WO2019148324A1 - 一种信息传输方法及设备 - Google Patents

一种信息传输方法及设备 Download PDF

Info

Publication number
WO2019148324A1
WO2019148324A1 PCT/CN2018/074580 CN2018074580W WO2019148324A1 WO 2019148324 A1 WO2019148324 A1 WO 2019148324A1 CN 2018074580 W CN2018074580 W CN 2018074580W WO 2019148324 A1 WO2019148324 A1 WO 2019148324A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
subframe
information
uplink
layer signaling
Prior art date
Application number
PCT/CN2018/074580
Other languages
English (en)
French (fr)
Inventor
苏立焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/074580 priority Critical patent/WO2019148324A1/zh
Priority to CN201880085889.4A priority patent/CN111566961B/zh
Priority to EP18903475.4A priority patent/EP3720021A4/en
Publication of WO2019148324A1 publication Critical patent/WO2019148324A1/zh
Priority to US16/941,983 priority patent/US20200359387A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method and device.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • the embodiment of the present application provides an information transmission method and device, which can implement feedback of channel information.
  • the embodiment of the present application provides an information transmission method, where the first device receives the first control information sent by the second device, and the first device sends a message indicating whether the first control information is correctly received. Receive status information.
  • the first device may return the receiving state information of the first control information to the second device, to indicate whether the first device correctly receives the first Control information.
  • the second device can not only send the first control information to the first device, but can receive the corresponding feedback information (ie, the receiving status information), regardless of whether the first control information is correctly received, so that the second device can receive the information according to the second device.
  • the status information determines whether to retransmit the first control information, which may improve the success rate of the first device correctly receiving the first control information.
  • the foregoing first control information may be carried in a transport block (TB), and the TB may further include downlink data.
  • the first control information is Upstream Channel Information (CI). That is to say, in the embodiment of the present application, the uplink CI and the downlink data may be bound together and carried in the TB, and transmitted on the PDSCH.
  • the first device may feed back the receiving status information of the uplink CI to the second device by multiplexing the receiving status information of the TB (ie, the HARQ information).
  • the HARQ information is an acknowledgment (ACK) for indicating that the uplink CI is correctly received, and the negative acknowledgment (ACK) is used to indicate that the uplink CI is not correctly received.
  • ACK acknowledgment
  • ACK negative acknowledgment
  • the first device may determine, according to the high layer signaling or the physical layer signaling or the predefined, the subframe in which the first control information (ie, the uplink CI) is initially transmitted.
  • the TB is scheduled by the second control information, and the second control information is Downlink Control Information (DCI), and the DCI further includes a hybrid automatic for indicating a subframe for retransmitting the first control information.
  • NDI New Data Indicator
  • the HARQ identifier is the same; and, compared with the NDI of the first TB (the first TB of the initial transmission or the retransmission) of the previous transmission
  • the NTI of the first TB (the first TB of the retransmission) that was transmitted later did not roll over. It can be understood that due to the limited number of HARQ identifiers, this limited HARQ identifier is periodically reused in the process of transmitting TB. Therefore, the HARQ identifiers of the two TBs are the same, and it does not mean that the two TBs are the same TB.
  • the NDIs of the two TBs will be flipped.
  • the NDI of a TB does not reverse: the NDI of the TB is not inverted from 0 to 0; or the NDI of the TB is not inverted from 0 to 1.
  • mod is the modulo operation symbol
  • K is the number of subframes included in one radio frame
  • NF is the radio frame number of the subframe
  • Index is the index number of the subframe.
  • the DCI further includes a Transport Block Size (TBS) of the TB transmitted on the PDSCH.
  • TBS Transport Block Size
  • the TBS is used to indicate the size of data (such as uplink CI+downlink data) included in the TB transmitted on the PDSCH; or the TBS is used to indicate the size of the downlink data included in the TB transmitted on the PDSCH.
  • the first device may further determine the size of the first control information (ie, the uplink CI) according to the high layer signaling or the physical layer signaling.
  • the first device may obtain the uplink CI and the downlink data according to the size of the uplink CI, and when the TBS is the size of the downlink data, the first device may calculate the uplink CI. The sum of the size and the TBS, and then decoding the TB according to the calculated value, and then obtaining the uplink CI and the downlink data from the TB according to the size of the uplink CI.
  • the foregoing first control information may be carried on a Physical Downlink Shared Channel (PDSCH), where the PDSCH further includes a TB, but the first control information is not Hosted on any TB.
  • the first control information may be an uplink CI.
  • the first device may feed back, to the network device, the receiving state information of the uplink CI that is carried in the PDSCH on the preset PUCCH resource that is used to transmit the receiving state information (ie, the HARQ information) of the uplink CI.
  • the first device may determine, according to physical layer signaling, a subframe that transmits the first control information, where the physical layer signaling further indicates that the first control information is initially transmitted. Control information or control information for retransmission.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving state information is HARQ information
  • the first control information is CI.
  • the first device is a network device
  • the second device is a terminal device
  • the first control information is Uplink Control Information (UCI).
  • UCI Uplink Control Information
  • the network device can perform the data transmission by scheduling the terminal device to feedback the receiving state information to the terminal device.
  • the network device can schedule the terminal device by using a physical hybrid automatic repeat indicator channel (PHICH) to implement the data.
  • PHICH physical hybrid automatic repeat indicator channel
  • the embodiment of the present application provides an information transmission method, where the second device sends first control information to a first device, and the second device receives reception state information sent by the first device, and receives status information. Indicates whether the first control information is correctly received.
  • the first device may return the receiving state information of the first control information to the second device, to indicate whether the first device correctly receives the information.
  • First control information the second device can not only send the first control information to the first device, but can receive the corresponding feedback information (ie, the receiving status information), regardless of whether the first control information is correctly received, so that the second device can receive the information according to the second device.
  • the status information determines whether to retransmit the first control information, which may improve the success rate of the first device correctly receiving the first control information.
  • the first control information is carried in the TB, and the TB further includes downlink data.
  • the second device may indicate, by using the high layer signaling or the physical layer signaling, a subframe that firstly transmits the first control information to the first device, and the second device passes the second control.
  • the information scheduling TB, the second control information is a DCI, and the DCI further includes a HARQ identifier and an NDI, where the HARQ identifier and the NDI are used to indicate a subframe for retransmitting the first control information.
  • the first control information is different.
  • % is a modulo operation symbol
  • NF is a radio frame number in which the subframe is located
  • K is a number of subframes included in one radio frame
  • Index is an index number of the subframe.
  • the second device may indicate, by using the high layer signaling, the size of the first control information to the first device.
  • the first control information is carried on the PDSCH, and the PDSCH further includes a transport block TB, and the first control information is not carried on any TB.
  • the second device indicates, by the physical layer signaling, a subframe that transmits the first control information and the transmission indication information, where the transmission indication information is used to indicate the first
  • a control information is control information that is initially transmitted or control information that is retransmitted.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving state information is HARQ information
  • the first control information is CI.
  • the first device is a network device
  • the second device is a terminal device
  • the first control information is Uplink Control Information (UCI).
  • UCI Uplink Control Information
  • the network device can perform the data transmission by scheduling the terminal device to feedback the receiving state information to the terminal device.
  • the network device can schedule the terminal device by using a physical hybrid automatic repeat indicator channel (PHICH) to implement the data.
  • PHICH physical hybrid automatic repeat indicator channel
  • the embodiment of the present application provides a device, where the device is a first device, and the first device is used to indicate the first aspect of the embodiment of the present application and a method of any possible design manner.
  • the device comprises: a receiving unit and a transmitting unit.
  • the receiving unit is configured to receive the first control information sent by the second device, and the sending unit is configured to send the receiving state information, where the receiving state information indicates whether the receiving unit correctly receives the first control information.
  • the receiving unit receives the first control information and is carried in the TB, where the TB further includes downlink data.
  • the foregoing apparatus further includes: a first determining unit. And a first determining unit, configured to determine, according to the high layer signaling or the physical layer signaling or the predefined, the subframe in which the first control information is initially transmitted.
  • the TB is scheduled by the second control information
  • the second control information is the downlink control information DCI
  • the DCI includes the HARQ identifier and the NDI
  • the HARQ identifier and the NDI are used to indicate the subframe in which the first control information is retransmitted.
  • the foregoing apparatus further includes: a second determining unit.
  • the second determining unit is configured to determine a size of the first control information according to the high layer signaling or the physical layer signaling.
  • the first control information received by the receiving unit is carried on the PDSCH, and the PDCCH is further included in the PDSCH, and the first control information is not carried on any TB.
  • the foregoing first determining unit is configured to determine, according to physical layer signaling, a subframe that transmits the first control information, and determine that the first control information is the initially transmitted control information. Or retransmitted control information.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving status information is HARQ information
  • the first control information is an uplink CI.
  • the embodiment of the present application provides a device, where the device is a second device, and the second device is used to indicate the second aspect of the embodiment of the present application and a method of any possible design manner.
  • the device comprises: a transmitting unit and a receiving unit.
  • the second device sends the first control information to the first device; the second device receives the receiving state information sent by the first device, and the received state information indicates whether the first control information is correctly received.
  • the foregoing first control information is carried in the TB, and the TB further includes downlink data.
  • the sending unit is further configured to: indicate, by using the high layer signaling or the physical layer signaling, a subframe that firstly transmits the first control information to the first device;
  • the information scheduling TB, the second control information is downlink control information DCI, and the DCI further includes a hybrid automatic repeat request HARQ identifier and a new data indication NDI, and the HARQ identifier and the NDI are used to indicate a subframe for retransmitting the first control information.
  • the first control information transmitted by the frame is different.
  • mod is the modulo operation symbol
  • NF is the radio frame number of the subframe
  • K is the number of subframes included in one radio frame
  • Index is the index number of the subframe.
  • the sending unit is further configured to indicate, by using the high layer signaling, the size of the first control information to the first device.
  • the foregoing first control information is carried on the PDSCH, and the PDSCH further includes a TB, and the first control information is not carried on any TB.
  • the sending unit is further configured to: according to the physical layer signaling, indicate, to the first device, a subframe for transmitting the first control information, and the transmission indication information, where the indication information is used for transmission.
  • the control information indicating that the first control information is the initial transmission or the retransmission control information.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving status information is HARQ information
  • the control information is an uplink CI.
  • an embodiment of the present application provides a device, where the device is a first device, where the device includes: a processor, a memory, and a communication interface; the memory and the communication interface are coupled to the processor, and the memory is configured to store the computer program code, the computer
  • the program code includes computer instructions
  • the memory includes a non-volatile storage medium.
  • the communication interface is configured to receive the first control information sent by the second device, send and receive the status information, and receive the status information to indicate the communication interface. Whether the first control information is correctly received.
  • the foregoing first control information is carried in the TB, and the TB further includes downlink data.
  • the communication interface is further configured to receive high layer signaling sent by the second device, and the processor is further configured to perform, according to the high layer signaling or the physical layer signaling or the predefined, A subframe in which the first control information is initially transmitted is determined.
  • the TB is scheduled by the second control information, and the second control information is DCI.
  • the DCI further includes a HARQ identifier and an NDI, where the HARQ identifier and the NDI are used to indicate that the subframe of the first control information is retransmitted.
  • the foregoing processor is specifically configured to determine a subframe offset T and a transmission period P according to the high layer signaling or the predefined, and determine to satisfy (K*NF+Index-
  • the wireless frame number, Index is the index number of the subframe.
  • the foregoing processor is further configured to determine a size of the first control information according to the high layer signaling or the physical layer signaling.
  • the foregoing first control information is carried on the PDSCH, and the PDCCH is further included in the PDSCH, and the first control information is not carried on any TB.
  • the foregoing processor is further configured to determine, according to physical layer signaling, a subframe that transmits the first control information, and determine that the first control information is the initial control information or Control information passed.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving state information is HARQ information
  • the first control information is an uplink CI.
  • an embodiment of the present application provides a device, where the device is a second device, where the device includes: a processor, a memory, and a communication interface; the memory and the communication interface are coupled to the processor, and the memory is configured to store the computer program code, the computer
  • the program code includes computer instructions
  • the memory includes a non-volatile storage medium.
  • the communication interface is configured to send the first control information to the first device, and receive the receiving status information sent by the first device, and receive the status. The information indicates whether the first control information is correctly received.
  • the foregoing first control information is carried in the TB, and the TB further includes downlink data.
  • the foregoing communication interface is further configured to send high layer signaling or physical layer signaling to the first device, where the high layer signaling or the physical layer signaling is used to indicate the first transmission.
  • a sub-frame of the control information the communication interface is further configured to send the second control information to the first device, the second control information is used to schedule the TB, the second control information is the DCI, and the DCI includes the HARQ identifier and the NDI, the HARQ identifier and The NDI is used to indicate a subframe in which the first control information is retransmitted.
  • the communication interface is further configured to indicate, by using the high layer signaling, the size of the first control information to the first device.
  • the foregoing first control information is carried on the PDSCH, and the PDSCH further includes a TB, and the first control information is not carried on any TB.
  • the communication interface is further configured to: indicate, according to physical layer signaling, a subframe that transmits the first control information and the transmission indication information to the first device, and use the communication indication information to transmit the indication information.
  • the control information indicating that the first control information is the initial transmission or the retransmission control information.
  • the first device is a terminal device
  • the second device is a network device
  • the receiving state information is HARQ information
  • the control information is uplink channel information CI.
  • an embodiment of the present application provides a computer storage medium, including a computer instruction, when the computer instruction is run on a device, causing the device to perform the first aspect, the second aspect, and any A possible way of designing the described method.
  • an embodiment of the present application provides a computer program product, when the computer program product is run on a computer, causing the computer to perform the first aspect, the second aspect, and any possible design manner thereof. The method described.
  • the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, and any possible design manners of the embodiments of the present application, and the technical effects brought by the seventh aspect and the eighth aspect can be referred to the foregoing first aspect.
  • the technical effects brought by different design methods are not described here.
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of hardware of a base station according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a hardware of a UE according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a method for a UE to feed back a UCI to a base station according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart 1 of an information transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram 1 of a principle of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a second flowchart of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram 1 of a principle of initial transmission and retransmission of a TB according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 2 of a principle of initial transmission and retransmission of a TB according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 3 of a principle of initial transmission and retransmission of a TB according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart 3 of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 4 of a principle of initial transmission and retransmission of a TB according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram 2 of a principle of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart 4 of an information transmission method according to an embodiment of the present application.
  • FIG. 15 is a flowchart 5 of an information transmission method according to an embodiment of the present disclosure.
  • 16 is a schematic diagram 1 of an initial transmission and retransmission principle of an uplink CI according to an embodiment of the present application;
  • FIG. 17 is a schematic diagram 2 of an initial transmission and retransmission principle of an uplink CI according to an embodiment of the present disclosure
  • FIG. 18 is a schematic structural diagram 1 of a device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram 2 of a device according to an embodiment of the present disclosure.
  • first and second and the like described in the embodiments of the present application are used to distinguish different objects, or to distinguish different processing of the same object, rather than to describe a specific order of the objects.
  • first TB and the second TB are different TBs.
  • An information transmission method provided by an embodiment of the present application may be applied to a process in which a second device feeds back first control information (such as an uplink CI) to a first device.
  • first control information such as an uplink CI
  • FIG. 1 is a simplified schematic diagram of a system architecture provided by an embodiment of the present application.
  • the system architecture includes a network device and one or more terminal devices. As shown in FIG. 1, the system architecture may include: a network device 11, a terminal device 12, and a terminal device 13.
  • the interaction between the network device 11 and the terminal device 12 is taken as an example to describe each device in the system architecture shown in FIG. 1 .
  • the network device 11 is configured to send the downlink control information (including the uplink CI) to the terminal device 12; the terminal device 12 is configured to receive the downlink control information sent by the network device 11, and feed back the downlink to the network device 11.
  • Control status information (such as HARQ information).
  • the terminal device 12 is configured to send uplink control information, such as UCI, to the network device 11; the network device 11 is configured to receive the UCI sent by the terminal device 12, and feed back the UCI receiving status information to the terminal device 12.
  • the receiving status information of the UCI is used to indicate whether the UCI is correctly received.
  • the network device 11 described above may specifically be a base station.
  • the base station may be a base station (BS) or a base station controller of wireless communication. It can also be called a wireless access point, a transceiver station, a relay station, a cell, a Transmit and Receive Port (TRP), and the like.
  • the network device 11 is a device deployed in the radio access network to provide a wireless communication function for the terminal device, and may be connected to the terminal device, and receive data sent by the terminal device and sent to the core network device.
  • the main functions of the network device 11 include one or more of the following functions: management of radio resources, compression of an Internet Protocol (IP) header, encryption of user data streams, selection of an MME when a user equipment is attached, and routing of a user plane.
  • Data to Service Gateway (SGW) organization and transmission of paging messages, organization and transmission of broadcast messages, configuration of measurement and measurement reports for mobility or scheduling, and the like.
  • Network device 11 may include various forms of cellular base stations, home base stations, cells, wireless transmission points, macro base stations, micro base stations, relay stations, wireless access points, and the like.
  • the name of the base station may be different, for example, in an LTE system, called an evolved base station (evolved NodeB, eNB or eNodeB), in the 3rd generation mobile communication technology ( In the third generation Telecommunication, 3G) system, called a base station (Node B), in the NR system, called gNB, CU, DU, etc., in a wireless local access system, called an access point (Access Point) .
  • This name may change as communication technologies evolve.
  • network device 11 may be other devices that provide wireless communication functionality for the terminal device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • Both the terminal device 12 and the terminal device 13 refer to a device that includes a wireless transceiver function and can cooperate with a network side device such as an access network device and/or a core network device to provide a communication service for the user.
  • Both the terminal device 12 and the terminal device 13 may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or a wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks or the Internet via a radio access network (eg, Radio Access Network, RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone), a computer.
  • RAN Radio Access Network
  • the data card for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, Subscriber Station (SS), Customer Premises Equipment (CPE), UE Wait.
  • SS User Agent
  • CPE Customer Premises Equipment
  • the terminal device may be a mobile phone, a tablet computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a netbook, a Personal Digital Assistant (PDA), or the like.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the terminal device 12 and the terminal device 13 included in the system architecture of the present application are all exemplified by a mobile phone.
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station may include at least one processor 21, a memory 22, a communication interface 23, and a bus 24.
  • the processor 21 is a control center of the base station, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors Digital Signal Processors, DSPs
  • FPGAs Field Programmable Gate Arrays
  • the processor 21 can perform various functions of the base station by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the base station can include multiple processors, such as processor 21 and processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 22 can exist independently and is coupled to the processor 21 via a bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is used to store a software program that executes the solution of the present application, and is controlled by the processor 21 for execution.
  • Communication interface 23 for communicating with other devices or communication networks. For example, it is used for communication with a communication network such as an Ethernet, a radio access network (RAN), or a wireless local area network (WLAN).
  • Communication interface 23 may include all or part of a baseband processor, and may also optionally include an RF processor.
  • the RF processor is used to transmit and receive RF signals
  • the baseband processor is used to implement processing of a baseband signal converted by an RF signal or a baseband signal to be converted into an RF signal.
  • the bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 3 is a schematic structural diagram of a UE according to an embodiment of the present disclosure. As shown in FIG. 3, the UE may include at least one processor 31, memory 32, communication interface 33, and bus 34.
  • the processor 31 can be a processor or a collective name for a plurality of processing elements.
  • processor 31 may be a general purpose CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the UE by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • processor 31 may include one or more CPUs.
  • the processor 31 includes a CPU 0 and a CPU 1.
  • the UE may include multiple processors.
  • a processor 31 and a processor 35 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • Memory 32 may be a ROM or other type of static storage device that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 32 may be present independently and coupled to processor 31 via bus 34. The memory 32 can also be integrated with the processor 31.
  • the communication interface 33 is used for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the communication interface 33 may include a receiving unit that implements a receiving function, and a transmitting unit that implements a transmitting function.
  • the bus 34 can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, a Global Position System (GPS) module, a display screen, and the like, and details are not described herein.
  • GPS Global Position System
  • Time unit in the time domain In the embodiment of the present application, the resources used by the network device and the terminal device to transmit the first control information (such as the uplink CI) may be divided into multiple time units in the time domain. Moreover, in the embodiment of the present application, the plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present application. In the embodiment of the present application, the length of one time unit can be arbitrarily set, and the embodiment of the present application is not particularly limited.
  • one time unit may include one or more subframes; or, one time unit may include one or more time slots; or, one time unit may include one or more mini time slots; or, one time The unit may include one or more symbols; or, one time unit may include one or more Transmission Time Intervals (TTIs); or, one time unit may include one or more short transmission time intervals (short) Transmission Time Interval, sTTI); or, one time unit may correspond to one time mode, such as a transmission time interval of 2 symbols or 3 symbols in the first time mode, and a transmission time interval of 7 symbols in the second mode.
  • the mini-slot includes one or more symbols, and the mini-slot is less than or equal to the time slot.
  • the time slot here may be a mini-slot in a system with a 60 kHz sub-carrier spacing, or may be a system with a 15 kHz sub-carrier spacing.
  • the mini time slot is not limited in the embodiment of the present application.
  • one time slot includes one or more symbols, where the time slot may be a time slot in a system with a 60 kHz subcarrier spacing, or a time slot in a system with a 15 kHz subcarrier spacing, which is not limited in this embodiment of the present application.
  • TTI is a commonly used parameter in current communication systems (for example, LTE systems), and refers to a scheduling unit that schedules data transmission in a wireless link.
  • 1 TTI 1 ms is generally considered. That is, one TTI is a subframe or the size of two slots, which is the basic unit of time governed by radio resource management (scheduling, etc.).
  • the scheduling interval of the physical layer with the most obvious impact on delay is getting smaller and smaller.
  • W-CDMA Wideband Code Division Multiple Access
  • the scheduling interval is 10ms.
  • HSPA High-Speed Packet Access
  • the scheduling interval is shortened to 2ms, and the time interval (ie, TTI) in the LTE system is shortened to 1ms.
  • the service requirement of the hour delay causes the physical layer to introduce a shorter TTI frame structure to further shorten the scheduling interval to improve the user experience.
  • the TTI length in an LTE system can be shortened from 1 ms to 1 symbol (symbol) to 1 slot (including 7 symbols).
  • the symbols mentioned above may be Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols in an LTE system, and may also be Is a symbol in other communication systems.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the length of the transmission unit in the 5G communication system is also less than or equal to 1 ms.
  • the Round-Trip Time (RTT) of the data transmission is generally 8 ms. It is assumed that the processing time is proportionally reduced compared to the scheduling of an existing TTI of 1 ms in length, that is, the existing RTT delay is still followed. Then, in the data transmission based on the sTTI of 0.5 ms in length, the RTT of the data transmission is 4 ms, and the delay can be shortened by half relative to the data transmission based on the TTI of 1 ms in length, thereby improving the user experience.
  • a TTI having a length of less than 1 ms may be referred to as an sTTI.
  • the length of the sTTI may be any one of 1-7 symbols, or the sTTI length may be a combination of at least 2 different lengths of 1-7 symbols, for example, 6 sTTIs in 1 ms.
  • Each sTTI length may be 3 symbols, 2 symbols, 2 symbols, 2 symbols, 2 symbols, 3 symbols, or 4 sTTIs in 1 ms, and each sTTI length may be 3 symbols, respectively. 4 symbols, 3 symbols, 4 symbols, each sTTI length can also be a combination of other different lengths.
  • the length of the sTTI of the uplink may be the same as the length of the sTTI of the downlink.
  • the length of the uplink sTTI and the length of the downlink sTTI are both two symbols.
  • the length of the uplink sTTI may be longer than the length of the downlink sTTI.
  • the length of the uplink sTTI is 7.
  • the length of the sTTI is 2 symbols.
  • the length of the sTTI of the uplink may be shorter than the length of the sTTI of the downlink.
  • the length of the uplink sTTI is 4 symbols, and the length of the downlink sTTI is 1 subframe.
  • a packet whose TTI length is less than 1 subframe or 1 ms is called a short TTI packet.
  • Short TTI data transmission is in the frequency domain and can be continuously distributed or non-continuously distributed. It should be noted that, considering backward compatibility, there may be cases in which data transmission based on TTI with a length of 1 ms and data transmission based on sTTI may exist at the same time.
  • the TTI and the sTTI specified by the LTE system may be collectively referred to as the TTI, and in the embodiment of the present application, the length of the TTI may be changed according to actual needs. .
  • time unit enumerated above is only an exemplary description, and the embodiment of the present application is not particularly limited, and the structure of the time unit may be arbitrarily changed according to actual needs, for example, for not supporting sTTI (2 symbols, or For an LTE system of three symbols, or seven symbols, or one slot, one time unit may be one subframe.
  • 1 time unit may include 1 sTTI, or 1 time unit.
  • One slot may be included, and one time unit may include one or more (for example, a positive integer of less than 7 or a positive integer of less than 6) symbols; one time unit may also be 1 subframe.
  • the length of the time unit for information transmission may be 1 ms or less than 1 ms.
  • the time The length of the downlink information transmission in the unit may be 1 ms or less than 1 ms.
  • the length of the uplink information transmission in the time unit may be 1 ms or less than 1 ms.
  • a time unit includes one sTTI and one sTTI includes two symbols is taken as an example, and the transmission process of the reference signal in the embodiment of the present application is described in detail.
  • the resources used by the network device and the terminal device for transmitting information may be divided into multiple time segments in the time domain, and each time segment includes one or more time units.
  • a time period may be 1 ms or 10 ms.
  • one time period may include, for example, 6 time units or 2 time units.
  • (2) HARQ technology combines Forward Error Correction (EFC) technology and Automatic Repeat Request (ARQ) technology.
  • EFC Forward Error Correction
  • ARQ Automatic Repeat Request
  • the EFC technology can increase the credibility of the communication; however, in the one-way communication channel (such as the FDD system of LTE), when the receiving end receives the data packet sent by the transmitting end, if the receiving end detects an uncorrectable error, The receiving end cannot request the transmitting end to retransmit the data packet.
  • the receiving end can request the transmitting end to retransmit the data packet through the ARQ mechanism.
  • the receiving end may detect whether the received data packet is in error through a Cyclic Redundancy Check (CRC) check; if the data packet is not in error, the receiving end returns an ACK of the data packet to the transmitting end; If the data packet is in error, the receiving end sends a NACK of the data packet to the transmitting end; after receiving the NACK of the data packet, the receiving end retransmits the data packet to the receiving end.
  • CRC Cyclic Redundancy Check
  • the downlink data transmission is taken as an example.
  • the UE (ie, the receiving end) receives the TB transmitted by the base station (ie, the transmitting end) through the PDSCH. If the UE correctly receives the TB, the UE performs the HARQ-ACK feedback status on the uplink as ACK (That is, the UE feeds back the ACK of the TB to the base station; if the UE does not correctly receive the TB, the state of the UE performing HARQ-ACK feedback on the uplink is NACK (ie, the UE feeds back the NACK of the TB to the base station). If the base station receives the NACK fed back by the UE, the base station retransmits the TB to the base station, so that the UE can perform HARQ combining on the retransmitted TB and the TB that is not correctly received.
  • the ACK feedback, the NACK feedback, and the HARQ retransmission in the LTE system are all in units of TB.
  • Coding Block In order to improve the efficiency of the compiled code and reduce the complexity of the compiled code, the above one TB can be divided into multiple CBs for channel coding and decoding.
  • the maximum number of bits of the Turbo code CB is 6144. If the number of bits of a TB is higher than 6144, the TB can be split into multiple CB codecs.
  • the number of bits of the maximum CB of the Low Density Parity Check Code (LDPC) is about 2000. It is assumed that the number of bits of the maximum CB of the LDPC is 2000. If the number of bits of one TB is higher than 2000, the TB can be split into multiple CB codecs.
  • LDPC Low Density Parity Check Code
  • each CB has an independent check function.
  • each CB adds a CB CRC before encoding; thus, the UE can determine whether the CB is correctly decoded by using a CRC check.
  • each CB adds a CB CRC or an LPDC encoding matrix before encoding to have a check function.
  • each CB of the LDPC can also have a verification function.
  • the UE can determine whether the TB or CB is correctly transmitted by checking whether the PDCCH is transmitted by the eNB or the CB obtained by splitting the TB.
  • the downlink data transmission in the LTE system is based on Orthogonal Frequency Division Multiplexing Access (OFDMA), and the uplink data transmission is based on single carrier frequency division multiple access (Single) -carrier Frequency-Division Multiple Access, SC-FDMA). Therefore, in the data transmission process of the LTE system, the time-frequency resources are divided into OFDMA symbols or SC-FDMA symbols (hereinafter referred to as time domain symbols, abbreviated symbols) in the time domain dimension and subcarriers in the frequency domain dimension.
  • the smallest resource granularity is an RE, that is, one RE represents a time domain symbol in the time domain and a time-frequency lattice point composed of one subcarrier in the frequency domain.
  • the CSI includes Channel Quality Information (CQI), Precoding Matrix Indication (PMI), and Rank Indication (RI).
  • CQI Channel Quality Information
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • the first device is a terminal device (such as a UE), and the second device is a network device (such as a base station).
  • the base station can feed back uplink channel information to the UE through a Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the accuracy of the CSI of the channel becomes higher and higher, and the amount of information of the uplink channel information that the base station needs to feed back to the UE is also increasing, that is, the load that needs to be carried on the PDCCH. Larger, there may be a problem that the PDCCH cannot carry uplink channel information.
  • the UE may carry the UCI on the Physical Uplink Shared Channel (PUSCH) and indicate the UCI to the base station.
  • PUSCH Physical Uplink Shared Channel
  • the shortcoming of this solution is that the UCI carried on the PUSCH has no error feedback capability, that is, after receiving the UCI, the base station cannot report the error to the UE even if the UCI error is found.
  • the UCI transmission scheme when the base station indicates the uplink channel information to the UE, there may be a problem that the UE cannot report the error to the base station if the uplink channel information is transmitted incorrectly, and the base station indicates the success rate of the uplink channel information to the UE. low.
  • the foregoing scheme that the UE indicates the UCI through the PUSCH to the base station may be combined with an error feedback mechanism (such as the HARQ mechanism of the PDSCH) to provide a
  • an error feedback mechanism such as the HARQ mechanism of the PDSCH
  • the scheme in which the base station indicates the uplink CI to the UE through the PDSCH (that is, an information transmission method provided by the embodiment of the present application), in which the UE may apply the scheme that the UE indicates the UCI through the PUSCH to the base station, and based on the above error feedback mechanism. Feedback on receiving status information.
  • the foregoing embodiment of the present application introduces the foregoing “the UE indicates the UCI through the PUSCH to the base station”:
  • the UE There is a 1-bit information field in the uplink grant (UL Grant) of the base station for the UE to feed back CSI.
  • the DCI includes ACK/NACK (ie, HARQ-ACK), CQI, PMI, and RI;
  • the UE may multiplex the DCI with the uplink data and transmit the data to the base station in the foregoing subframe of the PUSCH.
  • the DCI and the uplink data may be multiplexed by rate matching and puncturing. Specifically, “uplink data (UL-SCH)”, “CQI, PMI”, and “RI” are multiplexed by rate matching, and the HARQ-ACK is punched in the manner of punching with the first three ( Uplink data, CQI/PMI and PI).
  • the UE may separately encode “UL-SCH”, “CQI, PMI”, “RI”, and “HARQ-ACK”.
  • UL-SCH uses Turto coding
  • CQI and PMI use Conv. coding
  • RI and HARQ-ACK use block coding.
  • the UE can perform rate matching (Rate Matching) and modulation on the encoded "UL-SCH", “CQI, PMI”, and “RI”, and then "UL-SCH", "CQI, PMI”, and “RI” through Mux. "Multiple together.
  • the modulation mode of UL-SCH is Quadrature Phase Shift Keyin (QPSK) or 16/64 Quadrature Amplitude Modulation (QAM), and the modulation mode of CQI and PMI is QPSK or 6/. 64QAM, the modulation mode of RI is QPSK.
  • the UE may combine the encoded HARQ-ACK with the above-mentioned "UL-SCH", "CQI, PMI” and "RI” after Mux by means of Punct.
  • DFTS Fourier Transform Spectroscopy
  • OFDM Orthogonal Frequency Division Multiplexing
  • the difference between the rate matching and the puncturing is introduced in the embodiment of the present application:
  • rate matching is that the original data transmission performance can be guaranteed when the transmission resource has to be divided into a part of the other.
  • the disadvantage of rate matching is that rate matching requires the information of the transmitting and receiving parties to be strictly symmetrical. Based on the above example, if the base station does not know that 10 REs in the PUSCH carry the CQI, and it is assumed that 100 REs are all UL-SCH, the uplink data cannot be correctly demodulated.
  • the base station can ensure the reliability of the data after rate matching through scheduling. That is, since the base station knows in advance that the uplink transmission of the UE may cause the actual code rate to rise due to rate matching, the UE may be configured with a lower code rate at the time of scheduling, so that even if the rate is improved because the rate matching is improved, Within the correct transmission range.
  • the embodiment of the present application provides an information transmission method. As shown in FIG. 5, the information transmission method includes S501-S506:
  • the second device sends the first control information to the first device.
  • the second device is a network device (such as a base station), the first device is a terminal device (such as a UE), and the first control information is downlink control information, where the first control is performed.
  • the information includes the uplink CI.
  • the second device is a terminal device
  • the first device is a network device
  • the first control information is uplink control information
  • the first control information may be scheduled by the DCI in either the first application scenario or the second application scenario.
  • the first control information is carried on a downlink data channel (such as a PDSCH).
  • the first control information is carried on an uplink data channel (such as a PUSCH).
  • the first device receives the first control information sent by the second device.
  • the terminal device may receive the first control information that is sent by the network device (ie, the second device) and is carried on the PDSCH.
  • the network device may receive the first control information that is sent by the terminal device (ie, the second device) and is carried on the PUSCH.
  • the first device sends, to the second device, the receiving state information of the first control information, where the receiving state information indicates whether the first control information is correctly received.
  • the receiving status information sent by the terminal device (ie, the first device) to the network device (ie, the second device) may be HARQ information, and the HARQ information is ACK or NACK.
  • the HARQ information is ACK
  • the first control information (uplink CI) is correctly received
  • the HARQ information is NACK
  • the first control information (uplink CI) is not correctly received.
  • the network device sends the receiving status information to the terminal device (ie, the second device), which is implemented by scheduling the terminal device.
  • the network device may schedule the terminal device to send other data.
  • the network device may send scheduling information of other data to the terminal device, to schedule the terminal device to send the other data.
  • the network device may schedule the continuation of the terminal device to send the first control information.
  • the network device may resend the scheduling information of the first control information to the terminal device to schedule the terminal device.
  • the first control information is resent.
  • the network device ie, the first device sends the receiving state information of the first control information to the terminal device (ie, the second device), and may automatically retransmit the indication channel by using physical hybridization.
  • physical hybridization Physical Hybrid ARQ Indicator Channel, PHICH
  • the data transmitted by the MAC layer of the second device to its physical layer is in units of a transport block (TB), and the PHICH may be used to respond to HARQ information (such as ACK or NACK) for data transmitted by the PUSCH.
  • HARQ information such as ACK or NACK
  • the second device receives the receiving state information of the first control information sent by the first device.
  • the second device may determine whether the first control information is correctly received after receiving the receiving state information of the first control information sent by the first device.
  • the second device retransmits the first control information to the first device.
  • the second device sends the new first control information to the first device.
  • the information transmission method provided by the embodiment of the present application, after the second device sends the first control information to the first device, the first device may return the receiving state information of the first control information to the second device, to indicate whether the first device correctly receives First control information.
  • the second device can not only send the first control information to the first device, but can receive the corresponding feedback information (ie, the receiving status information), regardless of whether the first control information is correctly received, so that the second device can receive the information according to the second device.
  • the status information determines whether to retransmit the first control information, which may improve the success rate of the first device correctly receiving the first control information.
  • the second device is a network device (such as a base station), the first device is a terminal device (such as a UE), and the first control information is an uplink CI, and the foregoing information transmission method is applied to
  • the process of the network device feeding back the uplink CI to the terminal device is used as an example to describe the information transmission method provided by the embodiment of the present application:
  • the network device may carry the uplink CI in the TB and transmit the data to the terminal device, where the TB further includes downlink data.
  • the network device can bind the downlink data and the uplink CI together, and then perform coding (such as Turto coding) and modulation to transmit to the terminal device.
  • the network device may periodically transmit a new TB to the terminal device, and retransmit the TB according to the HARQ information fed back by the terminal device.
  • an information transmission method provided by an embodiment of the present application includes S701-S709:
  • the network device indicates, by using the high layer signaling, the subframe of the initial uplink CI to the terminal device.
  • the “subframe of the initial uplink CI” refers to the subframe that carries the uplink CI of the initial transmission (that is, the first transmission).
  • NF is the radio frame number of the subframe
  • Index is the index number of the subframe.
  • the modulo operation symbol may also be represented by using % instead of mod.
  • the network device can transmit different uplink CIs in subframe a, subframe b, subframe c, and subframe d, respectively.
  • the network device may initially transmit TB-1 including uplink CI-1 to the terminal device in subframe a, and initially transmit TB-2 including uplink CI-2 to the terminal device in subframe b.
  • the subframe c initially transmits the TB-3 including the uplink CI-3 to the terminal device, and first transmits the TB-4 including the uplink CI-4 to the terminal device in the subframe d.
  • the uplink CI that is initially transmitted on each subframe is different.
  • the uplink CI-1 initially transmitted on the subframe a, the uplink CI-2 initially transmitted on the subframe b, the uplink CI-3 initially transmitted on the subframe c, and the subframe d are the initial uplink CI-4. They are all different.
  • the downlink data included in the initial TB on each subframe is also different.
  • the downlink data included in TB-1, the downlink data 2 included in TB-2, the downlink data 3 included in TB-3, and the downlink data 4 included in TB-4 are all different.
  • the radio frame numbers of the sub-frame a, the sub-frame b, the sub-frame c, and the sub-frame d may be the same or different, which is not limited in this embodiment of the present application.
  • the terminal device determines, according to the high layer signaling, a subframe of the initial uplink CI.
  • the terminal device may determine, according to the indication of the high layer signaling, multiple subframes carrying the uplink CI. For example, as shown in FIG. 8, the terminal device may determine, according to the indication of the foregoing high layer signaling, that the subframe a subframe b, the subframe c, and the subframe d are the subframes of the initial uplink CI.
  • the network device indicates the subframe of the initial uplink CI to the terminal device through the high-layer signaling, and the network device can be instructed to indicate the initial uplink to the terminal device.
  • the success rate of the CI subframe is much higher than that of the physical layer signaling.
  • the subframe of the initial uplink CI may be predefined in the network device and the terminal device, and the network device does not need to indicate the subframe of the initial uplink CI to the terminal device. That is, the foregoing S701-S702 is optional, and the network device may first transmit the TB including the uplink CI to the terminal device in the subframe of the pre-defined initial uplink CI; the terminal device may also be in the predefined initial uplink CI sub-subs The frame receives the TB of the uplink CI that is initially transmitted by the terminal device.
  • the network device sends a first DCI to the terminal device, where the first DCI is used to schedule the first TB, and the first DCI further includes a HARQ identifier and an NDI.
  • the first DCI is carried in the PDCCH.
  • the HARQ identity and NDI in the first DCI can be used to uniquely identify the first TB.
  • the HARQ identifiers of the two TBs are the same, and it does not mean that the two TBs are the same TB. And, if two different TBs are configured with the same HARQ identifier, the NDIs of the two TBs will be flipped. In the embodiment of the present application, the NDI of a TB does not reverse: the NDI of the TB is not inverted from 0 to 0; or the NDI of the TB is not inverted from 0 to 1.
  • the HARQ identifier and the NDI in the first DCI can be used to uniquely identify the first TB. Whether it is the first TB of the initial transmission or the first TB of the retransmission, the HARQ identity is the same; and, compared with the NDI of the first TB (the first TB of the initial transmission or the retransmission) of the previous transmission, The NTI of the first TB (retransmitted first TB) of one transmission does not roll over.
  • the first TB includes the first downlink data and the first uplink CI
  • the second TB includes the second downlink data and the second uplink CI.
  • the first downlink data is different from the second downlink data; therefore, the first TB is different from the second TB. Therefore, the HARQ identifier of the first TB is different from the HARQ identifier of the second TB; or the HARQ identifier of the first TB is the same as the HARQ identifier of the second TB, but the HARQ is transmitted between the first TB and the second TB.
  • the corresponding NDI of the identifier has been flipped. Conversely, for a TB including the same data, such as the first TB of the initial transmission and the first TB of the retransmission, the HARQ identity and the NDI are the same.
  • the network device first transmits the first TB to the terminal device in the first initial transmission subframe, where the first TB includes the first uplink CI and the first downlink data.
  • the terminal device receives the first DCI sent by the network device.
  • the terminal device may receive the first DCI sent by the network device on the PDCCH.
  • the terminal device may read the HARQ identifier and the NDI of the first TB included in the first DCI, so that when the second DCI of the first TB for scheduling retransmission is received, the HARQ identifier and the second DCI may be used according to the The NDI identifies that the first TB of the retransmission is the same TB as the first TB scheduled by the first DCI.
  • the terminal device receives the first TB sent by the network device in the first initial transmission subframe.
  • the terminal device determines a plurality of subframes for the initial uplink CI including the first initial transmission subframe. Then, the terminal device can demodulate the data transmitted by the PDSCH in the first initial transmission subframe to obtain the first TB.
  • the terminal device acquires the first uplink CI and the first downlink data from the first TB.
  • the terminal device may obtain the first uplink CI and the first downlink data from the first TB according to the size of the data included in the first TB, such as the uplink CI+downlink data.
  • the first DCI further includes a transport block size (TBS) of the TB transmitted on the PDSCH, where the TBS is used to indicate data included in the TB transmitted on the PDSCH ( The size of the above CI + downlink data).
  • TBS transport block size
  • the terminal device may decode the first TB according to the TBS indicated by the first DCI; and then according to the size and TBS of the first uplink CI indicated by the network device by using high layer signaling or physical layer signaling, Calculating a size of the first downlink data (the size of the first downlink data is equal to the size of the TBS minus the first uplink CI); finally, according to the size of the first uplink CI and the size of the first downlink data, from the first TB Obtaining the first uplink CI and the first downlink data.
  • the first DCI further includes a transport block size (TBS) transmitted on the PDSCH, where the TBS is used to indicate that the TB included in the PDSCH is included in the TB.
  • TBS transport block size
  • the network device may indicate, by using the high layer signaling or the physical layer signaling, the size of the uplink CI to the terminal device; the terminal device may use the size of the uplink CI indicated by the high layer signaling or the physical layer signaling, and the foregoing TBS. And summing, obtaining the size of the data included in the first TB; and then acquiring the first uplink CI and the first downlink data from the first TB according to the size of the data included in the first TB.
  • the terminal device may correctly receive the first TB mentioned above, or may not receive the first TB correctly. Regardless of whether the terminal device correctly receives the first TB, the terminal device feeds back the first HARQ information to the network device, where the first HARQ information indicates whether the first TB is correctly received.
  • the method in the embodiment of the present application may further include S708:
  • the terminal device sends the first HARQ information to the network device, where the first HARQ information indicates whether the first TB is correctly received.
  • the network device receives the first HARQ information sent by the terminal device.
  • the first HARQ information is a NACK, and the network device retransmits the first TB to the terminal device; when the first TB is correctly received, the first HARQ information is an ACK, and the network device may Start transmitting new upstream CIs.
  • the first TB is correctly received means that the terminal device correctly receives the first TB from the PDSCH.
  • the first TB is not correctly received means that the terminal device does not correctly receive the first TB.
  • the first HARQ information is ACK, which is used to indicate that the first TB is correctly received; when the first HARQ information is 1, the first HARQ information is NACK, Indicates that the first TB was not received correctly.
  • the network device may retransmit the subframe of the first TB by using physical layer signaling, when the first TB of the initial transmission is not correctly received. . Specifically, the network device may indicate to the terminal device to retransmit the subframe of the first TB by using the HARQ ID and the NDI included in the DCI in the physical layer signaling. Specifically, the method in this embodiment of the present application further includes S801-S803:
  • the network device sends a second DCI to the terminal device, where the second DCI is used to schedule the first TB of the retransmission, and the second DCI further includes the HARQ identifier and the NDI.
  • the first DCI is the first TB for scheduling the initial transmission
  • the second DCI is the first TB for scheduling the retransmission
  • the first TB of the initial transmission and the first TB of the retransmission are included
  • the data is the same (such as the first uplink CI and the first downlink data in the first TB of the initial transmission and the first downlink TB in the retransmission); therefore, the HARQ identifier included in the second DCI and the HARQ identifier included in the first DCI the same.
  • the HARQ identifier included in the second DCI and the HARQ identifier included in the first DCI are both Y.
  • the first TB of the initial transmission and the retransmitted first TB of the NDI do not flip.
  • the NDI included in the first DCI is 1; the NDI included in the second DCI is also 1.
  • the network device retransmits the first TB to the terminal device.
  • the network device can retransmit the first TB in any subframe when receiving the NACK of the first TB.
  • the terminal device receives the second DCI sent by the network device, determines to retransmit the subframe of the first TB, and receives the first TB of the retransmission in the determining subframe.
  • the terminal device can determine The TB scheduled by the second DCI is the first TB of the retransmission. Thereby, the terminal device can determine to retransmit the subframe of the first TB according to the second DCI.
  • the retransmitted first TB may be received in the subframe of the retransmission of the first TB, and then the retransmitted data is received (eg, the retransmitted).
  • the first downlink data of an uplink CI and retransmission is combined and demodulated with the first TB of the initial transmission or retransmission that was not correctly received. In this way, the reliability of uplink CI and downlink data demodulation can be improved.
  • the network device feeds back the initial CI of the uplink CI to the terminal device by 40 milliseconds (ms), and one radio frame includes 10 subframes of 1 ms, so the initial transmission period of 40 ms is the initial transmission of four radio frames. cycle.
  • the network device only transmits the new uplink CI to the terminal device every 4 radio frames in the Xth subframe in the radio frame.
  • the terminal device further includes a HARQ identifier in the DCI received in the X subframe of the radio frame, and the HARQ identifier indicates that the HARQ ID corresponding to the downlink data included in the TB transmitted in the current transmission is Y, and the user obtains the HARQ identifier by using the HARQ identifier.
  • the uplink CI of the current transmission will be bound to the downlink data with the HARQ identifier Y, that is, the uplink CI will always be bound and transmitted with the downlink data with the HARQ identifier Y, until both are correctly received.
  • the network device sends a second TB to the terminal device in the second initial transmission subframe, where the second TB includes the second uplink CI and the second downlink data, and the second initial transmission
  • the frame is the next initial transmission subframe of the first initial transmission subframe.
  • the second uplink CI in the embodiment of the present application is different from the first uplink CI, and the second downlink data is different from the first downlink data.
  • the network device after the network device first transmits the first TB in an initial transmission subframe (the first initial transmission subframe), if the next initial transmission subframe (such as the second initial transmission subframe) Before the arrival, if the HARQ information is received as NACK, the first TB can be retransmitted. That is, if the terminal device receives the NACK of the first TB between the first initial transmission subframe and the second initial transmission subframe, the first TB may be retransmitted. For example, as shown in FIG. 8, the network device may retransmit TB-1 between subframe a and subframe b, and retransmit TB-2 between subframe b and subframe c, in subframe c and subframe.
  • Retransmit TB-3 between d As shown in FIG. 9, if a NACK of TB-1 is received between subframe a and subframe b, the network device can retransmit TB-1 in subframe x. As shown in FIG. 10, if a NACK of TB-1 is received between subframe a and subframe b, the network device can retransmit TB-1 in subframe x and TB-1 in subframe y. If the terminal device receives the ACK of the first TB between the first initial transmission subframe and the second initial transmission subframe, the second TB may be initially transmitted in the second initial transmission subframe. For example, as shown in FIG. 9, if an ACK of TB-1 is received between subframe a and subframe b, the network device may first transmit TB-2 in subframe b.
  • the network device may stop retransmitting the first TB, but transmit a second TB including the second uplink CI (ie, the new uplink CI). For example, as shown in FIG.
  • the network device may not retransmit the TB-1; however, if the subframe is in the subframe Between b and subframe c, the network device receives the NACK of TB-2 sent by the terminal device, and the network device can retransmit TB-2 in subframe z.
  • the terminal device may feed back the second HARQ information to the network device, where the second HARQ information indicates whether the second TB is correctly received.
  • the method for the network device to transmit the second TB to the terminal device is similar to the method for the network device to transmit the first TB to the terminal device, and the method for the terminal device to feed back the second HARQ information to the network device and the terminal device to the network
  • the method for transmitting the second HARQ information by the device is similar, and details are not described herein again.
  • the network device may transmit the uplink CI to the terminal device in the TB transmitted in the PDSCH, and the terminal device may feed back to the network device to indicate the TB according to the HARQ mechanism of the PDSCH. Whether the uplink CI carried in the TB is correctly received HARQ information. In this way, the network device can retransmit the TB carrying the uplink CI when the HARQ information is NACK, and can improve the success rate of the uplink CI by the network device to the terminal device.
  • the implementation of the first application scenario (2) is different from the implementation of the first application scenario (1).
  • the network device sends (initial transmission and retransmission) uplink CI to the terminal device aperiodically.
  • an information transmission method provided by an embodiment of the present application includes S1101-S1105:
  • the network device sends a first DCI to the terminal device, where the first DCI is used to schedule the first TB, and the first DCI further includes a HARQ identifier and an NDI, where the first DCI is further used to indicate that the first subframe is The first subframe of the first uplink CI is transmitted.
  • the first uplink CI and the first downlink data are carried in the first TB.
  • the first DCI is carried in the PDCCH.
  • the HARQ identity and NDI in the first DCI can be used to uniquely identify the first TB.
  • the network device may indicate whether the first subframe in which the first TB is transmitted is a subframe in which the CI is initially transmitted by adding a special bit in the first DCI. For example, when the special bit is 1, it indicates that the corresponding subframe is a subframe for initial transmission of CI, and when the special bit is 0, it indicates that the corresponding subframe is not a subframe for initial transmission of CI.
  • the network device first transmits the first TB to the terminal device in the first subframe, where the first TB includes the first uplink CI and the first downlink data.
  • the network device may immediately transmit the current uplink CI to the terminal device when the change of the uplink CI exceeds a preset threshold. For example, when the network device determines that the change of the uplink CI exceeds the preset threshold, the S1101 may be sent to the terminal device to send a first DCI for scheduling the current uplink CI (ie, the first uplink CI), and then the first uplink CI and the first The downlink data (that is, the downlink data to be transmitted) is bundled and carried in the first TB to be transmitted to the terminal device.
  • a preset threshold For example, when the network device determines that the change of the uplink CI exceeds the preset threshold, the S1101 may be sent to the terminal device to send a first DCI for scheduling the current uplink CI (ie, the first uplink CI), and then the first uplink CI and the first The downlink data (that is, the downlink data to be transmitted) is bundled and carried in the first TB to be transmitted to the terminal device.
  • S1103 The terminal device receives the first DCI sent by the network device.
  • the terminal device may determine, according to the indication of the first DCI, that the first subframe is a subframe that initially transmits the first uplink CI, and then perform S1104 to receive the first TB sent by the network device in the first subframe. Moreover, the terminal device may further determine, according to the HARQ identifier included in the first DCI, a block number of the first downlink data carried in the first TB.
  • S1104 The terminal device receives the first TB sent by the network device in the first subframe.
  • the terminal device may receive the first TB sent by the network device in the first subframe indicated by the first DCI according to the scheduling of the first DCI.
  • the terminal device acquires the first uplink CI and the first downlink data from the first TB.
  • the first DCI may further include a TBS of the TB transmitted on the PDSCH, and the terminal device may acquire the first uplink CI and the first downlink data from the first TB according to the TBS indicated by the first DCI.
  • the TBS in the embodiment of the present application and the method for the terminal device to obtain the first uplink CI and the first downlink data from the first TB according to the TBS, may refer to the related description in the foregoing implementation manner (1).
  • the embodiments of the present application are not described herein again.
  • the terminal device may correctly receive the first TB mentioned above, or may not receive the first TB correctly. Regardless of whether the terminal device correctly receives the first TB, the terminal device feeds back the first HARQ information to the network device, where the first HARQ information indicates whether the first TB is correctly received.
  • the method in this embodiment may further include S1106:
  • the terminal device sends the first HARQ information to the network device, where the first HARQ information indicates whether the first TB is correctly received.
  • the network device receives the first HARQ information sent by the terminal device.
  • the first HARQ information is a NACK, and the network device retransmits the first TB to the terminal device; when the first TB is correctly received, the first HARQ information is an ACK, and the network device may Start transmitting new upstream CIs.
  • the subframe in which the initial transmission of the CI is transmitted and the subframe in which the uplink CI is retransmitted are all passed by the network device through the physical layer signaling. Instructed. Specifically, the network device may indicate, by adding a special bit in the first DCI, whether the first subframe in which the first TB is transmitted is a subframe in which the CI is initially transmitted; the network device may include the DCI included in the physical layer signaling. The HARQ ID and the NDI indicate to the terminal device to retransmit the subframe of the first TB. Specifically, the method in the embodiment of the present application further includes S1201-S1204:
  • the network device determines that the first HARQ information is a NACK.
  • the network device sends a second DCI to the terminal device, where the second DCI is used to schedule the first TB of the retransmission, and the second DCI further includes the HARQ identifier and the NDI.
  • S1203 The network device retransmits the first TB to the terminal device.
  • the terminal device receives the second DCI sent by the network device, determines to retransmit the subframe of the first TB, and receives the first TB of the retransmission in the determining subframe.
  • the network device determines that the first HARQ information is an ACK, and the network device stops retransmitting the first TB.
  • the network device first transmits the second TB to the terminal device in the second subframe when the change of the uplink CI exceeds the preset threshold, and the second TB includes the second uplink CI and the second downlink data.
  • the second subframe is a subframe that the network device can use to transmit downlink data when the network device determines that the change of the uplink CI exceeds a preset threshold.
  • the second uplink CI is an uplink CI acquired by the network device when the change of the uplink CI exceeds a preset threshold.
  • the second uplink CI in the embodiment of the present application is different from the first uplink CI, and the second downlink data is different from the first downlink data.
  • the network device initiates the second TB to the terminal device when the uplink CI changes exceed the preset threshold, regardless of whether the network device receives the ACK of the first uplink CI.
  • sequence of S1301 and S1302 is not limited, and S1301 may be executed first, and then S1302 may be executed. S1302 may be executed first, and then S1301 is executed.
  • sequence of the execution of the S1302 and the S1103-S1107 is not limited, and the S1103-S1107 may be executed first, and then the S1302 may be executed; or the S1302 may be executed first, and then the S1103-S1107 is executed. limit.
  • the network device may retransmit the first One TB. For example, as shown in FIG. 12, after the initial transmission of TB-1 in subframe a, before the initial transmission of TB-2 in subframe b, if the NACK of TB-1 is received, the network device can retransmit TB-1. For example, the network device retransmits TB-1 in subframe x.
  • the network device may transmit the uplink CI to the terminal device in the TB transmitted in the PDSCH, and the terminal device may feed back to the network device to indicate the TB according to the HARQ mechanism of the PDSCH. Whether the uplink CI carried in the TB is correctly received HARQ information. In this way, the network device can retransmit the TB carrying the uplink CI when the HARQ information is NACK, and can improve the success rate of the uplink CI by the network device to the terminal device.
  • the network device may be configured to carry the uplink CI on the physical downlink shared channel PDSCH, where the PDSCH further includes the TB; however, the first application scenario
  • the difference between the implementation (1) and the implementation (2) is that the uplink CI is not carried on any TB.
  • the network device may separately encode downlink data and uplink CI (such as Turto coding), perform rate matching and modulation on downlink data and uplink CI, and then perform modulated downlink data and uplink.
  • CI mix (Mux) to send.
  • the network device may refer to the specific description of the rate matching manner shown in FIG. 4 in the embodiment of the present application. .
  • the network device transmits (initial transmission and retransmission) uplink CI to the terminal device aperiodically.
  • an information transmission method provided by an embodiment of the present application includes S1401-S1406:
  • the network device sends a first DCI to the terminal device, where the first DCI is used to schedule the first uplink CI, the first uplink CI is not carried in any TB, and the first DCI is further used to indicate that the first DCI is used for the transmission.
  • the first subframe of the uplink CI, the first DCI is further used to indicate that the first uplink CI is an initial uplink CI.
  • the implementation manner (3) of the first application scenario of the embodiment of the present application is the same as the implementation manner (1).
  • the physical layer signaling ie, DCI
  • information that additionally carries two bits is needed, and one bit is used to indicate that The subframe of the uplink CI is transmitted, and the other bit is used to indicate that the uplink CI is the initial uplink CI or the retransmitted uplink CI.
  • physical layer signaling ie, DCI
  • the network device first transmits the first uplink CI to the terminal device in the first subframe.
  • the terminal device receives the first DCI sent by the network device.
  • the terminal device may determine, according to the indication of the first DCI, that the first subframe is a subframe in which the first uplink CI is initially transmitted, and then perform, by using S1404, the first uplink CI sent by the network device in the first subframe. Moreover, the terminal device may further determine, according to the indication of the first DCI, that the first uplink CI transmitted on the first subframe is the initial uplink CI.
  • the terminal device receives the first uplink CI sent by the network device in the first subframe.
  • the terminal device may receive the first uplink CI sent by the network device in the first subframe indicated by the first DCI according to the scheduling of the first DCI.
  • the terminal device may correctly receive the first uplink CI mentioned above, or may not correctly receive the first uplink CI. Regardless of whether the terminal device correctly receives the first uplink CI, the terminal device feeds back the first HARQ information to the network device, where the first HARQ information indicates whether the first uplink CI is correctly received.
  • the method in this embodiment may further include S1405:
  • the terminal device sends the first HARQ information to the network device, where the first HARQ information indicates whether the first uplink CI is correctly received.
  • the terminal device may feed back the HARQ information of the uplink CI that is carried in the PDSCH to the network device on the preset PUCCH resource that is used for transmitting the uplink CI's HARQ information.
  • the frequency at which the network device sends the uplink CI to the terminal device is low; therefore, in order to reduce the occupation of the PUCCH resource by the HARQ information of the uplink CI, the multiple terminal devices may multiplex one of the preset PUCCH resources.
  • the scheme in which the terminal device feeds back the HARQ information of the uplink CI to the network device on the dedicated PUCCH resource is limited to use when the data is transmitted by using a single codeword.
  • the existing PUCCH format 1a supports 1-bit HARQ information feedback
  • the PUCCH format 1b supports 2-bit HARQ information feedback.
  • the PUCCH format 1a and the PUCCH format 1b respectively correspond to a scenario of one codeword transmission and two codeword transmissions.
  • the terminal device may transmit the HARQ information of the uplink CI by using another bit remaining in the PUCCH format 1b.
  • the terminal device can use the HARQ Bundling (also known as HARQ-ACK Bundling or ACK/NACK Bundling) technology to combine the two HARQ information into one.
  • the HARQ Bundling technology is adopted to cope with the problem of limited uplink coverage. That is, since the terminal device does not have the ability to feed back 2-bit information; therefore, the HARQ Bundling technique can only feed back 1-bit information. In this case, the HARQ information of the uplink CI can only participate in the Bundling, but cannot exist as a single bit.
  • the terminal device may perform Bundling on the HARQ information of the uplink CI and the HARQ information of the TB transmitted on the PDSCH.
  • the network device receives the first HARQ information sent by the terminal device.
  • the network device determines that the first HARQ information is a NACK.
  • the network device may execute S1408-S1410 when determining that the first HARQ information is NACK:
  • the network device sends a second DCI to the terminal device, where the second DCI is used to schedule a retransmitted first uplink CI, where the second DCI is further used to indicate a second subframe used for retransmitting the first uplink CI, where The second DCI is further configured to indicate that the first uplink CI is a retransmitted uplink CI.
  • S1409 The network device retransmits the first uplink CI to the terminal device in the second subframe.
  • the retransmitted first uplink CI is also carried on the PDSCH, but is not carried in any TB.
  • the terminal device receives the second DCI sent by the network device, determines to retransmit the subframe of the first uplink CI, and receives the retransmitted first uplink CI in the determined subframe.
  • the network device determines that the first HARQ information is an ACK, and stops retransmitting the first TB.
  • the network device may execute S1412 when determining that the first HARQ information is ACK:
  • the network device first transmits the second uplink CI to the terminal device in the second subframe when the change of the uplink CI exceeds the preset threshold, and the second uplink CI is carried on the PDSCH but is not carried in any TB.
  • the second subframe is a subframe that the network device can use to transmit downlink data when the network device determines that the change of the uplink CI exceeds a preset threshold.
  • the second uplink CI is an uplink CI acquired by the network device when the change of the uplink CI exceeds a preset threshold.
  • the second uplink CI in the embodiment of the present application is different from the first uplink CI.
  • the network device initiates the second uplink CI to the terminal device when the uplink CI changes exceed the preset threshold, regardless of whether the network device receives the ACK of the first uplink CI.
  • sequence of the execution of S1411 and S1412 is not limited, and S1411 may be executed first, and then S1412 may be executed. S1412 may be executed first, and then S1411 is executed.
  • the network device may transmit the uplink CI to the terminal device by using the PDSCH, and the terminal device may feed back to the network device on the preset dedicated PUCCH resource based on the HARQ mechanism of the PDSCH. Indicates whether the uplink CI is correctly received HARQ information. In this way, the network device can retransmit the uplink CI on the PDSCH when the HARQ information is NACK, which can improve the success rate of the network device indicating the uplink CI to the terminal device.
  • an information transmission method provided by an embodiment of the present application includes S1501-S1506:
  • the network device indicates, by using the high layer signaling, the subframe that first transmits the uplink CI and the subframe that retransmits the uplink CI.
  • the “subframe of the initial uplink CI” refers to the subframe that carries the uplink CI of the initial transmission (that is, the first transmission).
  • mod is the modulo operation symbol
  • NF is the radio frame number of the subframe
  • Index is the index number of the subframe.
  • the “retransmitting the uplink CI subframe” refers to the subframe carrying the retransmitted uplink CI.
  • % is a modulo operation symbol
  • NF is a radio frame number in which the subframe is located
  • Index is an index number of the subframe.
  • the periodic initial transmission in the embodiment of the present application means that, in order to adapt to the change of the uplink CI, the network device first transmits a new uplink CI to the terminal device every time interval (such as M subframes).
  • time interval such as M subframes.
  • the time interval between the subframe a for initial transmission of the uplink CI-1 and the subframe b for the initial transmission of the uplink CI-2 is L1, which is used for initial transmission of the uplink CI-2.
  • the time between the subframe b and the subframe c used for the initial transmission of the uplink CI-3 is also L1.
  • the periodic retransmission in the embodiment of the present application refers to: after initializing an uplink CI, retransmitting the uplink CI to the terminal device every time interval (such as N subframes) until the subframe of the new uplink CI is initially transmitted. Arrived or received an ACK.
  • the network device may retransmit the uplink CI-1 in the subframe 1 that is spaced apart from the subframe a by L2, and is separated from the subframe 1 by the L2 sub-frame.
  • Frame 2 retransmits the uplink CI-1, and retransmits the uplink CI-1 in subframe 3 separated from subframe 2 by L2.
  • the network device may be in the subframe a, Subframe b and subframe c respectively transmit different uplink CIs.
  • the uplink CI initially transmitted on each subframe of the initial uplink CI is different.
  • the uplink CI-1 initially transmitted on the subframe a, the uplink CI-2 initially transmitted on the subframe b, and the uplink CI-3 initially transmitted on the subframe c are different.
  • the network device can be in subframe 1, subframe 2, and subframe.
  • the 3rd subframe retransmits the uplink CI-1, and the uplink CI-2 is retransmitted in subframes such as subframe 4 and subframe 5.
  • the network device after the network device first transmits a new uplink CI, it will not retransmit the previous uplink CI.
  • the network device when the network device first transmits the uplink CI-2 in the subframe b, it will carry the uplink CI-1.
  • the network device After subframe b or subframe b, even if the network device receives the NACK of the uplink CI-1, the network device does not retransmit the uplink CI-1. Moreover, after receiving the ACK of an uplink CI, the network device does not retransmit the uplink CI even if the period of retransmitting the uplink CI arrives. For example, as shown in FIG. 17, the network device first transmits the uplink CI-1 in the subframe a, and retransmits the uplink CI-1 in the subframe 1 and the subframe 2 according to the retransmission period, and receives the uplink CI-1 sent by the terminal device. The ACK, then retransmitting the uplink CI-1 subframe (including subframe 3), the network device will not retransmit the uplink CI-1.
  • the terminal device determines, according to the high layer signaling, a subframe that initially transmits the uplink CI and a subframe that retransmits the uplink CI.
  • the offset T2 and the retransmission transmission period P2 and the condition that the retransmission subframe of the uplink CI satisfies (K*NF+Index-T2) mod(P2) 0, and determines that the (K*NF+Index-T2) mod is satisfied.
  • the network device indicates to the terminal device that the subframe of the initial CI is retransmitted and retransmitted by using the high-layer signaling, so that the network device can be instructed to indicate to the terminal device.
  • the subframe of the initial uplink CI and the subframe of the retransmitted uplink CI may also be predefined in the network device and the terminal device, without requiring the network device to indicate to the terminal device. That is, the above S701-S702 is optional.
  • the subframe in which the first uplink CI is initially transmitted is the first initial transmission subframe
  • the subframe in which the first uplink CI is retransmitted is the first retransmission subframe
  • the subframe in which the second uplink CI is initially transmitted is the second initial transmission subframe
  • the method of retransmission of the second uplink CI is the second retransmission subframe, and the method in this embodiment is described.
  • the network device first transmits the first uplink CI to the terminal device in the first initial transmission subframe.
  • the network device sends a DCI for scheduling the first uplink CI that is initially transmitted before the first uplink CI is transmitted to the terminal device.
  • the terminal device receives, in the first initial transmission subframe, a first uplink CI that is initially transmitted by the network device.
  • the terminal device may correctly receive the foregoing first uplink CI, or may not correctly receive the first uplink CI. Regardless of whether the terminal device correctly receives the first uplink CI, the terminal device feeds back the first HARQ information to the network device, where the first HARQ information indicates whether the first uplink CI is correctly received.
  • the method in this embodiment may further include S1505:
  • the terminal device sends the first HARQ information to the network device, where the first HARQ information indicates whether the first uplink CI is correctly received.
  • the specific method for the terminal device to feed back the first HARQ information to the network device may refer to the detailed description in S1405, and details are not described herein again.
  • S1506 The network device receives the first HARQ information sent by the terminal device.
  • the first HARQ information is NACK, and the network device retransmits the first uplink CI to the terminal device; when the first uplink CI is correctly received, the first HARQ information is ACK, the network The device may start to stop retransmitting the first uplink CI, and initially transmit the second uplink CI in the second initial transmission subframe.
  • the network device sends a DCI of the first uplink CI for scheduling retransmission to the terminal device before retransmitting the first uplink CI to the terminal device.
  • the network device stops retransmitting the first uplink CI, and first transmits the second uplink CI to the terminal device in the second initial transmission subframe.
  • the network device sends a DCI for scheduling the first uplink CI to be transmitted to the terminal device before the second uplink CI is transmitted to the terminal device.
  • the network device may transmit the uplink CI to the terminal device by using the PDSCH, and the terminal device may feed back to the network device on the preset dedicated PUCCH resource based on the HARQ mechanism of the PDSCH. Indicates whether the uplink CI is correctly received HARQ information.
  • the network device may periodically transmit a new uplink CI to the terminal device on the PDSCH, periodically retransmit the uplink CI to the terminal device, and stop retransmitting the uplink CI when the HARQ information is ACK, thereby improving the network device direction.
  • the terminal device indicates the success rate of the uplink CI.
  • first control information such as an uplink CI
  • one time unit includes one or more subframes, network devices, and The terminal device transmits the first control information in each subframe as an example, and the method in the embodiment of the present application is described, and the resources used by the network device and the terminal device for transmitting the first control information are not divided in the time domain.
  • the length of each time unit can be set to only one or more subframes.
  • the network device and the terminal device are used to transmit the resources of the first control information, and the length of each time unit may be arbitrarily set. limited.
  • time unit in the embodiment of the present application reference may be made to the detailed description of the term “time unit in the time domain” in the embodiment of the present application, and details are not described herein again.
  • the first device and the second device and the like described above include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the embodiments of the present application.
  • the embodiments of the present application may perform the division of the function modules on the terminal, the server, and the like according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the embodiment of the present application provides a device 1800, which includes: a receiving unit 1801 and a sending unit 1802.
  • the device 1800 is the first device in the foregoing method embodiment, and each unit module in the device 1800 is introduced:
  • the receiving unit 1801 is configured to support the device 1800 to perform S502, S705, S706, S803, S1103, S1104, S1204, S1403, S1404, S1410, S1504, and/or other processes for the techniques described herein in the foregoing method embodiments.
  • the transmitting unit 1802 is configured to support the device 1800 to perform S503, S701, S708, S1106, S1405, S1505 in the above method embodiments, and/or other processes for the techniques described herein.
  • the foregoing device 1800 may further include: a first determining unit and a second determining unit.
  • the first determining unit is configured to support the device 1800 to perform S702, S1502 in the above method embodiments, and/or other processes for the techniques described herein.
  • the second determining unit is for supporting device 1800 to determine the size of the uplink CI, and/or other processes for the techniques described herein.
  • the foregoing device 1800 may further include: an acquiring unit.
  • the acquisition unit is used to support the device 1800 to perform S707, S1105, and/or other processes for the techniques described herein in the above method embodiments.
  • the above device 1800 includes, but is not limited to, the unit modules listed above.
  • the device 1800 can also include a storage unit for storing first control information.
  • the specific functions that can be implemented by the foregoing functional units include, but are not limited to, the functions corresponding to the method steps described in the foregoing examples.
  • the foregoing functional units include, but are not limited to, the functions corresponding to the method steps described in the foregoing examples.
  • the first determining unit, the second determining unit, the obtaining unit, and the like may be integrated into one processing module, and the receiving unit 1801 and the transmitting unit 1802 may be RF circuits of the first device, and the foregoing storage
  • the unit may be a storage module of the first device.
  • Fig. 19 is a view showing a possible structural diagram of the apparatus involved in the above embodiment.
  • the device 1900 includes a processing module 1901, a storage module 1902, and a communication module 1903.
  • the processing module 1901 is configured to perform control management on the device 1900.
  • the storage module 1902 is configured to save program code and data of the device 1900.
  • the communication module 1903 is for communicating with other devices. For example, the communication module is used to receive or send data to other devices.
  • the processing module 1901 may be a processor or a controller, and may be, for example, a CPU, a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and field programmable. Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1903 may be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1902 can be a memory.
  • the processing module 1901 is a processor (such as the processor 31 and the processor 35 shown in FIG. 3)
  • the communication module 1904 is an RF circuit (such as the communication interface 33 shown in FIG. 3)
  • the storage module 1902 is a memory (FIG. 3).
  • the device provided by the present application may be the UE shown in FIG. Wherein, the above processor, communication interface and memory can be coupled together by a bus.
  • the device 1800 is the second device in the foregoing method embodiment, and each unit module in the device 1800 is introduced:
  • the receiving unit 1801 is configured to support the device 1800 to perform S504, S709, S1107, S1406, S1506, and/or other processes for the techniques described herein in the foregoing method embodiments; the sending unit 1802 is configured to support the device 1800 to perform the foregoing method.
  • S501, S505, S506, S701, S703, S704, S801, S802, S901, S1101, S1102, S1202, S1203, S1302, S1401, S1402, S1408, S1409, S1412, S1501, S1503, S1507, S1508 The operation of "initial transmission of the second uplink CI", and/or other processes for the techniques described herein.
  • the above device 1800 may further include a determining unit.
  • the determining unit is configured to support the apparatus 1800 to perform S1201, S1301, S1407, S1411, and/or other processes for the techniques described herein in the above method embodiments.
  • the above device 1800 includes, but is not limited to, the unit modules listed above.
  • the device 1800 can also include a storage unit for storing first control information.
  • the specific functions that can be implemented by the foregoing functional units include, but are not limited to, the functions corresponding to the method steps described in the foregoing examples.
  • the foregoing functional units include, but are not limited to, the functions corresponding to the method steps described in the foregoing examples.
  • the above determining unit may be implemented in a processing module, and the receiving unit 1801 and the transmitting unit 1802 may be RF circuits of the second device, and the storage unit may be a storage module of the second device.
  • the second device can be the device 1900 shown in FIG.
  • the processing module 1901 is a processor (such as the processor 21 and the processor 25 shown in FIG. 2)
  • the communication module 1904 is an RF circuit (such as the communication interface 23 shown in FIG. 2)
  • the storage module 1902 is a memory (FIG. 2).
  • the device provided by the present application may be the base station shown in FIG. 2.
  • the above processor, communication interface and memory can be coupled together by a bus.
  • the embodiment of the present application further provides a computer storage medium, where the computer program code is stored, and when the processor executes the computer program code, the device executes FIG. 5, FIG. 7, FIG. 11, FIG. 14 and FIG.
  • the method steps in any of the Figures 15 implement the method of the above embodiments.
  • the embodiment of the present application further provides a computer program product, when the computer program product is run on a computer, causing the computer to execute the related method in any one of FIG. 5, FIG. 7, FIG. 11, FIG. 14 and FIG.
  • the steps implement the method in the above embodiments.
  • the device 1800, the device 1900, the computer storage medium or the computer program product provided by the present application are all used to perform the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can be referred to the corresponding ones provided above. The beneficial effects in the method are not described here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法及设备,涉及通信技术领域,可以实现信道信息的反馈,并提供信道信息的反馈成功率。具体方案包括:第一设备接收第二设备发送的第一控制信息;第一设备向第二设备发送用于指示第一控制信息是否正确接收的接收状态信息。

Description

一种信息传输方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法及设备。
背景技术
长期演进(Long Term Evolution,LTE)的(Frequency Division Duplex,FDD)系统中,上行数据和下行数据在不同的载波传输。其中,不同载波上的信道不同,也就是说,基站与UE通信的上行信道与下行信道不同。因此,除非基站反馈,否则UE无法获知其上行信道信息;除非UE反馈,否则基站无法获知其下行信道信息。因此,一种实现信道信息反馈的方案亟待被提出。
发明内容
本申请实施例提供一种信息传输方法及设备,可以实现信道信息的反馈。
第一方面,本申请实施例提供一种信息传输方法,该信息传输方法包括:第一设备接收第二设备发送的第一控制信息;该第一设备发送指示所述第一控制信息是否正确接收的接收状态信息。
本申请实施例提供的信息传输方法,第一设备接收第二设备发送的第一控制信息后,可以向第二设备返回第一控制信息的接收状态信息,以指示第一设备是否正确接收第一控制信息。如此,第二设备不仅可以向第一设备发送第一控制信息,无论第一控制信息是否被正确接收,都可以接收到相应的反馈信息(即接收状态信息),以便于第二设备可以根据接收状态信息确定是否重传第一控制信息,可以提高第一设备正确接收第一控制信息的成功率。
在第一方面的一种可能的设计方式中,上述第一控制信息可以承载于传输块(Transport Block,TB)中,该TB中还可以包括下行数据。在这种设计方式中,该第一控制信息是上行信道信息(Channel Information,CI)。也就是说,本申请实施例中,可以将上行CI与下行数据绑定在一起承载于TB中,在PDSCH上传输。在这种设计方式中,第一设备可以通过复用TB的接收状态信息(即HARQ信息),向第二设备反馈上行CI的接收状态信息。其中,HARQ信息为确认(Acknowledgement,ACK)用于指示上行CI正确接收;HARQ信息为否定确认(Negative Acknowledgement,ACK)用于指示上行CI未正确接收。
在第一方面的另一种可能的设计方式中,第一设备可以根据高层信令或物理层信令或预定义,确定初传第一控制信息(即上行CI)的子帧。其中,上述TB是由第二控制信息调度的,该第二控制信息为下行控制信息(Downlink Control Information,DCI),该DCI中还包括用于指示重传第一控制信息的子帧的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)标识和新数据指示(New Data Indicator,NDI)。
其中,无论是初传的第一TB还是重传的第一TB,其HARQ标识是相同的;并且,与前一次传输的第一TB(初传或者重传的第一TB)的NDI相比,后一次传输的第一 TB(重传的第一TB)的NDI未发生翻转。可以理解,由于HARQ标识的个数有限,因此这有限的HARQ标识在传输TB的过程中是被周期性重复利用的。因此,两个TB的HARQ标识相同,并不能代表这两个TB是同一个TB。并且,如果不同的两个TB被配置相同的HARQ标识,那么这两个TB的NDI则会发生翻转。本申请实施例中,一个TB的NDI未发生翻转是指:该TB的NDI没有由1翻转为0;或者,该TB的NDI没有由0翻转为1。
在第一方面的另一种可能的设计方式中,第一设备可以根据高层信令的指示确定子帧偏移量T和传输周期P,或者子帧偏移量T和传输周期P可以是预定义的;然后,确定满足(K*NF+Index-T)mod(P)=0的子帧为初传上述第一控制信息的子帧。其中,mod为取模运算符号,K为一个无线帧中包含的子帧个数,NF为子帧所在的无线帧号,Index为子帧的索引号。
在第一方面的另一种可能的设计方式中,上述DCI中还包括PDSCH上传输的TB的传输块大小(Transport Block Size,TBS)。该TBS用于指示PDSCH上传输的TB中包括的数据(如上行CI+下行数据)的大小;或者,该TBS用于指示PDSCH上传输的TB中包括的下行数据的大小。在这种设计方式中,第一设备还可以根据高层信令或物理层信令,确定第一控制信息(即上行CI)的大小。如此,当TBS是上行CI和下行数据的大小时,第一设备可以根据上行CI的大小,从TB中获取上行CI和下行数据;当TBS是下行数据的大小时,第一设备可以计算上行CI的大小与TBS之和,然后根据计算得到的值译码TB,再根据上行CI的大小,从TB中获取上行CI和下行数据。
在第一方面的另一种可能的设计方式中,上述第一控制信息可以承载于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上,该PDSCH中还包括TB,但是该第一控制信息不承载于任何TB上。在这种设计方式中,该第一控制信息可以是上行CI。第一设备可以在预设的、专门用于传输上行CI的接收状态信息(即HARQ信息)的PUCCH资源上,向网络设备反馈承载在PDSCH的上行CI的接收状态信息。
在第一方面的另一种可能的设计方式中,第一设备可以根据物理层信令,确定传输上述第一控制信息的子帧,该物理层信令还指示第一控制信息是初传的控制信息或者重传的控制信息。
需要说明的是,在第一方面的上述设计方式中,第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,第一控制信息为CI。
在第一方面的另一种可能的设计方式中,第一设备为网络设备,第二设备为终端设备,第一控制信息为上行控制信息(Uplink Control Information,UCI)。
其中,网络设备可以通过调度终端设备进行数据传输,实现向终端设备反馈接收状态信息;或者,网络设备可以通过物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)调度终端设备,实现向终端设备反馈接收状态信息。
第二方面,本申请实施例提供一种信息传输方法,该信息传输方法包括:第二设备向第一设备发送第一控制信息;第二设备接收第一设备发送的接收状态信息,接收状态信息指示第一控制信息是否正确接收。
本申请实施例提供的信息传输方法,第二设备向第一设备发送第一控制信息后, 第一设备可以向第二设备返回第一控制信息的接收状态信息,以指示第一设备是否正确接收第一控制信息。如此,第二设备不仅可以向第一设备发送第一控制信息,无论第一控制信息是否被正确接收,都可以接收到相应的反馈信息(即接收状态信息),以便于第二设备可以根据接收状态信息确定是否重传第一控制信息,可以提高第一设备正确接收第一控制信息的成功率。
在第二方面的一种可能的设计方式中,第一控制信息承载于TB中,该TB中还包括下行数据。
在第二方面的另一种可能的设计方式中,第二设备可以通过高层信令或物理层信令,向第一设备指示初传第一控制信息的子帧;第二设备通过第二控制信息调度TB,该第二控制信息为DCI,该DCI中还包括HARQ标识和NDI,该HARQ标识和该NDI用于指示重传第一控制信息的子帧。
在第二方面的另一种可能的设计方式中,第二设备可以通过高层信令向第一设备指示子帧偏移量T和传输周期P;然后,在满足(K*NF+Index-T)mod(P)=0的子帧,向第一设备初传第一控制信息,其中,第二设备在满足(10*NF+Index-T)mod(P)=0的不同子帧所传输的第一控制信息不同。其中,%为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数,Index为子帧的索引号。
在第二方面的另一种可能的设计方式中,第二设备可以通过高层信令,向第一设备指示第一控制信息的大小。
在第二方面的另一种可能的设计方式中,第一控制信息承载于PDSCH上,该PDSCH中还包括传输块TB,第一控制信息不承载于任何TB上。
在第二方面的另一种可能的设计方式中,第二设备通过根据物理层信令,向第一设备指示传输第一控制信息的子帧以及传输指示信息,该传输指示信息用于指示第一控制信息是初传的控制信息或者重传的控制信息。
需要说明的是,在第一方面的上述设计方式中,第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,第一控制信息为CI。
在第一方面的另一种可能的设计方式中,第一设备为网络设备,第二设备为终端设备,第一控制信息为上行控制信息(Uplink Control Information,UCI)。
其中,网络设备可以通过调度终端设备进行数据传输,实现向终端设备反馈接收状态信息;或者,网络设备可以通过物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)调度终端设备,实现向终端设备反馈接收状态信息。
本申请实施例第二方面及其任一种可能的设计方式的所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第三方面,本申请实施例提供一种设备,该设备是第一设备,该第一设备用于指示本申请实施例第一方面及其任一种可能的设计方式的方法。该设备包括:接收单元和发送单元。其中,接收单元,用于接收第二设备发送的第一控制信息;发送单元,用于发送接收状态信息,接收状态信息指示接收单元是否正确接收第一控制信息。
在第三方面的一种可能的设计方式中,上述接收单元接收第一控制信息承载于TB中,该TB中还包括下行数据。
在第三方面的另一种可能的设计方式中,上述设备还包括:第一确定单元。第一 确定单元,用于根据高层信令或物理层信令或预定义,确定初传第一控制信息的子帧。其中,TB是由第二控制信息调度的,第二控制信息为下行控制信息DCI,DCI中还包括HARQ标识和NDI,HARQ标识和NDI用于指示重传第一控制信息的子帧。
在第三方面的另一种可能的设计方式中,上述第一确定单元,具体用于:根据高层信令或预定义,确定子帧偏移量T和传输周期P;确定满足(K*NF+Index-T)mod(P)=0的子帧为初传第一控制信息的子帧;其中,mod为取模运算符号,K为一个无线帧中包含的子帧个数,NF为子帧所在的无线帧号,Index为子帧的索引号。
在第三方面的另一种可能的设计方式中,上述设备还包括:第二确定单元。第二确定单元,用于根据高层信令或物理层信令,确定第一控制信息的大小。
在第三方面的另一种可能的设计方式中,上述接收单元接收的第一控制信息承载于PDSCH上,PDSCH中还包括TB,第一控制信息不承载于任何TB上。
在第三方面的另一种可能的设计方式中,上述第一确定单元,用于根据物理层信令,确定传输第一控制信息的子帧,并确定第一控制信息是初传的控制信息或者重传的控制信息。
在第三方面的另一种可能的设计方式中,上述第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,第一控制信息为上行CI。
第四方面,本申请实施例提供一种设备,该设备是第二设备,该第二设备用于指示本申请实施例第二方面及其任一种可能的设计方式的方法。该设备包括:发送单元和接收单元。其中,第二设备向第一设备发送第一控制信息;第二设备接收第一设备发送的接收状态信息,接收状态信息指示第一控制信息是否正确接收。
在第四方面的一种可能的设计方式中,上述第一控制信息承载于TB中,TB中还包括下行数据。
在第四方面的另一种可能的设计方式中,上述发送单元,还用于通过高层信令或物理层信令,向第一设备指示初传第一控制信息的子帧;通过第二控制信息调度TB,第二控制信息为下行控制信息DCI,DCI中还包括混合自动重传请求HARQ标识和新数据指示NDI,HARQ标识和NDI用于指示重传第一控制信息的子帧。
在第四方面的另一种可能的设计方式中,上述发送单元,具体用于:通过高层信令,向第一设备指示子帧偏移量T和传输周期P;在满足(K*NF+Index-T)mod(P)=0的子帧,向第一设备初传第一控制信息,其中,第二设备在满足(10*NF+Index-T)mod(P)=0的不同子帧所传输的第一控制信息不同。其中,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数,Index为子帧的索引号。
在第四方面的另一种可能的设计方式中,上述发送单元,还用于通过高层信令,向第一设备指示第一控制信息的大小。
在第四方面的另一种可能的设计方式中,上述第一控制信息承载于PDSCH上,PDSCH中还包括TB,第一控制信息不承载于任何TB上。
在第四方面的另一种可能的设计方式中,上述发送单元,还用于通过根据物理层信令,向第一设备指示传输第一控制信息的子帧以及传输指示信息,传输指示信息用于指示第一控制信息是初传的控制信息或者重传的控制信息。
在第四方面的另一种可能的设计方式中,上述第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,控制信息为上行CI。
第五方面,本申请实施例提供一种设备,该设备是第一设备,该设备包括:处理器、存储器和通信接口;存储器和通信接口与处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,存储器包括非易失性存储介质,当处理器执行计算机指令时,通信接口,用于接收第二设备发送的第一控制信息;发送接收状态信息,接收状态信息指示通信接口是否正确接收第一控制信息。
在第五方面的一种可能的设计方式中,上述第一控制信息承载于TB中,TB中还包括下行数据。
在第五方面的另一种可能的设计方式中,上述通信接口,还用于接收第二设备发送的高层信令;处理器,还用于根据高层信令或物理层信令或预定义,确定初传第一控制信息的子帧。其中,TB是由第二控制信息调度的,第二控制信息为DCI,DCI中还包括HARQ标识和NDI,HARQ标识和NDI用于指示重传第一控制信息的子帧。
在第五方面的另一种可能的设计方式中,上述处理器,具体用于根据高层信令或预定义,确定子帧偏移量T和传输周期P;确定满足(K*NF+Index-T)mod(P)=0的子帧为初传第一控制信息的子帧;其中,mod为取模运算符号,K为一个无线帧中包含的子帧个数,NF为子帧所在的无线帧号,Index为子帧的索引号。
在第五方面的另一种可能的设计方式中,上述处理器,还用于根据高层信令或物理层信令,确定第一控制信息的大小。
在第五方面的另一种可能的设计方式中,上述第一控制信息承载于PDSCH上,PDSCH中还包括TB,第一控制信息不承载于任何TB上。
在第五方面的另一种可能的设计方式中,上述处理器,还用于根据物理层信令,确定传输第一控制信息的子帧,确定第一控制信息是初传的控制信息或者重传的控制信息。
在第五方面的另一种可能的设计方式中,上述第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,第一控制信息为上行CI。
第六方面,本申请实施例提供一种设备,该设备是第二设备,该设备包括:处理器、存储器和通信接口;存储器和通信接口与处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,存储器包括非易失性存储介质,当处理器执行计算机指令时,通信接口,用于向第一设备发送第一控制信息;接收第一设备发送的接收状态信息,接收状态信息指示第一控制信息是否正确接收。
在第六方面的一种可能的设计方式中,上述第一控制信息承载于TB中,TB中还包括下行数据。
在第六方面的另一种可能的设计方式中,上述通信接口,还用于向第一设备发送高层信令或物理层信令,高层信令或物理层信令用于指示初传第一控制信息的子帧;通信接口,还用于向第一设备发送第二控制信息,第二控制信息用于调度TB,第二控制信息为DCI,DCI中还包括HARQ标识和NDI,HARQ标识和NDI用于指示重传第一控制信息的子帧。
在第六方面的另一种可能的设计方式中,上述通信接口,还用于通过高层信令, 向第一设备指示子帧偏移量T和传输周期P;处理器,还用于确定满足(K*NF+Index-T)mod(P)=0的子帧,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数,Index为子帧的索引号;通信接口,还用于在处理器确定的满足(K*NF+Index-T)mod(P)=0的子帧,向第一设备初传第一控制信息。
在第六方面的另一种可能的设计方式中,上述通信接口,还用于通过高层信令,向第一设备指示第一控制信息的大小。
在第六方面的另一种可能的设计方式中,上述第一控制信息承载于PDSCH上,PDSCH中还包括TB,第一控制信息不承载于任何TB上。
在第六方面的另一种可能的设计方式中,上述通信接口,还用于通过根据物理层信令,向第一设备指示传输第一控制信息的子帧以及传输指示信息,传输指示信息用于指示第一控制信息是初传的控制信息或者重传的控制信息。
在第六方面的另一种可能的设计方式中,上述第一设备为终端设备,第二设备为网络设备,接收状态信息为HARQ信息,控制信息为上行信道信息CI。
第七方面,本申请实施例提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在设备上运行时,使得所述设备执行如第一方面、第二方面及其任一种可能的设计方式所述的方法。
第八方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面、第二方面及其任一种可能的设计方式所述的方法。
本申请实施例第三方面、第四方面、第五方面、第六方面及其任一种可能的设计方式,以及第七方面和第八方面的所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种系统架构的简化示意图;
图2为本申请实施例提供的一种基站的硬件结构示意图;
图3为本申请实施例提供的一种UE的硬件结构示意图;
图4为本申请实施例提供的一种UE向基站反馈UCI的方法原理示意图;
图5为本申请实施例提供的一种信息传输方法的流程图一;
图6为本申请实施例提供的一种信息传输方法的原理示意图一;
图7为本申请实施例提供的一种信息传输方法的流程图二;
图8为本申请实施例提供的一种TB的初传和重传原理示意图一;
图9为本申请实施例提供的一种TB的初传和重传原理示意图二;
图10为本申请实施例提供的一种TB的初传和重传原理示意图三;
图11为本申请实施例提供的一种信息传输方法的流程图三;
图12为本申请实施例提供的一种TB的初传和重传原理示意图四;
图13为本申请实施例提供的一种信息传输方法的原理示意图二;
图14为本申请实施例提供的一种信息传输方法的流程图四;
图15为本申请实施例提供的一种信息传输方法的流程图五;
图16为本申请实施例提供的一种上行CI的初传和重传原理示意图一;
图17为本申请实施例提供的一种上行CI的初传和重传原理示意图二;
图18为本申请实施例提供的一种设备的结构组成示意图一;
图19为本申请实施例提供的一种设备的结构组成示意图二。
具体实施方式
本申请实施例中所述的“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。例如,第一TB和第二TB是不同的TB。
本申请实施例提供的一种信息传输方法,可以应用于第二设备向第一设备反馈第一控制信息(如上行CI)的过程中。
图1为本申请实施例提供的一种系统架构的简化示意图。该系统架构中包括网络设备和一个或多个终端设备。如图1所示,该系统架构可以包括:网络设备11、终端设备12和终端设备13。
其中,本申请实施例这里以网络设备11与终端设备12的交互为例,对图1所示的系统架构中的各个设备进行介绍。
在第一种应用场景中,网络设备11用于向终端设备12发送下行的控制信息(包括上行CI);终端设备12用于接收网络设备11发送的下行控制信息,向网络设备11反馈该下行控制信息的接收状态信息(如HARQ信息)。
在第二种应用场景中,终端设备12用于向网络设备11发送上行的控制信息,如UCI;网络设备11用于接收终端设备12发送的UCI,并向终端设备12反馈UCI的接收状态信息,UCI的接收状态信息用于指示UCI是否正确接收。
其中,本申请可应用于NR系统和LTE系统等系统中。上述网络设备11具体可以是基站。基站可以是无线通信的基站(Base Station,BS)或基站控制器等。也可以称为无线接入点,收发站,中继站,小区,发送接收点(Transmit and Receive Port,TRP)等等。具体的,网络设备11是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,其可以与终端设备进行连接,接收终端设备发送的数据并发送给核心网设备。网络设备11的主要功能包括如下一个或多个功能:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行MME的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的测量及测量报告的配置等等。网络设备11可以包括各种形式的蜂窝基站、家庭基站、小区、无线传输点、宏基站、微基站、中继站、无线接入点等等。
在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(evolved NodeB,eNB或eNodeB),在第3代移动通信技术(the third Generation Telecommunication,3G)系统中,称为基站(Node B),在NR系统中,称为gNB,CU,DU等等,在无线本地接入系统中,称为接入点(Access Point)。随着通信技术的演进,这一名称可能会变化。此外,在其它可能的情况下,网络设备11可以是其它为终端设备提供无线通信功能的装置。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
终端设备12和终端设备13,均指的是包含无线收发功能,可以与接入网设备和/ 或核心网设备等网络侧设备配合为用户提供通讯服务的设备。终端设备12和终端设备13均可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,Radio Access Network,RAN)与一个或多个核心网或者互联网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户站(Subscriber Station,SS)、用户端设备(Customer Premises Equipment,CPE)、UE等。例如,该终端设备可以手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)等等。作为一种实施例,如图1所示,本申请的系统架构包括的终端设备12和终端设备13均以手机为例示出。
图2为本申请实施例提供的一种基站的组成示意图,如图2所示,基站可以包括至少一个处理器21,存储器22、通信接口23、总线24。
下面结合图2对基站的各个构成部件进行具体的介绍:
处理器21是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压 缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,存储器22用于存储执行本申请方案的软件程序,并由处理器21来控制执行。
通信接口23,用于与其他设备或通信网络通信。如用于与以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等通信网络通信。通信接口23可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本申请实施例提供的一种UE的组成示意图。如图3所示,该UE可以包括至少一个处理器31、存储器32、通信接口33和总线34。
下面结合图3对UE的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本申请方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU。例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以是独立存在,通过总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。
通信接口33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线34,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、全球定位系统(Global Position System,GPS)模块、显示屏等,在此不再赘述。
以下对本申请实施例中涉及的术语进行介绍:
(1)时域上的时间单元:本申请实施例中,网络设备和终端设备用于传输第一控制信息(如上行CI)的资源在时域上可以划分为多个时间单元。并且,在本申请实施例中,该多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本申请实施例并未特别限定。在本申请实施例中,一个时间单元的长度可以任意设定,本申请实施例并未特别限定。例如,1个时间单元可以包括一个或多个子帧;或者,1个时间单元可以包括一个或多个时隙;或者,1个时间单元可以包括一个或多个迷你时隙;或者,1个时间单元可以包括一个或多个符号;或者,1个时间单元可以包括一个或多个传输时间间隔(Transmission Time Interval,TTI);或者,1个时间单元可以包括一个或多个短传输时间间隔(short Transmission Time Interval,sTTI);或者,1个时间单元可以对应一个时间模式,如第一时间模式为2个符号或3个符号的传输时间间隔,第二模式为7符号的传输时间间隔。其中,上述迷你时隙包括一个或多个符号,迷你时隙小于等于时隙,这里的时隙可以是60kHz子载波间隔的系统中的迷你时隙,也可以是15kHz子载波间隔的系统中的迷你时隙,本申请实施例不做限制。
其中,一个时隙包括一个或多个符号,这里的时隙可以是60kHz子载波间隔的系统中的时隙,也可以是15kHz子载波间隔的系统中的时隙,本申请实施例不做限制。其中,TTI是目前通信系统(例如,LTE系统)中的普遍使用的参数,是指在无线链路中调度数据传输的调度单位。在现有技术中,通常认为1TTI=1ms。即,一个TTI为一个子帧(subframe)或者说,两个时隙(slot)的大小,它是无线资源管理(调度等)所管辖时间的基本单位。
在通信网络中,时延是一个关键的绩效指标,同时也影响着用户的使用体验。随着通讯协议的发展,对时延影响最明显的物理层的调度间隔也越来越小,在最初的宽带码分多址(Wideband Code Division Multiple Access,W-CDMA)中,调度间隔是10ms,高速分组接入(High-Speed Packet Access,HSPA)中调度间隔缩短到2ms,LTE系统中时间间隔(即TTI)缩短到1ms。其中,小时延的业务需求导致物理层需要引入更短的TTI帧结构,以进一步缩短调度间隔,来提高用户体验。例如,LTE系统中TTI长度可以从1ms缩短为1符号(symbol)到1时隙(包括7个符号)之间。上述提及的符号可以是LTE系统中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或单载波频分多址(Single Carrier-Frequency Division Multiple Access, SC-FDMA)符号,还可以是其他通信系统中的符号。又例如,5G通信系统中传输单元长度也小于或等于1ms。
LTE系统在基于长度为1ms的TTI的数据传输中,一般情况下数据传输的来回时间(Round-Trip Time,RTT)为8ms。假设,和现有长度为1ms的TTI的调度相比,处理时间是等比例缩减的,即仍然遵循现有的RTT时延。那么,当基于长度为0.5ms的sTTI的数据传输中,数据传输的RTT为4ms,相对于基于长度为1ms的TTI的数据传输,时延能够缩短一半,从而提高用户体验。
长度小于1ms的TTI可以称为sTTI。例如,LTE系统中,sTTI的长度可以为1-7个符号中任意一种长度,或者,sTTI长度也可以是1-7个符号中至少2种不同长度的组合,例如1ms内包含6个sTTI,各sTTI长度可以分别是3个符号、2个符号、2个符号、2个符号、2个符号、3个符号,或者,1ms内包含4个sTTI,各sTTI长度可以分别是3个符号、4个符号、3个符号、4个符号,各sTTI长度还可以是其他不同长度的组合。并且,上行的sTTI长度可以和下行的sTTI长度相同,例如上行的sTTI长度和下行的sTTI长度均为2个符号;或者,上行的sTTI长度可以长于下行的sTTI长度,例如上行的sTTI长度为7个符号,下行的sTTI长度为2个符号;再或者,上行的sTTI长度可以短于下行的sTTI长度,例如上行的sTTI长度为4个符号,下行的sTTI长度为1个子帧。
TTI长度小于1个子帧或1ms的数据包称为短TTI数据包。短TTI数据传输在频域上,可连续分布,也可非连续分布。需要说明的是,考虑到后向兼容性,系统中可能同时存在基于长度为1ms的TTI的数据传输和基于sTTI的数据传输的情况。
在本申请实施例中,可以将LTE系统规定的(例如,长度为1ms或长度大于1ms的)TTI和sTTI统称为TTI,并且,在本申请实施例中,TTI的长度可以根据实际需要进行变更。
应理解,以上列举的时间单元的结构仅为示例性说明,本申请实施例并未特别限定,可以根据实际需要对时间单元的结构进行任意变更,例如,对于不支持sTTI(2个符号,或3个符号,或7个符号,或1个时隙)的LTE系统而言,1个时间单元可以为1个子帧(Subframe)。再例如,对于支持sTTI(2个符号,或3个符号,或7个符号,或1个时隙)的LTE系统而言,1个时间单元可以包括1个sTTI,或者说,1个时间单元可以包括1个时隙(Slot),1个时间单元可以包括一个或多个(例如,小于7的正整数个或小于6的正整数个)符号;1个时间单元也可以为1个子帧。
需要说明的是,在本申请实施例中,时间单元用于信息传输的长度(或者说,信息传输时长)可以是1ms,也可以小于1ms。或者说,结合上述描述,即使对于不支持sTTI(2个符号,或3个符号,或7个符号,或1个时隙)的LTE系统而言,当时间单元用子帧表示时,该时间单元内用于下行信息传输的长度可以是1ms,也可以小于1ms,同样地,该时间单元内用于上行信息传输的长度可以是1ms,也可以小于1ms。为了便于理解和说明,作为示例而非限定,以下,以一个时间单元包括一个sTTI,一个sTTI包括两个符号的情况为例,对本申请实施例的参考信号的传输过程进行详细说明。
并且,在本申请实施例中,网络设备和终端设备用于传输信息的资源在时域上可 以划分为多个时间段,每个时间段包括一个或多个时间单元。作为示例而非限定,在本申请实施例中,一个时间段可以是1ms或10ms。在本申请实施例中,一个时间段可以包括例如6个时间单元或2个时间单元。
(2)HARQ技术:结合了前向纠错(Forward Error Correction,EFC)技术与自动重传请求(Automatic Repeat Request,ARQ)技术。其中,通过EFC技术可以增加通信的可信度;但是,在单向通信信道(如LTE的FDD系统)中,接收端接收发送端发送的数据包时,如果接收端检测到无法纠正的错误,该接收端不能请求发送端重传该数据包。而HARQ技术中,接收端则可以通过ARQ机制请求发送端重传数据包。具体的,接收端可以通过循环冗余校验(Cyclic Redundancy Check,CRC)校验来检测接收到的数据包是否出错;如果数据包未出错,接收端向发送端返回该数据包的ACK;如果数据包出错,接收端向发送端发送该数据包的NACK;接收端接收到该数据包的NACK后,向接收端重传该数据包。
以下行数据传输为例,UE(即接收端)接收端基站(即发送端)通过PDSCH发送的TB;如果UE正确接收该TB,UE在上行链路上进行HARQ-ACK反馈的状态为ACK(即UE向基站反馈该TB的ACK);如果UE未正确接收该TB,UE在上行链路上进行HARQ-ACK反馈的状态为NACK(即UE向基站反馈该TB的NACK)。其中,基站如果接收到UE反馈的NACK,则向基站重传上述TB,使得UE可以将重传的TB和没有正确接收的TB进行HARQ合并。
需要说明的是,LTE系统中的ACK反馈、NACK反馈以及HARQ重传都是以TB为单位的。
(3)编码块(Coding Block,CB):为了提高编译码的效率,降低编译码的复杂度,上述一个TB可以被分成多个CB进行信道编译码。例如,Turbo码最大CB的比特数为6144,如果一个TB的比特数高于6144,则可以将该TB拆分成多个CB分别编译码。又例如,低密度奇偶校验码(Low Density Parity Check Code,LDPC)最大CB的比特数为2000左右。假设LDPC最大CB的比特数为2000,如果一个TB的比特数高于2000,则可以将该TB拆分成多个CB分别编译码。
一般而言,每个CB都具有独立的校验功能。以Turbo码为例,每个CB在编码前都会加CB CRC;如此,UE可以通过CRC校验便可以确定该CB是否被正确译码。对于LDPC而言,每个CB在编码前都会加CB CRC或者LPDC的编码矩阵本身就具备校验功能。也就是说,LDPC的每个CB也都是可以具备校验功能的。
由此可以得出:无论基站发送的PDSCH中承载的是TB还是拆分TB得到的CB,UE都可以通过校验确定TB或者CB是否正确传输。
(4)资源单位(Resource Element,RE):LTE系统中的下行数据传输基于正交频分复用多址(Orthogonal Frequency Division Multiplexing Access,OFDMA),上行数据传输基于单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)。因此,LTE系统的数据传输过程中,时频资源被划分成时域维度上的OFDMA符号或者SC-FDMA符号(下称时域符号,简称符号)和频域维度上的子载波。其中,最小的资源粒度即为一个RE,即一个RE表示时域上的一个时域符号和频域上的一个子载波组成的时频格点。
(5)信道状态信息(Channel State Information,CSI):CSI包括信道质量信息(Channel Quality Information,CQI)、预编码矩阵指示(Precoding Matrix Indication,PMI)和秩指示(Rank Indication,RI)。
示例性的,以上述第一设备是终端设备(如UE),第二设备是网络设备(如基站)为例。一般而言,基站可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向UE反馈上行信道信息。但是,随着通信业务的日益扩展,信道(如上行信道)的CSI的精度越来越高,基站需要向UE反馈的上行信道信息的信息量也越来越多,即PDCCH上需要承载的负载较大,可能会存在PDCCH无法承载上行信道信息的问题。
其中,虽然目前没有基站向UE反馈上行CI的方案;但是,在一种可行的方案中,UE可以将UCI承载在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上,向基站指示该UCI。但是,该方案的缺点在于,承载在PUSCH上的UCI没有错误反馈能力,即基站在接收UCI后,即使发现该UCI错误,也无法向UE反馈这个错误。那么,套用该UCI的传输方案,基站向UE指示上行信道信息时,则可能会存在如果上行信道信息传输错误,UE无法向基站反馈该错误的问题,基站向UE指示上行信道信息的成功率较低。
为了提高基站向UE指示上行信道信息的成功率,本申请实施例中,可以将上述“UE通过PUSCH向基站指示UCI”的方案与错误反馈机制(如PDSCH的HARQ机制)结合起来,提供一种基站通过PDSCH向UE指示上行CI的方案(即本申请实施例提供的一种信息传输方法),该方案中,UE可以套用“UE通过PUSCH向基站指示UCI”的方案,并基于上述错误反馈机制进行接收状态信息的反馈。
为了使本申请实施例提供的一种信息传输方法更好的被理解,本申请实施例这里对上述“UE通过PUSCH向基站指示UCI”的方案进行介绍:
基站的上行授权(UL Grant)中存在1比特的信息域,用于UE反馈CSI。其中,如果UE需要在PUSCH的子帧上发送上行数据(即该子帧有UL Grant),并且同时需要发送DCI,该DCI包括ACK/NACK(即HARQ-ACK)、CQI、PMI和RI;那么,UE可以将该DCI与上行数据复用在一起,在PUSCH的上述子帧上向基站传输。
其中,上述DCI与上行数据可以通过速率匹配以及打孔的方式复用在一起。具体的,“上行数据(UL-SCH)”、“CQI、PMI”和“RI”通过速率匹配的方式复用在一起,HARQ-ACK通过打孔的方式通过打孔的方式与前三者(上行数据、CQI/PMI和PI)结合。
具体的,如图4所示,UE可以对“UL-SCH”、“CQI、PMI”、“RI”和“HARQ-ACK”分别进行编码。例如,UL-SCH采用Turto编码(coding),CQI和PMI采用转换编码(Conv.coding),RI和HARQ-ACK采用块编码(Block coding)。然后,UE可以对编码后“UL-SCH”、“CQI、PMI”以及“RI”进行速率匹配(Rate Matching)和调制,再通过Mux将“UL-SCH”、“CQI、PMI”和“RI”复用在一起。例如,UL-SCH的调制方式为正交相移键控(Quadrature Phase Shift Keyin,QPSK)或者16/64正交幅度调制(Quadrature Amplitude Modulation,QAM),CQI和PMI的调制方式为QPSK或者 6/64QAM,RI的调制方式为QPSK。最后,UE可以将编码后的HARQ-ACK通过打孔(Punct)的方式,与上述经过Mux后的“UL-SCH”、“CQI、PMI”以及“RI”结合起来。最后,由离散傅里叶变换光谱分析法(Discrete Fourier Transform Spectroscopy,DFTS)-正交频分复用多址(Orthogonal Frequency Division Multiplexing,OFDM)调制器(modulator)对结合得到的数据进行傅里叶变换。
基于图4所示的UE对“UL-SCH”、“CQI、PMI”以及“RI”进行速率匹配,对HARQ-ACK打孔的实例,本申请实施例这里介绍速率匹配和打孔的区别:
其中,速率匹配意味着“UL-SCH”、“CQI、PMI”和“RI”这三者在确定各自编码所使用的码率时,是有计划的。这三者经过各自码率的编码以及调制后,恰好可以使用完全部的上行资源(即RE)。例如,在一次传输中,UL-SCH有100比特且使用QPSK编码(一个符号上承载2bit信息),上行资源共有100个RE,这时UL-SCH应该使用100/2/100=1/2码率。如果UE发现SCH上需要额外再用10个RE承载CQI,于是UE通过速率匹配,将UL-SCH的码率都调整到100/2/(100-10)=0.56码率,则SCH和CQI即可同时承载在100个RE上。
其中,速率匹配的优点在于,在传输资源必须划分出一部分挪作他用时,可以保证原来的数据传输的性能。速率匹配的缺点在于,速率匹配要求收发双方信息严格对称。基于上述实例,如果基站不知道PUSCH里有10个RE承载了CQI,还以为100个RE全是UL-SCH,则无法正确解调该上行数据。
另外,基站可以通过调度,保证速率匹配后数据的可靠性。即由于基站预先知道UE的上行传输会因为速率匹配导致实际码率上升,则可以在调度时就为该UE配置一个较低的码率,这样即使因为速率匹配提升了码率,也仍然在可以正确传输的范围内。
与速率匹配相反,打孔是直接无视之前本应承载在某些RE上的UL-SCH、CQI/PMI、RI信息,直接改为承载HARQ-ACK,也就是说,原来的UL-SCH等信息直接被丢弃了。由此可见,打孔损害了被打孔信息的传输性能。相反,好处就在于如果打掉的RE数量不大,则无论UE是否打掉了这些RE,基站都能正确解调PUSCH中的数据。
本申请实施例提供一种信息传输方法,如图5所示,该信息传输方法包括S501-S506:
S501、第二设备向第一设备发送第一控制信息。
在本申请实施例的第一种应用场景中,上述第二设备是网络设备(如基站),第一设备是终端设备(如UE),上述第一控制信息是下行控制信息,该第一控制信息包括上行CI。
在本申请实施例的第二种应用场景中,上述第二设备是终端设备,第一设备是网络设备,第一控制信息是上行控制信息。
其中,无论在第一种应用场景中,还是在第二种应用场景中,上述第一控制信息都可以由DCI调度。在第一种应用场景中,第一控制信息承载在下行数据信道(如PDSCH)上。在第二种应用场景中,第一控制信息承载在上行数据信道(如PUSCH)上。
S502、第一设备接收第二设备发送的第一控制信息。
在上述第一种应用场景中,终端设备(即第一设备)可以接收网络设备(即第二设备)发送的承载在PDSCH上的第一控制信息。
在第二种应用场景中,网络设备(即第一设备)可以接收终端设备(即第二设备)发送的承载在PUSCH上的第一控制信息。
S503、第一设备向第二设备发送第一控制信息的接收状态信息,该接收状态信息指示第一控制信息是否正确接收。
在第一种应用场景中,终端设备(即第一设备)向网络设备(即第二设备)发送的接收状态信息可以是HARQ信息,该HARQ信息为ACK或者NACK。其中,当HARQ信息是ACK时,指示第一控制信息(上行CI)正确接收;当HARQ信息是NACK时,指示第一控制信息(上行CI)未正确接收。
在第二种应用场景的一种设计方法中,网络设备(即第一设备)向终端设备(即第二设备)发送接收状态信息,是通过调度终端设备实现。具体的,当网络设备正确接收第一控制信息时,网络设备则可以调度终端设备发送其他数据,例如,网络设备可以向终端设备发送其他数据的调度信息,以调度终端设备发送该其他数据。当网络设备未正确接收第一控制信息时,网络设备则可以调度继续终端设备发送该第一控制信息,例如,网络设备可以向终端设备重新发送该第一控制信息的调度信息,以调度终端设备重新发送该第一控制信息。
在第二种应用场景的另一种设计方法中,网络设备(即第一设备)向终端设备(即第二设备)发送第一控制信息的接收状态信息,可以通过物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)调度终端设备实现。具体的,第二设备的MAC层向其物理层传输的数据以传输块(Transport Block,TB)为单位,PHICH可以用于对PUSCH传输的数据回应HARQ信息(如ACK或NACK)。其中,每个上行TB都可以对应PHICH中的一个字段。
S504、第二设备接收第一设备发送的第一控制信息的接收状态信息。
其中,第二设备接收到第一设备发送的第一控制信息的接收状态信息后,便可以确定第一控制信息是否正确接收。
S505、当接收状态信息指示第一控制信息未正确接收时,第二设备向第一设备重传上述第一控制信息。
S506、当接收状态信息指示第一控制信息正确接收时,第二设备向第一设备发送新的第一控制信息。
需要说明的是,S506中所述的“新的第一控制信息”与S501-S505中所述的第一控制信息不同。
本申请实施例提供的信息传输方法,第二设备向第一设备发送第一控制信息后,第一设备可以向第二设备返回第一控制信息的接收状态信息,以指示第一设备是否正确接收第一控制信息。如此,第二设备不仅可以向第一设备发送第一控制信息,无论第一控制信息是否被正确接收,都可以接收到相应的反馈信息(即接收状态信息),以便于第二设备可以根据接收状态信息确定是否重传第一控制信息,可以提高第一设备正确接收第一控制信息的成功率。
本申请实施例的第一种应用场景中,以第二设备是网络设备(如基站),第一设备是终端设备(如UE),上述第一控制信息为上行CI,上述信息传输方法应用于网络设备向终端设备反馈上行CI的过程为例,对本申请实施例提供的一种信息传输方法进行信息说明:
在第一种应用场景的实现方式(1)和实现方式(2),网络设备可以将上行CI承载于TB中,向终端设备传输,该TB中还包括下行数据。如图6所示,网络设备可以将下行数据和上行CI绑定在一起,然后进行编码(如Turto coding)和调制后向终端设备传输。
在第一种应用场景的实现方式(1),网络设备可以周期性的向终端设备传输新的TB,并根据终端设备反馈的HARQ信息重传TB。具体的,如图7所示,本申请实施例提供的一种信息传输方法包括S701-S709:
S701、网络设备通过高层信令,向终端设备指示初传上行CI的子帧。
其中,本申请实施例中“初传上行CI的子帧”是指承载有初传(即第一次传输)的上行CI的子帧。网络设备可以通过高层信令向终端设备指示子帧偏移量T和传输周期P,并指示满足(K*NF+Index-T)mod(P)=0的子帧为初传上行CI的子帧,即满足(K*NF+Index-T)mod(P)=0的子帧上传输有上行CI。其中,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数(例如,K=10),Index为子帧的索引号。本申请实施例中,还可以采用%代替mod来表示取模运算符号。
例如,假设K=10,图8所示的子帧a、子帧b、子帧c和子帧d为满足(10*NF+Index-T)mod(P)=0的子帧。本申请实施例这里以子帧a为例,子帧a满足(10*NF+Index-T)mod(P)=0具体为:子帧a所在的无线帧号NF-a,子帧a的索引号Index-a,满足(10*(NF-a)+(Index-a)-T)mod(P)=0。
那么,网络设备则可以在子帧a、子帧b、子帧c和子帧d分别传输不同的上行CI。例如,如图8所示,网络设备可以在子帧a向终端设备初传包括上行CI-1的TB-1,在子帧b向终端设备初传包括上行CI-2的TB-2,在子帧c向终端设备初传包括上行CI-3的TB-3,在子帧d向终端设备初传包括上行CI-4的TB-4。
需要说明的是,每个子帧上初传的上行CI不同。例如,子帧a上初传的上行CI-1、子帧b上初传的上行CI-2、子帧c上初传的上行CI-3,以及子帧d是初传的上行CI-4均不相同。并且,每个子帧上初传的TB中所包括的下行数据也不相同。例如,TB-1中包括的下行数据1、TB-2中包括的下行数据2、TB-3中包括的下行数据3,以及TB-4中包括的下行数据4均不相同。并且,上述子帧a、子帧b、子帧c和子帧d所在的无线帧号可以相同也可以不同,本申请实施例对此不作限定。
S702、终端设备根据高层信令,确定初传上行CI的子帧。
终端设备可以接收网络设备发送的高层信令,并根据高层信令指示的子帧偏移量T和传输周期P,以及上行CI的初传子帧满足的条件(K*NF+Index-T)mod(P)=0,确定满足(K*NF+Index-T)mod(P)=0的子帧为初传上行CI的子帧。
需要说明的是,终端设备可以根据高层信令的指示,确定出多个承载有上行CI的子帧。例如,如图8所示,终端设备可以根据上述高层信令的指示,确定出子帧a子帧b、子帧c和子帧d等为初传上行CI的子帧。
可以理解,由于高层信令的可靠性远高于物理层信令;因此,网络设备通过高层信令,向终端设备指示初传上行CI的子帧,可以提高网络设备向终端设备指示初传上行CI的子帧的成功率。
可选的,本申请实施例中,上述初传上行CI的子帧也可以是网络设备和终端设备中预定义的,而不需要网络设备向终端设备指示初传上行CI的子帧。即上述S701-S702是可选的,网络设备可以在预定义的初传上行CI的子帧,向终端设备初传包括上行CI的TB;终端设备也可以在预定义的初传上行CI的子帧,接收终端设备初传的包括上行CI的TB。
S703、网络设备向终端设备发送第一DCI,第一DCI用于调度初传的第一TB,第一DCI中还包括HARQ标识和NDI。
其中,上述第一DCI承载在PDCCH中。第一DCI中的HARQ标识和NDI可以用于唯一标识第一TB。
可以理解,由于HARQ标识的个数有限,因此这有限的HARQ标识在传输TB的过程中是被周期性重复利用的。因此,两个TB的HARQ标识相同,并不能代表这两个TB是同一个TB。并且,如果不同的两个TB被配置相同的HARQ标识,那么这两个TB的NDI则会发生翻转。本申请实施例中,一个TB的NDI未发生翻转是指:该TB的NDI没有由1翻转为0;或者,该TB的NDI没有由0翻转为1。
由此可知,第一DCI中的HARQ标识和NDI可以用于唯一标识第一TB。无论是初传的第一TB还是重传的第一TB,其HARQ标识是相同的;并且,与前一次传输的第一TB(初传或者重传的第一TB)的NDI相比,后一次传输的第一TB(重传的第一TB)的NDI未发生翻转。
例如,假设第一TB中包括第一下行数据和第一上行CI,第二TB中包括第二下行数据和第二上行CI。由于第一下行数据与第二下行数据不同;因此,第一TB与第二TB不同。因此,上述第一TB的HARQ标识与第二TB的HARQ标识不同;或者上述第一TB的HARQ标识与第二TB的HARQ标识相同,但传输第一TB和传输第二TB之间,该HARQ标识对应的NDI发生过翻转。反之,针对包括相同数据的TB,如初传的第一TB和重传的第一TB,其HARQ标识和NDI均相同。
S704、网络设备在第一初传子帧,向终端设备初传第一TB,该第一TB中包括第一上行CI和第一下行数据。
其中,该第一初传子帧满足上述(K*NF+Index-T)mod(P)=0条件。网络设备可以获取当前的上行CI(即第一上行CI),生成包括第一上行CI和第一下行数据的第一TB;并判断当前子帧是否满足上述(K*NF+Index-T))mod(P)=0条件;当当前子帧满足上述(K*NF+Index-T)mod(P)=0条件时,则在当前子帧(即第一初传子帧)向终端设备初传第一TB。
S705、终端设备接收网络设备发送的第一DCI。
其中,终端设备可以在PDCCH上接收网络设备发送的第一DCI。
终端设备可以读取第一DCI中包括的第一TB的HARQ标识和NDI,以便于在接收到用于调度重传的第一TB的第二DCI时,可以根据第二DCI中的HARQ标识和NDI,识别出重传的第一TB与该第一DCI所调度的第一TB是同一TB。
S706、终端设备接收在第一初传子帧接收网络设备发送的第一TB。
其中,在上述S702之后,终端设备确定出了包括第一初传子帧在内的多个用于初传上行CI的子帧。然后,终端设备便可以解调PDSCH在第一初传子帧传输的数据,得到第一TB。
S707、终端设备从第一TB中获取第一上行CI和第一下行数据。
其中,终端设备可以根据第一TB中包括的数据(如上行CI+下行数据)的大小,从第一TB中获取第一上行CI和第一下行数据。
本申请实施例的一种实现方式中,上述第一DCI中还包括PDSCH上传输的TB的传输块大小(Transport Block Size,TBS),该TBS用于指示PDSCH上传输的TB中包括的数据(如上行CI+下行数据)的大小。在这种实现方式中,终端设备可以根据第一DCI所指示的TBS,译码得到第一TB;然后根据网络设备通过高层信令或者物理层信令指示的第一上行CI的大小和TBS,计算第一下行数据的大小(第一下行数据的大小等于TBS减去第一上行CI的大小);最后,根据第一上行CI的大小和第一下行数据的大小,从第一TB中获取第一上行CI和第一下行数据。
考虑到TBS的非连续性,即如表1所示,LTE系统中单码字允许的TBS大小从16-75376间只有178种。也就是说,从MAC层为物理层划分的数据包大小只可能是这178种之一。假设MAC层下递的数据包为3240比特,CI长度为100比特,则如果按照上述TBS的定义,即TBS=下行数据的大小+上行CI的大小=3340,对应表格中没有相应的值来表示该TBS。所以需要在该TB内补28个0,将TBS补充至3340+28=3368,与表中的值对应后,才可以传输。
表1
16 296 600 1096 1928 3240 6200 11832 22920 43816
24 328 616 1128 1992 3368 6456 12216 23688 45352
32 336 632 1160 2024 3496 6712 12576 24496 46888
40 344 648 1192 2088 3624 6968 12960 25456 48936
…… …… …… …… …… …… …… …… …… ……
256 552 1000 1736 2856 5544 10680 20616 39232 75376
280 568 1032 1800 2984 5736 11064 21384 40576  
288 584 1064 1864 3112 5992 11448 22152 42368  
虽然无论网络设备是否需要补零,其传输的有效数据量是始终不变的;但是,补零干扰了原先的编码规则,会影响编码性能,或者说PDSCH传输的可靠性受到影响。基于此,本申请实施例的另一种实现方式中,上述第一DCI中还包括PDSCH上传输的传输块大小(Transport Block Size,TBS),该TBS用于指示PDSCH上传输的TB中包括的下行数据的大小。在这种实现方式中,网络设备可以通过高层信令或者物理层信令向终端设备指示上行CI的大小;终端设备可以根据高层信令或者物理层信令所指示的上行CI的大小与上述TBS求和,得到第一TB中包括的数据的大小;然后,根据第一TB中包括的数据的大小,从第一TB中获取第一上行CI和第一下行数据。
可以理解,终端设备可能会正确接收上述第一TB,也可能不能正确接收第一TB。无论终端设备是否正确接收第一TB,终端设备都会向网络设备反馈第一HARQ信息, 该第一HARQ信息指示第一TB是否正确接收。具体的,在S607之后,本申请实施例的方法还可以包括S708:
S708、终端设备向网络设备发送第一HARQ信息,第一HARQ信息指示第一TB是否正确接收。
S709、网络设备接收终端设备发送的第一HARQ信息。
其中,当第一TB未正确接收时,该第一HARQ信息为NACK,网络设备向终端设备重传第一TB;当第一TB正确接收时,该第一HARQ信息为ACK,网络设备则可以开始传输新的上行CI。
本申请实施例中,“第一TB正确接收”是指终端设备从PDSCH正确接收到第一TB。“第一TB未正确接收”是指终端设备未正确接收到第一TB。示例性的,当上述第一HARQ信息为0时,该第一HARQ信息是ACK,用于表示第一TB正确接收;当上述第一HARQ信息为1时,该第一HARQ信息是NACK,用于表示第一TB未正确接收。
本申请实施例中,与通过高层信令配置初传上行CI的子帧相反,当初传的第一TB未被正确接收时,网络设备可以通过物理层信令指示重传第一TB的子帧。具体的,网络设备可以通过物理层信令中DCI包括的HARQ ID和NDI,向终端设备指示重传第一TB的子帧。具体的,本申请实施例的方法还包括S801-S803:
S801、当第一HARQ信息为NACK时,网络设备向终端设备发送第二DCI,第二DCI用于调度重传的第一TB,第二DCI中还包括HARQ标识和NDI。
其中,由于第一DCI是用于调度初传的第一TB,而第二DCI是用于调度重传的第一TB,并且,初传的第一TB和重传的第一TB中包括的数据相同(如初传的第一TB和重传的第一TB中均包括第一上行CI和第一下行数据);因此,第二DCI中包括的HARQ标识与第一DCI中包括的HARQ标识相同。例如,如表2所示,第二DCI中包括的HARQ标识与第一DCI中包括的HARQ标识均为Y。并且,由于初传的第一TB和重传的第一TB的NDI不会发生翻转。例如,如表2所示,第一DCI中包括的NDI为1;第二DCI中包括的NDI也为1。
表2
Figure PCTCN2018074580-appb-000001
S802、网络设备向终端设备重传第一TB。
其中,网络设备在接收到第一TB的NACK时,便可以在任一子帧重传第一TB。
S803、终端设备接收网络设备发送的第二DCI,确定重传第一TB的子帧,并在确定子帧接收重传的第一TB。
可以理解,第二DCI中包括的HARQ标识与第一DCI中包括的HARQ标识相同,并且,与第一DCI中的NDI相比,第二DCI中的NDI未发生翻转;因此,终端设备可以确定第二DCI所调度的TB是重传的第一TB。从而,终端设备可以根据第二DCI确定重传第一TB的子帧。
并且,当终端设备确定出重传第一TB的子帧后,可以在该重传第一TB的子帧接收重传的第一TB,然后将接收到重传的数据(如重传的第一上行CI和重传的第一下行数据)与之前未正确接收的初传或重传的第一TB进行合并解调。这样,可以提升上行CI和下行数据解调的可靠性。
示例性的,假设网络设备向终端设备反馈上行CI的初传周期为40毫秒(ms),一个无线帧包括10个1ms的子帧,因此40ms的初传周期即以4个无线帧为初传周期。网络设备仅在无线帧中的第X号子帧,且每隔4个无线帧向终端设备初传新的上行CI。终端设备在一无线帧的第X号子帧接收到DCI中还包括了HARQ标识,该HARQ标识指示本次传输的TB中包括的下行数据对应的HARQ ID为Y,用户通过该HARQ标识,得知本次传输的上行CI将与HARQ标识为Y的下行数据绑定,即该上行CI会一直与HARQ标识为Y的下行数据绑定传输,直至两者都被正确接收。
S901、当第一HARQ信息为ACK时,网络设备在第二初传子帧,向终端设备初传第二TB,第二TB中包括第二上行CI和第二下行数据,第二初传子帧是第一初传子帧的下一个初传子帧。
其中,本申请实施例中的第二上行CI与第一上行CI不同,第二下行数据与第一下行数据也不相同。
需要说明的是,本申请实施例中,网络设备在一个初传子帧(第一初传子帧)初传第一TB后,如果在下一个初传子帧(如第二初传子帧)到达之前,接收到HARQ信息为NACK,则可以重传第一TB。也就是说,如果终端设备在第一初传子帧和第二初传子帧之间,接收到第一TB的NACK,则可以重传第一TB。例如,如图8所示,网络设备可以在子帧a与子帧b之间重传TB-1,在子帧b与子帧c之间重传TB-2,在子帧c与子帧d之间重传TB-3。如图9所示,如果在子帧a与子帧b之间接收到TB-1的NACK,网络设备则可以在子帧x重传TB-1。如图10所示,如果在子帧a与子帧b之间接收到TB-1的NACK,网络设备则可以在子帧x重传TB-1,在子帧y重传TB-1。其中,如果终端设备在第一初传子帧和第二初传子帧之间,接收到第一TB的ACK,则可以在第二初传子帧初传第二TB。例如,如图9所示,如果在子帧a与子帧b之间接收到TB-1的ACK,网络设备则可以在子帧b初传TB-2。
但是,由于上行CI随时会发生变化,在第一初传子帧和第二初传子帧这段时间内,上行CI的变化可能会超过一定阈值,如果在第二初传子帧,终端设备还是没有正确接收第一TB,网络设备则可以停止重传第一TB,而是传输包括第二上行CI(即新的上行CI)的第二TB。例如,如图10所示,如果在子帧b与子帧c之间,网络设备接收到终端设备发送的TB-1的NACK,网络设备可以不重传TB-1;但是,如果在子帧b与子帧c之间,网络设备接收到终端设备发送的TB-2的NACK,网络设备可以在子帧z重传TB-2。
在上述S901之后,终端设备可以向网络设备反馈第二HARQ信息,该第二HARQ信息指示第二TB是否正确接收。其中,本申请实施例中,网络设备向终端设备传输第二TB的方法与网络设备向终端设备传输第一TB的方法类似,终端设备向网络设备反馈第二HARQ信息的方法与终端设备向网络设备传输第二HARQ信息的方法类似,本申请实施例这里不再赘述。
本申请实施例提供的一种信息传输方法,网络设备可以将上行CI承载于PDSCH中传输的TB中向终端设备传输,终端设备可以基于PDSCH的HARQ机制,向网络设备反馈用于指示TB(包括承载在TB中的上行CI)是否正确接收的HARQ信息。如此,网络设备便可以在HARQ信息为NACK时,重传上述承载有上行CI的TB,可以提高网络设备向终端设备指示上行CI的成功率。
第一种应用场景的实现方式(2)与第一种应用场景的实现方式(1)不同的是,网络设备是非周期性的向终端设备发送(初传和重传)上行CI的。具体的,如图11所示,本申请实施例提供的一种信息传输方法包括S1101-S1105:
S1101、网络设备向终端设备发送第一DCI,第一DCI用于调度初传的第一TB,第一DCI中还包括HARQ标识和NDI,所述第一DCI还用于指示第一子帧是初传第一上行CI的子帧。
其中,第一TB中承载有第一上行CI和第一下行数据。上述第一DCI承载在PDCCH中。第一DCI中的HARQ标识和NDI可以用于唯一标识第一TB。此处的HARQ标识和NDI的详细介绍可以参考本申请实施例在S703中对HARQ标识和NDI的相关描述,本申请实施例这里不再赘述。
本申请实施例中,网络设备可以通过在第一DCI中增加一个特殊的比特来指示传输第一TB的第一子帧是否为初传上传CI的子帧。例如,当该特殊的比特为1时,表示对应的子帧为初传上传CI的子帧,当该特殊的比特为0时,表示对应的子帧不是初传上传CI的子帧。
S1102、网络设备在第一子帧,向终端设备初传第一TB,该第一TB中包括第一上行CI和第一下行数据。
本申请实施例中,网络设备可以在上行CI的变化超过预设阈值时,立即向终端设备初传当前的上行CI。例如,当网络设备确定上行CI的变化超过预设阈值时,可以执行S1101向终端设备发送用于调度当前上行CI(即第一上行CI)的第一DCI,然后将第一上行CI和第一下行数据(即待传输的下行数据)绑定在一起承载在第一TB中向终端设备传输。
S1103、终端设备接收网络设备发送的第一DCI。
其中,终端设备可以根据第一DCI的指示,确定第一子帧是初传第一上行CI的子帧,然后执行S1104在第一子帧接收网络设备发送的第一TB。并且,终端设备还可以根据第一DCI中包括的HARQ标识,确定出第一TB中承载的第一下行数据的块号。
S1104、终端设备在第一子帧接收网络设备发送的第一TB。
其中,终端设备可以根据第一DCI的调度,在第一DCI所指示的第一子帧接收网络设备发送的第一TB。
S1105、终端设备从第一TB中获取第一上行CI和第一下行数据。
第一DCI中还可以包括PDSCH上传输的TB的TBS,终端设备可以根据第一DCI所指示的TBS,从第一TB中获取第一上行CI和第一下行数据。
需要说明的是,本申请实施例中的TBS,以及终端设备根据该TBS从第一TB中获取第一上行CI和第一下行数据的方法可以参考上述实现方式(1)中的相关描述, 本申请实施例这里不再赘述。
可以理解,终端设备可能会正确接收上述第一TB,也可能不能正确接收第一TB。无论终端设备是否正确接收第一TB,终端设备都会向网络设备反馈第一HARQ信息,该第一HARQ信息指示第一TB是否正确接收。具体的,在S1105之后,本申请实施例的方法还可以包括S1106:
S1106、终端设备向网络设备发送第一HARQ信息,第一HARQ信息指示第一TB是否正确接收。
S1107、网络设备接收终端设备发送的第一HARQ信息。
其中,当第一TB未正确接收时,该第一HARQ信息为NACK,网络设备向终端设备重传第一TB;当第一TB正确接收时,该第一HARQ信息为ACK,网络设备则可以开始传输新的上行CI。
需要说明的是,与上述实现方式(1)中不同的是,在实现方式(2)中,初传上传CI的子帧以及重传上行CI的子帧均是由网络设备通过物理层信令指示的。具体的,网络设备可以通过在第一DCI中增加一个特殊的比特来指示传输第一TB的第一子帧是否为初传上传CI的子帧;网络设备可以通过物理层信令中DCI包括的HARQ ID和NDI,向终端设备指示重传第一TB的子帧。具体的,本申请实施例的方法还包括S1201-S1204:
S1201、网络设备确定第一HARQ信息为NACK。
S1202、网络设备向终端设备发送第二DCI,第二DCI用于调度重传的第一TB,第二DCI中还包括HARQ标识和NDI。
S1203、网络设备向终端设备重传第一TB。
S1204、终端设备接收网络设备发送的第二DCI,确定重传第一TB的子帧,并在确定子帧接收重传的第一TB。
本申请实施例中S1201-S1204的具体描述可以参考实现方式(1)中对S801-S803的详细介绍,本申请实施例这里不再赘述。
S1301、网络设备确定第一HARQ信息为ACK,网络设备停止重传第一TB。
S1302、网络设备在上行CI的变化超过预设阈值时,在第二子帧向终端设备初传第二TB,第二TB中包括第二上行CI和第二下行数据。
其中,第二子帧是网络设备确定上行CI的变化超过预设阈值时,可以用于传输下行数据的子帧。第二上行CI是上行CI的变化超过预设阈值时,网络设备所获取到的上行CI。其中,本申请实施例中的第二上行CI与第一上行CI不同,第二下行数据与第一下行数据也不相同。
本申请实施例中,无论网络设备是否接收到第一上行CI的ACK,当上行CI的变化超过预设阈值时,网络设备都会向终端设备初传第二TB。
需要说明的是,本申请实施例对S1301和S1302执行的先后顺序不作限制,可以先执行S1301,再执行S1302;也可以先执行S1302,再执行S1301,本申请实施例对此不做限制。并且,本申请实施例对S1302与S1103-S1107执行的先后顺序不作限制,可以先执行S1103-S1107,再执行S1302;也可以先执行S1302,再执行S1103-S1107,本申请实施例对此不做限制。
需要说明的是,如果网络设备在初传第二TB之前,接收到第一HARQ信息为NACK(即指示第一上行CI和第一下行数据中至少一个未正确接收),则可以重传第一TB。例如,如图12所示,网络设备在子帧a初传TB-1之后,在子帧b初传TB-2之前,如果接收到TB-1的NACK,网络设备都可以重传TB-1,如网络设备在子帧x重传TB-1。
本申请实施例提供的一种信息传输方法,网络设备可以将上行CI承载于PDSCH中传输的TB中向终端设备传输,终端设备可以基于PDSCH的HARQ机制,向网络设备反馈用于指示TB(包括承载在TB中的上行CI)是否正确接收的HARQ信息。如此,网络设备便可以在HARQ信息为NACK时,重传上述承载有上行CI的TB,可以提高网络设备向终端设备指示上行CI的成功率。
在第一种应用场景的实现方式(3)和实现方式(4)中,网络设备可以将上行CI承载于物理下行共享信道PDSCH上,该PDSCH中还包括TB;但是,与第一种应用场景的实现方式(1)和实现方式(2)不同的是,上行CI不承载于任何TB上。
如图13所示,网络设备可以分别对下行数据和上行CI进行编码(如Turto coding),并对下行数据和上行CI进行速率匹配(Rate Matching)和调制,然后将调制后的下行数据和上行CI混合(Mux)起来发送。其中,本申请实施例中,网络设备对下行数据和上行CI进行速率匹配的具体方式,可以参考本申请实施例对图4所示的速率匹配方式的具体描述,本申请实施例这里不再赘述。
在第一种应用场景的实现方式(3),网络设备非周期性的向终端设备传输(初传和重传)上行CI。具体的,如图14所示,本申请实施例提供的一种信息传输方法包括S1401-S1406:
S1401、网络设备向终端设备发送第一DCI,该第一DCI用于调度初传的第一上行CI,该第一上行CI不承载在任何TB中,第一DCI还用于指示用于传输第一上行CI的第一子帧,所述第一DCI还用于指示该第一上行CI是初传的上行CI。
本申请实施例的第一种应用场景的实现方式(3)与实现方式(1)相与,物理层信令(即DCI)中需要额外承载两个比特的信息,一个比特用于指示用于传输上行CI的子帧,另一个比特用于指示该上行CI是初传的上行CI或者重传的上行CI。与实现方式(2)相与,物理层信令(即DCI)中需要额外承载1个比特的信息,这一个比特用于指示用于传输上行CI的子帧。
S1402、网络设备在第一子帧,向终端设备初传第一上行CI。
S1403、终端设备接收网络设备发送的第一DCI。
其中,终端设备可以根据第一DCI的指示,确定第一子帧是初传第一上行CI的子帧,然后执行S1404在第一子帧接收网络设备发送的第一上行CI。并且,终端设备还可以根据第一DCI的指示,确定第一子帧上传输的第一上行CI是初传的上行CI。
S1404、终端设备接收在第一子帧接收网络设备发送的第一上行CI。
其中,终端设备可以根据第一DCI的调度,在第一DCI所指示的第一子帧接收网络设备发送的第一上行CI。
可以理解,终端设备可能会正确接收上述第一上行CI,也可能不能正确接收第一 上行CI。无论终端设备是否正确接收第一上行CI,终端设备都会向网络设备反馈第一HARQ信息,该第一HARQ信息指示第一上行CI是否正确接收。具体的,在S1404之后,本申请实施例的方法还可以包括S1405:
S1405、终端设备向网络设备发送第一HARQ信息,第一HARQ信息指示第一上行CI是否正确接收。
可选的,终端设备可以在预设的、专门用于传输上行CI的HARQ信息的PUCCH资源上,向网络设备反馈承载在PDSCH的上行CI的HARQ信息。可以理解,由于网络设备向终端设备发送上行CI的频率较低;因此,为了降低上行CI的HARQ信息对PUCCH资源的占用,多个终端设备可以复用一个上述预设的PUCCH资源。
需要说明的是,终端设备在专用的PUCCH资源上,向网络设备反馈上行CI的HARQ信息的方案,仅限于数据采用单码字传输时使用。现有PUCCH格式1a支持1比特HARQ信息反馈,PUCCH格式1b支持2比特HARQ信息反馈,PUCCH格式1a和PUCCH格式1b分别对应1个码字传输和2个码字传输时的场景。当网络设备调度单码字传输时,终端设备可以采用PUCCH格式1b中剩余的另一个bit传输上行CI的HARQ信息。另外,即使网络设备为终端设备调度了2个码字,终端设备也可以采用HARQ Bundling(也称为HARQ-ACK Bundling或者ACK/NACK Bundling))技术,将两个HARQ信息相与,合为一个进行反馈。其中,采用HARQ Bundling技术是为了应对上行覆盖受限的问题。也就是说,由于终端设备没有反馈2比特信息的能力;因此,HARQ Bundling技术可以只反馈1比特信息。其中,在这种情况下,上行CI的HARQ信息只可以参与Bundling,而不能作为一个单独比特的形式存在。
可选的,终端设备还可以将上行CI的HARQ信息与PDSCH上传输的TB的HARQ信息进行Bundling。
S1406、网络设备接收终端设备发送的第一HARQ信息。
S1407、网络设备确定第一HARQ信息为NACK。
其中,网络设备在确定第一HARQ信息为NACK时,可以执行S1408-S1410:
S1408、网络设备向终端设备发送第二DCI,该第二DCI用于调度重传的第一上行CI,该第二DCI还用于指示用于重传第一上行CI的第二子帧,该第二DCI还用于指示该第一上行CI是重传的上行CI。
S1409、网络设备在第二子帧向终端设备重传第一上行CI。
其中,重传的第一上行CI也承载在PDSCH上,但不承载于任一TB中。
S1410、终端设备接收网络设备发送的第二DCI,确定重传第一上行CI的子帧,并在确定的子帧接收重传的第一上行CI。
S1411、网络设备确定第一HARQ信息为ACK,停止重传第一TB。
其中,网络设备在确定第一HARQ信息为ACK时,可以执行S1412:
S1412、网络设备在上行CI的变化超过预设阈值时,在第二子帧向终端设备初传第二上行CI,第二上行CI承载在PDSCH上,但不承载于任一TB中。
其中,第二子帧是网络设备确定上行CI的变化超过预设阈值时,可以用于传输下行数据的子帧。第二上行CI是上行CI的变化超过预设阈值时,网络设备所获取到的上行CI。其中,本申请实施例中的第二上行CI与第一上行CI不同。
本申请实施例中,无论网络设备是否接收到第一上行CI的ACK,当上行CI的变化超过预设阈值时,网络设备都会向终端设备初传第二上行CI。
需要说明的是,本申请实施例对S1411和S1412执行的先后顺序不作限制,可以先执行S1411,再执行S1412;也可以先执行S1412,再执行S1411,本申请实施例对此不做限制。
本申请实施例提供的一种信息传输方法,网络设备可以将上行CI承载于PDSCH上向终端设备传输,终端设备可以基于PDSCH的HARQ机制,在预设专用的PUCCH资源上向网络设备反馈用于指示上行CI是否正确接收的HARQ信息。如此,网络设备便可以在HARQ信息为NACK时,在PDSCH上重传上述上行CI,可以提高网络设备向终端设备指示上行CI的成功率。
在第一种应用场景的实现方式(4),网络设备周期性的向终端设备传输(初传和重传)上行CI。具体的,如图15所示,本申请实施例提供的一种信息传输方法包括S1501-S1506:
S1501、网络设备通过高层信令,向终端设备指示初传上行CI的子帧和重传上行CI的子帧。
其中,本申请实施例中“初传上行CI的子帧”是指承载有初传(即第一次传输)的上行CI的子帧。网络设备可以通过高层信令向终端设备指示初传子帧偏移量T1和初传传输周期P1,并指示满足(K*NF+Index-T1)mod(P1)=0的子帧为初传上行CI的子帧,即满足(K*NF+Index-T1)mod(P1)=0的子帧上传输有初传的上行CI。其中,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数(例如,K=10),Index为子帧的索引号。
本申请实施例中“重传上行CI的子帧”是指承载有重传的上行CI的子帧。网络设备可以通过高层信令向终端设备指示重传子帧偏移量T2和重传传输周期P2,并指示满足(K*NF+Index-T2)mod(P2)=0的子帧为重传上行CI的子帧,即满足(K*NF+Index-T2)mod(P2)=0的子帧上传输有重传的上行CI。其中,%为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数(例如,K=10),Index为子帧的索引号。
需要说明的是,本申请实施例中的周期性初传是指:为了适应上行CI的变化,网络设备每间隔一定的时间(如M个子帧)向终端设备初传新的上行CI。例如,如图16所示,用于初传上行CI-1的子帧a与用于初传上行CI-2的子帧b之间间隔的时间为L1,用于初传上行CI-2的子帧b与用于初传上行CI-3的子帧c之间间隔的时间亦为L1。本申请实施例中的周期性重传是指:在初传一个上行CI之后,每间隔一定时间(如N个子帧)向终端设备重传该上行CI,直至初传新的上行CI的子帧到达或者接收到ACK。例如,如图16所示,网络设备在子帧a初传上行CI-1后,可以在与子帧a间隔L2的子帧1重传上行CI-1,在与子帧1间隔L2的子帧2重传上行CI-1,在与子帧2间隔L2的子帧3重传上行CI-1。
例如,假设图16所示的子帧a、子帧b和子帧c为满足(K*NF+Index-T1)mod(P1)=0的子帧;那么,网络设备则可以在子帧a、子帧b和子帧c分别初 传不同的上行CI。需要说明的是,每个初传上行CI的子帧上初传的上行CI不同。例如,子帧a上初传的上行CI-1、子帧b上初传的上行CI-2,以及子帧c上初传的上行CI-3均不相同。
假设图16所示的子帧1-子帧5为满足(K*NF+Index-T2)mod(P2)=0的子帧;那么,网络设备则可以在子帧1、子帧2和子帧3等子帧重传上行CI-1,在子帧4和子帧5等子帧重传上行CI-2。其中,网络设备在初传新的上行CI之后,则不会再重传以往的上行CI。例如,如图16所示,当网络设备在子帧b初传上行CI-2之后,则会载重传上行CI-1。在子帧b或者子帧b之后,即使网络设备接收到上行CI-1的NACK,网络设备也不会重传上行CI-1。并且,网络设备在接收到一个上行CI的ACK之后,即使重传该上行CI的周期到达,网络设备也不会重传该上行CI。例如,如图17所示,网络设备在子帧a初传上行CI-1,按照重传周期在子帧1和子帧2重传上行CI-1后,接收到终端设备发送的上行CI-1的ACK,那么在重传上行CI-1的子帧(包括子帧3),网络设备都不会再重传上行CI-1。
S1502、终端设备根据高层信令,确定初传上行CI的子帧和重传上行CI的子帧。
终端设备可以接收网络设备发送的高层信令,并根据高层信令指示的初传子帧偏移量T1和初传传输周期P1,以及上行CI的初传子帧满足的条件(K*NF+Index-T1)mod(P1)=0,确定满足(K*NF+Index-T1)mod(P1)=0的子帧为初传上行CI的子帧;根据高层信令指示的重传子帧偏移量T2和重传传输周期P2,以及上行CI的重传子帧满足的条件(K*NF+Index-T2)mod(P2)=0,确定满足(K*NF+Index-T2)mod(P2)=0的子帧为重传上行CI的子帧。
可以理解,由于高层信令的可靠性远高于物理层信令;因此,网络设备通过高层信令,向终端设备指示初传和重传上行CI的子帧,可以提高网络设备向终端设备指示初传和重传上行CI的子帧的成功率。
可选的,本申请实施例中,上述初传上行CI的子帧和重传上行CI的子帧也可以是网络设备和终端设备中预定义的,而不需要网络设备向终端设备指示。即上述S701-S702是可选的。
本申请实施例中,以初传第一上行CI的子帧为第一初传子帧,重传第一上行CI的子帧为第一重传子帧,初传第二上行CI的子帧为第二初传子帧,重传第二上行CI的子帧为第二重传子帧为例,对本申请实施例的方法进行说明。
S1503、网络设备在第一初传子帧向终端设备初传第一上行CI。
其中,网络设备在向终端设备初传第一上行CI之前,还会向终端设备发送用于调度初传的第一上行CI的DCI。
S1504、终端设备在第一初传子帧接收网络设备初传的第一上行CI。
可以理解,终端设备可能会正确接收上述第一上行CI,也可能不能正确接收第一上行CI。无论终端设备是否正确接收第一上行CI,终端设备都会向网络设备反馈第一HARQ信息,该第一HARQ信息指示第一上行CI是否正确接收。具体的,在S1504之后,本申请实施例的方法还可以包括S1505:
S1505、终端设备向网络设备发送第一HARQ信息,第一HARQ信息指示第一上行CI是否正确接收。
需要说明的是,终端设备向网络设备反馈第一HARQ信息的具体方法可以参考S1405中的详细描述,本申请实施例这里不再赘述。
S1506、网络设备接收终端设备发送的第一HARQ信息。
其中,当第一上行CI未正确接收时,该第一HARQ信息为NACK,网络设备向终端设备重传第一上行CI;当第一上行CI正确接收时,该第一HARQ信息为ACK,网络设备则可以开始停止重传第一上行CI,并在第二初传子帧初传第二上行CI。
S1507、当第一HARQ信息为NACK时,网络设备在第一重传子帧向终端设备重传第一上行CI。
其中,网络设备在向终端设备重传第一上行CI之前,还会向终端设备发送用于调度重传的第一上行CI的DCI。
S1508、当第一HARQ信息为ACK时,网络设备停止重传第一上行CI,并在第二初传子帧向终端设备初传第二上行CI。
其中,网络设备在向终端设备初传第二上行CI之前,还会向终端设备发送用于调度初传的第二上行CI的DCI。
本申请实施例提供的一种信息传输方法,网络设备可以将上行CI承载于PDSCH上向终端设备传输,终端设备可以基于PDSCH的HARQ机制,在预设专用的PUCCH资源上向网络设备反馈用于指示上行CI是否正确接收的HARQ信息。并且,网络设备可以周期性的在PDSCH向终端设备初传新的上行CI,周期性的向终端设备重传上行CI,并在HARQ信息为ACK时,停止重传上行CI,可以提高网络设备向终端设备指示上行CI的成功率。
需要说明的是,本申请实施例中仅以用于传输第一控制信息(如上行CI)的资源在时域上划分为多个时间单元,一个时间单元包括一个或多个子帧,网络设备和终端设备在各个子帧传输第一控制信息为例,对本申请实施例的方法进行说明,并不表示本申请实施例中网络设备和终端设备用于传输第一控制信息的资源在时域上划分的多个时间单元中,每个时间单元的长度仅可以设定为一个或多个子帧。本申请实施例中,网络设备和终端设备用于传输第一控制信息的资源在时域上划分的多个时间单元中,每个时间单元的长度可以任意设定,本申请实施例并未特别限定。其中,本申请实施例对时间单元的详细描述可以参考本申请实施例对术语“时域上的时间单元”的详细介绍,这里不再赘述。
可以理解的是,上述第一设备和第二设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述终端和服务器等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在 一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,如图18所示,本申请实施例提供一种设备1800,该设备1800包括:接收单元1801和发送单元1802。
第一种情况,本申请实施例这里以设备1800是上述方法实施例中的第一设备,介绍设备1800中的各个单元模块:
接收单元1801用于支持设备1800执行上述方法实施例中的S502,S705,S706,S803,S1103,S1104,S1204,S1403,S1404,S1410,S1504,和/或用于本文所描述的技术的其它过程;发送单元1802用于支持设备1800执行上述方法实施例中的S503、S701,S708,S1106,S1405,S1505,和/或用于本文所描述的技术的其它过程。
进一步的,上述设备1800还可以包括:第一确定单元和第二确定单元。该第一确定单元用于支持设备1800执行上述方法实施例中的S702,S1502,和/或用于本文所描述的技术的其它过程。该第二确定单元用于支持设备1800确定上行CI的大小,和/或用于本文所描述的技术的其它过程。
进一步的,上述设备1800还可以包括:获取单元。该获取单元用于支持设备1800执行上述方法实施例中的S707,S1105,和/或用于本文所描述的技术的其它过程。
当然,上述设备1800包括但不限于上述所列举的单元模块。例如,该设备1800还可以包括用于保存第一控制信息的存储单元。并且,上述功能单元的具体所能够实现的功能也包括但不限于上述实例所述的方法步骤对应的功能,设备1800的其他单元的详细描述可以参考其所对应方法步骤的详细描述,本申请实施例这里不再赘述。
在采用集成单元的情况下,上述第一确定单元、第二确定单元和获取单元等可以集成在一个处理模块中实现,上述接收单元1801和发送单元1802可以是第一设备的RF电路,上述存储单元可以是第一设备的存储模块。
图19示出了上述实施例中所涉及的设备的一种可能的结构示意图。该设备1900包括:处理模块1901、存储模块1902和通信模块1903。
该处理模块1901用于对设备1900进行控制管理。该存储模块1902,用于保存设备1900的程序代码和数据。通信模块1903用于与其他设备通信。如通信模块用于接收或者向其他设备发送的数据。
其中,处理模块1901可以是处理器或控制器,例如可以是CPU,通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1903可以是收发器、收发电路或通信接口等。存储模块1902可以是存储器。
当处理模块1901为处理器(如图3所示的处理器31和处理器35),通信模块1904为RF电路(如图3所示的通信接口33),存储模块1902为存储器(如图3所示的存 储器32)时,本申请所提供的设备可以为图3所示的UE。其中,上述处理器、通信接口和存储器可以通过总线耦合在一起。
第二种情况,本申请实施例这里以设备1800是上述方法实施例中的第二设备,介绍设备1800中的各个单元模块:
接收单元1801用于支持设备1800执行上述方法实施例中的S504,S709,S1107,S1406,S1506,和/或用于本文所描述的技术的其它过程;发送单元1802用于支持设备1800执行上述方法实施例中的S501,S505,S506,S701,S703,S704,S801,S802,S901,S1101,S1102,S1202,S1203,S1302,S1401,S1402,S1408,S1409,S1412,S1501,S1503,S1507,S1508中“初传第二上行CI”的操作,和/或用于本文所描述的技术的其它过程。
进一步的,上述设备1800还可以包括确定单元。该确定单元用于支持设备1800执行上述方法实施例中的S1201,S1301,S1407,S1411,和/或用于本文所描述的技术的其它过程。
当然,在第二种情况下,上述设备1800包括但不限于上述所列举的单元模块。例如,该设备1800还可以包括用于保存第一控制信息的存储单元。并且,上述功能单元的具体所能够实现的功能也包括但不限于上述实例所述的方法步骤对应的功能,设备1800的其他单元的详细描述可以参考其所对应方法步骤的详细描述,本申请实施例这里不再赘述。
在采用集成单元的情况下,上述确定单元可以处理模块中实现,上述接收单元1801和发送单元1802可以是第二设备的RF电路,上述存储单元可以是第二设备的存储模块。该第二设备可以为图19所示的设备1900。当处理模块1901为处理器(如图2所示的处理器21和处理器25),通信模块1904为RF电路(如图2所示的通信接口23),存储模块1902为存储器(如图2所示的存储器22)时,本申请所提供的设备可以为图2所示的基站。其中,上述处理器、通信接口和存储器可以通过总线耦合在一起。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,该设备执行图5、图7、图11、图14和图15中任一附图中的相关方法步骤实现上述实施例中的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图5、图7、图11、图14和图15中任一附图中的相关方法步骤实现上述实施例中的方法。
其中,本申请提供的设备1800、设备1900、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种信息传输方法,其特征在于,包括:
    第一设备接收第二设备发送的第一控制信息;
    所述第一设备发送接收状态信息,所述接收状态信息指示所述第一控制信息是否正确接收。
  2. 根据权利要求1所述的方法,其特征在于,所述第一控制信息承载于传输块TB中,所述TB中还包括下行数据。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据高层信令或物理层信令或预定义,确定初传所述第一控制信息的子帧;
    其中,所述TB是由第二控制信息调度的,所述第二控制信息为下行控制信息DCI,所述DCI中还包括混合自动重传请求HARQ标识和新数据指示NDI,所述HARQ标识和所述NDI用于指示重传所述第一控制信息的子帧。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备根据高层信令或预定义,确定初传所述第一控制信息的子帧,包括:
    所述第一设备根据高层信令或预定义,确定子帧偏移量T和传输周期P;
    所述第一设备确定满足(K*NF+Index-T)mod(P)=0的子帧为初传所述第一控制信息的子帧;
    其中,mod为取模运算符号,K为一个无线帧中包含的子帧个数,NF为子帧所在的无线帧号,Index为子帧的索引号。
  5. 根据权利要求2-4中任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据高层信令或物理层信令,确定所述第一控制信息的大小。
  6. 根据权利要求1所述的方法,其特征在于,所述第一控制信息承载于物理下行共享信道PDSCH上,所述PDSCH中还包括TB,所述第一控制信息不承载于任何TB上。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据物理层信令,确定传输所述第一控制信息的子帧,所述物理层信令还指示所述第一控制信息是初传的控制信息或者重传的控制信息。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述接收状态信息为HARQ信息,所述第一控制信息为上行信道信息CI。
  9. 一种信息传输方法,其特征在于,包括:
    第二设备向第一设备发送第一控制信息;
    所述第二设备接收所述第一设备发送的接收状态信息,所述接收状态信息指示所述第一控制信息是否正确接收。
  10. 根据权利要求9所述的方法,其特征在于,所述第一控制信息承载于传输块TB中,所述TB中还包括下行数据。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二设备通过高层信令或物理层信令,向所述第一设备指示初传所述第一控 制信息的子帧;
    所述第二设备通过第二控制信息调度所述TB,所述第二控制信息为下行控制信息DCI,所述DCI中还包括混合自动重传请求HARQ标识和新数据指示NDI,所述HARQ标识和所述NDI用于指示重传所述第一控制信息的子帧。
  12. 根据权利要求11所述的方法,其特征在于,所述第二设备通过高层信令,向所述第一设备指示初传所述控制信息的子帧,包括:
    所述第二设备通过高层信令,向所述第一设备指示子帧偏移量T和传输周期P;
    所述第二设备在满足(K*NF+Index-T)mod(P)=0的子帧,向所述第一设备初传所述第一控制信息,其中,所述第二设备在满足(10*NF+Index-T)%P=0的不同子帧所传输的第一控制信息不同;
    其中,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数,Index为子帧的索引号。
  13. 根据权利要求10-12中任意一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备通过高层信令,向所述第一设备指示所述第一控制信息的大小。
  14. 根据权利要求9所述的方法,其特征在于,所述第一控制信息承载于物理下行共享信道PDSCH上,所述PDSCH中还包括TB,所述第一控制信息不承载于任何TB上。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第二设备通过根据物理层信令,向所述第一设备指示传输所述第一控制信息的子帧以及传输指示信息,所述传输指示信息用于指示所述第一控制信息是初传的控制信息或者重传的控制信息。
  16. 根据权利要求9-15中任意一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述接收状态信息为HARQ信息,所述控制信息为上行信道信息CI。
  17. 一种设备,其特征在于,所述设备是第一设备,所述设备包括:处理器、存储器和通信接口;所述存储器和所述通信接口与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述存储器包括非易失性存储介质,当所述处理器执行所述计算机指令时,
    所述通信接口,用于接收第二设备发送的第一控制信息;发送接收状态信息,所述接收状态信息指示所述通信接口是否正确接收所述第一控制信息。
  18. 根据权利要求17所述的设备,其特征在于,所述第一控制信息承载于传输块TB中,所述TB中还包括下行数据。
  19. 根据权利要求18所述的设备,其特征在于,所述通信接口,还用于接收所述第二设备发送的高层信令;
    所述处理器,还用于根据高层信令或物理层信令或预定义,确定初传所述第一控制信息的子帧;
    其中,所述TB是由第二控制信息调度的,所述第二控制信息为下行控制信息DCI,所述DCI中还包括混合自动重传请求HARQ标识和新数据指示NDI,所述HARQ标识和所述NDI用于指示重传所述第一控制信息的子帧。
  20. 根据权利要求19所述的设备,其特征在于,所述处理器,具体用于根据高层信令或预定义,确定子帧偏移量T和传输周期P;确定满足(K*NF+Index-T)mod(P)=0的子帧为初传所述第一控制信息的子帧;
    其中,mod为取模运算符号,K为一个无线帧中包含的子帧个数,NF为子帧所在的无线帧号,Index为子帧的索引号。
  21. 根据权利要求18-20中任意一项所述的设备,其特征在于,所述处理器,还用于根据高层信令或物理层信令,确定所述第一控制信息的大小。
  22. 根据权利要求17所述的设备,其特征在于,所述第一控制信息承载于物理下行共享信道PDSCH上,所述PDSCH中还包括TB,所述第一控制信息不承载于任何TB上。
  23. 根据权利要求21所述的设备,其特征在于,所述处理器,还用于根据物理层信令,确定传输所述第一控制信息的子帧,确定所述第一控制信息是初传的控制信息或者重传的控制信息。
  24. 根据权利要求17-23中任意一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述接收状态信息为HARQ信息,所述第一控制信息为上行信道信息CI。
  25. 一种设备,其特征在于,所述设备是第二设备,所述设备包括:处理器、存储器和通信接口;所述存储器和所述通信接口与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述存储器包括非易失性存储介质,当所述处理器执行所述计算机指令时,
    所述通信接口,用于向第一设备发送第一控制信息;接收所述第一设备发送的接收状态信息,所述接收状态信息指示所述第一控制信息是否正确接收。
  26. 根据权利要求25所述的设备,其特征在于,所述第一控制信息承载于传输块TB中,所述TB中还包括下行数据。
  27. 根据权利要求26所述的设备,其特征在于,所述通信接口,还用于向所述第一设备发送高层信令或物理层信令,所述高层信令或物理层信令用于指示初传所述第一控制信息的子帧;
    所述通信接口,还用于向所述第一设备发送第二控制信息,所述第二控制信息用于调度所述TB,所述第二控制信息为下行控制信息DCI,所述DCI中还包括混合自动重传请求HARQ标识和新数据指示NDI,所述HARQ标识和所述NDI用于指示重传所述第一控制信息的子帧。
  28. 根据权利要求27所述的设备,其特征在于,所述通信接口,还用于通过高层信令,向所述第一设备指示子帧偏移量T和传输周期P;
    所述处理器,还用于确定满足(K*NF+Index-T)mod(P)=0的子帧,mod为取模运算符号,NF为子帧所在的无线帧号,K为一个无线帧中包含的子帧个数,Index为子帧的索引号;
    所述通信接口,还用于在所述处理器确定的满足(K*NF+Index-T)%P=0的子帧,向所述第一设备初传所述第一控制信息。
  29. 根据权利要求26-28中任意一项所述的设备,其特征在于,所述通信接口, 还用于通过高层信令,向所述第一设备指示所述第一控制信息的大小。
  30. 根据权利要求25所述的设备,其特征在于,所述第一控制信息承载于物理下行共享信道PDSCH上,所述PDSCH中还包括TB,所述第一控制信息不承载于任何TB上。
  31. 根据权利要求30所述的设备,其特征在于,所述通信接口,还用于通过根据物理层信令,向所述第一设备指示传输所述第一控制信息的子帧以及传输指示信息,所述传输指示信息用于指示所述第一控制信息是初传的控制信息或者重传的控制信息。
  32. 根据权利要求25-31中任意一项所述的设备,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备,所述接收状态信息为HARQ信息,所述控制信息为上行信道信息CI。
  33. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在设备上运行时,使得所述设备执行如权利要求1-16中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-16中任一项所述的方法。
PCT/CN2018/074580 2018-01-30 2018-01-30 一种信息传输方法及设备 WO2019148324A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/074580 WO2019148324A1 (zh) 2018-01-30 2018-01-30 一种信息传输方法及设备
CN201880085889.4A CN111566961B (zh) 2018-01-30 2018-01-30 一种信息传输方法及设备
EP18903475.4A EP3720021A4 (en) 2018-01-30 2018-01-30 INFORMATION TRANSFER METHOD AND DEVICE
US16/941,983 US20200359387A1 (en) 2018-01-30 2020-07-29 Information transmission method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074580 WO2019148324A1 (zh) 2018-01-30 2018-01-30 一种信息传输方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/941,983 Continuation US20200359387A1 (en) 2018-01-30 2020-07-29 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2019148324A1 true WO2019148324A1 (zh) 2019-08-08

Family

ID=67477824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074580 WO2019148324A1 (zh) 2018-01-30 2018-01-30 一种信息传输方法及设备

Country Status (4)

Country Link
US (1) US20200359387A1 (zh)
EP (1) EP3720021A4 (zh)
CN (1) CN111566961B (zh)
WO (1) WO2019148324A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116114198A (zh) * 2020-11-24 2023-05-12 Oppo广东移动通信有限公司 传输方法、发送端设备和接收端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11831436B2 (en) * 2017-09-28 2023-11-28 Comcast Cable Communications, Llc HARQ feedback for grant-free transmission
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems
US11658776B2 (en) * 2019-11-08 2023-05-23 Semiconductor Components Industries, Llc Feedback and retransmission format of HARQ protocol
US20240064765A1 (en) * 2021-01-14 2024-02-22 Lenovo (Beijing) Limited Downlink control information feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065453A (zh) * 2009-09-30 2014-09-24 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
WO2017010477A1 (ja) * 2015-07-15 2017-01-19 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107294665A (zh) * 2016-04-01 2017-10-24 北京三星通信技术研究有限公司 Harq-ack信息的反馈方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011056043A2 (ko) * 2009-11-09 2011-05-12 엘지전자 주식회사 다중 안테나 전송 기법을 지원하기 위한 효율적인 제어정보 전송 방법 및 장치
US10306611B2 (en) * 2013-03-19 2019-05-28 Lg Electronics Inc. Method for enabling terminal to transmit and receive signal in wireless communications system and apparatus therefor
WO2016093618A1 (ko) * 2014-12-09 2016-06-16 엘지전자 주식회사 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
CN105357763A (zh) * 2015-11-02 2016-02-24 北京博信视通科技有限公司 一种时分双工系统中的通信方法和装置
CN107347002B (zh) * 2016-05-06 2021-11-12 北京三星通信技术研究有限公司 一种harq-ack反馈信息的传输方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065453A (zh) * 2009-09-30 2014-09-24 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
WO2017010477A1 (ja) * 2015-07-15 2017-01-19 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107294665A (zh) * 2016-04-01 2017-10-24 北京三星通信技术研究有限公司 Harq-ack信息的反馈方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720021A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116114198A (zh) * 2020-11-24 2023-05-12 Oppo广东移动通信有限公司 传输方法、发送端设备和接收端设备

Also Published As

Publication number Publication date
CN111566961A (zh) 2020-08-21
CN111566961B (zh) 2022-05-06
US20200359387A1 (en) 2020-11-12
EP3720021A4 (en) 2020-12-23
EP3720021A1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
US11032807B2 (en) Uplink control information transmission in overlapping time domain resource
EP3408959B1 (en) Systems and methods for determining harq-ack transmission timing for shortened tti
JP6192663B2 (ja) フィードバック情報を送受信するためのデバイス
JP6100902B2 (ja) キャリアアグリゲーションシステムにおけるack/nack及びチャネル状態情報の同時送信のための電力制御
CN105393485B (zh) 无线通信系统中的方法和节点
US10038526B2 (en) Wireless device, a network node and methods therein for transmitting control information in a D2D communication
TWI696360B (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
WO2019148324A1 (zh) 一种信息传输方法及设备
WO2017050078A1 (zh) 上行控制信息的发送、获取方法及装置
CN110291743A (zh) 用于在物理层帧上复用不同服务的抢占指示符和基于代码块组的重传技术
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
US11838129B2 (en) Hybrid automatic repeat request (HARQ) techniques for non-terrestrial networks
KR20190004261A (ko) Lte 네트워크의 물리 채널에서의 레이턴시 감소
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
WO2017132811A1 (zh) 上行信息传输的方法、装置
JP2020523841A (ja) フィードバック情報の送受信方法、装置及び通信システム
CN107113110A (zh) 控制信息的发送方法和通信设备
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
CN111435885B (zh) 用于传输数据的方法、通信设备和网络设备
WO2018228395A1 (zh) 一种控制信息发送、接收方法及装置
KR20200050838A (ko) 무선 통신 시스템에서 사이드링크 신호 송수신 방법 및 장치
US9031002B2 (en) Devices for sending and receiving feedback information
US20180241513A1 (en) Method for transmitting ack/nack in wireless communication system and apparatus using same
US9031090B2 (en) Devices for sending and receiving feedback information
US11108527B2 (en) CQI codepoint reinterpretation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018903475

Country of ref document: EP

Effective date: 20200701

NENP Non-entry into the national phase

Ref country code: DE