WO2019147546A1 - High capacity battery balancer - Google Patents

High capacity battery balancer Download PDF

Info

Publication number
WO2019147546A1
WO2019147546A1 PCT/US2019/014487 US2019014487W WO2019147546A1 WO 2019147546 A1 WO2019147546 A1 WO 2019147546A1 US 2019014487 W US2019014487 W US 2019014487W WO 2019147546 A1 WO2019147546 A1 WO 2019147546A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
issued
battery pack
power supplies
pack
Prior art date
Application number
PCT/US2019/014487
Other languages
French (fr)
Inventor
Kevin I. Bertness
Original Assignee
Midtronics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midtronics, Inc. filed Critical Midtronics, Inc.
Priority to DE112019000492.1T priority Critical patent/DE112019000492T5/en
Publication of WO2019147546A1 publication Critical patent/WO2019147546A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • an internal combustion engine 120 which operates using, for example, petroleum based fuel 122.
  • the engine 120 can be configured to directly mechanically drive the wheels 110 and/or an electric generator 122.
  • the electric generator 122 can be configured to charge the battery pack 102 and/or provide electrical power directly to electric motor 104.

Abstract

A battery pack maintenance device (200) for performing maintenance on battery packs (102) of hybrid and/or electrical vehicles (100) (referred herein generally as electric vehicles). In various embodiments, the device includes one or more loads (R1-R5) for connecting to a battery pack (102) for use in discharging the battery pack (102), and/or charging circuitry (PS1-PS3) for use in charging the battery pack (102).

Description

HIGH CAPACITY BATTERY BALANCER
BACKGROUND OF THE INVENTION
[0001] The present invention relates to electric vehicles of the types which use battery packs for storing electricity. More specifically, the present invention relates to maintenance of such battery packs.
[0002] Traditionally, automotive vehicles have used internal combustion engines as their power source. Petroleum as a source of power. However, vehicles which also store energy in batteries are finding widespread use. Such vehicle can provide increased fuel efficiency and can be operated using alternative energy sources.
[0003] Some types of electric vehicles are completely powered using electric motors and electricity. Other types of electric vehicles include an internal combustion engine. The internal combustion engine can be used to generate electricity and supplement the power delivered by the electric motor. These types of vehicles are known as“hybrid” electric vehicles.
[0004] Operation of an electric vehicle requires a source of electricity. Typically, electric vehicles store electricity in large battery packs which consist of a plurality of batteries. These batteries may be formed by a number of individual cells or may themselves be individual cells depending on the configuration of the battery and battery pack. The packs are large and replacement can be expensive.
[0005] It can be appreciated that batteries for electric vehicles are becoming ever larger in capacity. It is desired to create a service tool that can service these batteries in a short period of time, reduce the skill level of the technician required, and improve the quality of the service repair, while maintaining a cost effective solution. Further, the frequency of use of these tools is still rather low, so it is desirable to provide as much guidance as possible to the technician who may only perform these procedures every few months.
SUMMARY OF THE INVENTION
[0006] An apparatus for balancing charge of a battery in a battery pack includes a plurality of power supplies configured to be selectively coupled to the battery and a plurality of electrical loads configured to be electrically coupled to the battery. Test circuitry is configured to measure an amount of charge of the battery. Control circuitry selectively controls a voltage applied to the battery by the plurality of power supplies and a load applied to the battery by the plurality of electrical loads based upon a measured amount of charge of the battery.
[0007] A method and apparatus for repairing or testing a used battery pack from an electric vehicle includes optionally removing the battery pack from the vehicle. Batteries within the pack are balanced such that they have similar states of charge.
[0008] The present invention includes a battery pack maintenance device for performing maintenance on battery packs of hybrid and/or electrical vehicles (referred herein generally as electric vehicles). In various embodiments, the device includes one or more loads for connecting to a battery pack for use in discharging the battery pack, and/or charging circuitry for use in charging the battery pack. Input/output circuitry can be provided for communicating with circuitry of in the battery pack and/or circuitry of the vehicle.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] Figure 1 is a simplified block diagram of an electric vehicle.
[0010] Figure 2 is simplified schematic diagram of a battery pack for use in the electric vehicle of Figure 1.
[0011] Figure 3 is a block diagram of a device in accordance with one example embodiment of the present invention.
[0012] FIG. 4 is a perspective view of a battery balancer in accordance with one embodiment.
[0013] FIG. 5A is a simplified schematic diagram showing a high current parallel connection to a battery.
[0014] FIG. 5B is a simplified schematic diagram showing a high voltage series connection to a battery.
[0015] FIG. 6 is a perspective view of a cable used to a battery balancer to a battery of a vehicle.
[0016] FIG. 7 is a simplified schematic diagram showing discharge circuitry.
[0017] FIG. 8 is a diagram showing electrical connections connecting to a battery module within a battery pack. DET AILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0018] As discussed in the background section, battery packs used with electric vehicles are able to store large amounts of energy. The battery packs are large and difficult to work on and test because of the high voltages involved. Further, the battery packs are expensive. In one aspect, the present application recognizes that a single bad battery within the battery pack can reduce the capabilities of the overall battery pack. A bad battery, or batteries within a pack that are not balanced, can reduce the amount of energy the battery pack can store, reduce the rate at which the battery pack can be recharged and cause other batteries with in the battery pack to drain prematurely. As used herein, balanced refers to batteries that have similar states of charge and/or capacity.
[0019] In one aspect of the present invention, a battery pack is removed from the electric vehicle whereby maintenance can be performed on it. More specifically, individual batteries of the pack tested. A refurbished battery pack is made by preparing a new set of batteries for use in creating a refurbished battery pack. The new set of batteries is formed from used batteries from previously used battery pack(s) along with one or more additional batteries. The set of batteries used to form the refurbished battery pack are selected such that they have at least one test result which is similar to the others. The refurbished battery pack can then placed in an electric vehicle and be used as a source of power for the vehicle. The refurbished battery pack can also be made by balancing batteries within the pack using the power supply and/or resistive loads discussed herein.
[0020] Figure 1 is a simplified block diagram of an electric vehicle 100. Electric vehicle 100 can be configured to operate solely based upon electric power, or may include an internal combustion engine. Vehicle 100 includes a battery pack 102 and at least one electric motor 104. Vehicle electronics and control system 106 couples to the battery pack and electric motor and is configured to control their operation. Wheels 110 of vehicle 100 are configured to propel the vehicle in response to a mechanical input from electric motor 104. Electric motor 104 operates using energy drawn from the battery 102. In some configurations a regenerative braking system can be used in which a braking energy is recovered from the wheels 110 by the electric motor 104 or other equipment. The recovered energy can be used to recharge the battery pack 102. [0021] Figure 1 also shows optional components of vehicle 100. These optional components allow the vehicle 100 to operate as “hybrid” vehicle. In such a configuration, an internal combustion engine 120 is provided which operates using, for example, petroleum based fuel 122. The engine 120 can be configured to directly mechanically drive the wheels 110 and/or an electric generator 122. The electric generator 122 can be configured to charge the battery pack 102 and/or provide electrical power directly to electric motor 104.
[0022] The battery pack 102 is a critical component of the electric vehicle 100. Operation of the battery pack 102 will determine the efficiency of the vehicle, the overall range of the vehicle, the rate at which the battery pack 102 can be charged and the rate at which the battery pack 102 can be discharged.
[0023] Figure 2 is a simplified diagram of an example configuration of battery pack 102. In Figure 2, a plurality of individual batteries 140 are shown connected in series and parallel. Each of the individual batteries 140 may comprise a single cell or may comprise multiple cells connected in series and/or parallel. These may be removable battery modules formed by a single cell or a group of cells. If elements 140 are a group of cells, in some configurations individual connections may be available within the battery and used in accordance with the invention.
[0024] During the lifetime of vehicle 100, the battery pack 102 will degrade with time and use. This degradation may be gradual, or may occur rapidly based upon a failure of a component within the pack 102. When such a failure occurs, or when the pack has degraded sufficiently, the entire battery pack 102 is typically replaced. The battery pack 102 is one of the primary components of electric vehicle 100 and its replacement can be very expensive. In one aspect, the present invention is directed to performing maintenance on battery pack 102. The maintenance can be performed after the battery pack has failed, or prior to the failure of the battery pack. The maintenance can include balancing batteries within the pack.
[0025] In one aspect, the invention includes the recognition that the failure, degradation, or impending failure of battery pack 102 may be due to the failing or degrading of one or more of the individual batteries 140 within the pack 102. In such a case, the battery pack 102 can be refurbished or otherwise repaired by identifying the failed, failing, or degraded batteries 140 and replacing them with operable batteries 140. In another aspect, the present invention includes the recognition that the simple replacement of a faulty battery 140 in a battery pack 102 may not provide the optimum configuration for the repaired or refurbished battery pack 102. More specifically, a“new” battery 140 used to replace a“bad” battery 140 within the battery pack 102 will introduce a battery which is not balanced with respect to other batteries 140 in the pack 102. This unbalanced battery 140 may cause further deterioration in the battery pack 102. Thus, in one aspect, the present invention includes selecting batteries 140 which have a similar characteristic or measured parameter for replacing bad batteries 140 within a battery pack 102 as well as charging or discharging batteries to achieve balance.
[0026] In one aspect, the present invention provides a method and apparatus in which batteries 140 for use in battery packs 102 are sorted and selected for replacement based upon measured parameters. The measured parameters can be selected such that they are in agreement with one another within a desired range. Example parameters include static parameters in which a static property of a battery is measured using a static function as well as dynamic parameters in which a property of a battery is measured using a dynamic function. Example parameters include dynamic parameters such as conductance resistance, admittance, impedance, etc., as well as static equivalents. Load testing based parameters may also be employed. Other example parameters include battery capacitance, battery state of charge, battery voltage, and others.
[0027] Figure 3 is a simplified block diagram of a battery pack maintenance device 200 for performing maintenance on battery pack 102. Figure 3 shows one example of battery test circuitry, in Figure 3 maintenance device 200 is shown coupled to battery 140 having a positive terminal 202 and a negative terminal 204. A connection 206 is provided to terminal 202 and a similar connector 208 is provided to terminal 204. The connectors 204 and 206 are illustrated as Kelvin connectors, however, the invention is not limited to this configuration. Through connections 206 and 208, a forcing function 210 is coupled to battery 140. The forcing function applies a forcing function signal to the battery 140. The forcing function signal may have a time varying component and may be an active signal in which an electrical signal is injected into the battery or maybe a passive signal in which a current is drawn from the battery. Measurement circuitry 212 is configured to measure a response to the battery 140 to the applied forcing function signal from the forcing function 210. Measurement circuitry 212 provides a measurement signal to microprocessor 214. Microprocessor 214 operates in accordance with instructions stored in memory 220. Memory 220 may also be configured to contain parameters measured from battery 140. A user input/output circuitry 220 is provided for use by an operator. Further, the device 200 is configured to store data in database 220. The battery testing may be optionally performed in accordance with techniques pioneered by Midtronics, Inc. of Willowbrook, Illinois, and Dr. Keith S. Champlin, including for example, those discussed in U.S. Patent No. 3,873,911, issued March 25, 1975, to Champlin; U.S. Patent No. 3,909,708, issued September 30, 1975, to Champlin; U.S. Patent No. 4,816,768, issued March 28, 1989, to Champlin; U.S. Patent No. 4,825,170, issued April 25, 1989, to Champlin; U.S. Patent No. 4,881,038, issued November 14, 1989, to Champlin; U.S. Patent No. 4,912,416, issued March 27, 1990, to Champlin; U.S. Patent No. 5,140,269, issued August 18, 1992, to Champlin; U.S. Patent No. 5,343,380, issued August 30, 1994; U.S. Patent No. 5,572,136, issued November 5, 1996; U.S. Patent No. 5,574,355, issued November 12, 1996; U.S. Patent No. 5,583,416, issued December 10, 1996; U.S. Patent No. 5,585,728, issued December 17, 1996; U.S. Patent No. 5,589,757, issued December 31, 1996; U.S. Patent No. 5,592,093, issued January 7, 1997; U.S. Patent No. 5,598,098, issued January 28, 1997; U.S. Patent No. 5,656,920, issued August 12, 1997; U.S. Patent No. 5,757,192, issued May 26, 1998; U.S. Patent No. 5,821,756, issued October 13, 1998; U.S. Patent No. 5,831,435, issued November 3, 1998; U.S. Patent No. 5,871,858, issued February 16, 1999; U.S. Patent No. 5,914,605, issued June 22, 1999; U.S. Patent No. 5,945,829, issued August 31, 1999; U.S. Patent No. 6,002,238, issued December 14, 1999; U.S. Patent No. 6,037,751, issued March 14, 2000; U.S. Patent No. 6,037,777, issued March 14, 2000; U.S. Patent No. 6,051,976, issued April 18, 2000; U.S. Patent No. 6,081,098, issued June 27, 2000; U.S. Patent No. 6,091,245, issued July 18, 2000; U.S. Patent No. 6,104,167, issued August 15, 2000; U.S. Patent No. 6,137,269, issued October 24, 2000; U.S. Patent No. 6,163,156, issued December 19, 2000; U.S. Patent No. 6,172,483, issued January 9, 2001; U.S. Patent No. 6,172,505, issued January 9, 2001; U.S. Patent No. 6,222,369, issued April 24, 2001; U.S. Patent No. 6,225,808, issued May 1, 2001; U.S. Patent No. 6,249,124, issued June 19, 2001; U.S. Patent No. 6,259,254, issued July 10, 2001; U.S. Patent No. 6,262,563, issued July 17, 2001; U.S. Patent No. 6,294,896, issued September 25, 2001; U.S. Patent No. 6,294,897, issued September 25, 2001; U.S. Patent No. 6,304,087, issued October 16, 2001; U.S. Patent No. 6,310,481, issued October 30, 2001; U.S. Patent No. 6,313,607, issued November 6, 2001; U.S. Patent No. 6,313,608, issued November 6, 2001; U.S. Patent No. 6,316,914, issued November 13, 2001; U.S. Patent No. 6,323,650, issued November 27, 2001; U.S. Patent No. 6,329,793, issued December 11, 2001; U.S. Patent No. 6,331,762, issued December 18, 2001; U.S. Patent No. 6,332,113, issued December 18, 2001; U.S. Patent No. 6,351,102, issued February 26, 2002; U.S. Patent No. 6,359,441, issued March 19, 2002; U.S. Patent No. 6,363,303, issued March 26, 2002; U.S. Patent No. 6,377,031, issued April 23, 2002; U.S. Patent No. 6,392,414, issued May 21, 2002; U.S. Patent No. 6,417,669, issued July 9, 2002; U.S. Patent No. 6,424,158, issued July 23, 2002; U.S. Patent No. 6,441,585, issued August 17, 2002; U.S. Patent No. 6,437,957, issued August 20, 2002; U.S. Patent No. 6,445,158, issued September 3, 2002; U.S. Patent No. 6,456,045; U.S. Patent No. 6,466,025, issued October 15, 2002; U.S. Patent No. 6,465,908, issued October 15, 2002; U.S. Patent No. 6,466,026, issued October 15, 2002; U.S. Patent No. 6,469,511, issued November 22, 2002; U.S. Patent No. 6,495,990, issued December 17, 2002; U.S. Patent No. 6,497,209, issued December 24, 2002; U.S. Patent No. 6,507,196, issued January 14, 2003; U.S. Patent No. 6,534,993; issued March 18, 2003; U.S. Patent No. 6,544,078, issued April 8, 2003; U.S. Patent No. 6,556,019, issued April 29, 2003; U.S. Patent No. 6,566,883, issued May 20, 2003; U.S. Patent No. 6,586,941, issued July 1, 2003; U.S. Patent No. 6,597,150, issued July 22, 2003; U.S. Patent No. 6,621,272, issued September 16, 2003; U.S. Patent No. 6,623,314, issued September 23, 2003; U.S. Patent No. 6,633,165, issued October 14, 2003; U.S. Patent No. 6,635,974, issued October 21, 2003; U.S. Patent No. 6,696,819, issued February 24, 20144; U.S. Patent No. 6,707,303, issued March 16, 2004; U.S. Patent No. 6,737,831, issued May 18, 2004; U.S. Patent No. 6,744,149, issued June 1, 2004; U.S. Patent No. 6,759,849, issued July 6, 2004; U.S. Patent No. 6,781,382, issued August 24, 2004; U.S. Patent No. 6,788,025, filed September 7, 2004; U.S. Patent No. 6,795,782, issued September 21, 2004; U.S. Patent No. 6,805,090, filed October 19, 2004; U.S. Patent No. 6,806,716, filed October 19, 2004; U.S. Patent No. 6,850,037, filed February 1, 2005; U.S. Patent No. 6,850,037, issued February 1, 2005; U.S. Patent No. 6,871,151, issued march 22, 2005; U.S. Patent No. 6,885,195, issued April 26, 2005; U.S. Patent No. 6,888,468, issued May 3, 2005; U.S. Patent No. 6,891,378, issued May 10, 2005; U.S. Patent No. 6,906,522, issued June 14, 2005; U.S. Patent No. 6,906,523, issued June 14, 2005; U.S. Patent No. 6,909,287, issued June 21, 2005; U.S. Patent No. 6,914,413, issued July 5, 2005; U.S. Patent No. 6,913,483, issued July 5, 2005; U.S. Patent No. 6,930,485, issued August 16, 2005; U.S. Patent No. 6,933,727, issued August 23, 200; U.S. Patent No. 6,941,234, filed September 6, 2005; U.S. Patent No. 6,967,484, issued November 22, 2005; U.S. Patent No. 6,998,847, issued February 14, 2006; U.S. Patent No. 7,003,410, issued February 21, 2006; U.S. Patent No. 7,003,411, issued February 21, 2006; U.S. Patent No. 7,012,433, issued March 14, 2006; U.S. Patent No. 7,015,674, issued March 21, 2006; U.S. Patent No. 7,034,541, issued April 25, 2006; U.S. Patent No. 7,039,533, issued May 2, 2006; U.S. Patent No. 7,058,525, issued June 6, 2006; U.S. Patent No. 7,081,755, issued July 25, 2006; U.S. Patent No. 7,106,070, issued September 12, 2006; U.S. Patent No. 7,116,109, issued October 3, 2006; U.S. Patent No. 7,119,686, issued October 10, 2006; and U.S. Patent No. 7,126,341, issued October 24, 2006; U.S. Patent No. 7,154,276, issued December 26, 2006; U.S. Patent No. 7,198,510, issued April 3, 2007; U.S. Patent No. 7,363,175, issued April 22, 2008; U.S. Patent No. 7,208,914, issued April 24, 2007; U.S. Patent No. 7,246,015, issued July 17, 2007; U.S. Patent No. 7,295,936, issued November 13, 2007; U.S. Patent No. 7,319,304, issued January 15, 2008; U.S. Patent No. 7,363,175, issued April 22, 2008; U.S. Patent No. 7,398,176, issued July 8, 2008; U.S. Patent No. 7,408,358, issued August 5, 2008; U.S. Patent No. 7,425,833, issued September 16, 2008; U.S. Patent No. 7,446,536, issued November 4, 2008; U.S. Patent No. 7,479,763, issued January 20, 2009; U.S. Patent No. 7,498,767, issued March 3, 2009; U.S. Patent No. 7,501,795, issued March 10, 2009; U.S. Patent No. 7,505,856, issued March 17, 2009; U.S. Patent No. 7,545,146, issued June 9, 2009; U.S. Patent No. 7,557,586, issued July 7, 2009; U.S. Patent No. 7,595,643, issued September 29, 2009; U.S. Patent No. 7,598,699, issued October 6, 2009; U.S. Patent No. 7,598,744, issued October 6, 2009; U.S. Patent No. 7,598,743, issued October 6, 2009; U.S. Patent No. 7,619,417, issued November 17, 2009; U.S. Patent No. 7,642,786, issued January 5, 2010; U.S. Patent No. 7,642,787, issued January 5, 2010; U.S. Patent No. 7,656,162, issued February 2, 2010; U.S. Patent No. 7,688,074, issued March 30, 2010; U.S. Patent No. 7,705,602, issued April 27, 2010; U.S. Patent No. 7,706,992, issued April 27, 2010; U.S. Patent No. 7,710,119, issued May 4, 2010; U.S. Patent No. 7,723,993, issued May 25, 2010; U.S. Patent No. 7,728,597, issued June 1, 2010; U.S. Patent No. 7,772,850, issued August 10, 2010; U.S. Patent No. 7,774,151, issued August 10, 2010; U.S. Patent No. 7,777,612, issued August 17, 2010; US. Patent No. 7,791,348, issued September 7, 2010; U.S. Patent No. 7,808,375, issued October 5, 2010; U.S. Patent No. 7,924,015, issued April 12, 2011; U.S. Patent No. 7,940,053, issued May 10, 2011; U.S. Patent No. 7,940,052, issued May 10, 2011; U.S. Patent No. 7,959,476, issued June 14, 2011; U.S. Patent No. 7,977,914, issued July 12, 2011; U.S. Patent No. 7,999,505, issued August 16, 2011; U.S. Patent No. D643,759, issued August 23, 2011; U.S. Patent No. 8,164,343, issued April 24, 2012; U.S. Patent No. 8,198,900, issued June 12, 2012; U.S. Patent No. 8,203,345, issued June 19, 2012; U.S. Patent No. 8,237,448, issued August 7, 2012; U.S. Patent No. 8,306,690, issued November 6, 2012; U.S. Patent No. 8,344,685, issued January 1, 2013; US Patent No. 8,436,619, issued May 7, 2013; US Patent No. 8,442,877, issued May 14, 2013; U.S. Patent No. 8,493,022, issued July 23, 2013; U.S. Patent No. D687,727, issued August 13, 2013; U.S. Patent No. 8,513,949, issued August 20, 2013; U.S. Patent No. 8,674,654, issued March 18, 2014; U.S. Patent No. 8,674,711, issued March 18, 2014; U.S. Patent No. 8,704,483, issued April 22, 2014; U.S. Patent No. 8,738,309, issued May 27, 2014; U.S. Patent No. 8,754,653, issued June 17, 2014; U.S. Patent No. 8,872,516, issued October 28, 2014; U.S. Patent No. 8,872,517, issued October 28, 2014; US Patent No. 8,958,998, issued February 17, 2015; US Patent No. 8,963,550, issued February 24, 2015; US Patent No. 9,018,958, issued April 28, 2015; US Patent No. 9,052,366, issued June 9, 2015; US Patent No. 9,201,120, issued December 1, 2015; US Patent No. 9,229,062, issued January 5, 20126; US Patent No. 9,274,157, issued March 1, 2016; US Patent No. 9,312,575, issued April 12, 2016; US Patent No. 9,335,362, issued May 10, 2016; US Patent No. 9,425,487, issued August 23, 2016; US Patent No. 9,419,311, issued August 16, 2016; US Patent No. 9,496,720, issued November 15, 2016; US Patent No. 9,588,185, issued March 7, 2017; US Patent No. 9,923,289, issued March 20, 2018; US Patent No. 9,966,676, issued May 8, 2018; US Patent No. 10,046,649; U.S. Serial No. 09/780,146, filed February 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Serial No. 09/756,638, filed January 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Serial No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Serial No. 09/880,473, filed June 13, 2001; entitled BATTERY TEST MODULE; U.S. Serial No. 10/109,734, filed March 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Serial No. 10/263,473, filed October 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Serial No. 09/653,963, filed September 1, 2000, entitled SYSTEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Serial No. 10/174,110, filed June 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Serial No. 10/258,441, filed April 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Serial No. 10/681,666, filed October 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Serial no. 11/207,419, filed August 19, 2005, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTER/CHARGING, U.S. Serial No. 11/356,443, filed February 16, 2006, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Serial No. 12/697,485, filed February 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Serial No. 12/769,911, filed April 29, 2010, entitled STATIONARY BATTERY TESTER; U.S. Serial No. 13/098,661, filed May 2, 2011, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; U.S. Serial No. 13/152,711, filed June 3, 2011, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Serial No. 13/672,186, filed November 8, 2012, entitled BATTERY PACK TESTER; U.S. Serial No. 14/039,746, filed September 27, 2013, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; US Serial No. 14/204,286, filed March 11, 2014, entitled CURRENT CLAMP WITH JAW CLOSURE DETECTION; US Serial No. 14/565,689, filed December 10, 2014, entitled BATTERY TESTER AND BATTERY REGISTRATION TOOL; US Serial No. 14/799,120, filed July 14, 2015, entitled AUTOMOTIVE MAINTENANCE SYSTEM; US Serial No. 14/861,027, filed September 22, 2015, entitled CABLE CONNECTOR FOR ELECTRONIC BATTERY TESTER; US Serial No. 15/006,467, filed January 26, 2016, entitled ALTERNATOR TESTER; US Serial No. 15/017,887, filed February 8, 2016, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; US Serial No. 15/049,483, filed February 22, 2016, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; US Serial No. 15/077,975, filed March 23, 2016, entitled BATTERY MAINTENANCE SYSTEM; US Serial No. 15/140,820, filed April 28, 2016, entitled CALIBRATION AND PROGRAMMING OF IN-VEHICLE BATTERY SENSOR; US Serial No. 15/149,579, filed May 9, 2016, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; US Serial No. 15/634,491, filed June 27, 2017, entitled BATTERY CLAMP; US Serial No. 15/791,772, field October 24, 2017, entitled ELECTRICAL LOAD FOR ELECTRONIC BATTERY TESTER AND ELECTRONIC BATTERY TESTER INCLUDING SUCH ELECTRICAL LOAD; US Serial No. 16/021,538, filed June 28, 2018, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; US Serial No. 16/056,991, filed August 7, 2018, entitled HYBRID AND ELECTRIC VEHICLE BATTERY PACK MAINTENANCE DEVICE, all of which are incorporated herein by reference in their entireties.
[0028] During operation, device 200 is capable of measuring a parameter of battery 140 through the Kelvin connections 206 and 208. For example, a forcing function can be applied by forcing function 210. Measurement circuitry 212 can monitor the effect of the applied forcing function signal on the battery 140 and responsively provide an output to microprocessor 214. This can be used to measure a dynamic parameter of the battery such as dynamic conductance, etc. The present invention is not limited to this particular testing method and other techniques may also be employed. Further, the testing of battery 140 or group of batteries 140 may be performed using sensors within battery pack 102. In such a configuration, the testing may be performed without disassembling the battery pack 102. Microprocessor 214 can operate in accordance with programming instructions stored in memory 220. Memory 220 can also store information by microprocessor 214. Operation of device 200 can be controlled by user I/O 220 which can comprise, for example, a manual input such as a keyboard and/or an output such as a display. Measured parameters of battery can be stored in database 222 for subsequent retrieval. Further, in some configurations, the forcing function 210 can include a load for discharging the battery 140 and/or a power supply for charging battery 140. This can be used to balance the batteries 140 within the battery pack 102.
[0029] It is desirable to provide a tool that can service a wide range of electric vehicle battery modules, and be future-proof for modules as yet un-defined. It is further desirable to build such a unit out of commercially available“building blocks” to simplify the design and certification process. In one such embodiment, three 48 VDC @ 20 ampere electronically adjustable power supplies connected together in various configurations are provided. The choice of voltage, amperage, and number of blocks is arbitrary and other such arrangements are provided. For higher voltage, the power supplies can be connected in series, and for higher current the power supplies can be connected in parallel. While this can be accomplished in several ways using relays and switches, in one embodiment it can simply and inexpensively be accomplished in the battery connection cables as shown below. [0030] FIG. 4 is a perspective view showing a housing 300 of maintenance device 200. FIG. 4 illustrates cable connectors 310A-L for use as described below in selecting a voltage/current output as well as providing connections to the battery under test 140.
[0031] FIGS. 5A and 5B show example configurations of forcing function 210 arranged to apply different current levels and/or voltage levels to the battery 140 using a plug configuration which allows various connections between the power supply units. As illustrated in FIGS. 5 A and 5B, three power supplies are shown PS1, PS2 and PS3. Power supplies PS 1-3 are electrically connected to connectors 310A-L as illustrated in the Figures. By selectively applying jumpers between these connectors, various power supply voltage and current configurations can be obtained. B+ and B- connections are used to provide Kelvin connections to the battery 140. Cable connectors 312A-L selectively plug into connectors 310A-L. External jumpers are provided to select the desired voltage and/or current levels provided by the power supplies. In the configuration illustrated in FIG. 5A, the power supplies are connected in parallel to thereby deliver a high current value at the voltage of the power supplies. FIG. 5B shows another example configuration in which jumpers are provided between connectors 312 to achieve a series connection such that the power supplies PS 1-3 are stacked to provide triple the voltage of an individual power supply. An emergency shut off relay Kl is provided which allows the power supplies to be quickly disconnected from the battery 140. Relay Kl can be operated manually, or based upon some input such as an excessive temperature, current or voltage measurement, under the control of microprocessor 214, or by some other means.
[0032] FIGS. 5 A and 5B also show magnets 320A, B and C. These magnets are carried in a plug (see element 348 in FIG. 6) and can be used to encode the configuration of the jumpers carried between connectors 312. Magnetic sensors 322A, B and C are arranged in the maintenance device 200 and configured to sense the presence of magnets 320A-C, respectively. This information can be used by microprocessor to determine the configuration of the power supplies provided by the jumpers. For example, in FIG. 5 A, three magnets 320A, B and C are provided whereas in FIG. 5B only magnets 320A and B are provided.
[0033] In both the parallel or serial arrangement, the units are designed to be connected either in parallel or series externally by the technician for even greater capability in the future. [0034] FIG. 6 is a perspective view of an example cable 350 configuration in which a plug or shell 348 carries connectors 312A-L. As discussed with respect to FIGS. 5A and B, these connectors can be used to selectively configure the coupling between the various power supplies. The cable further provides electrical connections to the B+ and B- connectors for coupling to the battery under test 140.
[0035] Each of the power supply sections PS 1-3 may also optionally contain a discharge function such as illustrated in FIG. 7. When servicing electric vehicle batteries, it may be necessary to charge or discharge the modules. One method uses resistor load elements, relays, and transistors to vary the discharge current, whether in high current parallel mode, or high voltage series mode. As an additional benefit, this resistor array can be configured to provide loop stability ballast when the power supplies are connected in parallel and charging as shown in FIG. 5A.
[0036] FIG. 7 illustrates a resistor array 360 connected to a Power Supply. In the configuration of FIG. 7, resistors Rl, R2, R3 and R4 are arranged in series along with parallel switches SW1, SW2, SW3 and SW4. The charge switch is provided which connects power supply to the battery plus/minus connections. A bypass switch is provided which allows the Power supply PS to be bypassed. Further, a switch SW5 is provided to electrically connect a transistor PWM in series with the resistor Rl-4. The current sensors 362 can be used to measure the current flowing through the array 360. Resistor R5 is used to provide a minimum load for the power supply. In some cases, this may be required with a switched mode power supply. Further, it can be used for a rapid bleed off of voltages when the power supply is switched off. Switch SW5 is used to engage the discharge portion of the device which is controlled by the TWM transistor. SW5 is open during charging and then closed during discharge. However, switch SW5 can also be closed during charging to provide a self-test function by internally loading the power supply. The switches can be operated under the control of microprocessor 214 used to selectively apply a load for discharging the battery 140.
[0037] It can be very time consuming to remove an electric vehicle battery pack from the vehicle, open it up, remove the defective modules, balance the replacement module, reinstall the module into the pack, and reinstall the pack into the vehicle. If the battery is not reinstalled correctly with the proper torques, etc., the entire process must be repeated. To address this issue, the device can also be used to test the resistance of the battery pack to detect problems with, for example, the“bus bars” 400 shown in FIG. 8 that are used to connect the batteries 140 within the pack 102. The test can be used after the battery module 140 is reinstalled into the pack 102. A six wire Kelvin connection is used in the preferred embodiment. Leads 402 are Kelvin connections and the current carrying leads can carry 50-75 amps. Leads 404 are voltage sense only. In order to perform a measurement, a large current is applied through Kelvin connectors 402 while voltage measurements are taken. A voltage measurement using a differential amplifier is made across connectors 402A and 404A and a similar measurement is obtained across connectors 402B and 404B. A third differential voltage measurement is made between the 404A and 404B. The measurements can be made, for example, using measurement circuitry 212 shown in FIG. 3. This allows the resistances of all components to be measured in a single step. In another example embodiment, an operator could move the connections moving leads and taking multiple voltage readings. Conductance can also be determined. A high current pulse is established across the extremities of the connection (for example, using forcing function 210), and individual voltage drops are recorded across all connections. The battery, the positive connection, and the negative connection can then be evaluated.
[0038] Note that this measurement may somewhat disturb the battery equilibrium. To counter act this, balance in the battery pack can be restored by applying an equal and opposite charge back into the system. There is also significant battery health diagnostic information to be gleaned from lithium battery cells using this technique and can also be used to test battery module before returning it to service.
[0039] In one aspect, the device can connect to the vehicle data bus through the OBDII connection to collect important information such as VIN, software and hardware version numbers, etc. Connection to the battery ECU can be made using CAN, LIN, or other protocols to glean specific battery information.
[0040] One preferred embodiment uses a powerful operating system such as Android. This allows detailed photographs, drawings, training videos and other helpful information to be displayed. It allows for a simplified“cloud” connection to update latest service bulletins, software updates, record keeping, legal traceability, warranty adjudication and countless other benefits. The unit can be connected as a slave to another piece of shop equipment, either by hardwired connection, or wireless such as Bluetooth or Wi-Fi. Components in the unit can be protected against reverse polarity, or over-voltage. Safeties, including electrical potential, temperature, access points, etc. are fully interlocked and prevent operation of the unit. Cables may contain a“poke yoke” scheme that prevents the wrong cable from being used; for example, a high voltage series cable in a high current parallel application. An optional bar code scanner is available which can capture specific information such as battery type or serial number, vehicle identification number, etc. The various inputs and outputs can be through a general input/output interface 220.
[0041] This unit is designed to operate at high power levels, but may be attached to AC mains as low as 100VAC to as high as 240V AC. The unit is capable of monitoring the input mains current so that power can be throttled back when operating at low line voltages and the required power is not available from the AC mains.
[0042] The unit can operate in any combination of constant voltage, constant current, or constant power. A remote temperature sensor can be used that can plug into the balancer and report the battery temperature. This is useful when internal battery temperature sensors are damaged or inoperative, or the module is removed from the pack and no sensors are available. Optional relay contacts available to the external world to control various circuits on the battery pack. Optional voltage sensing lines can be provided to monitor various circuits on the battery pack. Internal circuitry can be used to perform a conductance or impedance test on the module. It is programmable to any frequency, and can be applied at variable amplitude. A full timed discharge can be performed on the module to accurately report amp-hour capacity. This test can be performed at variable rates. The device has the ability to recharge back to a specified state of charge. A charge acceptance test can be performed on the battery at variable rates and times. This same unit can be used to evaluate 48 volt cranking batteries, of any chemistry including lithium or lead acid.
[0043] Input/output circuitry 220 is provided for use in physically connecting to a data communication link such as an RS232, USB connection, Ethernet, etc. Optionally, wireless I/O is also provided for use in communicating in accordance with wireless technologies such as WiFi techniques, Bluetooth®, Zigbee®, etc. Other, examples include the CAN communication protocol, OBDII, etc. [0044] As discussed above, in one aspect the maintenance device can be configured to “balance” individual cells within the battery pack. The balancing can be performed by selecting cells or individual batteries within the pack which have similar storage capacity and state of charge. The charging feature of the device can be used to increase the charge of a cell or battery to that of other cells or batteries. Similarly, the maintenance device can be used to discharge individual cells or batteries to a level similar to that of other cells or batteries within the pack.
[0045] During discharge of the battery pack, the discharge profile can be monitored to ensure proper operation. For example, if the voltage of the battery suddenly drops, this can be an indication that a component within the battery has failed or a short circuit has occurred.
[0046] The charging circuitry of the device can use a stacked switch mode power supply configuration. For example, a series of fixed voltage power supplies can be stacked with the base power supply having an adjustable voltage output. This configuration allows a continuous controllability of the voltage output from the stacked power supply by turning one supply on at a time and providing finer control with the adjustable power supply. Further, the use of a stacked power supply can be used to reduce the current inrush when the power supply is activated. More specifically, individual supplies in the stacked power supply can be turned on sequentially to reduce the instantaneous current inrush. Additionally, current limiters can be used to reduce the current inrush. Diodes can be configured across the outputs of each power supply in such that they are configured to not conduct. The diodes can be used to prevent back feeding of the power supply from the battery pack.
[0047] Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. An apparatus for balancing charge of a battery in a battery pack, comprising:
a plurality of power supplies configured to be selectively coupled to the battery;
a plurality of electrical loads configured to be electrically coupled to the battery;
test circuitry configured to measure an amount of charge of the battery; and
control circuitry configured to selectively control a voltage applied to the battery by the plurality of power supplies and a load applied to the battery by the plurality of electrical loads based upon a measured amount of charge of the battery.
2. The apparatus of claim 1 wherein the plurality of electrical power supplies are configured to be connected in series.
3. The apparatus of claim 1 wherein the plurality of electrical power supplies are configured to be connected in parallel.
4. The apparatus of claim 1 wherein the plurality of electrical loads are configured to be connected in series.
5. The apparatus of claim 1 wherein the plurality of electrical loads are configured to be connected in parallel.
6. The apparatus of claim 1 including a plug for electrically connecting the plurality of power supplies to the battery, wherein the plug is configured to connect the power supplies in series.
7. The apparatus of claim 1 including a plug for electrically connecting the plurality of power supplies to the battery, wherein the plug is configured to connect the power supplies in parallel.
8. The apparatus of claim 1 including a housing configured to house the plurality of power supplies and wherein the housing includes a plurality of connectors configured to couple to a plug whereby the power supplies are connected in series or parallel.
9. The apparatus of claim 8 wherein the plug provides Kelvin connectors to the battery.
10. The apparatus of claim 1 wherein the test circuitry is further configured to measure a resistance of a bus bar of the battery pack.
11. The apparatus of claim 10 wherein the plurality of power supplies that are configured to charge the battery following testing of a resistance of the battery pack.
PCT/US2019/014487 2018-01-23 2019-01-22 High capacity battery balancer WO2019147546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019000492.1T DE112019000492T5 (en) 2018-01-23 2019-01-22 HIGH CAPACITY BATTERY BALANCING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862620659P 2018-01-23 2018-01-23
US62/620,659 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019147546A1 true WO2019147546A1 (en) 2019-08-01

Family

ID=65279824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/014487 WO2019147546A1 (en) 2018-01-23 2019-01-22 High capacity battery balancer

Country Status (2)

Country Link
DE (1) DE112019000492T5 (en)
WO (1) WO2019147546A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11721988B2 (en) * 2020-11-13 2023-08-08 Dana Automotive Systems Group, Llc Methods and systems for an emergency response unit

Citations (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873911A (en) 1971-09-14 1975-03-25 Keith S Champlin Electronic battery testing device
US3909708A (en) 1974-01-02 1975-09-30 Keith S Champlin Electronic battery testing device
US4816768A (en) 1988-03-18 1989-03-28 Champlin Keith S Electronic battery testing device
US4825170A (en) 1988-05-25 1989-04-25 Champlin Keith S Electronic battery testing device with automatic voltage scaling
US4881038A (en) 1988-05-25 1989-11-14 Champlin Keith S Electric battery testing device with automatic voltage scaling to determine dynamic conductance
US4912416A (en) 1988-06-06 1990-03-27 Champlin Keith S Electronic battery testing device with state-of-charge compensation
US5140269A (en) 1990-09-10 1992-08-18 Champlin Keith S Electronic tester for assessing battery/cell capacity
US5343380A (en) 1992-11-17 1994-08-30 Champlin Keith S Method and apparatus for suppressing time-varying signals in batteries undergoing charging or discharging
US5572136A (en) 1992-05-01 1996-11-05 Champlin; Keith S. Electronic battery testing device
US5574355A (en) 1995-03-17 1996-11-12 Midtronics, Inc. Method and apparatus for detection and control of thermal runaway in a battery under charge
US5583416A (en) 1994-01-26 1996-12-10 Gnb Battery Technologies, Inc. Apparatus and method for step-charging batteries to optimize charge acceptance
US5592093A (en) 1995-05-05 1997-01-07 Midtronics, Inc. Electronic battery testing device loose terminal connection detection via a comparison circuit
US5598098A (en) 1994-08-11 1997-01-28 Champlin; Keith S. Electronic battery tester with very high noise immunity
US5656920A (en) 1992-10-13 1997-08-12 Gnb Battery Technologies, Inc. Method and apparatus for charging a lead-acid battery
US5757192A (en) 1996-05-20 1998-05-26 Midtronics, Inc. Method and apparatus for detecting a bad cell in a storage battery
US5821756A (en) 1992-05-01 1998-10-13 Midtronics, Inc. Electronic battery tester with tailored compensation for low state-of charge
US5831435A (en) 1997-04-16 1998-11-03 Midtronics, Inc. Battery tester for JIS Standard
US5871858A (en) 1994-06-22 1999-02-16 Intra International Ab Anti-theft battery
US5914605A (en) 1997-01-13 1999-06-22 Midtronics, Inc. Electronic battery tester
US5945829A (en) 1996-10-07 1999-08-31 Midtronics, Inc. Midpoint battery monitoring
US6002238A (en) 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
US6037777A (en) 1998-09-11 2000-03-14 Champlin; Keith S. Method and apparatus for determining battery properties from complex impedance/admittance
US6037751A (en) 1998-07-01 2000-03-14 Gnb Technologies, Inc. Method and apparatus for charging batteries
US6051976A (en) 1996-07-29 2000-04-18 Midtronics, Inc. Method and apparatus for auditing a battery test
US6081098A (en) 1997-11-03 2000-06-27 Midtronics, Inc. Method and apparatus for charging a battery
US6137269A (en) 1999-09-01 2000-10-24 Champlin; Keith S. Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
US6163156A (en) 1999-11-01 2000-12-19 Midtronics, Inc. Electrical connection for electronic battery tester
US6172505B1 (en) 1998-04-27 2001-01-09 Midtronics, Inc. Electronic battery tester
US6225808B1 (en) 2000-02-25 2001-05-01 Midtronics, Inc. Test counter for electronic battery tester
US6249124B1 (en) 1999-11-01 2001-06-19 Midtronics, Inc. Electronic battery tester with internal battery
US6259254B1 (en) 1998-07-27 2001-07-10 Midtronics, Inc. Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
US6262563B1 (en) 1998-09-11 2001-07-17 Keith S. Champlin Method and apparatus for measuring complex admittance of cells and batteries
US6294896B1 (en) 1998-09-11 2001-09-25 Keith S. Champlin Method and apparatus for measuring complex self-immitance of a general electrical element
US6304087B1 (en) 2000-09-05 2001-10-16 Midtronics, Inc. Apparatus for calibrating electronic battery tester
US6313607B1 (en) 1999-09-01 2001-11-06 Keith S. Champlin Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6316914B1 (en) 1999-05-05 2001-11-13 Midtronics, Inc. Testing parallel strings of storage batteries
US6323650B1 (en) 1999-04-08 2001-11-27 Midtronics, Inc. Electronic battery tester
US6329793B1 (en) 1996-07-29 2001-12-11 Midtronics, Inc. Method and apparatus for charging a battery
US6332113B1 (en) 1996-10-07 2001-12-18 Midtronics, Inc. Electronic battery tester
US6331762B1 (en) 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US6351102B1 (en) 1999-04-16 2002-02-26 Midtronics, Inc. Automotive battery charging system tester
US6359441B1 (en) 1999-04-30 2002-03-19 Midtronics, Inc. Electronic battery tester
US6363303B1 (en) 1999-11-01 2002-03-26 Midtronics, Inc. Alternator diagnostic system
US6377031B1 (en) 1999-09-10 2002-04-23 Intra International Ab Intelligent switch for power management
US6417669B1 (en) 2001-06-11 2002-07-09 Keith S. Champlin Suppressing interference in AC measurements of cells, batteries and other electrical elements
US6437957B1 (en) 1999-09-10 2002-08-20 Intra International Ab System and method for providing surge, short, and reverse polarity connection protection
US6441585B1 (en) 1999-06-16 2002-08-27 Midtronics, Inc. Apparatus and method for testing rechargeable energy storage batteries
US6445158B1 (en) 1996-07-29 2002-09-03 Midtronics, Inc. Vehicle electrical system tester with encoded output
US6456045B1 (en) 1999-04-16 2002-09-24 Midtronics, Inc. Integrated conductance and load test based electronic battery tester
US6466026B1 (en) 2001-10-12 2002-10-15 Keith S. Champlin Programmable current exciter for measuring AC immittance of cells and batteries
US6465908B1 (en) 1999-09-10 2002-10-15 Intra International Ab Intelligent power management system
US6466025B1 (en) 2000-01-13 2002-10-15 Midtronics, Inc. Alternator tester
US6469511B1 (en) 2001-07-18 2002-10-22 Midtronics, Inc. Battery clamp with embedded environment sensor
US6497209B1 (en) 1999-09-10 2002-12-24 Intra International Ab System and method for protecting a cranking subsystem
US6507196B2 (en) 1998-06-24 2003-01-14 Intra International Ab Battery having discharge state indication
US6544078B2 (en) 2001-07-18 2003-04-08 Midtronics, Inc. Battery clamp with integrated current sensor
US6566883B1 (en) 1999-11-01 2003-05-20 Midtronics, Inc. Electronic battery tester
US6586941B2 (en) 2000-03-27 2003-07-01 Midtronics, Inc. Battery tester with databus
US6597150B1 (en) 2001-06-22 2003-07-22 Midtronics, Inc. Method of distributing jump-start booster packs
US6623314B1 (en) 2002-07-29 2003-09-23 Midtronics, Inc. Kelvin clamp for electrically coupling to a battery contact
US6633165B2 (en) 1997-11-03 2003-10-14 Midtronics, Inc. In-vehicle battery monitor
US6635974B1 (en) 1999-09-10 2003-10-21 Midtronics, Inc. Self-learning power management system and method
US6696819B2 (en) 2002-01-08 2004-02-24 Midtronics, Inc. Battery charge control device
US6737831B2 (en) 1999-09-01 2004-05-18 Keith S. Champlin Method and apparatus using a circuit model to evaluate cell/battery parameters
US6744149B1 (en) 1999-09-10 2004-06-01 Midtronics, Inc. System and method for providing step-down power conversion using an intelligent switch
US6759849B2 (en) 2000-03-27 2004-07-06 Kevin I. Bertness Battery tester configured to receive a removable digital module
US6781382B2 (en) 2002-12-05 2004-08-24 Midtronics, Inc. Electronic battery tester
US6788025B2 (en) 2001-06-22 2004-09-07 Midtronics, Inc. Battery charger with booster pack
US6795782B2 (en) 1999-04-08 2004-09-21 Midtronics, Inc. Battery test module
US6805090B2 (en) 2002-03-28 2004-10-19 Midtronics, Inc. Charge control system for a vehicle battery
US6850037B2 (en) 1997-11-03 2005-02-01 Midtronics, Inc. In-vehicle battery monitor
US6871151B2 (en) 1997-11-03 2005-03-22 Midtronics, Inc. Electronic battery tester with network communication
US6885195B2 (en) 1996-07-29 2005-04-26 Midtronics, Inc. Method and apparatus for auditing a battery test
US6888468B2 (en) 2003-01-22 2005-05-03 Midtronics, Inc. Apparatus and method for protecting a battery from overdischarge
US6891378B2 (en) 2003-03-25 2005-05-10 Midtronics, Inc. Electronic battery tester
US6906523B2 (en) 2000-09-14 2005-06-14 Midtronics, Inc. Method and apparatus for testing cells and batteries embedded in series/parallel systems
US6906522B2 (en) 2002-03-29 2005-06-14 Midtronics, Inc. Battery tester with battery replacement output
US6913483B2 (en) 2003-06-23 2005-07-05 Midtronics, Inc. Cable for electronic battery tester
US6914413B2 (en) 1996-07-29 2005-07-05 Midtronics, Inc. Alternator tester with encoded output
US6930485B2 (en) 2002-03-14 2005-08-16 Midtronics, Inc. Electronic battery tester with battery failure temperature determination
US6941234B2 (en) 2001-10-17 2005-09-06 Midtronics, Inc. Query based electronic battery tester
US6967484B2 (en) 2000-03-27 2005-11-22 Midtronics, Inc. Electronic battery tester with automotive scan tool communication
US7003410B2 (en) 1996-07-29 2006-02-21 Midtronics, Inc. Electronic battery tester with relative test output
US7012433B2 (en) 2002-09-18 2006-03-14 Midtronics, Inc. Battery tester upgrade using software key
US7015674B2 (en) 2001-06-22 2006-03-21 Midtronics, Inc. Booster pack with storage capacitor
US7039533B2 (en) 1999-04-08 2006-05-02 Midtronics, Inc. Battery test module
US7058525B2 (en) 1999-04-08 2006-06-06 Midtronics, Inc. Battery test module
US7081755B2 (en) 2002-09-05 2006-07-25 Midtronics, Inc. Battery tester capable of predicting a discharge voltage/discharge current of a battery
US7106070B2 (en) 2004-07-22 2006-09-12 Midtronics, Inc. Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries
US7116109B2 (en) 2003-11-11 2006-10-03 Midtronics, Inc. Apparatus and method for simulating a battery tester with a fixed resistance load
US7119686B2 (en) 2004-04-13 2006-10-10 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7126341B2 (en) 1997-11-03 2006-10-24 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US7154276B2 (en) 2003-09-05 2006-12-26 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US7198510B2 (en) 2001-11-14 2007-04-03 Midtronics, Inc. Kelvin connector for a battery post
US7208914B2 (en) 2002-12-31 2007-04-24 Midtronics, Inc. Apparatus and method for predicting the remaining discharge time of a battery
US7246015B2 (en) 1996-07-29 2007-07-17 Midtronics, Inc. Alternator tester
US7319304B2 (en) 2003-07-25 2008-01-15 Midtronics, Inc. Shunt connection to a PCB of an energy management system employed in an automotive vehicle
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
US7408358B2 (en) 2003-06-16 2008-08-05 Midtronics, Inc. Electronic battery tester having a user interface to configure a printer
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7479763B2 (en) 2001-06-22 2009-01-20 Midtronics, Inc. Apparatus and method for counteracting self discharge in a storage battery
US7498767B2 (en) 2005-02-16 2009-03-03 Midtronics, Inc. Centralized data storage of condition of a storage battery at its point of sale
US7501795B2 (en) 2001-06-22 2009-03-10 Midtronics Inc. Battery charger with booster pack
US7505856B2 (en) 1999-04-08 2009-03-17 Midtronics, Inc. Battery test module
US7545146B2 (en) 2004-12-09 2009-06-09 Midtronics, Inc. Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential
US20090184165A1 (en) * 2004-08-20 2009-07-23 Midtronics, Inc. Integrated tag reader and environment sensor
US7595643B2 (en) 2003-11-11 2009-09-29 Midtronics, Inc. Apparatus and method for simulating a battery tester with a fixed resistance load
US7598699B2 (en) 2004-02-20 2009-10-06 Midtronics, Inc. Replaceable clamp for electronic battery tester
US7598743B2 (en) 2000-03-27 2009-10-06 Midtronics, Inc. Battery maintenance device having databus connection
US7598744B2 (en) 2000-03-27 2009-10-06 Midtronics, Inc. Scan tool for electronic battery tester
US7642786B2 (en) 2004-06-01 2010-01-05 Midtronics, Inc. Battery tester capable of identifying faulty battery post adapters
US7688074B2 (en) 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
US7706992B2 (en) 2005-02-23 2010-04-27 Digital Intelligence, L.L.C. System and method for signal decomposition, analysis and reconstruction
US7705602B2 (en) 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US7710119B2 (en) 2004-12-09 2010-05-04 Midtronics, Inc. Battery tester that calculates its own reference values
US7723993B2 (en) 2002-09-05 2010-05-25 Midtronics, Inc. Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter
US7772850B2 (en) 2004-07-12 2010-08-10 Midtronics, Inc. Wireless battery tester with information encryption means
US7774151B2 (en) 1997-11-03 2010-08-10 Midtronics, Inc. Wireless battery monitor
US7777612B2 (en) 2004-04-13 2010-08-17 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7791348B2 (en) 2007-02-27 2010-09-07 Midtronics, Inc. Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value
US7808375B2 (en) 2007-04-16 2010-10-05 Midtronics, Inc. Battery run down indicator
US7959476B2 (en) 2008-06-16 2011-06-14 Midtronics, Inc. Clamp for electrically coupling to a battery contact
US7977914B2 (en) 2003-10-08 2011-07-12 Midtronics, Inc. Battery maintenance tool with probe light
USD643759S1 (en) 2010-06-01 2011-08-23 Midtronics, Inc. Electronic battery tester
US8164343B2 (en) 2003-09-05 2012-04-24 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US8198900B2 (en) 1996-07-29 2012-06-12 Midtronics, Inc. Automotive battery charging system tester
US8203345B2 (en) 2007-12-06 2012-06-19 Midtronics, Inc. Storage battery and battery tester
US8306690B2 (en) 2007-07-17 2012-11-06 Midtronics, Inc. Battery tester for electric vehicle
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
US8442877B2 (en) 2004-08-20 2013-05-14 Midtronics, Inc. Simplification of inventory management
USD687727S1 (en) 2012-05-11 2013-08-13 Midtronics, Inc. Electronic battery tester
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US8738309B2 (en) 2010-09-30 2014-05-27 Midtronics, Inc. Battery pack maintenance for electric vehicles
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US20160285284A1 (en) * 2015-03-24 2016-09-29 Midtronics, Inc. Battery maintenance system
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
CN206658084U (en) * 2017-08-09 2017-11-21 深圳遥米智能电子科技有限公司 The Power Supply Assembly of battery of electric vehicle
US20180009328A1 (en) * 2015-02-18 2018-01-11 Audi Ag Battery having at least two battery cells, and motor vehicle
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device

Patent Citations (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873911A (en) 1971-09-14 1975-03-25 Keith S Champlin Electronic battery testing device
US3909708A (en) 1974-01-02 1975-09-30 Keith S Champlin Electronic battery testing device
US4816768A (en) 1988-03-18 1989-03-28 Champlin Keith S Electronic battery testing device
US4825170A (en) 1988-05-25 1989-04-25 Champlin Keith S Electronic battery testing device with automatic voltage scaling
US4881038A (en) 1988-05-25 1989-11-14 Champlin Keith S Electric battery testing device with automatic voltage scaling to determine dynamic conductance
US4912416A (en) 1988-06-06 1990-03-27 Champlin Keith S Electronic battery testing device with state-of-charge compensation
US5140269A (en) 1990-09-10 1992-08-18 Champlin Keith S Electronic tester for assessing battery/cell capacity
US5572136A (en) 1992-05-01 1996-11-05 Champlin; Keith S. Electronic battery testing device
US5585728A (en) 1992-05-01 1996-12-17 Champlin; Keith S. Electronic battery tester with automatic compensation for low state-of-charge
US5821756A (en) 1992-05-01 1998-10-13 Midtronics, Inc. Electronic battery tester with tailored compensation for low state-of charge
US5656920A (en) 1992-10-13 1997-08-12 Gnb Battery Technologies, Inc. Method and apparatus for charging a lead-acid battery
US5343380A (en) 1992-11-17 1994-08-30 Champlin Keith S Method and apparatus for suppressing time-varying signals in batteries undergoing charging or discharging
US5583416A (en) 1994-01-26 1996-12-10 Gnb Battery Technologies, Inc. Apparatus and method for step-charging batteries to optimize charge acceptance
US5589757A (en) 1994-01-26 1996-12-31 Gnb Battery Technologies, Inc. Apparatus and method for step-charging batteries to optimize charge acceptance
US5871858A (en) 1994-06-22 1999-02-16 Intra International Ab Anti-theft battery
US5598098A (en) 1994-08-11 1997-01-28 Champlin; Keith S. Electronic battery tester with very high noise immunity
US5574355A (en) 1995-03-17 1996-11-12 Midtronics, Inc. Method and apparatus for detection and control of thermal runaway in a battery under charge
US5592093A (en) 1995-05-05 1997-01-07 Midtronics, Inc. Electronic battery testing device loose terminal connection detection via a comparison circuit
US5757192A (en) 1996-05-20 1998-05-26 Midtronics, Inc. Method and apparatus for detecting a bad cell in a storage battery
US6329793B1 (en) 1996-07-29 2001-12-11 Midtronics, Inc. Method and apparatus for charging a battery
US7295936B2 (en) 1996-07-29 2007-11-13 Midtronics, Inc. Electronic battery tester with relative test output
US7003410B2 (en) 1996-07-29 2006-02-21 Midtronics, Inc. Electronic battery tester with relative test output
US7940052B2 (en) 1996-07-29 2011-05-10 Midtronics, Inc. Electronic battery test based upon battery requirements
US7656162B2 (en) 1996-07-29 2010-02-02 Midtronics Inc. Electronic battery tester with vehicle type input
US6445158B1 (en) 1996-07-29 2002-09-03 Midtronics, Inc. Vehicle electrical system tester with encoded output
US6051976A (en) 1996-07-29 2000-04-18 Midtronics, Inc. Method and apparatus for auditing a battery test
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US6091245A (en) 1996-07-29 2000-07-18 Midtronics, Inc. Method and apparatus for auditing a battery test
US7246015B2 (en) 1996-07-29 2007-07-17 Midtronics, Inc. Alternator tester
US6885195B2 (en) 1996-07-29 2005-04-26 Midtronics, Inc. Method and apparatus for auditing a battery test
US8198900B2 (en) 1996-07-29 2012-06-12 Midtronics, Inc. Automotive battery charging system tester
US6914413B2 (en) 1996-07-29 2005-07-05 Midtronics, Inc. Alternator tester with encoded output
US6332113B1 (en) 1996-10-07 2001-12-18 Midtronics, Inc. Electronic battery tester
US5945829A (en) 1996-10-07 1999-08-31 Midtronics, Inc. Midpoint battery monitoring
US5914605A (en) 1997-01-13 1999-06-22 Midtronics, Inc. Electronic battery tester
US6392414B2 (en) 1997-01-13 2002-05-21 Midtronics, Inc. Electronic battery tester
US6310481B2 (en) 1997-01-13 2001-10-30 Midtronics, Inc. Electronic battery tester
US6534993B2 (en) 1997-01-13 2003-03-18 Midtronics, Inc. Electronic battery tester
US5831435A (en) 1997-04-16 1998-11-03 Midtronics, Inc. Battery tester for JIS Standard
US7705602B2 (en) 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US6909287B2 (en) 1997-11-03 2005-06-21 Midtronics, Inc. Energy management system for automotive vehicle
US7642787B2 (en) 1997-11-03 2010-01-05 Midtronics Inc. Automotive vehicle electrical system diagnostic device
US7003411B2 (en) 1997-11-03 2006-02-21 Midtronics, Inc. Electronic battery tester with network communication
US6313608B1 (en) 1997-11-03 2001-11-06 Midtronics, Inc. Method and apparatus for charging a battery
US8493022B2 (en) 1997-11-03 2013-07-23 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US7126341B2 (en) 1997-11-03 2006-10-24 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
US6633165B2 (en) 1997-11-03 2003-10-14 Midtronics, Inc. In-vehicle battery monitor
US7774151B2 (en) 1997-11-03 2010-08-10 Midtronics, Inc. Wireless battery monitor
US6331762B1 (en) 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US7999505B2 (en) 1997-11-03 2011-08-16 Midtronics, Inc. In-vehicle battery monitor
US8674654B2 (en) 1997-11-03 2014-03-18 Midtronics, Inc. In-vehicle battery monitor
US7688074B2 (en) 1997-11-03 2010-03-30 Midtronics, Inc. Energy management system for automotive vehicle
US6104167A (en) 1997-11-03 2000-08-15 Midtronics, Inc. Method and apparatus for charging a battery
US6871151B2 (en) 1997-11-03 2005-03-22 Midtronics, Inc. Electronic battery tester with network communication
US6081098A (en) 1997-11-03 2000-06-27 Midtronics, Inc. Method and apparatus for charging a battery
US6850037B2 (en) 1997-11-03 2005-02-01 Midtronics, Inc. In-vehicle battery monitor
US6172505B1 (en) 1998-04-27 2001-01-09 Midtronics, Inc. Electronic battery tester
US6507196B2 (en) 1998-06-24 2003-01-14 Intra International Ab Battery having discharge state indication
US6037751A (en) 1998-07-01 2000-03-14 Gnb Technologies, Inc. Method and apparatus for charging batteries
US6424158B2 (en) 1998-07-27 2002-07-23 Midtronics, Inc. Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
US6259254B1 (en) 1998-07-27 2001-07-10 Midtronics, Inc. Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
US6172483B1 (en) 1998-09-11 2001-01-09 Keith S. Champlin Method and apparatus for measuring complex impedance of cells and batteries
US6222369B1 (en) 1998-09-11 2001-04-24 Keith S. Champlin Method and apparatus for determining battery properties from complex impedance/admittance
US6294896B1 (en) 1998-09-11 2001-09-25 Keith S. Champlin Method and apparatus for measuring complex self-immitance of a general electrical element
US6262563B1 (en) 1998-09-11 2001-07-17 Keith S. Champlin Method and apparatus for measuring complex admittance of cells and batteries
US6002238A (en) 1998-09-11 1999-12-14 Champlin; Keith S. Method and apparatus for measuring complex impedance of cells and batteries
US6037777A (en) 1998-09-11 2000-03-14 Champlin; Keith S. Method and apparatus for determining battery properties from complex impedance/admittance
US6707303B2 (en) 1999-04-08 2004-03-16 Midtronics, Inc. Electronic battery tester
US6323650B1 (en) 1999-04-08 2001-11-27 Midtronics, Inc. Electronic battery tester
US6795782B2 (en) 1999-04-08 2004-09-21 Midtronics, Inc. Battery test module
US7505856B2 (en) 1999-04-08 2009-03-17 Midtronics, Inc. Battery test module
US7058525B2 (en) 1999-04-08 2006-06-06 Midtronics, Inc. Battery test module
US7039533B2 (en) 1999-04-08 2006-05-02 Midtronics, Inc. Battery test module
US6806716B2 (en) 1999-04-08 2004-10-19 Kevin I. Bertness Electronic battery tester
US6456045B1 (en) 1999-04-16 2002-09-24 Midtronics, Inc. Integrated conductance and load test based electronic battery tester
US6351102B1 (en) 1999-04-16 2002-02-26 Midtronics, Inc. Automotive battery charging system tester
US6359441B1 (en) 1999-04-30 2002-03-19 Midtronics, Inc. Electronic battery tester
US6556019B2 (en) 1999-04-30 2003-04-29 Midtronics, Inc. Electronic battery tester
US6316914B1 (en) 1999-05-05 2001-11-13 Midtronics, Inc. Testing parallel strings of storage batteries
US6441585B1 (en) 1999-06-16 2002-08-27 Midtronics, Inc. Apparatus and method for testing rechargeable energy storage batteries
US6737831B2 (en) 1999-09-01 2004-05-18 Keith S. Champlin Method and apparatus using a circuit model to evaluate cell/battery parameters
US6313607B1 (en) 1999-09-01 2001-11-06 Keith S. Champlin Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6495990B2 (en) 1999-09-01 2002-12-17 Keith S. Champlin Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US6294897B1 (en) 1999-09-01 2001-09-25 Keith S. Champlin Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
US6137269A (en) 1999-09-01 2000-10-24 Champlin; Keith S. Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
US6744149B1 (en) 1999-09-10 2004-06-01 Midtronics, Inc. System and method for providing step-down power conversion using an intelligent switch
US6635974B1 (en) 1999-09-10 2003-10-21 Midtronics, Inc. Self-learning power management system and method
US6465908B1 (en) 1999-09-10 2002-10-15 Intra International Ab Intelligent power management system
US6377031B1 (en) 1999-09-10 2002-04-23 Intra International Ab Intelligent switch for power management
US6437957B1 (en) 1999-09-10 2002-08-20 Intra International Ab System and method for providing surge, short, and reverse polarity connection protection
US6497209B1 (en) 1999-09-10 2002-12-24 Intra International Ab System and method for protecting a cranking subsystem
US6363303B1 (en) 1999-11-01 2002-03-26 Midtronics, Inc. Alternator diagnostic system
US6163156A (en) 1999-11-01 2000-12-19 Midtronics, Inc. Electrical connection for electronic battery tester
US6566883B1 (en) 1999-11-01 2003-05-20 Midtronics, Inc. Electronic battery tester
US6249124B1 (en) 1999-11-01 2001-06-19 Midtronics, Inc. Electronic battery tester with internal battery
US7557586B1 (en) 1999-11-01 2009-07-07 Midtronics, Inc. Electronic battery tester
US8754653B2 (en) 1999-11-01 2014-06-17 Midtronics, Inc. Electronic battery tester
US6466025B1 (en) 2000-01-13 2002-10-15 Midtronics, Inc. Alternator tester
US6225808B1 (en) 2000-02-25 2001-05-01 Midtronics, Inc. Test counter for electronic battery tester
US6759849B2 (en) 2000-03-27 2004-07-06 Kevin I. Bertness Battery tester configured to receive a removable digital module
US6586941B2 (en) 2000-03-27 2003-07-01 Midtronics, Inc. Battery tester with databus
US6967484B2 (en) 2000-03-27 2005-11-22 Midtronics, Inc. Electronic battery tester with automotive scan tool communication
US7398176B2 (en) 2000-03-27 2008-07-08 Midtronics, Inc. Battery testers with secondary functionality
US8237448B2 (en) 2000-03-27 2012-08-07 Midtronics, Inc. Battery testers with secondary functionality
US8872516B2 (en) 2000-03-27 2014-10-28 Midtronics, Inc. Electronic battery tester mounted in a vehicle
US7598744B2 (en) 2000-03-27 2009-10-06 Midtronics, Inc. Scan tool for electronic battery tester
US7598743B2 (en) 2000-03-27 2009-10-06 Midtronics, Inc. Battery maintenance device having databus connection
US9052366B2 (en) 2000-03-27 2015-06-09 Midtronics, Inc. Battery testers with secondary functionality
US7446536B2 (en) 2000-03-27 2008-11-04 Midtronics, Inc. Scan tool for electronic battery tester
US7728597B2 (en) 2000-03-27 2010-06-01 Midtronics, Inc. Electronic battery tester with databus
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US7924015B2 (en) 2000-03-27 2011-04-12 Midtronics, Inc. Automotive vehicle battery test system
US6998847B2 (en) 2000-03-27 2006-02-14 Midtronics, Inc. Electronic battery tester with data bus for removable module
US6304087B1 (en) 2000-09-05 2001-10-16 Midtronics, Inc. Apparatus for calibrating electronic battery tester
US6906523B2 (en) 2000-09-14 2005-06-14 Midtronics, Inc. Method and apparatus for testing cells and batteries embedded in series/parallel systems
US6417669B1 (en) 2001-06-11 2002-07-09 Keith S. Champlin Suppressing interference in AC measurements of cells, batteries and other electrical elements
US7501795B2 (en) 2001-06-22 2009-03-10 Midtronics Inc. Battery charger with booster pack
US6597150B1 (en) 2001-06-22 2003-07-22 Midtronics, Inc. Method of distributing jump-start booster packs
US6788025B2 (en) 2001-06-22 2004-09-07 Midtronics, Inc. Battery charger with booster pack
US7479763B2 (en) 2001-06-22 2009-01-20 Midtronics, Inc. Apparatus and method for counteracting self discharge in a storage battery
US7015674B2 (en) 2001-06-22 2006-03-21 Midtronics, Inc. Booster pack with storage capacitor
US6469511B1 (en) 2001-07-18 2002-10-22 Midtronics, Inc. Battery clamp with embedded environment sensor
US6544078B2 (en) 2001-07-18 2003-04-08 Midtronics, Inc. Battery clamp with integrated current sensor
US6621272B2 (en) 2001-10-12 2003-09-16 Keith S. Champlin Programmable current exciter for measuring AC immittance of cells and batteries
US6466026B1 (en) 2001-10-12 2002-10-15 Keith S. Champlin Programmable current exciter for measuring AC immittance of cells and batteries
US7363175B2 (en) 2001-10-17 2008-04-22 Midtronics, Inc. Query based electronic battery tester
US7034541B2 (en) 2001-10-17 2006-04-25 Midtronics, Inc. Query based electronic battery tester
US6941234B2 (en) 2001-10-17 2005-09-06 Midtronics, Inc. Query based electronic battery tester
US7198510B2 (en) 2001-11-14 2007-04-03 Midtronics, Inc. Kelvin connector for a battery post
US6696819B2 (en) 2002-01-08 2004-02-24 Midtronics, Inc. Battery charge control device
US6930485B2 (en) 2002-03-14 2005-08-16 Midtronics, Inc. Electronic battery tester with battery failure temperature determination
US6805090B2 (en) 2002-03-28 2004-10-19 Midtronics, Inc. Charge control system for a vehicle battery
US6906522B2 (en) 2002-03-29 2005-06-14 Midtronics, Inc. Battery tester with battery replacement output
US6623314B1 (en) 2002-07-29 2003-09-23 Midtronics, Inc. Kelvin clamp for electrically coupling to a battery contact
US7081755B2 (en) 2002-09-05 2006-07-25 Midtronics, Inc. Battery tester capable of predicting a discharge voltage/discharge current of a battery
US7723993B2 (en) 2002-09-05 2010-05-25 Midtronics, Inc. Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter
US7012433B2 (en) 2002-09-18 2006-03-14 Midtronics, Inc. Battery tester upgrade using software key
US6781382B2 (en) 2002-12-05 2004-08-24 Midtronics, Inc. Electronic battery tester
US7619417B2 (en) 2002-12-31 2009-11-17 Midtronics, Inc. Battery monitoring system
US7208914B2 (en) 2002-12-31 2007-04-24 Midtronics, Inc. Apparatus and method for predicting the remaining discharge time of a battery
US6888468B2 (en) 2003-01-22 2005-05-03 Midtronics, Inc. Apparatus and method for protecting a battery from overdischarge
US6891378B2 (en) 2003-03-25 2005-05-10 Midtronics, Inc. Electronic battery tester
US6933727B2 (en) 2003-03-25 2005-08-23 Midtronics, Inc. Electronic battery tester cable
US7408358B2 (en) 2003-06-16 2008-08-05 Midtronics, Inc. Electronic battery tester having a user interface to configure a printer
US6913483B2 (en) 2003-06-23 2005-07-05 Midtronics, Inc. Cable for electronic battery tester
US7319304B2 (en) 2003-07-25 2008-01-15 Midtronics, Inc. Shunt connection to a PCB of an energy management system employed in an automotive vehicle
US7154276B2 (en) 2003-09-05 2006-12-26 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US8674711B2 (en) 2003-09-05 2014-03-18 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US8164343B2 (en) 2003-09-05 2012-04-24 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US7977914B2 (en) 2003-10-08 2011-07-12 Midtronics, Inc. Battery maintenance tool with probe light
US7595643B2 (en) 2003-11-11 2009-09-29 Midtronics, Inc. Apparatus and method for simulating a battery tester with a fixed resistance load
US7116109B2 (en) 2003-11-11 2006-10-03 Midtronics, Inc. Apparatus and method for simulating a battery tester with a fixed resistance load
US7598699B2 (en) 2004-02-20 2009-10-06 Midtronics, Inc. Replaceable clamp for electronic battery tester
US7777612B2 (en) 2004-04-13 2010-08-17 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7119686B2 (en) 2004-04-13 2006-10-10 Midtronics, Inc. Theft prevention device for automotive vehicle service centers
US7642786B2 (en) 2004-06-01 2010-01-05 Midtronics, Inc. Battery tester capable of identifying faulty battery post adapters
US7772850B2 (en) 2004-07-12 2010-08-10 Midtronics, Inc. Wireless battery tester with information encryption means
US7425833B2 (en) 2004-07-22 2008-09-16 Midtronics, Inc. Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries
US7106070B2 (en) 2004-07-22 2006-09-12 Midtronics, Inc. Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries
US8442877B2 (en) 2004-08-20 2013-05-14 Midtronics, Inc. Simplification of inventory management
US8704483B2 (en) 2004-08-20 2014-04-22 Midtronics, Inc. System for automatically gathering battery information
US8344685B2 (en) 2004-08-20 2013-01-01 Midtronics, Inc. System for automatically gathering battery information
US8436619B2 (en) 2004-08-20 2013-05-07 Midtronics, Inc. Integrated tag reader and environment sensor
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US20090184165A1 (en) * 2004-08-20 2009-07-23 Midtronics, Inc. Integrated tag reader and environment sensor
US8963550B2 (en) 2004-08-20 2015-02-24 Midtronics, Inc. System for automatically gathering battery information
US7545146B2 (en) 2004-12-09 2009-06-09 Midtronics, Inc. Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential
US7710119B2 (en) 2004-12-09 2010-05-04 Midtronics, Inc. Battery tester that calculates its own reference values
US7498767B2 (en) 2005-02-16 2009-03-03 Midtronics, Inc. Centralized data storage of condition of a storage battery at its point of sale
US7706992B2 (en) 2005-02-23 2010-04-27 Digital Intelligence, L.L.C. System and method for signal decomposition, analysis and reconstruction
US7940053B2 (en) 2007-02-27 2011-05-10 Midtronics, Inc. Battery tester with promotion feature
US7791348B2 (en) 2007-02-27 2010-09-07 Midtronics, Inc. Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value
US7808375B2 (en) 2007-04-16 2010-10-05 Midtronics, Inc. Battery run down indicator
US8306690B2 (en) 2007-07-17 2012-11-06 Midtronics, Inc. Battery tester for electric vehicle
US9335362B2 (en) 2007-07-17 2016-05-10 Midtronics, Inc. Battery tester for electric vehicle
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
US8203345B2 (en) 2007-12-06 2012-06-19 Midtronics, Inc. Storage battery and battery tester
US7959476B2 (en) 2008-06-16 2011-06-14 Midtronics, Inc. Clamp for electrically coupling to a battery contact
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
USD643759S1 (en) 2010-06-01 2011-08-23 Midtronics, Inc. Electronic battery tester
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US8738309B2 (en) 2010-09-30 2014-05-27 Midtronics, Inc. Battery pack maintenance for electric vehicles
USD687727S1 (en) 2012-05-11 2013-08-13 Midtronics, Inc. Electronic battery tester
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US20180009328A1 (en) * 2015-02-18 2018-01-11 Audi Ag Battery having at least two battery cells, and motor vehicle
US20160285284A1 (en) * 2015-03-24 2016-09-29 Midtronics, Inc. Battery maintenance system
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
CN206658084U (en) * 2017-08-09 2017-11-21 深圳遥米智能电子科技有限公司 The Power Supply Assembly of battery of electric vehicle

Also Published As

Publication number Publication date
DE112019000492T5 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US20190154763A1 (en) High capacity battery balancer
US20220050142A1 (en) High capacity battery balancer
US11668779B2 (en) Hybrid and electric vehicle battery pack maintenance device
US11650259B2 (en) Battery pack maintenance for electric vehicle
US8738309B2 (en) Battery pack maintenance for electric vehicles
US11545839B2 (en) System for charging a series of connected batteries
CN105229483B (en) For detecting the system and method for the internal short-circuit in battery pack
CN103661166B (en) For handling method and the vehicle diagnosing system of vehicle diagnosing system
US11926224B2 (en) Hybrid and electric vehicle battery pack maintenance device
KR102029776B1 (en) Battery diagnosis method
US7619417B2 (en) Battery monitoring system
US10429449B2 (en) Battery pack tester
US20210203016A1 (en) Intelligent module interface for battery maintenance device
US20210325471A1 (en) Electrical load for electronic battery tester and electronic battery tester including such electrical load
EP2360485A1 (en) Battery management system and driving method thereof
CN101515023A (en) Accumulator and accumulator tester
KR20200017367A (en) Apparatus for battery diagnosis
CA3007597A1 (en) Connectivity check between cells and wiring control electronics with only one switch
WO2019147546A1 (en) High capacity battery balancer
US20230138164A1 (en) Method for analyzing the contact assignment of a contact element of a cell module for a vehicle battery and module charger having a diagnosis function for the contact assignment of a contact element
US20240110982A1 (en) Relay diagnosis device and relay diagnosis method
WO2022006525A1 (en) Electrical load for electronic battery tester and electronic battery tester including such electrical load
WO2019147549A1 (en) Hybrid and electric vehicle battery maintenance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19703613

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19703613

Country of ref document: EP

Kind code of ref document: A1