WO2019148888A1 - 调频电路、驱动电路及其控制方法、以及照明系统 - Google Patents

调频电路、驱动电路及其控制方法、以及照明系统 Download PDF

Info

Publication number
WO2019148888A1
WO2019148888A1 PCT/CN2018/110233 CN2018110233W WO2019148888A1 WO 2019148888 A1 WO2019148888 A1 WO 2019148888A1 CN 2018110233 W CN2018110233 W CN 2018110233W WO 2019148888 A1 WO2019148888 A1 WO 2019148888A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
capacitor
resistor
control
Prior art date
Application number
PCT/CN2018/110233
Other languages
English (en)
French (fr)
Inventor
余兴
Original Assignee
京东方科技集团股份有限公司
京东方光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方光科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18859946.8A priority Critical patent/EP3749058A4/en
Publication of WO2019148888A1 publication Critical patent/WO2019148888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission
    • H05B47/195Controlling the light source by remote control via wireless transmission the transmission using visible or infrared light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to the field of electronic technologies, and in particular, to a frequency modulation circuit, a driving circuit, a control method thereof, and a lighting system.
  • LED lighting has become increasingly popular as a green energy-saving product.
  • LED driver circuits have emerged.
  • a frequency modulation circuit including: a rectification filter sub circuit, a voltage regulator sub circuit, a control sub circuit, and a switch sub circuit;
  • the rectifying filter sub-circuit is connected to the first input end of the frequency modulation circuit, the second input end of the frequency modulation circuit, and the voltage stabilizing sub-circuit, and is configured to convert the signal input by the first input end into a direct current signal;
  • the voltage regulator circuit is coupled to the second input and the control subcircuit and configured to convert the DC signal to a stable DC signal;
  • the control subcircuit is coupled to the second input and the switch subcircuit and configured to generate a high frequency drive signal under control of the stable DC signal;
  • the switch subcircuit is coupled to the second input and an output of the frequency modulation circuit and is configured to output a signal of the second input from the output under control of the high frequency drive signal.
  • the rectifying and filtering sub-circuit includes: a first diode, a first resistor, and a first capacitor; wherein
  • the first end of the first diode is connected to the first input end, and the second end of the first diode is connected to the first end of the first resistor;
  • the second end of the first resistor is connected to the voltage regulator circuit
  • the first end of the first capacitor is coupled to the second end of the first resistor, and the second end of the first capacitor is coupled to the second input.
  • the voltage regulator sub-circuit includes: a voltage regulator
  • a first end of the voltage regulator is coupled to the first end of the first capacitor, a second end of the voltage regulator is coupled to the control subcircuit, and a third end of the regulator The second input is connected.
  • control subcircuit includes: a microprocessor; wherein
  • a first end of the microprocessor is coupled to the second end of the voltage regulator, a second end of the microprocessor is coupled to the switch subcircuit, and a third end of the microprocessor is The second input is connected.
  • the switch subcircuit includes: a first switch tube; wherein
  • a control pole of the first switch tube is connected to a second end of the microprocessor, a first pole of the first switch tube is connected to the output end; and a second pole of the first switch tube is The second input is connected.
  • a driving circuit including: a rectifying circuit, an LLC resonant half-bridge circuit, a control circuit, an output circuit, a charge pump circuit, and the above-described frequency modulation circuit;
  • the rectifier circuit is coupled to the AC input terminal, the charge pump circuit, and the LLC resonant half bridge circuit, and is configured to rectify a signal obtained from the AC input terminal and output a rectified current;
  • the charge pump circuit is coupled to the LLC resonant half bridge circuit and configured to convert the rectified current into a sinusoidal current for input to an LLC resonant half bridge circuit;
  • the control circuit is coupled to the LLC resonant half bridge circuit and configured to control operation of the LLC resonant half bridge circuit;
  • the LLC resonant half bridge circuit is coupled to the output circuit and the frequency modulation circuit and configured to process the sinusoidal current and output a first signal and a second signal;
  • the output circuit is coupled to the frequency modulation circuit and configured to output a first current according to the first signal, the first current being a constant current;
  • the frequency modulation circuit is configured to output a second current under control of the second signal.
  • the driving circuit further includes: an electromagnetic interference filtering circuit; wherein
  • the rectifier circuit is coupled to the AC input through the electromagnetic interference filtering circuit, and the electromagnetic interference filtering circuit is configured to suppress electromagnetic interference in a signal at the AC input.
  • the AC input terminal includes: a first AC input terminal and a second AC input terminal
  • the rectifier circuit includes: a second diode, a third diode, a fourth diode, and a fifth Diode;
  • a first end of the second diode is connected to the first alternating current input end, and a second end of the second diode is connected to a second end of the third diode;
  • a first end of the third diode is connected to the second alternating current input terminal, and a second end of the third diode is connected to the charge pump circuit and the LLC resonant half bridge circuit;
  • a first end of the fourth diode is connected to the charge pump circuit, and a second end of the fourth diode is connected to the second AC input end;
  • the first end of the fifth diode is connected to the charge pump circuit, and the second end of the fifth diode is connected to the first AC input end.
  • the charge pump circuit includes: a second capacitor, a third capacitor, a fourth capacitor, and a sixth diode;
  • a first end of the second capacitor is connected to the rectifier circuit and the LLC resonant half bridge circuit, and a second end of the second capacitor is connected to a second end of the third capacitor;
  • the first end of the third capacitor is connected to the second end of the sixth diode, and the second end of the third capacitor is connected to the LLC resonant half bridge circuit;
  • a first end of the fourth capacitor is connected to the rectifier circuit, and a second end of the fourth capacitor is grounded;
  • the first end of the sixth diode is connected to the second end of the third capacitor, and the second end of the sixth diode is connected to the first end of the fourth capacitor.
  • the LLC resonant half-bridge circuit includes: a second switch tube, a third switch tube, a first inductor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, and a seventh a pole tube, a fifth capacitor, and a transformer;
  • the transformer includes: a first primary winding, a first secondary winding corresponding to the first primary winding, a second primary winding, and a second corresponding to the second primary winding Secondary winding; among them,
  • a control pole of the second switch tube is connected to the control circuit, a first pole of the second switch tube is connected to a rectifier circuit and a charge pump circuit, and a second pole of the second switch tube is connected to the first pole Connecting the first end of the inductor;
  • the control pole of the third switch tube is connected to the control circuit, the first pole of the third switch tube is connected to the first end of the first inductor, and the second pole of the third switch tube is charged with the second pole Pump circuit connection;
  • a second end of the first inductor is coupled to a first input end of the first primary winding
  • a second input end of the first primary winding is coupled to a first end of the second resistor, the first secondary winding being coupled to an output circuit;
  • the first end of the second resistor is connected to the control circuit, and the second end of the second resistor is connected to the first end of the third resistor;
  • the first end of the third resistor is grounded, and the second end of the third resistor is connected to the second pole of the third switch tube;
  • the first end of the fourth resistor is connected to the control circuit, and the second end of the fourth resistor is connected to the first end of the sixth resistor;
  • the first end of the fifth resistor is connected to the first end of the fourth resistor, and the second end of the fifth resistor is connected to the control circuit;
  • the first end of the sixth resistor is connected to the second end of the seventh diode, and the second end of the sixth resistor is connected to the control circuit;
  • the first end of the fifth capacitor is connected to the second end of the sixth resistor, and the second end of the fifth capacitor is connected to the second end of the fifth resistor;
  • a first end of the seventh diode is coupled to a first input end of the second primary winding
  • a second input end of the second primary winding is connected to the second end of the fifth capacitor and grounded;
  • a first output of the second secondary winding is coupled to a first input of the frequency modulation circuit, and a second output of the second secondary winding is coupled to a second input of the frequency modulation circuit.
  • the output circuit includes: an eighth diode, a ninth diode, and a sixth capacitor; and wherein
  • a first end of the eighth diode is connected to the LLC resonant half bridge circuit, and a second end of the eighth diode is connected to a first end of the sixth capacitor;
  • a first end of the ninth diode is connected to the LLC resonant half bridge circuit, and a second end of the ninth diode is connected to a first end of the sixth capacitor;
  • the second end of the sixth capacitor is connected to the LLC resonant half bridge circuit and the frequency modulation circuit.
  • control circuit includes a control chip, where the control chip includes a first control terminal, a second control terminal, a third control terminal, a fourth control terminal, a power terminal, and a ground terminal;
  • the first control end, the second control end, the third control end, the fourth control end, the power supply end and the ground end are respectively connected to the LLC resonant half bridge circuit.
  • the electromagnetic interference filtering circuit comprises: a fuse resistor, a common mode inductor, a differential mode inductor, and a seventh capacitor; wherein
  • the first end of the fuse resistor is connected to the first AC input terminal, and the second end of the fuse resistor is connected to the first end of the seventh capacitor;
  • the second end of the seventh capacitor is connected to the second AC input end
  • a first input end of the common mode inductor is connected to a first end of the seventh capacitor, and a second input end of the common mode inductor is connected to a second end of the seventh capacitor, the common mode inductor
  • the first output end is connected to the rectifier circuit, and the second output end of the common mode inductor is connected to the first end of the differential mode inductor;
  • the second end of the differential mode inductor is coupled to the rectifier circuit.
  • the AC input terminal includes: a first AC input terminal and a second AC input terminal;
  • the rectifier circuit includes: a second diode, a third diode, a fourth diode, and a fifth
  • the charge pump circuit includes: a second capacitor, a third capacitor, a fourth capacitor, and a sixth diode;
  • the LLC resonant half bridge circuit includes: a second switch tube, a third switch tube, and a first inductor a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, a seventh diode, a fifth capacitor, and a transformer, the transformer including: a first primary winding, and the first primary winding a corresponding first secondary winding, a second primary winding, and a second secondary winding corresponding to the second primary winding;
  • the output circuit includes: an eighth diode, a ninth diode, and a sixth capacitor;
  • the EMI filter circuit includes: a fuse resistor,
  • the first end of the fuse resistor is connected to the first AC input terminal, and the second end of the fuse resistor is connected to the first end of the seventh capacitor;
  • the second end of the seventh capacitor is connected to the second AC input end
  • a first input end of the common mode inductor is connected to a first end of the seventh capacitor, and a second input end of the common mode inductor is connected to a second end of the seventh capacitor, the common mode inductor
  • the first output is connected to the first end of the second diode, and the second output of the common mode inductor is connected to the first end of the differential mode inductor;
  • the second end of the differential mode inductor is connected to the first end of the third diode
  • the second end of the second diode is connected to the second end of the third diode
  • the second end of the third diode is connected to the first end of the second capacitor
  • a first end of the fourth diode is connected to a second end of the sixth diode, and a second end of the fourth diode is connected to a first end of the third diode;
  • a first end of the fifth diode is connected to a second end of the fourth capacitor, and a second end of the fifth diode is connected to a first end of the second diode;
  • the first end of the third capacitor is connected to the second end of the sixth diode, and the second end of the third capacitor is connected to the second end of the second capacitor;
  • the first end of the fourth capacitor is connected to the first end of the fifth diode, and the second end of the fourth capacitor is grounded;
  • a first end of the sixth diode is connected to a second end of the second capacitor, and a second end of the sixth diode is connected to a first end of the fourth diode;
  • the first end of the second capacitor is connected to the second end of the third diode, and the second end of the second capacitor is connected to the first end of the sixth diode;
  • a control pole of the second switch tube is connected to the first control end, a first pole of the second switch tube is connected to a first end of the second capacitor, and a second pole of the second switch tube Connected to the first end of the first inductor;
  • the control pole of the third switch tube is connected to the second control end, the first pole of the third switch tube is connected to the first end of the first inductor, and the second pole of the third switch tube is Connecting the second end of the second capacitor;
  • a second end of the first inductor is coupled to a first input end of the first primary winding
  • a second input end of the first primary winding is coupled to a first end of the second resistor
  • a first output of the first secondary winding is coupled to a first end of the eighth diode, a second output of the first secondary winding, and a first end of the ninth diode Connecting, and the third output of the first secondary winding is coupled to the second end of the sixth capacitor;
  • the first end of the second resistor is connected to the third control end, and the second end of the second resistor is connected to the first end of the third resistor;
  • the first end of the third resistor is grounded, and the second end of the third resistor is connected to the second pole of the third switch tube;
  • the first end of the fourth resistor is connected to the fourth control end, and the second end of the fourth resistor is connected to the first end of the sixth resistor;
  • a first end of the fifth resistor is connected to the first end of the fourth resistor, and a second end of the fifth resistor is connected to the ground end;
  • the first end of the sixth resistor is connected to the second end of the seventh diode, and the second end of the sixth resistor is connected to the power end;
  • the first end of the fifth capacitor is connected to the second end of the sixth resistor, and the second end of the fifth capacitor is connected to the second end of the fifth resistor;
  • a first end of the seventh diode is coupled to a first input end of the second primary winding
  • a second input end of the second primary winding is coupled to the second end of the fifth capacitor and grounded;
  • a first output end of the second secondary winding is coupled to the first end of the first diode The second output end of the second secondary winding is connected to the second end of the first capacitor;
  • a first end of the eighth diode is connected to a first output end of the first secondary winding, and a second end of the eighth diode is connected to a first end of the sixth capacitor;
  • a first end of the ninth diode is connected to a second output end of the first secondary winding, and a second end of the ninth diode is connected to a second end of the eighth diode ;
  • a first end of the sixth capacitor is coupled to a second end of the ninth diode, a second end of the sixth capacitor is coupled to a third output of the first secondary winding, and the first Connecting the second end of the capacitor;
  • the first end of the first diode is connected to the first output end of the second secondary winding, and the second end of the first diode is connected to one end of the first resistor;
  • the second end of the first resistor is connected to the first end of the voltage regulator
  • the first end of the first capacitor is connected to the second end of the first resistor, and the second end of the first capacitor is connected to the second output end of the second secondary winding;
  • a first end of the voltage regulator is coupled to a first end of the first capacitor, a second end of the voltage regulator is coupled to a first end of the microprocessor, and a third of the voltage regulator The end is connected to the second output end of the second secondary winding;
  • a second end of the microprocessor is connected to a control pole of the first switch tube, and a third end of the microprocessor is connected to a second output end of the second secondary winding;
  • the first pole of the first switch tube is connected to the output end; the second pole of the first switch tube is connected to the second output end of the second secondary winding.
  • each of the second switch tube and the third switch tube includes: a triode.
  • an illumination system comprising any of the driver circuits and LED loads provided above; wherein an anode of the LED load is coupled to the output circuit to receive a first output of the output circuit And the cathode of the LED load is connected to the frequency modulation circuit to receive the second current output by the frequency modulation circuit.
  • a control method for a driving circuit which is applied to any of the above driving circuits, includes:
  • the sinusoidal current is processed by the LLC resonant half bridge circuit under control of the control circuit to output the first signal and the second signal;
  • the first current is a constant current.
  • outputting the second current through the frequency modulation circuit under the control of the second signal includes:
  • a second current is output from an output of the frequency modulation circuit under the control of the high frequency drive signal.
  • FIG. 1 is a schematic structural diagram of a frequency modulation circuit according to an embodiment of the present disclosure
  • FIG. 2 is a circuit diagram of a frequency modulation circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a driving circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • FIG. 11 is a circuit diagram of a driving circuit according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for controlling a driving circuit according to an embodiment of the present disclosure.
  • the power factor is a factor that measures the efficiency of electrical equipment.
  • the low power factor indicates that the reactive power of the circuit for alternating magnetic field conversion is large, thereby reducing the utilization rate of the device, increasing the power loss of the line, and the harmonic pollution at the input end is also serious.
  • the switch tubes used in all embodiments of the present application can be a transistor or a field effect transistor or other devices having the same characteristics.
  • the gate or the base is controlled to be different from the gate or the base of the switch tube, and one of the two poles is referred to as a first pole, and the other pole is referred to as a first pole. It is a second pole, wherein the first pole can be a source or a collector, and the second pole can be a drain or an emitter.
  • one of the two poles is referred to as a first end, and the other pole is referred to as a second end, wherein the first end of the diode may be the anode of the diode, and the second end of the diode may be The negative pole of the diode.
  • FIG. 1 is a schematic structural diagram of a frequency modulation circuit according to an embodiment of the present disclosure.
  • a frequency modulation circuit provided by an embodiment of the present disclosure includes: a rectification filter sub circuit, a voltage regulator sub circuit, a control sub circuit, and a switch sub circuit.
  • the rectifying filter sub-circuit is connected to the first input terminal INPUT1 of the frequency modulation circuit, the second input terminal INPUT2 of the frequency modulation circuit, and the voltage regulator circuit, and is configured to convert the signal input at the first input terminal INPUT1. It is a DC signal.
  • the voltage regulator subcircuit is coupled to the second input terminal INPUT2 and the control subcircuit and is configured to convert the DC signal to a stable DC signal.
  • the voltage regulator sub-circuit is configured to step down the DC signal for conversion to a stable DC signal.
  • the stable DC signal generated by the voltage regulator sub-circuit provides the required operating voltage for the control sub-circuit.
  • the control subcircuit is coupled to the second input terminal INPUT2 and the switch subcircuit and is configured to generate a high frequency drive signal under control of the stabilized DC signal.
  • control subcircuit can be a microprocessor.
  • the high frequency driving signal may be a high frequency driving signal, that is, a driving signal having a relatively short period.
  • the frequency of the microprocessor output is adjustable, and the frequency can be determined based on the parameters of the control subcircuit.
  • the switch sub-circuit is coupled to the second input terminal INPUT2 and the output terminal OUTPUT of the frequency modulation circuit, and is configured to output a signal of the second input terminal INPUT2 under the control of the high frequency drive signal.
  • the second input terminal INPUT2 may be a reference voltage terminal.
  • the reference voltage terminal can be a ground terminal.
  • the output OUTPUT of the frequency modulation circuit can be connected to the cathode of the LED load.
  • High frequency refers to a frequency that causes the user to feel the flicker of the LED load.
  • the frequency of LED flicker can be changed by adjusting the frequency of the high frequency drive signal output by the microprocessor.
  • the frequency of the LED load flicker is different, and the information of the optical signal carried by the optical signal may also be different.
  • the level of the signal input at the first input terminal INPUT1 is greater than the level of the signal input at the second input terminal INPUT2.
  • the frequency modulation circuit when the high frequency driving signal is at a high level, the frequency modulation circuit outputs a signal of the second input end as an example.
  • the frequency modulation circuit When the high frequency driving signal is at a high level, the frequency modulation circuit outputs a signal, and the LED load is illuminated. State, and when the high frequency drive signal is low, the frequency modulation circuit does not output a signal, so the LED load does not emit light. Since the frequency of the high frequency driving signal is high, the high frequency on and off of the LED load is generally undetectable to the human eye, and therefore, the frequency modulation circuit provided by the embodiment of the present disclosure enables the LED load to emit an optical signal.
  • the dedicated code of the LED load is displayed on the APP, and the dedicated code is displayed.
  • the server will transmit the information of a certain area or a certain cultural relic corresponding to the special code to the user's mobile phone, so that the user can conveniently watch on his mobile phone. The information you need, you can even download the information, so that users can easily view the content.
  • the frequency modulation circuit provided by the embodiment of the present disclosure can generate a high frequency driving signal according to the input signal, and control the output through the high frequency driving signal, so that the LED emits an optical signal carrying the content information, and the user can conveniently obtain the optical signal by receiving the optical signal.
  • Content information can be generated by the embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram of a frequency modulation circuit provided by an embodiment of the present disclosure.
  • FIG. 2 shows an exemplary structure of a rectification filter sub-circuit, a voltage regulator sub-circuit, a control sub-circuit, and a switch sub-circuit.
  • the rectifying filter sub-circuit may include: a first diode D1, a first resistor R1, and a first capacitor C1; the first end of the first diode D1 is connected to the first input terminal INPUT1 of the frequency modulation circuit, The second end is connected to the first end of the first resistor R1; the second end of the first resistor R1 is connected to the voltage regulator circuit; the first end of the first capacitor C1 is connected to the second end of the first resistor R1, and the second end It is connected to the second input terminal INPUT2 of the frequency modulation circuit.
  • the first diode D1 rectifies the input signal
  • the first resistor R1 limits the rectified signal
  • the first capacitor C1 filters the current-limited signal to make the DC signal It was obtained.
  • the voltage regulator sub-circuit includes: a voltage regulator, wherein the first end of the voltage regulator is connected to the first end of the first capacitor C1, and the second end of the voltage regulator is connected to the control sub-circuit, the voltage regulator The third end is connected to the second input terminal INPUT2.
  • the voltage regulator can include a low dropout regulator (LDO).
  • LDO low dropout regulator
  • the first end of the voltage regulator may be a voltage input end of the voltage regulator
  • the second end of the voltage regulator may be a voltage output end of the voltage regulator
  • the third voltage regulator The terminal can be the reference voltage terminal of the voltage regulator, which is of course not limiting.
  • the voltage reference terminal of the voltage regulator may be a ground terminal of the voltage regulator.
  • control sub-circuit may include: a microprocessor; wherein the first end of the microprocessor is connected to the second end of the voltage regulator, the second end is connected to the switch sub-circuit, and the third end is connected to the second input end INPUT2 connection.
  • the microprocessor may include a Microcontroller Unit (MCU), however it is not limiting.
  • MCU Microcontroller Unit
  • the first end of the microprocessor may be a signal input end of the microprocessor
  • the second end of the microprocessor may be a signal output end of the microprocessor
  • the third end of the microprocessor The terminal can be the reference voltage terminal of the microprocessor, although this is not limiting.
  • the reference voltage terminal of the microprocessor may be a ground terminal of the microprocessor.
  • the switch sub-circuit includes a first switch tube Q1; wherein the control pole of the first switch tube Q1 is connected to the second end of the microprocessor, and the first pole of the first switch tube Q1 is connected to the output terminal OUTPUT, first The second pole of the switch Q1 is connected to the second input terminal INPUT2.
  • the first switch transistor Q1 is an N-type or P-type metal oxide semiconductor field effect transistor, and embodiments of the present disclosure do not specifically limit the type of the first switch transistor.
  • the first switching transistor provided by the embodiment of the present disclosure is an N-type metal oxide semiconductor field effect transistor.
  • the first input terminal inputs a signal
  • the first diode The input signal is rectified
  • the first resistor limits the rectified signal
  • the first capacitor filters the current-limited signal to generate a DC signal
  • the regulator then converts the DC signal into a stable DC signal.
  • the stable DC signal provides the operating voltage to the microprocessor, and the microprocessor generates a high frequency drive signal under the control of the stable DC signal.
  • the first switching tube When the high frequency driving signal is high level, the first switching tube is turned on, so that the frequency modulation circuit outputs the signal of the second input end, and when the high frequency driving signal is low level, the first switching tube is turned off, so that the frequency modulation circuit has no output.
  • the first switching transistor is turned on and off at a high frequency under the control of the high frequency driving signal. Since the output of the FM circuit is connected to the cathode of the LED load, the LED load operates in a high frequency on and off state that is invisible to the human eye.
  • FIG. 3 is a schematic structural diagram of a driving circuit according to an embodiment of the present disclosure.
  • the driving circuit provided by the embodiment of the present disclosure includes a rectifier circuit, an LLC resonant half bridge circuit, a control circuit, an output circuit, a charge pump circuit, and a frequency modulation circuit.
  • the frequency modulation circuit in the embodiment of the present disclosure may be the frequency modulation circuit provided in the above embodiment.
  • the rectifier circuit is coupled to the AC input terminal AINPUT, the charge pump circuit, and the LLC resonant half bridge circuit, and is configured to rectify the signal obtained from the AC input terminal and output a rectified current.
  • the AC input is connected to the mains and the input signal is an AC signal.
  • a charge pump circuit is coupled to the LLC resonant half bridge circuit and is configured to convert the rectified current to a sinusoidal current for input to an LLC resonant half bridge circuit.
  • the charge pump circuit is configured such that the average current of the input LLC resonant half bridge circuit is a sinusoidal current that is in phase with the voltage output by the rectifier circuit (which is also in phase with the signal at the AC input), thereby causing the LED drive circuit
  • the output power factor is increased to 0.95 to 0.99.
  • the control circuit is coupled to the LLC resonant half bridge circuit and is configured to control operation of the LLC resonant half bridge circuit, such as the start or stop of the LLC resonant half bridge circuit.
  • the LLC resonant half bridge circuit can be controlled by changing the signal output by the control circuit.
  • the control circuit can also control the driving waveform of the input LLC resonant half-bridge circuit, the stability of the loop between the control circuit and the LLC resonant half-bridge circuit, and make the output current of the output circuit constant current, etc., thereby realizing the circuit. Protection and other functions.
  • the LLC resonant half bridge circuit is coupled to the output circuit and the frequency modulation circuit, and is configured to process the sinusoidal current under control of the control circuit and output the first signal and the second signal.
  • the first signal and the second signal are rectangular wave signals.
  • the output circuit is coupled to the frequency modulation circuit and configured to output a first current according to the first signal, wherein the first current is a constant current.
  • the output circuit can be connected to the anode of the LED load.
  • the output circuit is connected to the frequency modulation circuit in order to share the same ground terminal with the frequency modulation circuit to form a loop.
  • the frequency modulation circuit is configured to output a second current under the control of the second signal.
  • the frequency modulation circuit can be connected to the cathode of the LED load.
  • the driving circuit provided by the embodiment of the present disclosure includes the frequency modulation circuit provided in the foregoing embodiment, and when it is used in combination with a dedicated mobile phone APP and a background server, wireless optical communication can be implemented.
  • the driving circuit includes: a rectifying circuit, an LLC resonant half bridge circuit, a control circuit, an output circuit, a charge pump circuit, and a frequency modulation circuit.
  • the rectifier circuit is connected to the AC input terminal, the charge pump circuit and the LLC resonant half bridge circuit, and is configured to rectify the current signal obtained from the AC input terminal and output a rectified current;
  • the charge pump circuit is connected to the LLC resonant half bridge circuit, and Configuring to convert the rectified current into a sinusoidal current to input an LLC resonant half-bridge circuit;
  • the control circuit is coupled to the LLC resonant half-bridge circuit and configured to control operation of the LLC resonant half-bridge circuit;
  • the output circuit is coupled to the frequency modulation circuit and configured to process the sine wave current under the control of the control circuit and output the first signal and the second signal;
  • the output circuit is coupled to the frequency modulation circuit and configured to be based on the first signal The first current
  • the driving circuit provided by the embodiment of the present disclosure includes a charging pump circuit and a frequency modulation circuit, which not only improves the power factor of the driving circuit, but also realizes wireless optical communication of the LED load, so that the LED emits an optical signal carrying content information. The user can conveniently obtain the content information by receiving the optical signal.
  • FIG. 4 is a schematic structural diagram of another driving circuit according to an embodiment of the present disclosure.
  • the driving circuit provided by the embodiment of the present disclosure includes an electromagnetic interference filtering circuit in addition to the circuit shown in FIG.
  • a rectifier circuit is coupled to the AC input through the electromagnetic interference filtering circuit, the electromagnetic interference filtering circuit configured to suppress electromagnetic interference in a signal at the AC input.
  • the electromagnetic interference filtering circuit in the driving circuit, the electromagnetic interference EMI of the driving circuit can be effectively suppressed, so that the driving circuit meets the limitation requirements of the radio disturbance characteristics of the electric lighting and the like of GB17743.
  • FIG. 5 shows a schematic structure of another driving circuit provided by an embodiment of the present disclosure.
  • the rectifier circuit in the driving circuit includes a second diode D2, a third diode D3, a fourth diode D4, and a fifth diode D5.
  • the other circuits included in the drive circuit shown in FIG. 5 are the same as those described in FIG.
  • the AC input terminal includes: a first AC input terminal AINPUT1 and a second AC input terminal AINPUT2.
  • the second AC input terminal AINPUT2 can be, for example, a reference voltage terminal or a ground terminal.
  • the first end of the second diode D2 is connected to the first AC input terminal AINPUT1, the second end is connected to the second end of the third diode D3, and the first end of the third diode D3 is connected to the second AC input.
  • the terminal AINPUT2 is connected, the second end is connected to the charge pump circuit and the LLC resonant half bridge circuit; the first end of the fourth diode D4 is connected to the charge pump circuit, and the second end is connected to the second AC input terminal AINPUT2;
  • the first end of the pole tube D5 is connected to the charge pump circuit, and the second end is connected to the first AC input terminal AINPUT1.
  • the second diode D2, the third diode D3, the fourth diode D4, and the fifth diode D5 are fast recovery diodes.
  • FIG. 5 shows an exemplary structure of the rectifier circuit, but those skilled in the art will readily understand that the implementation of the circuit is not limited thereto, and any implementation capable of realizing its function is conceived.
  • the charging pump circuit in the driving circuit includes: a second capacitor, a third capacitor C3, The fourth capacitor C4 and the sixth diode D6. It should be noted that the other circuits included in the drive circuit shown in FIG. 6 are the same as those described in FIG.
  • the first end of the second capacitor C2 is connected to the rectifier circuit and the LLC resonant half bridge circuit, and the second end of the second capacitor C2 is connected to the second end of the third capacitor C3.
  • the first end of the third capacitor C3 is connected to the second end of the sixth diode D6, the second end of the third capacitor C3 is connected to the LLC resonant half bridge circuit, and the first end of the fourth capacitor C4 is connected to the rectifier circuit.
  • the second end of the fourth capacitor C4 is grounded; the first end of the sixth diode D6 is connected to the second end of the third capacitor C3, and the second end of the sixth diode D6 is connected to the first end of the fourth capacitor C4. connection.
  • the sixth diode D6 is a fast recovery diode.
  • the third capacitor C3 and the fourth capacitor C4 are both metal film capacitors.
  • the second capacitor C2 is an electrolytic capacitor.
  • the rectified current outputted by the rectifier circuit can be transferred to the electrolytic capacitor C2, so that the average current of the input LLC resonant half-bridge circuit is The sinusoidal current of the same phase of the voltage output by the rectifier circuit increases the output power factor of the LED driver circuit to 0.95 to 0.99.
  • the charging pump circuit in the LED driving circuit provided by the embodiment of the present disclosure includes: 3 capacitors and a diode, which requires less electronic components than the existing charging circuit, and the circuit is simple, thereby saving under the condition of ensuring high power factor.
  • the manufacturing cost also increases the utilization rate of the power grid and reduces harmonic pollution.
  • FIG. 6 shows an exemplary structure of the charge pump circuit, and those skilled in the art will readily understand that the implementation of the circuit is not limited thereto, and any implementation capable of realizing its function is conceived.
  • FIG. 7 shows a schematic structure of another driving circuit provided by an embodiment of the present disclosure.
  • the LLC resonant half bridge circuit in the driving circuit includes: a second switching transistor Q2, a third switching transistor Q3, a first inductor L1, a second resistor R2, a third resistor R3, and a third a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh diode D7, a fifth capacitor C5 and a transformer, wherein the transformer comprises: a first primary winding T1A, a first secondary corresponding to the first primary winding A winding T1C, a second primary winding T1B, and a second secondary winding T1D corresponding to the second primary winding.
  • the other circuits included in the drive circuit shown in FIG. 7 are the same as those described in FIG.
  • control pole of the second switching transistor Q2 is connected to the control circuit, the first pole of the second switching transistor Q2 is connected to the charging pump circuit and the rectifier circuit, and the second pole of the second switching transistor Q2 is connected to the second pole
  • the first end of the inductor L1 is connected;
  • control pole of the third switch Q3 is connected to the control circuit, the first pole of the third switch Q3 is connected to the first end of the first inductor L1, and the second end of the third switch Q3 is connected.
  • the first secondary winding T1C is connected to the output circuit; the first end of the second resistor R2 is connected to the control circuit, the second end of the second resistor R2 is connected to the first end of the third resistor R3; and the first end of the third resistor R3
  • the second end of the third resistor R3 is connected to the second end of the third switch tube Q3; the first end of the fourth resistor R4 is connected to the control circuit, and the second end is connected to the first end of the sixth resistor R6;
  • the first end of the fifth resistor R5 is connected to the first end of the fourth resistor R4, and the second end is connected to the control circuit;
  • the first end of the sixth resistor R6 is connected to the second end of the seventh diode
  • the first primary winding T1A, the first secondary winding T1C corresponding to the first primary winding, the second primary winding T1B, and the second secondary winding T1D corresponding to the second primary winding may share one core T1, this simplifies the structure of the drive circuit.
  • the second switching transistor Q2 and the third switching transistor Q3 may be triodes.
  • the embodiment of the present disclosure employs a triode as a switching tube of the LLC resonant half-bridge circuit, and thus can reduce the cost of the driving circuit.
  • the seventh diode D7 is a rectifier diode.
  • the first inductor L1 is a resonant inductor.
  • the fifth capacitor C5 is an electrolytic capacitor.
  • the LLC resonant half bridge circuit provided by the embodiment of the present disclosure adopts a resonant circuit LLC topology, so that the driving circuit provided by the embodiment of the present disclosure is a single-stage high power factor circuit with high conversion rate. Conversion rates can easily reach over 90%.
  • the LLC resonant half-bridge circuit provided by the embodiment of the present disclosure may be implemented by a single-stage Active Power Factor Correction (APFC) or a valley filling circuit in addition to the above embodiments, but needs to be explained. Yes, the efficiency of a single-stage APFC circuit is difficult to reach 90% and is not suitable for a driver circuit between 40-80W.
  • APFC Active Power Factor Correction
  • the valley filling circuit can increase the power factor to 0.9, but the efficiency is low, the harmonics are large, and it is not suitable for the driving circuit of 30W or more.
  • the LLC resonant half bridge circuit provided by the embodiments of the present disclosure is very suitable for an LED driving circuit of 30-80W.
  • the LLC resonant half-bridge circuit provided in the embodiment of the present disclosure can enable the second switching tube and the third switching tube to operate in a zero voltage switching state under the control of the control circuit, thereby reducing the loss of the switching tube and achieving a higher Conversion rate.
  • FIG. 7 shows an exemplary structure of the LLC resonant half bridge circuit, but those skilled in the art will readily understand that the implementation of the circuit is not limited thereto, and any implementation that can realize its function is Imagine.
  • FIG. 8 shows a schematic structure of another driving circuit provided by an embodiment of the present disclosure.
  • the output circuit in the driving circuit includes an eighth diode D8, a ninth diode D9, and a sixth capacitor C6. It should be noted that the other circuits included in the drive circuit shown in FIG. 8 are the same as those described in FIG.
  • the first end of the eighth diode D8 is connected to the LLC resonant half bridge circuit, the second end is connected to the first end of the sixth capacitor C6, and the first end of the ninth diode D9 is connected to the LLC resonant half bridge circuit.
  • the second end is connected to the first end of the sixth capacitor C6; the second end of the sixth capacitor C6 is connected to the LLC resonant half bridge circuit and the frequency modulation circuit.
  • the eighth diode D8 and the ninth diode D9 are Schottky diodes.
  • the sixth capacitor C6 is an electrolytic capacitor.
  • the first signal input at the output circuit is rectified by the eighth diode D8 and the ninth diode D9, and the sixth capacitor C6 is filtered to generate a constant current.
  • FIG. 8 shows an exemplary structure of the output circuit, but those skilled in the art will readily understand that the implementation of the circuit is not limited thereto, and any implementation capable of realizing its function is conceived.
  • FIG. 9 shows a schematic structure of another driving circuit provided by an embodiment of the present disclosure.
  • the control circuit in the driving circuit includes a control chip, and the control chip includes a first control terminal TX1, a second control terminal TX2, a third control terminal CS, a fourth control terminal FB, a power terminal VDD, and a ground terminal. GND.
  • the first control terminal TX1 and the second control terminal TX2 may be signal output ends of the control chip for outputting a driving signal for controlling the LLC resonant half bridge circuit
  • the third control terminal CS may be a current detecting terminal
  • the four control terminals FB can be voltage feedback terminals.
  • the control chip may be, for example, a RED 2511 chip manufactured by Redisem. It should be noted that the other circuits included in the drive circuit shown in FIG. 9 are the same as those described in FIG.
  • the first control terminal TX1, the second control terminal TX2, the third control terminal CS, the fourth control terminal FB, the power terminal VDD and the ground terminal GND are respectively connected to the LLC resonant half bridge circuit.
  • FIG. 9 shows an exemplary structure of the control circuit, but those skilled in the art will readily understand that the implementation of the circuit is not limited thereto, and any implementation capable of realizing its function is conceived.
  • the driving circuit may further include a driving sub-circuit (not shown) connected to the control chip and the LLC resonant half-bridge circuit included in the control circuit for amplifying the driving signal outputted by the control chip.
  • the control drive subcircuit can be, for example, a transformer.
  • the control chip can be as shown in FIG.
  • the driving sub-circuit may be connected to the second switching transistor Q2 and the third switching transistor Q3 of the first control terminal TX1, the second control terminal TX2 and the LLC resonant half-bridge circuit of the control chip, and configured to amplify the control chip The drive signal output from the signal output.
  • FIG. 10 shows a schematic structure of another driving circuit provided by an embodiment of the present disclosure.
  • the driving circuit includes an electromagnetic interference filtering circuit.
  • the electromagnetic interference filtering circuit includes: a fuse resistor F, a common mode inductor LF, a differential mode inductor NF, and a seventh capacitor C7. It should be noted that the other circuits included in the drive circuit shown in FIG. 10 are the same as those described in FIG.
  • the first end of the fuse resistor F is connected to the first AC input terminal AINPUT1, the second end is connected to the first end of the seventh capacitor C7, and the second end of the seventh capacitor C7 is connected to the second AC input terminal AINPUT2;
  • the first input end of the inductor LF is connected to the first end of the seventh capacitor C7, the second input end of the common mode inductor LF is connected to the second end of the seventh capacitor C7, and the first output end of the common mode inductor LF and the rectifier circuit
  • the second output of the common mode inductor LF is connected to the first end of the differential mode inductor NF; the second end of the differential mode inductor NF is connected to the rectifier circuit.
  • the fuse resistor F can be a fuse.
  • the seventh capacitor C7 may be a safety capacitor.
  • FIG. 10 shows an exemplary structure of the electromagnetic interference filtering circuit, but those skilled in the art can easily understand that the implementation manner of the circuit is not limited thereto, and any implementation capable of realizing the function thereof is Imagine.
  • FIG. 11 is a circuit diagram of a driving circuit according to an embodiment of the present disclosure.
  • the driving circuit provided by the embodiment of the present disclosure includes: an electromagnetic interference filtering circuit, a rectifying circuit, an LLC resonant half bridge circuit, a control circuit, an output circuit, a charging pump circuit, and a frequency modulation circuit.
  • the frequency modulation circuit comprises: a first diode D1, a first resistor R1 and a first capacitor C1, a voltage regulator, a microprocessor and a first switching transistor Q1; and the rectifier circuit comprises: a second diode D2 and a third diode The tube D3, the fourth diode D4 and the fifth diode D5; the charge pump circuit comprises: a second capacitor C2, a third capacitor C3, a fourth capacitor C4 and a sixth diode D6; the LLC resonant half bridge circuit comprises a second switching transistor Q2, a third switching transistor Q3, a first inductor L1, a second resistor R2, a third resistor R3, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh diode D7, a fifth capacitor C5, and a transformer; the output circuit comprises: an eighth diode D8, a ninth diode D9 and a sixth capacitor C6; the electromagnetic interference filtering circuit comprises: a fuse resistor F,
  • the AC input end of the rectifier circuit includes: a first AC input terminal AINPUT1 and a second AC input terminal AINPUT2; the transformer includes: a first primary winding T1A, a first secondary winding T1C corresponding to the first primary winding T1A, and a second primary winding T1B and a second secondary winding T1D corresponding to the second primary winding T1B.
  • the first end of the fuse resistor F is connected to the first AC input terminal AINPUT1
  • the second end of the fuse resistor F is connected to the first end of the seventh capacitor C7
  • the second end of the seventh capacitor C7 is connected.
  • the first input end of the common mode inductor LF is connected to the first end of the seventh capacitor C7
  • the second input end of the common mode inductor LF is connected to the second end of the seventh capacitor C7.
  • the first output end of the mode inductor LF is connected to the first end of the second diode D2, and the second output end of the common mode inductor LF is connected to the first end of the differential mode inductor NF; the second end of the differential mode inductor NF is The first end of the third diode D3 is connected; the second end of the second diode D2 is connected to the second end of the third diode D3; the second end of the third diode D3 is connected to the second capacitor C2
  • the first end of the fourth diode D4 is connected to the second end of the sixth diode D6, the second end of the fourth diode D4 and the first end of the third diode D3 Connecting; the first end of the fifth diode D5 is connected to the second end of the fourth capacitor C4, the second end of the fifth diode D5 is connected to the first end of the second diode D2; the third capacitor C3
  • the first end is connected to the second end of the sixth diode D6,
  • the second pole is coupled to the second end of the second capacitor C2; the second end of the first inductor L1 is coupled to the first input of the first primary winding T1A; the second input of the first primary winding T1A is coupled to the second
  • the first end of the first secondary winding T1C is connected to the first end of the eighth diode D8, the second output of the first secondary winding T1C and the ninth diode D9
  • the first end is connected, and the third output of the first secondary winding T1C is connected to the second end of the sixth capacitor C6;
  • the first end of the second resistor R2 is connected to the third control terminal CS, and the second resistor R2 is The second end is connected to the first end of the third resistor R3; the first end of the third resistor R3 is grounded, the second end of the third resistor R3 is connected to the second pole of the third switch tube Q3;
  • One end is connected to the fourth control terminal FB, the second end of the fourth resistor R4 is connected to the
  • the first secondary winding may be comprised of a first coil and a second coil, wherein one end of the first coil is coupled to one end of the second coil to form a third output of the first secondary winding.
  • the third output can be, for example, a reference voltage terminal.
  • the other end of the first coil constitutes a first output end of the first secondary winding, and the other end of the second coil constitutes a second output end of the first secondary winding.
  • the third control terminal CS and the fourth control terminal FB of the control chip are respectively electrically connected to the output end of the LLC resonant half bridge circuit, wherein the fourth control terminal FB is used for detecting the voltage outputted by the LLC resonant half bridge circuit, and the third control terminal CS Used to detect the current of the LLC resonant half-bridge circuit output.
  • the control chip controls the start of the operation of the LLC resonant half-bridge circuit through the first control terminal TX1 and the second control terminal TX2 according to the output voltage and current of the LLC resonant half-bridge circuit acquired by the third control terminal CS and the fourth control terminal FB or stop.
  • Embodiments of the present disclosure also provide an illumination system based on the same inventive concept.
  • An illumination system provided by an embodiment of the present disclosure includes the above driving circuit and further includes: an LED load, an anode of the LED load is connected to the output circuit to receive a first current output by the output circuit, and a cathode of the LED load
  • the frequency modulation circuit is connected to receive the second current output by the frequency modulation circuit.
  • the anode of the LED load is coupled to the first end of the sixth capacitor, and the cathode of the LED load is coupled to the first pole of the first switch transistor.
  • a signal with an AC voltage of 220V is input at the AC input.
  • the electromagnetic interference filtering circuit suppresses electromagnetic interference in the signal input from the AC input terminal
  • the four diodes in the rectifier circuit rectify the signal that is suppressed by the electromagnetic interference to output a rectified signal.
  • the charge pump circuit utilizes the characteristics of time-sharing charging and discharging of the third capacitor C3 and the fourth capacitor C4 to transfer the electric energy of the rectified signal outputted by the rectifying circuit to the second capacitor C2 of the high-voltage energy storage to make the input LLC resonant half-bridge circuit
  • the average current is a sinusoidal current
  • the third control terminal CS and the fourth control terminal FB in the control chip acquire the output voltage and current of the LLC resonant half-bridge circuit, and control the LLC through the first control terminal TX1 and the second control terminal TX2
  • the resonant half bridge circuit causes the LLC resonant half bridge circuit to output the first signal and the second signal; the first signal is rectified by the eighth diode D8 and the ninth diode D9, and is filtered by the sixth capacitor C6 to generate a constant current
  • the constant current provides a constant constant current for the illumination of the LED load; the first diode rectifies the second signal, the first resistor limits the rectified signal, and the first capacitor
  • the first switching tube is turned on and off at a high frequency under the control of the high frequency driving signal, so that the LED load is in a high frequency switching state to emit an optical signal, and the optical signal carries content information, and the user can receive the light. Signals for easy access to content information.
  • FIG. 12 is a flowchart of a method for controlling a driving circuit according to an embodiment of the present disclosure. As shown in FIG. 12, a method for controlling a driving circuit provided by an embodiment of the present disclosure includes the following steps 100-400.
  • the signal obtained from the AC input is rectified by a rectifier circuit and the rectified current is output, and the rectified current is converted to a sinusoidal current of the input LLC resonant half-bridge circuit by the charge pump circuit.
  • the electrical energy at the AC input is mains and is an AC signal.
  • the sinusoidal current is in phase with the voltage output by the rectifier circuit.
  • the sinusoidal current is processed by an LLC resonant half bridge circuit under control of a control circuit to output a first signal and a second signal.
  • the first signal and the second signal are both rectangular wave signals.
  • a first current is output through the output circuit in accordance with the first signal; and at step 400, a second current is output through the frequency modulation circuit under control of the second signal.
  • the first current may be a constant current that provides a constant operating current for the LED load.
  • the FM circuit is connected to the cathode of the LED load and converts the constant operating current flowing through the LED load into a rectangular wave current.
  • outputting the second current through the frequency modulation circuit under the control of the second signal includes: converting the second signal into a DC signal by a rectifying filter sub-circuit of the frequency modulation circuit; and passing the frequency modulation circuit
  • the voltage regulator sub-circuit converts the DC signal into a stable DC signal; under the control of the stable DC signal, generates a high-frequency driving signal through a control sub-circuit of the frequency-modulating circuit; under the control of the high-frequency driving signal And outputting a second current from an output end of the frequency modulation circuit.
  • the charge pump circuit makes the average current of the input LLC resonant half bridge circuit a sinusoidal current, and the frequency modulation circuit causes the LED load to be turned on and off at a high frequency, which not only improves the power factor of the driving circuit, but also Wireless optical communication with LED loads is also achieved.
  • the LED emits an optical signal carrying content information, and the user can receive the optical signal to conveniently obtain the content information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本文描述了一种调频电路、驱动电路及其控制方法、以及照明系统,其中,该调频电路包括整流滤波子电路、稳压子电路、控制子电路和开关子电路。所述调频电路能够使LED发出携带内容信息的光信号,用户可以接收该光信号以便获取所述内容信息。

Description

调频电路、驱动电路及其控制方法、以及照明系统
相关申请
本申请要求申请日为2018年1月31日、申请号为CN201810092442.1的中国专利申请的优先权,该优先权申请的整体内容通过引用的方式被合并于此。
技术领域
本公开涉及电子技术的领域,具体涉及一种调频电路、驱动电路及其控制方法、以及照明系统。
背景技术
近年来,发光二极管(Light Emitting Diode,简称LED)照明作为绿色节能产品越来越受欢迎。为了满足LED的特性要求,LED驱动电路也应运而生。
然而,当人们例如去博物馆观赏那些文物藏品或者在各种展会上观看一些内容时,由于博物馆或者展会的LED照明的光线比较暗,导致观看某个文物藏品的简介或者相关内容会比较困难。
发明内容
根据本公开的一个方面,提供了一种调频电路,包括:整流滤波子电路、稳压子电路、控制子电路和开关子电路;其中
所述整流滤波子电路连接到调频电路的第一输入端、调频电路的第二输入端和所述稳压子电路,并且被配置成将第一输入端输入的信号转换为直流信号;
所述稳压子电路连接到所述第二输入端和所述控制子电路,并且被配置成将所述直流信号转换为稳定直流信号;
所述控制子电路连接到所述第二输入端和所述开关子电路,并且被配置成在所述稳定直流信号的控制下,生成高频驱动信号;
所述开关子电路连接到所述第二输入端和调频电路的输出端,并且被配置成在所述高频驱动信号的控制下,从所述输出端输出第二输入端的信号。
可选地,所述整流滤波子电路包括:第一二极管、第一电阻和第一电容;其中
所述第一二极管的第一端与第一输入端连接,并且所述第一二极管的第二端与第一电阻的第一端连接;
所述第一电阻的第二端与所述稳压子电路连接;
所述第一电容的第一端与第一电阻的第二端连接,并且所述第一电容的第二端与第二输入端连接。
可选地,所述稳压子电路包括:稳压器;其中
所述稳压器的第一端与所述第一电容的第一端连接,所述稳压器的第二端与所述控制子电路连接,以及所述稳压器的第三端与所述第二输入端连接。
可选地,所述控制子电路包括:微处理器;其中
所述微处理器的第一端与所述稳压器的第二端连接,所述微处理器的第二端与所述开关子电路连接,所述微处理器的第三端与所述第二输入端连接。
可选地,所述开关子电路包括:第一开关管;其中
所述第一开关管的控制极与所述微处理器的第二端连接,所述第一开关管的第一极与所述输出端连接;所述第一开关管的第二极与所述第二输入端连接。
根据本公开的另一方面,提供了一种驱动电路,包括:整流电路、LLC谐振半桥电路、控制电路、输出电路、充电泵电路和上述调频电路;其中
所述整流电路连接到交流输入端、所述充电泵电路和所述LLC谐振半桥电路,并且被配置成对从所述交流输入端获取的信号进行整流并输出整流电流;
所述充电泵电路连接所述LLC谐振半桥电路,并且被配置成使所述整流电流转换为正弦波电流以输入LLC谐振半桥电路;
所述控制电路连接到所述LLC谐振半桥电路,并且被配置成控制所述LLC谐振半桥电路的操作;
所述LLC谐振半桥电路连接到所述输出电路和所述调频电路,并且被配置成对所述正弦波电流进行处理,并输出第一信号和第二信号;
所述输出电路连接到所述调频电路,并且被配置成根据所述第一 信号输出第一电流,所述第一电流为恒定电流;
所述调频电路被配置成在第二信号的控制下输出第二电流。
可选地,所述驱动电路,所述驱动电路还包括:电磁干扰滤除电路;其中
所述整流电路通过所述电磁干扰滤除电路连接到所述交流输入端,并且所述电磁干扰滤除电路被配置成抑制所述交流输入端的信号中的电磁干扰。
可选地,所述交流输入端包括:第一交流输入端和第二交流输入端,并且所述整流电路包括:第二二极管、第三二极管、第四二极管和第五二极管;其中
所述第二二极管的第一端与所述第一交流输入端连接,所述第二二极管的第二端与所述第三二极管的第二端连接;
所述第三二极管的第一端与所述第二交流输入端连接,所述第三二极管的第二端与所述充电泵电路和所述LLC谐振半桥电路连接;
所述第四二极管的第一端与所述充电泵电路连接,所述第四二极管的第二端与所述第二交流输入端连接;
所述第五二极管的第一端与所述充电泵电路连接,所述第五二极管的第二端与所述第一交流输入端连接。
可选地,所述充电泵电路包括:第二电容、第三电容、第四电容和第六二极管;
所述第二电容的第一端与所述整流电路和所述LLC谐振半桥电路连接,所述第二电容的第二端与第三电容的第二端连接;
所述第三电容的第一端与所述第六二极管的第二端连接,所述第三电容的第二端与所述LLC谐振半桥电路连接;
所述第四电容的第一端与所述整流电路连接,所述第四电容的第二端接地;
所述第六二极管的第一端与所述第三电容的第二端连接,所述第六二极管的第二端与第四电容的第一端连接。
可选地,所述LLC谐振半桥电路包括:第二开关管、第三开关管、第一电感、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七二极管、第五电容和变压器;所述变压器包括:第一初级绕组、与所述第一初级绕组对应的第一次级绕组、第二初级绕组和与所述第 二初级绕组对应的第二次级绕组;其中,
所述第二开关管的控制极与所述控制电路连接,所述第二开关管的第一极与整流电路和充电泵电路连接,所述第二开关管的第二极与所述第一电感的第一端连接;
所述第三开关管的控制极与控制电路连接,所述第三开关管的第一极与所述第一电感的第一端连接,所述第三开关管的第二极与所述充电泵电路连接;
所述第一电感的第二端与所述第一初级绕组的第一输入端连接;
所述第一初级绕组的第二输入端与所述第二电阻的第一端连接,所述第一次级绕组与输出电路连接;
所述第二电阻的第一端与所述控制电路连接,所述第二电阻的第二端与所述第三电阻的第一端连接;
所述第三电阻的第一端接地,所述第三电阻的第二端与所述第三开关管的第二极连接;
所述第四电阻的第一端与所述控制电路连接,所述第四电阻的第二端与所述第六电阻的第一端连接;
所述第五电阻的第一端与所述第四电阻的第一端连接,所述第五电阻的第二端与控制电路连接;
所述第六电阻的第一端与所述第七二极管的第二端连接,所述第六电阻的第二端与控制电路连接;
所述第五电容的第一端与所述第六电阻的第二端连接,所述第五电容的第二端与所述第五电阻的第二端连接;
所述第七二极管的第一端与所述第二初级绕组的第一输入端连接;
所述第二初级绕组的第二输入端与所述第五电容的第二端连接并接地;
所述第二次级绕组的第一输出端与所述调频电路的第一输入端连接,所述第二次级绕组的第二输出端与所述调频电路的第二输入端连接。
可选地,所述输出电路包括:第八二极管、第九二极管和第六电容;以及其中
所述第八二极管的第一端与所述LLC谐振半桥电路连接,所述第八二极管的第二端与所述第六电容的第一端连接;
所述第九二极管的第一端与所述LLC谐振半桥电路连接,所述第九二极管的第二端与所述第六电容的第一端连接;
所述第六电容的第二端与所述LLC谐振半桥电路和所述调频电路连接。
可选地,所述控制电路包括控制芯片,所述控制芯片包括第一控制端、第二控制端、第三控制端、第四控制端、电源端和接地端;
其中所述第一控制端、所述第二控制端、所述第三控制端、所述第四控制端、所述电源端和所述接地端分别与所述LLC谐振半桥电路连接。
可选地,所述电磁干扰滤除电路包括:熔断电阻器、共模电感、差模电感和第七电容;其中
所述熔断电阻器的第一端与第一交流输入端连接,所述熔断电阻器的第二端与所述第七电容的第一端连接;
所述第七电容的第二端与第二交流输入端连接;
所述共模电感的第一输入端与所述第七电容的第一端连接,所述共模电感的第二输入端与所述第七电容的第二端连接,所述共模电感的第一输出端与所述整流电路连接,所述共模电感的第二输出端与所述差模电感的第一端连接;
所述差模电感的第二端与所述整流电路连接。
可选地,所述交流输入端包括:第一交流输入端和第二交流输入端;所述整流电路包括:第二二极管、第三二极管、第四二极管和第五二极管;所述充电泵电路包括:第二电容、第三电容、第四电容和第六二极管;所述LLC谐振半桥电路包括:第二开关管、第三开关管、第一电感、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七二极管、第五电容和变压器,所述变压器包括:第一初级绕组、与所述第一初级绕组对应的第一次级绕组、第二初级绕组和与所述第二初级绕组对应的第二次级绕组;所述输出电路包括:第八二极管、第九二极管和第六电容;所述电磁干扰滤除电路包括:熔断电阻器、共模电感、差模电感和第七电容;所述控制电路包括:控制芯片,所述控制芯片包括:第一控制端、第二控制端、第三控制端、第四控制端、电源端和接地端;其中,
所述熔断电阻器的第一端与所述第一交流输入端连接,所述熔断 电阻器的第二端与所述第七电容的第一端连接;
所述第七电容的第二端与所述第二交流输入端连接;
所述共模电感的第一输入端与所述第七电容的第一端连接,所述共模电感的第二输入端与所述第七电容的第二端连接,所述共模电感的第一输出端与所述第二二极管的第一端连接,所述共模电感的第二输出端与所述差模电感的第一端连接;
所述差模电感的第二端与所述第三二极管的第一端连接;
所述第二二极管的第二端与所述第三二极管的第二端连接;
所述第三二极管的第二端与所述第二电容的第一端连接;
所述第四二极管的第一端与所述第六二极管的第二端连接,所述第四二极管的第二端与所述第三二极管的第一端连接;
所述第五二极管的第一端与所述第四电容的第二端连接,所述第五二极管的第二端与所述第二二极管的第一端连接;
所述第三电容的第一端与所述第六二极管的第二端连接,所述第三电容的第二端与所述第二电容的第二端连接;
所述第四电容的第一端与所述第五二极管的第一端连接,所述第四电容的第二端接地;
所述第六二极管的第一端与所述第二电容的第二端连接,所述第六二极管的第二端与所述第四二极管的第一端连接;
所述第二电容的第一端与所述第三二极管的第二端连接,所述第二电容的第二端与所述第六二极管的第一端连接;
所述第二开关管的控制极与所述第一控制端连接,所述第二开关管的第一极与所述第二电容的第一端连接,所述第二开关管的第二极与所述第一电感的第一端连接;
所述第三开关管的控制极与第二控制端连接,所述第三开关管的第一极与所述第一电感的第一端连接,所述第三开关管的第二极与所述第二电容的第二端连接;
所述第一电感的第二端与所述第一初级绕组的第一输入端连接;
所述第一初级绕组的第二输入端与所述第二电阻的第一端连接;
所述第一次级绕组的第一输出端与所述第八二极管的第一端连接、所述第一次级绕组的第二输出端与所述第九二极管的第一端连接,以及所述第一次级绕组的第三输出端与第六电容的第二端连接;
所述第二电阻的第一端与所述第三控制端连接,所述第二电阻的第二端与所述第三电阻的第一端连接;;
所述第三电阻的第一端接地,所述第三电阻的第二端与所述第三开关管的第二极连接;
所述第四电阻的第一端与第四控制端连接,所述第四电阻的第二端与所述第六电阻的第一端连接;
所述第五电阻的第一端与所述第四电阻的第一端连接,所述第五电阻的第二端与所述接地端连接;
所述第六电阻的第一端与所述第七二极管的第二端连接,所述第六电阻的第二端与所述电源端连接;
所述第五电容的第一端与所述第六电阻的第二端连接,所述第五电容的第二端与所述第五电阻的第二端连接;
所述第七二极管的第一端与所述第二初级绕组的第一输入端连接;
所述第二初级绕组的第二输入端与所述第五电容的第二端连接并接地;所述第二次级绕组的第一输出端与所述第一二极管的第一端连接,所述第二次级绕组第二输出端与所述第一电容的第二端连接;
所述第八二极管的第一端与所述第一次级绕组的第一输出端连接,所述第八二极管的第二端与所述第六电容的第一端连接;
所述第九二极管的第一端与所述第一次级绕组的第二输出端连接,所述第九二极管的第二端与所述第八二极管的第二端连接;
所述第六电容的第一端与所述第九二极管的第二端连接,所述第六电容的第二端与所述第一次级绕组的第三输出端和所述第一电容的第二端连接;
所述第一二极管的第一端与第二次级绕组的第一输出端连接,所述第一二极管的第二端与所述第一电阻的一端连接;
所述第一电阻的第二端与所述稳压器的第一端连接;
所述第一电容的第一端与所述第一电阻的第二端连接,所述第一电容的第二端与所述第二次级绕组的第二输出端连接;
所述稳压器的第一端与所述第一电容的第一端连接,所述稳压器的第二端与所述微处理器的第一端连接,所述稳压器的第三端与所述第二次级绕组的第二输出端连接;
所述微处理器的第二端与所述第一开关管的控制极连接,所述微 处理器的第三端与所述第二次级绕组的第二输出端连接;
所述第一开关管的第一极与输出端连接;所述第一开关管的第二极与所述第二次级绕组的第二输出端连接。
可选地,所述第二开关管和所述第三开关管中的每一个包括:三极管。
根据本公开的再一方面,还提供了一种照明系统,包括上面提供的任一驱动电路和LED负载;其中,所述LED负载的阳极与所述输出电路连接以接收输出电路输出的第一电流,并且所述LED负载的阴极与调频电路连接以接收调频电路输出的第二电流。
根据本公开的又一方面,还提供了一种驱动电路的控制方法,应用于上述任一驱动电路,包括:
通过整流电路对从交流输入端获取的信号进行整流并输出整流电流,并且通过充电泵电路使整流电流转化为输入LLC谐振半桥电路的正弦波电流;
在控制电路的控制下,通过LLC谐振半桥电路对所述正弦波电流进行处理,以输出第一信号和第二信号;
根据所述第一信号通过输出电路输出第一电流;
在所述第二信号的控制下,通过调频电路输出第二电流;
其中,所述第一电流为恒定电流。
可选地,在所述第二信号的控制下通过调频电路输出第二电流包括:
通过所述调频电路的整流滤波子电路将所述第二信号转换为直流信号;
通过所述调频电路稳压子电路将所述直流信号转换为稳定直流信号;
在所述稳定直流信号的控制下,通过所述调频电路的控制子电路生成高频驱动信号;
在所述高频驱动信号的控制下,从所述调频电路的输出端输出第二电流。
附图说明
附图用来提供对本公开的技术方案的进一步理解,并且构成说明 书的一部分。所述附图仅被用来结合本申请的实施例对本公开的技术方案进行解释,并不构成对本公开的技术方案的限制。
图1为本公开的实施例提供的调频电路的示意结构图;
图2为本公开的实施例提供的调频电路的电路图;
图3为本公开的实施例提供的一种驱动电路的示意结构图;
图4为本公开的实施例提供的另一种驱动电路的示意结构图;
图5为本公开的实施例提供的另一种驱动电路的示意结构图;
图6为本公开的实施例提供的另一种驱动电路的示意结构图;
图7为本公开的实施例提供的另一种驱动电路的示意结构图;
图8为本公开的实施例提供的另一种驱动电路的示意结构图;
图9为本公开的实施例提供的另一种驱动电路的示意结构图;
图10为本公开的实施例提供的另一种驱动电路的示意结构图;
图11为本公开的实施例提供的一种驱动电路的电路图;
图12为本公开的实施例提供的一种驱动电路的控制方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
除非另外定义,本公开的实施例使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的一般意义。本公开的实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语不排除其他元件或者物件。“连接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电连接,不管是直接的还是间接的。
需要说明的是,功率因数是衡量电气设备效率高低的一个系数。功率因数低表明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失,同时输入端的谐波污染也会严重。
本领域技术人员可以理解,本申请所有实施例中采用的开关管均可以为晶体三极管或场效应管或其他具有相同特性的器件。在本公开的实施例中,控制极为栅极或基极,为区分开关管的除栅极或基极之 外的两极,将所述两极中的一极称为第一极,另一极称为第二极,其中第一极可以为源极或者集电极,第二极可以为漏极或发射极。另外,为了区分二极管的两极,将所述两极中的一极称为第一端,另一极称为第二端,其中二极管的第一端可以为二极管的正极,二极管的第二端可以为二极管的负极。
图1为本公开的实施例提供的调频电路的示意结构图。如图1所示,本公开的实施例提供的调频电路包括:整流滤波子电路、稳压子电路、控制子电路和开关子电路。
在本实施例中,整流滤波子电路与调频电路的第一输入端INPUT1、调频电路的第二输入端INPUT2和稳压子电路连接,并且被配置成将在第一输入端INPUT1输入的信号转换为直流信号。
稳压子电路与第二输入端INPUT2和控制子电路连接,并且被配置成将直流信号转换为稳定直流信号。
作为一个示例,稳压子电路被配置成将直流信号进行降压,以便转换为稳定直流信号。稳压子电路生成的稳定直流信号为控制子电路提供所需的工作电压。
控制子电路与第二输入端INPUT2和开关子电路连接,并且被配置成在稳定直流信号的控制下,生成高频驱动信号。
可选地,控制子电路可以为微处理器。另外,高频驱动信号可以为高频率的驱动信号,即周期比较短的驱动信号。微处理器输出的频率是可调的,所述频率可以根据控制子电路的参数被确定。
开关子电路与第二输入端INPUT2和调频电路的输出端OUTPUT连接,并且被配置成在高频驱动信号的控制下,输出第二输入端INPUT2的信号。可选地,所述第二输入端INPUT2可以是参考电压端。作为一个示例,所述参考电压端可以是接地端。
作为一个示例,调频电路的输出端OUTPUT可以与LED负载的阴极连接。高频率指的是这样的频率,其使得用户感觉不到的LED负载的闪烁。在本公开的实施例中,能够通过调节微处理器输出的高频驱动信号的频率来改变LED闪烁的频率。
需要说明的是,在光通信中,LED负载闪烁的频率不同,其发出的光信号携带信息的信息也可以不同。
可选地,在第一输入端INPUT1输入的信号的电平大于在第二输 入端INPUT2输入的信号的电平。
需要说明的是,在本实施例中,以高频驱动信号为高电平时调频电路输出第二输入端的信号为例,当高频驱动信号为高电平时,调频电路输出信号,LED负载处于发光状态,而当高频驱动信号为低电平时,调频电路并不输出信号,因此LED负载不发光。由于高频驱动信号的频率较高,因此,LED负载的高频率的开和关通常是人眼感觉不到的,因此,本公开的实施例提供的调频电路能够使LED负载发出光信号。另外,结合专用的手机终端上的APP和服务器,当用户打开手机上的APP,并用手机的摄像头捕获LED负载发出的光信号后,APP上会显示此LED负载的专用代码,并将此专用代码发送给服务器,而服务器接收到此专用代码后,会将与此专用代码对应的某区域或某个文物藏品的信息回传到用户的手机上,使得用户可以很方便地在自己的手机上观看自己所需要的信息,甚至可以将信息下载下来,进而实现用户很方便地观看内容。
本公开的实施例提供的调频电路可以根据输入的信号生成高频驱动信号,并通过高频驱动信号控制输出,使得LED发出携带内容信息的光信号,用户可以通过接收该光信号来方便地获取内容信息。
图2为本公开的实施例提供的调频电路的电路图。图2示出了整流滤波子电路、稳压子电路、控制子电路和开关子电路的示例性结构。本领域技术人员容易理解是,以上各子电路的实现是示例性的而不是限制性的。
可选地,整流滤波子电路可以包括:第一二极管D1、第一电阻R1和第一电容C1;第一二极管D1的第一端与调频电路的第一输入端INPUT1连接,第二端与第一电阻R1的第一端连接;第一电阻R1的第二端与稳压子电路连接;第一电容C1的第一端与第一电阻R1的第二端连接,第二端与调频电路的第二输入端INPUT2连接。
在本公开的实施例中,第一二极管D1对输入的信号进行整流,第一电阻R1对整流后的信号进行限流,第一电容C1对限流后的信号进行过滤,使得直流信号被得到。
可选地,稳压子电路包括:稳压器,其中稳压器的第一端与第一电容C1的第一端连接,稳压器的第二端与控制子电路连接,稳压器的第三端与第二输入端INPUT2连接。
可选地,稳压器可以包括低压差线性稳压器(low dropout regulator,简称LDO)。作为一个示例,所述稳压器的第一端可以为稳压器的电压输入端,所述稳压器的第二端可以为稳压器的电压输出端,所述稳压器的第三端可以为稳压器的参考电压端,当然这并不是限制性的。可选地,所述稳压器的参考电压端可以是稳压器的接地端。
可选地,控制子电路可以包括:微处理器;其中微处理器的第一端与稳压器的第二端连接,第二端与开关子电路连接,第三端与第二输入端INPUT2连接。
可选地,微处理器可以包括微控制单元(Microcontroller Unit,简称MCU),然而其并不是限制性的。作为一个示例,所述微处理器的第一端可以是微处理器的信号输入端,所述微处理器的第二端可以是微处理器的信号输出端,所述微处理器的第三端可以是微处理器的参考电压端,当然这并不是限制性的。可选地,所述微处理器的参考电压端可以是微处理器的接地端。
可选地,开关子电路包括第一开关管Q1;其中第一开关管Q1的控制极与微处理器的第二端连接,第一开关管Q1的第一极与输出端OUTPUT连接,第一开关管Q1的第二极与第二输入端INPUT2连接。
可选地,第一开关管Q1为N型或P型金属氧化物半导体场效应晶体管,本公开的实施例并不具体限定第一开关管的类型。
下面通过调频电路的工作过程进一步说明本公开的实施例的技术方案。
以本公开的实施例提供的第一开关管为N型金属氧化物半导体场效应晶体管为例,在本公开的实施例提供的调频电路中,第一输入端处输入信号,第一二极管对输入的信号进行整流,第一电阻对整流后的信号进行限流,第一电容对限流后的信号进行滤波以便生成直流信号,稳压器然后将直流信号转换成稳定直流信号。稳定直流信号为微处理器提供工作电压,并且微处理器在稳定直流信号的控制下,生成高频驱动信号。当高频驱动信号为高电平时,第一开关管开启,使得调频电路输出第二输入端的信号,而当高频驱动信号为低电平时,第一开关管关断,使得调频电路没有输出。在高频驱动信号的控制下,第一开关管被高频率地开和关。因为调频电路的输出端与LED负载的阴极连接,故LED负载在人眼感觉不到的高频率开和关状态下工作。
基于相同的发明构思,本公开的实施例还提供一种驱动电路。图3为本公开的实施例提供的一种驱动电路的示意结构图。如图3所示,本公开的实施例提供的驱动电路包括整流电路、LLC谐振半桥电路、控制电路、输出电路、充电泵电路和调频电路。本公开的实施例中的调频电路可以为上面实施例中提供的调频电路。
在本实施例中,整流电路与交流输入端AINPUT、充电泵电路和LLC谐振半桥电路连接,并被配置成对从交流输入端获取的信号进行整流,并输出整流电流。作为示例,交流输入端连接到市电,被输入的信号是交流信号。
充电泵电路连接到LLC谐振半桥电路,并被配置成使所述整流电流转换为正弦波电流以输入LLC谐振半桥电路。
作为示例,充电泵电路置被配置成使输入LLC谐振半桥电路的平均电流为与整流电路输出的电压同相位的正弦波电流(其同样与交流输入端的信号同相位),从而使得LED驱动电路的输出功率因数提高到0.95~0.99。
控制电路与LLC谐振半桥电路连接,并被配置成控制LLC谐振半桥电路的操作,例如,LLC谐振半桥电路的开始或者停止。
作为示例,在本公开的实施例中,可以通过改变控制电路输出的信号,来控制LLC谐振半桥电路。需要说明的是,控制电路还能够控制输入LLC谐振半桥电路的驱动波形、控制电路与LLC谐振半桥电路间的环路的稳定、使输出电路输出电流为恒流等,从而实现对电路的保护等功能。
LLC谐振半桥电路与输出电路和调频电路连接,并被配置成在控制电路的控制下,对所述正弦波电流进行处理,并输出第一信号和第二信号。可选地,第一信号和第二信号为矩形波信号。
输出电路与调频电路连接,并被配置成根据第一信号输出第一电流,其中,第一电流为恒定电流。输出电路可以与LED负载的阳极连接。输出电路与调频电路连接是为了与调频电路共用一个相同的接地端,以形成回路。
调频电路被配置成:在第二信号的控制下,输出第二电流。调频电路可以与LED负载的阴极连接。
需要说明的是,本公开的实施例提供的驱动电路中包括前面实施 例中提供的调频电路,当其结合专门的手机APP和后台服务器使用时,可以实现无线光通信。
本公开的实施例提供的驱动电路包括:整流电路、LLC谐振半桥电路、控制电路、输出电路、充电泵电路和调频电路。整流电路与交流输入端、充电泵电路和LLC谐振半桥电路连接,并被配置成对从交流输入端获取的电流信号进行整流并输出整流电流;充电泵电路与LLC谐振半桥电路连接,并被配置成使所述整流电流转换为正弦波电流以输入LLC谐振半桥电路;控制电路与LLC谐振半桥电路连接,并被配置成控制LLC谐振半桥电路的操作;LLC谐振半桥电路与输出电路和调频电路连接,并被配置成在控制电路的控制下,对正弦波电流进行处理,并输出第一信号和第二信号;输出电路与调频电路连接,并被配置成根据第一信号输出第一电流;调频电路被配置成在第二信号的控制下,输出第二电流。本公开的实施例提供的驱动电路中包括充电泵电路和调频电路,这不仅提高了驱动电路的功率因数,而且还实现了LED负载的无线光通信,使得LED发出携带内容信息的光信号。用户可以通过接收该光信号来方便地获取内容信息。
图4为本公开的实施例提供的另一种驱动电路的示意结构图。如图4所示,本公开的实施例提供的驱动电路除了图3中示出的电路之外还包括:电磁干扰滤除电路。
整流电路通过所述电磁干扰滤除电路连接到所述交流输入端,电磁干扰滤除电路被配置成抑制交流输入端的信号中的电磁干扰。
在本实施例中,通过在驱动电路中布置电磁干扰滤除电路,能够有效地抑制驱动电路的电磁干扰EMI,使驱动电路符合GB17743的电气照明和类似设备的无线电骚扰特性的限制要求。
图5示出了本公开的实施例提供的另一种驱动电路的示意结构。如图5的虚线框中所示,该驱动电路中的整流电路包括:第二二极管D2、第三二极管D3、第四二极管D4和第五二极管D5。应当指出,图5中示出的该驱动电路包括的其它的电路与图3中描述的相同。
如图5所示,交流输入端包括:第一交流输入端AINPUT1和第二交流输入端AINPUT2。所述第二交流输入端AINPUT2例如可以是参考电压端或者接地端。
第二二极管D2的第一端与第一交流输入端AINPUT1连接,第二 端与第三二极管D3的第二端连接;第三二极管D3的第一端与第二交流输入端AINPUT2连接,第二端与充电泵电路和LLC谐振半桥电路连接;第四二极管D4的第一端与充电泵电路连接,第二端与第二交流输入端AINPUT2连接;第五二极管D5的第一端与充电泵电路连接,第二端与第一交流输入端AINPUT1连接。
可选地,第二二极管D2、第三二极管D3、第四二极管D4和第五二极管D5为快恢复二极管。
需要说明的是,图5示出了整流电路的示例性结构,但是本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
图6示出了本公开的实施例提供的另一种驱动电路的示意结构,如图6的虚线框中所示,该驱动电路中的充电泵电路包括:第二电容、第三电容C3、第四电容C4和第六二极管D6。应当指出,图6中示出的该驱动电路包括的其它的电路与图3中描述的相同。
所述第二电容C2的第一端与所述整流电路和所述LLC谐振半桥电路连接,所述第二电容C2的第二端与第三电容C3的第二端连接。
第三电容C3的第一端与第六二极管D6的第二端连接,第三电容C3的第二端与LLC谐振半桥电路连接;第四电容C4的第一端与整流电路连接,第四电容C4的第二端接地;第六二极管D6的第一端与第三电容C3的第二端连接,第六二极管D6的第二端与第四电容C4的第一端连接。
可选地,第六二极管D6为快恢复二极管。
可选地,第三电容C3和第四电容C4均为金属膜电容。
可选地,第二电容C2为电解电容。
在本实施例中,利用第三电容C3、第四电容C4分时充电和放电的特性,能够将整流电路输出的整流电流转移给电解电容C2,使得输入LLC谐振半桥电路的平均电流为与整流电路输出的电压同相位的正弦波电流,进而使得LED驱动电路的输出功率因数提高到0.95~0.99。
本公开的实施例提供的LED驱动电路中的充电泵电路包括:3个电容和一个二极管,相比较现有的充电电路所需电子器件少,电路简单,从而在保证高功率因数的情况下节约了制造成本,还提高了电力电网的利用率,减少了谐波污染。
需要说明的是,图6示出了充电泵电路的示例性结构,本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
图7示出了本公开的实施例提供的另一种驱动电路的示意结构。如图7的虚线框中所示,该驱动电路中的LLC谐振半桥电路包括:第二开关管Q2、第三开关管Q3、第一电感L1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七二极管D7、第五电容C5和变压器,其中,变压器包括:第一初级绕组T1A、与第一初级绕组对应的第一次级绕组T1C、第二初级绕组T1B和与第二初级绕组对应的第二次级绕组T1D。应当指出,图7中示出的该驱动电路包括的其它的电路与图3中描述的相同。
如图7所示,第二开关管Q2的控制极与控制电路连接,第二开关管Q2的第一极与所述充电泵电路和整流电路连接,第二开关管Q2的第二极与第一电感L1的第一端连接;第三开关管Q3的控制极与控制电路连接,第三开关管Q3的第一极与第一电感L1的第一端连接,第三开关管Q3的第二极与所述充电泵电路连接;第一电感L1的第二端与第一初级绕组T1A的第一输入端连接,第一初级绕组T1A的第二输入端与第二电阻R2的第一端连接;第一次级绕组T1C与输出电路连接;第二电阻R2的第一端与控制电路连接,第二电阻R2的第二端与第三电阻R3的第一端;第三电阻R3的第一端接地,第三电阻R3的第二端与第三开关管Q3的第二极连接;第四电阻R4的第一端与控制电路连接,第二端与第六电阻R6的第一端连接;第五电阻R5的第一端与第四电阻R4的第一端连接,第二端与控制电路连接;第六电阻R6的第一端与第七二极管D7的第二端连接,第二端与控制电路连接;第五电容C5的第一端与第六电阻R6的第二端连接,第二端与第五电阻R5的第二端连接;第七二极管D7的第一端与第二初级绕组T1B的第一输入端连接;第二初级绕组T1B的第二输入端与第五电容C5的第二端连接并接地;第二次级绕组T1D的第一输出端与调频电路的第一输入端连接,第二次级绕组T1D的第二输出端与调频电路的第二输入端连接。
在本实施例中,第一初级绕组T1A、与第一初级绕组对应的第一次级绕组T1C、第二初级绕组T1B和与第二初级绕组对应的第二次级 绕组T1D可以公用一个铁芯T1,这能够简化驱动电路的结构。
可选地,第二开关管Q2和第三开关管Q3可以为三极管。
本公开的实施例采用三极管作为LLC谐振半桥电路的开关管,因此能够降低驱动电路的成本。
可选地,第七二极管D7为整流二极管。
可选地,第一电感L1为谐振电感。
可选地,第五电容C5为电解电容。
需要说明的是,本公开的实施例提供的LLC谐振半桥电路采用谐振电路LLC拓扑结构使得本公开的实施例提供的驱动电路是一种单级高功率因数的电路,其具有高转换率,转换率通常可以轻松达到百分之九十以上。另外,本公开的实施例提供的LLC谐振半桥电路除了上述实施方式之外还可以通过单级有源功率因数校正(Active Power Factor Correction,简称APFC)或填谷电路来实现,但需要说明的是,单级APFC电路的效率很难达到90%且不适合用于40-80W之间的驱动电路。而填谷电路虽然可以提升功率因数到0.9,但效率低下、谐波大、不适合用于30W以上的驱动电路。本公开的实施例提供的LLC谐振半桥电路非常适合用于30-80W的LED驱动电路。
本公开的实施例中提供的LLC谐振半桥电路,在控制电路的控制下,能够使第二开关管和第三开关管工作在零电压开关状态,从而能够减少开关管的损耗,实现较高的转换率。
需要说明的是,图7示出了LLC谐振半桥电路的示例性结构,但是本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
图8示出了本公开的实施例提供的另一种驱动电路的示意结构。如图8的虚线框中所示,该驱动电路中的输出电路包括:第八二极管D8、第九二极管D9和第六电容C6。应当指出,图8中示出的该驱动电路包括的其它的电路与图3中描述的相同。
第八二极管D8的第一端与LLC谐振半桥电路连接,第二端与第六电容C6的第一端连接;第九二极管D9的第一端与LLC谐振半桥电路连接,第二端与第六电容C6的第一端连接;第六电容C6的第二端与LLC谐振半桥电路和调频电路连接。
可选地,第八二极管D8和第九二极管D9为肖特基二极管。
可选地,第六电容C6为电解电容。
作为示例,输出电路处输入的第一信号经过第八二极管D8和第九二极管D9整流,第六电容C6滤波,从而生成恒定电流。
需要说明的是,图8示出了输出电路的示例性结构,但是本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
图9示出了本公开的实施例提供的另一种驱动电路的示意结构。如图9所示,该驱动电路中的控制电路包括控制芯片,控制芯片包括第一控制端TX1、第二控制端TX2、第三控制端CS、第四控制端FB、电源端VDD和接地端GND。作为示例,所述第一控制端TX1和第二控制端TX2可以是控制芯片的信号输出端以用于输出控制LLC谐振半桥电路的驱动信号,第三控制端CS可以为电流检测端,第四控制端FB可以为电压反馈端。作为示例,所述控制芯片例如可以是Redisem公司生产的RED2511芯片。应当指出,图9中示出的该驱动电路包括的其它的电路与图3中描述的相同。
第一控制端TX1、第二控制端TX2、第三控制端CS、第四控制端FB、电源端VDD和接地端GND分别与LLC谐振半桥电路连接。
需要说明的是,图9示出了控制电路的示例性结构,但是本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
另外,驱动电路中还可以包括驱动子电路(图中未示出),驱动子电路与控制电路包括的控制芯片和LLC谐振半桥电路连接,以用于放大控制芯片输出的驱动信号。所述控制驱动子电路例如可以是变压器。控制芯片可以如图9中所示。作为示例,驱动子电路可以与控制芯片的第一控制端TX1、第二控制端TX2和LLC谐振半桥电路中的第二开关管Q2和第三开关管Q3连接,并被配置成放大控制芯片的信号输出端输出的驱动信号。
图10示出了本公开的实施例提供的另一种驱动电路的示意结构。该驱动电路包括电磁干扰滤除电路,如图10的虚线框中所示,电磁干扰滤除电路包括:熔断电阻器F、共模电感LF、差模电感NF和第七电容C7。应当指出,图10中示出的该驱动电路包括的其它的电路与图3中描述的相同。
熔断电阻器F的第一端与第一交流输入端AINPUT1连接,第二端与第七电容C7的第一端连接;第七电容C7的第二端与第二交流输入端AINPUT2连接;共模电感LF的第一输入端与第七电容C7的第一端连接,共模电感LF的第二输入端与第七电容C7的第二端连接,共模电感LF的第一输出端与整流电路连接,共模电感LF的第二输出端与差模电感NF的第一端连接;差模电感NF的第二端与整流电路连接。
可选地,熔断电阻器F可以为保险丝。
可选地,第七电容C7可以为安规电容。
需要说明的是,图10示出了电磁干扰滤除电路的示例性结构,但是本领域技术人员容易理解的是,该电路的实现方式并不限于此,任何能够实现其功能的实现方式都被设想。
图11为本公开的实施例提供的一种驱动电路的电路图。如图11所示,本公开的实施例提供的驱动电路包括:电磁干扰滤除电路,整流电路、LLC谐振半桥电路、控制电路、输出电路、充电泵电路和调频电路。调频电路包括:第一二极管D1、第一电阻R1和第一电容C1、稳压器、微处理器和第一开关管Q1;整流电路包括:第二二极管D2、第三二极管D3、第四二极管D4和第五二极管D5;充电泵电路包括:第二电容C2、第三电容C3、第四电容C4和第六二极管D6;LLC谐振半桥电路包括:第二开关管Q2、第三开关管Q3、第一电感L1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七二极管D7、第五电容C5、和变压器;输出电路包括:第八二极管D8、第九二极管D9和第六电容C6;电磁干扰滤除电路包括:熔断电阻器F、共模电感LF、差模电感NF和第七电容C7;控制电路包括控制芯片,控制芯片包括第一控制端TX1、第二控制端TX2、第三控制端CS、第四控制端FB、电源端VDD和接地端GND。
整流电路的交流输入端包括:第一交流输入端AINPUT1和第二交流输入端AINPUT2;变压器包括:第一初级绕组T1A、与第一初级绕组T1A对应的第一次级绕组T1C、第二初级绕组T1B和与第二初级绕组T1B对应的第二次级绕组T1D。
在本实施例中,熔断电阻器F的第一端与第一交流输入端AINPUT1连接,熔断电阻器F的第二端与第七电容C7的第一端连接;第七电容C7的第二端与第二交流输入端AINPUT2连接;共模电感LF 的第一输入端与第七电容C7的第一端连接,共模电感LF的第二输入端与第七电容C7的第二端连接,共模电感LF的第一输出端与第二二极管D2的第一端连接,共模电感LF的第二输出端与差模电感NF的第一端连接;差模电感NF的第二端与第三二极管D3的第一端连接;第二二极管D2的第二端与第三二极管D3的第二端连接;第三二极管D3的第二端与第二电容C2的第一端连接;第四二极管D4的第一端与第六二极管D6的第二端连接,第四二极管D4的第二端与第三二极管D3的第一端连接;第五二极管D5的第一端与第四电容C4的第二端连接,第五二极管D5的第二端与第二二极管D2的第一端连接;第三电容C3的第一端与第六二极管D6的第二端连接,第三电容C3的第二端与第二电容C2的第二端连接;第四电容C4的第一端与第五二极管D5的第一端连接,第四电容C4的第二端接地;第六二极管D6的第一端与第二电容C2的第二端连接,第六二极管D6的第二端与第四二极管D4的第一端连接;第二电容C2的第一端与第三二极管D3的第二端连接,第二电容C2的第二端与第六二极管的第一端连接;第二开关管Q2的控制极与第一控制端TX1连接,第二开关管Q2的第一极与第二电容C2的第一端连接,第二开关管Q2的第二极与第一电感L1的第一端连接;第三开关管Q3的控制极与第二控制端TX2连接,第三开关管Q3的第一极与第一电感L1的第一端连接,第三开关管Q3的第二极与第二电容C2的第二端连接;第一电感L1的第二端与第一初级绕组T1A的第一输入端连接;第一初级绕组T1A的第二输入端与第二电阻R2的第一端连接;第一次级绕组T1C的第一输出端与第八二极管D8的第一端连接、第一次级绕组T1C的第二输出端与第九二极管D9的第一端连接,以及第一次级绕组T1C的第三输出端与第六电容C6的第二端连接;第二电阻R2的第一端与第三控制端CS连接,第二电阻R2的第二端与第三电阻R3的第一端连接;第三电阻R3的第一端接地,第三电阻R3的第二端与第三开关管Q3的第二极连接;第四电阻R4的第一端与第四控制端FB连接,第四电阻R4的第二端与第六电阻R6的第一端连接;第五电阻R5的第一端与第四电阻R4的第一端连接,第五电阻R5的第二端与接地端GND连接;第六电阻R6的第一端与第七二极管D7的第二端连接,第六电阻R6的第二端与电源端VDD连接;第五电容C5的第一端与第六电阻R6的第二端连 接,第五电容C5的第二端与第五电阻R5的第二端连接;第七二极管的第一端与第二初级绕组T1B的第一输入端连接,第二初级绕组T1B的第二输入端与第五电容C5的第二端连接并接地,第二次级绕组T1D的第一输出端与第一二极管D1的第一端连接,第二次级绕组T1D的第二输出端与第一电容C1的第二端连接;第八二极管D8的第一端与第一次级绕组T1C的第一输出端连接,第八二极管D8的第二端与第六电容C6的第一端连接;第九二极管D9的第一端与第一次级绕组T1C的第二输出端连接,第九二极管D9的第二端与第八二极管D8的第二端连接;第六电容C6的第一端与第九二极管D9的第二端连接,第六电容C6的第二端与第一次级绕组T1C的第三输出端和第一电容C1的第二端连接;第一二极管D1的第一端与第二次级绕组T1D的第一输出端连接,第一二极管D1的第二端与第一电阻R1的第一端连接;第一电阻R1的第二端与稳压器的第一端连接;第一电容C1的第一端与第一电阻R1的第二端连接,第一电容C1的第二端与第二次级绕组T1D第二输入端连接;稳压器的第一端与第一电容C1的第一端连接,稳压器的第二端与微处理器的第一端连接,稳压器的第三端与第二次级绕组的第二输出端连接;微处理器的第二端与第一开关管Q1的控制极连接,微处理器的第三端与第二次级绕组的第二输出端连接;第一开关管Q1的第一极与输出端连接,第一开关管Q1的第二极与第二次级绕组的第二输出端连接。
作为示例,第一次级绕组可以由第一线圈和第二线圈构成,其中第一线圈的一端与第二线圈的一端相连接以构成所述第一次级绕组的第三输出端。所述第三输出端例如可以是参考电压端。所述第一线圈的另一端构成第一次级绕组的第一输出端,所述第二线圈的另一端构成所述第一次级绕组的第二输出端。
控制芯片的第三控制端CS和第四控制端FB分别与LLC谐振半桥电路的输出端电连接,其中第四控制端FB用于检测LLC谐振半桥电路输出的电压,第三控制端CS用于检测LLC谐振半桥电路输出的电流。控制芯片根据第三控制端CS和第四控制端FB所获取的LLC谐振半桥电路的输出电压及电流,通过第一控制端TX1和第二控制端TX2控制LLC谐振半桥电路工作的开始或者停止。
基于相同的发明构思,本公开的实施例还提供了一种照明系统。 本公开的实施例提供的照明系统包括上述驱动电路并且还包括:LED负载,所述LED负载的阳极与所述输出电路连接以接收输出电路输出的第一电流,并且所述LED负载的阴极与调频电路连接以接收调频电路输出的第二电流。作为示例,如图11所示,LED负载的阳极与第六电容的第一端连接,LED负载的阴极与第一开关管的第一极连接。
下面通过对驱动电路的工作过程的描述来进一步说明本公开的实施例提供的技术方案。
交流输入端处输入交流电压为220V的信号。在电磁干扰滤除电路抑制交流输入端输入的信号中的电磁干扰之后,整流电路中的四个二极管将对被抑制电磁干扰的信号进行整流以输出整流信号。充电泵电路利用第三电容C3和第四电容C4的分时充电和放电的特性,将整流电路输出的整流信号的电能转移到高压储能的第二电容C2中,使输入LLC谐振半桥电路的平均电流为正弦波电流;控制芯片中的第三控制端CS和第四控制端FB获取LLC谐振半桥电路的输出电压及电流,并通过第一控制端TX1和第二控制端TX2控制LLC谐振半桥电路,使得LLC谐振半桥电路输出第一信号和第二信号;第一信号被第八二极管D8和第九二极管D9整流,并被第六电容C6滤波以便生成恒定电流,恒定电流为LED负载的发光提供持续的恒定电流;第一二极管对第二信号进行整流,第一电阻对整流后的信号进行限流,第一电容对限流后的信号进行滤波,以便生成直流信号;稳压器对直流信号进行稳压以便将直流信号转换为作为处理器工作电压的稳定直流信号;微处理器在稳定直流信号的控制下生成高频驱动信号,第一开关管在高频驱动信号的控制下高频率地开和关,使得LED负载处于高频率的开关状态以发出光信号,光信号携带内容信息,用户可以接收该光信号以方便地获取内容信息。
基于相同的发明构思,本公开的实施例还提供一种驱动电路的控制方法,其可以应用在上述实施例中提供的驱动电路中。图12为本公开的实施例提供的驱动电路的控制方法的流程图,如图12所示,本公开的实施例提供的驱动电路的控制方法包括以下步骤100-400。
在步骤100处,通过整流电路对从交流输入端获取的信号进行整流并输出整流电流,并且通过充电泵电路使整流电流转化为输入LLC谐振半桥电路的正弦波电流。
作为示例,交流输入端的电能为市电,为交流信号。
作为示例,正弦波电流与整流电路输出的电压同相位。
在步骤200处,在控制电路的控制下,通过LLC谐振半桥电路对所述正弦波电流进行处理,以输出第一信号和第二信号。作为示例,第一信号和第二信号均为矩形波信号。
在步骤300处,根据所述第一信号通过输出电路输出第一电流;以及在步骤400处,在所述第二信号的控制下通过调频电路输出第二电流。
在本实施例中,第一电流可以为恒定电流,所述恒定电流为LED负载提供恒定的工作电流。调频电路与LED负载的阴极连接,并将流过LED负载的恒定工作电流转换成矩形波电流。
在本实施例中,在所述第二信号的控制下通过调频电路输出第二电流包括:通过所述调频电路的整流滤波子电路将所述第二信号转换为直流信号;通过所述调频电路稳压子电路将所述直流信号转换为稳定直流信号;在所述稳定直流信号的控制下,通过所述调频电路的控制子电路生成高频驱动信号;在所述高频驱动信号的控制下,从所述调频电路的输出端输出第二电流。
在本公开的实施例中,充电泵电路使输入LLC谐振半桥电路的平均电流为正弦波电流,调频电路使得LED负载被高频地开和关,这不仅提高了驱动电路的功率因数,而且还实现了LED负载的无线光通信。LED发出携带内容信息的光信号,用户可以接收该光信号以方便地获取内容信息。
虽然本公开描述了如上面所述的实施例,但所述实施例仅被提供以便于理解本公开,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施例的形式及细节上进行任何的修改与变化。本公开的专利保护范围以所附的权利要求书所界定的范围为准。

Claims (18)

  1. 一种调频电路,包括:整流滤波子电路、稳压子电路、控制子电路和开关子电路;其中
    所述整流滤波子电路连接到调频电路的第一输入端、调频电路的第二输入端和所述稳压子电路,并且被配置成将第一输入端输入的信号转换为直流信号;
    所述稳压子电路连接到所述第二输入端和所述控制子电路,并且被配置成将所述直流信号转换为稳定直流信号;
    所述控制子电路连接到所述第二输入端和所述开关子电路,并且被配置成在所述稳定直流信号的控制下,生成高频驱动信号;
    所述开关子电路连接到所述第二输入端和调频电路的输出端,并且被配置成在所述高频驱动信号的控制下,从所述输出端输出第二输入端的信号。
  2. 根据权利要求1所述的调频电路,其中,所述整流滤波子电路包括:第一二极管、第一电阻和第一电容;以及其中
    所述第一二极管的第一端与第一输入端连接,并且所述第一二极管的第二端与第一电阻的第一端连接;
    所述第一电阻的第二端与所述稳压子电路连接;
    所述第一电容的第一端与第一电阻的第二端连接,并且所述第一电容的第二端与第二输入端连接。
  3. 根据权利要求2所述的调频电路,其中,所述稳压子电路包括:稳压器;以及其中
    所述稳压器的第一端与所述第一电容的第一端连接,所述稳压器的第二端与所述控制子电路连接,以及所述稳压器的第三端与所述第二输入端连接。
  4. 根据权利要求3所述的调频电路,其中,所述控制子电路包括:微处理器;以及其中
    所述微处理器的第一端与所述稳压器的第二端连接,所述微处理器的第二端与所述开关子电路连接,所述微处理器的第三端与所述第二输入端连接。
  5. 根据权利要求4所述的调频电路,其中,所述开关子电路包括: 第一开关管;以及其中
    所述第一开关管的控制极与所述微处理器的第二端连接,所述第一开关管的第一极与所述输出端连接;所述第一开关管的第二极与所述第二输入端连接。
  6. 一种驱动电路,包括:整流电路、LLC谐振半桥电路、控制电路、输出电路、充电泵电路和如权利要求1-5任一所述的调频电路;其中
    所述整流电路连接到交流输入端、所述充电泵电路和所述LLC谐振半桥电路,并且被配置成对从所述交流输入端获取的信号进行整流并输出整流电流;
    所述充电泵电路连接所述LLC谐振半桥电路,并且被配置成使所述整流电流转换为正弦波电流以输入LLC谐振半桥电路;
    所述控制电路连接到所述LLC谐振半桥电路,并且被配置成控制所述LLC谐振半桥电路的操作;
    所述LLC谐振半桥电路连接到所述输出电路和所述调频电路,并且被配置成对所述正弦波电流进行处理,并输出第一信号和第二信号;
    所述输出电路连接到所述调频电路,并且被配置成根据所述第一信号输出第一电流,所述第一电流为恒定电流;
    所述调频电路被配置成在第二信号的控制下输出第二电流。
  7. 根据权利要求6所述的驱动电路,其中,所述驱动电路还包括:电磁干扰滤除电路;其中
    所述整流电路通过所述电磁干扰滤除电路连接到所述交流输入端,并且所述电磁干扰滤除电路被配置成抑制所述交流输入端的信号中的电磁干扰。
  8. 根据权利要求6所述的驱动电路,其中,所述交流输入端包括:第一交流输入端和第二交流输入端,并且所述整流电路包括:第二二极管、第三二极管、第四二极管和第五二极管;其中
    所述第二二极管的第一端与所述第一交流输入端连接,所述第二二极管的第二端与所述第三二极管的第二端连接;
    所述第三二极管的第一端与所述第二交流输入端连接,所述第三二极管的第二端与所述充电泵电路和所述LLC谐振半桥电路连接;
    所述第四二极管的第一端与所述充电泵电路连接,所述第四二极 管的第二端与所述第二交流输入端连接;
    所述第五二极管的第一端与所述充电泵电路连接,所述第五二极管的第二端与所述第一交流输入端连接。
  9. 根据权利要求6所述的驱动电路,其中,所述充电泵电路包括:第二电容、第三电容、第四电容和第六二极管;
    所述第二电容的第一端与所述整流电路和所述LLC谐振半桥电路连接,所述第二电容的第二端与第三电容的第二端连接;
    所述第三电容的第一端与所述第六二极管的第二端连接,所述第三电容的第二端与所述LLC谐振半桥电路连接;
    所述第四电容的第一端与所述整流电路连接,所述第四电容的第二端接地;
    所述第六二极管的第一端与所述第三电容的第二端连接,所述第六二极管的第二端与第四电容的第一端连接。
  10. 根据权利要求6所述的驱动电路,其中,所述LLC谐振半桥电路包括:第二开关管、第三开关管、第一电感、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七二极管、第五电容和变压器;所述变压器包括:第一初级绕组、与所述第一初级绕组对应的第一次级绕组、第二初级绕组和与所述第二初级绕组对应的第二次级绕组;其中,
    所述第二开关管的控制极与所述控制电路连接,所述第二开关管的第一极与整流电路和充电泵电路连接,所述第二开关管的第二极与所述第一电感的第一端连接;
    所述第三开关管的控制极与控制电路连接,所述第三开关管的第一极与所述第一电感的第一端连接,所述第三开关管的第二极与所述充电泵电路连接;
    所述第一电感的第二端与所述第一初级绕组的第一输入端连接;
    所述第一初级绕组的第二输入端与所述第二电阻的第一端连接,所述第一次级绕组与输出电路连接;
    所述第二电阻的第一端与所述控制电路连接,所述第二电阻的第二端与所述第三电阻的第一端连接;
    所述第三电阻的第一端接地,所述第三电阻的第二端与所述第三开关管的第二极连接;
    所述第四电阻的第一端与所述控制电路连接,所述第四电阻的第二端与所述第六电阻的第一端连接;
    所述第五电阻的第一端与所述第四电阻的第一端连接,所述第五电阻的第二端与控制电路连接;
    所述第六电阻的第一端与所述第七二极管的第二端连接,所述第六电阻的第二端与控制电路连接;
    所述第五电容的第一端与所述第六电阻的第二端连接,所述第五电容的第二端与所述第五电阻的第二端连接;
    所述第七二极管的第一端与所述第二初级绕组的第一输入端连接;
    所述第二初级绕组的第二输入端与所述第五电容的第二端连接并接地;
    所述第二次级绕组的第一输出端与所述调频电路的第一输入端连接,所述第二次级绕组的第二输出端与所述调频电路的第二输入端连接。
  11. 根据权利要求6所述的驱动电路,其中,所述输出电路包括:第八二极管、第九二极管和第六电容;以及其中
    所述第八二极管的第一端与所述LLC谐振半桥电路连接,所述第八二极管的第二端与所述第六电容的第一端连接;
    所述第九二极管的第一端与所述LLC谐振半桥电路连接,所述第九二极管的第二端与所述第六电容的第一端连接;
    所述第六电容的第二端与所述LLC谐振半桥电路和所述调频电路连接。
  12. 根据权利要求6所述的驱动电路,其中,所述控制电路包括控制芯片,所述控制芯片包括第一控制端、第二控制端、第三控制端、第四控制端、电源端和接地端;
    其中所述第一控制端、所述第二控制端、所述第三控制端、所述第四控制端、所述电源端和所述接地端分别与所述LLC谐振半桥电路连接。
  13. 根据权利要求7所述的驱动电路,其中,所述电磁干扰滤除电路包括:熔断电阻器、共模电感、差模电感和第七电容;以及其中
    所述熔断电阻器的第一端与第一交流输入端连接,所述熔断电阻器的第二端与所述第七电容的第一端连接;
    所述第七电容的第二端与第二交流输入端连接;
    所述共模电感的第一输入端与所述第七电容的第一端连接,所述共模电感的第二输入端与所述第七电容的第二端连接,所述共模电感的第一输出端与所述整流电路连接,所述共模电感的第二输出端与所述差模电感的第一端连接;
    所述差模电感的第二端与所述整流电路连接。
  14. 根据权利要求7-13任一项所述的驱动电路,其中,所述交流输入端包括:第一交流输入端和第二交流输入端;所述整流电路包括:第二二极管、第三二极管、第四二极管和第五二极管;所述充电泵电路包括:第二电容、第三电容、第四电容和第六二极管;所述LLC谐振半桥电路包括:第二开关管、第三开关管、第一电感、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七二极管、第五电容和变压器,所述变压器包括:第一初级绕组、与所述第一初级绕组对应的第一次级绕组、第二初级绕组和与所述第二初级绕组对应的第二次级绕组;所述输出电路包括:第八二极管、第九二极管和第六电容;所述电磁干扰滤除电路包括:熔断电阻器、共模电感、差模电感和第七电容;所述控制电路包括:控制芯片,所述控制芯片包括:第一控制端、第二控制端、第三控制端、第四控制端、电源端和接地端;其中,
    所述熔断电阻器的第一端与所述第一交流输入端连接,所述熔断电阻器的第二端与所述第七电容的第一端连接;
    所述第七电容的第二端与所述第二交流输入端连接;
    所述共模电感的第一输入端与所述第七电容的第一端连接,所述共模电感的第二输入端与所述第七电容的第二端连接,所述共模电感的第一输出端与所述第二二极管的第一端连接,所述共模电感的第二输出端与所述差模电感的第一端连接;
    所述差模电感的第二端与所述第三二极管的第一端连接;
    所述第二二极管的第二端与所述第三二极管的第二端连接;
    所述第三二极管的第二端与所述第二电容的第一端连接;
    所述第四二极管的第一端与所述第六二极管的第二端连接,所述第四二极管的第二端与所述第三二极管的第一端连接;
    所述第五二极管的第一端与所述第四电容的第二端连接,所述第 五二极管的第二端与所述第二二极管的第一端连接;
    所述第三电容的第一端与所述第六二极管的第二端连接,所述第三电容的第二端与所述第二电容的第二端连接;
    所述第四电容的第一端与所述第五二极管的第一端连接,所述第四电容的第二端接地;
    所述第六二极管的第一端与所述第二电容的第二端连接,所述第六二极管的第二端与所述第四二极管的第一端连接;
    所述第二电容的第一端与所述第三二极管的第二端连接,所述第二电容的第二端与所述第六二极管的第一端连接;
    所述第二开关管的控制极与所述第一控制端连接,所述第二开关管的第一极与所述第二电容的第一端连接,所述第二开关管的第二极与所述第一电感的第一端连接;
    所述第三开关管的控制极与第二控制端连接,所述第三开关管的第一极与所述第一电感的第一端连接,所述第三开关管的第二极与所述第二电容的第二端连接;
    所述第一电感的第二端与所述第一初级绕组的第一输入端连接;
    所述第一初级绕组的第二输入端与所述第二电阻的第一端连接;
    所述第一次级绕组的第一输出端与所述第八二极管的第一端连接、所述第一次级绕组的第二输出端与所述第九二极管的第一端连接,以及所述第一次级绕组的第三输出端与第六电容的第二端连接;
    所述第二电阻的第一端与所述第三控制端连接,所述第二电阻的第二端与所述第三电阻的第一端连接;;
    所述第三电阻的第一端接地,所述第三电阻的第二端与所述第三开关管的第二极连接;
    所述第四电阻的第一端与第四控制端连接,所述第四电阻的第二端与所述第六电阻的第一端连接;
    所述第五电阻的第一端与所述第四电阻的第一端连接,所述第五电阻的第二端与所述接地端连接;
    所述第六电阻的第一端与所述第七二极管的第二端连接,所述第六电阻的第二端与所述电源端连接;
    所述第五电容的第一端与所述第六电阻的第二端连接,所述第五电容的第二端与所述第五电阻的第二端连接;
    所述第七二极管的第一端与所述第二初级绕组的第一输入端连接;
    所述第二初级绕组的第二输入端与所述第五电容的第二端连接并接地;所述第二次级绕组的第一输出端与所述第一二极管的第一端连接,所述第二次级绕组第二输出端与所述第一电容的第二端连接;
    所述第八二极管的第一端与所述第一次级绕组的第一输出端连接,所述第八二极管的第二端与所述第六电容的第一端连接;
    所述第九二极管的第一端与所述第一次级绕组的第二输出端连接,所述第九二极管的第二端与所述第八二极管的第二端连接;
    所述第六电容的第一端与所述第九二极管的第二端连接,所述第六电容的第二端与所述第一次级绕组的第三输出端和所述第一电容的第二端连接;
    所述第一二极管的第一端与第二次级绕组的第一输出端连接,所述第一二极管的第二端与所述第一电阻的一端连接;
    所述第一电阻的第二端与所述稳压器的第一端连接;
    所述第一电容的第一端与所述第一电阻的第二端连接,所述第一电容的第二端与所述第二次级绕组的第二输出端连接;
    所述稳压器的第一端与所述第一电容的第一端连接,所述稳压器的第二端与所述微处理器的第一端连接,所述稳压器的第三端与所述第二次级绕组的第二输出端连接;
    所述微处理器的第二端与所述第一开关管的控制极连接,所述微处理器的第三端与所述第二次级绕组的第二输出端连接;
    所述第一开关管的第一极与输出端连接;所述第一开关管的第二极与所述第二次级绕组的第二输出端连接。
  15. 根据权利要求10所述的驱动电路,其中,所述第二开关管和所述第三开关管中的每一个包括:三极管。
  16. 一种照明系统,包括权利要求6-15任一项所述的驱动电路和LED负载;其中所述LED负载的阳极与所述输出电路连接以接收输出电路输出的第一电流,并且所述LED负载的阴极与调频电路连接以接收调频电路输出的第二电流。
  17. 一种驱动电路的控制方法,其被配置成控制如权利要求6-15任一所述的驱动电路,包括:
    通过整流电路对从交流输入端获取的信号进行整流并输出整流电 流,并且通过充电泵电路使整流电流转化为输入LLC谐振半桥电路的正弦波电流;
    在控制电路的控制下,通过LLC谐振半桥电路对所述正弦波电流进行处理,以输出第一信号和第二信号;
    根据所述第一信号通过输出电路输出第一电流;
    在所述第二信号的控制下,通过调频电路输出第二电流;
    其中,所述第一电流为恒定电流。
  18. 根据权利要求17所述的控制方法,其中,在所述第二信号的控制下通过调频电路输出第二电流包括:
    通过所述调频电路的整流滤波子电路将所述第二信号转换为直流信号;
    通过所述调频电路稳压子电路将所述直流信号转换为稳定直流信号;
    在所述稳定直流信号的控制下,通过所述调频电路的控制子电路生成高频驱动信号;
    在所述高频驱动信号的控制下,从所述调频电路的输出端输出第二电流。
PCT/CN2018/110233 2018-01-30 2018-10-15 调频电路、驱动电路及其控制方法、以及照明系统 WO2019148888A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18859946.8A EP3749058A4 (en) 2018-01-30 2018-10-15 FREQUENCY MODULATION CIRCUIT, CONTROL CIRCUIT AND CONTROL PROCESS FOR THEREOF, AS WELL AS LIGHTING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810092442.1A CN110098867B (zh) 2018-01-30 2018-01-30 一种调频电路、驱动电路及其控制方法、照明系统
CN201810092442.1 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019148888A1 true WO2019148888A1 (zh) 2019-08-08

Family

ID=67441991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110233 WO2019148888A1 (zh) 2018-01-30 2018-10-15 调频电路、驱动电路及其控制方法、以及照明系统

Country Status (3)

Country Link
EP (1) EP3749058A4 (zh)
CN (1) CN110098867B (zh)
WO (1) WO2019148888A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191517743A (en) 1915-01-14 1916-12-18 Georges Michaud Process for Facilitating the Extraction of Tin from Cassiterite and Oxidation Products of Tin.
CN202206605U (zh) * 2011-08-01 2012-04-25 深圳市昂发电子科技有限公司 Led节能恒流电源
CN204652713U (zh) * 2015-02-15 2015-09-16 深圳市天绿地节能环保科技有限公司 一种无电解电容的led驱动电源
US20160323949A1 (en) * 2015-04-30 2016-11-03 Samsung Electronics Co., Ltd. Led driving device
CN106162988A (zh) * 2016-06-29 2016-11-23 海宁市智慧光电有限公司 一种高频驱动低热阻led光源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420804B (zh) * 2008-11-13 2012-12-26 浙江生辉照明有限公司 高功率led灯驱动电源及其配套灯的组合
CN102811527A (zh) * 2011-05-31 2012-12-05 海洋王照明科技股份有限公司 Led可调频标识灯及其控制电路和控制方法
JP6264821B2 (ja) * 2013-10-07 2018-01-24 パナソニックIpマネジメント株式会社 可視光通信装置
CN104768269B (zh) * 2014-01-02 2019-03-26 深圳市海洋王照明工程有限公司 一种具备照明和信号的机车灯驱动电路
US9241380B2 (en) * 2014-03-04 2016-01-19 Osram Sylvania Inc. Hybrid dimming control techniques for lighting drivers
US10306715B2 (en) * 2015-08-31 2019-05-28 Tridonic Gmbh & Co Kg Assembly with control gear for lamps
WO2017152074A1 (en) * 2016-03-04 2017-09-08 Basic6 Inc. A universal led driver switching circuit
CN206650890U (zh) * 2017-04-19 2017-11-17 慈溪锐恩电子科技有限公司 一种交流供电的可调光可调色rgb‑led灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191517743A (en) 1915-01-14 1916-12-18 Georges Michaud Process for Facilitating the Extraction of Tin from Cassiterite and Oxidation Products of Tin.
CN202206605U (zh) * 2011-08-01 2012-04-25 深圳市昂发电子科技有限公司 Led节能恒流电源
CN204652713U (zh) * 2015-02-15 2015-09-16 深圳市天绿地节能环保科技有限公司 一种无电解电容的led驱动电源
US20160323949A1 (en) * 2015-04-30 2016-11-03 Samsung Electronics Co., Ltd. Led driving device
CN106162988A (zh) * 2016-06-29 2016-11-23 海宁市智慧光电有限公司 一种高频驱动低热阻led光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3749058A4

Also Published As

Publication number Publication date
CN110098867A (zh) 2019-08-06
EP3749058A1 (en) 2020-12-09
CN110098867B (zh) 2021-01-26
EP3749058A4 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
Wang et al. A single-stage LED driver based on SEPIC and LLC circuits
US10314128B2 (en) Dimming control power supply for LED lamps
US8836230B2 (en) Power factor correction circuit of an electronic ballast
Liu et al. Flicker-free single switch multi-string LED driver with high power factor and current balancing
Liu et al. Buck–boost–buck-type single-switch multistring resonant LED driver with high power factor and passive current balancing
Liu et al. Flicker-free single-switch quadratic boost LED driver compatible with electronic transformers
CN105792421B (zh) 一种无桥式led驱动电源
Jha et al. Power quality improvement using bridgeless‐Landsman converter for LED driver
TWI448205B (zh) 具功因校正能力之單級電子式安定器
CN107148113B (zh) 一种用于t型灯管的led驱动电路
JP2019029351A (ja) 照明システム
CN103580467B (zh) 功率因数校正电路及其控制方法、驱动装置和照明单元
WO2019148888A1 (zh) 调频电路、驱动电路及其控制方法、以及照明系统
CN201094166Y (zh) 一种led驱动电路
KR101756458B1 (ko) Led 조명 장치용 a/d 컨버터
CN112738953A (zh) 电源转换器
CN210579370U (zh) 一种led台灯控制电路
CN112689363A (zh) 电源转换器
US9717121B2 (en) Lighting device suitable for multiple voltage sources
Dos Santos et al. A charge-pump led driver with PFC and low-frequency-flicker reduction
CN209882176U (zh) 隔离型调光端口及智能控制器
CN210986512U (zh) 一种兼容市电和电子镇流器供电的光源驱动电路及灯管
CN113747634B (zh) 调光器
CN214100956U (zh) 一种交直流双电源
CN214799960U (zh) 一种调光调色控制电路及智能灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859946

Country of ref document: EP

Effective date: 20200831