WO2019149102A1 - 冰箱、冰箱的箱胆、冰箱的风道 - Google Patents

冰箱、冰箱的箱胆、冰箱的风道 Download PDF

Info

Publication number
WO2019149102A1
WO2019149102A1 PCT/CN2019/072517 CN2019072517W WO2019149102A1 WO 2019149102 A1 WO2019149102 A1 WO 2019149102A1 CN 2019072517 W CN2019072517 W CN 2019072517W WO 2019149102 A1 WO2019149102 A1 WO 2019149102A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tank
refrigerator
control point
flow guiding
Prior art date
Application number
PCT/CN2019/072517
Other languages
English (en)
French (fr)
Inventor
张建
陆彭飞
张磊
彭博
崔港
Original Assignee
合肥华凌股份有限公司
合肥美的电冰箱有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥华凌股份有限公司, 合肥美的电冰箱有限公司, 美的集团股份有限公司 filed Critical 合肥华凌股份有限公司
Publication of WO2019149102A1 publication Critical patent/WO2019149102A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0651Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts

Definitions

  • the present application relates to the field of electrical appliance manufacturing technology, and in particular to a refrigerator, a refrigerator of a refrigerator, and a duct of a refrigerator.
  • a heat exchange chamber is formed between the air duct and the tank, and a finned heat exchanger is installed in the heat exchange chamber for heat exchange, and the airflow is easy to form a relatively stable thermal boundary when passing through the surface of the heat exchanger.
  • the layer causes the heat exchange efficiency of the heat exchanger to be not high.
  • the present application is intended to address at least one of the technical problems existing in the prior art. To this end, the present application proposes a refrigerator having the advantages of good refrigeration effect, high reliability, and the like.
  • the present application also proposes a tank of a refrigerator.
  • the application also proposes a duct of a refrigerator.
  • a refrigerator includes: a tank; an air duct, the air duct is disposed in the tank and is jointly defined with the tank a heat exchange chamber; the heat exchanger is disposed in the heat exchange chamber, and at least one of the tank and the air passage is provided with a flow guiding rib, and the guiding rib is located at the box Between the bladder and/or the duct and the heat exchanger for directing airflow between the tank and/or the duct and the heat exchanger.
  • the refrigerator according to the embodiment of the present application has the advantages of good refrigeration effect, high reliability, and the like.
  • the refrigerator according to the above embodiment of the present application may further have the following additional technical features:
  • the flow guiding rib includes: an upper guiding rib disposed on the tank and located between the tank and an upper surface of the heat exchanger a lower flow guiding rib disposed on the air passage and located between the air passage and a lower surface of the heat exchanger.
  • the upper flow guiding rib is integrally formed on the tank, and the lower flow guiding rib is integrally formed on the air passage.
  • the central axis of the guide rib is a smooth curve.
  • the heat exchanger is a finned heat exchanger
  • the guide rib is centered on a longitudinal direction of the fin of the heat exchanger parallel to the heat exchanger
  • the axis is symmetrical.
  • the flow guiding rib comprises two symmetric limbs that are axially symmetric with each other, and the central axis of each of the symmetric limbs is a spline curve controlled by four points.
  • a central axis of each of the symmetric limbs is a spline curve controlled by a first control point, a second control point, a third control point, and a fourth control point arranged in sequence
  • the The four control points are located at one end of the symmetric limb connected to the other symmetric limb
  • the first control point is located at the other end of the symmetric limb
  • the second control point is opposite the first control point and the fourth control
  • the imaginary connection of the point is shifted backward
  • the imaginary connection of the third control point with respect to the first control point and the fourth control point is forwardly shifted
  • the airflow passing through the heat exchanger is from the The front end of the heat exchanger flows to the rear end of the heat exchanger.
  • a gas flow passing through the heat exchanger flows from a front end of the heat exchanger to a rear end of the heat exchanger, and two ends of the flow guiding rib are respectively adjacent to the heat exchanger
  • the left rear end and the right rear end are disposed, and the center of the guide rib is disposed adjacent to the center of the front edge of the heat exchanger.
  • the flow guiding ribs are arrested on the heat exchanger.
  • a tank of a refrigerator is provided, the tank of the refrigerator being disposed facing a surface of the heat exchanger of the refrigerator for being used between the tank and the heat exchanger
  • the air flow guides the guide ribs.
  • the refrigeration effect of the refrigerator can be improved, and the reliability is strong.
  • a duct of a refrigerator is provided, the air duct of the refrigerator being disposed toward a surface of the heat exchanger of the refrigerator for being disposed between the air duct and the heat exchanger
  • the air flow guides the guide ribs.
  • the refrigeration effect of the refrigerator can be improved, and the reliability is strong.
  • FIG. 1 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • FIG. 2 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • FIG. 3 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • FIG. 4 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • FIG. 5 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • FIG. 6 is a partial structural schematic view of a refrigerator according to an embodiment of the present application.
  • refrigerator 1 refrigerator 1, tank 100, upper guide rib 110, symmetrical limb 111, air duct 200, lower guide rib 210, evaporator 300, first control point P1, second control point P2, third control Point P3 and fourth control point P4.
  • first and second may include one or more of the features, either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present application can be understood in the specific circumstances for those skilled in the art.
  • a refrigerator 1 according to an embodiment of the present application will be described below with reference to the drawings.
  • a refrigerator 1 includes a tank 100, a duct 200, and a heat exchanger.
  • the heat exchanger can be an evaporator 300.
  • the air duct 200 is disposed in the tank 100 and defines a heat exchange chamber together with the tank 100.
  • the heat exchanger is disposed in the heat exchange chamber, and at least one of the tank 100 and the air duct 200 is provided with a flow guiding rib, and the guiding rib is located at the tank 100 and/or the air duct 200 and the The heat exchangers are used to guide the flow of air between the tank 100 and/or the duct 200 and the heat exchanger.
  • the flow guiding rib is disposed on the tank 100 and located between the tank 100 and the heat exchanger; or the guiding rib is disposed on the air duct 200 and located in the air duct 200 and the heat exchanger
  • the guide rib is disposed on the air duct 200 and the tank 100, and the guide rib on the air duct 200 is located between the air duct 200 and the heat exchanger, and the tank 100
  • the flow guiding rib is located between the tank 100 and the heat exchanger.
  • the air flow between the heat exchanger and the tank 100 and/or the air duct 200 can be guided by the guide ribs.
  • the airflow can be generated under the guidance of the guiding rib to distinguish the original flow direction, thereby preventing the airflow from being integrated between the heat exchanger and the tank 100 and/or the air duct 200.
  • the regular flow generates a thermal boundary layer that hinders heat exchange, so that the heat exchanger can fully exchange heat with the flowing airflow, and the heat exchange effect of the heat exchanger is improved to further improve the refrigeration effect of the refrigerator.
  • the airflow can be used to generate a disturbance to the airflow direction toward the heat exchanger.
  • the airflow can be perpendicular to the original direction and oriented toward the airflow direction.
  • the turbulent flow of the heat exchanger further avoids the regular movement of the gas flow to generate a thermal boundary layer that hinders heat exchange, and further improves the heat exchange effect of the heat exchanger.
  • the guide ribs can be used to strengthen the tank 100 and/or the air duct 200, thereby improving the tank 100 and/or Or the structural strength and rigidity of the air duct 200 ensure the reliability of the refrigerator 1.
  • the heat exchanger may be limited to a certain extent by using the guiding rib, thereby The tolerance for the mounting accuracy of the heat exchanger is increased. In this way, not only can the heat exchanger be smoothly loaded into the heat exchange chamber during installation, but also the structural stability and reliability of the heat exchanger can be ensured after installation.
  • the refrigerator 1 according to the embodiment of the present application has advantages of good cooling effect, high reliability, and the like.
  • the refrigerator 1 according to an embodiment of the present application includes a tank 100, a duct 200, and the heat exchanger.
  • the guide ribs include an upper guide rib 110 and a lower guide rib 210 (the up and down direction is indicated by an arrow in the figure, and the up and down direction is only for convenience of description, and is not limited to the actual setting direction of the present application).
  • the upper guide rib 110 is disposed on the tank 100 and between the tank 100 and the upper surface of the heat exchanger.
  • the lower guide rib 210 is disposed on the air duct 200 and between the air duct 200 and the lower surface of the heat exchanger. In this way, the upper and lower flow dams can be used to guide and disturb the airflow above and below the heat exchanger, thereby avoiding the generation of a thermal boundary layer above and below the heat exchanger, and improving the heat exchanger. Heat transfer effect.
  • the upper guiding rib 110 and the lower guiding rib 210 can be used to strengthen the tank 100 and the air duct 200 respectively, and the upper guiding rib 110 and the lower guiding rib 210 are used to simultaneously limit the heat exchanger, thereby improving The stability and reliability of the structure of the refrigerator 1.
  • the upper guide ribs 110 are integrally formed on the tank 100, and the lower guide ribs 210 are integrally formed on the air duct 200.
  • the flow guiding ribs may be formed on the tank 100 and/or the air duct 200 by injection molding. This simplifies the assembly process of the guide ribs and improves the reliability of the guide ribs.
  • the central axis of the guide rib is a smooth curve. It should be understood here that the central axis of the guide rib refers to a central axis oriented along the direction in which the ribs extend. In this way, the guiding effect of the guiding rib on the airflow can be made smoother, avoiding an area where a large resistance to the airflow is generated, and the air supply volume of the refrigerator 1 is ensured.
  • the heat exchanger is a finned heat exchanger
  • the flow guiding rib is in a longitudinal direction of the fin of the heat exchanger parallel to the heat exchanger.
  • the centerline is axisymmetric. Specifically, the axis of symmetry is oriented in the front-rear direction (the front-rear direction is indicated by the arrow in the figure, and the front-rear direction is merely for convenience of description, and is not limited to the actual setting direction of the present application).
  • the guiding rib can produce a uniform left and right guiding effect, avoiding the occurrence of uneven air volume on both sides of the heat exchanger, thereby further improving the uniformity of heat exchange of the heat exchanger, and further improving the said Heat exchange effect of the heat exchanger.
  • the guide ribs include two symmetrical limbs 111 that are axially symmetric with each other, and the central axis of each symmetrical limb 111 is a spline curve controlled by four points.
  • the flow guiding effect of the guiding rib is more flexible and diverse, and the guiding rib is convenient for different guiding effects, thereby further improving the heat exchange effect of the heat exchanger.
  • each of the symmetric limbs 111 is a spline curve controlled by the first control point P1, the second control point P2, the third control point P3, and the fourth control point P4 which are sequentially arranged.
  • the fourth control point P4 is located at one end of the symmetric limb 111 connected to the other symmetric limb 111.
  • the first control point P1 is located at the other end of the symmetric limb 111, and the second control point P2 is opposite to the first control point P1 and the fourth control point.
  • the imaginary connection of P4 is shifted backward, and the imaginary connection of the third control point P3 with respect to the first control point P1 and the fourth control point P4 is forwardly shifted, and the airflow passing through the heat exchanger is from the heat exchanger The front end flows to the rear end of the heat exchanger. This can further increase the flexibility of the guide ribs, so that the actual shape of the guide ribs can be easily controlled.
  • FIG. 6 shows a refrigerator 1 according to a specific example of the present application.
  • the airflow passing through the heat exchanger flows from the front end of the heat exchanger to the rear end of the heat exchanger, and the two ends of the flow guiding rib are respectively adjacent to the left side of the heat exchanger A rear end and a right rear end are disposed, and a center of the guide rib is disposed adjacent to a center of a front edge of the heat exchanger.
  • the guiding effect of the guiding rib can be covered as much as possible to cover the whole of the heat exchanger, avoiding the area where the flow guiding is not possible, thereby further improving the heat exchange effect of the heat exchanger, and simultaneously making the front side
  • the airflow flowing to the heat exchanger generates a leftward and rightward shunt, so that the left and right sides of the heat exchanger obtain a uniform flow guiding effect, improve the heat exchange uniformity of the heat exchanger, and improve the replacement.
  • Heat exchanger heat transfer effect is a leftward and rightward shunt
  • the flow guiding ribs are stopped on the heat exchanger.
  • the upper guide rib 110 abuts against the upper surface of the heat exchanger
  • the lower guide rib 210 abuts against the lower surface of the heat exchanger.
  • the upper deflector 110 abuts against the upper edge of the fin of the heat exchanger
  • the lower deflector 210 abuts against the lower edge of the fin of the heat exchanger.
  • a tank of a refrigerator according to an embodiment of the present application is described below.
  • the tank of the refrigerator according to the embodiment of the present application is provided with a guide rib for guiding the airflow between the tank and the heat exchanger toward the surface of the heat exchanger of the refrigerator.
  • the refrigeration effect of the refrigerator can be improved, and the reliability is strong.
  • the air duct of the refrigerator according to the embodiment of the present application is described below.
  • the air passage of the refrigerator according to the embodiment of the present application is provided with a guide rib for guiding the airflow between the air passage and the heat exchanger toward the surface of the heat exchanger of the refrigerator.
  • the refrigeration effect of the refrigerator can be improved, and the reliability is strong.
  • Variables are designed using a super-Latin square design method
  • the line shape of the optimal guide rib can be obtained by using the simulation method, thereby further improving the cooling effect of the refrigerator 1.
  • step A four control points are used: P1 (x1, y1), P2 (x2, y2), P3 (x3, y3), P4 (x4, y4) to control the central axis of the symmetrical limb 111. Line type.
  • the heat exchanger has a width W and a height H, and the P1-P4 control point coordinate value is used as a variable, and a total of eight variables are used to calculate an optimal profile line using computational fluid dynamics simulation;
  • the constraint condition is: d ⁇ x1 ⁇ x2 ⁇ x3 ⁇ x4 ⁇ (W+d), 0 ⁇ y1 ⁇ y2 ⁇ y3 ⁇ y4 ⁇ H, and the optimization target is the maximum heat exchange amount of the heat exchanger.
  • the method for designing the guide rib of the refrigerator 1 includes the following steps:
  • the heat exchanger have a width W and a height H, and take the P1-P4 control point coordinate value as a variable, a total of 8 variables, and use computational fluid dynamics (CFD) simulation to optimize the optimal type line;
  • the constraint condition is: d ⁇ x1 ⁇ x2 ⁇ x3 ⁇ x4 ⁇ (W+d), 0 ⁇ y1 ⁇ y2 ⁇ y3 ⁇ y4 ⁇ H;
  • CFD simulation uses 3D simulation, considers the symmetrical simplified calculation model; builds the optimization process to find the best curve line.
  • the shape of the other symmetrical limb 111 is obtained, thereby obtaining a complete line shape of the guide rib.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

提供一种冰箱(1)、冰箱的箱胆、冰箱的风道。冰箱(1)包括:箱胆(100);风道(200),箱胆(100)和风道(200)中的至少一个上设有导流筋,导流筋位于所在箱胆(100)和/或风道(200)与换热器之间以用于对所在箱胆(100)和/或风道(200)与换热器之间的气流进行导向。

Description

冰箱、冰箱的箱胆、冰箱的风道
相关申请的交叉引用
本申请基于申请号为201810098732.7,申请日为2018年01月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电器制造技术领域,具体而言,涉及一种冰箱、冰箱的箱胆和冰箱的风道。
背景技术
相关技术中的冰箱,风道与箱胆之间形成换热腔,换热腔内安装有翅片式换热器进行换热,气流在经过换热器表面时,易形成相对稳定的热边界层,导致换热器的换热效率不高。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种冰箱,该冰箱具有制冷效果好、可靠性高等优点。
本申请还提出一种冰箱的箱胆。
本申请还提出一种冰箱的风道。
为实现上述目的,根据本申请的第一方面的实施例提出一种冰箱,所述冰箱包括:箱胆;风道,所述风道设在所述箱胆内且与所述箱胆共同限定出换热腔;换热器,所述换热器设在所述换热腔内,所述箱胆和所述风道中的至少一个上设有导流筋,所述导流筋位于所在箱胆和/或风道与所述换热器之间以用于对所在箱胆和/或风道与所述换热器之间的气流进行导向。
根据本申请实施例的冰箱,具有制冷效果好、可靠性高等优点。
另外,根据本申请上述实施例的冰箱还可以具有如下附加的技术特征:
根据本申请的一个实施例,所述导流筋包括:上导流筋,所述上导流筋设在所述箱胆上且位于所述箱胆与所述换热器的上表面之间;下导流筋,所述下导流筋设在所述风道上且位于所述风道与所述换热器的下表面之间。
根据本申请的一个实施例,所述上导流筋一体形成在所述箱胆上,所述下导流筋一体形成在所述风道上。
根据本申请的一个实施例,所述导流筋的中心轴线为光滑曲线。
根据本申请的一个实施例,所述换热器为翅片式换热器,所述导流筋以所述换热器在平行于所述换热器的翅片的长度方向的中心线为轴轴对称。
根据本申请的一个实施例,所述导流筋包括相互轴对称的两个对称肢,每个所述对称肢的中心轴线为通过四点控制的样条曲线。
根据本申请的一个实施例,每个所述对称肢的中心轴线为通过依次排列的第一控制点、第二控制点、第三控制点和第四控制点控制的样条曲线,所述第四控制点位于所在对称肢与另一对称肢相连的一端,所述第一控制点位于所述对称肢的另一端,所述第二控制点相对所述第一控制点和所述第四控制点的假想连线向后偏移,所述第三控制点相对所述第一控制点和所述第四控制点的假想连线向前偏移,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端。
根据本申请的一个实施例,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端,所述导流筋的两端分别邻近所述换热器的左后端和右后端设置,所述导流筋的中心处邻近所述换热器的前边沿的中心处设置。
根据本申请的一个实施例,所述导流筋止抵在所述换热器上。
根据本申请的第二方面的实施例提出一种冰箱的箱胆,所述冰箱的箱胆朝向所述冰箱的换热器的表面设有用于对所述箱胆和所述换热器之间的气流进行导向的导流筋。
根据本申请实施例的冰箱的箱胆,能够提高冰箱的制冷效果,具有可靠性强等优点。
根据本申请的第三方面的实施例提出一种冰箱的风道,所述冰箱的风道朝向所述冰箱的换热器的表面设有用于对所述风道和所述换热器之间的气流进行导向的导流筋。
根据本申请实施例的冰箱的风道,能够提高冰箱的制冷效果,具有可靠性强等优点。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的冰箱的局部结构示意图。
图2是根据本申请实施例的冰箱的局部结构示意图。
图3是根据本申请实施例的冰箱的局部结构示意图。
图4是根据本申请实施例的冰箱的局部结构示意图。
图5是根据本申请实施例的冰箱的局部结构示意图。
图6是根据本申请实施例的冰箱的局部结构示意图。
附图标记:冰箱1、箱胆100、上导流筋110、对称肢111、风道200、下导流筋210、蒸发器300、第一控制点P1、第二控制点P2、第三控制点P3、第四控制点P4。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面参考附图描述根据本申请实施例的冰箱1。
如图1-图6所示,根据本申请实施例的冰箱1包括箱胆100、风道200和换热器。具体而言,所述换热器可以为蒸发器300。
风道200设在箱胆100内且与箱胆100共同限定出换热腔。所述换热器设在所述换热腔内,箱胆100和风道200中的至少一个上设有导流筋,所述导流筋位于所在箱胆100和/或风道200与所述换热器之间以用于对所在箱胆100和/或风道200与所述换热器之间的气流进行导向。换言之,所述导流筋设在箱胆100上且位于箱胆100与所述换热器之间;或所述导流筋设在风道200上且位于风道200与所述换热器之间;或风道200和箱胆100上均设有所述导流筋,风道200上的所述导流筋位于风道200与所述换热器之间,箱胆100上的所述导流筋位于箱胆100与所述换热器 之间。
根据本申请实施例的冰箱1,通过设置所述导流筋,可以利用所述导流筋对经过所述换热器与箱胆100和/或风道200之间的气流进行导向,相比相关技术中的冰箱,可以使气流在所述导流筋的导向下产生区别于原有流向的分流,从而避免气流在所述换热器与箱胆100和/或风道200之间进行整体规则的流动而产生阻碍换热的热边界层,使所述换热器能够充分与流过的气流进行换热,提高所述换热器的换热效果,以进一步提高冰箱的制冷效果。
并且,通过设置所述导流筋,可以利用所述导流筋对气流产生朝向所述换热器方向的扰动,相比相关技术中的冰箱,可以使气流产生垂直于原有方向且朝向所述换热器的乱流,从而进一步避免气流整体规则移动而产生阻碍换热的热边界层,进一步提高所述换热器的换热效果。
此外,通过在箱胆100和/或风道200上设置所述导流筋,可以利用所述导流筋对所在的箱胆100和/或风道200进行加强,从而提高箱胆100和/或风道200的结构强度和刚度,保证冰箱1的可靠性。
进一步地,由于所述导流筋位于所述换热器与所在箱胆100和/或风道200之间,可以利用所述导流筋对所述换热器进行一定程度的限位,从而提高对所述换热器的安装精度的容差。这样不仅可以在安装时便于将所述换热器顺利装入所述换热腔,而且可以在安装后保证所述换热器的结构稳定性和可靠性。
因此,根据本申请实施例的冰箱1具有制冷效果好、可靠性高等优点。
下面参考附图描述根据本申请具体实施例的冰箱1。
在本申请的一些具体实施例中,如图1-图6所示,根据本申请实施例的冰箱1包括箱胆100、风道200和所述换热器。
所述导流筋包括上导流筋110和下导流筋210(上下方向如图中的箭头所示,上下方向仅为了便于表述,并非对于本申请实际设置方向的限定)。上导流筋110设在箱胆100上且位于箱胆100与所述换热器的上表面之间。下导流筋210设在风道200上且位于风道200与所述换热器的下表面之间。这样可以同时利用上下两个所述导流筋对所述换热器上方和下方的气流进行导向和扰动,从而避免所述换热器的上方和下方产生热边界层,提高所述换热器的换热效果。
此外,可以利用上导流筋110和下导流筋210分别对箱胆100和风道200进行加强,利用上导流筋110和下导流筋210同时对所述换热器进行限位,提高冰箱1结构的稳定性和可靠性。
可选地,上导流筋110一体形成在箱胆100上,下导流筋210一体形成在风道200上。具体而言,所述导流筋可以通过注塑形成在箱胆100和/或风道200上。这样可以简化所述导流筋的装配过程,提高所述导流筋的可靠性。
有利地,如图1-图6所示,所述导流筋的中心轴线为光滑曲线。这里需要理解的是,所述导流筋的中心轴线指沿所述导流筋的延伸方向定向的中心轴线。这样可以使所述导流筋对气流的导向效果更加平滑,避免产生对气流产生较大阻力的区域,保证冰箱1的送风风量。
具体地,如图1-图6所示,所述换热器为翅片式换热器,所述导流筋以所述换热器在平行于所述换热器的翅片的长度方向的中心线为轴轴对称。具体而言,该对称轴沿前后方向定向(前后方向如图中的箭头所示,前后方向仅为了便于表述,并非对于本申请实际设置方向的限定)。这样可以使所述导流筋产生左右均匀的导流效果,避免出现所述换热器两侧风量不均的情况,从而进一步提高所述换热器的换热的均匀性,进一步提高所述换热器的换热效果。
更为具体地,如图1-图6所示,所述导流筋包括相互轴对称的两个对称肢111,每个对称肢111的中心轴线为通过四点控制的样条曲线。这样使所述导流筋的导流效果更加灵活多样,便于所述导流筋实现不同的导流效果,从而进一步便于提高所述换热器的换热效果。
进一步地,如图6所示,每个对称肢111的中心轴线为通过依次排列的第一控制点P1、第二控制点P2、第三控制点P3和第四控制点P4控制的样条曲线,第四控制点P4位于所在对称肢111与另一对称肢111相连的一端,第一控制点P1位于对称肢111的另一端,第二控制点P2相对第一控制点P1和第四控制点P4的假想连线向后偏移,第三控制点P3相对第一控制点P1和第四控制点P4的假想连线向前偏移,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端。这样可以进一步提高所述导流筋的灵活性,从而可以便于对所述导流筋的实际形状进行控制。
图6示出了根据本申请一个具体示例的冰箱1。如图6所示,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端,所述导流筋的两端分别邻近所述换热器的左后端和右后端设置,所述导流筋的中心处邻近所述换热器的前边沿的中心处设置。这样可以使所述导流筋的导流效果能够尽量覆盖所述换热器的整体,避免产生导流不到的区域,从而进一步提高所述换热器的换热效果,同时可以使从前方流向所述换热器的气流产生向左和向右的分流,使所述换热器的左右两侧得到均匀的导流效果,提高所述换热器的换热均匀性,提高所述换热器的换热效果。
具体地,所述导流筋止抵在所述换热器上。具体而言,上导流筋110止抵在所述换热器的上表面上,下导流筋210止抵在所述换热器的下表面上。更为具体地,上导流筋110止抵在所述换热器的翅片的上边沿,下导流筋210止抵在所述换热器的翅片的下边沿。这样可以提高上导流筋110和下导流筋210对所述换热器的定位效果,从而进一步提高所述换热器的稳定性和可靠性,进一步便于所述换热器的装配。
下面描述根据本申请实施例的冰箱的箱胆。根据本申请实施例的冰箱的箱胆朝向 所述冰箱的换热器的表面设有用于对所述箱胆和所述换热器之间的气流进行导向的导流筋。
根据本申请实施例的冰箱的箱胆,能够提高冰箱的制冷效果,具有可靠性强等优点。
下面描述根据本申请实施例的冰箱的风道。根据本申请实施例的冰箱的风道朝向所述冰箱的换热器的表面设有用于对所述风道和所述换热器之间的气流进行导向的导流筋。
根据本申请实施例的冰箱的风道,能够提高冰箱的制冷效果,具有可靠性强等优点。
下面参考图6描述根据本申请实施例的冰箱的导流筋的设计方法,包括以下步骤:
A)在所述导流筋的中心轴线所在平面建立直角坐标系,使用多个控制点控制样条曲线形状;
B)将控制点坐标值作为变量,以换热器最大换热量为目标,使用计算流体动力学仿真寻优最佳型线;
C)变量使用超拉丁方设计方法设计数值实验;
D)搭建寻优流程找到最佳曲线型线。
根据本申请实施例的冰箱的导流筋的设计方法,通过采用模拟仿真的方式,能够得到最理想的导流筋的线型,从而进一步提高冰箱1的制冷效果。
具体而言,在步骤A中,使用4个控制点:P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)控制对称肢111的中心轴线的线型。
在步骤B中,设所述换热器宽度为W,高度为H,将P1-P4控制点坐标值作为变量,共计8个变量,使用计算流体动力学仿真寻优最佳型线;其中变量约束条件为:d<x1<x2<x3<x4<(W+d),0<y1<y2<y3<y4<H,优化目标为换热器最大换热量。
换言之,根据本申请一个具体实施例的冰箱1的导流筋的设计方法,包括以下步骤:
A)在所述导流筋的中心轴线所在平面建立直角坐标系,使用4个控制点:P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)控制其中一个对称肢111的中心轴线的线型。
B)设所述换热器宽度为W,高度为H,将P1-P4控制点坐标值作为变量,共计8个变量,使用计算流体动力学(CFD)仿真寻优最佳型线;其中变量约束条件为:d<x1<x2<x3<x4<(W+d),0<y1<y2<y3<y4<H;优化目标为蒸发器最大换热量,在本实施例中W=250mm,H=190mm;
C)8个变量使用超拉丁方设计方法设计数值实验,实际生成81个样本;
D)CFD仿真使用三维仿真,考虑对称简化计算模型;搭建寻优流程找到最佳曲线型线。
最终根据对称图形特性,得到另一对称肢111的形状,从而得到完整的导流筋的线型。
根据本申请实施例的冰箱1的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (11)

  1. 一种冰箱,其特征在于,包括:
    箱胆;
    风道,所述风道设在所述箱胆内且与所述箱胆共同限定出换热腔;
    换热器,所述换热器设在所述换热腔内;
    导流筋,所述导流筋设在所述箱胆和所述风道中的至少一个上,所述导流筋位于所在箱胆和/或风道与所述换热器之间以用于对所在箱胆和/或风道与所述换热器之间的气流进行导向。
  2. 根据权利要求1所述的冰箱,其特征在于,所述导流筋包括:
    上导流筋,所述上导流筋设在所述箱胆上且位于所述箱胆与所述换热器的上表面之间;
    下导流筋,所述下导流筋设在所述风道上且位于所述风道与所述换热器的下表面之间。
  3. 根据权利要求2所述的冰箱,其特征在于,所述上导流筋一体形成在所述箱胆上,所述下导流筋一体形成在所述风道上。
  4. 根据权利要求1所述的冰箱,其特征在于,所述导流筋的中心轴线为光滑曲线。
  5. 根据权利要求1所述的冰箱,其特征在于,所述换热器为翅片式换热器,所述导流筋以所述换热器在平行于所述换热器的翅片的长度方向的中心线为轴轴对称。
  6. 根据权利要求5所述的冰箱,其特征在于,所述导流筋包括相互轴对称的两个对称肢,每个所述对称肢的中心轴线为通过四点控制的样条曲线。
  7. 根据权利要求6所述的冰箱,其特征在于,每个所述对称肢的中心轴线为通过依次排列的第一控制点、第二控制点、第三控制点和第四控制点控制的样条曲线,所述第四控制点位于所在对称肢与另一对称肢相连的一端,所述第一控制点位于所述对称肢的另一端,所述第二控制点相对所述第一控制点和所述第四控制点的假想连线向后偏移,所述第三控制点相对所述第一控制点和所述第四控制点的假想连线向前偏移,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端。
  8. 根据权利要求1所述的冰箱,其特征在于,经过所述换热器的气流从所述换热器的前端流动至所述换热器的后端,所述导流筋的两端分别邻近所述换热器的左后端和右后端设置,所述导流筋的中心处邻近所述换热器的前边沿的中心处设置。
  9. 根据权利要求1所述的冰箱,其特征在于,所述导流筋止抵在所述换热器上。
  10. 一种冰箱的箱胆,其特征在于,所述箱胆朝向所述冰箱的换热器的表面设有用于对所述箱胆和所述换热器之间的气流进行导向的导流筋。
  11. 一种冰箱的风道,其特征在于,所述风道朝向所述冰箱的换热器的表面设有用于对所述风道和所述换热器之间的气流进行导向的导流筋。
PCT/CN2019/072517 2018-01-31 2019-01-21 冰箱、冰箱的箱胆、冰箱的风道 WO2019149102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810098732.7A CN108253686B (zh) 2018-01-31 2018-01-31 冰箱、冰箱的箱胆、冰箱的风道及其导流筋设计方法
CN201810098732.7 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019149102A1 true WO2019149102A1 (zh) 2019-08-08

Family

ID=62743190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072517 WO2019149102A1 (zh) 2018-01-31 2019-01-21 冰箱、冰箱的箱胆、冰箱的风道

Country Status (2)

Country Link
CN (1) CN108253686B (zh)
WO (1) WO2019149102A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253686B (zh) * 2018-01-31 2019-11-29 合肥华凌股份有限公司 冰箱、冰箱的箱胆、冰箱的风道及其导流筋设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147072A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 電気冷蔵庫
CN103836871A (zh) * 2012-11-26 2014-06-04 海尔集团公司 冷柜送风和制冷系统及冷柜
CN203758138U (zh) * 2014-04-10 2014-08-06 合肥美菱股份有限公司 一种冰箱风道结构及其电冰箱
CN104567203A (zh) * 2014-11-27 2015-04-29 青岛海尔股份有限公司 冰箱
CN108253686A (zh) * 2018-01-31 2018-07-06 合肥华凌股份有限公司 冰箱、冰箱的箱胆、冰箱的风道及其导流筋设计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833389A (en) * 1996-12-09 1998-11-10 Orlev Scientific Computing Ltd. Apparatus for controlling turbulence in boundary layer and other wall-bounded fluid flow fields
CN103471310B (zh) * 2013-09-29 2016-03-09 合肥美的电冰箱有限公司 风冷冰箱
CN203605582U (zh) * 2013-10-30 2014-05-21 合肥华凌股份有限公司 风道组件和具有它的冰箱
CN206449963U (zh) * 2017-02-17 2017-08-29 合肥美菱股份有限公司 一种冰箱的冷冻风道组件及其冰箱
CN107560287B (zh) * 2017-09-04 2020-04-14 海信(山东)冰箱有限公司 一种风冷冰箱的风道组件及风冷冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147072A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 電気冷蔵庫
CN103836871A (zh) * 2012-11-26 2014-06-04 海尔集团公司 冷柜送风和制冷系统及冷柜
CN203758138U (zh) * 2014-04-10 2014-08-06 合肥美菱股份有限公司 一种冰箱风道结构及其电冰箱
CN104567203A (zh) * 2014-11-27 2015-04-29 青岛海尔股份有限公司 冰箱
CN108253686A (zh) * 2018-01-31 2018-07-06 合肥华凌股份有限公司 冰箱、冰箱的箱胆、冰箱的风道及其导流筋设计方法

Also Published As

Publication number Publication date
CN108253686B (zh) 2019-11-29
CN108253686A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
JP5764365B2 (ja) 熱交換器のヘッダタンク
WO2019149102A1 (zh) 冰箱、冰箱的箱胆、冰箱的风道
JP2009068742A (ja) 熱交換器
JP2017514096A (ja) チューブのコアを備える熱交換器
KR101331001B1 (ko) 증발기
CN108161002A (zh) 翅片冷却系统、冷却翅片及其增材制造方法
CN110617730B (zh) 一种基于肋根孔道射流的换热器及其换热方法
WO2019149060A1 (zh) 换热器、具有其的冰箱和换热器的翅片及其设计方法
JP6922645B2 (ja) 熱交換器
JP2009114924A (ja) Egrクーラ
KR102458013B1 (ko) 핀과 격벽이 형성된 열전발전용 고온부 열교환기
JP2017036868A (ja) 熱交換器
JP2009250497A (ja) 熱交換器
KR200428709Y1 (ko) 냉난방용 열교환기
KR20080107024A (ko) 열교환기
KR101280619B1 (ko) 열교환기
JP2009008299A (ja) 熱交換器のタンク構造
KR101230499B1 (ko) 내부핀을 구비한 전열관
US20220373178A1 (en) Combustion chamber and gas apparatus
CN105091412A (zh) 一种微通道换热器组件及空调
JP2020091056A (ja) 熱交換器
JP7038132B2 (ja) 壁掛け式エアコン室内機及び壁掛け式エアコン
WO2022206765A1 (zh) 换热器和空调系统
JP7006626B2 (ja) 熱交換器
JP2009030973A (ja) 1缶式複合熱源機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747242

Country of ref document: EP

Kind code of ref document: A1