of 2 to 50 μm in an amount of 15 to 25% by mass with respect to 100% by mass of the total amount of the friction material composition. [12] The friction material composition according to any one of [17].
[19] The friction material according to any one of [12] to [18], further comprising 10 to 20% by mass of zirconium oxide as an inorganic filler with respect to 100% by mass of the total amount of the friction material composition. Composition.
[20] The friction according to any one of [12] to [19], further comprising wollastonite as an inorganic filler in an amount of 2 to 10% by mass with respect to 100% by mass of the total amount of the friction material composition. Material composition.
[21] Any of the above [12] to [20], wherein the metal powder is not included or the content thereof is 0.5% by mass or less with respect to 100% by mass of the total friction material composition. The friction material composition according to claim 1.
 本発明によれば、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の環境有害性及び人体有害性が低い組成で、低速低温制動域における優れた摩擦係数の安定性と、通常制動域における優れた摩擦係数とを両立する摩擦材、摩擦材組成物、該摩擦材を用いた摩擦部材を提供することができる。 According to the present invention, copper does not contain, or even if contained, the content is 0.5% by mass or less as a copper element, and the composition is low in environmental and human harm, and is excellent in a low-speed low-temperature braking region. It is possible to provide a friction material, a friction material composition, and a friction member using the friction material, which have both the stability of the friction coefficient and the excellent friction coefficient in the normal braking range.
 以下、本実施形態の摩擦材、摩擦材組成物及び摩擦部材について詳述するが、本発明は以下の実施形態に限定されるものではない。
 なお、本実施形態の摩擦材及び摩擦材組成物は、アスベストを含有しないものであり、いわゆるノンアスベスト摩擦材及びノンアスベスト摩擦材組成物である。
Hereinafter, although the friction material, friction material composition, and friction member of this embodiment are explained in full detail, this invention is not limited to the following embodiment.
In addition, the friction material and friction material composition of this embodiment do not contain asbestos, and are a so-called non-asbestos friction material and non-asbestos friction material composition.
[摩擦材及び摩擦部材]
 本発明の第1実施形態に係る摩擦材は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、生体溶解性を有する無機繊維(X1)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する摩擦材である。
 本発明の第2実施形態に係る摩擦材は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する摩擦材である。
 なお、以下の説明において、単に「本実施形態の摩擦材」と称する場合、第1実施形態に係る摩擦材と第2実施形態に係る摩擦材の両者を指すものとする。
[Friction material and friction member]
The friction material according to the first embodiment of the present invention does not contain copper, or even if it contains copper, the content of the friction material is 0.5 mass% or less as a copper element, and is an inorganic fiber having biosolubility. (X1) is a friction material containing 5.0% by mass or more and less than 10.0% by mass with respect to 100% by mass of the total amount of the friction material.
The friction material according to the second embodiment of the present invention does not contain copper, or even if it contains copper, the content is a friction material of 0.5 mass% or less as a copper element, and contains calcium oxide and magnesium oxide. It is a friction material containing 5.0 mass% or more and less than 10.0 mass% of inorganic fiber (X2) to do with respect to 100 mass% of friction material whole quantity.
In the following description, when the term “friction material of this embodiment” is simply used, it refers to both the friction material according to the first embodiment and the friction material according to the second embodiment.
 本実施形態の摩擦材は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下と極微量である。このため、本実施形態の摩擦材は、環境有害性及び人体有害性が低いものとなる。
 なお、上記の「銅」とは、繊維状、粉末状等の銅;銅合金、銅化合物などに含まれる銅元素であり、「銅の含有量」は摩擦材全量100質量%に対する含有量を示す。
 銅の含有量は、環境有害性及び人体有害性の観点から、摩擦材全量100質量%に対して、0.5質量%未満が好ましく、0.3質量%以下がより好ましく、0.1質量%以下がさらに好ましく、銅を含有しないことが特に好ましい。
Even if the friction material of this embodiment does not contain copper, the content is 0.5 mass% or less as a copper element, and is very trace amount. For this reason, the friction material of this embodiment becomes a thing with a low environmental hazard and a human body hazard.
In addition, said "copper" is copper element contained in copper, such as a fiber form and a powder form; copper alloy, a copper compound, etc., "copper content" is content with respect to 100 mass% of friction material whole quantity. Show.
The copper content is preferably less than 0.5% by mass, more preferably 0.3% by mass or less, and more preferably 0.1% by mass with respect to 100% by mass of the total amount of the friction material, from the viewpoints of environmental hazards and human injury. % Or less is more preferable, and it is particularly preferable not to contain copper.
<摩擦材の構成成分>
 本実施形態の摩擦材は、繊維基材、無機充填材、有機充填材及び結合材からなる群から選択される1種以上を含有することが好ましい。
 以下、本実施形態の摩擦材が含有する各成分について説明する。
<Constituent components of friction material>
It is preferable that the friction material of this embodiment contains 1 or more types selected from the group which consists of a fiber base material, an inorganic filler, an organic filler, and a binder.
Hereinafter, each component which the friction material of this embodiment contains is demonstrated.
<繊維基材>
 第1実施形態に係る摩擦材は、繊維基材として、生体溶解性を有する無機繊維(X1)(以下、単に「無機繊維(X1)」ともいう)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する。
 第2実施形態に係る摩擦材は、繊維基材として、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)(以下、単に「無機繊維(X2)」ともいう)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する。
 なお、無機繊維(X1)と無機繊維(X2)は、同じものであっても異なるものであってもよい。また、無機繊維(X1)及び無機繊維(X2)は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
 以下の説明において、無機繊維(X1)と無機繊維(X2)に共通する説明については、これらを「無機繊維(X)」と称して説明する。
<Fiber base>
The friction material according to the first embodiment uses, as a fiber base material, an inorganic fiber (X1) having biosolubility (hereinafter, also simply referred to as “inorganic fiber (X1)”) relative to 100 mass% of the total amount of the friction material. 5.0 mass% or more and less than 10.0 mass%.
The friction material according to the second embodiment includes, as a fiber base material, inorganic fibers (X2) containing calcium oxide and magnesium oxide (hereinafter, also simply referred to as “inorganic fibers (X2)”). To 5.0% by mass to less than 10.0% by mass.
In addition, the inorganic fiber (X1) and the inorganic fiber (X2) may be the same or different. Moreover, inorganic fiber (X1) and inorganic fiber (X2) may be used individually by 1 type, respectively, and may use 2 or more types together.
In the following description, the description common to the inorganic fibers (X1) and the inorganic fibers (X2) will be referred to as “inorganic fibers (X)”.
(無機繊維(X1))
 無機繊維(X1)は生体溶解性を有する無機繊維である。
 ここでいう生体溶解性を有する無機繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有するものであり、例えば、生体溶解性の鉱物繊維が挙げられる。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内、又は腹膜内試験で過度の発癌性の証拠がない、又は長期呼吸試験で関連の病原性及び腫瘍発生がないことを満たす無機繊維を示す(EU指令97/69/ECのNotaQ(発癌性適用除外))。
 このような無機繊維(X1)としては、SiO-Al-CaO-MgO-FeO-NaO系繊維等が挙げられ、SiO、Al、CaO、MgO、FeO、NaO等を任意の組み合わせで含有する繊維が挙げられる。
 無機繊維(X1)は、後述する無機繊維(X2)の組成を有することが好ましい。
(Inorganic fiber (X1))
The inorganic fiber (X1) is an inorganic fiber having biosolubility.
The term “inorganic fiber having biosolubility” as used herein means that it is characterized in that even when it is taken into the human body, it is partially decomposed in a short time and discharged outside the body, and examples thereof include biosoluble mineral fibers. . Specifically, the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, Inorganic fibers satisfying a mass half-life of fibers of 20 μm or more within 40 days, or no evidence of excessive carcinogenicity in intraperitoneal tests, or related pathogenicity and tumor development in long-term respiratory tests (EU Directive 97/69 / EC NotaQ (exclusion of carcinogenicity)).
Examples of such inorganic fibers (X1) include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O-based fibers, and the like. SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na Examples thereof include fibers containing 2 O or the like in any combination.
The inorganic fiber (X1) preferably has a composition of an inorganic fiber (X2) described later.
(無機繊維(X2))
 無機繊維(X2)は、酸化カルシウム(以下、「CaO」ともいう)及び酸化マグネシウム(以下、「MgO」ともいう)を含有する無機繊維である。
 なお、上記「CaO及びMgOを含有する無機繊維」とは、CaO及びMgOを、1本の繊維を構成する成分として含有する無機繊維を意味し、後述するCaO及びMgO以外の各成分についても同様である。また、以下の無機繊維(X2)中における各成分の含有量とは、無機繊維(X2)全量100質量%を基準とする含有量である。
 無機繊維(X2)中における、CaOの含有量は、15~30質量%が好ましく、17~25質量%がより好ましく、18~22質量%がさらに好ましい。
 無機繊維(X2)中における、MgOの含有量は、3~20質量%が好ましく、4~15質量%がより好ましく、5~8質量%がさらに好ましい。
 無機繊維(X2)中における、CaO及びMgOの総含有量は、18~40質量%が好ましく、22~35質量%がより好ましく、25~30質量%がさらに好ましい。
(Inorganic fiber (X2))
The inorganic fiber (X2) is an inorganic fiber containing calcium oxide (hereinafter also referred to as “CaO”) and magnesium oxide (hereinafter also referred to as “MgO”).
The “inorganic fiber containing CaO and MgO” means an inorganic fiber containing CaO and MgO as components constituting one fiber, and the same applies to each component other than CaO and MgO described later. It is. Moreover, content of each component in the following inorganic fiber (X2) is content based on 100 mass% of inorganic fiber (X2) whole quantity.
The CaO content in the inorganic fibers (X2) is preferably 15 to 30% by mass, more preferably 17 to 25% by mass, and further preferably 18 to 22% by mass.
The content of MgO in the inorganic fiber (X2) is preferably 3 to 20% by mass, more preferably 4 to 15% by mass, and further preferably 5 to 8% by mass.
The total content of CaO and MgO in the inorganic fiber (X2) is preferably 18 to 40% by mass, more preferably 22 to 35% by mass, and further preferably 25 to 30% by mass.
 無機繊維(X2)は、CaO及びMgO以外のその他の酸化物を含有することが好ましく、その他の酸化物としては、SiO、Al、NaO、KO、TiO、P、MnO、Fe等が挙げられる。これらの中でも、SiO、Al、Feを含有することが好ましい。
 無機繊維(X2)が、SiO、Al及びFeからなる群から選択される1種以上を含有する場合、無機繊維(X2)中におけるその含有量は以下の通りである。
 SiOの含有量は、30~50質量%が好ましく、35~47質量%がより好ましく、40~45質量%がさらに好ましい。
 Alの含有量は、10~30質量%が好ましく、13~25質量%がより好ましく、15~20質量%がさらに好ましい。
 Feの含有量は、1~10質量%が好ましく、2~9質量%がより好ましく、4~8質量%がさらに好ましい。
 無機繊維(X2)中におけるCaO、MgO、SiO、Al及びFeの総含有量は、90質量%以上が好ましく、93質量%以上がより好ましく、95質量%以上がさらに好ましい。また、該総含有量は、100質量%以下であってもよく、98質量%以下であってもよく、97質量%以下であってもよい。
The inorganic fiber (X2) preferably contains other oxides other than CaO and MgO. Examples of other oxides include SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, TiO 2 , P 2 O 5 , MnO, Fe 2 O 3 and the like. Among these, it preferably contains SiO 2, Al 2 O 3, Fe 2 O 3.
Inorganic fibers (X2) is, when it contains one or more selected from the group consisting of SiO 2, Al 2 O 3 and Fe 2 O 3, the content in the inorganic fibers (X2) in are as follows .
The content of SiO 2 is preferably 30 to 50% by mass, more preferably 35 to 47% by mass, and further preferably 40 to 45% by mass.
The content of Al 2 O 3 is preferably 10 to 30% by mass, more preferably 13 to 25% by mass, and further preferably 15 to 20% by mass.
The content of Fe 2 O 3 is preferably 1 to 10% by mass, more preferably 2 to 9% by mass, and further preferably 4 to 8% by mass.
The total content of CaO, MgO, SiO 2 , Al 2 O 3 and Fe 2 O 3 in the inorganic fiber (X2) is preferably 90% by mass or more, more preferably 93% by mass or more, and further more preferably 95% by mass or more. preferable. Further, the total content may be 100% by mass or less, 98% by mass or less, or 97% by mass or less.
 無機繊維(X2)が、さらに、NaO、KO、TiO、P及びMnOからなる群から選択される1種以上を含有する場合、無機繊維(X2)中におけるその含有量は以下の通りである。
 NaOの含有量は、1~5質量%が好ましく、1.5~4質量%がより好ましく、2~3質量%がさらに好ましい。
 KOの含有量は、0.1~1.5質量%が好ましく、0.2~1.2質量%がより好ましく、0.4~0.8質量%がさらに好ましい。
 TiOの含有量は、0.2~3質量%が好ましく、0.7~2質量%がより好ましく、1~1.5質量%がさらに好ましい。
 Pの含有量は、0.01~1質量%が好ましく、0.1~0.5質量%がより好ましく、0.15~0.3質量%がさらに好ましい。
 MnOの含有量は、0.01~1質量%が好ましく、0.05~0.5質量%がより好ましく、0.07~0.2質量%がさらに好ましい。
 無機繊維(X2)中におけるNaO、KO、TiO、P及びMnOからなる群から選択される1種以上の総含有量は、0.5~10質量%が好ましく、2~7質量%がより好ましく、3~5質量%がさらに好ましい。
In the case where the inorganic fiber (X2) further contains one or more selected from the group consisting of Na 2 O, K 2 O, TiO 2 , P 2 O 5 and MnO, its inclusion in the inorganic fiber (X2) The amounts are as follows.
The content of Na 2 O is preferably 1 to 5% by mass, more preferably 1.5 to 4% by mass, and still more preferably 2 to 3% by mass.
The content of K 2 O is preferably 0.1 to 1.5% by mass, more preferably 0.2 to 1.2% by mass, and further preferably 0.4 to 0.8% by mass.
The content of TiO 2 is preferably 0.2 to 3% by mass, more preferably 0.7 to 2% by mass, and further preferably 1 to 1.5% by mass.
The content of P 2 O 5 is preferably 0.01 to 1% by mass, more preferably 0.1 to 0.5% by mass, and further preferably 0.15 to 0.3% by mass.
The content of MnO is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass, and further preferably 0.07 to 0.2% by mass.
The total content of one or more selected from the group consisting of Na 2 O, K 2 O, TiO 2 , P 2 O 5 and MnO in the inorganic fiber (X2) is preferably 0.5 to 10% by mass, It is more preferably 2 to 7% by mass, and further preferably 3 to 5% by mass.
 なお、無機繊維(X)中におけるCaO、MgO及びその他の酸化物の含有量は、蛍光X線分析によって測定することができる。また、上記酸化物の含有量は、酸化物を形成する酸素以外の原子の含有量から換算される各酸化物の含有量とすることができる。 The contents of CaO, MgO and other oxides in the inorganic fiber (X) can be measured by fluorescent X-ray analysis. Moreover, content of the said oxide can be made into content of each oxide converted from content of atoms other than oxygen which forms an oxide.
 無機繊維(X)の平均繊維長は、100~800μmが好ましく、140~500μmがより好ましく、170~300μmがさらに好ましい。平均繊維長が上記範囲であると、ロータ攻撃性の著しい増大等の弊害を与えることなく、摩擦係数の安定性を高めることができる。
 無機繊維(X)の平均繊維径は、1~10μmが好ましく、2~8μmがより好ましく、3~6μmがさらに好ましい。平均繊維径が上記範囲であると、ロータ攻撃性の著しい増大等の弊害を与えることなく、摩擦係数の安定性を高めることができる。
 ここで、平均繊維長及び平均繊維径とは、該当する繊維の長さ又は直径の平均値を示した数平均繊維長又は数平均繊維径のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物の原料として用いる繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。
The average fiber length of the inorganic fiber (X) is preferably from 100 to 800 μm, more preferably from 140 to 500 μm, still more preferably from 170 to 300 μm. When the average fiber length is in the above range, the stability of the friction coefficient can be enhanced without causing adverse effects such as a significant increase in rotor attack.
The average fiber diameter of the inorganic fiber (X) is preferably 1 to 10 μm, more preferably 2 to 8 μm, and further preferably 3 to 6 μm. When the average fiber diameter is in the above range, the stability of the friction coefficient can be improved without causing adverse effects such as a significant increase in rotor attack.
Here, the average fiber length and the average fiber diameter mean a number average fiber length or a number average fiber diameter indicating an average value of the length or diameter of the corresponding fiber. For example, the average fiber length of 200 μm indicates that 50 fibers used as a raw material of the friction material composition are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 μm.
 本実施形態の摩擦材中における無機繊維(X)の含有量は、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満である。無機繊維(X)の含有量が上記範囲であると、低速低温制動域において高い摩擦係数の安定性が得られ、一制動中の摩擦係数変動率も小さくなると共に、通常制動域において優れた摩擦係数が得られる。一方、無機繊維(X)の含有量が5.0質量%未満であると、低速低温制動域の摩擦係数安定性は担保されるものの、一制動中の摩擦係数変動率は大きくなる。また、無機繊維(X)の含有量が10.0質量%以上であると、一制動中の摩擦係数変動率は低い状態で担保されるものの、低速低温制動域の摩擦係数安定性が低下する。
 同様の観点から、本実施形態の摩擦材中における無機繊維(X)の含有量は、摩擦材全量100質量%に対して、5.0~9.9質量%が好ましく、7.0~9.7質量%がより好ましく、8.5~9.5質量%がさらに好ましい。
Content of the inorganic fiber (X) in the friction material of this embodiment is 5.0 mass% or more and less than 10.0 mass% with respect to 100 mass% of friction material whole quantity. When the content of the inorganic fiber (X) is in the above range, high friction coefficient stability is obtained in the low-speed and low-temperature braking region, the coefficient of friction fluctuation during one braking is reduced, and excellent friction is obtained in the normal braking region. A coefficient is obtained. On the other hand, if the content of the inorganic fiber (X) is less than 5.0% by mass, the coefficient of friction variation during one braking is increased, although the coefficient of friction stability in the low-speed and low-temperature braking region is ensured. Further, when the content of the inorganic fiber (X) is 10.0% by mass or more, the coefficient of friction variation during one braking is secured in a low state, but the coefficient of friction stability in the low-speed and low-temperature braking region is lowered. .
From the same viewpoint, the content of the inorganic fiber (X) in the friction material of the present embodiment is preferably 5.0 to 9.9% by mass with respect to 100% by mass of the total friction material, and 7.0 to 9 0.7% by mass is more preferable, and 8.5 to 9.5% by mass is more preferable.
 本実施形態の摩擦材は、無機繊維(X)の他にも、有機繊維、その他の無機繊維及び金属繊維からなる群から選択される1種以上を含有することが好ましい。これらの繊維基材は、摩擦材において補強作用を示すものである。なお、有機繊維、その他の無機繊維及び金属繊維は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
 なお、本実施形態の摩擦材は、相手材であるディスクロータへの攻撃性を過度に高めない観点から、金属繊維を含まない、又は含んでいてもその含有量が、摩擦材全量100質量%に対して、0.5質量%以下であることが好ましい。
It is preferable that the friction material of this embodiment contains 1 or more types selected from the group which consists of organic fiber, another inorganic fiber, and metal fiber besides inorganic fiber (X). These fiber base materials exhibit a reinforcing action in the friction material. In addition, organic fiber, other inorganic fiber, and metal fiber may be used individually by 1 type, respectively, and may use 2 or more types together.
In addition, the friction material of this embodiment does not contain the metal fiber from the viewpoint of not excessively increasing the aggressiveness to the disk rotor which is the counterpart material, or the content thereof is 100% by mass of the total friction material. The content is preferably 0.5% by mass or less.
(有機繊維)
 有機繊維としては、アラミド繊維、アクリル繊維、セルロース繊維等が挙げられる。これらの中でも、耐熱性、補強効果及び適度な空隙付与の観点から、アラミド繊維が好ましい。アラミド繊維は、摩擦材に使用されている公知のものを使用することができる。有機繊維の平均繊維長は、例えば、650~1500μmであり、1000~1300μmが好ましい。平均繊維長の測定方法は上記と同様である。
 本実施形態の摩擦材が有機繊維を含有する場合、その含有量は、摩擦材全量100質量%に対して、0.5~10質量%が好ましく、1~5質量%がより好ましく、2~4質量%がさらに好ましい。
(Organic fiber)
Examples of organic fibers include aramid fibers, acrylic fibers, and cellulose fibers. Among these, an aramid fiber is preferable from the viewpoints of heat resistance, a reinforcing effect, and appropriate provision of voids. The aramid fiber can use the well-known thing currently used for the friction material. The average fiber length of the organic fibers is, for example, 650 to 1500 μm, and preferably 1000 to 1300 μm. The method for measuring the average fiber length is the same as described above.
When the friction material of the present embodiment contains organic fibers, the content thereof is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the total friction material, and 2 to 2%. More preferably, 4% by mass.
(その他の無機繊維)
 その他の無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、炭素繊維、ガラス繊維、チタン酸カリウム繊維等が挙げられる。なお、人体への有害性の観点からは、チタン酸カリウム繊維等を含有しないことが好ましい。また、靭性が高い無機繊維の添加量を過度に多くすると、ロータ攻撃性が顕著に悪化してしまうため、無機繊維の靭性の観点から、セラミック繊維及び炭素繊維を含有しないことが好ましい。
 また、本実施形態の摩擦材は、所望する性能に応じて、その他の無機繊維を含有しないものであってもよい。
 なお、本明細書中、金属繊維は、無機繊維の定義に含まれないものとする。
(Other inorganic fibers)
Examples of other inorganic fibers include ceramic fibers, biodegradable ceramic fibers, mineral fibers, carbon fibers, glass fibers, and potassium titanate fibers. In addition, it is preferable not to contain potassium titanate fiber etc. from a viewpoint of the harmfulness to a human body. Moreover, since rotor attack property will deteriorate notably when the addition amount of the inorganic fiber with high toughness is increased excessively, it is preferable not to contain ceramic fiber and carbon fiber from the viewpoint of toughness of the inorganic fiber.
Moreover, the friction material of this embodiment may not contain other inorganic fibers according to the desired performance.
In the present specification, metal fiber is not included in the definition of inorganic fiber.
 本実施形態の摩擦材中における繊維基材の合計含有量は、摩擦材全量100質量%に対して、6~20質量%が好ましく、7~17質量%がより好ましく、8~15質量%がさらに好ましい。繊維基材の合計含有量が上記範囲であると、低速低温制動域及び通常制動域において、より高い摩擦係数の安定性が得られる。 The total content of the fiber base material in the friction material of the present embodiment is preferably 6 to 20% by mass, more preferably 7 to 17% by mass, and 8 to 15% by mass with respect to 100% by mass of the total friction material. Further preferred. When the total content of the fiber base is within the above range, higher friction coefficient stability is obtained in the low-speed and low-temperature braking region and the normal braking region.
<無機充填材>
 本実施形態の摩擦材は無機充填材を含有することが好ましい。
 無機充填材としては、チタン酸塩、ウォラストナイト、金属粉、黒鉛、研削材として使用される各種酸化物、その他の無機充填材等が挙げられる。
 無機充填材は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ただし、本実施形態の摩擦材は、相手材であるディスクロータへの攻撃性を過度に高めない観点から、金属粉を含まない、又は含んでいてもその含有量が、摩擦材全量100質量%に対して、0.5質量%以下であることが好ましい。
<Inorganic filler>
The friction material of the present embodiment preferably contains an inorganic filler.
Examples of the inorganic filler include titanate, wollastonite, metal powder, graphite, various oxides used as an abrasive, and other inorganic fillers.
An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
However, the friction material of the present embodiment does not contain metal powder from the viewpoint of not excessively increasing the aggressiveness to the disk rotor as the counterpart material, or the content thereof is 100% by mass of the total friction material. The content is preferably 0.5% by mass or less.
(チタン酸塩)
 本実施形態の摩擦材は、無機充填材として、チタン酸塩を含有することが好ましい。
 チタン酸塩はモース硬度が約4と低く、融点が1000℃以上と比較的高いため、高速高温制動時に摩擦界面に介在することで摩擦材の摩耗増大を低減することができる。
 チタン酸塩としては、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム、チタン酸ナトリウム等が挙げられる。これらの中でも、低速低温制動域の摩擦係数の安定性の観点から、6チタン酸カリウム、8チタン酸カリウムが好ましい。
 チタン酸塩は、1種を単独で用いてもよく、2種以上を併用してもよいが、高速高温制動時の耐摩耗性の観点から、1種類のチタン酸塩を単独で用いることが好ましい。
(Titanate)
The friction material of this embodiment preferably contains titanate as an inorganic filler.
Since titanate has a low Mohs hardness of about 4 and a relatively high melting point of 1000 ° C. or higher, an increase in wear of the friction material can be reduced by interposing at the friction interface during high-speed high-temperature braking.
Examples of titanates include 6 potassium titanate, 8 potassium titanate, lithium potassium titanate, magnesium potassium titanate, and sodium titanate. Of these, potassium hexatitanate and potassium potassium titanate are preferable from the viewpoint of the stability of the friction coefficient in the low-speed low-temperature braking region.
One titanate may be used alone, or two or more may be used in combination. From the viewpoint of wear resistance during high-speed high-temperature braking, one type of titanate may be used alone. preferable.
 チタン酸塩は、人体有害性の観点から、針状ではないものが好ましい。すなわち、本実施形態の摩擦材は、非針状のチタン酸塩を含有することが好ましい。非針状のチタン酸塩とは、多角形、円、楕円等の形状を呈する板状チタン酸塩、不定形状のチタン酸塩などを意味する。
 チタン酸塩の平均粒子径は、2~50μmが好ましく、2.2~40μmがより好ましく、2.5~30μmがさらに好ましい。
 なお、本明細書中における平均粒子径とは、特に断らない限り、メジアン径(D50)を意味し、レーザー回折粒度分布測定等の方法を用いて測定することができる。測定装置としては、例えば、レーザー回折/散乱式粒子径分布測定装置、商品名:LA-920(株式会社堀場製作所製)を用いることができる。また、JIS B 4130等に代表されるふるい分級によって測定することもできる。
The titanate is preferably not acicular from the viewpoint of human harm. That is, it is preferable that the friction material of this embodiment contains non-acicular titanate. A non-acicular titanate means a plate-like titanate having a polygonal shape, a circle shape, an ellipse shape, or the like, or an indefinite shape titanate.
The average particle size of titanate is preferably 2 to 50 μm, more preferably 2.2 to 40 μm, and even more preferably 2.5 to 30 μm.
In addition, unless otherwise indicated, the average particle diameter in this specification means a median diameter (D50) and can be measured using a method such as laser diffraction particle size distribution measurement. As the measuring device, for example, a laser diffraction / scattering particle size distribution measuring device, trade name: LA-920 (manufactured by Horiba, Ltd.) can be used. Moreover, it can also measure by sieve classification represented by JIS B4130 etc.
 本実施形態の摩擦材がチタン酸塩を含有する場合、その含有量は、摩擦材全量100質量%に対して、15~25質量%が好ましく、15~22質量%がより好ましく、15~20質量%がさらに好ましい。チタン酸塩の含有量が、上記下限値以上であると、高速高温制動時の耐摩耗性に優れ、十分な摩擦係数保持の効果が得られ、上記上限値以下であると、低速低温制動域における摩擦係数の低下を抑制することができる。
 本実施形態の摩擦材は、摩擦係数の安定性の観点から、非針状であって平均粒子径が2~50μmのチタン酸塩を、摩擦材全量100質量%に対して、15~25質量%含有することが特に好ましい。
When the friction material of this embodiment contains titanate, the content thereof is preferably 15 to 25% by mass, more preferably 15 to 22% by mass, and more preferably 15 to 20% with respect to 100% by mass of the total friction material. More preferred is mass%. When the titanate content is equal to or higher than the above lower limit value, excellent wear resistance during high-speed high-temperature braking is obtained, and a sufficient friction coefficient retention effect is obtained. It is possible to suppress a decrease in the friction coefficient.
In the friction material of this embodiment, from the viewpoint of the stability of the friction coefficient, non-acicular titanate having an average particle diameter of 2 to 50 μm is 15 to 25 mass with respect to 100 mass% of the total friction material. % Content is particularly preferable.
(ウォラストナイト)
 ウォラストナイトは、CaSiOで示されるケイ酸塩鉱物であり、例えば、針状又は長柱状の形状を有するものである。
 ウォラストナイトの平均アスペクト比(平均長さ/平均径又は厚さ)は3以上が好ましく、4~12がより好ましく、5~8がさらに好ましい。平均アスペクト比が3以上であると、摩擦材の常温及び高温におけるせん断強度並びに耐クラック性を効果的に向上させることができる。ここで、平均アスペクト比は、D50値(体積分布の累積中央値)を意味し、例えば、動的画像解析法により測定することができる。
 ウォラストナイトの平均長さは、摩擦材への強度付与の観点から、100~500μmが好ましく、150~450μmがより好ましく、200~400μmがさらに好ましい。
 本実施形態の摩擦材がウォラストナイトを含有する場合、その含有量は、摩擦材全量100質量%に対して、2~10質量%が好ましく、3~8質量%がより好ましく、4~7質量%がさらに好ましい。
(Wollastonite)
Wollastonite is a silicate mineral represented by CaSiO 3 and has, for example, a needle shape or a long column shape.
The average aspect ratio (average length / average diameter or thickness) of wollastonite is preferably 3 or more, more preferably 4 to 12, and still more preferably 5 to 8. When the average aspect ratio is 3 or more, the shear strength and crack resistance of the friction material at normal temperature and high temperature can be effectively improved. Here, the average aspect ratio means a D50 value (cumulative median of volume distribution), and can be measured by, for example, a dynamic image analysis method.
The average length of wollastonite is preferably 100 to 500 μm, more preferably 150 to 450 μm, and even more preferably 200 to 400 μm from the viewpoint of imparting strength to the friction material.
When the friction material of this embodiment contains wollastonite, the content thereof is preferably 2 to 10% by mass, more preferably 3 to 8% by mass with respect to 100% by mass of the total friction material, and 4 to 7 More preferred is mass%.
(研削材)
 本実施形態の摩擦材は、研削材として、珪酸ジルコニウム、四酸化三鉄、二酸化三鉄、酸化ビスマス、酸化ジルコニウム等を含有していてもよい。これらの中でも、珪酸ジルコニウム、酸化ジルコニウムが好ましい。
(Grinding material)
The friction material of this embodiment may contain zirconium silicate, triiron tetraoxide, triiron dioxide, bismuth oxide, zirconium oxide, or the like as an abrasive. Among these, zirconium silicate and zirconium oxide are preferable.
 珪酸ジルコニウムは、モース硬度が6~7.5と高く、研削による摩擦係数の発現に効果的である。
 珪酸ジルコニウムの平均粒子径は、0.2~2μmが好ましく、0.3~2μmがより好ましく、0.4~2μmがさらに好ましい。
 本実施形態の摩擦材が珪酸ジルコニウムを含有する場合、その含有量は、摩擦材全量100質量%に対して、4~10質量%が好ましく、5~10質量%がより好ましい。
 本実施形態の摩擦材は、摩擦係数の安定性の観点から、平均粒子径が0.4~2μmの珪酸ジルコニウムを、摩擦材全量100質量%に対して、4~10質量%含有することが特に好ましい。
 なお、本実施形態の摩擦材は、所望する性能に応じて、珪酸ジルコニウムを含有しないものであってもよい。
Zirconium silicate has a high Mohs hardness of 6 to 7.5 and is effective in developing a friction coefficient by grinding.
The average particle size of zirconium silicate is preferably 0.2 to 2 μm, more preferably 0.3 to 2 μm, and further preferably 0.4 to 2 μm.
When the friction material of this embodiment contains zirconium silicate, the content thereof is preferably 4 to 10% by mass and more preferably 5 to 10% by mass with respect to 100% by mass of the total friction material.
From the viewpoint of stability of the friction coefficient, the friction material of this embodiment may contain 4 to 10% by mass of zirconium silicate having an average particle size of 0.4 to 2 μm with respect to 100% by mass of the total friction material. Particularly preferred.
In addition, the friction material of this embodiment may not contain a zirconium silicate according to the desired performance.
 酸化ジルコニウムの平均粒子径は、1~14μmが好ましく、5~10μmがより好ましく、8~9μmがさらに好ましい。
 本実施形態の摩擦材が酸化ジルコニウムを含有する場合、その含有量は、摩擦材全量100質量%に対して、10~20質量%が好ましく、12~19質量%がより好ましく、14~18質量%がさらに好ましい。酸化ジルコニウムの含有量が上記下限値以上であると、高速高温制動時の耐摩耗性に優れ、十分な摩擦係数保持の効果が得られ、上記上限値以下であると、低速低温制動域における摩擦係数の低下を抑制することができる。
The average particle diameter of zirconium oxide is preferably 1 to 14 μm, more preferably 5 to 10 μm, and still more preferably 8 to 9 μm.
When the friction material of this embodiment contains zirconium oxide, the content thereof is preferably 10 to 20% by mass, more preferably 12 to 19% by mass, and more preferably 14 to 18% by mass with respect to 100% by mass of the total friction material. % Is more preferable. When the content of zirconium oxide is not less than the above lower limit value, it has excellent wear resistance during high-speed high-temperature braking, and a sufficient friction coefficient retention effect is obtained. A decrease in coefficient can be suppressed.
(黒鉛)
 本実施形態の摩擦材は黒鉛を含有することが好ましい。黒鉛を含有することで摩擦材により優れた熱伝導率を付与できる。
 黒鉛の平均粒子径は、100~600μmが好ましく、200~450μmがより好ましく、300~350μmがさらに好ましい。
 本実施形態の摩擦材が黒鉛を含有する場合、その含有量は、摩擦材全量100質量%に対して、0.5~10質量%が好ましく、1~5質量%がより好ましく、2~4質量%がさらに好ましい。
 黒鉛の平均粒子径及び含有量が上記範囲であると、良好な摩擦材への熱伝導率の付与と摩擦係数の保持とを両立することができる。
(graphite)
The friction material of the present embodiment preferably contains graphite. By containing graphite, excellent thermal conductivity can be imparted to the friction material.
The average particle diameter of graphite is preferably 100 to 600 μm, more preferably 200 to 450 μm, and further preferably 300 to 350 μm.
When the friction material of the present embodiment contains graphite, the content thereof is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the total friction material, and 2 to 4%. More preferred is mass%.
When the average particle diameter and content of graphite are in the above ranges, it is possible to achieve both good thermal conductivity imparting to the friction material and retention of the friction coefficient.
(その他の無機充填材)
 その他の無機充填材としては、酸化マグネシウム、三硫化アンチモン、水酸化ジルコニウム、硫化錫、二硫化モリブデン、硫化ビスマス、硫化亜鉛、硫化鉄、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、コークス、γアルミナ、αアルミナ、マイカ、バーミキュライト、硫酸カルシウム、ムライト、クロマイト、酸化チタン、シリカ等が挙げられる。これらの中でも、硫化亜鉛、マイカ、水酸化カルシウム、硫酸バリウムが好ましい。これらのその他の無機充填材は、摩擦材に使用されている一般的なものを使用することができる。
(Other inorganic fillers)
Other inorganic fillers include magnesium oxide, antimony trisulfide, zirconium hydroxide, tin sulfide, molybdenum disulfide, bismuth sulfide, zinc sulfide, iron sulfide, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate , Barium sulfate, coke, γ alumina, α alumina, mica, vermiculite, calcium sulfate, mullite, chromite, titanium oxide, silica and the like. Among these, zinc sulfide, mica, calcium hydroxide, and barium sulfate are preferable. As these other inorganic fillers, general materials used for friction materials can be used.
 本実施形態の摩擦材が硫化亜鉛を含有する場合、その含有量は、摩擦材全量100質量%に対して、0.5~5質量%が好ましく、1.5~3質量%がより好ましい。
 硫化亜鉛の平均粒子径は、0.05~5μmが好ましく、0.08~1μmがより好ましく、0.1~0.3μmがさらに好ましい。
 本実施形態の摩擦材がマイカを含有する場合、その含有量は、摩擦材全量100質量%に対して、1~10質量%が好ましく、3~7質量%がより好ましい。
 マイカの平均粒子径は、5~100μmが好ましく、10~60μmがより好ましく、12~20μmがさらに好ましい。
 本実施形態の摩擦材が水酸化カルシウムを含有する場合、その含有量は、摩擦材全量100質量%に対して、0.01~1質量%が好ましく、0.05~0.3質量%がより好ましい。
 水酸化カルシウムの平均粒子径は、10~300μmが好ましく、30~200μmがより好ましく、50~100μmがさらに好ましい。
 本実施形態の摩擦材が硫酸バリウムを含有する場合、その含有量は、摩擦材全量100質量%に対して、10~35質量%が好ましく、12~30質量%がより好ましい。
 硫酸バリウムの平均粒子径は、1~50μmが好ましく、3~30μmがより好ましく、5~20μmがさらに好ましい。
 本実施形態の摩擦材が、その他の無機充填材を含有する場合、その合計含有量は、摩擦材全量100質量%に対して、12~50質量%が好ましく、15~40質量%がより好ましく、20~35質量%がさらに好ましい。
When the friction material of this embodiment contains zinc sulfide, the content thereof is preferably 0.5 to 5% by mass and more preferably 1.5 to 3% by mass with respect to 100% by mass of the total friction material.
The average particle diameter of zinc sulfide is preferably 0.05 to 5 μm, more preferably 0.08 to 1 μm, and further preferably 0.1 to 0.3 μm.
When the friction material of this embodiment contains mica, the content is preferably 1 to 10% by mass and more preferably 3 to 7% by mass with respect to 100% by mass of the total friction material.
The average particle diameter of mica is preferably 5 to 100 μm, more preferably 10 to 60 μm, and further preferably 12 to 20 μm.
When the friction material of this embodiment contains calcium hydroxide, the content thereof is preferably 0.01 to 1% by mass, and 0.05 to 0.3% by mass with respect to 100% by mass of the total friction material. More preferred.
The average particle size of calcium hydroxide is preferably 10 to 300 μm, more preferably 30 to 200 μm, and still more preferably 50 to 100 μm.
When the friction material of this embodiment contains barium sulfate, the content thereof is preferably 10 to 35% by mass, and more preferably 12 to 30% by mass with respect to 100% by mass of the total friction material.
The average particle diameter of barium sulfate is preferably 1 to 50 μm, more preferably 3 to 30 μm, and even more preferably 5 to 20 μm.
When the friction material of this embodiment contains other inorganic fillers, the total content thereof is preferably 12 to 50% by mass, more preferably 15 to 40% by mass with respect to 100% by mass of the total friction material. 20 to 35% by mass is more preferable.
 本実施形態の摩擦材中における無機充填材の総含有量は、摩擦材全量100質量%に対して、50~85質量%が好ましく、65~80質量%がより好ましく、70~77質量%がさらに好ましい。 The total content of the inorganic filler in the friction material of the present embodiment is preferably 50 to 85% by mass, more preferably 65 to 80% by mass, and 70 to 77% by mass with respect to 100% by mass of the total friction material. Further preferred.
<有機充填材>
 本実施形態の摩擦材は有機充填材を含有することが好ましい。有機充填材は、摩擦材の音振性能、耐摩耗性等を向上させるための摩擦調整剤として含まれるものである。
 有機充填材は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機充填材としては、カシューダスト、ゴム成分等が挙げられる。
 カシューダストとしては、例えば、カシューナッツシェルオイルを重合及び硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。なお、カシューダストは、未変性のカシューダストであることが好ましい。
 カシューダストの平均粒子径は、50~600μmが好ましく、70~550μmがより好ましく、100~500μmがさらに好ましい。
 本実施形態の摩擦材がカシューダストを含有する場合、その含有量は、摩擦材全量100質量%に対して、2~10質量%が好ましく、4~8質量%がより好ましく、5~7質量%がさらに好ましい。
 カシューダストの含有量が上記範囲であると、摩擦材の低弾性化による鳴き等の音振性能を改善することができる。
<Organic filler>
The friction material of the present embodiment preferably contains an organic filler. The organic filler is included as a friction modifier for improving the sound vibration performance, wear resistance and the like of the friction material.
An organic filler may be used individually by 1 type, and may use 2 or more types together.
Examples of the organic filler include cashew dust and rubber components.
As the cashew dust, for example, any cashew dust can be used as long as it is usually used for a friction material obtained by pulverizing and curing cashew nut shell oil. The cashew dust is preferably unmodified cashew dust.
The average particle size of cashew dust is preferably 50 to 600 μm, more preferably 70 to 550 μm, and still more preferably 100 to 500 μm.
When the friction material of this embodiment contains cashew dust, the content thereof is preferably 2 to 10% by mass, more preferably 4 to 8% by mass with respect to 100% by mass of the total friction material, and 5 to 7% by mass. % Is more preferable.
When the content of cashew dust is in the above range, sound vibration performance such as squealing due to low elasticity of the friction material can be improved.
 ゴム成分は、摩擦材に使用されている公知のものを使用することができ、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等が挙げられる。
 本実施形態の摩擦材がゴム成分を含有する場合、その含有量は、摩擦材全量100質量%に対して、0.2~10質量%が好ましく、0.5~5質量%がより好ましく、1~3質量%がさらに好ましい。
As the rubber component, known materials used for friction materials can be used, and examples thereof include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber) and the like.
When the friction material of the present embodiment contains a rubber component, the content thereof is preferably 0.2 to 10% by mass, more preferably 0.5 to 5% by mass, with respect to 100% by mass of the total friction material. It is more preferably 1 to 3% by mass.
 本実施形態の摩擦材は、カシューダスト及びゴム成分からなる群から選択される1種以上を含有することが好ましく、カシューダストとゴム成分とを併用することがより好ましい。また、カシューダストとゴム成分とを併用する場合には、カシューダストをゴム成分で被覆したものを用いてもよく、音振性能の観点から、カシューダストとゴム成分とを別個に配合してもよい。 The friction material of the present embodiment preferably contains one or more selected from the group consisting of cashew dust and a rubber component, and more preferably used in combination with cashew dust and a rubber component. In addition, when cashew dust and a rubber component are used in combination, the cashew dust coated with the rubber component may be used. From the viewpoint of sound vibration performance, the cashew dust and the rubber component may be blended separately. Good.
 本実施形態の摩擦材が有機充填材を含有する場合、その含有量は、摩擦材全量100質量%に対して、2~20質量%が好ましく、3~12質量%がより好ましく、4~10質量%がさらに好ましい。
 有機充填材の含有量が上記範囲であると、摩擦材の低弾性化による鳴き等の音振性能が改善し、また耐熱性の悪化及び熱履歴による強度低下を避けることができる。
When the friction material of this embodiment contains an organic filler, the content thereof is preferably 2 to 20% by mass, more preferably 3 to 12% by mass with respect to 100% by mass of the total amount of the friction material. More preferred is mass%.
When the content of the organic filler is within the above range, sound vibration performance such as squealing due to low elasticity of the friction material is improved, and deterioration in heat resistance and strength reduction due to thermal history can be avoided.
<結合材>
 本実施形態の摩擦材は、さらに、結合材を含有することが好ましい。結合材は、摩擦材に含有される有機充填材、繊維基材等を一体化して、強度を与えるものである。
 結合材は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 結合材としては、通常、摩擦材に用いられる熱硬化性樹脂を用いることができる。
 熱硬化性樹脂としては、フェノール樹脂、アクリルゴム変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂などが挙げられる。これらの中でも、摩擦界面の撥水性を高めることができる観点から、シリコーン変性フェノール樹脂が好ましい。シリコーン変性フェノール樹脂としては、シリコーンオイル又はシリコーンゴムを分散させたフェノール樹脂が好ましい。シリコーン変性フェノール樹脂は単独で使用してもよいが、上記したシリコーン変性フェノール樹脂以外の熱硬化性樹脂と併用してもよく、アクリルゴム変性フェノール樹脂と併用することが好ましい。
<Binder>
The friction material of this embodiment preferably further contains a binder. The binding material provides strength by integrating an organic filler, a fiber base material, and the like contained in the friction material.
A binder may be used individually by 1 type and may be used in combination of 2 or more type.
As the binder, a thermosetting resin usually used for a friction material can be used.
Examples of the thermosetting resin include various modified phenol resins such as phenol resin, acrylic rubber-modified phenol resin, silicone-modified phenol resin, cashew-modified phenol resin, epoxy-modified phenol resin, and alkylbenzene-modified phenol resin. Among these, a silicone-modified phenol resin is preferable from the viewpoint of improving the water repellency at the friction interface. As the silicone-modified phenol resin, a phenol resin in which silicone oil or silicone rubber is dispersed is preferable. The silicone-modified phenol resin may be used alone, but may be used in combination with a thermosetting resin other than the above-described silicone-modified phenol resin, and is preferably used in combination with an acrylic rubber-modified phenol resin.
 本実施形態の摩擦材における結合材の含有量は、摩擦材全量100質量%に対して、5~10質量%が好ましく、6~10質量%がより好ましく、7~9質量%がさらに好ましい。
 結合材の含有量が上記範囲であると、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化を抑制できる。
The content of the binder in the friction material of the present embodiment is preferably 5 to 10% by mass, more preferably 6 to 10% by mass, and even more preferably 7 to 9% by mass with respect to 100% by mass of the total friction material.
When the content of the binder is within the above range, it is possible to further suppress a decrease in strength of the friction material, and it is possible to suppress deterioration in sound vibration performance such as squeal due to a decrease in the porosity of the friction material and an increase in the elastic modulus. .
<その他の成分>
 本実施形態の摩擦材は、必要に応じて、上記各成分以外のその他の材料を含有していてもよい。
<Other ingredients>
The friction material of the present embodiment may contain other materials other than the above components as necessary.
<摩擦材の製造方法>
 本実施形態の摩擦材は、一般に使用されている方法により製造することができる。
 本実施形態の摩擦材の製造方法としては、例えば、本実施形態の摩擦材の組成を充足する摩擦材組成物を加熱加圧成形して製造する方法が挙げられる。詳細には、例えば、後述する本実施形態の摩擦材組成物を、レーディゲ(登録商標)ミキサー、加圧ニーダー、アイリッヒ(登録商標)ミキサー等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度140~150℃、成形圧力30~45MPa、成形時間3~6分間の条件で成形し、得られた成形物を180~210℃で3~4時間熱処理する方法が挙げられる。なお、必要に応じて塗装、スコーチ処理、研磨処理等を行ってもよい。
<Friction material manufacturing method>
The friction material of this embodiment can be manufactured by a generally used method.
As a manufacturing method of the friction material of this embodiment, the method of heat-pressing and manufacturing the friction material composition which satisfies the composition of the friction material of this embodiment is mentioned, for example. Specifically, for example, the friction material composition of the present embodiment to be described later is uniformly mixed using a mixer such as a Laedige (registered trademark) mixer, a pressure kneader, an Eirich (registered trademark) mixer, and the mixture is mixed. Preliminary molding is performed with a molding die, and the obtained preform is molded under conditions of a molding temperature of 140 to 150 ° C., a molding pressure of 30 to 45 MPa, and a molding time of 3 to 6 minutes. A heat treatment method at 3 ° C. for 3 to 4 hours can be mentioned. In addition, you may perform a coating, a scorch process, a grinding | polishing process, etc. as needed.
<摩擦材の用途>
 本実施形態の摩擦材は、例えば、下記(1)~(3)の態様で用いられる。
(1)摩擦材のみの構成
(2)裏金と、該裏金の上に形成させた、摩擦面となる本実施形態の摩擦材とを有する摩擦部材
(3)上記(2)の構成において、裏金と摩擦部材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、裏金と摩擦部材の接着を目的とした接着層をさらに介在させた構成
 これらの中でも、上記(2)又は(3)のように、本実施形態の摩擦材と裏金とを一体化してなる摩擦部材として用いられることが好ましい。
 上記裏金は、摩擦部材の機械的強度の向上のために用いるものであり、その材質としては、鉄、ステンレス等の金属;無機繊維強化プラスチック、炭素繊維強化プラスチック等の繊維強化プラスチックなどが挙げられる。
 上記プライマー層及び接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。
<Application of friction material>
The friction material of this embodiment is used in the following aspects (1) to (3), for example.
(1) Friction material only configuration (2) Friction member having a back metal and the friction material of the present embodiment to be a friction surface formed on the back metal (3) In the above configuration (2), the back metal A structure in which a primer layer for the purpose of surface modification for enhancing the adhesion effect of the backing metal and an adhesive layer for the purpose of bonding the backing metal and the friction member are further interposed between the friction member and the friction member. As in (2) or (3), it is preferable to be used as a friction member formed by integrating the friction material and the back metal of the present embodiment.
The backing metal is used to improve the mechanical strength of the friction member. Examples of the material include metals such as iron and stainless steel; fiber reinforced plastics such as inorganic fiber reinforced plastics and carbon fiber reinforced plastics. .
The primer layer and the adhesive layer may be those used for friction members such as brake shoes.
 本実施形態の摩擦材は、自動車等のディスクブレーキパッド、ブレーキライニング等の摩擦材として好適である。また、本実施形態の摩擦材は、目的形状に成形、加工、貼り付け等の工程を施すことにより、クラッチフェーシング、電磁ブレーキ、保持ブレーキ等の摩擦材としても使用することができる。
 さらに、本実施形態の摩擦材は、低速低温制動域において安定した摩擦係数を発現できることから、回生ブレーキ等の制御ブレーキに搭載される乗用車用ブレーキパッドに好適である。すなわち、本発明によると、本実施形態の摩擦材を用いた制御ブレーキを搭載した、電気自動車、ハイブリッド自動車等の乗用車をも提供することができる。
 さらに、本実施形態の摩擦材は、摩擦係数の安定性、高温での耐摩耗性等に優れるため、ディスクブレーキパッド、ブレーキライニング等の摩擦部材の「上張り材」として有用であり、さらに摩擦部材の「下張り材」として成形して用いることもできる。なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。
The friction material of this embodiment is suitable as a friction material for disc brake pads and brake linings for automobiles. Moreover, the friction material of this embodiment can be used also as friction materials, such as a clutch facing, an electromagnetic brake, a holding brake, by giving processes, such as a shaping | molding, a process, and a sticking, to a target shape.
Furthermore, the friction material of this embodiment is suitable for a brake pad for a passenger car mounted on a control brake such as a regenerative brake because it can exhibit a stable friction coefficient in a low-speed low-temperature braking region. That is, according to the present invention, it is possible to provide a passenger vehicle such as an electric vehicle or a hybrid vehicle equipped with a control brake using the friction material of the present embodiment.
Furthermore, since the friction material of the present embodiment is excellent in stability of friction coefficient, wear resistance at high temperature, etc., it is useful as a “upholstery material” for friction members such as disc brake pads and brake linings. It can also be molded and used as a “underlaying material” for the member. The “upper material” is a friction material that becomes the friction surface of the friction member, and the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.
[摩擦材組成物]
 本発明の第1実施形態に係る摩擦材組成物は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、生体溶解性を有する無機繊維(X1)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する摩擦材組成物である。
 本発明の第2実施形態に係る摩擦材組成物は、銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する摩擦材組成物である。
 以下の説明において、「本実施形態の摩擦材組成物」と称する場合、第1実施形態に係る摩擦材組成物と第2実施形態に係る摩擦材組成物の両者を指すものとする。
 本実施形態の摩擦材組成物に含有される各成分の種類、及びその製造方法は、上記本実施形態の摩擦材と同様に説明されるものであり、その好適な態様もすべて同じである。なお、摩擦材組成物中における各成分の含有量の好適範囲は、本実施形態の摩擦材で説明した好適範囲と同じであるが、含有量の基準は「摩擦材組成物全量100質量%」とする。
 さらに、本発明は本実施形態の摩擦材組成物を成形してなる摩擦材も提供する。本実施形態の摩擦材組成物を成形してなる摩擦材は、例えば、本実施形態の摩擦材組成物を予備成形した予備成形体を熱圧成形する方法、本実施形態の摩擦材組成物を直接熱圧成形し、必要に応じて熱処理を施して結合材を熱硬化する方法等によって製造することができる。具体的な製造方法は、上記本実施形態の摩擦材の製造方法及び後述する実施例に記載の通りである。
[Friction material composition]
The friction material composition according to the first embodiment of the present invention does not contain copper, or even if it contains copper, the content thereof is a friction material composition of 0.5% by mass or less as copper element, and is biosoluble. Is a friction material composition containing 5.0% by mass or more and less than 10.0% by mass of the inorganic fiber (X1) containing
The friction material composition according to the second embodiment of the present invention does not contain copper, or even if it contains copper, the content thereof is a friction material composition of 0.5% by mass or less as a copper element. It is a friction material composition containing 5.0 mass% or more and less than 10.0 mass% of inorganic fibers (X2) containing magnesium oxide with respect to 100 mass% of the total friction material.
In the following description, the term “friction material composition of the present embodiment” refers to both the friction material composition according to the first embodiment and the friction material composition according to the second embodiment.
The kind of each component contained in the friction material composition of this embodiment, and its manufacturing method are demonstrated similarly to the friction material of the said embodiment, The suitable aspect is altogether the same. In addition, the preferable range of the content of each component in the friction material composition is the same as the preferable range described in the friction material of the present embodiment, but the reference of the content is “100% by mass of the total friction material composition”. And
Furthermore, this invention also provides the friction material formed by shape | molding the friction material composition of this embodiment. The friction material formed by molding the friction material composition of the present embodiment includes, for example, a method of hot-pressing a preform formed by preforming the friction material composition of the present embodiment, and the friction material composition of the present embodiment. It can be produced by a method such as direct hot pressing, heat treatment as necessary, and thermosetting the binder. The specific manufacturing method is as described in the manufacturing method of the friction material of the present embodiment and the examples described later.
 以下、実施例により本実施形態の摩擦材及び摩擦材組成物をさらに詳細に説明するが、本発明は何らこれらに限定されるものではない。 Hereinafter, the friction material and the friction material composition of the present embodiment will be described in more detail by way of examples, but the present invention is not limited to these.
<実施例1~12及び比較例1~3>
[ディスクブレーキパッドの作製]
 表1に示す配合量(質量%)にしたがって材料を配合し、実施例1~12及び比較例1~3の摩擦材組成物を得た。
 次に、この摩擦材組成物をレーディゲ(登録商標)ミキサー(株式会社マツボー製、商品名:レーディゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形した。次いで、得られた予備成形物を成形温度150℃、成形圧力30MPa、成形時間5分間の条件で成形プレス(三起精工株式会社製)を用いて、日立オートモティブシステムズ株式会社製の裏金(鉄製)とともに加熱加圧成形した。続いて、得られた成形品を200℃で4時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ9mm、摩擦材投影面積52cm)を得た。
<Examples 1 to 12 and Comparative Examples 1 to 3>
[Production of disc brake pads]
The materials were blended according to the blending amounts (% by mass) shown in Table 1, and the friction material compositions of Examples 1 to 12 and Comparative Examples 1 to 3 were obtained.
Next, the friction material composition is mixed with a Ladige (registered trademark) mixer (manufactured by Matsubo Co., Ltd., trade name: Ladige mixer M20), and the mixture is preformed with a molding press (manufactured by Oji Machinery Co., Ltd.). did. Next, the obtained preform is molded using a molding press (manufactured by Sanki Seiko Co., Ltd.) under the conditions of a molding temperature of 150 ° C., a molding pressure of 30 MPa, and a molding time of 5 minutes, and a backing metal (manufactured by Hitachi Automotive Systems). Together with heating and pressing. Subsequently, the obtained molded product was heat-treated at 200 ° C. for 4 hours, polished using a rotary polishing machine, subjected to scorch treatment at 500 ° C., and a disc brake pad (friction material thickness 9 mm, friction material projected area). 52 cm 2 ) was obtained.
 なお、実施例及び比較例において使用した各種材料の詳細は以下の通りである。 The details of various materials used in the examples and comparative examples are as follows.
[結合材]
・樹脂A:シリコーン変性フェノール樹脂(住友ベークライト株式会社製 PR54529)
・樹脂B:アクリルゴム変性フェノール樹脂(住友ベークライト株式会社製 PR55291A)
[Binder]
Resin A: Silicone-modified phenolic resin (PR54529 manufactured by Sumitomo Bakelite Co., Ltd.)
Resin B: Acrylic rubber modified phenolic resin (PR55291A manufactured by Sumitomo Bakelite Co., Ltd.)
[有機充填材]
・カシューダスト:平均粒子径100~500μm(東北化工株式会社製 FF2600)
・ゴム成分(タイヤゴム粉):株式会社カークエスト製 粉末TPA
[Organic filler]
Cashew dust: average particle size of 100 to 500 μm (FF2600 manufactured by Tohoku Kako Co., Ltd.)
・ Rubber component (tire rubber powder): Powder TPA manufactured by Carquest Co., Ltd.
[繊維基材]
・銅繊維:平均繊維長3000μm
・アラミド繊維:平均繊維長1170μm
・鉱物繊維A:生体溶解性を有する鉱物繊維
   平均繊維長:230±50μm
   平均繊維径:5.5μm
   CaO含有量:21.3質量%
   MgO含有量:6.0質量%
   その他の成分:SiO(42.5質量%)、Al(18.0質量%)、TiO(1.5質量%)、Fe(7.9質量%)、NaO(2.0質量%)、KO(0.5質量%)、P(0.2質量%)、MnO(0.1質量%)
・鉱物繊維B:生体溶解性を有する鉱物繊維
   平均繊維長:650±150μm
   平均繊維径:5.5μm
   CaO含有量:21.3質量%
   MgO含有量:6.0質量%
   その他の成分:SiO(42.5質量%)、Al(18.0質量%)、TiO(1.5質量%)、Fe(7.9質量%)、NaO(2.0質量%)、KO(0.5質量%)、P(0.2質量%)、MnO(0.1質量%)
・鉱物繊維C:生体溶解性を有する鉱物繊維
   平均繊維長:125±25μm
   平均繊維径:5.5μm
   CaO含有量:21.3質量%
   MgO含有量:6.0質量%
   その他の成分:SiO(42.5質量%)、Al(18.0質量%)、TiO(1.5質量%)、Fe(7.9質量%)、NaO(2.0質量%)、KO(0.5質量%)、P(0.2質量%)、MnO(0.1質量%)
・無機繊維:生体溶解性を有しない無機繊維
   平均繊維長:300±100μm
   平均繊維径:2.5μm
   SiO(48.5~49.5質量%)、Al(50.5~51.5質量%)、TiO(0.1質量%)、NaO(0.1質量%)、KO(0.1質量%)
[Fiber base]
Copper fiber: Average fiber length 3000 μm
・ Aramid fiber: Average fiber length 1170μm
Mineral fiber A: Mineral fiber having biosolubility Average fiber length: 230 ± 50 μm
Average fiber diameter: 5.5 μm
CaO content: 21.3 mass%
MgO content: 6.0% by mass
Other components: SiO 2 (42.5 mass%), Al 2 O 3 (18.0 mass%), TiO 2 (1.5 mass%), Fe 2 O 3 (7.9 mass%), Na 2 O (2.0 wt%), K 2 O (0.5 wt%), P 2 O 5 ( 0.2 wt%), MnO (0.1 wt%)
Mineral fiber B: Mineral fiber having biological solubility Average fiber length: 650 ± 150 μm
Average fiber diameter: 5.5 μm
CaO content: 21.3 mass%
MgO content: 6.0% by mass
Other components: SiO 2 (42.5 mass%), Al 2 O 3 (18.0 mass%), TiO 2 (1.5 mass%), Fe 2 O 3 (7.9 mass%), Na 2 O (2.0 wt%), K 2 O (0.5 wt%), P 2 O 5 ( 0.2 wt%), MnO (0.1 wt%)
Mineral fiber C: Mineral fiber having biosolubility Average fiber length: 125 ± 25 μm
Average fiber diameter: 5.5 μm
CaO content: 21.3 mass%
MgO content: 6.0% by mass
Other components: SiO 2 (42.5 mass%), Al 2 O 3 (18.0 mass%), TiO 2 (1.5 mass%), Fe 2 O 3 (7.9 mass%), Na 2 O (2.0 wt%), K 2 O (0.5 wt%), P 2 O 5 ( 0.2 wt%), MnO (0.1 wt%)
Inorganic fiber: Inorganic fiber not having biosolubility Average fiber length: 300 ± 100 μm
Average fiber diameter: 2.5 μm
SiO 2 (48.5 to 49.5 mass%), Al 2 O 3 (50.5 to 51.5 mass%), TiO 2 (0.1 mass%), Na 2 O (0.1 mass%) , K 2 O (0.1% by mass)
[無機充填材]
・チタン酸塩カリウムA:8チタン酸カリウム(平均粒子径3.5μm、形状:不定形)
・チタン酸塩カリウムB:6チタン酸カリウム(平均粒子径6μm、形状:柱状)
・チタン酸塩カリウムC:6チタン酸カリウム(平均粒子径27μm、形状:不定形)
・チタン酸塩カリウムD:6チタン酸カリウム(平均粒子径30μm、形状:不定形)
・チタン酸塩カリウムE:6チタン酸カリウム(平均粒子径46μm、形状:不定形)
・チタン酸リチウムカリウム:平均粒子径2.5μm、形状:板状
・ウォラストナイト:平均長さ300μm、アスペクト比:6
・黒鉛:平均粒子径300~350μm(TIMCAL社製 4058)
・酸化ジルコニウム:平均粒子径8~9μm
・珪酸ジルコニウムA:平均粒子径1~2μm(第一稀元素化学工業株式会社製 MZ1000B)
・珪酸ジルコニウムB:平均粒子径0.4~0.6μm、最大粒子径1.1μm(株式会社キンセイマテック製 A-PAX UF)
・硫化亜鉛:平均粒子径0.2μm
・マイカ:平均粒子径16~17μm
・水酸化カルシウム:平均粒子径50~70μm
・硫酸バリウム:平均粒子径12.5μm
[Inorganic filler]
Potassium titanate A: Potassium titanate 8 (average particle size 3.5 μm, shape: irregular)
-Potassium titanate B: Potassium titanate (average particle size 6 μm, shape: columnar)
-Potassium titanate C: Potassium titanate 6 (average particle size 27 μm, shape: irregular)
Potassium titanate D: Potassium titanate 6 (average particle size 30 μm, shape: irregular)
-Potassium titanate E: Potassium titanate 6 (average particle diameter 46 μm, shape: irregular)
・ Lithium potassium titanate: average particle size 2.5 μm, shape: plate shape, wollastonite: average length 300 μm, aspect ratio: 6
Graphite: average particle size 300 to 350 μm (4058 manufactured by TIMCAL)
・ Zirconium oxide: Average particle size 8-9μm
・ Zirconium silicate A: average particle size of 1 to 2 μm (MZ1000B, manufactured by Daiichi Elemental Chemical Co., Ltd.)
Zirconium silicate B: average particle size 0.4 to 0.6 μm, maximum particle size 1.1 μm (A-PAX UF manufactured by Kinsei Matec Co., Ltd.)
・ Zinc sulfide: Average particle size 0.2μm
・ Mica: average particle size 16-17μm
・ Calcium hydroxide: average particle size 50-70μm
Barium sulfate: average particle size 12.5μm
 各例で得たディスクブレーキパッドを、ブレーキダイナモ試験機(新日本特機株式会社製)を用いて各種性能の評価を行った。実験には、一般的なピンスライド式のコレット型キャリパー及び株式会社キリウ製ベンチレーテッドディスクローター(FC250(ねずみ鋳鉄))を用い、50kgmの慣性モーメントで評価を行った。 Various performances of the disc brake pads obtained in each example were evaluated using a brake dynamo tester (manufactured by Shin Nippon Toki Co., Ltd.). In the experiment, a general pin slide type collet caliper and a ventilated disc rotor (FC250 (gray cast iron)) manufactured by Kiriu Co., Ltd. were used, and the evaluation was performed with an inertia moment of 50 kgm 2 .
[低速低温制動域の摩擦係数安定性、及び一制動中の摩擦係数変動率の評価]
 試験環境は25℃、湿度30%の条件で実施し、40km/h、0.15Gの制動を1500回実施し、制動回数500回目の摩擦係数から制動回数1500回目の摩擦係数の変化率を「低速低温制動域での摩擦係数安定性」とし、下記評価基準に基づいて評価した。結果を表1に示す。
(評価基準)
 A:変化率±5%以内
 B:変化率+5%超+10%以下、又は-10%以上-5%未満
 C:変化率10%超又は-10%未満
[Evaluation of friction coefficient stability in low-speed low-temperature braking range and coefficient of friction fluctuation during one braking]
The test environment is 25 ° C. and 30% humidity, 40 km / h, 0.15 G braking is performed 1500 times, and the rate of change of the friction coefficient from the 500th braking coefficient to the 1500th braking coefficient is expressed as “ The coefficient of friction stability in the low-speed and low-temperature braking range ”was evaluated based on the following evaluation criteria. The results are shown in Table 1.
(Evaluation criteria)
A: Change rate within ± 5% B: Change rate + 5% + 10% or less, or -10% or more and less than −5% C: Change rate 10% or more and less than −10%
 また、制動回数1500回目における一制動中の摩擦係数の変動率を「一制動中の摩擦係数変動率」とし、下記算出方法及び下記評価基準に基づいて評価した。結果を表1に示す。
(算出方法)
 一制動中の摩擦係数変動率(%)=((時間X2における摩擦係数-時間X3における摩擦係数)×100)/(X2-X3)
 制動開始時間(秒):X1
 制動終了時間(秒):X2
 実制動時間の中点(秒):X3=(X1+X2)/2
(評価基準)
 A:変動率3%以下
 B:変動率3%超5%以下
 C:変動率5%を超えるもの
Further, the coefficient of friction variation during one braking at the number of braking times of 1500 was defined as “friction coefficient coefficient of variation during one braking”, and evaluation was performed based on the following calculation method and the following evaluation criteria. The results are shown in Table 1.
(Calculation method)
Friction coefficient fluctuation rate during braking (%) = ((friction coefficient at time X2−friction coefficient at time X3) × 100) / (X2−X3)
Braking start time (seconds): X1
Braking end time (seconds): X2
Midpoint of actual braking time (seconds): X3 = (X1 + X2) / 2
(Evaluation criteria)
A: Fluctuation rate 3% or less B: Fluctuation rate 3% or more and 5% or less C: Fluctuation rate 5% or more
[通常制動域における摩擦係数の評価] 
 試験環境は25℃、湿度30%の条件で実施し、JASO C406に準拠し、第二効力試験における200km/h、0.6G制動における摩擦係数を計測し、下記評価基準に基づいて評価した。結果を表1に示す。
(評価基準)
 A:0.38以上、0.41未満
 B:0.35以上、0.38未満
 C:0.35未満
[Evaluation of friction coefficient in normal braking range]
The test environment was implemented under conditions of 25 ° C. and a humidity of 30%, and in accordance with JASO C406, the friction coefficient at 200 km / h, 0.6 G braking in the second efficacy test was measured and evaluated based on the following evaluation criteria. The results are shown in Table 1.
(Evaluation criteria)
A: 0.38 or more, less than 0.41 B: 0.35 or more, less than 0.38 C: less than 0.35
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 無機繊維(X)に該当する鉱物繊維A~Cを規定量含む実施例1~12の摩擦材は、銅を含有する比較例1よりも通常制動域の摩擦係数が良好であった。また、実施例1~12は、無機繊維(X)の含有量が規定量未満の比較例2よりも一制動中の摩擦係数変動率が小さく良好であった。さらに、無機繊維(X)の含有量が規定量以上である比較例3よりも低速低温制動域の摩擦係数安定性が良好であった。 The friction materials of Examples 1 to 12 containing the specified amount of mineral fibers A to C corresponding to the inorganic fiber (X) had a better friction coefficient in the normal braking region than Comparative Example 1 containing copper. In addition, Examples 1 to 12 had a smaller coefficient of friction coefficient variation during one braking and were better than Comparative Example 2 in which the content of inorganic fiber (X) was less than the specified amount. Furthermore, the friction coefficient stability in the low-speed and low-temperature braking region was better than that of Comparative Example 3 in which the content of the inorganic fiber (X) was a specified amount or more.
 本発明の摩擦材、摩擦材組成物及び摩擦部材は従来品と比較して、環境負荷の高い銅を用いなくとも、低速低温制動域において安定した摩擦係数を発現でき、通常制動域において優れた摩擦係数を有するため、一般的な乗用車向けには勿論、回生ブレーキ等の制御ブレーキ搭載の乗用車用ブレーキパッドなどに好適である。
 
The friction material, friction material composition and friction member of the present invention can express a stable coefficient of friction in a low-speed and low-temperature braking region without using copper having a high environmental load compared to conventional products, and are excellent in a normal braking region. Since it has a friction coefficient, it is suitable not only for general passenger cars but also for brake pads for passenger cars equipped with a control brake such as a regenerative brake.

Claims (21)

  1.  銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、生体溶解性を有する無機繊維(X1)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材。 Even if copper is not included, the content thereof is a friction material of 0.5% by mass or less as copper element, and the inorganic fiber (X1) having biosolubility is 100% by mass with respect to 100% by mass of the total friction material. A friction material containing 5.0% by mass or more and less than 10.0% by mass.
  2.  前記無機繊維(X1)の平均繊維長が、100~800μmである、請求項1に記載の摩擦材。 The friction material according to claim 1, wherein the inorganic fiber (X1) has an average fiber length of 100 to 800 µm.
  3.  銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材。 Even if copper is not included, the content thereof is a friction material of 0.5% by mass or less as copper element, and inorganic fiber (X2) containing calcium oxide and magnesium oxide is 100 mass of the total friction material. % Friction material containing 5.0 mass% or more and less than 10.0 mass%.
  4.  前記無機繊維(X2)中における、酸化カルシウムの含有量が15~30質量%であり、酸化マグネシウムの含有量が3~20質量%である、請求項3に記載の摩擦材。 The friction material according to claim 3, wherein the content of calcium oxide in the inorganic fiber (X2) is 15 to 30% by mass and the content of magnesium oxide is 3 to 20% by mass.
  5.  前記無機繊維(X2)中における、酸化カルシウム及び酸化マグネシウムの総含有量が、18~40質量%である、請求項3又は4に記載の摩擦材。 The friction material according to claim 3 or 4, wherein the total content of calcium oxide and magnesium oxide in the inorganic fiber (X2) is 18 to 40% by mass.
  6.  さらに、無機充填材として、平均粒子径が0.4~2μmの珪酸ジルコニウムを、摩擦材全量100質量%に対して、4~10質量%含有する、請求項1~5のいずれか1項に記載の摩擦材。 6. The inorganic filler according to claim 1, further comprising 4 to 10% by mass of zirconium silicate having an average particle size of 0.4 to 2 μm with respect to 100% by mass of the total friction material. The friction material described.
  7.  さらに、無機充填材として、非針状であって平均粒子径が2~50μmのチタン酸塩を、摩擦材全量100質量%に対して、15~25質量%含有する、請求項1~6のいずれか1項に記載の摩擦材。 Further, the inorganic filler contains a non-acicular titanate having an average particle diameter of 2 to 50 μm in an amount of 15 to 25% by mass with respect to 100% by mass of the total friction material. The friction material according to any one of claims.
  8.  さらに、無機充填材として、酸化ジルコニウムを、摩擦材全量100質量%に対して、10~20質量%含有する、請求項1~7のいずれか1項に記載の摩擦材。 The friction material according to any one of claims 1 to 7, further comprising, as an inorganic filler, zirconium oxide in an amount of 10 to 20 mass% with respect to 100 mass% of the total friction material.
  9.  さらに、無機充填材として、ウォラストナイトを、摩擦材全量100質量%に対して、2~10質量%含有する、請求項1~8のいずれか1項に記載の摩擦材。 The friction material according to any one of claims 1 to 8, further comprising 2 to 10% by mass of wollastonite as an inorganic filler with respect to 100% by mass of the total amount of the friction material.
  10.  金属粉を含まない、又は含んでいてもその含有量が、摩擦材全量100質量%に対して、0.5質量%以下である、請求項1~9のいずれか1項に記載の摩擦材。 The friction material according to any one of claims 1 to 9, wherein the friction material does not contain metal powder or the content thereof is 0.5 mass% or less with respect to 100 mass% of the total friction material. .
  11.  請求項1~10のいずれか1項に記載の摩擦材と裏金とを一体化してなる摩擦部材。 A friction member formed by integrating the friction material according to any one of claims 1 to 10 and a back metal.
  12.  銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、生体溶解性を有する無機繊維(X1)を、摩擦材組成物全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材組成物。 Even if it does not contain copper, the content is 0.5 mass% or less of the friction material composition as copper element, and 100% of the friction material composition is made of inorganic fibers (X1) having biosolubility. A friction material composition containing 5.0% by mass or more and less than 10.0% by mass relative to mass%.
  13.  前記無機繊維(X1)の平均繊維長が、100~800μmである、請求項12に記載の摩擦材組成物。 The friction material composition according to claim 12, wherein an average fiber length of the inorganic fibers (X1) is 100 to 800 µm.
  14.  銅を含まない、又は含んでいてもその含有量が、銅元素として0.5質量%以下の摩擦材組成物であり、酸化カルシウム及び酸化マグネシウムを含有する無機繊維(X2)を、摩擦材組成物全量100質量%に対して、5.0質量%以上10.0質量%未満含有する、摩擦材組成物。 Even if it does not contain copper, it is the friction material composition whose content is 0.5 mass% or less as a copper element, and contains the inorganic fiber (X2) containing calcium oxide and magnesium oxide as a friction material composition. A friction material composition containing 5.0% by mass or more and less than 10.0% by mass with respect to 100% by mass of the total amount of the object.
  15.  前記無機繊維(X2)中における、酸化カルシウムの含有量が15~30質量%であり、酸化マグネシウムの含有量が3~20質量%である、請求項14に記載の摩擦材組成物。 The friction material composition according to claim 14, wherein the content of calcium oxide in the inorganic fiber (X2) is 15 to 30% by mass and the content of magnesium oxide is 3 to 20% by mass.
  16.  前記無機繊維(X2)中における、酸化カルシウム及び酸化マグネシウムの総含有量が、18~40質量%である、請求項14又は15に記載の摩擦材組成物。 The friction material composition according to claim 14 or 15, wherein the total content of calcium oxide and magnesium oxide in the inorganic fiber (X2) is 18 to 40% by mass.
  17.  さらに、無機充填材として、平均粒子径が0.4~2μmの珪酸ジルコニウムを、摩擦材組成物全量100質量%に対して、4~10質量%含有する、請求項12~16のいずれか1項に記載の摩擦材組成物。 Furthermore, as an inorganic filler, zirconium silicate having an average particle size of 0.4 to 2 μm is contained in an amount of 4 to 10% by mass with respect to 100% by mass of the total amount of the friction material composition. The friction material composition according to item.
  18.  さらに、無機充填材として、非針状であって平均粒子径が2~50μmのチタン酸塩を、摩擦材組成物全量100質量%に対して、15~25質量%含有する、請求項12~17のいずれか1項に記載の摩擦材組成物。 Furthermore, the inorganic filler contains 15 to 25% by mass of non-acicular titanate having an average particle diameter of 2 to 50 μm with respect to 100% by mass of the total amount of the friction material composition. The friction material composition according to any one of 17.
  19.  さらに、無機充填材として、酸化ジルコニウムを、摩擦材組成物全量100質量%に対して、10~20質量%含有する、請求項12~18のいずれか1項に記載の摩擦材組成物。 The friction material composition according to any one of claims 12 to 18, further comprising zirconium oxide as an inorganic filler in an amount of 10 to 20% by mass with respect to 100% by mass of the total amount of the friction material composition.
  20.  さらに、無機充填材として、ウォラストナイトを、摩擦材組成物全量100質量%に対して、2~10質量%含有する、請求項12~19のいずれか1項に記載の摩擦材組成物。 The friction material composition according to any one of claims 12 to 19, further comprising 2-10% by mass of wollastonite as an inorganic filler with respect to 100% by mass of the total friction material composition.
  21.  金属粉を含まない、又は含んでいてもその含有量が、摩擦材組成物全量100質量%に対して、0.5質量%以下である、請求項12~20のいずれか1項に記載の摩擦材組成物。
     
    The metal powder is not contained or the content thereof is 0.5 mass% or less with respect to 100 mass% of the total amount of the friction material composition, even if it is contained, according to any one of claims 12 to 20. Friction material composition.
PCT/JP2018/003257 2018-01-31 2018-01-31 Friction material, friction material composition and friction member WO2019150501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/003257 WO2019150501A1 (en) 2018-01-31 2018-01-31 Friction material, friction material composition and friction member
JP2019568486A JPWO2019150501A1 (en) 2018-01-31 2018-01-31 Friction material, friction material composition and friction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003257 WO2019150501A1 (en) 2018-01-31 2018-01-31 Friction material, friction material composition and friction member

Publications (1)

Publication Number Publication Date
WO2019150501A1 true WO2019150501A1 (en) 2019-08-08

Family

ID=67477978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003257 WO2019150501A1 (en) 2018-01-31 2018-01-31 Friction material, friction material composition and friction member

Country Status (2)

Country Link
JP (1) JPWO2019150501A1 (en)
WO (1) WO2019150501A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066969A1 (en) * 2010-11-19 2012-05-24 日立化成工業株式会社 Non-asbestos friction material composition, and friction material and friction member using same
JP2012255052A (en) * 2011-06-07 2012-12-27 Hitachi Chemical Co Ltd Non-asbestos friction material composition
WO2014034878A1 (en) * 2012-08-30 2014-03-06 日立化成株式会社 Friction material composition, friction material using friction material composition, and friction member
JP2016079246A (en) * 2014-10-14 2016-05-16 日本ブレーキ工業株式会社 Friction material composition, friction material, and friction member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066969A1 (en) * 2010-11-19 2012-05-24 日立化成工業株式会社 Non-asbestos friction material composition, and friction material and friction member using same
JP2012255052A (en) * 2011-06-07 2012-12-27 Hitachi Chemical Co Ltd Non-asbestos friction material composition
WO2014034878A1 (en) * 2012-08-30 2014-03-06 日立化成株式会社 Friction material composition, friction material using friction material composition, and friction member
JP2016079246A (en) * 2014-10-14 2016-05-16 日本ブレーキ工業株式会社 Friction material composition, friction material, and friction member

Also Published As

Publication number Publication date
JPWO2019150501A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US10927912B2 (en) Frictional material composition, frictional material, and friction member
JP6226042B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
JP7169981B2 (en) Friction material composition, friction material and friction member using friction material composition
JP5987539B2 (en) Friction material composition, friction material and friction member using the same
JP6592976B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6836716B2 (en) Friction material composition
JP7240424B2 (en) Friction material composition, friction material and friction member
US20200063813A1 (en) Friction member, friction material composition, friction material, and vehicle
JP6490942B2 (en) Friction material composition, friction material and friction member
JP2018172496A (en) Friction material composition
JP2018162385A (en) Friction material composition, and friction material and friction member using the friction material composition
JP6512817B2 (en) Friction material composition, friction material using friction material composition and friction member
JP6493957B2 (en) Friction material composition, friction material and friction member
WO2019151390A1 (en) Friction material, friction material composition, friction member, and vehicle
WO2020089979A1 (en) Friction member, composition for friction material, friction material, and vehicle
WO2016103972A1 (en) Friction material composition, friction material using said friction material composition, and friction member
JP6828791B2 (en) Friction material composition, friction material and friction member using friction material composition
JP2021152119A (en) Friction member, friction material composition, friction material and vehicle
WO2019150501A1 (en) Friction material, friction material composition and friction member
WO2019150502A1 (en) Friction material, friction material composition and friction member
US10927913B2 (en) Frictional material composition, frictional material, and friction member
WO2020059005A1 (en) Friction material, friction material composition, friction material composition for lower-layer material, lower-layer material, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904054

Country of ref document: EP

Kind code of ref document: A1