WO2019148503A1 - 一种电子供体型生物载体及其制备方法 - Google Patents
一种电子供体型生物载体及其制备方法 Download PDFInfo
- Publication number
- WO2019148503A1 WO2019148503A1 PCT/CN2018/075320 CN2018075320W WO2019148503A1 WO 2019148503 A1 WO2019148503 A1 WO 2019148503A1 CN 2018075320 W CN2018075320 W CN 2018075320W WO 2019148503 A1 WO2019148503 A1 WO 2019148503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron donor
- biological carrier
- screw extruder
- polymer base
- donor type
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/104—Granular carriers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2793/00—Shaping techniques involving a cutting or machining operation
- B29C2793/009—Shaping techniques involving a cutting or machining operation after shaping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92209—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92704—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2509/00—Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/006—Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/107—Inorganic materials, e.g. sand, silicates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/108—Immobilising gels, polymers or the like
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2806—Anaerobic processes using solid supports for microorganisms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to a preparation method of a biological carrier (also called “bio-filler") for biochemical treatment of domestic, agricultural and industrial wastewater.
- a biological carrier also called “bio-filler”
- the electron donor type biocarrier prepared by the method of the invention not only has the advantages of hydrophilic electrophilicity, but also has good performance in low-oxygen (including anaerobic, anoxic and simultaneous nitrification and denitrification) suspension carrier biofilm degradation of wastewater. which performed.
- MBBR aerobic moving bed biofilm reactor
- IFAS integrated fixed membrane activated sludge process
- SND simultaneous nitrification and denitrification
- the biological carrier is a place where microorganisms adhere to growth and undergo metabolism.
- the performance of the biological carrier directly affects the ease of the membrane, the level of biomass in the reactor, and the effectiveness of the water treatment.
- the dispersed carriers mainly include suspension carriers.
- Such carrier preparation materials are usually organic high molecular polymers, such as polyethylene, polystyrene, polyvinyl chloride, polypropylene, vinylon, etc., such carriers have many defects, such as the surface is negatively charged, poor hydrophilicity, etc., resulting in It has poor compatibility with microorganisms in the aqueous phase (generally, the surface of the microorganism is negatively charged and hydrophilic), which results in a long filming time when the film is attached, a small amount of membrane biomass, and easy to fall off.
- the present invention provides an improved design for a biological carrier applied to a low oxygen suspension carrier biofilm process.
- the degradation of pollutants in a bioreactor is essentially a biologically involved redox process and a process of electron transfer.
- the electron acceptor, electron acceptor or redox mediator which provides microbial availability to the corresponding system, without compromising the normal operation of the system, contributes to the improvement of system performance.
- the ORP of the obligate anaerobic microorganisms in the system and the facultative anaerobic microorganisms that perform anaerobic respiration are generally less than 100 mV, so the standard electrode potential of the selected electron donor should be less than 100 mV. should.
- Electron donors are classified into organic electron donors and inorganic electron donors, and organic electron donors that are easily utilized by microorganisms include pyruvate, propionate, acetate, glucose, starch, etc., while inorganic electron donors include zero valence. Aluminum, zero-valent tin, zero-valent zinc, sulfide, etc. The addition of such electron donors can adjust the pH of the system to facilitate microbial growth, enhance and maintain the system's hypoxic environment, and promote the electron transfer process. It also promotes bacterial growth and enzyme synthesis and secretion, thereby inducing Enrichment of functional flora in biofilms.
- an electron donor type biocarrier is prepared by a blending modification method by using an electron donor as a carrier modifying functional material, which is likely to exhibit superior performance in the low-oxygen suspension carrier biofilm process for degrading wastewater. Thereby obtaining a better wastewater treatment effect.
- the object of the present invention is to overcome the shortcomings of the conventional biological carrier preparation method, and to provide an electron donor type biological carrier, which can provide electrons to promote the performance of the low-oxygen suspension carrier biofilm process for degrading wastewater, and at the same time Complete the filming phase quickly.
- the invention is applicable to the manufacture of any of the fixed, suspended and dispersed fillers.
- An electron donor type biological carrier comprises an organic polymer base material and a modified functional material; wherein the organic polymer base material is polyethylene or polypropylene, and the modified functional material is an electron donor, and the standard electrode potential thereof is less than 100 mV (in a low-oxygen environment, obligate anaerobic microorganisms in the system and facultative anaerobic microorganisms undergoing anaerobic respiration are generally less than 100 mV in ORP), such as glucose, acetate (organic compounds), and sulfurization.
- the redox reaction promotes the electron transport process, which is capable of activating and inducing the enriched membrane biofunctional flora with a fineness of 200 mesh or more; the mass fraction of the modified functional material and the polymeric binder is 0.5-15:100 .
- the electron donor type biological carrier comprises an auxiliary material, and the auxiliary material is polyquaternium-10 and talc powder; wherein the polyquaternium-10 can enhance the electrophilic hydrophilicity of the carrier, the fineness is more than 100 mesh, and the talcum powder It can enhance the tensile toughness of polymer base material and facilitate molding. The fineness is more than 200 mesh.
- the auxiliary quaternary ammonium salt-10, the mass fraction of talc powder and polymer base material is 0.5-6:0.5-4:100. .
- a method for preparing an electron donor type biological carrier the steps are as follows:
- Step 1 The organic polymer base material, the modified functional material and the auxiliary material are proportioned in the range of design parts;
- Step 2 thoroughly mix the mixture in step 1 in a stirred homomixer
- Step 3 The mixing material in the step 2 is placed in a granulator to be processed into strips, and then cut into granular materials by a cutter;
- Step 4 The pellet material in step 3 is placed in a screw extruder, and the processing temperature of each section of the screw extruder is 120-250 ° C; and different shapes are formed according to different mold heads selected by the screw extruder Cylindrical tubing that will be formed into a tube that is cut to size according to the desired size.
- the electron donor type biocarrier of the present invention can adjust the pH of the system to facilitate microbial growth during the preparation process due to the addition of the electron donor, and can effectively enhance and maintain the system hypoxic environment, and can promote The redox reaction in the microbial cells enhances the activity of the microorganisms and facilitates the enrichment of the membrane biofunctional flora.
- the electron donor type biocarrier has a positive charge in the preparation process due to the positive charge of the mixed adjuvant quaternary ammonium salt-10. Due to electrostatic adsorption, the negatively charged microorganisms will move toward the surface of the biological carrier in a regular manner, thereby accelerating the adhesion rate of the biofilm on the surface of the biocarrier.
- the polyquaternium-10 has a certain hydrophilicity, which makes the surface of the biological carrier hydrophilic, and easily forms homology affinity with the surface of the hydrophilic microbial membrane, thereby reducing the difficulty of microbial adhesion growth.
- the talc powder can enhance the tensile toughness of the polymer base material due to the mixing of the talc powder, so that it is convenient to form during preparation.
- raw material 1 Using 200 g HDPE powder as the base material, 4 g of polyquaternium-10, 2 g of zero-valent zinc and 2 g of talc powder were sequentially added, and the mixture was thoroughly mixed into a raw material 1 in a sealed container.
- the raw material 1 is passed through a granulator to produce a granular sample, wherein the granulator barrel is 160 ° C in one zone, 170 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 160 ° C in the head section, and strips extruded from the die head.
- the product is then cooled by air cooling and pelletized into a granular sample (referred to as raw material 2).
- the raw material 2 is produced by an injection molding machine, wherein the injection molding machine barrel is 135 ° C in one zone, 160 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 155 ° C in the head section, and the strip-shaped finished product extruded from the die head is passed through The vacuum setting of 0.03 MPa vacuum setting sleeve sizing, cooling water cooling, cutting into a cylindrical product, that is, an electron donor type biological carrier.
- raw material 1 200 g HDPE powder was used as the base material, and 4 g of polyquaternium-10, 4 g of zero-valent zinc and 2 g of talc powder were sequentially added, and the mixture was thoroughly mixed into a raw material 1 in a sealed container.
- the raw material 1 is passed through a granulator to produce a granular sample, wherein the granulator barrel is 160 ° C in one zone, 170 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 160 ° C in the head section, and strips extruded from the die head.
- the product is then cooled by air cooling and pelletized into a granular sample (referred to as raw material 2).
- the raw material 2 is produced by an injection molding machine, wherein the injection molding machine barrel is 135 ° C in one zone, 160 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 155 ° C in the head section, and the strip-shaped finished product extruded from the die head is passed through The vacuum setting of 0.03 MPa vacuum setting sleeve sizing, cooling water cooling, cutting into a cylindrical product, that is, an electron donor type biological carrier.
- raw material 1 200 g HDPE powder was used as the base material, and 4 g of polyquaternium-10, 4 g of sodium sulfide and 2 g of talc powder were sequentially added, and the mixture was thoroughly mixed into a raw material 1 in a sealed container.
- the raw material 1 is passed through a granulator to produce a granular sample, wherein the granulator barrel is 160 ° C in one zone, 170 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 160 ° C in the head section, and strips extruded from the die head.
- the product is then cooled by air cooling and pelletized into a granular sample (referred to as raw material 2).
- the raw material 2 is produced by an injection molding machine, wherein the injection molding machine barrel is 135 ° C in one zone, 160 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 155 ° C in the head section, and the strip-shaped finished product extruded from the die head is passed through The vacuum setting of 0.03 MPa vacuum setting sleeve sizing, cooling water cooling, cutting into a cylindrical product, that is, an electron donor type biological carrier.
- raw material 1 Using 200 g HDPE powder as the base material, 4 g of polyquaternium-10, 4 g of pyruvate and 2 g of talc powder were sequentially added, and the mixture was thoroughly mixed into a raw material 1 in a sealed container.
- the raw material 1 is passed through a granulator to produce a granular sample, wherein the granulator barrel is 160 ° C in one zone, 170 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 160 ° C in the head section, and strips extruded from the die head.
- the product is then cooled by air cooling and pelletized into a granular sample (referred to as raw material 2).
- the raw material 2 is produced by an injection molding machine, wherein the injection molding machine barrel is 135 ° C in one zone, 160 ° C in the second zone of the barrel, 180 ° C in the three zones of the barrel, and 155 ° C in the head section, and the strip-shaped finished product extruded from the die head is passed through The vacuum setting of 0.03 MPa vacuum setting sleeve sizing, cooling water cooling, cutting into a cylindrical product, that is, an electron donor type biological carrier.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
一种电子供体型生物载体,该生物载体包括有机高分子基料和改性功能料,有机高分子基料是聚乙烯或聚丙烯,改性功能料是电子供体,其标准电极电位小于100mV,细度为200目以上,改性功能料与高分子基料的质量份数为0.5-15:100。还公开了电子供体型生物载体的制备方法。
Description
本发明涉及一种用于生化处理生活、农业、工业废水的生物载体(也称“生物填料”)的制备方法。本发明方法制备的电子供体型生物载体不仅具有亲水亲电性的优点,尤其在低氧(包括厌氧,缺氧和同步硝化反硝化)悬浮载体生物膜法降解废水中有很好的效能表现。
目前,作为悬浮载体生物膜技术典型代表的好氧移动床生物膜反应器(MBBR)和集成固定膜活性污泥工艺(IFAS)由于高效脱氮受到广泛关注。但是,低氧悬浮载体生物膜技术存在某些限制因素而使其应用相对较少。如厌氧情况下,厌氧微生物增殖缓慢、传质效率低、载体挂膜困难且附着生物膜活性较差以及厌氧系统不够稳定等,其处理效果往往不够令人满意;缺氧情况下,反应器内的C/N的不协调易限制其反硝化速率;同步硝化反硝化(SND)情况下,操作条件控制困难等。此外,该类工艺的应用成功与否,载体的选择是关键因素之一。生物载体是微生物附着生长及进行新陈代谢的场所。生物载体的性能直接影响挂膜的难易程度、反应器中生物量的高低以及水处理效果的好坏。至今,生物载体种类繁多,分散式载体主要包括悬浮式载体。此类载体制备原料通常为有机高分子聚合物,如聚乙烯、聚苯乙烯、聚氯乙烯、聚丙烯、维纶等,这类载体有许多缺陷,如表面呈负电性,亲水性差等,致使其与水相中的微生物(一般情况下,微生物表面呈负电,呈亲水性)之间相容性差,从而导致其挂膜时挂膜时间长,膜生物量少,易脱落等。因而,本发明针对应用于低氧悬浮载体生物膜法的生物载体进行了改善设计。
生物反应器内污染物的降解实质是生物参与的氧化还原过程,亦是电子转移的过程。因而,在不破坏系统正常运行的情况下,为相应系统提供微生物可利用的电子供体,电子受体或氧化还原介体是有助于系统性能的提升。在低氧环境下,系统内的专性厌氧微生物和进行无氧呼吸的兼性厌氧微生物所处环境ORP一般小于100 mV,故所选电子供体,其标准电极电位需小于100 mV为宜。电子供体分为有机电子供体和无机电子供体,易于被微生物利用的有机电子供体包括丙酮酸盐、丙酸盐、乙酸盐、葡萄糖、淀粉等,而无机电子供体包括零价铝、零价锡、零价锌、硫化物等。这类电子供体的加入,能够调节系统pH以利于微生物生长,并能增强及维持系统低氧环境,同时又促进了电子传递过程,另对细菌繁殖和酶的合成分泌也有促进作用,从而诱导生物膜中功能菌群富集。
基于以上,通过将电子供体作为载体改性功能料,以共混改性方法制备出电子供体型生物载体,其在低氧悬浮载体生物膜法降解废水效果中极可能表现出优越的性能,从而获得更好的废水处理效果。
本发明的目的在于克服传统生物载体制备方法的缺点基础上,提供一种电子供体型生物载体,制备的生物载体能够提供电子以促进低氧悬浮载体生物膜法降解废水的性能提升,同时有助于快速完成挂膜阶段。本发明适用于固定式、悬挂式和分散式填料中任何一种载体的制造。
本发明的技术方案如下:
一种电子供体型生物载体,包括有机高分子基料和改性功能料;其中,有机高分子基料是聚乙烯或聚丙烯,改性功能料是电子供体,其标准电极电位需小于100 mV(在低氧环境下,系统内的专性厌氧微生物和进行无氧呼吸的兼性厌氧微生物所处环境ORP一般小于100 mV),如葡萄糖、乙酸盐(有机化合物类)、硫化物(无机化合物类)、零价锌、零价铝(无机金属类)等,其能够调节系统pH以利于微生物生长,并增强及维持微生物反应器处于低氧环境,其能够促进系统内的各种氧化还原反应即促进电子传递过程,其能够活化并诱导富集膜生物功能菌群,其细度为200目以上;改性功能料与高分子基料的质量份数为0.5-15:100。
所述的电子供体型生物载体包括辅料,辅料为聚季铵盐-10和滑石粉;其中,聚季铵盐-10能够增强载体的亲电亲水性,细度为100目以上,滑石粉能够增强高分子基料的拉伸韧性,方便成型,细度为200目以上;辅料聚季铵盐-10,滑石粉与高分子基料的质量份数为0.5-6:0.5-4:100。
一种电子供体型生物载体的制备方法,步骤如下:
步骤1:有机高分子基料、改性功能料、辅料以设计份数范围进行配比;
步骤2:将步骤1中的混合料在搅拌混匀机内充分混匀;
步骤3:将步骤2中的混匀料置于造粒机中加工成条状物料,再通过切割机切割成颗粒状物料;
步骤4:将步骤3中的颗粒物料置于螺杆挤出机中,螺杆挤出机各段的加工温度为120-250 ℃;并根据螺杆挤出机所选模具头的不同,制成不同形状的圆柱形管材,将加工成型的管材,根据所需尺寸切割定型。
本发明的有益效果:
1.本发明所述的电子供体型生物载体在制备过程中由于电子供体的加入,使得生物载体能够调节系统pH以利于微生物生长,并能够有效地增强及维持系统低氧环境,又可以促进微生物细胞内的氧化还原反应,提升微生物的活性,且有利于膜生物功能菌群的富集。
2.所述的电子供体型生物载体在制备过程中由于混入的辅料聚季铵盐-10带有正电性,使得生物载体表面带有一定的正电荷。由于静电吸附作用,带负电的微生物将朝生物载体表面做有规律的趋向移动,从而加速了生物膜在生物载体表面的附着速率。同时,聚季铵盐-10具有一定的亲水性,使得生物载体表面亲水性增强,易与亲水性的微生物膜表面形成同源性亲和力,降低了微生物附着生长难度。所述的电子供体型生物载体在制备过程中由于混入滑石粉,滑石粉能够增强高分子基料的拉伸韧性,故制备时方便成型。
以下结合技术方案进行叙述本发明的具体实施方式。
实施例1
以200 g HDPE粉料为基料,依次添加辅料4 g聚季铵盐-10、2 g零价锌、2 g滑石粉,在密封容器中充分混匀成原料1。将原料1通过造粒机生产粒状样品,其中造粒机机筒一区160 ℃、机筒二区170 ℃、机筒三区180 ℃、机头区160 ℃,从模具头挤出的条状产品再经风冷冷却、切粒变成粒状样品(称为原料2)。将原料2通过注塑机生产载体,其中注塑机机筒一区135 ℃、机筒二区160 ℃、机筒三区180 ℃、机头区155 ℃,从模具头挤出的条状成品再经真空度为0.03 MPa的真空定型套定型定径、冷却水冷却、切割变成圆柱体的成品即电子供体型生物载体。
实施例2
以200 g HDPE粉料为基料,依次添加辅料4 g聚季铵盐-10、4 g零价锌、2 g滑石粉,在密封容器中充分混匀成原料1。将原料1通过造粒机生产粒状样品,其中造粒机机筒一区160 ℃、机筒二区170 ℃、机筒三区180 ℃、机头区160 ℃,从模具头挤出的条状产品再经风冷冷却、切粒变成粒状样品(称为原料2)。将原料2通过注塑机生产载体,其中注塑机机筒一区135 ℃、机筒二区160 ℃、机筒三区180 ℃、机头区155 ℃,从模具头挤出的条状成品再经真空度为0.03 MPa的真空定型套定型定径、冷却水冷却、切割变成圆柱体的成品即电子供体型生物载体。
实施例3
以200 g HDPE粉料为基料,依次添加辅料4 g聚季铵盐-10、4 g硫化钠、2 g滑石粉,在密封容器中充分混匀成原料1。将原料1通过造粒机生产粒状样品,其中造粒机机筒一区160 ℃、机筒二区170 ℃、机筒三区180 ℃、机头区160 ℃,从模具头挤出的条状产品再经风冷冷却、切粒变成粒状样品(称为原料2)。将原料2通过注塑机生产载体,其中注塑机机筒一区135 ℃、机筒二区160 ℃、机筒三区180 ℃、机头区155 ℃,从模具头挤出的条状成品再经真空度为0.03 MPa的真空定型套定型定径、冷却水冷却、切割变成圆柱体的成品即电子供体型生物载体。
实施例4
以200 g HDPE粉料为基料,依次添加辅料4 g聚季铵盐-10、4 g丙酮酸盐、2 g滑石粉,在密封容器中充分混匀成原料1。将原料1通过造粒机生产粒状样品,其中造粒机机筒一区160 ℃、机筒二区170 ℃、机筒三区180 ℃、机头区160 ℃,从模具头挤出的条状产品再经风冷冷却、切粒变成粒状样品(称为原料2)。将原料2通过注塑机生产载体,其中注塑机机筒一区135 ℃、机筒二区160 ℃、机筒三区180 ℃、机头区155 ℃,从模具头挤出的条状成品再经真空度为0.03 MPa的真空定型套定型定径、冷却水冷却、切割变成圆柱体的成品即电子供体型生物载体。
Claims (4)
- 一种电子供体型生物载体,其特征在于,所述的电子供体型生物载体包括有机高分子基料和改性功能料;其中,有机高分子基料是聚乙烯或聚丙烯,改性功能料是电子供体,其标准电极电位需小于100 mV,其细度为200目以上;改性功能料与高分子基料的质量份数为0.5-15:100。
- 根据权利要求1所述的一种电子供体型生物载体,其特征在于,所述的电子供体型生物载体还包括辅料,辅料为聚季铵盐-10和滑石粉;其中,聚季铵盐-10用于增强载体的亲电亲水性,细度为100目以上,滑石粉用于增强高分子基料的拉伸韧性,方便成型,细度为200目以上;辅料聚季铵盐-10、滑石粉与高分子基料的质量份数为0.5-6:0.5-4:100。
- 权利要求1所述的一种电子供体型生物载体的制备方法,其特征步骤如下:步骤1:有机高分子基料和改性功能料以设计份数范围进行配比;步骤2:将步骤1中的混合料在搅拌混匀机内充分混匀;步骤3:将步骤2中的混匀料置于造粒机中加工成条状物料,再通过切割机切割成颗粒状物料;步骤4:将步骤3中的颗粒物料置于螺杆挤出机中,螺杆挤出机各段的加工温度为120-250 ℃;并根据螺杆挤出机所选模具头的不同,制成不同形状的圆柱形管材,将加工成型的管材,根据所需尺寸切割定型。
- 权利要求2所述的一种电子供体型生物载体的制备方法,其特征步骤如下:步骤1:有机高分子基料、改性功能料、辅料以设计份数范围进行配比;步骤2:将步骤1中的混合料在搅拌混匀机内充分混匀;步骤3:将步骤2中的混匀料置于造粒机中加工成条状物料,再通过切割机切割成颗粒状物料;步骤4:将步骤3中的颗粒物料置于螺杆挤出机中,螺杆挤出机各段的加工温度为120-250 ℃;并根据螺杆挤出机所选模具头的不同,制成不同形状的圆柱形管材,将加工成型的管材,根据所需尺寸切割定型。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/075320 WO2019148503A1 (zh) | 2018-02-05 | 2018-02-05 | 一种电子供体型生物载体及其制备方法 |
US16/611,151 US11565957B2 (en) | 2018-02-05 | 2018-02-05 | Method for preparing electron donor biofilm carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/075320 WO2019148503A1 (zh) | 2018-02-05 | 2018-02-05 | 一种电子供体型生物载体及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019148503A1 true WO2019148503A1 (zh) | 2019-08-08 |
Family
ID=67479509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/075320 WO2019148503A1 (zh) | 2018-02-05 | 2018-02-05 | 一种电子供体型生物载体及其制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11565957B2 (zh) |
WO (1) | WO2019148503A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
CN114536584B (zh) * | 2022-01-28 | 2023-08-22 | 青岛思普润水处理股份有限公司 | 一种污水处理用的移动床生物膜悬浮载体及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522972A (zh) * | 2003-09-03 | 2004-08-25 | 华南理工大学 | 水处理用生物亲和亲水活性磁种填料的制备方法 |
CN101284694A (zh) * | 2007-04-15 | 2008-10-15 | 于春荣 | 亲水性活性生物膜悬浮载体及其制造方法 |
CN103408129A (zh) * | 2013-08-19 | 2013-11-27 | 中国水产科学研究院渔业机械仪器研究所 | 可降解生物亲和性水处理填料及其制备方法 |
CN103420490A (zh) * | 2013-07-20 | 2013-12-04 | 大连理工大学 | 一种亲电型生物载体及其制备方法 |
CN103708619A (zh) * | 2014-01-21 | 2014-04-09 | 厦门市威士邦膜科技有限公司 | 一种流化床生物膜填料、制备方法及填料结构 |
KR20170033057A (ko) * | 2015-09-16 | 2017-03-24 | 서울대학교산학협력단 | 생물막 형성 억제 미생물 고정화 용기 및 이를 이용한 분리막 수처리 장치 |
CN108178338A (zh) * | 2018-02-05 | 2018-06-19 | 大连理工大学 | 一种电子供体型生物载体及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4083746A (en) * | 1976-12-23 | 1978-04-11 | Geo. A. Hormel & Co. | Apparatus for making biological discs |
CN103818998A (zh) * | 2014-03-11 | 2014-05-28 | 西南科技大学 | 一种生物质微生物载体的制备方法 |
WO2015136535A1 (en) * | 2014-03-11 | 2015-09-17 | Aqwise - Wise Water Technologies Ltd. | Biomass carrier and a method of manufacturing thereof |
-
2018
- 2018-02-05 US US16/611,151 patent/US11565957B2/en active Active
- 2018-02-05 WO PCT/CN2018/075320 patent/WO2019148503A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522972A (zh) * | 2003-09-03 | 2004-08-25 | 华南理工大学 | 水处理用生物亲和亲水活性磁种填料的制备方法 |
CN101284694A (zh) * | 2007-04-15 | 2008-10-15 | 于春荣 | 亲水性活性生物膜悬浮载体及其制造方法 |
CN103420490A (zh) * | 2013-07-20 | 2013-12-04 | 大连理工大学 | 一种亲电型生物载体及其制备方法 |
CN103408129A (zh) * | 2013-08-19 | 2013-11-27 | 中国水产科学研究院渔业机械仪器研究所 | 可降解生物亲和性水处理填料及其制备方法 |
CN103708619A (zh) * | 2014-01-21 | 2014-04-09 | 厦门市威士邦膜科技有限公司 | 一种流化床生物膜填料、制备方法及填料结构 |
KR20170033057A (ko) * | 2015-09-16 | 2017-03-24 | 서울대학교산학협력단 | 생물막 형성 억제 미생물 고정화 용기 및 이를 이용한 분리막 수처리 장치 |
CN108178338A (zh) * | 2018-02-05 | 2018-06-19 | 大连理工大学 | 一种电子供体型生物载体及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200071214A1 (en) | 2020-03-05 |
US11565957B2 (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers | |
CN108178338A (zh) | 一种电子供体型生物载体及其制备方法 | |
Gao et al. | Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems | |
US10577267B2 (en) | Fast biofilm formation method for organic filler during treatment of sewage with low C/N ratio | |
CN111439830A (zh) | 一种mbbr悬浮生物填料及其制备方法 | |
CN103708619A (zh) | 一种流化床生物膜填料、制备方法及填料结构 | |
CN101693775B (zh) | 一种固定化微生物橡胶颗粒填料及其制备以及其应用 | |
CN102050521A (zh) | 同步硝化反硝化处理含氨污水方法 | |
CN102040281A (zh) | 一种脱氮颗粒污泥的培养方法 | |
CN110304720B (zh) | 一种用于厌氧生化处理的电子介体型生物载体 | |
JPS63229144A (ja) | 微生物固定用の担体物質 | |
LU101521B1 (en) | Suspended filler for biologically treating wastewater and a method for preparing the same | |
CN108504058B (zh) | 自增氧微生物降解填料及其制备方法 | |
Yang et al. | Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms | |
WO2019148503A1 (zh) | 一种电子供体型生物载体及其制备方法 | |
CN105692870A (zh) | 高吸附强度的生物滤池填料 | |
CN110655179A (zh) | 一种亲水性、生物亲和性悬浮填料及其制备方法和应用 | |
CN109019833A (zh) | 一种生物填料、生物填料的制备方法、污水处理系统 | |
CN109607764B (zh) | 一种预膜流化床填料及其制备方法与应用 | |
CN111762884A (zh) | 一种污泥活性固化物及其制备方法和应用 | |
CN110980934A (zh) | 一种悬浮填料及其制备方法 | |
CN111348751B (zh) | 一种生物膜反应器的快速挂膜方法 | |
CN107139497A (zh) | 一种磁性水处理填料的制备方法 | |
CN111137976A (zh) | 一种缓释微量元素的水处理悬浮填料及其制备方法 | |
CN103771584A (zh) | 一种厌氧颗粒污泥及其工程化快速培养方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18904485 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18904485 Country of ref document: EP Kind code of ref document: A1 |