WO2019148383A1 - Voice-controlled inflatable bed - Google Patents

Voice-controlled inflatable bed Download PDF

Info

Publication number
WO2019148383A1
WO2019148383A1 PCT/CN2018/074780 CN2018074780W WO2019148383A1 WO 2019148383 A1 WO2019148383 A1 WO 2019148383A1 CN 2018074780 W CN2018074780 W CN 2018074780W WO 2019148383 A1 WO2019148383 A1 WO 2019148383A1
Authority
WO
WIPO (PCT)
Prior art keywords
air pump
pump
voice
bed
inflatable bed
Prior art date
Application number
PCT/CN2018/074780
Other languages
French (fr)
Inventor
Shuiyong HUANG
Original Assignee
Bestway Inflatables & Material Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bestway Inflatables & Material Corp. filed Critical Bestway Inflatables & Material Corp.
Priority to PCT/CN2018/074780 priority Critical patent/WO2019148383A1/en
Publication of WO2019148383A1 publication Critical patent/WO2019148383A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/084Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation hand fans
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/08Fluid mattresses or cushions
    • A47C27/081Fluid mattresses or cushions of pneumatic type
    • A47C27/082Fluid mattresses or cushions of pneumatic type with non-manual inflation, e.g. with electric pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans

Definitions

  • the present disclosure generally relates to inflatable bed, and more particularly, to a voice-controlled air pump for an inflatable bed.
  • Inflatable beds are becoming more and more popular and are suitable for camping and serving as a household spare mattress for a guest’s temporary use. There are given advantages such as their volume, ease of carrying and storage, and other benefits.
  • Conventional inflatable beds may require the user to manually inflate the bed using a hand-held pump or may require the user to activate and hold a switch to inflate the bed until the bed is inflated to a desired firmness.
  • these conventional inflatable beds require the user’s presence in close proximity to the bed during nearly the entire time the bed is being set up. If the user decides to adjust the firmness of the bed during use, the user may be forced to crawl behind the pillows and other blankets that have been placed on the bed and find the pump’s control to manually adjust the bed’s firmness.
  • the inflatable bed described herein overcomes these disadvantages associated with conventional inflatable beds by allowing the user to control the air pump using his or her voice.
  • the user can simply speak the words “inflate” or “deflate, ” which in turn inflates or deflates the bed to the desired level. This allows the user to perform other tasks during the setup of the bed and allows the user to increase or decrease the firmness of the bed without having to manually adjust the bed’s firmness through difficult-to-reach controls.
  • a voice-controlled inflatable bed includes a main body and an air pump.
  • the air pump is coupled to the external wall of the main body and is configured to inflate and deflate the main body of the bed.
  • the air pump includes a main pump, a pressure sensor, an inflation/deflation port, and a microphone.
  • the microphone is recessed from the front edge of the air pump.
  • the microphone is configured to receive voice or spoken commands from the user and in response to the spoken commands, that air pump either: inflates the main body of the inflatable bed, deflates the main body of the inflatable bed, or takes no action.
  • a voice-controlled inflatable bed in other embodiments of the present disclosure, includes a main body and an air pump.
  • the air pump is coupled to the external wall of the main body and is configured to inflate and deflate the main body of the bed.
  • the air pump includes a main pump, a pressure sensor, an inflation/deflation port, and a wireless module that is configured to connect to a wireless network.
  • the wireless network may be a Wi-Fi network.
  • the air pump is configured to receive commands from a remote device over the wireless network, wherein the commands are generated from the remote device from voice or spoken commands from the user.
  • FIG. 1 is a perspective view of an inflatable bed having an air pump
  • FIG. 2 is a perspective view of the air pump shown in FIG. 1;
  • FIG. 3 is a disassembled view of the air pump shown in FIGS. 1 and 2;
  • FIG. 4 is a schematic of the control circuity shown in FIG. 3 and contained within the air pump shown in FIGS. 1 and 2;
  • FIG. 5 is a flow chart showing steps that may occur in order to set up the inflatable bed having the air pump shown in FIGS. 1-3;
  • FIG. 6 is a flow chart showing steps that may occur in order to dismantle the inflatable bed having the air pump shown in FIGS. 1-3;
  • FIG. 7 is a perspective view of an inflatable bed having an air pump
  • FIG. 8 is a perspective view of the air pump shown in FIG. 7;
  • FIG. 9 is a schematic of the control circuity contained within the air pump shown in FIGS. 7 and 8;
  • FIG. 10 is a schematic of the control circuity contained within an alternative embodiment of an air pump
  • FIG. 11 is a perspective view of an inflatable bed having an air pump
  • FIG. 12 is a perspective view of an inflatable bed having air pump, wherein the air pump is connected and controlled by a remote device.
  • FIG. 1 shows a perspective view of an inflatable bed 10 having an air pump 12.
  • the air pump 12 is coupled to the exterior wall 14 of the main body 11 of the inflatable bed 10.
  • the air pump 12 can inflate the inflatable bed 10 by pumping air into the main body 11.
  • the pump 12 can also deflate the bed 10 by pumping air out of the main body 11.
  • the pump 12 can measure the air pressure contained within the main body 11 to adjust the firmness of the bed 10.
  • a user can manually control the pump 12 by pressing one of the buttons 16.
  • the user can control the pump 12 by using spoken words or voice commands.
  • the inflatable bed 10 may be formed as top layer of a foam bed, an insert for a foam bed, a top layer of a spring/coil bed, or an insert for spring/coil bed.
  • FIGS. 2 and 3 respectively, show perspective view and a disassembled view of the air pump 12 shown in FIG. 1.
  • the air pump 12 has a front panel 18 that is coupled to a body 20 by at least four screws 22.
  • the front panel 18 includes a first section 24 that covers the control circuity 30 and the main pump 32.
  • the first section 24 contains multiple openings there through, which will be described in greater detail below.
  • the front panel also includes a second section 26 that covers the secondary pump 33 and the storage compartment 34 for the electrical cord (not shown) . It should be understood that the secondary pump 33 is nearly silent and is designed to not be heard by the user of the inflatable bed 10.
  • the first section 24 is coupled to the second section 26 by a hinge 28. The hinge 28 allows the user to disconnect the second section 26 from the body to retrieve the electrical cord.
  • the front panel 18 includes button openings 36, wherein each opening receives an extent of a button 16.
  • the buttons 16 include a deflate button 46, a first firmness selection button 50, a second firmness selection button 54, and a third firmness selection button 58.It should be understood that additional or fewer buttons 16 may be utilized.
  • the first opening 44 receives an extent of the deflate button 46
  • the second opening 48 receives an extent of the first firmness selection button 50
  • a third opening 52 receives an extent of the second firmness selection button 54
  • a fourth opening 56 receives an extent of the third firmness selection button 58.
  • Each button 16 is recessed from the front edge of the front panel 18 to help ensure that the buttons 16 are not accidently activated.
  • the buttons 16 may be replaced by a touch screen or other known mechanical way of receiving input for a user’s touch.
  • the pump 12 In response to the activation of the deflation button 46, the pump 12 will remove substantially all of the air from the inflatable bed 10. In response to the activation of the first firmness selection button 50, the pump 12 will inflate the bed 10 to a first predetermined pressure level (e.g., 200 mm H2O) . Similarly, in response to the activation of the second firmness selection button 54, the pump 12 will inflate the bed 10 to a second predetermined pressure level (e.g., 240 mm H2O) that is greater than the first predetermined pressure level.
  • a first predetermined pressure level e.g. 200 mm H2O
  • a second predetermined pressure level e.g., 240 mm H2O
  • the pump 12 in response to the activation of the third firmness selection button 58, the pump 12 will inflate the bed 10 to a third predetermined pressure level (e.g., 280 mm H2O) that is greater than both the first and the second predetermined pressure levels.
  • a third predetermined pressure level e.g., 280 mm H2O
  • the predetermined pressure levels may be programed by the manufacture and cannot be adjusted by the user.
  • the pump 12 may include additional buttons 16 and a display, which can be used to set and store predetermined pressure levels. This alternative embodiment may be preferred because it allows each user to store their desired firmness selection; thus, making setup easier and improving sleep quality.
  • the pump 12 may include a keypad and a display, instead of the buttons 16, which allows the user to input and view the desired pressure value.
  • a keypad may include buttons to slightly increase or decrease the pressure level inside of the bed 10.
  • the user would be prevented from entering a pressure value that may cause damage to the bed 10.
  • This alternative embodiment may be preferred to allow the user to individually select the desired pressure level.
  • the front panel 18 also includes an inflate/deflate port 38 that allows air to be either drawn into the pump 12 or exhausted by the pump 12.
  • the inflate/deflate port 38 includes a cover that is concave in shape to help ensure that objects are not sucked into the pump 12.
  • the front panel 18 further includes status light openings 40, which allow the user to see which firmness selection is chosen and whether the bed is at the selected pressure level.
  • the front panel 18 includes a microphone opening 42 that receives an extent of a microphone 62 that is coupled to the control circuity 30. In particular, the microphone 62 is recessed from the front edge of the front panel 18, which helps protect the microphone 62.
  • FIG. 4 is a schematic of the control circuity 30 shown in FIG. 3 and contained within the air pump 12 shown in FIGS. 1-3.
  • the control circuity 30 contains an electrical input 64, which can either be 110 volts AC or 220 volts AC.
  • the received electrical power can be from a standard house outlet (e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20) , received wireless from a wireless charger, or from any other known type of electrical input.
  • a fuse 66 is placed between the electrical input 64 and any other circuit components within the control circuity 30. This will help to ensure that the electrical components within the control circuity 30 are not damaged if the electrical input 64 is subject to an overcurrent.
  • the electrical input 64 is coupled to the main pump 32, the secondary pump 33, and a switching mode power supply 68.
  • the switching mode power supply 68 is directly connected to the relay drive circuit 72 and the microcontroller 74. Additionally, the switching mode power supply 68 provides DC power to the DC bus, which will be used to supply power to the rest of the control circuity 30.
  • DC power may be used to power these pumps.
  • a battery may be used to power the pumps 32 and 33. This alternative embodiment may be beneficial when the user desires to use the bed where there is no AC power. In a further embodiment, a battery may only power the secondary pump 33, while AC power is used to power the main pump 32. This alternative embodiment may be beneficial when the user desires to move the bed away from an electrical input source for use.
  • the microcontroller 74 receives input signals directly from the pressure sensor 60 and the air channel positioning switch 84.
  • the pressure sensor 60 measures the air pressure contained within the bed 10 and provides these measurements to the microcontroller 74.
  • the microcontroller 74 utilizes these measurements to determine whether the pump 12 should either pump air into the bed 10, pump air out of the bed 10, or be turned off.
  • the air channel positioning circuit 84 receives signals from the channel positioning switches 86 and provides this data to the microcontroller 74.
  • the channel position switches include a first switch 88, a second switch 90, and a third switch 92.
  • the air channel motor 94 positions the channel selector 96 (shown in FIG. 3) to the inflate position.
  • the second switch 90 is activated
  • the air channel motor 94 positions the channel selector 96 to the deflate position.
  • the third switch 92 is activated, the air channel motor 94 positions the channel selector 96 to the stop position.
  • the microcontroller 74 receives input signals indirectly from both the buttons 16 and the microphone 62.
  • the buttons 16 are indirectly coupled to the microcontroller 74 by the button panel 76.
  • the button panel 76 senses which button 16 is activated by the user and sends a signal to the microcontroller 74.
  • the microphone 62 is indirectly coupled to the microcontroller 74 by an analog to digital converter 78 and a voice recognition module 80.
  • the microphone 62 records analog sounds.
  • the analog sound is amplified and converted to digital data by the analog to digital converter 78.
  • the digital data is than sent to the voice recognition module 80.
  • the voice recognition module 80 utilizes methods like simple pattern matching, language modeling and statistical analysis, and/or artificial neural networks to analyze the digital data in order to determine the words that were spoken by the user. It should be understood that other methods of recognizing spoken words may be used. It should be understood that locating the microphone 62 within the air pump 12 is beneficial over other designs that locate the microphone outside of the pump, because it is less expensive to manufacture.
  • the microcontroller 74 provides output signals directly to the relay drive circuit 72, the air channel drive circuit 82, and the status lights 98.
  • the microcontroller 72 controls the main pump 32 and the secondary pump 33 by sending signals to the pump relays 70 through the relay drive circuit 72.
  • the microcontroller 74 will turn on both pumps 32 and 33 while inflating the bed 10 to the desired firmness. Once this firmness is reached, the microcontroller 74 will turn off the main pump 32, while periodically turning on the secondary pump 33 to maintain the desired firmness. In other embodiments, the microcontroller 74 will only use the main pump 32 to inflate the bed 10 to the desired firmness and only use the secondary pump 33 to maintain the desired firmness.
  • the microcontroller 74 controls the position of the channel selector 96 by sending signals to the air channel motor 94 through the air channel drive circuit 82.
  • the air channel motor 94 moves the channel selector 96 to one of three positions to allow the bed 10 to be either: 1) inflated, 2) deflated, or 3) to stop the main pump 32 and hold the air pressure.
  • control circuity 30 may include fewer circuits or modules.
  • the functionality of the voice recognition module and the analog to digital converter 78 may be converted into a one circuit.
  • the control circuity 30 may have additional circuits or modules.
  • the amplifier that is built into the analog to digital converter 78 may be split into two separate circuits.
  • the control circuity 30 may include a module that allows it to connect to a remote device through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) . This additional module will be further discussed in connection with FIG. 14.
  • a wireless protocol e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc.
  • control circuity 30 may include electrical modules that allow the user to supply power to external devices, such as a phone charger, a light, a heating blanket, etc.
  • a USB plug may be disposed within the storage compartment for electrical cord 34 or on the first section of the front panel 24.
  • an 110v AC receptacle e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20
  • the control circuity 30 may include additional modules that power heating or cooling elements that are disposed within the inflatable bed 10.
  • the control circuity 30 may include a speaker within the pump 12. Such a speaker may be used to inform the user of the pressure level of the bed or what time it is.
  • FIGS. 5 and 6 are flow charts that describe steps that may during the use of the inflatable bed 10 that is shown in FIGS. 1-4.
  • FIG. 5 describes the setup of the inflatable bed 10.
  • step 200 the user unpacks the inflatable bed by removing it from its storage bag and unfolding it in an open space.
  • step 202 the user plugs the electrical input cord 64 into an outlet that supplies power to the pump 12.
  • the user then speaks the word “inflate” in step 204.
  • the word “inflate” must be spoken at a decibel level high enough for the sound to be captured by the microphone 62 contained within the pump 12. It should be recognized that other word combinations may be used instead of the word “inflate.
  • step 206 the microphone 62 that is built-into the pump 12 records the user’s voice, including the word “inflate. ” Then in steps 208-210, the pump 12 uses the analog to digital converter 78 to amplify and convert the user’s voice into digital data, this data is then analyzed by the voice recognition module 80. In step 212, the voice recognition module 80 determines that the user spoke the word “inflate, ” which instructs the pump 12 to inflate the bed 10 to a predetermined level.
  • step 214 describes that the microcontroller 74 first changes the position of the channel selector 96 by sending a signal to the air channel drive circuit 82, which in turn powers the air channel motor 94.
  • the air channel motor 94 moves the channel selector 96 to the first position, which allows the main pump 32 to inflate the bed 10.
  • a signal is sent to the channel selector to turn off the pump 32.
  • step 216 the first switch 88 is activated by the moving the channel selector 96 into the first position and a signal is sent by the air channel positioning circuit 84 to the microcontroller 74.
  • the microcontroller 74 In response to receiving this signal, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71, which in turn supplies power to the main pump 32 in step 220.
  • the microcontroller 74 receives a signal from the pressure sensor 60 and determines that the predetermined pressure level has been reached. In response, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71 to turn off the main pump 32. Then in step 224, the microcontroller 74 confirms that the main pump 32 is off and sends a signal to air channel drive circuit 82, which in turn powers the air channel motor 94.
  • the microcontroller 74 monitors the air pressure within the main body 11 through the pressure sensor 60. If the microcontroller 74 detects that the pressure within the main body 11 is below the predetermined level, then the microcontroller 74, inflates the bed 10 using the secondary pump 33. Specifically, this is done by sending a signal from the microcontroller 74 to the relay drive circuit 72. The relay drive circuit 72 forwards this signal to the secondary pump relay 69, which in turn powers the secondary pump 33. Meanwhile, the microcontroller 74 is monitoring the air pressure in the bed using the pressure sensor 60. Once the microcontroller 74 determines that the air pressure reaches the predetermined level, the microcontroller 74 turns off the secondary pump 33 by sending a signal through the relay drive circuit 72 to the secondary pump relay 69.
  • FIG. 6 describes the deflation of the inflatable bed 10.
  • the user speaks the word “deflate. ”
  • the word “deflate” must be spoken at a decibel level high enough for the sound to be captured by the microphone 62 contained within the pump 12. It should be recognized that other word combinations may be used instead of the word “deflate. ” For example, other word combinations may include “deflate bed, ” “take down bed, ” etc. Further it should be understood that the word or word combinations may be spoken in any language.
  • the microphone 62 that is built-into the pump 12 records the user’s voice, including the word “deflate.
  • the pump 12 uses an amplifier and an analog to digital converter 78 to convert the user’s voice into digital data. This data is then analyzed by the voice detection module 80. In step 258, the voice detection module 80 determines that the user spoke the word “deflate, ” which instructs the pump 12 to remove substantially all of the air from the bed 10.
  • step 260 describes that the microcontroller 74 first changes the position of the channel selector 96 by sending a signal to the air channel drive circuit 82, which in turn powers the air channel motor 94.
  • the air channel motor 94 moves the channel selector 96 to the second position, which allows the main pump 32 to deflate the bed 10.
  • a signal is sent to the channel selector to turn off the pump 32.
  • the second switch 90 is activated by the moving the channel selector 96 into the second position and a signal is sent by the air channel positioning circuit 84 to the microcontroller 74.
  • the microcontroller 74 In response to receiving this signal, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71, which in turn supplies power to the main pump 32 in step 264.
  • the microcontroller 74 receives a signal from the pressure sensor 60 and determines that substantially all of the air has been removed from the main body 11.
  • the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71 to turn off the main pump 32.
  • the microcontroller 74 confirms that the main pump 32 is off and sends a signal to air channel drive circuit 82, which in turn powers the air channel motor 94.
  • the air channel motor 94 moves the channel selector 96 from the second position to the third position, which prevents air from being pumped in or out of the main body 11.
  • steps 270 and 272 the user unplugs the electrical input cord 64, folds the bed 10, and packs up the bed 10 by placing it in its storage bag. It should be understood that some of these steps may by be combined with other steps or may not occur at all.
  • FIG. 7 shows a perspective view of an alternative embodiment of an inflatable bed 310 having an air pump 312.
  • the air pump 312 is coupled to the exterior wall 314 of the main body 311 of the inflatable bed 310.
  • the air pump 312 can inflate the inflatable bed 310 by pumping air into the main body 311.
  • the pump 312 can also deflate the bed 310 by pumping air out of the main body 311.
  • the pump 312 can measure the air pressure contained within the main body 311 to adjust the firmness of the bed 310.
  • a user can manually control the pump 312 by activating the switch 302. Alternatively, the user can control the pump 312 by using voice commands.
  • FIG. 8 shows a perspective view of the air pump 312 shown in FIG. 7.
  • the air pump 312 has a front panel 318 that is coupled to a body 320 by at least four screws 322.
  • the front panel 318 includes a first section 324 that covers the control circuity 330 and the main pump 332.
  • the front panel also includes a second section 326 that covers the storage compartment for the electrical cord (not shown) .
  • the first section 324 is coupled to the second section 326 by a hinge 328.
  • the hinge 328 allows the user to disconnect the second section 326 from the body to retrieve the electrical cord.
  • the front panel 318 includes a switch 302, which allows the user to inflate or deflate the bed 310. Specifically, the user rotates the switch 302 clockwise to a right position or inflate position, which causes the pump 312 to inflate the main body 311. The switch 302 temporarily stays in this first position until the pump 312 determines that the main body 311has been inflated to a predetermined pressure level. Once this occurs, the switch 302 snaps back to the middle position or off position. To deflate the bed, the user rotates the switch 302 counterclockwise to a second position or deflate position. The switch 302 temporarily stays in this second position until the pump 312 determines that substantially all of the air has been removed from the main body 311. Once this occurs, the switch 302 snaps back to the middle position or off position.
  • the front panel 318 also includes the inflate/deflate port 338 that allows air to be either drawn into the pump 312 or exhaled by the pump 312.
  • the inflate/deflate port 338 includes a concave cover to help ensure that objects are not sucked into the pump 312.
  • the front panel 318 further includes a microphone opening 342 that receives an extent of a microphone 362 that is coupled to the control circuity 330.
  • the microphone 362 is recessed from the front edge of the front panel 318, which helps protect the microphone 362.
  • FIG. 9 is a schematic of the control circuity 330 contained within the air pump 312 shown in FIGS. 7 and8.
  • the control circuity 330 contains an electrical input 364, which can either be 110 volts AC or 220 volts AC. This received electrical power can be from a standard house outlet (e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20) , received wireless from a wireless charger, or from any other known type of electrical input.
  • a fuse 366 is placed between the electrical input 364 and any other circuit components within the control circuity 330. This will help to ensure that the electrical components within the control circuity 330 are not damaged if the electrical input 364 is subject to an overcurrent.
  • the electrical input 364 is coupled to the main pump 332, and a switching mode power supply 368.
  • the switching mode power supply 368 is directly connected to the relay drive circuit 372 and the microcontroller 374. Additionally, the switching mode power supply 368 provides DC power to the DC bus, which will be used to supply power to the rest of the control circuity 330.
  • DC power may be used to power these pumps.
  • a battery may be used to power the pump 332. This alternative embodiment may be beneficial when the user desires to remove the bed away from an electrical input source and inflate the bed.
  • the microcontroller 374 receives input signals directly from the pressure sensor 360 and the air channel positioning switch 384.
  • the pressure sensor 360 measures the air pressure contained within the bed 310 and provides these measurements to the microcontroller 374.
  • the microcontroller 374 utilizes these measurements to determine whether the pump 312 should either pump air into the bed 310, pump air out of the bed 310, or be turned off.
  • the air channel positioning circuit 384 receives signals from the channel positioning switches 386 and provides this data to the microcontroller 374.
  • the channel position switches include a first switch 388, a second switch 390, and a third switch 392.
  • the air channel motor 394 positions the channel selector 396 (not shown) to the inflate position.
  • the second switch 390 is activated
  • the air channel motor 394 positions the channel selector 396 to the deflate position.
  • the third switch 392 is activated, the air channel motor 394 positions the channel selector 396 to the stop position.
  • the microcontroller 374 receives input signals indirectly from both the switch 302 and the microphone 362.
  • the switch 302 is indirectly coupled to the microcontroller 374 by the switch panel 376.
  • the switch panel 376 senses which switch 302 is activated by the user and sends a signal to the microcontroller 374 in response to such activation.
  • the microphone 362 is indirectly coupled to the microcontroller 374 by an analog to digital converter 378 and a voice recognition module 380.
  • the microphone 362 records analog sounds.
  • the analog sound is amplified and converted to digital data by the analog to digital converter 378.
  • the digital data is than sent to the voice recognition module 380.
  • the voice recognition module 380 utilizes methods like simple pattern matching, language modeling, statistical analysis, and/or artificial neural networks to analyze the digital data in order to determine the words that were spoken by the user. It should be understood that other methods of recognizing spoken words may be used.
  • the microcontroller 374 provides output signals directly to the relay drive circuit 372 and the air channel drive circuit 382.
  • the microcontroller 372 controls the main pump 332 by sending signals to the pump relay 370 through the relay drive circuit 372.
  • the microcontroller 374 controls the position of the channel selector 396 by sending signals to the air channel motor 394 through the air channel drive circuit 382.
  • the air channel motor 394 moves the channel selector 396 to one of three positions to allow the bed 310 to be either: 1) inflated, 2) deflated, or 3) to stop the main pump 332 and hold the air pressure.
  • FIGS. 1-4 There is substantial overlap between the embodiments of the inflatable bed 10 and inflatable bed 310, which can be seen by comparing FIGS. 1-4 with FIGS. 7-9.
  • the primary difference between these embodiments is the fact that the air pump 310 does not contain a secondary pump 33. Due to this overlap, the inflatable bed 310 that is shown in FIGS. 7-9 performs steps similar to those described in FIGS. 5 and 6. The only exception is that the inflatable bed 310 does not contain a secondary pump 33 and thus step 226 is not performed by inflatable bed 310.
  • FIG. 10 is an alternate embodiment of the control circuity 430 contained within the air pump 412.
  • This alternate embodiment of an air pump 412 may be used instead of the air pump 12 shown in FIGS. 1-4 or the air pump shown in FIGS. 7-9.
  • This alternative embodiment of an air pump 412 contains the same components as the components shown in FIGS. 7-9, except for the fact that this air pump 412 does not contain any circuitry or features that allow for the user to manually control the air pump 412. In other words, this air pump 412 does not contain a switch 302 or switch panel 376, which in turn only allows the air pump 412 to be controlled by voice commands.
  • air pump 412 in combination with an inflatable bed performs steps similar to those described in FIGS. 5 and 6.
  • the air pump 412 does not contain a secondary pump 33 and thus step 226 is not performed.
  • additional steps may be performed or some steps may be skipped depending on the embodiment of the air pump.
  • air pump 412 may be modified to include a secondary pump, like the pump 33, which then may allow the air pump 412 in combination with the inflatable bed to perform all of the steps described within FIGS. 5 and 6.
  • FIG. 11 shows a perspective view of an inflatable bed 510 having an air pump 512.
  • inflatable bed 510 has multiple sections that include: a main body 514, a comfort layer 516, and a back section 518.
  • the air pump 512 may be the same as the air pump 12 described in FIGS. 1-4, the air pump 312 described in FIGS. 7-9, or air pump 412 described in FIG. 10. Regardless of whether air pump 512 is similar to air pumps 12, 312, or 412, air pump 512 can be controlled by a user’s voice. In this embodiment, the user may use the command “inflate” to inflate all sections (e.g., main body 514, comfort layer 516, and a back section 518) of the bed to a predetermined pressure level.
  • the command “inflate” to inflate all sections (e.g., main body 514, comfort layer 516, and a back section 518) of the bed to a predetermined pressure level.
  • the user may individually inflate or deflate specific sections of the inflatable bed 510 by stating the sections and telling the air pump 512 to either inflate or deflate.
  • the user may first inflate all sections of the inflatable bed 512 and then later desire to lay flat. To do this the user may speak “deflate back rest, ” which in turn causes the back rest to deflate and enables the user to lay flat.
  • the user may desire to increase the firmness of the bed 512. In this situation the user may speak “increase firmness, ” which in turn causes the pump 512 to increase the pressure level within the comfort layer 516.
  • FIG. 12 shows a perspective view of an inflatable bed 610 having an air pump 612.
  • the air pump 612 may be similar to air pump 12 described in FIGS. 1-4, the air pump 312 described in FIGS. 7-9, or air pump 412 described in FIG. 10.
  • air pump 612 is voice-controlled.
  • air pump 612 does not contain a microphone or any circuity associated with the microphone.
  • air pump 612 includes a wireless module that allows the bed 612 to connect to a remote device through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) .
  • a wireless protocol e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc.
  • This module allows the remote device (e.g., mobile phone 614 , Amazon Alexa Speaker 616, Google Home, etc. ) to receive the user’s voice commands, interpret these voice commands, and control the air pump 612 accordingly.
  • a user may own an Amazon TM Echo Dot 616.
  • the user downloads an application from a server onto the Dot 616 to enable it to control the inflatable bed 610.
  • the Dot 616 looks for the inflatable bed 610 to be connected to the Wi-Fi network that the Dot 616 is connected thereto. Once the inflatable bed 610 is connected to the Wi-Fi network, the Dot 616 recognizes the bed 610. The user can then inflate the bed by speaking the words “Alexa, inflate my bed.
  • the Dot 616 interpreted, and a signal is sent to the bed 610 through the Wi-Fi network.
  • the bed 610 receives the signal and the air pump 612 inflates the main body 611 to a predetermined pressure level.
  • the Dot 616 or the mobile phone 614 can connect directly to the bed 610 through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) .
  • the Dot 616 or phone 614 sends the signal to inflate or deflate the bed directly to the bed 610 instead of through the Wi-Fi network.
  • the pumps may require the user to speak a code or an introduction phrase prior to speaking the command (e.g., inflate or deflate) .
  • a code or an introduction phrase prior to speaking the command (e.g., inflate or deflate) .
  • the user may be required to say the introduction phrase “Bestway” or “inflatable bed” prior to speaking the commands to the bed.
  • This code or introduction phrase may help ensure that the bed is not accidently inflated or deflated.
  • the user may be able to program or select a code or introduction phrase.
  • the above disclosure may represent an improvement in the art because it provides for use of an inflatable apparatus according to conversion principles described hereinthroughout. Further, the convertible inflatable apparatus provides the user with improved comfort and satisfaction in addition to convenient manipulation of the inflatable apparatus from one shape to another. Still further, the disclosure improves the art by supplying an alternative construction for an inflatable recliner.
  • inflatable bed 10, 310, 510 or 610 may be plastic, vinyl, coated fabric, and/or another suitable material or combination of materials.
  • Valve (s) disposed on these components may be formed from extruded plastic, machined aluminum, another metal alloy, and/or another materials or combination of materials suitable for manufacturing valve (s) for inflatables.
  • Headings and subheadings, if any, are used for convenience only and do not limit the invention.
  • the word exemplary is used to mean serving as an example or illustration.
  • the terms “include, ” “have, ” or “the like” are used, such terms are intended to be inclusive in a manner similar to the term “comprise, ” as “comprise” is interpreted when employed as a transitional word in a claim.
  • Relational terms such as “first, ” “second” and “the like” may be used to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions.
  • phrases such as an “aspect, ” “the aspect, ” “another aspect, ” “some aspects, ” “one or more aspects, ” “an implementation, ” “the implementation, ” “another implementation, ” “some implementations, ” “one or more implementations, ” “an embodiment, ” “the embodiment, ” “another embodiment, ” “some embodiments, ” “one or more embodiments, ” “a configuration, ” “the configuration, ” “another configuration, ” “some configurations, ” “one or more configurations, ” “the subject technology, ” “the disclosure, ” “the present disclosure, ” “other variations thereof” and “alike” are for convenience and do not imply that a disclosure relating to such phrase (s) is essential to the subject technology or that such disclosure applies to all configurations of the subject technology.
  • a disclosure relating to such phrase (s) may apply to all configurations, or one or more configurations.
  • a disclosure relating to such phrase (s) may provide one or more examples.
  • a phrase such as an aspect or some aspects may refer to one or more aspects and vice versa, and this applies similarly to other foregoing phrases.
  • compositions and methods are described in terms of “comprising, ” “containing, ” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. In particular, every range of values (of the form, “from about a to about b, ” or, equivalently, “from approximately a to b, ” or, equivalently, “from approximately a tob” ) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.
  • a phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list.
  • the phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items.
  • each of the phrases “at least one of A, B, and C” or “at least one of A, B, or C” refers to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
  • the term “coupled” or the like may refer to being directly coupled. In another aspect, the term “coupled” or the like may refer to being indirectly coupled. Terms such as “top, ” “bottom, ” “front, ” “rear, ” “side, ” “horizontal, ” “vertical, ” and the like refer to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, such a term may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Invalid Beds And Related Equipment (AREA)

Abstract

A voice-controlled inflatable bed (10, 310, 510, 610) includes a main body (11, 311, 514, 611) and an air pump (12, 312, 512, 612). The air pump (12, 312, 512, 612) is configured to inflate and deflate the main body (11, 311, 514, 611) and includes a main pump (32, 332), a pressure sensor (60, 360), an inflation/deflation port (38, 338), and a microphone (62, 362). The air pump (12, 312, 512, 612) inflates and deflates the main body (11, 311, 514, 611) based on voice commands from a user. Additionally, the voice-controlled inflatable bed (10, 310, 510, 610) may include a wireless module that allows the user to speak into a remote device (614, 616) to control the air pump (12, 312, 512, 612).

Description

VOICE-CONTROLLED INFLATABLE BED
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
None
TECHNICAL FIELD
The present disclosure generally relates to inflatable bed, and more particularly, to a voice-controlled air pump for an inflatable bed.
BACKGROUND
Inflatable beds are becoming more and more popular and are suitable for camping and serving as a household spare mattress for a guest’s temporary use. There are given advantages such as their volume, ease of carrying and storage, and other benefits. Conventional inflatable beds may require the user to manually inflate the bed using a hand-held pump or may require the user to activate and hold a switch to inflate the bed until the bed is inflated to a desired firmness. Thus, these conventional inflatable beds require the user’s presence in close proximity to the bed during nearly the entire time the bed is being set up. If the user decides to adjust the firmness of the bed during use, the user may be forced to crawl behind the pillows and other blankets that have been placed on the bed and find the pump’s control to manually adjust the bed’s firmness.
The inflatable bed described herein overcomes these disadvantages associated with conventional inflatable beds by allowing the user to control the air pump using his or her voice. The user can simply speak the words “inflate” or “deflate, ” which in turn inflates or deflates the bed to the desired level. This allows the user to perform other tasks during the setup of the bed and allows the user to increase or decrease the firmness of the bed without having to manually adjust the bed’s firmness through difficult-to-reach controls.
SUMMARY
In some embodiments of the present disclosure, a voice-controlled inflatable bed is described. The voice-controlled inflatable bed includes a main body and an air pump. Specifically, the air pump is coupled to the external wall of the main body and is configured to  inflate and deflate the main body of the bed. The air pump includes a main pump, a pressure sensor, an inflation/deflation port, and a microphone. In particular, the microphone is recessed from the front edge of the air pump. The microphone is configured to receive voice or spoken commands from the user and in response to the spoken commands, that air pump either: inflates the main body of the inflatable bed, deflates the main body of the inflatable bed, or takes no action.
In other embodiments of the present disclosure, a voice-controlled inflatable bed is described. The voice-controlled inflatable bed includes a main body and an air pump. Specifically, the air pump is coupled to the external wall of the main body and is configured to inflate and deflate the main body of the bed. The air pump includes a main pump, a pressure sensor, an inflation/deflation port, and a wireless module that is configured to connect to a wireless network. For example, the wireless network may be a Wi-Fi network. The air pump is configured to receive commands from a remote device over the wireless network, wherein the commands are generated from the remote device from voice or spoken commands from the user.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawing Figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. In the Figures, like reference numerals refer to the same or similar elements.
FIG. 1 is a perspective view of an inflatable bed having an air pump;
FIG. 2 is a perspective view of the air pump shown in FIG. 1;
FIG. 3 is a disassembled view of the air pump shown in FIGS. 1 and 2;
FIG. 4 is a schematic of the control circuity shown in FIG. 3 and contained within the air pump shown in FIGS. 1 and 2;
FIG. 5 is a flow chart showing steps that may occur in order to set up the inflatable bed having the air pump shown in FIGS. 1-3;
FIG. 6 is a flow chart showing steps that may occur in order to dismantle the inflatable bed having the air pump shown in FIGS. 1-3;
FIG. 7 is a perspective view of an inflatable bed having an air pump;
FIG. 8 is a perspective view of the air pump shown in FIG. 7;
FIG. 9 is a schematic of the control circuity contained within the air pump shown in FIGS. 7 and 8;
FIG. 10 is a schematic of the control circuity contained within an alternative embodiment of an air pump;
FIG. 11 is a perspective view of an inflatable bed having an air pump; and
FIG. 12 is a perspective view of an inflatable bed having air pump, wherein the air pump is connected and controlled by a remote device.
DETAILED DESCRIPTION
While this disclosure includes a number of details and embodiments in many different forms, there is shown in the drawings and will herein be described in detail particular embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the disclosed methods and systems, and is not intended to limit the broad aspects of the disclosed concepts to the embodiments illustrated.
FIG. 1 shows a perspective view of an inflatable bed 10 having an air pump 12. Specifically, the air pump 12 is coupled to the exterior wall 14 of the main body 11 of the inflatable bed 10. The air pump 12 can inflate the inflatable bed 10 by pumping air into the main body 11. The pump 12 can also deflate the bed 10 by pumping air out of the main body 11. Further, the pump 12 can measure the air pressure contained within the main body 11 to adjust the firmness of the bed 10. To control these features, a user can manually control the pump 12 by pressing one of the buttons 16. Alternatively, the user can control the pump 12 by using spoken words or voice commands. In an alternative embodiment, the inflatable bed 10 may be formed as top layer of a foam bed, an insert for a foam bed, a top layer of a spring/coil bed, or an insert for spring/coil bed.
FIGS. 2 and 3, respectively, show perspective view and a disassembled view of the air pump 12 shown in FIG. 1. The air pump 12 has a front panel 18 that is coupled to a body 20 by at least four screws 22. The front panel 18 includes a first section 24 that covers the control circuity 30 and the main pump 32. In addition, the first section 24 contains multiple openings there through, which will be described in greater detail below. The front panel also includes a second section 26 that covers the secondary pump 33 and the storage compartment 34 for the electrical cord (not shown) . It should be understood that the secondary pump 33 is nearly silent  and is designed to not be heard by the user of the inflatable bed 10. The first section 24 is coupled to the second section 26 by a hinge 28. The hinge 28 allows the user to disconnect the second section 26 from the body to retrieve the electrical cord.
The front panel 18 includes button openings 36, wherein each opening receives an extent of a button 16. In particular, the buttons 16 include a deflate button 46, a first firmness selection button 50, a second firmness selection button 54, and a third firmness selection button 58.It should be understood that additional or fewer buttons 16 may be utilized. The first opening 44 receives an extent of the deflate button 46, the second opening 48 receives an extent of the first firmness selection button 50, a third opening 52 receives an extent of the second firmness selection button 54, and a fourth opening 56 receives an extent of the third firmness selection button 58. Each button 16 is recessed from the front edge of the front panel 18 to help ensure that the buttons 16 are not accidently activated. Alternatively, the buttons 16 may be replaced by a touch screen or other known mechanical way of receiving input for a user’s touch.
In response to the activation of the deflation button 46, the pump 12 will remove substantially all of the air from the inflatable bed 10. In response to the activation of the first firmness selection button 50, the pump 12 will inflate the bed 10 to a first predetermined pressure level (e.g., 200 mm H2O) . Similarly, in response to the activation of the second firmness selection button 54, the pump 12 will inflate the bed 10 to a second predetermined pressure level (e.g., 240 mm H2O) that is greater than the first predetermined pressure level. Further, in response to the activation of the third firmness selection button 58, the pump 12 will inflate the bed 10 to a third predetermined pressure level (e.g., 280 mm H2O) that is greater than both the first and the second predetermined pressure levels. It should be understood that the predetermined pressure levels may be programed by the manufacture and cannot be adjusted by the user. Alternatively, the pump 12 may include additional buttons 16 and a display, which can be used to set and store predetermined pressure levels. This alternative embodiment may be preferred because it allows each user to store their desired firmness selection; thus, making setup easier and improving sleep quality.
In an alternate embodiment, the pump 12 may include a keypad and a display, instead of the buttons 16, which allows the user to input and view the desired pressure value. In addition, such a keypad may include buttons to slightly increase or decrease the pressure level inside of the bed 10. In such an alternative embodiment, the user would be prevented from entering a  pressure value that may cause damage to the bed 10. This alternative embodiment may be preferred to allow the user to individually select the desired pressure level.
The front panel 18 also includes an inflate/deflate port 38 that allows air to be either drawn into the pump 12 or exhausted by the pump 12. The inflate/deflate port 38 includes a cover that is concave in shape to help ensure that objects are not sucked into the pump 12. The front panel 18 further includes status light openings 40, which allow the user to see which firmness selection is chosen and whether the bed is at the selected pressure level. Further, the front panel 18 includes a microphone opening 42 that receives an extent of a microphone 62 that is coupled to the control circuity 30. In particular, the microphone 62 is recessed from the front edge of the front panel 18, which helps protect the microphone 62.
FIG. 4 is a schematic of the control circuity 30 shown in FIG. 3 and contained within the air pump 12 shown in FIGS. 1-3. The control circuity 30 contains an electrical input 64, which can either be 110 volts AC or 220 volts AC. The received electrical power can be from a standard house outlet (e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20) , received wireless from a wireless charger, or from any other known type of electrical input. A fuse 66 is placed between the electrical input 64 and any other circuit components within the control circuity 30. This will help to ensure that the electrical components within the control circuity 30 are not damaged if the electrical input 64 is subject to an overcurrent. After the fuse 66, the electrical input 64 is coupled to the main pump 32, the secondary pump 33, and a switching mode power supply 68. The switching mode power supply 68 is directly connected to the relay drive circuit 72 and the microcontroller 74. Additionally, the switching mode power supply 68 provides DC power to the DC bus, which will be used to supply power to the rest of the control circuity 30. It should be understood that while  pumps  32 and 33 are capable of being powered by AC, in other embodiments DC power may be used to power these pumps. For example, a battery may be used to power the  pumps  32 and 33. This alternative embodiment may be beneficial when the user desires to use the bed where there is no AC power. In a further embodiment, a battery may only power the secondary pump 33, while AC power is used to power the main pump 32. This alternative embodiment may be beneficial when the user desires to move the bed away from an electrical input source for use.
The microcontroller 74 receives input signals directly from the pressure sensor 60 and the air channel positioning switch 84. In particular, the pressure sensor 60 measures the air  pressure contained within the bed 10 and provides these measurements to the microcontroller 74. The microcontroller 74 utilizes these measurements to determine whether the pump 12 should either pump air into the bed 10, pump air out of the bed 10, or be turned off. Additionally, the air channel positioning circuit 84 receives signals from the channel positioning switches 86 and provides this data to the microcontroller 74. Specifically, the channel position switches include a first switch 88, a second switch 90, and a third switch 92. Here, when the first switch 88 is activated, then the air channel motor 94 positions the channel selector 96 (shown in FIG. 3) to the inflate position. Also, when the second switch 90 is activated, the air channel motor 94 positions the channel selector 96 to the deflate position. Finally, when the third switch 92 is activated, the air channel motor 94 positions the channel selector 96 to the stop position.
The microcontroller 74 receives input signals indirectly from both the buttons 16 and the microphone 62. In particular, the buttons 16 are indirectly coupled to the microcontroller 74 by the button panel 76. The button panel 76 senses which button 16 is activated by the user and sends a signal to the microcontroller 74. Also, the microphone 62 is indirectly coupled to the microcontroller 74 by an analog to digital converter 78 and a voice recognition module 80. Here, the microphone 62 records analog sounds. The analog sound is amplified and converted to digital data by the analog to digital converter 78. The digital data is than sent to the voice recognition module 80. The voice recognition module 80 utilizes methods like simple pattern matching, language modeling and statistical analysis, and/or artificial neural networks to analyze the digital data in order to determine the words that were spoken by the user. It should be understood that other methods of recognizing spoken words may be used. It should be understood that locating the microphone 62 within the air pump 12 is beneficial over other designs that locate the microphone outside of the pump, because it is less expensive to manufacture.
The microcontroller 74 provides output signals directly to the relay drive circuit 72, the air channel drive circuit 82, and the status lights 98. In particular, the microcontroller 72 controls the main pump 32 and the secondary pump 33 by sending signals to the pump relays 70 through the relay drive circuit 72. In some embodiments, the microcontroller 74 will turn on both  pumps  32 and 33 while inflating the bed 10 to the desired firmness. Once this firmness is reached, the microcontroller 74 will turn off the main pump 32, while periodically turning on the secondary pump 33 to maintain the desired firmness. In other embodiments, the microcontroller 74 will only use the main pump 32 to inflate the bed 10 to the desired firmness and only use the  secondary pump 33 to maintain the desired firmness. Additionally, the microcontroller 74 controls the position of the channel selector 96 by sending signals to the air channel motor 94 through the air channel drive circuit 82. Here, the air channel motor 94 moves the channel selector 96 to one of three positions to allow the bed 10 to be either: 1) inflated, 2) deflated, or 3) to stop the main pump 32 and hold the air pressure.
It should be understood that the control circuity 30 may include fewer circuits or modules. For example, the functionality of the voice recognition module and the analog to digital converter 78 may be converted into a one circuit. Alternatively, the control circuity 30 may have additional circuits or modules. For example, the amplifier that is built into the analog to digital converter 78 may be split into two separate circuits. In another example, the control circuity 30 may include a module that allows it to connect to a remote device through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) . This additional module will be further discussed in connection with FIG. 14. In addition, the control circuity 30 may include electrical modules that allow the user to supply power to external devices, such as a phone charger, a light, a heating blanket, etc. In this example, a USB plug may be disposed within the storage compartment for electrical cord 34 or on the first section of the front panel 24. In other examples an 110v AC receptacle (e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20) may be disposed within the storage compartment for electrical cord 34. Further, the control circuity 30 may include additional modules that power heating or cooling elements that are disposed within the inflatable bed 10. Moreover, the control circuity 30 may include a speaker within the pump 12. Such a speaker may be used to inform the user of the pressure level of the bed or what time it is.
FIGS. 5 and 6 are flow charts that describe steps that may during the use of the inflatable bed 10 that is shown in FIGS. 1-4. Specifically, FIG. 5 describes the setup of the inflatable bed 10. First, in step 200, the user unpacks the inflatable bed by removing it from its storage bag and unfolding it in an open space. Next, in step 202, the user plugs the electrical input cord 64 into an outlet that supplies power to the pump 12. The user then speaks the word “inflate” in step 204. The word “inflate” must be spoken at a decibel level high enough for the sound to be captured by the microphone 62 contained within the pump 12. It should be recognized that other word combinations may be used instead of the word “inflate. ” For example, other word combinations may include “inflate bed, ” “set up bed, ” etc. Further it should be  understood that the word or word combinations may be spoken in any language. In step 206, the microphone 62 that is built-into the pump 12 records the user’s voice, including the word “inflate. ” Then in steps 208-210, the pump 12 uses the analog to digital converter 78 to amplify and convert the user’s voice into digital data, this data is then analyzed by the voice recognition module 80. In step 212, the voice recognition module 80 determines that the user spoke the word “inflate, ” which instructs the pump 12 to inflate the bed 10 to a predetermined level.
The inflation process is described in steps 214-224. In particular, step 214 describes that the microcontroller 74 first changes the position of the channel selector 96 by sending a signal to the air channel drive circuit 82, which in turn powers the air channel motor 94. The air channel motor 94 moves the channel selector 96 to the first position, which allows the main pump 32 to inflate the bed 10. Once the channel selector 96 is in the first position, a signal is sent to the channel selector to turn off the pump 32. Next, in step 216, the first switch 88 is activated by the moving the channel selector 96 into the first position and a signal is sent by the air channel positioning circuit 84 to the microcontroller 74. In response to receiving this signal, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71, which in turn supplies power to the main pump 32 in step 220. In step 222, the microcontroller 74 receives a signal from the pressure sensor 60 and determines that the predetermined pressure level has been reached. In response, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71 to turn off the main pump 32. Then in step 224, the microcontroller 74 confirms that the main pump 32 is off and sends a signal to air channel drive circuit 82, which in turn powers the air channel motor 94. The air channel motor 94 moves the channel selector 96 from the first position to the third position, which prevents air from being pumped into or out of the bed 10. Finally, in step 226, the microcontroller 74 monitors the air pressure within the main body 11 through the pressure sensor 60. If the microcontroller 74 detects that the pressure within the main body 11 is below the predetermined level, then the microcontroller 74, inflates the bed 10 using the secondary pump 33. Specifically, this is done by sending a signal from the microcontroller 74 to the relay drive circuit 72. The relay drive circuit 72 forwards this signal to the secondary pump relay 69, which in turn powers the secondary pump 33. Meanwhile, the microcontroller 74 is monitoring the air pressure in the bed using the pressure sensor 60. Once the microcontroller 74 determines that the air pressure reaches the  predetermined level, the microcontroller 74 turns off the secondary pump 33 by sending a signal through the relay drive circuit 72 to the secondary pump relay 69.
FIG. 6 describes the deflation of the inflatable bed 10. First, in step 250, the user speaks the word “deflate. ” The word “deflate” must be spoken at a decibel level high enough for the sound to be captured by the microphone 62 contained within the pump 12. It should be recognized that other word combinations may be used instead of the word “deflate. ” For example, other word combinations may include “deflate bed, ” “take down bed, ” etc. Further it should be understood that the word or word combinations may be spoken in any language. In step 252, the microphone 62 that is built-into the pump 12 records the user’s voice, including the word “deflate. ” In steps 254-256, the pump 12 uses an amplifier and an analog to digital converter 78 to convert the user’s voice into digital data. This data is then analyzed by the voice detection module 80. In step 258, the voice detection module 80 determines that the user spoke the word “deflate, ” which instructs the pump 12 to remove substantially all of the air from the bed 10.
The deflation process is described in steps 260-268. In particular, step 260 describes that the microcontroller 74 first changes the position of the channel selector 96 by sending a signal to the air channel drive circuit 82, which in turn powers the air channel motor 94. The air channel motor 94 moves the channel selector 96 to the second position, which allows the main pump 32 to deflate the bed 10. Once the channel selector 96 is in the second position, a signal is sent to the channel selector to turn off the pump 32. In step 262, the second switch 90 is activated by the moving the channel selector 96 into the second position and a signal is sent by the air channel positioning circuit 84 to the microcontroller 74. In response to receiving this signal, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71, which in turn supplies power to the main pump 32 in step 264. In step 266, the microcontroller 74 receives a signal from the pressure sensor 60 and determines that substantially all of the air has been removed from the main body 11. In response, the microcontroller 74 sends a signal through the relay drive circuit 72 to the main pump relay 71 to turn off the main pump 32. In step 268, the microcontroller 74 confirms that the main pump 32 is off and sends a signal to air channel drive circuit 82, which in turn powers the air channel motor 94. The air channel motor 94 moves the channel selector 96 from the second position to the third position, which prevents air from being pumped in or out of the main body 11. Finally, in  steps  270 and 272, the user unplugs the electrical input cord 64, folds the bed 10, and packs up the bed 10 by placing it in its  storage bag. It should be understood that some of these steps may by be combined with other steps or may not occur at all.
FIG. 7 shows a perspective view of an alternative embodiment of an inflatable bed 310 having an air pump 312. Specifically, the air pump 312 is coupled to the exterior wall 314 of the main body 311 of the inflatable bed 310. The air pump 312 can inflate the inflatable bed 310 by pumping air into the main body 311. The pump 312 can also deflate the bed 310 by pumping air out of the main body 311. Further, the pump 312 can measure the air pressure contained within the main body 311 to adjust the firmness of the bed 310. To control these features, a user can manually control the pump 312 by activating the switch 302. Alternatively, the user can control the pump 312 by using voice commands.
FIG. 8 shows a perspective view of the air pump 312 shown in FIG. 7. The air pump 312 has a front panel 318 that is coupled to a body 320 by at least four screws 322. The front panel 318 includes a first section 324 that covers the control circuity 330 and the main pump 332. The front panel also includes a second section 326 that covers the storage compartment for the electrical cord (not shown) . The first section 324 is coupled to the second section 326 by a hinge 328. The hinge 328 allows the user to disconnect the second section 326 from the body to retrieve the electrical cord.
The front panel 318 includes a switch 302, which allows the user to inflate or deflate the bed 310. Specifically, the user rotates the switch 302 clockwise to a right position or inflate position, which causes the pump 312 to inflate the main body 311. The switch 302 temporarily stays in this first position until the pump 312 determines that the main body 311has been inflated to a predetermined pressure level. Once this occurs, the switch 302 snaps back to the middle position or off position. To deflate the bed, the user rotates the switch 302 counterclockwise to a second position or deflate position. The switch 302 temporarily stays in this second position until the pump 312 determines that substantially all of the air has been removed from the main body 311. Once this occurs, the switch 302 snaps back to the middle position or off position.
The front panel 318 also includes the inflate/deflate port 338 that allows air to be either drawn into the pump 312 or exhaled by the pump 312. The inflate/deflate port 338 includes a concave cover to help ensure that objects are not sucked into the pump 312. The front panel 318 further includes a microphone opening 342 that receives an extent of a microphone  362 that is coupled to the control circuity 330. In particular, the microphone 362 is recessed from the front edge of the front panel 318, which helps protect the microphone 362.
FIG. 9 is a schematic of the control circuity 330 contained within the air pump 312 shown in FIGS. 7 and8. The control circuity 330 contains an electrical input 364, which can either be 110 volts AC or 220 volts AC. This received electrical power can be from a standard house outlet (e.g., NEMA 1-5, NEMA 5-15, NEMA 5-20) , received wireless from a wireless charger, or from any other known type of electrical input. A fuse 366 is placed between the electrical input 364 and any other circuit components within the control circuity 330. This will help to ensure that the electrical components within the control circuity 330 are not damaged if the electrical input 364 is subject to an overcurrent. After the fuse 366, the electrical input 364 is coupled to the main pump 332, and a switching mode power supply 368. The switching mode power supply 368 is directly connected to the relay drive circuit 372 and the microcontroller 374. Additionally, the switching mode power supply 368 provides DC power to the DC bus, which will be used to supply power to the rest of the control circuity 330. It should be understood that while pump 332 is capable of being powered by AC, in other embodiments, DC power may be used to power these pumps. For example, a battery may be used to power the pump 332. This alternative embodiment may be beneficial when the user desires to remove the bed away from an electrical input source and inflate the bed.
The microcontroller 374 receives input signals directly from the pressure sensor 360 and the air channel positioning switch 384. In particular, the pressure sensor 360 measures the air pressure contained within the bed 310 and provides these measurements to the microcontroller 374. The microcontroller 374 utilizes these measurements to determine whether the pump 312 should either pump air into the bed 310, pump air out of the bed 310, or be turned off. Additionally, the air channel positioning circuit 384 receives signals from the channel positioning switches 386 and provides this data to the microcontroller 374. Specifically, the channel position switches include a first switch 388, a second switch 390, and a third switch 392. Here, when the first switch 388 is activated, the air channel motor 394 positions the channel selector 396 (not shown) to the inflate position. Also, when the second switch 390 is activated, the air channel motor 394 positions the channel selector 396 to the deflate position. Finally, when the third switch 392 is activated, the air channel motor 394 positions the channel selector 396 to the stop position.
The microcontroller 374 receives input signals indirectly from both the switch 302 and the microphone 362. In particular, the switch 302 is indirectly coupled to the microcontroller 374 by the switch panel 376. The switch panel 376 senses which switch 302 is activated by the user and sends a signal to the microcontroller 374 in response to such activation. Also, the microphone 362 is indirectly coupled to the microcontroller 374 by an analog to digital converter 378 and a voice recognition module 380. Here, the microphone 362 records analog sounds. The analog sound is amplified and converted to digital data by the analog to digital converter 378. The digital data is than sent to the voice recognition module 380. The voice recognition module 380 utilizes methods like simple pattern matching, language modeling, statistical analysis, and/or artificial neural networks to analyze the digital data in order to determine the words that were spoken by the user. It should be understood that other methods of recognizing spoken words may be used.
The microcontroller 374 provides output signals directly to the relay drive circuit 372 and the air channel drive circuit 382. In particular, the microcontroller 372 controls the main pump 332 by sending signals to the pump relay 370 through the relay drive circuit 372. Additionally, the microcontroller 374 controls the position of the channel selector 396 by sending signals to the air channel motor 394 through the air channel drive circuit 382. Here, the air channel motor 394 moves the channel selector 396 to one of three positions to allow the bed 310 to be either: 1) inflated, 2) deflated, or 3) to stop the main pump 332 and hold the air pressure.
There is substantial overlap between the embodiments of the inflatable bed 10 and inflatable bed 310, which can be seen by comparing FIGS. 1-4 with FIGS. 7-9. The primary difference between these embodiments is the fact that the air pump 310 does not contain a secondary pump 33. Due to this overlap, the inflatable bed 310 that is shown in FIGS. 7-9 performs steps similar to those described in FIGS. 5 and 6. The only exception is that the inflatable bed 310 does not contain a secondary pump 33 and thus step 226 is not performed by inflatable bed 310.
FIG. 10 is an alternate embodiment of the control circuity 430 contained within the air pump 412. This alternate embodiment of an air pump 412 may be used instead of the air pump 12 shown in FIGS. 1-4 or the air pump shown in FIGS. 7-9. This alternative embodiment of an air pump 412 contains the same components as the components shown in FIGS. 7-9, except  for the fact that this air pump 412 does not contain any circuitry or features that allow for the user to manually control the air pump 412. In other words, this air pump 412 does not contain a switch 302 or switch panel 376, which in turn only allows the air pump 412 to be controlled by voice commands. Due to the substantial similarities between this air pump 412 and the other air pumps described herein, air pump 412 in combination with an inflatable bed performs steps similar to those described in FIGS. 5 and 6. The only exception is that the air pump 412 does not contain a secondary pump 33 and thus step 226 is not performed. It should be understood that additional steps may be performed or some steps may be skipped depending on the embodiment of the air pump. For example, air pump 412 may be modified to include a secondary pump, like the pump 33, which then may allow the air pump 412 in combination with the inflatable bed to perform all of the steps described within FIGS. 5 and 6.
FIG. 11 shows a perspective view of an inflatable bed 510 having an air pump 512. In addition, inflatable bed 510 has multiple sections that include: a main body 514, a comfort layer 516, and a back section 518. The air pump 512 may be the same as the air pump 12 described in FIGS. 1-4, the air pump 312 described in FIGS. 7-9, or air pump 412 described in FIG. 10. Regardless of whether air pump 512 is similar to  air pumps  12, 312, or 412, air pump 512 can be controlled by a user’s voice. In this embodiment, the user may use the command “inflate” to inflate all sections (e.g., main body 514, comfort layer 516, and a back section 518) of the bed to a predetermined pressure level. Additionally, the user may individually inflate or deflate specific sections of the inflatable bed 510 by stating the sections and telling the air pump 512 to either inflate or deflate. For example, the user may first inflate all sections of the inflatable bed 512 and then later desire to lay flat. To do this the user may speak “deflate back rest, ” which in turn causes the back rest to deflate and enables the user to lay flat. In an additional example, the user may desire to increase the firmness of the bed 512. In this situation the user may speak “increase firmness, ” which in turn causes the pump 512 to increase the pressure level within the comfort layer 516. It should be understood that other combinations of words or commands may be used to instruct the air pump 512 to inflate different sections of the bed 512. Additionally, other beds that have additional components (e.g., headboard, footrest, or etc. ) may be used in connection with pump 512.
FIG. 12 shows a perspective view of an inflatable bed 610 having an air pump 612. The air pump 612 may be similar to air pump 12 described in FIGS. 1-4, the air pump 312  described in FIGS. 7-9, or air pump 412 described in FIG. 10. Like  air pumps  12, 312, and 412, air pump 612 is voice-controlled. However, unlike  air pumps  12, 312, and 412, air pump 612 does not contain a microphone or any circuity associated with the microphone. Instead, air pump 612 includes a wireless module that allows the bed 612 to connect to a remote device through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) . This module allows the remote device (e.g., mobile phone 614 , Amazon Alexa Speaker 616, Google Home, etc. ) to receive the user’s voice commands, interpret these voice commands, and control the air pump 612 accordingly. For example, a user may own an Amazon TM Echo Dot 616. The user downloads an application from a server onto the Dot 616 to enable it to control the inflatable bed 610. Once downloaded to the Dot 616, the Dot 616 looks for the inflatable bed 610 to be connected to the Wi-Fi network that the Dot 616 is connected thereto. Once the inflatable bed 610 is connected to the Wi-Fi network, the Dot 616 recognizes the bed 610. The user can then inflate the bed by speaking the words “Alexa, inflate my bed. ” These words are received by the Dot 616, interpreted, and a signal is sent to the bed 610 through the Wi-Fi network. The bed 610 receives the signal and the air pump 612 inflates the main body 611 to a predetermined pressure level. Alternatively, the Dot 616 or the mobile phone 614 can connect directly to the bed 610 through a wireless protocol (e.g., Wi-Fi, cellular, Bluetooth, WiMAX, HomeRF, Z-Wave, Zigbee, THREAD, RFID, NFC, etc. ) . In this embodiment, the Dot 616 or phone 614 sends the signal to inflate or deflate the bed directly to the bed 610 instead of through the Wi-Fi network.
It should be understood that in each of the embodiments of  air pumps  12, 312, 412, 512, or 612, the pumps may require the user to speak a code or an introduction phrase prior to speaking the command (e.g., inflate or deflate) . For example, the user may be required to say the introduction phrase “Bestway” or “inflatable bed” prior to speaking the commands to the bed. This code or introduction phrase may help ensure that the bed is not accidently inflated or deflated. In an alternative embodiment, the user may be able to program or select a code or introduction phrase.
While the foregoing has described what is considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described  herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings. Other implementations are also contemplated.
INDUSTRIAL APPLICABILITY
The above disclosure may represent an improvement in the art because it provides for use of an inflatable apparatus according to conversion principles described hereinthroughout. Further, the convertible inflatable apparatus provides the user with improved comfort and satisfaction in addition to convenient manipulation of the inflatable apparatus from one shape to another. Still further, the disclosure improves the art by supplying an alternative construction for an inflatable recliner.
It is to be understood that all described elements and features in this disclosure can be formed of any number of materials including, but not limited to, polymers, rubbers, foams, ceramics, metals, metal alloys or any other material known to those skilled in the art. In particular, the material forming  inflatable bed  10, 310, 510 or 610 may be plastic, vinyl, coated fabric, and/or another suitable material or combination of materials. Valve (s) disposed on these components may be formed from extruded plastic, machined aluminum, another metal alloy, and/or another materials or combination of materials suitable for manufacturing valve (s) for inflatables.
While some implementations have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the disclosure; and the scope of protection is only limited by the scope of the accompanying claims.
Headings and subheadings, if any, are used for convenience only and do not limit the invention. The word exemplary is used to mean serving as an example or illustration. To the extent that the terms “include, ” “have, ” or “the like” are used, such terms are intended to be inclusive in a manner similar to the term “comprise, ” as “comprise” is interpreted when employed as a transitional word in a claim. Relational terms such as “first, ” “second” and “the like” may be used to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions.
Phrases such as an “aspect, ” “the aspect, ” “another aspect, ” “some aspects, ” “one or more aspects, ” “an implementation, ” “the implementation, ” “another implementation, ” “some implementations, ” “one or more implementations, ” “an embodiment, ” “the embodiment, ”  “another embodiment, ” “some embodiments, ” “one or more embodiments, ” “a configuration, ” “the configuration, ” “another configuration, ” “some configurations, ” “one or more configurations, ” “the subject technology, ” “the disclosure, ” “the present disclosure, ” “other variations thereof” and “alike” are for convenience and do not imply that a disclosure relating to such phrase (s) is essential to the subject technology or that such disclosure applies to all configurations of the subject technology. A disclosure relating to such phrase (s) may apply to all configurations, or one or more configurations. A disclosure relating to such phrase (s) may provide one or more examples. A phrase such as an aspect or some aspects may refer to one or more aspects and vice versa, and this applies similarly to other foregoing phrases.
The disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular implementations disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative implementations disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising, ” “containing, ” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed. In particular, every range of values (of the form, “from about a to about b, ” or, equivalently, “from approximately a to b, ” or, equivalently, “from approximately a tob” ) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an, ” as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one  or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
A phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list. The phrase “at least one of” does not require selection of at least one item; rather, the phrase allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, each of the phrases “at least one of A, B, and C” or “at least one of A, B, or C” refers to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
In one aspect, the term “coupled” or the like may refer to being directly coupled. In another aspect, the term “coupled” or the like may refer to being indirectly coupled. Terms such as “top, ” “bottom, ” “front, ” “rear, ” “side, ” “horizontal, ” “vertical, ” and the like refer to an arbitrary frame of reference, rather than to the ordinary gravitational frame of reference. Thus, such a term may extend upwardly, downwardly, diagonally, or horizontally in a gravitational frame of reference.
The title, background, brief description of the drawings, abstract, and drawings are hereby incorporated into the disclosure and are provided as illustrative examples of the disclosure, not as restrictive descriptions. It is submitted with the understanding that they will not be used to limit the scope or meaning of the claims. In addition, the detailed description provides illustrative examples and various features grouped together in various implementations for the purpose of streamlining the disclosure. The method of disclosure is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, as the claims reflect, inventive subject matter lies in less than all features of a single disclosed configuration or operation. The claims are hereby incorporated into the detailed description, with each claim standing on its own as a separately claimed subject matter.
The claims are not intended to be limited to the aspects described herein, but are to be accorded the full scope consistent with the language claims and to encompass all legal equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirements of the applicable patent law, nor should they be interpreted in such a way.
The use of the terms “a” and “an” and “the” and “said” and similar references in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. An element proceeded by “a, ” “an, ” “the, ” or “said” does not, without further constraints, preclude the existence of additional same elements. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as” ) provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.
Numerous modifications to the present disclosure will be apparent to those skilled in the art in view of the foregoing description. Preferred embodiments of this disclosure are described herein, including the best mode known to the inventors for carrying out the disclosure. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the disclosure.

Claims (15)

  1. A voice-controlled inflatable bed, comprising:
    a main body;
    an air pump coupled to an external wall of the main body, the air pump configured to inflate and deflate the main body, the air pump having:
    a main pump,
    a pressure sensor,
    an inflation/deflation port, and
    a microphone, said microphone is contained within the air pump and recessed from the front edge of the air pump; and
    wherein the microphone is configured to record words spoken by a user, said spoken words are analyzed by the air pump and in response the air pump either: inflates the main body, deflates the main body, or takes no action.
  2. The voice-controlled inflatable bed of claim 1, wherein the air pump can store predefined firmness setting, said predefined settings are configurable by the user via spoken words.
  3. The voice-controlled inflatable bed of claim 1, wherein the air pump can only be controlled via words spoken by the user.
  4. The voice-controlled inflatable bed of claim 1, wherein the inflatable bed further includes a comfort layer and a back rest, the pressure level of the comfort layer and back rest may be individually controlled via words spoken by the user.
  5. The voice-controlled inflatable bed of claim 1, further includes a secondary pump that maintains the pressure level in the bed.
  6. The voice-controlled inflatable bed of claim 5, wherein words spoken by the user controls only the main pump.
  7. The voice-controlled inflatable bed of claim 5, wherein the secondary pump is battery powered and the main pump is not battery powered.
  8. The voice-controlled inflatable bed of claim 1, wherein the air pump includes a first firmness selection button, said first firmness election button is configured to inflate the main body to a first predefined pressure level.
  9. The voice-controlled inflatable bed of claim 4, wherein the air pump includes a second firmness selection button, said second firmness election button is configured to inflate the main body to a second predefined pressure level, wherein the second predefined pressure level is greater than the first predefined pressure level.
  10. The voice-controlled inflatable bed of claim 5, wherein the air pump includes a third firmness selection button, said third firmness election button is configured to inflate the main body to a third predefined pressure level, wherein the third predefined pressure level is greater than both the first predefined pressure level and the second predefined pressure level.
  11. The voice-controlled inflatable bed of claim 1, further includes an electrical receptacle that is either: USB or NEMA-5-15 compatible.
  12. A voice-controlled inflatable bed, comprising:
    a main body;
    an air pump coupled to an external wall of the main body, the air pump configured to inflate and deflate the main body, the air pump having;
    a main pump,
    a pressure sensor,
    an inflation/deflation port, and
    a wireless module, said wireless module enables the air pump to connect to a wireless network;
    wherein the air pump is configured to receive commands from a remote device over the wireless network, said commands are determined by the remote device from words spoken by a user.
  13. The voice-controlled inflatable bed of claim 12, wherein the air pump can only be controlled via words spoken by the user.
  14. The voice-controlled inflatable bed of claim 12, further comprising a secondary pump, and wherein words spoken by the user controls only the main pump.
  15. The voice-controlled inflatable bed of claim 1, wherein the air pump includes a first firmness selection button, a second firmness selection button, and a third firmness selection button, wherein the first, second, and third firmness selection buttons alter the air pressure contained within the main body.
PCT/CN2018/074780 2018-01-31 2018-01-31 Voice-controlled inflatable bed WO2019148383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074780 WO2019148383A1 (en) 2018-01-31 2018-01-31 Voice-controlled inflatable bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074780 WO2019148383A1 (en) 2018-01-31 2018-01-31 Voice-controlled inflatable bed

Publications (1)

Publication Number Publication Date
WO2019148383A1 true WO2019148383A1 (en) 2019-08-08

Family

ID=67478011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074780 WO2019148383A1 (en) 2018-01-31 2018-01-31 Voice-controlled inflatable bed

Country Status (1)

Country Link
WO (1) WO2019148383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111870495A (en) * 2020-07-09 2020-11-03 深圳市睿泰天成健康科技有限公司 Body massage nursing system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803983A (en) * 2009-02-13 2010-08-18 上海电机学院 Intelligent overturning antidecubitus air mattress
CN202673616U (en) * 2012-06-07 2013-01-16 淳硕科技有限公司 Air pump with pressure value display function
US20140257571A1 (en) * 2013-03-11 2014-09-11 Select Comfort Corporation Switching means for an adjustable foundation system
US20140259418A1 (en) * 2013-03-14 2014-09-18 Rob Nunn Inflatable air mattress with light and voice controls
CN204744754U (en) * 2015-06-01 2015-11-11 于桦 Adjustable nursing position pad
CN205494337U (en) * 2016-03-04 2016-08-24 姜均 Vapour -pressure type back is supported and is massaged device
CN206630877U (en) * 2016-11-19 2017-11-14 东莞市海天磁业股份有限公司 Hand Acupoint magnetic massage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803983A (en) * 2009-02-13 2010-08-18 上海电机学院 Intelligent overturning antidecubitus air mattress
CN202673616U (en) * 2012-06-07 2013-01-16 淳硕科技有限公司 Air pump with pressure value display function
US20140257571A1 (en) * 2013-03-11 2014-09-11 Select Comfort Corporation Switching means for an adjustable foundation system
US20140259418A1 (en) * 2013-03-14 2014-09-18 Rob Nunn Inflatable air mattress with light and voice controls
CN204744754U (en) * 2015-06-01 2015-11-11 于桦 Adjustable nursing position pad
CN205494337U (en) * 2016-03-04 2016-08-24 姜均 Vapour -pressure type back is supported and is massaged device
CN206630877U (en) * 2016-11-19 2017-11-14 东莞市海天磁业股份有限公司 Hand Acupoint magnetic massage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111870495A (en) * 2020-07-09 2020-11-03 深圳市睿泰天成健康科技有限公司 Body massage nursing system and method

Similar Documents

Publication Publication Date Title
US20190328146A1 (en) Bed With Integrated Components and Features
US7020921B2 (en) Inflating/deflating device in combination with an inflatable mattress having multiple chambers
US11395542B2 (en) Smart desk and chair
EP1876931B1 (en) Reversible inflation system
US11162502B2 (en) Air pump control system and method
EP2967223B1 (en) Inflatable air mattress with light controls
US7346950B2 (en) Inflatable product provided with electric air pump
US20180199716A1 (en) Smart chair
WO2008034037A3 (en) Methods and systems of an adjustable bed
WO2019148383A1 (en) Voice-controlled inflatable bed
US20220395422A1 (en) Massage Chair Having a Sliding Armrest with Hand Stretching, Armrest Position Adjustment and Remote Software Update
US11668312B2 (en) Air pump for an inflatable body
WO2023129473A2 (en) Bed system with integrated dock for remote and reading light
WO2004100571A3 (en) Intensity control for massage devices
US20140319892A1 (en) Sofa provided with a sensor
EP3458659A1 (en) Pool with massage and audio playing capabilities
CN107928239A (en) Intelligent mattress
CN205106993U (en) Electronic music seat
CN112401555B (en) Voice control sofa
KR20170105933A (en) Method and floating apparatus of bed
CN207773205U (en) Zuo Dou mechanisms and children trolley
EP3808599B1 (en) Adjustable bed for a vehicle
CN204890530U (en) Massage cushion
US20100325807A1 (en) Air pumping device, air pumping method, and airbed assembly
KR20140023169A (en) Mike shaped remote control apparatus and processing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903990

Country of ref document: EP

Kind code of ref document: A1