WO2019147056A1 - Method for manufacturing metal nanocube with controlled edge sharpness index - Google Patents

Method for manufacturing metal nanocube with controlled edge sharpness index Download PDF

Info

Publication number
WO2019147056A1
WO2019147056A1 PCT/KR2019/001057 KR2019001057W WO2019147056A1 WO 2019147056 A1 WO2019147056 A1 WO 2019147056A1 KR 2019001057 W KR2019001057 W KR 2019001057W WO 2019147056 A1 WO2019147056 A1 WO 2019147056A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
nanocube
nanocubes
solution
surfactant
Prior art date
Application number
PCT/KR2019/001057
Other languages
French (fr)
Korean (ko)
Inventor
남좌민
박정은
이연희
Original Assignee
서울대학교 산학협력단
재단법인 바이오나노헬스가드연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180124004A external-priority patent/KR20190091185A/en
Application filed by 서울대학교 산학협력단, 재단법인 바이오나노헬스가드연구단 filed Critical 서울대학교 산학협력단
Priority to US15/733,420 priority Critical patent/US20210161952A1/en
Publication of WO2019147056A1 publication Critical patent/WO2019147056A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a method for preparing a metal nanocube having an edge sharpness index controlled, comprising the step of reacting with a first surfactant and a predetermined surface protecting agent; A step of centrifuging in the presence of a second surfactant; a method for producing a metal nanocube aggregate having a purity of 95% or more; A probe composition comprising a metal nanocube or a metal nanocube aggregate prepared by the above method; And gold (Au) nanocubes having an average edge length of 20 nm or less.
  • LSPR Localized surface plasmon resonance
  • LSPR is a unique feature of plasmonic nanostructures that makes it applicable to a variety of applications including sensing, bioimaging, therapeutics, nonlinear optics and catalysis. Since the LSPR is mainly influenced by the size and shape of the plasmonic nanostructure, various studies on precise structure control have been performed. Fundamental nanostructures such as gold nanospheres and gold nanorods have been extensively studied over decades. For example, a cyclic process of growth and oxidative etching has been developed to produce a gold spheres that are highly-smooth and highly spherical. In addition, attempts have been made to adjust the aspect ratio and facet morphology of gold nano rods to obtain an LSPR suitable for the application field.
  • AuNCs gold nanocubes
  • Methods for synthesizing AuNCs based on seed-mediated growth reactions have been proposed, but low reproducibility limits the use of effective and feasible AuNCs.
  • Low reproducibility could be partially solved by universal gold nanoparticle seeds obtained through iterative oxidative dissolution and re-growth reaction.
  • complex and time-consuming seed-preparation procedures make it difficult to synthesize AuNCs with ease.
  • the inventors of the present invention have made intensive researches to find an easy and feasible method for manufacturing metal nanocubes with high precision in size and shape, especially with sharpness of corner sharpness, and as a result, they have found that fine adjustment of surface- the nanocubes can be precisely controlled by controlling the growth rate by fine-tuning, and can be purified in a form-selective manner by a simple coagulation step to obtain metal nano-cubes with a yield of 95% or higher.
  • the present inventors have confirmed that the metal nano-cube structures having precisely controlled shapes can be used in various fields by controlling their optical properties and completed the present invention.
  • a method for manufacturing a metal nanocube having a corner sharpness index (CSI) adjusted wherein the surface area of the metal nanocube to be finally produced and the CSI index Determining the amount of surface-protecting agents to be added as a base in the following mixed aqueous solution production step; Preparing a mixed aqueous solution by mixing a first surfactant, an amount of a surface protective agent determined according to the surface protective agent amount crystallization step, and metal nanoparticles having an average diameter of 3 to 30 nm to prepare a mixed aqueous solution; And a metal ion precursor adding step of adding a reducing agent and a precursor solution containing a metal ion to the mixed aqueous solution to cause the metal ions to react with the precursor solution, wherein the metal is selected from the group consisting of gold (Au), silver (Ag), palladium (Pd) (Cu), aluminum (Al), lead (Pb), or a combination thereof.
  • the metal is selected from the group consisting of gold (
  • the present invention provides a method for preparing a metal nanocube, comprising centrifuging a solution containing a metal nanocube, recovering the precipitate and redispersing the solution in a solution, centrifuging and redispersing; And a second surfactant addition and centrifugation step in which the second surfactant is added to the redispersed solution and centrifuged, thereby producing a metal nanocube aggregate having a purity of 95% to 99.9% .
  • the present invention relates to metal nanocubes prepared by the above methods; Or a metal nanocube aggregate.
  • the present invention provides a gold (Au) nanocube having an average of edge lengths of 20 nm or less.
  • the present invention relates to a method of growing nanocubes having a diameter of from about 10 nm to about 10 nm and a diameter of from several tens nm to several hundreds of nm from a metal nanoparticle having a diameter of about 10 nm, based on the discovery that the addition of a small amount of NaBr to provide bromide ions as a noble metal-protecting agent can control the edge shape, e.g., sharpness or roundness, of the nanocubes being formed. Specifically, the amount of bromide ions required is proportional to the surface area of the final formed nanocube. When the bromide ion is added in a multiple of a specific range, sharp corners are formed.
  • particles prepared in such a predetermined size and shape when the particles are dispersed and centrifuged in a surfactant solution, it is found that the space is compressed between the particles of the same size and shape by the osmotic pressure, . Therefore, by using this phenomenon, particles having the same size and shape, for example, particles having a deviation of 10% or less in terms of size and edge sharpness can be purified to a high purity of 95% or more.
  • a corner sharpness index is defined by an edge length (EL) and a corner radius (CR) of a manufactured nanocube, as shown in Equation 1 below Value is a measure of the shape of the edge of the nanocube, specifically, the degree of sharpness or roundness of the edge, and has a value close to 1 as the edge is sharp.
  • EL and CR can be defined as the radius of a circle perfectly matching the corner curvature and the shortest distance from one point on the flat surface of the nanocube to the other surface parallel thereto.
  • the metal used in the metal nanocubes of the present invention may be, for example, a noble metal.
  • the metal may be a material exhibiting localized surface plasmon resonance.
  • the metal may be, but is not limited to, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), copper (Cu), aluminum Do not.
  • the metal may be gold, silver, palladium, platinum, copper, or a combination thereof.
  • a metal nano-cube, that is, AuNC was produced using gold, which is a representative noble metal.
  • metal nanoparticles having an average diameter of 3 to 30 nm can be used as seed particles.
  • the average diameter of the metal nanoparticles may be 5 to 30 nm, or 6 to 30 nm, more specifically 5 to 15 nm, or 6 to 15 nm.
  • the metal nanoparticles for example, gold nanospheres capped with CTAC may be used, but the present invention is not limited thereto.
  • the metal nanoparticles may be prepared by using commercially available nanoparticles as they are or by surface modification, or by using particles of smaller size, for example, 1 to 2 nm, using nanoparticle synthesis methods known in the art But is not limited thereto.
  • surface-protecting agent in the present invention means a substance capable of controlling the morphology of the final product by selectively binding to a specific surface of the metal nanocube to control crystal growth on the surface .
  • the surface-protective agent may be a metal nanocube that specifically binds to the (100) surface of the metal nanocube to control the growth from the surface to control the shape and edge sharpness of the finally formed particle, Organic or inorganic salts of bromine ions. Is not limited to the chemical species so long as it can quantitatively provide bromine ions in the reaction solution.
  • it may be an organic salt of bromine such as CTAB (hexadecyltrimethylammonium bromide) or a metal salt of bromine such as NaBr, KBr, MgBr 2 , CaBr 2 , but is not limited thereto.
  • CTAB hexadecyltrimethylammonium bromide
  • metal salt of bromine such as NaBr, KBr, MgBr 2 , CaBr 2 , but is not limited thereto.
  • first surfactant in the present invention may mean a molecule capable of preventing aggregation of metal nanoparticles used as seeds in a reaction solution.
  • the first surfactant may be hexadecyltrimethylammonium chloride (CTAC), but is not limited thereto.
  • CTAC hexadecyltrimethylammonium chloride
  • surfactants known in the art can be used without limitation have.
  • the reactants other than the surface protective agent do not contain bromine ions in order to precisely control the concentration of bromine ions in the reaction system. Therefore, in the present invention, as the first surfactant, a surfactant containing no bromine ion can be used.
  • reducing agent in the present invention may mean a reagent capable of reducing the metal ion to grow crystals.
  • the reducing agent may be ascorbic acid, but is not limited thereto.
  • Precursor solutions containing the metal ion may be an aqueous solution of HAuCl 4, but is not limited thereto.
  • the nanocube manufacturing method of the present invention comprises: centrifuging a reaction solution according to the metal ion precursor adding step, centrifuging and redispersing the precipitate to recover and redispersing the solution; And a second surfactant addition and centrifugation step in which a second surfactant is added to the redispersed reaction solution and centrifuged.
  • the metal nanocubes produced by the method of the present invention have not only the edge sharpness but also the size, that is, the edge length, are uniform. Therefore, through the additional purification process, the metal nanocubes having an edge length adjusted within a deviation of 10% or less can be provided with a purity of 95% or more.
  • the metal nanocubes prepared by the method of the present invention are uniformly controlled in both the CSI value and the edge length, and the metal nanocubes having the CSI value and the edge length all adjusted to within a deviation of 10%
  • the cube can be obtained with a purity of 95% or more.
  • a third surfactant may be further added to prevent aggregation of particles, but the present invention is not limited thereto.
  • the third surfactant may be hexadecyltrimethylammonium bromide (CTAB), but is not limited thereto.
  • the second surfactant may be a substance capable of forming osmotic pressure by forming a micelle in a solution and causing a concentration difference between a narrow space between particles and a bulk solution phase due to its size.
  • any known surfactant can be used as long as it can perform the above-mentioned role.
  • the second surfactant may be the same as or different from the first surfactant and / or the third surfactant.
  • the second surfactant and / or the third surfactant are not limited to the types of ions contained therein.
  • BDAC benzyldimethyldodecylammonium chloride
  • BDAC can form micelles with a small number of molecules due to high cohesive potential as compared with CTAC exemplified as the first surfactant, Can provide a greater number of micelles. This indicates that the amount of the second surfactant can be adjusted in consideration of the physical properties of the selected surfactant species.
  • the amount of the surface area values of the nano-metal cubes to be the final production may be 200 to 700 times the number of molecules of.
  • the amount of NaBr to be added, determined in the first step may be less than 200 times the surface area value (unit nm 2 ) of the metal nano-cube to be finally produced or 700 times to 10,000 times the molecular number.
  • the bromide ion when added per unit surface area, i.e., 100 nm or less per 1 nm 2 or 1000 or more, relatively rounded corners That is, a low CSI value is formed.
  • a CSI having a relatively sharp edge that is, a nearer to 1, of about 0.7 to 0.8, Of the nanocubes were formed.
  • the metal nanocubes prepared by the method of the present invention may have an average length of 15 to 300 nm.
  • nanocubes having a small size of 20 nm or less have been difficult to fabricate. In particular, it is impossible to finely adjust the corner shapes of the nanocubes.
  • the first surfactant is used at a concentration of 30 to 70 mM based on the volume of the whole solution used But it is not limited thereto.
  • CTAC hexadecyltrimethylammonium chloride
  • the present invention is not limited thereto.
  • the reducing agent is preferably used at a concentration of 0.1 to 0.5 mM based on the volume of the total solution used, but is not limited thereto.
  • ascorbic acid may be used as the reducing agent, but is not limited thereto.
  • the precursor solution containing the gold ions is preferably used at a concentration of 0.1 to 0.4 mM based on the volume of the whole solution, but is not limited thereto.
  • polyhedral particles other than the desired cube-shaped particles may be formed.
  • the materials to be mixed or added may be mixed, or added simultaneously, sequentially, or at the same time.
  • the mixed aqueous solution preparation step may be carried out by adding metal nanoparticles having an average diameter of 3 to 30 nm to a mixed aqueous solution containing an amount of a surface protecting agent determined according to the first surfactant and the surface protective agent amount crystallization step, Or by adding a first surfactant and a surface protecting agent to an aqueous solution containing nanoparticles.
  • the metal ion precursor adding step may be a step of simultaneously or sequentially adding a reducing agent and a precursor solution containing a metal ion to the mixed aqueous solution, and then reacting.
  • the present invention also provides a method for preparing a metal nanocube, comprising centrifuging a solution containing a metal nanocube, recovering the precipitate and redispersing the solution in a solution; And a step of adding a second surfactant and centrifuging to obtain a metal nanocube aggregate having a purity of 95% or more.
  • the solution in the redispersing step may further include, but is not limited to, a third surfactant to prevent aggregation.
  • the second surfactant is as defined above.
  • the metal nanoparticles having a size equal to or larger than a certain size are centrifuged in the presence of the second surfactant, for example, BDAC, the outward osmotic pressure is generated between the particles contacting with the surface-to-surface, and agglomeration occurs between the particles. Accordingly, it is possible to purify particles of the same size and shape with high purity by centrifuging for a short time of 5 to 10 minutes at a temperature of several hundreds to 1000 rpm.
  • the principle of such agglomeration is as shown in Fig.
  • the deviation of the CSI value of the individual nanocubes constituting the metal nanocube aggregate may be within +/- 10% , But is not limited thereto.
  • the edge length of the individual nanocubes having a purity of 95% or more can be within ⁇ 10%, but the present invention is not limited thereto.
  • the metal nanocube aggregate having a purity of 95% or more by using the purification method of the present invention may have a deviation of the CSI value and the edge length of the individual nanocubes from each other within ⁇ 10%, but the present invention is not limited thereto.
  • the metal nanocubes prepared by the method of the present invention and having a controlled angle of sharpness; Or a high purity metal nanocube aggregate of a certain size and shape prepared by the method of the present invention can be used in a probe composition.
  • the metal nanocubes have been prepared by the method of the present invention and have an edge sharpness controlled;
  • a high purity metal nanocube aggregate of a certain size and shape produced by the method of the present invention has a CSI value and a corner length both controlled to within a deviation of 10% so that the individual particles constituting the aggregate have uniform physical and / or chemical properties .
  • the manufacturing method of the present invention can provide a metal nanocube having precisely controlled size and shape, for example, a corner sharpness. Further, the metal nanocube having a predetermined size and shape can be uniformly modified by 95% Or more of a nanocube aggregate having a high purity can be provided. Furthermore, nanocubes having controlled size and shape can exhibit constant optical properties that vary depending on the size and shape of the corners, and thus can be used in an optically detectable probe composition.
  • a series of metal nanocubes with sharp or rounded corners with edge lengths in the range of 17 nm to 68 or 78 nm are prepared while controlling the size and shape of the particles,
  • Each of the nanocubes has a unique optical characteristic depending on the size or edge shape. As shown in FIG. 6, as the edge length increases, that is, as the particle size increases, the maximum extinction wavelength appears at a longer wavelength. Also, in the nanocube having the same or similar size, That is, it was confirmed that the absorption spectrum was shifted by a longer wavelength with a higher CSI index.
  • the metal nanocubes and complexes thereof produced by the method of the present invention can exhibit various spectroscopic signals such as absorption, fluorescence, or scattering signals based on excellent local surface plasmon resonance characteristics, and thus can be used as probes in various assay methods. have.
  • the probe composition comprising the metal nano-cube or the aggregate thereof according to the present invention can be used for sensors, bio-imaging, or therapy, but the application is not limited thereto.
  • the metal nanocubes or aggregates thereof according to the present invention exhibit specific and distinct optical characteristics depending on their size and / or edge shape, and the signals therefrom have high reproducibility in each particle and / or in repeated experiments , It can be used for qualitative analysis as well as for multiple analysis simultaneously analyzing two or more samples and also for quantitative analysis.
  • the metal nanocubes may be surface-modified with appropriate functional groups, polymers, proteins and the like according to need, but the present invention is not limited thereto.
  • the metal nanocubes according to the present invention are particles whose size and shape are finely adjusted, they can be used as a building block, metamaterials or optical nanoantenna for forming a three-dimensional nanostructure. .
  • the present invention provides a gold (Au) nanocube having an average of edge lengths of 20 nm or less.
  • the gold nanocubes may be substantially cubic in shape, but there may be some differences in edge length.
  • the average length of each edge of one of the gold nanocubes may be 20 nm or less, specifically, 10 nm to 20 nm.
  • the CSI value of the edge of the gold nanocube may be adjusted to a deviation within ⁇ 10%, or the edge length may be adjusted to a deviation within ⁇ 10%.
  • the manufacturing method of the present invention can finely control the size and / or shape of the finally prepared metal nanocubes and further the sharpness of the edges by a simple method of controlling the amount of reactant without troublesome additional steps, It is possible to purify only by an additional process of short centrifuging in a solution containing an activator, thereby providing an aggregate of metal nanocubes having a uniform size and shape at a purity of 95% or more, It is possible to mass-produce metal nanocubes having controlled optical characteristics.
  • FIG. 1 is a schematic representation of a method for the synthesis and purification of form-regulated AuNCs according to the present invention.
  • (a) shows selective surface-protection-directed anisotropic growth of sharp-regulated AuNCs at various bromide densities. The proposed mechanism to modulate reaction kinetics is based on the preferential adsorption of bromide ions on the (100) face of AuNC.
  • (b) shows the purification of synthesized AuNC by centrifugation-driven depletion-induced flocculation in a surfactant micelle solution and subsequent redispersion in DIW. The lower image shows the attractive osmotic pressure between the AuNCs during the flocculation process.
  • FIG. 2 is a TEM image showing the morphology of nanoparticles according to AuNC and Comparative Examples 1 and 2 according to an embodiment of the present invention.
  • FIG. The scale bar represents 100 nm.
  • FIG. 3 is a view illustrating an image of a nanocube manufactured by adjusting shape and / or edge sharpness according to an embodiment of the present invention.
  • (a) is a representative TEM image of AuNC obtained by adjusting the bromide concentration from 0 mM to 200 mM using a fixed seed gold precursor. From the left to right, 0 mM, 1 mM, 40 mM, and 200 mM < / RTI > concentration of bromide. The scale bar represents 20 nm.
  • (b) is the CSI value of AuNC in (a).
  • Figure 4 is a diagram showing bromide-concentration-dependent growth kinetics obtained using a UV-vis spectrophotometer.
  • FIG. 5 is a diagram illustrating the characteristics of form-regulated AuNCs.
  • (a) is a TEM image of purified AuNCs prepared using different amounts of seeds and bromide, and the degree of insertion shows a representative single-particle image for clearly visualizing sharpness differences. In the notation, the numbers correspond to edge lengths, and R and S represent rounded-cornered AuNCs and sharp-cornered AuNCs, respectively. From the left to the right, each column is a particle prepared by using 300 ⁇ l, 30 ⁇ l, 9 ⁇ l, 6 ⁇ l, and 2 ⁇ l each of the same concentration of seed solution. We also used a fixed amount of seed, adjusted the angle of sharpness by varying the bromide concentration, and obtained R AuNCs and S AuNCs.
  • (b) is a low magnification SEM image showing AuNCs obtained at high yield after purification. The scale bar represents 1 mu m.
  • Figure 6 is a diagram illustrating the characteristics of form-regulated AuNCs.
  • (a) shows the definitions of edge length (EL), corner radius (CR), and corner sharpness index (CSI).
  • (b) shows the edge length and corner radius of a series of AuNCs according to an embodiment of the present invention, and
  • (c) shows the CSI of a series of AuNCs according to an embodiment of the present invention.
  • (d) shows the number of bromide ions added per AuNC calculated for a series of AuNCs according to an embodiment of the present invention.
  • (e) shows the normalized UV-vis spectrum for a series of AuNC solutions according to an embodiment of the present invention. Solid lines and dashed lines correspond to R AuNCs and S AuNCs, respectively.
  • Figure 7a shows a low magnification SEM image of 37R and 32S AuNCs.
  • the scale bar represents 1 mu m.
  • Figure 7b shows a low magnification SEM image of 41R and 41S AuNCs.
  • the scale bar represents 1 mu m.
  • Figure 7c shows a low magnification SEM image of 54R and 53S AuNCs.
  • the scale bar represents 1 mu m.
  • Figure 7d shows a low magnification SEM image of 78R and 72S AuNCs.
  • the scale bar represents 1 mu m.
  • Figure 8 is a representative excitation spectrum for 50R AuNCs before and after purification.
  • FIG. 9 is a diagram showing far-field scattering analysis results for AuNCs at a single particle level.
  • FIG. (a) shows a dark-field microscope image of individual AuNCs, (b) shows Rayleigh scattering spectra obtained continuously from 25 different AuNCs, and (c) Represents the Rayleigh scattering spectrum of AuNCs, corresponding to the data.
  • the scale bar indicates 0.2 mu m.
  • (d) to (f) show the maximum peak position, the scattering intensity at the maximum peak, and the line width of the scattering spectrum, respectively, depending on the size and shape of AuNCs, and (g) shows a series of Rayleigh scattering Figure 3 shows the reproducibility of the synthesis by three-dimensionally arranging the spectra.
  • FIG. 10 is a graph showing the results of single particle SERS analysis for the plasmonic nanogaps between nanocubes in 78R and 72S AuNCs duplexes.
  • (a) is a schematic diagram of 78R and 72S duplexes using 1,4-dibenzenethiol
  • (b) is a Raman enhancer by dimerization derived by simulation
  • (f) and (g) are graphs showing Raman amplification factors measured from 22 individual dimers
  • FIG. 8 (d) is a graph showing the signal according to the polarization direction of the laser in the dimer, The distribution is represented by a logarithmic scale and a linear scale, respectively.
  • Example 11 is a TEM image of (a) a TEM image of nanoparticles synthesized in large quantities in Example 3, and (b) a result of purification of a nanoparticle solution having a total volume of 10 mL at one time.
  • Hexadecyltrimethylammonium bromide (CTAB), ascorbic acid (AA), and gold chloride trihydrate (HAuCl 4 .3H 2 O) were purchased from Sigma-Aldrich.
  • Sodium borohydride was purchased from DaeJung Chemicals & Metals.
  • Hexadecyltrimethylammonium chloride (CTAC) was purchased from Tokyo Chemical Industry (TCI).
  • Deionized water (DIW, Milli-Q,> 18.0 M ⁇ ) was used for all experiments and all compounds were used without further purification.
  • Capped 10 nm gold nanospheres were synthesized according to the protocol disclosed by Zheng, Y. et al. (Part. Part. Syst. Charact., 2014, 31: 266-273). All solutions were prepared based on deionized water (DIW).
  • DIW deionized water
  • a CTAB-capped seed having a size of 1 to 2 nm was prepared.
  • 9.75 ml of 100 mM CTAB solution in a 50 ml round bottom flask was mixed with 250 l of 10 mM HAuCl 4 solution. Then 600 ⁇ l of freshly prepared ice-cold 10 mM NaBH 4 solution was added rapidly.
  • the solution was stirred and mixed for 3 minutes and stored at 27 [deg.] C for 3 hours before proceeding to the next step. Then, 10 nm gold nanospheres were synthesized from the seed thus prepared.
  • 2 ml of 200 mM CTAC, 1.5 ml of 100 mM ascorbic acid, and 50 ⁇ ⁇ of the previously prepared CTAB-capped seed solution were sequentially mixed. While mixing the solution at a constant rate, 2 ml of 5 mM HAuCl 4 solution was injected at one time. The solution was incubated at room temperature for 15 minutes with constant mixing at 300 rpm. The solution was centrifuged twice (20600 g, 30 min.), Redispersed first in 1 ml of DIW and then redispersed in 1 ml of 20 mM CTAC solution for further use.
  • NC nanocubes
  • the nanocubes synthesized according to Example 1 were centrifuged and precipitated.
  • the precipitate was redispersed in a 10 mM CTAB solution to a concentration two times that of the original nanocube solution.
  • the calculated amounts of BDAC (benzyldimethyldodecylammonium chloride, Sigma-Aldrich) stock solution and DIW were added to obtain the appropriate BDAC concentration and the same nanocube concentration shown in Table 1 for each sample. DIW was added to prevent unwanted flocculation.
  • the solution was mixed and centrifuged according to the titration conditions. 18R and 17S were too small to agglomerate, so they were excluded from the purification process. 37R and 32S were centrifuged at 1000 rpm for 10 minutes. Other samples were centrifuged at 500 rpm for 5 minutes. The supernatant was removed with a microwave pet, and the remaining precipitate was redispersed in DIW.
  • Comparative Example One CTAC Instead of CTAB Methods for the synthesis of nanoparticles that use but do not use additional bromide sources
  • Gold nanoparticles were prepared in the same manner as in Example 1, except that CTAB was used in place of CTAC and CTAB was used and the same volume of DIW was used instead of sodium bromide.
  • Example 1 On the basis of Example 1, the scale of the reaction solution was increased to synthesize a large amount of gold nanoparticles.
  • Experimental method sikidoe increase the volume of all solutions used in Example 1 to the same magnification, HAuCl 4
  • the HAuCl 4 solution concentrated in a 10 mM DIW after the first, which was added as much as the amount required for diluting with 0.5 mM HAuCl 4 in the volume in order to facilitate the addition at a time when the solution.
  • Example 2 As a result, it was confirmed that gold nanocube was synthesized even in a 248 mL volume reaction solution of 20 times scale of Example 1, and gold nanocubes of about 10 mg or more could be obtained.
  • 11A is a TEM image of nanoparticles synthesized in large quantities.
  • nanocubes are nanoparticles formed by kinetic control, the control of the reaction rate is a very important factor.
  • conventional gold nanocube synthesis methods there is a difference in the synthesis yield and particle shape depending on the stirring conditions of the solution, that is, the stirring speed or stirring method, and there is a lack of reproducibility and difficulty in increasing the synthesis scale.
  • the nanoparticles of Example 2 can be purified in a large amount.
  • the total volume of the mixed solution before centrifugation was adjusted to be 0.2 mL.
  • FIG. 11B is a TEM image of the resultant product obtained by purifying a nanoparticle solution having a total volume of 10 mL at one time, and it can be confirmed that purification is performed with high purity even when the scale is increased.
  • a dark-field (DF) image was obtained using a 40X objective.
  • the exposure time was set to 80 ms for 78R and 72S and to 120 ms for 41R.
  • DF spectra were measured with an inverted microscopy system (Ntegra, NT-MDT).
  • Ntegra inverted microscopy system
  • an oil condenser with a numerical aperture (NA) of 1.3 was used.
  • UNPLAN 60X, NA 0.90, air objective
  • washed glass was prepared by sonication in acetone and DIW for 5 minutes each.
  • a sample was prepared by drop casting gold nanocubes (AuNC) on the cleaned glass and spin-coated with a microcentrifuge. Spectra were obtained with an exposure time of 3 seconds from randomly selected particles observed in DF.
  • An AuNC solution mixed with 1,4-benzenedithiol (BDT) was drop-cast on a TEM grid to prepare a sample for Raman measurement.
  • Raman measurements were performed using an inverted microscope system (Ntegra, NT-MDT) equipped with UNPLAN (100X, NA 1.3, oil). The particles were identified as a single particle by correlation between Rayleigh scattering image and TEM image.
  • Each Raman signal was acquired by exposure to a linearly polarized 785 nm laser (230 ⁇ W) for 30 seconds. The signal was detected with a charge-coupled device (CCD) cooled down to -70 ° C (Andor Newton DU920P BEX2-DD).
  • CCD charge-coupled device
  • Enhancement factors were calculated by comparing signals from a 2.5 mM 1,4-benzenedithiol bulk solution. Spectra were obtained by exposure to linearly polarized 785 nm laser (17.6 ⁇ W) for 180 seconds using a low magnification lens (PLAN N, 10X, NA 0.25, air). The difference between the two lenses was measured using 1 mM rhodamine 6G (rhodamine 6G) Respectively. The signal was estimated to be proportional to the power and acquisition time of the laser. The excitation volume was assumed to be cylindrical, and the excitation volume was calculated to be 28 fL.
  • Finite element method (FEM) simulations were performed using commercial software (COMSOL) in scattered-field mode. Linearly polarized plane-wave excitation was used.
  • the nanocube model was based on TEM image analysis. In order to create a model similar to the system of the present invention, two modeled nanocubes were arranged in parallel and the spacing between the structures was 1.1 nm. All of the nanocubes were modeled as gold. The interval length was calculated based on TEM image analysis. The surrounding medium containing the gaps was modeled in air.
  • TEM and SEM images were obtained from JEM-2100 (JEOL) and Helios NanoLab 650 (FEI) systems at the National Center for Inter-University Research Facilities (NCIRF, Seoul National University, Korea).
  • the relative growth rate difference between the (100) plane and the other plane changed when the amount of bromide was adjusted so as to favorably adhere to the (100) plane, thus resulting in a round-cornered or pointed-edge sharp-cornered AuNCs were formed.
  • the bromide density was less than 100 ions / nm 2
  • the number of bromide ions was insufficient to completely block the (100) plane.
  • the relative growth rate difference between [100] and [111] / [110] did not change significantly, thus forming AuNCs with rounded edges.
  • This method is based on centrifugation-driven depletion-induced flocculation, which consists of reversible redispersion of aggregated and precipitated nanoparticles only with surfactant micelles Based.
  • the particles were dispersed in a surfactant solution above the critical micelle concentration, exclusion of the micelle molecules from the space between the AuNCs caused osmotic pressure, resulting in intergranular aggregation.
  • Agglomeration was applied to select nanorods or nanobipyramids in the nanoparticle mixture and it took more than 10 hours for the agglomeration to settle the nanoparticles. In the present invention, the time was remarkably shortened by short centrifugation.
  • the inter-particle distance between AuNCs decreased, and it was possible to perform effective coagulation in a very short time. Since the attractive force between two particles is proportional to the surface area facing each other, NCs with a flat surface have an advantage over particles with a curved surface like a rod, or with a small surface such as a cornice.
  • AuNC yield of 95% or more can be achieved by controlling the micelle concentration in order to selectively induce AuNC aggregation.
  • AuNC was prepared by the method of Example 1 using 6 ml of 100 mM CTAC as an experimental group and 30 20 of 20 mM sodium bromide as a bromide ion source.
  • the present invention can fine-tune the corner sharpness.
  • AuNCs with different edge sharpness were obtained, varying the bromide concentration from 0 mM to 200 mM ( Figure 3). As the bromide concentration increased, the corner sharpness initially increased and then decreased. At the highest bromide concentration, the size of AuNCs decreased somewhat due to the increase in the number of byproducts.
  • the growth rate during morphological development was studied by UV-vis spectroscopy. The CTAC, seed and AA were kept in the same amounts and the bromide concentration was varied.
  • the maximum localized surface plasmon resonance (LSPR) wavelength (544 nm for 1 mM NaBr, 560 nm for 40 mM NaBr and 556 nm for 200 mM NaBr) of fully grown structures after addition of the gold precursor Changes in extinction intensity were monitored at 10 second intervals ( Figure 4).
  • a slow increase of the absorbance to 200 mM indicates that the increased bromide concentration inhibits the reduction, which supports the synthetic mechanism proposed in Fig. In the present invention, it was confirmed that the introduction of seeds uniquely initiates the growth event. Thus, seedless additional nucleation was not detected in the UV-vis measurement.
  • the numbers represent the edge lengths, and R and S correspond to NCs with rounded edges and NCs with sharp edges, respectively.
  • the yield of all AuNCs except the smallest was improved to over 95% (enlarged SEM image of Fig. 5b and Fig. 7).
  • the 32S AuNCs showed cohesive potential similar to gold nanorods, a byproduct, and were provided at a yield of about 95%.
  • the yield for other AuNCs was achieved in excess of 97% (n > 400). It has been difficult to find a suitable surfactant capable of minimizing aggregation due to its small surface area. As the seed volume decreased, the edge length increased from 17 nm to 78 nm.
  • AuNCs of less than 25 nm have higher self-diffusion coefficients (3 to 12 nm) of gold atoms than values (0.3 to 1 nm) for other metals such as platinum, It was not expected to be possible to synthesize using a solution method, since it promotes migration of gold atoms to (100) low energy and inhibits effective exposure of the (100) plane. Nevertheless, AuNCs with a corner length of 17 nm were successfully synthesized by the method of the present invention. This is the smallest known AuNCs to date.
  • CSI corner sharpness index
  • FIG. 6A A scheme for defining CSI is schematically shown in FIG. 6A.
  • the NCs at the pointed edge have a CSI value closer to one.
  • the CSI values of the four large, pointed-edge AuNCs were similar, while the value of 17S was lower than that for others (FIG. 6C). It is considered that this is due to the relatively high surface tension due to the small size.
  • the number of bromide ions required per AuNC was calculated (Fig. 6d). This is not the number of ions adsorbed on the surface, but rather the number of ions added.
  • the linear correlation between the surface area and the number of added bromide ions indicates a uniform density of bromide of ⁇ 390 ions / nm 2 regardless of size. This provided an approximate number of bromide ions required to form AuNCs with pointed-edges of a certain size.
  • the normalized UV-vis spectra for a series of AuNC solutions show progressive red-shifts due to the sharpness of the corners and by the retardation effect as the edge length increases. (Fig. 6E).
  • the narrower spectral bandwidths after purification show a high degree of monodispersibility of AuNCs ( Figure 8).
  • FIG. 9A A Rayleigh scattering signal was measured at a single-particle level using a dark-field microscope, and the results are shown in FIG. 9A.
  • FIG. 9a a dark field microscope (DF micrograph, FIG. 9a) and a scattering spectrum (FIG. 9b) measured from 25 AuNCs showed uniform scattering characteristics. Due to the narrow distribution of AuNCs and high yields, the spectra obtained for the 25 individual particles are in good agreement, and representative spectra averaged to these are shown in Figure 9c.
  • the maximum peak positions obtained from the scattering spectra measured for a series of AuNCs of different sizes, i.e., corner lengths and / or shapes, and the scattering intensities at the peak positions are shown in Figures 9d and 9e, respectively.
  • the position and intensity of the maximum scattering wavelength varied depending on the size and / or shape of the AuNC, and the scattering signal increased as the sharpness of the edge was higher in AuNCs of similar size,
  • the average peak position was found to be shifted by a long wavelength. This is mainly due to the delay effect due to the large size. In this case, the 72S had a somewhat reduced scattering intensity despite the high sharpness of the edge compared to the 78R.
  • FIG. 10C shows TEM images of the dimers of 78R and 72S, respectively. Each of the 22 individual dimers was analyzed to have an average gap size of 1.1 nm (within a deviation of 10%).
  • the maximum Raman signal enhancement from the polar plot of the Raman signal generated by varying the polarization angle of the irradiating laser was found to be large in the long axis resonance mode of the dimer and / or at 78R.
  • the Raman enhancer of the dimer prepared by using BDT was calculated to be 8.0x10 7 at 72R and 1.6x10 7 at 72S (FIGS. 10f and 10g). This tendency agrees with the simulation result shown in Fig. 10B. This indicates that the control of edge sharpness is an adjustable factor not only in the single particle but also in the optical properties of the dimer.
  • the 72S dimer exhibited a narrower spectrum spectrum than the 78R dimer, which is thought to be due to the higher homogeneity of the 72S compared to the 78R, because the edge radius deviation is smaller, and the corner radius was 1.9 times larger than that of 72S.
  • This pattern also appeared in AuNC of different sizes.
  • the present invention proposes a method of producing metal nanocubes at a high yield while accurately controlling the size and edge sharpness of the metal nanocubes.
  • the method of the present invention provides a simple method of adjusting the size by adjusting the ratio of seed to precursor amount as well as adjusting the edge sharpness by changing the amount of bromide ion added. From the stoichiometric information, when the metal nanocube size is selected, the concentration of bromide required for metal nanocubes with round-edged or sharp edges can be readily determined.
  • Centrifugation-induced coagulation of synthesized metal nanocubes is a simple and feasible method for morphological-selective nanoparticle purification, and is a scalable method to any type of nanoparticle mixture without complex preparation.
  • Accurate morphological control of metal nanocubes enables efficient fine-tuning of far-field and near-field reactions, thereby making it possible to convert structural differences into modulation of optical properties. Therefore, based on this, it is possible to develop a feasible and mass-produced synthesis method of metal nanocubes that can be used as basic nanostructures for synthesis or self-assembly into 2D or 3D materials. Furthermore, application of highly improved plasmon properties achieved through precisely controlled design of novel nanostructures can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a method for manufacturing a metal nanocube with a controlled edge sharpness index, comprising a step of reacting with a first surfactant and a predetermined surface protective agent; a method for preparing a metal nanocube aggregate having a purity of 95% or more, comprising a step of centrifuging in the presence of a second surfactant; a probe composition comprising the metal nanocube or metal nanocube aggregate prepared by the method; and a gold (Au) nanocube having an average edge length of 20 nm or less.

Description

모서리 첨예도 지수가 조절된 금속 나노큐브의 제조방법Manufacturing method of metal nanocubes with controlled edge sharpness index
본 발명은 제1계면활성제 및 소정의 표면보호제와 함께 반응시키는 단계를 포함하는 모서리 첨예도 지수가 조절된 금속 나노큐브의 제조방법; 제2계면활성제 존재 하에 원심분리하는 단계를 포함하는 95% 이상의 순도를 갖는 금속 나노큐브 집합체의 제조방법; 상기 방법으로 제조된 금속 나노큐브 또는 금속 나노큐브 집합체를 포함하는 탐침 조성물; 및 모서리 길이의 평균이 20 nm 이하인 금(Au) 나노큐브에 관한 것이다.The present invention relates to a method for preparing a metal nanocube having an edge sharpness index controlled, comprising the step of reacting with a first surfactant and a predetermined surface protecting agent; A step of centrifuging in the presence of a second surfactant; a method for producing a metal nanocube aggregate having a purity of 95% or more; A probe composition comprising a metal nanocube or a metal nanocube aggregate prepared by the above method; And gold (Au) nanocubes having an average edge length of 20 nm or less.
국소표면플라즈몬공명(localized surface plasmon resonance; LSPR)은, 센싱, 바이오이미징, 치료학, 비선형 광학 및 촉매반응을 포함한 다양한 분야에 적용 가능하게 하는, 플라즈몬성 나노구조물의 고유한 특성이다. 상기 LSPR은 주로 플라즈몬성 나노구조물의 크기 및 형태에 의해 영향을 받으므로, 정확한 구조 조절에 대한 다양한 연구들이 수행되고 있다. 금 나노스피어 및 금 나노로드와 같은 기본적인 나노구조물들은 수 십년에 걸쳐 광범위하게 연구되고 있다. 예를 들어, 고도로 매끄럽고(ultra-smooth) 고도로 구형(highly spherical)인 금 스피어를 제조하기 위하여, 성장 및 산화적 식각의 순환 공정(cyclic process of growth and oxidative etching)이 개발되었다. 또한, 적용하고자 하는 분야에 적합한 LSPR을 획득하기 위하여 금 나노로드의 형성비(aspect ratio) 및 면 형태학(facet morphology)을 조절하는 방법이 시도되고 있다. 모서리와 수직인 면으로 인해 증가된 플라즈몬 특성을 나타내는 것으로 알려진 금 나노큐브(gold nanocubes; AuNCs)에 있어서, 오목한(concave) AuNC와 사육면체(tetrahexahedron) 구조물들이 제조되었으나, 가변적인 크기 및 첨예도 조절은 구현되지 못하였다. 종자-매개 성장 반응(seed-mediated growth reaction)을 기반으로 하는 AuNCs의 합성 방법이 제안되었으나, 낮은 재현성(low reproducibility)이 효과적이며 실현 가능한 AuNCs의 사용을 제한한다. 낮은 재현성은 반복적인 산화 용해(iterative oxidative dissolution)와 재성장 반응(re-growth reaction)를 통해 얻어지는 보편적인 금 나노입자 종자(universal gold nanoparticle seeds)에 의해 부분적으로 해소될 수 있었다. 그러나, 복잡하고 시간이 걸리는 종자-준비 과정은 손쉬운 AuNCs 합성을 어렵게 한다.Localized surface plasmon resonance (LSPR) is a unique feature of plasmonic nanostructures that makes it applicable to a variety of applications including sensing, bioimaging, therapeutics, nonlinear optics and catalysis. Since the LSPR is mainly influenced by the size and shape of the plasmonic nanostructure, various studies on precise structure control have been performed. Fundamental nanostructures such as gold nanospheres and gold nanorods have been extensively studied over decades. For example, a cyclic process of growth and oxidative etching has been developed to produce a gold spheres that are highly-smooth and highly spherical. In addition, attempts have been made to adjust the aspect ratio and facet morphology of gold nano rods to obtain an LSPR suitable for the application field. Concave AuNC and tetrahexahedron structures have been fabricated in gold nanocubes (AuNCs), which are known to exhibit increased plasmon properties due to the edges and planes perpendicular to the edges, but with variable size and sharpness control Was not implemented. Methods for synthesizing AuNCs based on seed-mediated growth reactions have been proposed, but low reproducibility limits the use of effective and feasible AuNCs. Low reproducibility could be partially solved by universal gold nanoparticle seeds obtained through iterative oxidative dissolution and re-growth reaction. However, complex and time-consuming seed-preparation procedures make it difficult to synthesize AuNCs with ease.
본 발명자들은 크기와 형태 특히, 모서리 첨예도가 정밀하게 조절된 금속 나노큐브를 고수율로 제조하기 위한 손쉽고 실현 가능한 방법을 발굴하기 위하여 예의 연구 노력한 결과, 표면보호제(surface-protecting agents)의 미세조정(fine-tuning)에 의해 성장 속도를 조절함으로써 정밀한 형태 조절이 가능하고, 간단한 응집 단계에 의해 형태-선택적 방식으로 정제하여 95% 이상의 고수율로 금속 나노큐브를 수득할 수 있으며, 이와 같이 제조된 형태가 정확히 조절된 금속 나노큐브 구조물들은 광학적 성질이 조절되어 다양한 분야에 활용 가능함을 확인하고 본 발명을 완성하였다.The inventors of the present invention have made intensive researches to find an easy and feasible method for manufacturing metal nanocubes with high precision in size and shape, especially with sharpness of corner sharpness, and as a result, they have found that fine adjustment of surface- the nanocubes can be precisely controlled by controlling the growth rate by fine-tuning, and can be purified in a form-selective manner by a simple coagulation step to obtain metal nano-cubes with a yield of 95% or higher. The present inventors have confirmed that the metal nano-cube structures having precisely controlled shapes can be used in various fields by controlling their optical properties and completed the present invention.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 모서리 첨예도 지수(corner sharpness index; CSI)가 조절된 금속 나노큐브의 제조방법에 있어서, 최종 제조하고자 하는 금속 나노큐브의 표면적 및 CSI 지수를 기초로 하기의 혼합 수용액 제조 단계에서 첨가할 표면보호제(surface-protecting agents)의 양을 결정하는, 표면보호제 양 결정 단계; 제1계면활성제(surfactant), 상기 표면보호제 양 결정 단계에 따라 결정된 양의 표면보호제 및 평균 직경 3 내지 30 nm의 금속 나노입자를 혼합하여 혼합 수용액을 제조하는, 혼합 수용액 제조 단계; 및 상기 혼합 수용액에 환원제, 및 금속 이온을 함유하는 전구체 용액을 첨가하여 반응시키는, 금속 이온 전구체 첨가 단계;를 포함하고, 상기 금속은 금(Au), 은(Ag), 팔라듐(Pd), 백금(Pt), 구리(Cu), 알루미늄(Al), 납(Pb), 또는 이들의 조합인 것인, 금속 나노큐브의 제조방법을 제공한다.According to one aspect of the present invention, there is provided a method for manufacturing a metal nanocube having a corner sharpness index (CSI) adjusted, wherein the surface area of the metal nanocube to be finally produced and the CSI index Determining the amount of surface-protecting agents to be added as a base in the following mixed aqueous solution production step; Preparing a mixed aqueous solution by mixing a first surfactant, an amount of a surface protective agent determined according to the surface protective agent amount crystallization step, and metal nanoparticles having an average diameter of 3 to 30 nm to prepare a mixed aqueous solution; And a metal ion precursor adding step of adding a reducing agent and a precursor solution containing a metal ion to the mixed aqueous solution to cause the metal ions to react with the precursor solution, wherein the metal is selected from the group consisting of gold (Au), silver (Ag), palladium (Pd) (Cu), aluminum (Al), lead (Pb), or a combination thereof.
또 하나의 양태로서, 본 발명은 금속 나노큐브를 포함하는 용액을 원심분리하고 침전물을 회수하여 용액에 재분산시키는, 원심분리 및 재분산 단계; 및 상기 재분산된 용액에 제2계면활성제를 첨가하여 원심분리하는, 제2계면활성제 첨가 및 원심분리 단계를 포함하는, 95% 내지 99.9%의 순도를 갖는 금속 나노큐브 집합체의 제조방법을 제공한다.In another aspect, the present invention provides a method for preparing a metal nanocube, comprising centrifuging a solution containing a metal nanocube, recovering the precipitate and redispersing the solution in a solution, centrifuging and redispersing; And a second surfactant addition and centrifugation step in which the second surfactant is added to the redispersed solution and centrifuged, thereby producing a metal nanocube aggregate having a purity of 95% to 99.9% .
다른 하나의 양태로서, 본 발명은 상기 방법들로 제조된 금속 나노큐브; 또는 금속 나노큐브 집합체를 포함하는 탐침 조성물을 제공한다.In another aspect, the present invention relates to metal nanocubes prepared by the above methods; Or a metal nanocube aggregate.
또다른 양태로서, 본 발명은 각 모서리 길이의 평균이 20 nm 이하인, 금(Au) 나노큐브를 제공한다.In another aspect, the present invention provides a gold (Au) nanocube having an average of edge lengths of 20 nm or less.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은, 종자로서 10 nm 내외의 직경을 갖는 금속 나노입자로부터 작게는 십수 nm로부터 크게는 수백 nm의 모서리 길이를 갖는 나노큐브를 성장시킴에 있어서, 충분한 양의 계면활성제와 함께 표면보호제(surface-protecting agent)로서 소량의 NaBr를 첨가하여 브로마이드 이온을 제공하는 경우 최종 형성되는 나노큐브의 모서리 형태 예컨대, 뾰족하거나 둥근 정도를 조절할 수 있음을 발견한데 기초한다. 구체적으로, 이때 요구되는 브로마이드 이온의 양은 최종 형성되는 나노큐브의 표면적에 비례하여 특정 범위의 배수로 브로마이드 이온을 첨가하는 경우 뾰족한 모서리를, 이외 범위의 배수로 첨가한 경우에는 둥근 모서리를 갖는 나노큐브가 형성되며, 나아가 특정 수준 이상으로 과량의 브로마이드 이온이 첨가된 경우에는 오히려 일정한 형태의 입자로 성장하지 못하고 다양한 형태의 입자 혼합물이 생성되는 것으로 나타났다.The present invention relates to a method of growing nanocubes having a diameter of from about 10 nm to about 10 nm and a diameter of from several tens nm to several hundreds of nm from a metal nanoparticle having a diameter of about 10 nm, based on the discovery that the addition of a small amount of NaBr to provide bromide ions as a noble metal-protecting agent can control the edge shape, e.g., sharpness or roundness, of the nanocubes being formed. Specifically, the amount of bromide ions required is proportional to the surface area of the final formed nanocube. When the bromide ion is added in a multiple of a specific range, sharp corners are formed. In the case of addition in a range other than the range, nanocubes having rounded corners are formed Further, when excess bromide ion was added at a specific level or higher, it was not possible to grow into a certain type of particles, but various types of particle mixture were produced.
또한, 본 발명은 이와 같이 일정한 크기와 형태로 제조된 입자들의 경우 계면활성제 용액에 분산시켜 원심분리하는 경우, 삼투압에 의해 동일한 크기와 형태의 입자들 사이에 공간이 압축되면서 이들끼리 응집됨을 발견한 것이 특징이다. 따라서, 이러한 현상을 이용하면 동일한 크기와 형태의 입자 예컨대, 크기 및 모서리 첨예도에 있어서 10% 이내의 편차를 갖는 입자들은 95% 이상의 높은 순도로 정제할 수 있다.Further, in the case of particles prepared in such a predetermined size and shape, when the particles are dispersed and centrifuged in a surfactant solution, it is found that the space is compressed between the particles of the same size and shape by the osmotic pressure, . Therefore, by using this phenomenon, particles having the same size and shape, for example, particles having a deviation of 10% or less in terms of size and edge sharpness can be purified to a high purity of 95% or more.
본 발명에서 모서리 첨예도 지수(corner sharpness index; CSI)는, 하기 식 1에 나타난 바와 같이, 제조되는 나노큐브의 모서리 길이(edge length; EL)와 모서리 반경(corner radius; CR)에 의해 정의되는 값으로, 나노큐브의 모서리의 형태, 구체적으로 모서리의 뾰족하거나 둥근 정도를 나타내는 척도로서, 모서리가 뾰족할수록 1에 가까운 값을 갖는다.In the present invention, a corner sharpness index (CSI) is defined by an edge length (EL) and a corner radius (CR) of a manufactured nanocube, as shown in Equation 1 below Value is a measure of the shape of the edge of the nanocube, specifically, the degree of sharpness or roundness of the edge, and has a value close to 1 as the edge is sharp.
[식 1][Formula 1]
Figure PCTKR2019001057-appb-I000001
Figure PCTKR2019001057-appb-I000001
이때, EL과 CR은 각각 나노큐브의 편평한 일면 상의 한 점으로부터 이에 평행한 타면까지의 최단거리 및 모서리 곡률(corner curvature)과 완벽히 일치하는 원의 반경으로 정의될 수 있다.In this case, EL and CR can be defined as the radius of a circle perfectly matching the corner curvature and the shortest distance from one point on the flat surface of the nanocube to the other surface parallel thereto.
본 발명의 금속 나노큐브에 사용되는 금속은, 예컨대 귀금속(noble metal)일 수 있다. 상기 금속은 국소표면플라즈몬공명(localized surface plasmon resonance)을 나타내는 물질일 수 있다. 상기 금속은 예컨대 금(Au), 은(Ag), 팔라듐(Pd), 백금(Pt), 구리(Cu), 알루미늄(Al), 납(Pb), 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다. 구체적으로, 상기 금속은 금, 은, 팔라듐, 백금, 구리 또는 이들의 조합일 수 있다. 본 발명의 실시예에서는, 대표적인 귀금속인 금을 이용하여 금속 나노큐브, 즉 AuNC를 제조하였다.The metal used in the metal nanocubes of the present invention may be, for example, a noble metal. The metal may be a material exhibiting localized surface plasmon resonance. The metal may be, but is not limited to, gold (Au), silver (Ag), palladium (Pd), platinum (Pt), copper (Cu), aluminum Do not. Specifically, the metal may be gold, silver, palladium, platinum, copper, or a combination thereof. In the embodiment of the present invention, a metal nano-cube, that is, AuNC was produced using gold, which is a representative noble metal.
본 발명의 제조방법에 있어서, 종자입자로는 평균 직경 3 내지 30 nm의 금속 나노입자를 사용할 수 있다. 구체적으로, 상기 금속 나노입자의 평균 직경은 5 내지 30 nm, 또는 6 내지 30 nm일 수 있으며, 더욱 구체적으로 5 내지 15 nm, 또는 6 내지 15 nm일 수 있다. 상기 금속 나노입자로 예컨대, CTAC로 캡핑된 금 나노스피어를 사용할 수 있으나, 이에 제한되지 않는다. 나아가, 상기 금속 나노입자로는 상용화된 것을 구입하여 그대로 또는 표면 개질하여 사용하거나, 당업계에 공지된 나노입자 합성 방법을 이용하여 보다 작은 입자 예컨대, 1 내지 2 nm 크기의 입자로부터 제조하여 사용할 수 있으나, 이에 제한되지 않는다.In the production method of the present invention, metal nanoparticles having an average diameter of 3 to 30 nm can be used as seed particles. Specifically, the average diameter of the metal nanoparticles may be 5 to 30 nm, or 6 to 30 nm, more specifically 5 to 15 nm, or 6 to 15 nm. As the metal nanoparticles, for example, gold nanospheres capped with CTAC may be used, but the present invention is not limited thereto. Furthermore, the metal nanoparticles may be prepared by using commercially available nanoparticles as they are or by surface modification, or by using particles of smaller size, for example, 1 to 2 nm, using nanoparticle synthesis methods known in the art But is not limited thereto.
본 발명에서 용어 "표면보호제(surface-protecting agent)"는 금속 나노큐브의 특정 면에 선택적으로 결합하여 해당 면에서의 결정 성장을 조절함으로써 최종 생성물의 형태를 제어할 수 있는 물질을 의미할 수 있다. 예컨대, 상기 표면보호제는 금속 나노큐브의 (100)면에 특이적으로 결합하여 해당면으로부터의 성장을 제어함으로써 최종적으로 형성되는 입자의 형태 및 모서리 첨예도를 조절할 수 있는, 브롬 이온을 제공하는, 브롬 이온의 유기 또는 무기염일 수 있다. 반응용액 중에서 정량적으로 브롬 이온을 제공할 수 있는 한, 그 화학종에 제한되지 않는다. 구체적으로, CTAB(hexadecyltrimethylammonium bromide) 등의 브롬의 유기염 또는 NaBr, KBr, MgBr2, CaBr2와 같은 브롬의 금속염일 수 있으나, 이에 제한되지 않는다.The term "surface-protecting agent" in the present invention means a substance capable of controlling the morphology of the final product by selectively binding to a specific surface of the metal nanocube to control crystal growth on the surface . For example, the surface-protective agent may be a metal nanocube that specifically binds to the (100) surface of the metal nanocube to control the growth from the surface to control the shape and edge sharpness of the finally formed particle, Organic or inorganic salts of bromine ions. Is not limited to the chemical species so long as it can quantitatively provide bromine ions in the reaction solution. Specifically, it may be an organic salt of bromine such as CTAB (hexadecyltrimethylammonium bromide) or a metal salt of bromine such as NaBr, KBr, MgBr 2 , CaBr 2 , but is not limited thereto.
본 발명에서 용어 "제1계면활성제"는 반응 용액 내에서 종자로 사용되는 금속 나노입자의 응집(aggregation)을 방지할 수 있는 분자를 의미할 수 있다. 예컨대, 상기 제1계면활성제는 CTAC(hexadecyltrimethylammonium chloride)일 수 있으나, 이에 제한되지 않으며, 상기 정의된 제1계면활성제의 역할을 수행할 수 있는 한, 당업계에 공지된 계면활성제를 제한없이 사용할 수 있다. 다만, 본 발명에 있어서, 표면보호제로 브롬 이온을 사용하는 바, 반응계에서 브롬 이온의 농도를 정밀히 조절하기 위하여, 표면보호제 이외의 반응물들은 브롬 이온을 불포함하는 것이 바람직할 수 있다. 따라서, 본 발명에 있어서, 제1계면활성제로는 브롬 이온을 불포함하는 계면활성제를 사용할 수 있다.The term "first surfactant " in the present invention may mean a molecule capable of preventing aggregation of metal nanoparticles used as seeds in a reaction solution. For example, the first surfactant may be hexadecyltrimethylammonium chloride (CTAC), but is not limited thereto. As long as it can serve as the first surfactant defined above, surfactants known in the art can be used without limitation have. However, in the present invention, when bromine ions are used as the surface protecting agent, it is preferable that the reactants other than the surface protective agent do not contain bromine ions in order to precisely control the concentration of bromine ions in the reaction system. Therefore, in the present invention, as the first surfactant, a surfactant containing no bromine ion can be used.
본 발명에서 용어 "환원제(reducing agent)"는 금속 이온을 환원시켜 결정을 성장시킬 수 있는 시약을 의미할 수 있다. 예컨대, 상기 환원제는 아스코르브산일 수 있으나, 이에 제한되지 않는다.The term "reducing agent" in the present invention may mean a reagent capable of reducing the metal ion to grow crystals. For example, the reducing agent may be ascorbic acid, but is not limited thereto.
상기 금속 이온을 함유하는 전구체 용액은 HAuCl4 수용액일 수 있으나, 이에 제한되지 않는다.Precursor solutions containing the metal ion may be an aqueous solution of HAuCl 4, but is not limited thereto.
본 발명의 나노큐브 제조방법은, 상기 금속 이온 전구체 첨가 단계에 따른 반응 용액을 원심분리하고 침전물을 회수하여 용액에 재분산시키는, 원심분리 및 재분산 단계; 및 상기 재분산된 반응 용액에 제2계면활성제를 첨가하여 원심분리하는, 제2계면활성제 첨가 및 원심분리 단계를 추가로 포함할 수 있다. 상기 추가적인 단계를 통해 정제함으로써, CSI 값이 ±10% 이내의 편차로 조절된 금속 나노큐브를 95% 이상의 순도로 제공할 수 있다.The nanocube manufacturing method of the present invention comprises: centrifuging a reaction solution according to the metal ion precursor adding step, centrifuging and redispersing the precipitate to recover and redispersing the solution; And a second surfactant addition and centrifugation step in which a second surfactant is added to the redispersed reaction solution and centrifuged. By purifying through this additional step, metal nanocubes with CSI values adjusted to within +/- 10% deviation can be provided with a purity of 95% or greater.
상기 본 발명의 방법으로 제조된 금속 나노큐브는 모서리 첨예도가 조절되었을 뿐만 아니라, 그 크기 즉, 모서리 길이 또한 균일한 것이 특징이다. 따라서, 상기 추가적인 정제과정을 통해, 모서리 길이가 ±10% 이내의 편차로 조절된 금속 나노큐브를 95% 이상의 순도로 제공할 수 있다.The metal nanocubes produced by the method of the present invention have not only the edge sharpness but also the size, that is, the edge length, are uniform. Therefore, through the additional purification process, the metal nanocubes having an edge length adjusted within a deviation of 10% or less can be provided with a purity of 95% or more.
예컨대, 본 발명의 방법으로 제조된 금속 나노큐브는 CSI 값 및 모서리 길이 모두가 균일하게 조절된 것으로 전술한 추가적인 정제 공정을 통해 CSI 값 및 모서리 길이가 모두 ±10% 이내의 편차로 조절된 금속 나노큐브를 95% 이상의 순도로 획득할 수 있다.For example, the metal nanocubes prepared by the method of the present invention are uniformly controlled in both the CSI value and the edge length, and the metal nanocubes having the CSI value and the edge length all adjusted to within a deviation of 10% The cube can be obtained with a purity of 95% or more.
상기 원심분리 및 재분산 단계에 있어서, 입자의 응집을 방지하기 위하여 제3계면활성제를 추가로 포함할 수 있으나, 이에 제한되지 않는다. 상기 제3계면활성제로는 CTAB(hexadecyltrimethylammonium bromide)을 사용할 수 있으나, 이에 제한되지 않는다.In the centrifugal separation and redispersion step, a third surfactant may be further added to prevent aggregation of particles, but the present invention is not limited thereto. The third surfactant may be hexadecyltrimethylammonium bromide (CTAB), but is not limited thereto.
상기 제2계면활성제 첨가 및 원심분리 단계에 있어서, 원심분리는 제2계면활성제 존재 하에 수행하는 것이 특징이다. 상기 제2계면활성제로는 용액 중에서 마이셀을 형성하며, 그 크기로 인해 입자 사이의 좁은 공간과 벌크 용액 상 사이에 농도차를 유발하여 삼투압을 발생시킬 수 있는 물질을 사용할 수 있다. 상기 제2계면활성제로는 전술한 역할을 수행할 수 있는 한, 공지의 계면활성제를 제한없이 사용할 수 있다. 상기 제2계면활성제는 전술한 제1계면활성제 및/또는 제3계면활성제와 동일 또는 상이한 물질을 사용할 수 있다. 한편, 브롬 이온을 불포함하는 제1계면활성제와는 달리, 제2계면활성제 및/또는 제3계면활성제는 이에 포함되는 이온의 종류에 제한되지 않는다. 예컨대, 제2계면활성제로 BDAC(benzyldimethyldodecylammonium chloride)를 사용하는 경우, BDAC는 제1계면활성제로 예시한 CTAC에 비해, 높은 응집 포텐셜에 의해, 적은 수의 분자로 마이셀을 형성할 수 있으므로, 같은 농도의 용액으로 보다 많은 수의 마이셀을 제공할 수 있다. 이는 제2계면활성제의 사용량은 선택되는 계면활성제 화학종의 물성을 고려하여 조절할 수 있음을 나타내는 것이다.In the second surfactant addition and centrifugation step, centrifugation is carried out using a second surfactant existence To carry out Feature. The second surfactant may be a substance capable of forming osmotic pressure by forming a micelle in a solution and causing a concentration difference between a narrow space between particles and a bulk solution phase due to its size. As the second surfactant, any known surfactant can be used as long as it can perform the above-mentioned role. The second surfactant may be the same as or different from the first surfactant and / or the third surfactant. On the other hand, unlike the first surfactant which does not contain bromine ions, the second surfactant and / or the third surfactant are not limited to the types of ions contained therein. For example, when BDAC (benzyldimethyldodecylammonium chloride) is used as the second surfactant, since BDAC can form micelles with a small number of molecules due to high cohesive potential as compared with CTAC exemplified as the first surfactant, Can provide a greater number of micelles. This indicates that the amount of the second surfactant can be adjusted in consideration of the physical properties of the selected surfactant species.
예컨대, 본 발명의 나노큐브 제조방법을 이용하여 최종 제조하고자 하는 금속 나노큐브의 CR 값이 5 nm 미만이거나, CSI 값이 0.7 이상인 경우, 제1단계에서 결정되는 첨가할 NaBr의 양, 즉, 제2단계에서 첨가할 NaBr의 양은 최종 제조하고자 하는 금속 나노큐브의 표면적 값(단위 nm2)의 200 내지 700배의 분자수일 수 있다.For example, when the CR value of the metal nano-cube to be finally produced by using the nanocube manufacturing method of the present invention is less than 5 nm or the CSI value is 0.7 or more, the amount of NaBr added in the first step, of NaBr be added in step 2. the amount of the surface area values of the nano-metal cubes to be the final production (in nm 2) may be 200 to 700 times the number of molecules of.
또는, 본 발명의 나노큐브 제조방법을 이용하여 최종 제조하고자 하는 금속 나노큐브의 CR 값이 5 nm 이상이거나, CSI 값이 0.7 미만인 경우, 제1단계에서 결정되는 첨가할 NaBr의 양, 즉, 제2단계에서 첨가할 NaBr의 양은 최종 제조하고자 하는 금속 나노큐브의 표면적 값(단위 nm2)의 200배 미만 또는 700배 초과 10000배의 분자수일 수 있다.Alternatively, when the CR value of the metal nanocube to be finally prepared by using the nanocube production method of the present invention is 5 nm or more, or the CSI value is less than 0.7, the amount of NaBr to be added, determined in the first step, The amount of NaBr to be added in the second step may be less than 200 times the surface area value (unit nm 2 ) of the metal nano-cube to be finally produced or 700 times to 10,000 times the molecular number.
본 발명의 구체적인 실시예에서는 최종 제조하고자 하는 금속 나노큐브의 절대적인 크기와는 무관하게 단위 표면적 당 즉, 1 nm2 당 100개 이하 또는 1000개 이상의 양으로 브로마이드 이온이 첨가되는 경우 상대적으로 둥근 모서리를 갖는 즉, 낮은 CSI 값의 나노큐브가 형성되는 것을 확인하였으며, 1 nm2 당 약 390개가 되도록 브로마이드 이온이 첨가되는 경우에는 상대적으로 가장 뾰족한 모서리를 갖는 즉, 보다 1에 가까운 약 0.7 내지 0.8의 CSI 값을 갖는 나노큐브가 형성되는 것을 확인하였다. 다만, 17-18 nm의 모서리 길이를 갖는 작은 나노큐브의 경우에는 다른 크기의 입자에서와 유사하게 표면적 1 nm2 당 100개 이하 또는 1000개 이상의 양으로 브로마이드 이온이 첨가되는 경우 둥근 모서리를, 약 390개가 되도록 브로마이드 이온이 첨가되는 경우 뾰족한 모서리를 갖는 큐브의 형태를 갖는 것을 확인하였으나, 작은 EL 값으로 인해 CSI 값은 0.3 내지 0.5로 낮았다.In a specific embodiment of the present invention, irrespective of the absolute size of the metal nano-cube to be finally produced, when the bromide ion is added per unit surface area, i.e., 100 nm or less per 1 nm 2 or 1000 or more, relatively rounded corners That is, a low CSI value is formed. When the bromide ion is added to about 390 per 1 nm 2 , a CSI having a relatively sharp edge, that is, a nearer to 1, of about 0.7 to 0.8, Of the nanocubes were formed. However, in the case of small nanocubes with edge lengths of 17-18 nm, rounded corners can be observed when the bromide ion is added in an amount of 100 or less or 1,000 or more per 1 nm 2 of the surface area, When the bromide ion was added to form 390 cations, it was confirmed that the cube had a sharp corner shape. However, the CSI value was as low as 0.3 to 0.5 due to the small EL value.
본 발명의 방법으로 제조된 상기 금속 나노큐브는 평균 15 내지 300 nm의 모서리 길이를 가질 수 있다. 종래 나노큐브의 제조방법으로는 20 nm 이하의 작은 크기를 갖는 나노큐브를 제조하기 어려웠으며, 특히 이들의 모서리 형태를 미세하게 조절하는 것은 불가능 하였다.The metal nanocubes prepared by the method of the present invention may have an average length of 15 to 300 nm. Conventionally, nanocubes having a small size of 20 nm or less have been difficult to fabricate. In particular, it is impossible to finely adjust the corner shapes of the nanocubes.
예컨대, 본 발명의 제조방법에서, 상기 제1계면활성제는 사용되는 전체 용액의 부피에 대해 30 내지 70 mM의 농도로 사용하는 것이 바람직하나, 이에 제한되지 않는다. 예컨대, 상기 제1계면활성제로는 CTAC(hexadecyltrimethylammonium chloride)를 사용할 수 있으나, 이에 제한되지 않는다.For example, in the production method of the present invention, the first surfactant is used at a concentration of 30 to 70 mM based on the volume of the whole solution used But it is not limited thereto. For example, CTAC (hexadecyltrimethylammonium chloride) may be used as the first surfactant, but the present invention is not limited thereto.
예컨대, 본 발명의 제조방법에서, 상기 환원제는 사용되는 전체 용액의 부피에 대해 0.1 내지 0.5 mM의 농도로 사용하는 것이 바람직하나, 이에 제한되지 않는다. 예컨대, 상기 환원제로는 아스코르브산을 사용할 수 있으나, 이에 제한되지 않는다.For example, in the production method of the present invention, the reducing agent is preferably used at a concentration of 0.1 to 0.5 mM based on the volume of the total solution used, but is not limited thereto. For example, ascorbic acid may be used as the reducing agent, but is not limited thereto.
예컨대, 본 발명의 제조방법에서, 상기 금 이온을 함유하는 전구체 용액은 전체 용액의 부피에 대해 0.1 내지 0.4 mM의 농도로 사용하는 것이 바람직하나, 이에 제한되지 않는다.For example, in the production method of the present invention, the precursor solution containing the gold ions is preferably used at a concentration of 0.1 to 0.4 mM based on the volume of the whole solution, but is not limited thereto.
상기 반응물들의 농도가 해당 범위에 비해 크게 낮거나 높은 경우에는 원하는 큐브형태의 입자가 아닌 다른 다면체 형태의 입자가 형성될 수 있다.When the concentrations of the reactants are significantly lower or higher than the range, polyhedral particles other than the desired cube-shaped particles may be formed.
본 발명의 각 단계에서, 혼합 또는 첨가되는 물질들은 각각 동시에, 순차적으로, 또는 이시에 혼합 또는 첨가될 수 있다. 예컨대, 상기 혼합 수용액 제조 단계는, 제1계면활성제 및 상기 표면보호제 양 결정 단계에 따라 결정된 양의 표면보호제를 함유하는 혼합 수용액에 평균 직경 3 내지 30 nm의 금속 나노입자를 첨가하여 수행되거나, 금속 나노입자를 함유하는 수용액에 제1계면활성제 및 표면보호제를 첨가하여 수행될 수 있다. 예컨대, 상기 금속 이온 전구체 첨가 단계는, 상기 혼합 수용액에 환원제, 및 금속 이온을 함유하는 전구체 용액을 동시에, 순차적으로, 또는 이시에 첨가하여 반응시키는 것일 수 있다.In each step of the present invention, the materials to be mixed or added may be mixed, or added simultaneously, sequentially, or at the same time. For example, the mixed aqueous solution preparation step may be carried out by adding metal nanoparticles having an average diameter of 3 to 30 nm to a mixed aqueous solution containing an amount of a surface protecting agent determined according to the first surfactant and the surface protective agent amount crystallization step, Or by adding a first surfactant and a surface protecting agent to an aqueous solution containing nanoparticles. For example, the metal ion precursor adding step may be a step of simultaneously or sequentially adding a reducing agent and a precursor solution containing a metal ion to the mixed aqueous solution, and then reacting.
또한, 본 발명은 금속 나노큐브를 포함하는 용액을 원심분리하고 침전물을 회수하여 용액에 재분산시키는 단계; 및 제2계면활성제를 첨가하여 원심분리하는 단계를 포함하는, 95% 이상의 순도를 갖는 금속 나노큐브 집합체의 제조방법을 제공한다.The present invention also provides a method for preparing a metal nanocube, comprising centrifuging a solution containing a metal nanocube, recovering the precipitate and redispersing the solution in a solution; And a step of adding a second surfactant and centrifuging to obtain a metal nanocube aggregate having a purity of 95% or more.
전술한 바와 같이, 상기 재분산 단계의 용액은 응집을 방지하기 위하여 제3계면활성제를 추가로 포함할 수 있으나, 이에 제한되지 않는다.As described above, the solution in the redispersing step may further include, but is not limited to, a third surfactant to prevent aggregation.
또한, 상기 제2계면활성제는 상기 정의한 바와 같다.Also, the second surfactant is as defined above.
일정 이상의 크기를 갖는 금속 나노입자를 제2계면활성제 예컨대, BDAC 존재 하에 원심분리하는 경우, 면 대 면으로 접하는 입자들 사이에 외부로 향하는 삼투압이 발생하면서 압축되어 입자들 간의 응집이 발생한다. 이에 따라 수백 내지 1000 rpm 이하에서 5 내지 10분의 짧은 시간 동안 원심분리하여 동일한 크기 및 형태의 입자들을 고순도로 정제할 수 있다. 이러한 응집의 원리는 도 1에 개시한 바와 같다.When the metal nanoparticles having a size equal to or larger than a certain size are centrifuged in the presence of the second surfactant, for example, BDAC, the outward osmotic pressure is generated between the particles contacting with the surface-to-surface, and agglomeration occurs between the particles. Accordingly, it is possible to purify particles of the same size and shape with high purity by centrifuging for a short time of 5 to 10 minutes at a temperature of several hundreds to 1000 rpm. The principle of such agglomeration is as shown in Fig.
따라서, 본 발명의 정제방법을 이용하여 95% 이상의 순도를 갖는 금속 나노큐브 집합체를 제공할 수 있으며, 이때, 금속 나노큐브 집합체를 이루는 개별 나노큐브의 CSI 값의 편차가 ±10% 이내일 수 있으나, 이에 제한되지 않는다.Therefore, it is possible to provide a metal nanocube aggregate having a purity of 95% or more by using the purification method of the present invention. In this case, the deviation of the CSI value of the individual nanocubes constituting the metal nanocube aggregate may be within +/- 10% , But is not limited thereto.
또한, 본 발명의 정제방법을 이용하여 95% 이상의 순도를 갖는 금속 나노큐브 집합체는 이를 이루는 개별 나노큐브의 모서리 길이는 그 편차가 ±10% 이내일 수 있으나, 이에 제한되지 않는다.In addition, by using the purification method of the present invention, the edge length of the individual nanocubes having a purity of 95% or more can be within ± 10%, but the present invention is not limited thereto.
구체적으로, 본 발명의 정제방법을 이용하여 95% 이상의 순도를 갖는 금속 나노큐브 집합체는 이를 이루는 개별 나노큐브의 CSI 값 및 모서리 길이의 편차 모두가 ±10% 이내일 수 있으나, 이에 제한되지 않는다.In particular, the metal nanocube aggregate having a purity of 95% or more by using the purification method of the present invention may have a deviation of the CSI value and the edge length of the individual nanocubes from each other within ± 10%, but the present invention is not limited thereto.
나아가, 본 발명의 방법으로 제조된, 모서리 첨예도가 조절된 금속 나노큐브; 또는 본 발명의 방법으로 제조된 일정한 크기와 형태의 고순도 금속 나노큐브 집합체는 탐침 조성물에 사용할 수 있다.Furthermore, the metal nanocubes prepared by the method of the present invention and having a controlled angle of sharpness; Or a high purity metal nanocube aggregate of a certain size and shape prepared by the method of the present invention can be used in a probe composition.
바람직하게, 본 발명의 방법으로 제조된 모서리 첨예도가 조절된 금속 나노큐브; 또는 본 발명의 방법으로 제조된 일정한 크기와 형태의 고순도 금속 나노큐브 집합체는 CSI 값 및 모서리 길이가 모두 ±10% 이내의 편차로 조절되어 이를 구성하는 개별 입자들이 모두 일정한 물리 및/또는 화학적 특성을 나타낼 수 있다.Preferably, the metal nanocubes have been prepared by the method of the present invention and have an edge sharpness controlled; Or a high purity metal nanocube aggregate of a certain size and shape produced by the method of the present invention has a CSI value and a corner length both controlled to within a deviation of 10% so that the individual particles constituting the aggregate have uniform physical and / or chemical properties .
전술한 바와 같이, 본 발명의 제조방법은 크기와 형태 예컨대, 모서리 첨예도가 정밀하게 조절된 금속 나노큐브를 제공할 수 있고, 나아가 추가적인 정제 과정을 통해 일정한 크기와 형태의 금속 나노큐브를 95% 이상 함유하는 고순도의 나노큐브 집합체를 제공할 수 있다. 나아가, 크기와 형태가 조절된 나노큐브는 크기와 모서리 형태에 따라 변화하는 일정한 광학적 성질을 나타낼 수 있으므로, 광학적으로 검출 가능한 탐침 조성물에 사용될 수 있다.As described above, the manufacturing method of the present invention can provide a metal nanocube having precisely controlled size and shape, for example, a corner sharpness. Further, the metal nanocube having a predetermined size and shape can be uniformly modified by 95% Or more of a nanocube aggregate having a high purity can be provided. Furthermore, nanocubes having controlled size and shape can exhibit constant optical properties that vary depending on the size and shape of the corners, and thus can be used in an optically detectable probe composition.
본 발명의 구체적인 실시예에서는, 입자의 크기와 모서리 형태를 조절하면서 17 nm 내지 68 또는 78 nm 범위의 모서리 길이를 가지면서 뾰족하거나 둥근 형태의 모서리를 갖는 일련의 금속 나노큐브를 제조하고, 이들 금속 나노큐브 각각은 크기 또는 모서리 형태에 따라 고유한 광학적 특성을 갖는 것을 확인하였다. 도 6에 나타난 바와 같이, 모서리 길이가 증가함에 따라 즉, 입자의 크기가 커짐에 따라 최대 흡광(extinction) 파장이 보다 장파장에서 나타났으며, 동일 또는 유사한 크기의 나노큐브에서도 모서리의 형태가 뾰족할수록 즉, 보다 높은 CSI 지수를 가질수록 흡광 스펙트럼이 다소 장파장 이동된 것을 확인하였다.In a specific embodiment of the present invention, a series of metal nanocubes with sharp or rounded corners with edge lengths in the range of 17 nm to 68 or 78 nm are prepared while controlling the size and shape of the particles, Each of the nanocubes has a unique optical characteristic depending on the size or edge shape. As shown in FIG. 6, as the edge length increases, that is, as the particle size increases, the maximum extinction wavelength appears at a longer wavelength. Also, in the nanocube having the same or similar size, That is, it was confirmed that the absorption spectrum was shifted by a longer wavelength with a higher CSI index.
또한, 본 발명의 방법으로 제조된 금속 나노큐브 및 이의 복합체는 우수한 국소표면플라즈몬공명 특성을 토대로 다양한 분광학적 신호 예컨대, 흡광, 형광, 또는 산란 신호를 나타낼 수 있으므로, 다양한 분석 방법에 탐침으로 사용될 수 있다.In addition, the metal nanocubes and complexes thereof produced by the method of the present invention can exhibit various spectroscopic signals such as absorption, fluorescence, or scattering signals based on excellent local surface plasmon resonance characteristics, and thus can be used as probes in various assay methods. have.
본 발명의 구체적인 실시예에서는, 이들 입자가 다양한 파장에서 흡광 스펙트럼을 갖는 것을 확인하였으며(도 6e), 본 발명에 따른 방법으로 제조한 금속 나노큐브 표면에 1,4-디벤젠티올(BDT) 등의 자기조립단분자막을 형성한 후 이를 연결분자로 하여 금속 나노큐브 이합체를 형성한 경우 현저히 증가된 표면증강라만산란 신호(SERS)를 좁은 분포로 나타내는 것을 확인하였다.In a specific example of the present invention, it was confirmed that these particles had an absorption spectrum at various wavelengths (Fig. 6E). On the surface of metal nanocubes prepared by the method according to the present invention, 1,4-dibenzenethiol (BDT) (SERS) in the case of forming a metal nanocube dimer as a linking molecule after forming the self-assembled monolayer of the Raman scattering signal (SERS).
상기 본 발명에 따른 금속 나노큐브 또는 이의 집합체를 포함하는 탐침 조성물은 센서용, 바이오이미징용, 또는 치료용으로 사용될 수 있으나, 그 용도는 이에 제한되는 것은 아니다.The probe composition comprising the metal nano-cube or the aggregate thereof according to the present invention can be used for sensors, bio-imaging, or therapy, but the application is not limited thereto.
특히, 본 발명에 따른 금속 나노큐브 또는 이의 집합체는 크기 및/또는 모서리 형태에 따라 특이적이며 서로 구별된 광학적 특성을 나타내며, 이들로부터의 신호는 각각의 입자에서 및/또는 반복 실험에서 높은 재현성을 가지므로, 정성분석은 물론 둘 이상의 시료를 동시에 분석하는 다중분석 및 나아가 정량분석에도 유용하게 사용될 수 있다.In particular, the metal nanocubes or aggregates thereof according to the present invention exhibit specific and distinct optical characteristics depending on their size and / or edge shape, and the signals therefrom have high reproducibility in each particle and / or in repeated experiments , It can be used for qualitative analysis as well as for multiple analysis simultaneously analyzing two or more samples and also for quantitative analysis.
나아가 다양한 분야에 적용하기 위하여, 필요에 따라 상기 금속 나노큐브는 적절한 작용기, 고분자, 단백질 등으로 표면 개질될 수 있으나, 이에 제한되지 않는다.Further, in order to be applied to various fields, the metal nanocubes may be surface-modified with appropriate functional groups, polymers, proteins and the like according to need, but the present invention is not limited thereto.
또한, 본 발명에 따른 금속 나노큐브는 크기와 형태가 미세하게 조절된 입자이므로 3차원 나노구조물 형성을 위한 구성요소(building block), 메타물질(metamaterials) 또는 광학 나노안테나(optical nanoantenna) 등으로 사용될 수 있다.In addition, since the metal nanocubes according to the present invention are particles whose size and shape are finely adjusted, they can be used as a building block, metamaterials or optical nanoantenna for forming a three-dimensional nanostructure. .
또한, 본 발명은 각 모서리 길이의 평균이 20 nm 이하인, 금(Au) 나노큐브를 제공한다.Further, the present invention provides a gold (Au) nanocube having an average of edge lengths of 20 nm or less.
본 발명의 제조방법에 의하면, 종래의 방법으로는 얻을 수 없었던 17 nm 내지 18 nm 수준의 모서리 길이를 갖는, 극단적으로 작은 크기의 금 나노큐브를 얻을 수 있다. 이와 같이 작은 크기의 나노큐브 입자는 부피 대 표면적의 비율이 매우 커, 촉매, 생물학, 의학 등의 분야에 응용함에 있어 이점을 갖는다.According to the manufacturing method of the present invention, it is possible to obtain an extremely small-sized gold nanocube having a corner length of 17 nm to 18 nm which has not been obtained by a conventional method. Such small size nanocube particles have a very large ratio of volume to surface area and have an advantage in application to the fields of catalyst, biology, and medicine.
상기 금 나노큐브는 실질적으로 정육면체 형상일 수 있으나, 모서리 길이에 다소의 차이가 있을 수 있다. 상기 금 나노큐브 하나의 각 모서리 길이의 평균은 20 nm 이하, 구체적으로는 10 nm 내지 20 nm일 수 있다. 또한 상기 금 나노큐브의 모서리의 CSI 값이 ±10% 이내의 편차로 조절되거나, 모서리 길이가 ±10% 이내의 편차로 조절된 것일 수 있다.The gold nanocubes may be substantially cubic in shape, but there may be some differences in edge length. The average length of each edge of one of the gold nanocubes may be 20 nm or less, specifically, 10 nm to 20 nm. In addition, the CSI value of the edge of the gold nanocube may be adjusted to a deviation within ± 10%, or the edge length may be adjusted to a deviation within ± 10%.
본 발명의 제조방법은 번거로운 추가 공정 등이 없이도 반응물의 양을 조절하는 단순한 방법으로 최종 제조되는 금속 나노큐브의 크기 및/또는 형태 나아가 모서리의 뾰족한 정도를 미세하게 조절할 수 있을 뿐만 아니라, 제2계면활성제를 포함하는 용액에서 짧게 원심분리하는 추가적인 과정만으로 정제가능하며, 이를 통해 95% 이상의 순도로 균일한 크기 및 형태를 갖는 금속 나노큐브의 집합체를 제공할 수 있으므로, 크기와 형태가 제어된, 나아가 광학적 특성이 제어된 금속 나노큐브의 대량생산을 가능하게 할 수 있다.The manufacturing method of the present invention can finely control the size and / or shape of the finally prepared metal nanocubes and further the sharpness of the edges by a simple method of controlling the amount of reactant without troublesome additional steps, It is possible to purify only by an additional process of short centrifuging in a solution containing an activator, thereby providing an aggregate of metal nanocubes having a uniform size and shape at a purity of 95% or more, It is possible to mass-produce metal nanocubes having controlled optical characteristics.
도 1은 본 발명에 따른 형태-조절된 AuNCs의 합성 및 정제 방법을 개략적으로 나타낸 도이다. (a)는 다양한 브로마이드 밀도로 첨예도-조절된 AuNCs의 선택적 표면보호-유도 이방성 성장(selective surface-protection-directed anisotropic growth)을 나타낸다. 반응 속도(reaction kinetics)를 조절(modifying)하는 제안된 기전은 AuNC의 (100) 면에 대한 브로마이드 이온의 우선적 흡착에 기초한다. (b)는 계면활성제 마이셀 용액에서 원심분리-주도 결손-유도 응집(centrifugation-driven depletion-induced flocculation)에 의한 합성된 AuNC의 정제 및 이어지는 DIW에의 재분산을 나타낸 도이다. 하단의 이미지는 응집 과정 동안 AuNCs 간의 인력적 삼투압(attractive osmotic pressure)을 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic representation of a method for the synthesis and purification of form-regulated AuNCs according to the present invention. (a) shows selective surface-protection-directed anisotropic growth of sharp-regulated AuNCs at various bromide densities. The proposed mechanism to modulate reaction kinetics is based on the preferential adsorption of bromide ions on the (100) face of AuNC. (b) shows the purification of synthesized AuNC by centrifugation-driven depletion-induced flocculation in a surfactant micelle solution and subsequent redispersion in DIW. The lower image shows the attractive osmotic pressure between the AuNCs during the flocculation process.
도 2는 본 발명의 일 실시예에 따른 AuNC 및 비교예 1과 2에 따른 나노입자의 형태를 TEM 이미지로 나타난 도이다. 스케일 바는 100 nm를 나타낸다.FIG. 2 is a TEM image showing the morphology of nanoparticles according to AuNC and Comparative Examples 1 and 2 according to an embodiment of the present invention. FIG. The scale bar represents 100 nm.
도 3은 본 발명의 일 실시예에 따른 방법으로 형태 및/또는 모서리 첨예도를 조절하여 제조한 나노큐브의 이미지를 나타낸 도이다. (a)는 고정된 종자량의 금 전구체를 사용하여 0 mM로부터 200 mM까지 브로마이드 농도를 조절하여 수득한 AuNC의 대표적인 TEM 이미지로, 좌측으로부터 우측으로, 각각 0 mM, 1 mM, 40 mM, 및 200 mM 농도의 브로마이드를 사용하여 제조한 AuNC에 상응하는 TEM 이미지이다. 스케일바는 20 nm를 나타낸다. (b)는, (a)의 AuNC의 CSI 값이다.FIG. 3 is a view illustrating an image of a nanocube manufactured by adjusting shape and / or edge sharpness according to an embodiment of the present invention. (a) is a representative TEM image of AuNC obtained by adjusting the bromide concentration from 0 mM to 200 mM using a fixed seed gold precursor. From the left to right, 0 mM, 1 mM, 40 mM, and 200 mM < / RTI > concentration of bromide. The scale bar represents 20 nm. (b) is the CSI value of AuNC in (a).
도 4는 UV-vis 분광광도계를 사용하여 획득한 브로마이드-농도-의존적 성장 속도(bromide-concentration-dependent growth kinetics)를 나타낸 도이다.Figure 4 is a diagram showing bromide-concentration-dependent growth kinetics obtained using a UV-vis spectrophotometer.
도 5는 형태-조절된 AuNCs의 특성을 나타낸 도이다. (a)는, 다른 양의 종자 및 브로마이드를 사용하여 제조한, 정제된 AuNCs의 TEM 이미지이며, 삽입도는, 첨예도 차이를 명확히 가시화하기 위한, 대표적인 단일-입자 이미지를 나타낸다. 표기법에서 숫자는 모서리 길이에 상응하고, R 및 S는 각각 둥근-모서리를 갖는(round-cornered) AuNCs와 뾰족한-모서리를 갖는(sharp-cornered) AuNCs를 나타낸다. 좌측으로부터 우측으로, 각 열은 동일 농도의 종자 용액을 각 300 ㎕, 30 ㎕, 9 ㎕, 6 ㎕, 및 2 ㎕씩 사용하여 제조한 입자들이다. 또한, 고정된 양의 종자를 사용하고, 브로마이드 농도를 변화시켜 모서리 첨예도를 조절하였으며, R AuNCs 및 S AuNCs를 획득할 수 있었다. (b)는 정제 후 고수율로 수득한 AuNCs를 나타내는 저배율 SEM 이미지이다. 스케일바는 1 ㎛를 나타낸다.Figure 5 is a diagram illustrating the characteristics of form-regulated AuNCs. (a) is a TEM image of purified AuNCs prepared using different amounts of seeds and bromide, and the degree of insertion shows a representative single-particle image for clearly visualizing sharpness differences. In the notation, the numbers correspond to edge lengths, and R and S represent rounded-cornered AuNCs and sharp-cornered AuNCs, respectively. From the left to the right, each column is a particle prepared by using 300 μl, 30 μl, 9 μl, 6 μl, and 2 μl each of the same concentration of seed solution. We also used a fixed amount of seed, adjusted the angle of sharpness by varying the bromide concentration, and obtained R AuNCs and S AuNCs. (b) is a low magnification SEM image showing AuNCs obtained at high yield after purification. The scale bar represents 1 mu m.
도 6은 형태-조절된 AuNCs의 특성을 나타낸 도이다. (a)는 모서리 길이(edge length; EL), 모서리 반경(corner radius; CR), 및 모서리 첨예도 지수(corner sharpness index; CSI)의 정의를 나타낸다. (b)는 본 발명의 실시예에 따른 일련의 AuNCs의 모서리 길이 및 모서리 반경을, (c)는 본 발명의 실시예에 따른 일련의 AuNCs의 CSI를 나타낸다. (d)는 본 발명의 실시예에 따른 일련의 AuNCs에 대해 계산된 AuNC 당 첨가된 브로마이드 이온 수를 나타낸다. (e)는 본 발명의 실시예에 따른 일련의 AuNC 용액의에 대한 정상화된 UV-vis 스펙트럼을 나타낸다. 실선(solid lines)과 파선(dashed lines)은 각각 R AuNCs와 S AuNCs에 상응한다.Figure 6 is a diagram illustrating the characteristics of form-regulated AuNCs. (a) shows the definitions of edge length (EL), corner radius (CR), and corner sharpness index (CSI). (b) shows the edge length and corner radius of a series of AuNCs according to an embodiment of the present invention, and (c) shows the CSI of a series of AuNCs according to an embodiment of the present invention. (d) shows the number of bromide ions added per AuNC calculated for a series of AuNCs according to an embodiment of the present invention. (e) shows the normalized UV-vis spectrum for a series of AuNC solutions according to an embodiment of the present invention. Solid lines and dashed lines correspond to R AuNCs and S AuNCs, respectively.
도 7a는 37R 및 32S AuNCs의 저배율 SEM 이미지를 나타낸 도이다. 스케일바는 1 ㎛를 나타낸다.Figure 7a shows a low magnification SEM image of 37R and 32S AuNCs. The scale bar represents 1 mu m.
도 7b는 41R 및 41S AuNCs의 저배율 SEM 이미지를 나타낸 도이다. 스케일바는 1 ㎛를 나타낸다.Figure 7b shows a low magnification SEM image of 41R and 41S AuNCs. The scale bar represents 1 mu m.
도 7c는 54R 및 53S AuNCs의 저배율 SEM 이미지를 나타낸 도이다. 스케일바는 1 ㎛를 나타낸다.Figure 7c shows a low magnification SEM image of 54R and 53S AuNCs. The scale bar represents 1 mu m.
도 7d는 78R 및 72S AuNCs의 저배율 SEM 이미지를 나타낸 도이다. 스케일바는 1 ㎛를 나타낸다.Figure 7d shows a low magnification SEM image of 78R and 72S AuNCs. The scale bar represents 1 mu m.
도 8은 정제 전과 후의 50R AuNCs에 대한 대표적인 여기 스펙트럼을 나타낸 도이다.Figure 8 is a representative excitation spectrum for 50R AuNCs before and after purification.
도 9는 단일 입자 수준에서의 AuNCs에 대한 원거리장(far-field) 산란 분석 결과를 나타낸 도이다. (a)는 개별 AuNCs의 암시야 현미경 이미지를, (b)는 25개 상이한 AuNCs로부터 획득하여 연속적으로 나타낸 레일리 산란 스펙트럼을, (c)는, (b)에서 흰색 점선(dotted line)으로 표시한 데이터에 해당하는, AuNCs의 레일리 산란 스펙트럼을 나타낸다. (a)에서 스케일바는 0.2 ㎛를 나타낸다. (d) 내지 (f)는 각각 AuNCs의 크기 및 형태에 따른 최대 피크 위치, 최대 피크에서의 산란 세기 및 산란 스펙트럼의 선폭을 나타내며, (g)는 반복 실험으로부터 획득한 53S AuNCs의 일련의 레일리 산란 스펙트럼을 3차원적으로 배열하여 합성의 재현성을 나타낸 도이다.FIG. 9 is a diagram showing far-field scattering analysis results for AuNCs at a single particle level. FIG. (a) shows a dark-field microscope image of individual AuNCs, (b) shows Rayleigh scattering spectra obtained continuously from 25 different AuNCs, and (c) Represents the Rayleigh scattering spectrum of AuNCs, corresponding to the data. (a), the scale bar indicates 0.2 mu m. (d) to (f) show the maximum peak position, the scattering intensity at the maximum peak, and the line width of the scattering spectrum, respectively, depending on the size and shape of AuNCs, and (g) shows a series of Rayleigh scattering Figure 3 shows the reproducibility of the synthesis by three-dimensionally arranging the spectra.
도 10은 78R 및 72S AuNCs 이합체에서 나노큐브 간의 플라즈몬성 나노갭에 대한 단일 입자 SERS 분석 결과를 나타낸 도이다. (a)는 1,4-디벤젠티올을 이용한 78R 및 72S 이합체의 모식도를, (b)는 시뮬레이션에 의해 도출한 이합체 형성에 의한 라만 증강 인자를, (c)는 개별 이합체의 TEM 이미지를, (d)는 해당 이합체에서 레이저의 편광 방향에 따른 신호를 도식화한 결과를, (e)는 해당 이합체의 라만 신호를, (f) 및 (g)는 22개의 개별 이합체로부터 측정한 라만 증강 인자의 분포를 각각 로그 스케일과 선형 스케일로 나타낸다.10 is a graph showing the results of single particle SERS analysis for the plasmonic nanogaps between nanocubes in 78R and 72S AuNCs duplexes. (a) is a schematic diagram of 78R and 72S duplexes using 1,4-dibenzenethiol, (b) is a Raman enhancer by dimerization derived by simulation, and (c) (f) and (g) are graphs showing Raman amplification factors measured from 22 individual dimers, and FIG. 8 (d) is a graph showing the signal according to the polarization direction of the laser in the dimer, The distribution is represented by a logarithmic scale and a linear scale, respectively.
도 11은 (a) 실시예 3에서 대량으로 합성한 나노입자의 TEM 이미지와, (b) 10 mL의 총 부피를 가지는 나노입자 용액을 한 번에 정제하여 얻은 결과물의 TEM 이미지이다.11 is a TEM image of (a) a TEM image of nanoparticles synthesized in large quantities in Example 3, and (b) a result of purification of a nanoparticle solution having a total volume of 10 mL at one time.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for describing the present invention more specifically, and the scope of the present invention is not limited by these examples.
<물질><Material>
헥사데실트리메틸암모늄 브로마이드(hexadecyltrimethylammonium bromide; CTAB), 아스코르브산(ascorbic acid; AA), 및 염화금 삼수화물(gold chloride trihydrate; HAuCl4·3H2O)은 시그마-알드리치사로부터 구입하였다. 소디움 보로하이드라이드(sodium borohydride)는 대정화금사DaeJung Chemicals & Metals)의 제품을 사용하였다. 헥사데실트리메틸암모늄 클로라이드(hexadecyltrimethylammonium chloride; CTAC)는 도쿄화학공업사(Tokyo Chemical Industry; TCI)로부터 구입하였다. 모든 실험에는 탈이온수(DIW, Milli-Q, >18.0 MΩ)를 사용하였으며, 모든 화합물은 추가적인 정제 없이 사용하였다.Hexadecyltrimethylammonium bromide (CTAB), ascorbic acid (AA), and gold chloride trihydrate (HAuCl 4 .3H 2 O) were purchased from Sigma-Aldrich. Sodium borohydride was purchased from DaeJung Chemicals & Metals. Hexadecyltrimethylammonium chloride (CTAC) was purchased from Tokyo Chemical Industry (TCI). Deionized water (DIW, Milli-Q,> 18.0 MΩ) was used for all experiments and all compounds were used without further purification.
제조예Manufacturing example 1: 10 nm1: 10 nm 직경의Diameter 나노스피어Nano spheres 종자의 합성 Synthesis of Seeds
Zheng, Y. 등에 의해 개시된 프로토콜에 따라 CTAC-캡핑된 10 nm 금 나노스피어를 합성하였다(Part. Part. Syst. Charact., 2014, 31: 266-273). 모든 용액은 탈이온수(DIW)를 기반으로 준비하였다. 먼저, 1 내지 2 nm 크기의 CTAB-캡핑된 종자(seed)를 준비하였다. 상기 종자를 합성하기 위하여, 50 ㎖ 둥근바닥 플라스크에서 9.75 ㎖의 100 mM CTAB 용액를 250 ㎕의 10 mM HAuCl4 용액과 혼합하였다. 이어서, 600 ㎕의 신선하게 준비된 빙냉의 10 mM NaBH4 용액을 빠르게 첨가하였다. 상기 용액을 3분 동안 교반하여 혼합하고, 다음 단계로 진행하기 전 3시간 동안 27℃에 보관하였다. 이어서, 상기와 같이 준비한 종자로부터 10 nm 금 나노스피어를 합성하였다. 10 ㎖ 바이알에 2 ㎖의 200 mM CTAC, 1.5 ㎖의 100 mM 아스코르브산, 및 50 ㎕의 앞서 준비한 CTAB-캡핑된 종자 용액을 순차적으로 혼합하였다. 상기 용액을 일정한 속도로 혼합하면서, 2 ㎖의 5 mM HAuCl4 용액을 한 번에 주입하였다. 상기 용액을 300 rpm으로 일정하게 혼합하면서 15분 동안 실온에서 인큐베이션하였다. 상기 용액을 2회 원심분리하되(20600 g, 30 min.), 첫 번째는 1 ㎖의 DIW에 재분산하고, 다음에는 이후 사용을 위하여 1 ㎖의 20 mM CTAC 용액에 재분산하였다.Capped 10 nm gold nanospheres were synthesized according to the protocol disclosed by Zheng, Y. et al. (Part. Part. Syst. Charact., 2014, 31: 266-273). All solutions were prepared based on deionized water (DIW). First, a CTAB-capped seed having a size of 1 to 2 nm was prepared. To synthesize the seeds, 9.75 ml of 100 mM CTAB solution in a 50 ml round bottom flask was mixed with 250 l of 10 mM HAuCl 4 solution. Then 600 μl of freshly prepared ice-cold 10 mM NaBH 4 solution was added rapidly. The solution was stirred and mixed for 3 minutes and stored at 27 [deg.] C for 3 hours before proceeding to the next step. Then, 10 nm gold nanospheres were synthesized from the seed thus prepared. To a 10 ml vial, 2 ml of 200 mM CTAC, 1.5 ml of 100 mM ascorbic acid, and 50 占 퐇 of the previously prepared CTAB-capped seed solution were sequentially mixed. While mixing the solution at a constant rate, 2 ml of 5 mM HAuCl 4 solution was injected at one time. The solution was incubated at room temperature for 15 minutes with constant mixing at 300 rpm. The solution was centrifuged twice (20600 g, 30 min.), Redispersed first in 1 ml of DIW and then redispersed in 1 ml of 20 mM CTAC solution for further use.
실시예Example 1: 크기 및/또는 형태가 조절된  1: Adjusted size and / or shape 나노큐브의Nanocube 합성 synthesis
나노큐브(nanocube; NC)의 합성은 20 ㎖ 유리 바이알에서 수행하였다. 사용에 앞서 바이알을 아세톤과 DIW로 세척하였다. 6 ㎖의 100 mM CTAC를 하기 표 1에 나타난 농도의 소디움 브로마이드 30 ㎕와 혼합하였다. 상기 제조예 1에 따라 준비한 10 nm 종자 용액을 520 nm에서 흡광도가 5.6 O.D.가 되도록 희석하고, 하기 표 1에 개시한 부피만큼 첨가하였다. 390 ㎕의 10 mM 아스코르브산 용액을 첨가하고 완전히 혼합하였다. 마지막으로, 상기 용액을 500 rpm으로 교반하여 혼합하면서, 6 ㎖의 0.5 mM HAuCl4 용액을 한 번에 첨가하였다. 상기 용액을 혼합하면서 19분 동안 인큐베이션하고, 2회 원심분리하여 DIW에 재분산시켰다.Synthesis of nanocubes (NC) was carried out in 20 ml glass vials. Prior to use, the vial was washed with acetone and DIW. 6 ml of 100 mM CTAC were mixed with 30 [mu] l of sodium bromide at the concentrations shown in Table 1 below. The 10 nm seed solution prepared according to Preparation Example 1 was diluted at 520 nm to an absorbance of 5.6 OD and added by the volume as shown in Table 1 below. 390 [mu] l of 10 mM ascorbic acid solution was added and mixed thoroughly. Finally, while mixing and stirring the solution at 500 rpm, 6 ml of 0.5 mM HAuCl 4 solution was added in one go. The solution was incubated with mixing for 19 minutes, redispersed in DIW by centrifugation twice.
실시예Example 2:  2: 나노큐브의Nanocube 정제 refine
상기 실시예 1에 따라 합성된 나노큐브를 원심분리하여 침전시켰다. 상기 침전물을 10 mM CTAB 용액에 재분산시켜 원래 나노큐브 용액 농도의 2배의 농도가 되도록 하였다. 계산된 양의 BDAC(benzyldimethyldodecylammonium chloride, Sigma-Aldrich) 모액(stock solution)과 DIW를 첨가하여 각 시료에 대해 표 1에 나타난 적정한 BDAC 농도 및 동일한 나노큐브 농도를 갖도록 하였다. DIW을 첨가하여 원하지 않는 응집(unwanted flocculation)을 방지하였다. 상기 용액을 혼합하고 적정 조건에 따라 원심분리하였다. 18R 및 17S는 너무 작아서 응집되지 않으므로, 이들은 정제과정으로부터 배제하였다. 37R 및 32S는 1000 rpm에서 10분 동안 원심분리하였다. 다른 시료들은 500 rpm에서 5분 동안 원심분리하였다. 마이크로파이펫으로 상층액을 제거하고, 남겨진 침전물은 DIW에 재분산시켰다.The nanocubes synthesized according to Example 1 were centrifuged and precipitated. The precipitate was redispersed in a 10 mM CTAB solution to a concentration two times that of the original nanocube solution. The calculated amounts of BDAC (benzyldimethyldodecylammonium chloride, Sigma-Aldrich) stock solution and DIW were added to obtain the appropriate BDAC concentration and the same nanocube concentration shown in Table 1 for each sample. DIW was added to prevent unwanted flocculation. The solution was mixed and centrifuged according to the titration conditions. 18R and 17S were too small to agglomerate, so they were excluded from the purification process. 37R and 32S were centrifuged at 1000 rpm for 10 minutes. Other samples were centrifuged at 500 rpm for 5 minutes. The supernatant was removed with a microwave pet, and the remaining precipitate was redispersed in DIW.
시료sample 종자 부피 (㎕)Seed volume (μl) 브로마이드 농도 (mM)Bromide concentration (mM) BDAC 농도 (mM)BDAC concentration (mM)
18R 18R 300300 2020 --
17S 17S 300300 120120 --
37R 37R 3030 22 100100
32S 32S 3030 4040 6060
41R 41R 99 55 6060
41S 41S 99 2020 5050
54R 54R 66 66 4040
53S 53S 66 2020 3333
78R 78R 22 22 4040
72S 72S 22 2020 1818
비교예Comparative Example 1:  One: CTACCTAC 대신에  Instead of CTAB를CTAB 사용하되, 추가적인 브로마이드 공급원을 사용하지 않는 나노입자의 합성방법 Methods for the synthesis of nanoparticles that use but do not use additional bromide sources
CTAC 대신에 동일한 농도와 부피의 CTAB를 사용하고, 소디움 브로마이드 대신에 동일한 부피의 DIW를 사용하는 것을 제외하고는 상기 실시예 1과 유사한 방법으로 금 나노입자를 제조하였다.Gold nanoparticles were prepared in the same manner as in Example 1, except that CTAB was used in place of CTAC and CTAB was used and the same volume of DIW was used instead of sodium bromide.
비교예Comparative Example 2: 브로마이드 공급원으로  2: as a source of bromide CTAB를CTAB 사용하되,  Use, CTAC를CTAC 사용하지 않는 나노입자의 합성방법 Synthesis of unused nanoparticles
불충분한 양으로 CTA+를 함유하도록 CTAC 대신에 동일한 부피의 DIW를 사용하고, 브로마이드 공급원으로서 동일한 소디움 브로마이드 대신에 부피의 20 mM CTAB를 사용하는 것을 제외하고는 상기 실시예 1과 유사한 방법으로 금 나노입자를 제조하였다.In the same manner as in Example 1 except that the same volume of DIW was used instead of CTAC to contain CTA + in an insufficient amount and a volume of 20 mM CTAB was used in place of the same sodium bromide as the bromide source, Particles were prepared.
실시예Example 3:  3: 나노큐브의Nanocube 대량 합성 및 정제 Bulk synthesis and purification
실시예 1을 기반으로 반응 용액의 스케일을 증가시켜 금 나노입자를 대량으로 합성하였다. 실험 방법은 실시예 1에서 사용하는 모든 용액의 부피를 같은 배율로 증가시키되, HAuCl4 용액의 경우 한번에 첨가하기 용이하게 하기 위해 해당 부피의 0.5 mM HAuCl4로 희석시키기 위한 DIW를 먼저 첨가한 뒤 10 mM의 진한 HAuCl4 용액을 필요한 양만큼 첨가하였다. On the basis of Example 1, the scale of the reaction solution was increased to synthesize a large amount of gold nanoparticles. Experimental method sikidoe increase the volume of all solutions used in Example 1 to the same magnification, HAuCl 4 The HAuCl 4 solution concentrated in a 10 mM DIW after the first, which was added as much as the amount required for diluting with 0.5 mM HAuCl 4 in the volume in order to facilitate the addition at a time when the solution.
그 결과, 실시예 1의 20배 스케일인 248 mL 부피 반응용액 상에서도 금 나노큐브 합성이 이루어지고 약 10 mg 이상의 금 나노큐브를 얻을 수 있음을 확인하였다. 도 11a는 대량으로 합성한 나노입자의 TEM 이미지이다.As a result, it was confirmed that gold nanocube was synthesized even in a 248 mL volume reaction solution of 20 times scale of Example 1, and gold nanocubes of about 10 mg or more could be obtained. 11A is a TEM image of nanoparticles synthesized in large quantities.
나노큐브는 반응속도론적으로 조절(kinetically controlled)되어 형성되는 나노입자이므로, 반응 속도의 조절이 매우 중요한 인자이다. 기존의 금 나노큐브 합성 방법들에서는 용액의 교반 조건, 즉 교반 속도 또는 교반 방법 등에 따라 합성 수율이나 입자의 모양에 차이가 나타나, 재현성이 부족하며, 합성 스케일을 증가시키는 데에도 어려움이 있었다.Since nanocubes are nanoparticles formed by kinetic control, the control of the reaction rate is a very important factor. In conventional gold nanocube synthesis methods, there is a difference in the synthesis yield and particle shape depending on the stirring conditions of the solution, that is, the stirring speed or stirring method, and there is a lack of reproducibility and difficulty in increasing the synthesis scale.
우리의 이해에 의하면, 기존의 금 나노큐브 합성에 관한 논문들에서는 대략 50 mL 이내의 반응용액에서 합성하여 대량 합성에 관한 예를 보인 적이 없고 합성물의 양과 반응 용액의 부피가 제한되었다. 그러나 본 발명에 따른 제조방법에 의하면, 교반 막대(stirring bar)를 이용하여 철저히 혼합(thorough mixing)하더라도 높은 재현성으로 나노큐브를 얻을 수 있으며, 나아가 20배 이상 스케일을 높여도 균일한 나노큐브를 성공적으로 제조할 수 있다.According to our understanding, conventional gold nano-cube synthesis synthesis has not shown an example of mass synthesis by synthesizing within about 50 mL of reaction solution, and the amount of compound and the volume of reaction solution are limited. However, according to the manufacturing method of the present invention, it is possible to obtain nanocubes with high reproducibility even when thorough stirring is performed using a stirring bar, and even if the scale is increased 20 times or more, uniform nanocubes can be successfully .
또한 실시예 2의 나노입자의 정제도 대량으로 가능하다. 실시예 2의 경우 원심분리전 혼합용액의 총 부피가 0.2 mL가 되도록 실시하였지만, 총 부피가 10 mL까지 증가하여도 정제가 잘 이루어짐을 확인했다. 도 11b은 10 mL의 총 부피를 가지는 나노입자 용액을 한번에 정제하여 얻은 결과물의 TEM 이미지로, 스케일이 증가되어도 고순도로 정제가 잘 이루어짐을 확인할 수 있다.Also, the nanoparticles of Example 2 can be purified in a large amount. In Example 2, the total volume of the mixed solution before centrifugation was adjusted to be 0.2 mL. However, it was confirmed that the tablets were well formed even when the total volume was increased to 10 mL. FIG. 11B is a TEM image of the resultant product obtained by purifying a nanoparticle solution having a total volume of 10 mL at one time, and it can be confirmed that purification is performed with high purity even when the scale is increased.
실험예Experimental Example 1: 암시야 이미지 및 스펙트럼 측정 1: Darkfield image and spectrum measurement
40X 대물렌즈를 사용하여 암시야(Dark-field; DF) 이미지를 획득하였다. 노출시간은 78R 및 72S에 대해서는 80 ms로, 41R에 대해서는 120 ms로 설정하였다. 도립현미경 시스템(inverted microscopy system, Ntegra, NT-MDT)으로 DF 스펙트럼을 측정하였다. DF 측정에는 개구수(Numerical Aperture; NA) 1.3의 오일 집광렌즈(oil condenser)를 사용하였다. 산란 스펙트럼 측정을 위해서는 UNPLAN(60X, NA 0.90, air objective)을 사용하였다. 아세톤 및 DIW에서 각각 5분 동안 초음파처리하여 세척한 유리를 준비하였다. 세척한 유리 상에 금 나노큐브(gold nanocube; AuNC)를 드롭캐스팅(drop casting)하여 시료를 준비하고, 마이크로원심분리기로 스핀코팅(spin coating)하였다. DF에서 관찰되는 임의로 선택된(randomly selected) 입자로부터 3초의 노출시간으로 스펙트럼을 획득하였다.A dark-field (DF) image was obtained using a 40X objective. The exposure time was set to 80 ms for 78R and 72S and to 120 ms for 41R. DF spectra were measured with an inverted microscopy system (Ntegra, NT-MDT). For DF measurement, an oil condenser with a numerical aperture (NA) of 1.3 was used. For the scattering spectrum measurement, UNPLAN (60X, NA 0.90, air objective) was used. The washed glass was prepared by sonication in acetone and DIW for 5 minutes each. A sample was prepared by drop casting gold nanocubes (AuNC) on the cleaned glass and spin-coated with a microcentrifuge. Spectra were obtained with an exposure time of 3 seconds from randomly selected particles observed in DF.
실험예Experimental Example 2: 라만 측정 2: Raman measurement
1,4-벤젠디티올(1,4-benzenedithiol; BDT)과 혼합한 AuNC 용액을 TEM 그리드 위에 드롭캐스팅하여 라만 측정용 시료를 준비하였다. 라만 측정은 UNPLAN(100X, NA 1.3, oil)을 구비한 도립현미경 시스템(Ntegra, NT-MDT)을 이용하여 수행하였다. 레일리 산란(Rayleigh scattering) 이미지와 TEM 이미지의 상관관계(correlation)에 의해 입자들을 단일 입자로서 동정하였다. 선형 편광된(linearly polarised) 785 nm 레이저(230 μW)에 30초 동안 노출시켜 각각의 라만 신호를 획득하였다. 상기 신호는 -70℃까지 냉각된 전하결합소자(charge-coupled devicd; CCD)(Andor Newton DU920P BEX2-DD)로 검출하였다. 2.5 mM 1,4-벤젠디티올 벌크 용액으로부터의 신호를 비교하여 증강인자(enhancement factor)를 산출하였다. 저배율 렌즈(PLAN N, 10X, NA 0.25, air)를 이용하여 180초 동안 선형 편광된 785 nm 레이저(17.6 μW)에 노출시켜 스펙트럼을 획득하였다. 렌즈의 차이는 두 렌즈로 각각 측정된 1 mM 로다민 6G(rhodamine 6G)의 측정결과를 이용하여 보정하였다. 신호는 레이저의 출력(power)과 수집시간(acquisition time)에 비례할 것으로 추정되었다. 여기 부피(excitation volume)는 원통형(cylindrical)일 것으로 추정되며, 여기 부피는 28 fL로 산출되었다. 금 박막 상의 BDT 한 분자는 5.4x10-19 m2의 분자 풋프린트(molecular footprint)와 7.6x10-19 m의 높이를 갖는 것을 가정하고 분자의 부피와 핫스팟(hot spot) 부피를 이용하여 갭 안의 분자 개수를 계산하여 증강인자(EF)를 다음의 수식으로 산출하였다:An AuNC solution mixed with 1,4-benzenedithiol (BDT) was drop-cast on a TEM grid to prepare a sample for Raman measurement. Raman measurements were performed using an inverted microscope system (Ntegra, NT-MDT) equipped with UNPLAN (100X, NA 1.3, oil). The particles were identified as a single particle by correlation between Rayleigh scattering image and TEM image. Each Raman signal was acquired by exposure to a linearly polarized 785 nm laser (230 μW) for 30 seconds. The signal was detected with a charge-coupled device (CCD) cooled down to -70 ° C (Andor Newton DU920P BEX2-DD). Enhancement factors were calculated by comparing signals from a 2.5 mM 1,4-benzenedithiol bulk solution. Spectra were obtained by exposure to linearly polarized 785 nm laser (17.6 μW) for 180 seconds using a low magnification lens (PLAN N, 10X, NA 0.25, air). The difference between the two lenses was measured using 1 mM rhodamine 6G (rhodamine 6G) Respectively. The signal was estimated to be proportional to the power and acquisition time of the laser. The excitation volume was assumed to be cylindrical, and the excitation volume was calculated to be 28 fL. Assuming that one molecule of BDT on the gold thin film has a molecular footprint of 5.4 x 10 -19 m 2 and a height of 7.6 x 10 -19 m, the molecules in the gap using the volume of the molecule and the volume of the hot spot The number of enhancement factors (EF) was calculated by the following equation:
Figure PCTKR2019001057-appb-I000002
Figure PCTKR2019001057-appb-I000002
실험예Experimental Example 3: 시뮬레이션 3: Simulation
산란장 모드(scattered-field mode)에서 상용 소프트웨어(commercial software, COMSOL)를 사용하여 유한요소법(finite element method; FEM) 시뮬레이션을 수행하였다. 선형 편광된 평면파(plane-wave) 여기를 사용하였다. 상기 나노큐브 모델은 TEM 이미지 분석을 기초로 하였다. 본 발명의 시스템과 유사한 모델을 창조하기 위하여, 모델 나노큐브(modelled nanocube) 2개를 평행하게 배치하였으며, 구조물 간의 간격은 구조물 간의 간격은 1.1 nm였다. 나노큐브는 모두 금으로 모델화하였다. 간격 길이는 TEM 이미지 분석을 토대로 산출하였다. 간격을 포함한 주위 매질(surrounding medium)은 공기 중에서 모델화하였다.Finite element method (FEM) simulations were performed using commercial software (COMSOL) in scattered-field mode. Linearly polarized plane-wave excitation was used. The nanocube model was based on TEM image analysis. In order to create a model similar to the system of the present invention, two modeled nanocubes were arranged in parallel and the spacing between the structures was 1.1 nm. All of the nanocubes were modeled as gold. The interval length was calculated based on TEM image analysis. The surrounding medium containing the gaps was modeled in air.
실험예Experimental Example 4: 장치 4: Device
TEM 및 SEM 이미지는 기초과학공동기기원(National Center for Inter-University Research Facilities; NCIRF, 서울대학교, 한국)에서 각각 JEM- 2100(JEOL) 및 Helios NanoLab 650(FEI) 시스템으로 획득하였다.TEM and SEM images were obtained from JEM-2100 (JEOL) and Helios NanoLab 650 (FEI) systems at the National Center for Inter-University Research Facilities (NCIRF, Seoul National University, Korea).
<결과><Result>
먼저, AuNCs의 선택적 표면보호-유도 이방성 성장(selective surface-protection-directed anisotropic growth)을 수행하였다. CTAC-캡핑된 10 nm 금 나노스피어로부터 시작하여, CTAC, NaBr, 및 아스코르브산과의 종자-매개 성장 반응(seed-mediated growth reaction)을 실온에서 진행하였으며, 상기 과정을 도 1a에 개략적으로 나타내었다. 이 과정에서, 브로마이드 농도 의존적 성장 속도는 생성되는 AuNCs의 코너 첨예도(corner sharpness)를 결정하였다. 나노결정의 성장특성은 상이한 결정면에서의 성장율 간의 비율(ratio between growth rates of different facets)에 의해 결정되었다. 이방성 성장을 유도하고 입방체의 나노구조(cubic nanostructures)를 형성하기 위하여, [100]을 따른 성장율은 상대적으로 [110]/[111]을 따른 성장율이 더 높아짐에 따라 감소하였으며, 이에 따라 (100) 면을 우선적으로 노출시킬 수 있었다. (100) 면에 호의적으로 흡착하도록 브로마이드의 양을 조절하였을 때, (100) 면과 다른 면 간의 상대적인 성장율 차이는 변화하였으며, 이에 따라 둥근-모서리를 갖는(round-cornered) 또는 뾰족한-모서리를 갖는(sharp-cornered) AuNCs가 형성되었다. 브로마이드 밀도가 100 ions/nm2 미만인 경우, 브로마이드 이온의 수는 (100) 면을 완전히 차단하기에는 불충분하였다. 따라서, [100]과 [111]/[110] 간의 상대적인 성장율 차이는 현저히 변화하지 않았으며, 이에 따라 둥근-모서리를 갖는 AuNCs가 형성되었다. 충분한 양의 면-유도제(facet-directing agents)(~350 ions/nm2)가 제공될 때, (100) 면에 대한 효과적이며 우선적인 결합은 성장율 저하를 감소시키는 동시에 (111)/(110) 면은 브로마이드 이온의 영향을 덜 받아 뾰족한-모서리를 갖는 AuNCs가 형성되었다. 브로마이드 농도가 과량이면, (111)/(110) 및 (100) 표면에 흡착될 수 있고, 이에 따라 전체적인 성장율 및 면 간의 성장율 차이가 감소하였다. 합성된 AuNCs의 형태-선택적 침강법(shape-selective sedimentation)을 이용하여 생성 수율을 최대화하였다(도 1b). 상기 방법은, 계면활성제 마이셀(surfactant micelles)을 이용한 응집 및 침전된 나노입자만의 가역적 재분산(reversible redispersion)으로 구성되는, 원심분리-주도 결손-유도 응집(centrifuge-driven depletion-induced flocculation)에 기초한다. 입자들을 임계 마이셀 농도(critical micelle concentration) 이상의 계면활성제 용액에 분산시켰을 때, AuNCs 사이의 공간으로부터 마이셀 분자의 배제(exclusion)는 삼투압을 유발하며, 이에 따라 입자 간 응집이 유도되었다. 나노입자 혼합물 중 나노로드(nanorods) 또는 나노양추(nanobipyramids)를 선별하기 위하여 응집을 적용하였으며, 나노입자의 정착(settle down)을 위해 상기 응집에 10시간 이상 소요하였다. 본 발명에서, 짧은 원심분리로 시간을 현저하게 단축하였다. 계면활성제 마이셀 용액에서 나노입자 용액을 원심분리한 후, AuNCs 간의 입자 간 거리는 감소하였으며, 매우 짧은 시간 내에 효과적인 응집을 수행할 수 있었다. 두 입자 간의 인력(attractive force)은 서로 대면한 표면적에 비례하므로, 편평한 표면을 갖는 NCs는 로드와 같이 곡면을 갖는, 또는 양추와 같이 작은 표면을 갖는 입자들에 비해 이점이 있다. 본 발명에서는 선별적으로 AuNC 응집을 유도하기 위하여 마이셀 농도를 조절함으로써 95% 이상의 AuNC 수율을 달성할 수 있었다.First, selective surface-protection-directed anisotropic growth of AuNCs was performed. Starting from CTAC-capped 10 nm gold nanospheres, seed-mediated growth reaction with CTAC, NaBr, and ascorbic acid proceeded at room temperature and the process is schematically illustrated in FIG. 1A. In this process, the bromide concentration dependent growth rate determined the corner sharpness of the resulting AuNCs. The growth characteristics of nanocrystals were determined by the ratio between growth rates on different crystal planes. In order to induce anisotropic growth and to form cubic nanostructures, the growth rate along [100] decreased as the growth rate relative to [110] / [111] increased, The surface could be exposed preferentially. The relative growth rate difference between the (100) plane and the other plane changed when the amount of bromide was adjusted so as to favorably adhere to the (100) plane, thus resulting in a round-cornered or pointed-edge sharp-cornered AuNCs were formed. When the bromide density was less than 100 ions / nm 2 , the number of bromide ions was insufficient to completely block the (100) plane. Thus, the relative growth rate difference between [100] and [111] / [110] did not change significantly, thus forming AuNCs with rounded edges. When an adequate amount of facet-directing agents (~ 350 ions / nm 2 ) is provided, effective and preferential binding to the (100) plane reduces the rate of growth and (111) / (110) The surface was less influenced by the bromide ion and AuNCs with sharp-edges were formed. If the bromide concentration is excessive, it can be adsorbed on the (111) / (110) and (100) surfaces, thereby reducing the overall growth rate and the difference in growth rate between the surfaces. The shape of the synthesized AuNCs-shape-selective sedimentation was used to maximize the yield (Fig. 1B). This method is based on centrifugation-driven depletion-induced flocculation, which consists of reversible redispersion of aggregated and precipitated nanoparticles only with surfactant micelles Based. When the particles were dispersed in a surfactant solution above the critical micelle concentration, exclusion of the micelle molecules from the space between the AuNCs caused osmotic pressure, resulting in intergranular aggregation. Agglomeration was applied to select nanorods or nanobipyramids in the nanoparticle mixture and it took more than 10 hours for the agglomeration to settle the nanoparticles. In the present invention, the time was remarkably shortened by short centrifugation. After centrifugation of the nanoparticle solution in the surfactant micellar solution, the inter-particle distance between AuNCs decreased, and it was possible to perform effective coagulation in a very short time. Since the attractive force between two particles is proportional to the surface area facing each other, NCs with a flat surface have an advantage over particles with a curved surface like a rod, or with a small surface such as a cornice. In the present invention, AuNC yield of 95% or more can be achieved by controlling the micelle concentration in order to selectively induce AuNC aggregation.
또한, 본 발명에 따른, 형태 및/또는 모서리 첨예도가 조절된 AuNC의 제조방법에 사용되는 각 성분의 역할을 확인하였다. 이를 위하여, 실험군으로 100 mM CTAC 6 ㎖ 및 브로마이드 이온 공급원으로서 20 mM 소디움 브로마이드 30 ㎕를 사용하여 실시예 1의 방법으로 AuNC 제조하였다. 나아가, 비교군으로는 충분한 양의 계면활성제를 사용하되 클로라이드 대신에 브로마이드를 포함하는 CTAB를 동일한 양으로 사용하고, 추가적인 브로마이드 이온 공급원은 소디움 브로마이드 용액을 사용하는 대신에 동일한 부피의 DIW를 사용하여 제조한 나노입자(비교예 1)와 상기 3가지 조건에서 제조한 AuNC와 나노입자들의 형태를 SEM으로 관찰하고, 그 결과를 도 2에 나타내었다. 도 2a에 나타난 바와 같이, 충분한 양의 계면활성제 CTAC를 사용하고, 소량의 소디움 브로마이드를 첨가하여 제조한 본 발명에 따른 AuNC는 균일하게 큐브 형태로 제조되었다. 그러나, CTAC 대신에 CTAB를 사용하여 충분한 양의 계면활성제와 브로마이드 이온을 제공하여 나노입자를 제조한 비교예 1의 경우, 도 2b에 나타난 바와 같이, 개별 입자들이 특정한 결정 형태를 나타내기는 하였으나, 그 형태와 크기가 일정하지 않고 나노큐브가 아닌 나노막대(nanorod), 나노프리즘(nanoprism) 등이 혼합된 입자 혼합물이 형성되었으며, 이로부터 고순도의 나노큐브를 정제해 내기도 어려웠다. 나아가, CTAB를 실시예 1에서 소디움 브로마이드에 의해 제공되는 브로마이드의 농도와 동일한 수준으로 첨가한 경우, 즉, 계면활성제를 현저히 낮은 농도로 사용한 비교예 2의 경우, 도 2c에 나타난 바와 같이, 종자 입자의 표면에서뿐만 아니라 용액 내에서 불규칙하게 핵형성(nucleation)이 일어나 크기나 형태가 모두 정의되지 않은 무정형의 입자 혼합물이 형성되었다.Further, the role of each component used in the method for manufacturing AuNC with controlled shape and / or edge sharpness according to the present invention was confirmed. For this purpose, AuNC was prepared by the method of Example 1 using 6 ml of 100 mM CTAC as an experimental group and 30 20 of 20 mM sodium bromide as a bromide ion source. Further, a sufficient amount of surfactant was used as the comparative group, but CTAB containing bromide was used in the same amount instead of chloride, and the additional bromide ion source was prepared by using the same volume of DIW instead of using the sodium bromide solution The morphology of one nanoparticle (Comparative Example 1) and AuNC and nanoparticles prepared under the above three conditions was observed with SEM, and the results are shown in FIG. As shown in FIG. 2A, AuNC according to the present invention prepared by using a sufficient amount of surfactant CTAC and adding a small amount of sodium bromide was uniformly prepared in the form of a cube. However, in the case of Comparative Example 1 in which CTAB was used instead of CTAC to provide a sufficient amount of surfactant and bromide ion to prepare nanoparticles, although individual particles showed a specific crystal form as shown in FIG. 2B, It was difficult to refine high-purity nanocubes from a mixture of nanoparticles, nanoparticles, nanoparticles, nanoparticles, and nanoparticles. Further, when CTAB was added at the same level as the concentration of bromide provided by sodium bromide in Example 1, that is, in Comparative Example 2 where the surfactant was used at a significantly low concentration, as shown in Fig. 2C, Irregular nucleation occurs in the solution as well as on the surface of the amorphous particle mixture in which neither the size nor the shape are defined.
나아가, 본 발명에서는 모서리 첨예도(corner sharpness)를 미세조정(fine-tuning)할 수 있음을 확인하였다. 0 mM로부터 200 mM까지 브로마이드 농도를 변화시키면서, 상이한 모서리 첨예도를 갖는 AuNCs를 수득하였다(도 3). 브로마이드 농도가 증가함에 따라, 모서리 첨예도는 초기에는 증가하다가 이후 감소하였다. 가장 높은 브로마이드 농도에서 AuNCs의 크기는, 부산물 수의 증가로 인해, 다소 감소하였다. 모서리 첨예도 조절에 대한 기전을 연구하기 위하여, UV-vis 분광법에 의해 형태 발달과정 동안 성장 속도를 연구하였다. CTAC, 종자 및 AA를 동일한 양으로 유지하고 브로마이드 농도를 변화시켰다. 금 전구체를 첨가한 후, 완전히 성장한 구조물 각각의 최대 LSPR(localised surface plasmon resonance) 파장(1 mM NaBr 조건의 경우 544 nm, 40 mM NaBr 조건의 경우 560 nm, 200 mM NaBr 조건의 경우 556 nm)에서 10초 간격으로 흡광 세기(extinction intensity)의 변화를 모니터링하였다(도 4). 200 mM에 대한 흡광의 느린 증가는 증가된 브로마이드 농도가 환원을 저해함을 나타내는 것으로, 이는 도 1a에 제안된 합성 기전을 뒷받침하는 것이다. 본 발명에서는 종자의 도입이 유일하게 성장 이벤트를 개시함을 확인하였다. 따라서, 종자없는 추가적인 핵형성(nucleation)은 UV-vis 측정에서 검출되지 않았다.Furthermore, it has been confirmed that the present invention can fine-tune the corner sharpness. AuNCs with different edge sharpness were obtained, varying the bromide concentration from 0 mM to 200 mM (Figure 3). As the bromide concentration increased, the corner sharpness initially increased and then decreased. At the highest bromide concentration, the size of AuNCs decreased somewhat due to the increase in the number of byproducts. In order to investigate the mechanism of edge sharpness control, the growth rate during morphological development was studied by UV-vis spectroscopy. The CTAC, seed and AA were kept in the same amounts and the bromide concentration was varied. The maximum localized surface plasmon resonance (LSPR) wavelength (544 nm for 1 mM NaBr, 560 nm for 40 mM NaBr and 556 nm for 200 mM NaBr) of fully grown structures after addition of the gold precursor Changes in extinction intensity were monitored at 10 second intervals (Figure 4). A slow increase of the absorbance to 200 mM indicates that the increased bromide concentration inhibits the reduction, which supports the synthetic mechanism proposed in Fig. In the present invention, it was confirmed that the introduction of seeds uniquely initiates the growth event. Thus, seedless additional nucleation was not detected in the UV-vis measurement.
상술한 원리를 입증하기 위하여, 종자 및 브로마이드의 양을 변화시킴으로써 크기 및 모서리 첨예도의 동시 조절을 수행하였다. 종자의 양은 종자 용액의 부피로 조절하였다(300, 30, 9, 6, 및 2 ㎕). 또한, 모서리 첨예도를 조절하기 위하여 종자의 양을 고정하고 브로마이드 농도를 변화시켰다. 둥근 모서리를 갖는 AuNCs를 생산하기 위하여 브로마이드를 더 낮은 밀도로 적용하였다. 전체적인 크기가 감소함에 따라, AuNCs를 수득하기 위하여 첨가되는 브로마이드의 농도가 감소하였다. 이는, 보다 큰 AuNCs에서 표면적이 현저히 증가함에도 불구하고, 입자수 감소에 따른 결과이다. 제조 후, AuNCs를 BDAC 용액에 분산시키고 5 내지 10분 동안 원심분리하였다. 응집력은 나노입자와 마이셀 농도 간의 덮힌(overlaid) 표면적과 양의 상관관계를 가지므로, 응집에 요구되는 농도는 AuNCs의 크기가 증가함에 따라 감소하였다. TEM 이미지는 상이한 크기의 정제된(refined) AuNCs를 나타내며, 구조적 변이(structural variation)를 명확히 가시화하기 위하여 삽입도에는 대표적인 이미지를 도시하였다(도 5a). 각 컬럼은 종자의 양을 조절한 결과를 나타내며, 상단 및 하단 행들은 각각 둥근-모서리를 갖는 AuNCs 및 뾰족한-모서리를 갖는 AuNCs에 상응한다. TEM 이미지에 기초하여 각각의 AuNC의 구조적 특징을 분석하기 위하여, 모서리 길이(edge length)를 AuNCs의 2개 말단(end) 사이의 거리로, 모서리 반경(corner radius)을 모서리 곡률(corner curvature)과 완벽히 일치하는 원의 반경으로 정의하였다(도 6a). 시료의 표기에서 숫자는 모서리 길이를 나타내며, R 및 S는 각각 둥근-모서리를 갖는 NCs와 뾰족한-모서리를 갖는 NCs에 대응시켰다. 정제 후, 가장 작은 것을 제외한 모든 AuNCs의 수율은 95% 이상으로 향상되었다(도 5b 및 도 7의 확대된 SEM 이미지). 32S AuNCs는 부산물인 금 나노로드와 유사한 응집 잠재성을 것으로 나타났으며, 약 95% 수율로 제공되었다. 다른 AuNCs에 대한 수율은 97%를 초과하여 달성되었다(n>400). 작은 표면적으로 인해 응집을 최소화할 수 있는 적절한 계면활성제를 찾기 어려웠다. 종자 부피가 감소함에 따라, 모서리 길이가 17 nm로부터 78 nm까지 증가하였다. 첨예도를 직관적으로 나타내기 위하여, 모서리 반경을 도 7b에 플롯하였다. 25 nm 보다 작은 AuNCs는, 금 원자의 자기-확산 계수(3 내지 12 nm)가 백금과 같은 다른 금속에 대한 값(0.3 내지 1 nm)에 비해 더 높아, 보다 높은 표면 에너지의 (111)로부터 보다 낮은 에너지의 (100)으로의 금 원자의 이동을 촉진하여 (100) 면의 효과적인 노출을 저해하므로, 용액법을 사용하여 합성가능할 것으로 예상되지 않았다. 그럼에도 불구하고, 본 발명의 방법으로 모서리 길이 17 nm의 AuNCs를 성공적으로 합성하였다. 이는 현재까지 알려진 가장 작은 크기의 AuNCs이다.To demonstrate the above principle, simultaneous adjustment of size and edge sharpness was performed by varying the amount of seed and bromide. The amount of seed was adjusted to the volume of the seed solution (300, 30, 9, 6, and 2 μl). In order to adjust the edge sharpness, the amount of seed was fixed and the concentration of bromide was changed. The bromide was applied at a lower density to produce AuNCs with rounded corners. As the overall size decreased, the concentration of bromide added to obtain AuNCs decreased. This is the result of a reduction in the number of particles, despite a significant increase in surface area in larger AuNCs. After preparation, AuNCs were dispersed in the BDAC solution and centrifuged for 5-10 minutes. Cohesion was positively correlated with the overlaid surface area between nanoparticles and micelle concentration, so the concentration required for coagulation decreased with increasing AuNCs size. The TEM images represent refined AuNCs of different sizes and representative images are shown for the insertions to clearly visualize the structural variations (Fig. 5A). Each column represents the result of adjusting the amount of seeds, with the upper and lower rows corresponding to AuNCs with rounded corners and AuNCs with sharp corners, respectively. In order to analyze the structural characteristics of each AuNC based on the TEM image, the edge length was defined as the distance between the two ends of the AuNCs, the corner radius as the corner curvature, Defined as the radius of a perfectly matched circle (Fig. 6A). In the notation of the sample, the numbers represent the edge lengths, and R and S correspond to NCs with rounded edges and NCs with sharp edges, respectively. After purification, the yield of all AuNCs except the smallest was improved to over 95% (enlarged SEM image of Fig. 5b and Fig. 7). The 32S AuNCs showed cohesive potential similar to gold nanorods, a byproduct, and were provided at a yield of about 95%. The yield for other AuNCs was achieved in excess of 97% (n &gt; 400). It has been difficult to find a suitable surfactant capable of minimizing aggregation due to its small surface area. As the seed volume decreased, the edge length increased from 17 nm to 78 nm. To illustrate sharpness intuitively, the corner radius was plotted in Figure 7b. AuNCs of less than 25 nm have higher self-diffusion coefficients (3 to 12 nm) of gold atoms than values (0.3 to 1 nm) for other metals such as platinum, It was not expected to be possible to synthesize using a solution method, since it promotes migration of gold atoms to (100) low energy and inhibits effective exposure of the (100) plane. Nevertheless, AuNCs with a corner length of 17 nm were successfully synthesized by the method of the present invention. This is the smallest known AuNCs to date.
본 발명자들은 모서리 길이와 무관하게 첨예도를 특징짓기 위하여 모서리 첨예도 지수(corner sharpness index; CSI)라는 용어를 제안하였다. CSI를 정의하는 방식을 도 6a에 개략적으로 나타내었다. 보다 뾰족한 모서리의 NCs는 보다 1에 가까운 CSI 값을 갖는다. 4개의 크고 뾰족한-모서리를 갖는 AuNCs의 CSI 값은 유사한 수준인 반면, 17S의 값은 다른 것들에 대한 값보다 더 낮았다(도 6c). 이는 작은 크기로 인한 상대적으로 높은 표면 장력에 의한 것으로 사료되었다. 뾰족한-모서리를 가진 AuNCs에 대한 화학량론적 정보(stoichiometry information)를 제공하기 위하여, AuNC 당 요구되는 브로마이드 이온의 수를 계산하였다(도 6d). 이는 표면에 흡착된 이온의 수는 아니며, 오히려 첨가된 이온의 수에 상응하였다. 표면적과 첨가된 브로마이드 이온 수의 선형적 상관관계는 크기와 무관하게 ~390 ions/nm2인 브로마이드의 균일한 밀도를 나타내는 것이다. 이는 특정한 크기의 뾰족한-모서리를 갖는 AuNCs를 형성하기 위해 요구되는 브로마이드 이온의 대략적인 수를 제공하였다. 일련의 AuNC 용액에 대한 정규화된(normalised) UV-vis 스펙트럼은 모서리가 보다 뾰족해짐에 따라, 그리고 모서리 길이가 증가함에 따라, 지연 효과(retardation effect)에 의해, 점진적인 장파장 이동(red-shift)을 나타내었다(도 6e). 정제 후 보다 좁아진 스펙트럼 대역폭(spectral bandwidths)은 AuNCs의 고도의 단분산성을 나타내는 것이다(도 8).The present inventors have proposed the term corner sharpness index (CSI) to characterize the sharpness irrespective of the edge length. A scheme for defining CSI is schematically shown in FIG. 6A. The NCs at the pointed edge have a CSI value closer to one. The CSI values of the four large, pointed-edge AuNCs were similar, while the value of 17S was lower than that for others (FIG. 6C). It is considered that this is due to the relatively high surface tension due to the small size. In order to provide stoichiometry information for AuNCs with sharp-edges, the number of bromide ions required per AuNC was calculated (Fig. 6d). This is not the number of ions adsorbed on the surface, but rather the number of ions added. The linear correlation between the surface area and the number of added bromide ions indicates a uniform density of bromide of ~ 390 ions / nm 2 regardless of size. This provided an approximate number of bromide ions required to form AuNCs with pointed-edges of a certain size. The normalized UV-vis spectra for a series of AuNC solutions show progressive red-shifts due to the sharpness of the corners and by the retardation effect as the edge length increases. (Fig. 6E). The narrower spectral bandwidths after purification show a high degree of monodispersibility of AuNCs (Figure 8).
본 발명에서는 AuNC 구조를 조절함으로써 이의 광학적 성질을 조절할 수 있음에 주목하였다. 암시야 현미경을 사용하여 단일-입자 수준에서 레일리 산란 신호를 측정하고, 그 결과를 도 9a에 나타내었다. 도 9에 나타난 바와 같이, 25개 AuNCs로부터 측정한 암시야 현미경 사진(DF micrograph, 도 9a) 및 산란 스펙트럼(도 9b)은 균일한 산란 특성을 나타내었다. AuNCs의 좁은 분포와 고수율로 인해 25개 개별 입자에 대해 얻어진 스펙트럼은 잘 일치하였으며, 이에 이들을 평균한 대표적인 스펙트럼을 도 9c에 나타내었다. 또한, 크기 즉, 모서리 길이 및/또는 형태가 상이한 일련의 AuNCs에 대해 측정한 산란 스펙트럼으로부터 획득한 최대 피크 위치 및 해당 피크 위치에서의 산란 세기를 각각 도 9d 및 도 9e에 나타내었다. 도 9d 및 도 9e에 나타난 바와 같이, 최대 산란 파장의 위치 및 세기는 AuNC의 크기 및/또는 모서리 형태에 따라 상이하였으며, 이는 비슷한 크기의 AuNCs에서 모서리의 첨예도가 높을수록 산란 신호가 증가하고, 평균 피크 위치는 장파장 이동하는 것으로 나타났다. 이는 주로 큰 크기에 의한 지연 효과에 기인할 수 있다. 이때, 72S는 78R에 비해 모서리 첨예도가 높음에도 불구하고 다소 감소된 산란 세기가 관찰되었는데, 이는 레일리 산란이 일반적으로 부피의 제곱에 비례하여 증가하므로 보다 부피가 큰 78R에서 산란이 증가하는 효과가 복합적으로 나타났기 때문인 것으로 사료되었다. 한편, 각 AuNCs의 스펙트럼을 선폭을 함께 도 9f에 나타내었다. 도 9f에 나타난 바와 같이, 이들 AuNCs는 그 크기나 형태에 무관하게 일정한 선폭의 산란 스펙트럼을 가짐을 확인하였다. 나아가, 크기 및 모서리 형태가 동일한 53S AuNCs를 여러 배치에서 합성하고 각 배치로부터 수득한 AuNCs의 레일리 산란 스펙트럼을 측정하여 종합적인 스펙트럼 프로파일을 도 9g에 3차원적으로 나타내었다. 도 9g에 나타난 바와 같이, 여러 개의 상이한 배치에서 생산된 AuNCs로부터 측정한 레일리 라만 스펙트럼은 모두 일치하였으며, 이는 본 발명의 합성방법을 이용하면 배치에 무관하게 균일한 AuNCs를 생산할 수 있음을 나타내는 것이다.It has been noted in the present invention that its optical properties can be controlled by controlling the AuNC structure. A Rayleigh scattering signal was measured at a single-particle level using a dark-field microscope, and the results are shown in FIG. 9A. As shown in FIG. 9, a dark field microscope (DF micrograph, FIG. 9a) and a scattering spectrum (FIG. 9b) measured from 25 AuNCs showed uniform scattering characteristics. Due to the narrow distribution of AuNCs and high yields, the spectra obtained for the 25 individual particles are in good agreement, and representative spectra averaged to these are shown in Figure 9c. Also, the maximum peak positions obtained from the scattering spectra measured for a series of AuNCs of different sizes, i.e., corner lengths and / or shapes, and the scattering intensities at the peak positions are shown in Figures 9d and 9e, respectively. As shown in FIGS. 9D and 9E, the position and intensity of the maximum scattering wavelength varied depending on the size and / or shape of the AuNC, and the scattering signal increased as the sharpness of the edge was higher in AuNCs of similar size, The average peak position was found to be shifted by a long wavelength. This is mainly due to the delay effect due to the large size. In this case, the 72S had a somewhat reduced scattering intensity despite the high sharpness of the edge compared to the 78R. This is because the Rayleigh scattering generally increases in proportion to the square of the volume, It is thought that this is due to the fact that it appears complex. On the other hand, the spectrum of each AuNCs is shown in Fig. As shown in FIG. 9F, it was confirmed that these AuNCs had scattering spectra of a constant line width regardless of their sizes and shapes. Further, 53S AuNCs having the same size and edge shape were synthesized in various batches, and the Rayleigh scattering spectrum of AuNCs obtained from each batch was measured, and a comprehensive spectrum profile was shown three-dimensionally in FIG. 9G. As shown in FIG. 9g, the Rayleigh Raman spectra measured from AuNCs produced in several different batches were all consistent, indicating that using the synthesis method of the present invention, uniform AuNCs could be produced regardless of batch.
마지막으로, 본 발명에서는 78R 및 72S를 가지고 표면증강라만산란(surface-enhanced Raman scattering; SERS)에 의한 근접장 증강(near-field enhancement)에 대한 구조적 효과를 연구하였다. 구체적으로, AuNC 표면에 BDT의 자기조립단분자층을 형성하여, AuNC 이합체로 조립하였다. 형성된 AuNC 이합체의 형태를 도 10a에 모식도로 나타내었다. 도 10c에는 각각 78R 및 72S로 된 이합체의 TEM 이미지를 나타내었다. 각각 22개의 개별 이합체를 분석하여, 1.1 nm의 평균 갭 크기(편차 10% 이내)를 갖는 것을 확인하였다. 조사하는 레이저의 편광각(polarisation angle)을 변화시키면서 작성한 라만 신호의 극도표(polar plot)로부터 최대 라만 신호 증강은 이합체의 장축 방향 공명 모드에서, 및/또는 78R에서 큼을 확인하였다. 본 발명에서 BDT를 사용하여 제조하여 제조한 이합체의 라만 증강 인자는 78R에서 8.0x107, 72S에서 1.6x107로 산출되었다(도 10f 및 10g). 이러한 경향성은 도 10b에 나타낸 시뮬레이션 결과와도 일치한다. 이는 모서리 첨예도의 조절은 단일 입자에서뿐만 아니라 이합체의 광학적 성질도 조절가능한 인자임을 나타내는 것이다. 반면, 72S의 이합체는 78R의 이합체에 비해 더 좁은 분포의 스펙트럼을 나타내었는데, 이는 72S의 경우 78R에 비해 모서리 반경의 편차가 작아 더 높은 균질성을 나타내기 때문인 것으로 사료되며, 측정된 78R의 모서리 반경의 표준편차가 72S의 것에 비해 1.9배 큰 것이 이를 뒷받침하였다. 이러한 패턴은 다른 크기의 AuNC에서도 나타났다.Finally, we have studied the structural effects of near-field enhancement by surface-enhanced Raman scattering (SERS) with 78R and 72S in the present invention. Specifically, a self-assembled monolayer of BDT was formed on the surface of AuNC and assembled into an AuNC dimer. The form of the AuNC dimer formed is schematically shown in Fig. 10a. FIG. 10C shows TEM images of the dimers of 78R and 72S, respectively. Each of the 22 individual dimers was analyzed to have an average gap size of 1.1 nm (within a deviation of 10%). The maximum Raman signal enhancement from the polar plot of the Raman signal generated by varying the polarization angle of the irradiating laser was found to be large in the long axis resonance mode of the dimer and / or at 78R. In the present invention, the Raman enhancer of the dimer prepared by using BDT was calculated to be 8.0x10 7 at 72R and 1.6x10 7 at 72S (FIGS. 10f and 10g). This tendency agrees with the simulation result shown in Fig. 10B. This indicates that the control of edge sharpness is an adjustable factor not only in the single particle but also in the optical properties of the dimer. On the other hand, the 72S dimer exhibited a narrower spectrum spectrum than the 78R dimer, which is thought to be due to the higher homogeneity of the 72S compared to the 78R, because the edge radius deviation is smaller, and the corner radius Was 1.9 times larger than that of 72S. This pattern also appeared in AuNC of different sizes.
결론적으로, 본 발명에서는 금속 나노큐브의 크기 및 모서리 첨예도를 정확히 조절하면서 고수율로 생산할 수 있는 방법을 제시하였다. 본 발명의 방법은 첨가되는 브로마이드 이온의 양을 변화시킴으로써 모서리 첨예도를 조절할 뿐만 아니라 종자와 전구체 양의 비율을 조절함으로써 크기를 조절하는 간단한 방법을 제공한다. 화학량론적 정보로부터, 금속 나노큐브 크기가 선택되면, 둥근-모서리를 갖는 또는 뾰족한 모서리를 갖는 금속 나노큐브를 위해 요구되는 브로마이드의 농도가 용이하게 결정될 수 있다. 합성된 금속 나노큐브의 원심분리-유도 응집은 형태-선택적 나노입자 정제를 위한 간단하면서도 실현 가능한 방법이며, 복잡한 준비과정 없이도 모든 형태의 나노입자 혼합물에까지 확장가능한 방법이다. 금속 나노큐브의 정확한 형태 조절은 원거리장 및 근접장 반응의 효율적인 미세조정(fine-tuning)을 가능케 함으로써, 구조적 차이를 광학적 성질의 조정(modulation)으로 전환하는 것을 가능하게 한다. 따라서, 이를 토대로 합성 또는 2D 또는 3D 소재로의 자기 조립을 위한 기본 나노구조물로 사용될 수 있는 금속 나노큐브의 실현가능하며 대량생산 가능한 합성법을 개발할 수 있을 것이다. 나아가, 신규한 나노구조물의 정확히 조절된 고안을 통해 달성되는 고도로 향상된 플라즈몬 특성의 응용을 기대할 수 있다.In conclusion, the present invention proposes a method of producing metal nanocubes at a high yield while accurately controlling the size and edge sharpness of the metal nanocubes. The method of the present invention provides a simple method of adjusting the size by adjusting the ratio of seed to precursor amount as well as adjusting the edge sharpness by changing the amount of bromide ion added. From the stoichiometric information, when the metal nanocube size is selected, the concentration of bromide required for metal nanocubes with round-edged or sharp edges can be readily determined. Centrifugation-induced coagulation of synthesized metal nanocubes is a simple and feasible method for morphological-selective nanoparticle purification, and is a scalable method to any type of nanoparticle mixture without complex preparation. Accurate morphological control of metal nanocubes enables efficient fine-tuning of far-field and near-field reactions, thereby making it possible to convert structural differences into modulation of optical properties. Therefore, based on this, it is possible to develop a feasible and mass-produced synthesis method of metal nanocubes that can be used as basic nanostructures for synthesis or self-assembly into 2D or 3D materials. Furthermore, application of highly improved plasmon properties achieved through precisely controlled design of novel nanostructures can be expected.

Claims (24)

  1. 하기 식 1로 표시되는 모서리 첨예도 지수(corner sharpness index; CSI)가 조절된 금속 나노큐브의 제조방법에 있어서,1. A method of manufacturing a metal nanocube having a corner sharpness index (CSI) controlled by the following formula 1,
    최종 제조하고자 하는 금속 나노큐브의 표면적 및 CSI 지수를 기초로 하기의 혼합 수용액 제조 단계에서 첨가할 표면보호제(surface-protecting agent)의 양을 결정하는, 표면보호제 양 결정 단계;Determining the amount of a surface-protecting agent to be added in the following step of preparing a mixed aqueous solution based on the surface area of the metal nanocube to be finally produced and the CSI index;
    제1계면활성제(surfactant), 상기 표면보호제 양 결정 단계에 따라 결정된 양의 표면보호제, 및 평균 직경 3 내지 30 nm의 금속 나노입자를 혼합하여 혼합 수용액을 제조하는, 혼합 수용액 제조 단계; 및Preparing a mixed aqueous solution by mixing a first surfactant, an amount of a surface protective agent determined according to the surface protective agent amount crystallization step, and metal nanoparticles having an average diameter of 3 to 30 nm to prepare a mixed aqueous solution; And
    상기 혼합 수용액에 환원제, 및 금속 이온을 함유하는 전구체 용액을 첨가하여 반응시키는, 금속 이온 전구체 첨가 단계;를 포함하고,And adding a metal ion precursor by adding a reducing agent and a precursor solution containing metal ions to the mixed aqueous solution,
    상기 금속은 금(Au), 은(Ag), 팔라듐(Pd), 백금(Pt), 구리(Cu), 알루미늄(Al), 납(Pb), 또는 이들의 조합인 것인, 금속 나노큐브의 제조방법:Wherein the metal is one of gold (Au), silver (Ag), palladium (Pd), platinum (Pt), copper (Cu), aluminum (Al), lead (Pb) Manufacturing method:
    [식 1][Formula 1]
    Figure PCTKR2019001057-appb-I000003
    Figure PCTKR2019001057-appb-I000003
    상기 식 1에서,In Equation (1)
    EL은, 금속 나노큐브의 편평한 일면 상의 한 점으로부터 이에 평행한 타면까지의 최단거리로 정의되는, 모서리 길이(edge length)를,EL denotes an edge length defined as the shortest distance from one point on a flat surface of a metal nanocube to another surface parallel thereto,
    CR은, 모서리 곡률(corner curvature)과 완벽히 일치하는 원의 반경으로 정의되는, 모서리 반경(corner radius)을 나타냄.CR denotes the corner radius, defined as the radius of the circle that perfectly matches the corner curvature.
  2. 제1항에 있어서,The method according to claim 1,
    상기 금속 이온 전구체 첨가 단계에 따른 반응 용액을 원심분리하고 침전물을 회수하여 용액에 재분산시키는, 원심분리 및 재분산 단계; 및 상기 재분산된 반응 용액에 제2계면활성제를 첨가하여 원심분리하는, 제2계면활성제 첨가 및 원심분리 단계를 추가로 포함하는, 금속 나노큐브의 제조방법.Centrifuging the reaction solution according to the metal ion precursor adding step, centrifuging and redispersing the precipitate to recover and redispersing the precipitate; And a second surfactant addition and centrifugation step of adding a second surfactant to the redispersed reaction solution and centrifuging the second surfactant.
  3. 제2항에 있어서,3. The method of claim 2,
    CSI 값이 ±10% 이내의 편차로 조절된 금속 나노큐브를 95% 이상의 순도로 제공하는 것인, 금속 나노큐브의 제조방법.Wherein the metal nanocubes whose CSI values are adjusted to within a deviation of 10% are provided with a purity of 95% or more.
  4. 제2항에 있어서,3. The method of claim 2,
    모서리 길이가 ±10% 이내의 편차로 조절된 금속 나노큐브를 95% 이상의 순도로 제공하는 것인, 금속 나노큐브의 제조방법.Wherein the metal nano-cubes are adjusted to have a deviation within a range of 10% or less in corner purity at a purity of 95% or more.
  5. 제1항에 있어서,The method according to claim 1,
    최종 제조하고자 하는 금속 나노큐브의 CR 값이 5 nm 미만이거나, CSI 값이 0.7 이상인 경우, 제1단계에서 결정되는 첨가할 표면보호제의 양은 최종 제조하고자 하는 금속 나노큐브의 표면적 값(단위 nm2)의 200 내지 700배의 분자수인 것인, 금속 나노큐브의 제조방법.Or CR value of the metal nano-cubes to be the final production is less than 5 nm, not less than the CSI value of 0.7, a specific surface area value of the metal nano-cubes to be the final production amount of the surface protective agent to be added is determined in step 1 (in nm 2) Of the metal nanocubes is 200 to 700 times the molecular number of the metal nanocubes.
  6. 제1항에 있어서,The method according to claim 1,
    최종 제조하고자 하는 금속 나노큐브의 CR 값이 5 nm 이상이거나, CSI 값이 0.7 미만인 경우, 제1단계에서 결정되는 첨가할 표면보호제의 양은 최종 제조하고자 하는 금속 나노큐브의 표면적 값(단위 nm2)의 200배 미만 또는 700배 초과 내지 10000배의 분자수인 것인, 금속 나노큐브의 제조방법.Or end-CR value of the metal nano-cubes to be manufactured is more than 5 nm, less than the CSI value of 0.7, a specific surface area value of the metal nano-cubes to be the final production amount of the surface protective agent to be added is determined in step 1 (in nm 2) Or more than 700 times to 10000 times the molecular weight of the metal nanocube.
  7. 제1항에 있어서,The method according to claim 1,
    상기 금속 나노큐브는 평균 15 내지 300 nm의 모서리 길이를 갖는 것인, 금속 나노큐브의 제조방법.Wherein the metal nanocubes have an average edge length of 15 to 300 nm.
  8. 제1항에 있어서,The method according to claim 1,
    상기 제1계면활성제는 사용되는 전체 용액의 부피에 대해 30 내지 70 mM의 농도로 사용하는 것인, 금속 나노큐브의 제조방법.Wherein the first surfactant is used in a concentration of 30 to 70 mM based on the volume of the whole solution used.
  9. 제1항에 있어서,The method according to claim 1,
    상기 환원제는 사용되는 전체 용액의 부피에 대해 0.1 내지 0.5 mM의 농도로 사용하는 것인, 금속 나노큐브의 제조방법.Wherein the reducing agent is used in a concentration of 0.1 to 0.5 mM based on the volume of the total solution used.
  10. 제1항에 있어서,The method according to claim 1,
    상기 금속 이온을 함유하는 전구체 용액은 사용되는 전체 용액의 부피에 대해 0.1 내지 0.4 mM의 농도로 사용하는 것인, 금속 나노큐브의 제조방법.Wherein the precursor solution containing the metal ions is used at a concentration of 0.1 to 0.4 mM based on the volume of the whole solution used.
  11. 제1항에 있어서,The method according to claim 1,
    상기 표면보호제는 NaBr이며, 상기 환원제는 아스코르브산인 것인, 금속 나노큐브의 제조방법.Wherein the surface protecting agent is NaBr, and the reducing agent is ascorbic acid.
  12. 제1항에 있어서,The method according to claim 1,
    상기 금속 이온 전구체 첨가 단계는, 상기 혼합 수용액에 환원제, 및 금속 이온을 함유하는 전구체 용액을 동시에, 순차적으로, 또는 이시에 첨가하여 반응시키는 것인, 금속 나노큐브의 제조방법.Wherein the metal ion precursor adding step comprises reacting the mixed aqueous solution with a reducing agent and a precursor solution containing metal ions at the same time, sequentially or at the same time, to react them.
  13. 제1항의 방법으로 금속 나노큐브를 제조하는 단계; 금속 나노큐브를 포함하는 용액을 원심분리하고 침전물을 회수하여 용액에 재분산시키는 단계; 및 제2계면활성제를 첨가하여 원심분리하는 단계를 포함하는, 95% 내지 99.9%의 순도를 갖는 금속 나노큐브 집합체의 제조방법.Preparing metal nanocubes by the method of claim 1; Centrifuging the solution containing the metal nanocubes, collecting the precipitate and redispersing the solution in the solution; And a step of adding a second surfactant and centrifuging the mixture to obtain a metal nano-cube aggregate having a purity of 95% to 99.9%.
  14. 제13항에 있어서,14. The method of claim 13,
    95% 내지 99.9%의 순도를 갖는 금속 나노큐브 집합체는 개별 나노큐브의 CSI 값의 편차가 ±10% 이내인 것인, 금속 나노큐브 집합체의 제조방법.Wherein the metal nanocube aggregate having a purity of 95% to 99.9% has a deviation of CSI value of individual nanocubes within +/- 10%.
  15. 제13항에 있어서,14. The method of claim 13,
    95% 내지 99.9%의 순도를 갖는 금속 나노큐브 집합체는 개별 나노큐브의 모서리 길이의 편차가 ±10% 이내인 것인, 금속 나노큐브 집합체의 제조방법.Wherein the metal nanocube aggregate having a purity of 95% to 99.9% has a variation in the edge length of the individual nanocubes within 占 10%.
  16. 제1항 내지 제12항 중 어느 한 항의 방법으로 제조된 금속 나노큐브; 또는 제13항 내지 제15항 중 어느 한 항의 방법으로 제조된 금속 나노큐브 집합체를 포함하는, 탐침 조성물.A metal nanocube produced by the method of any one of claims 1 to 12; Or a metal nanocube aggregate produced by the method according to any one of claims 13 to 15.
  17. 제16항에 있어서,17. The method of claim 16,
    광학적으로 검출 가능한 것인, 탐침 조성물.Wherein the probe is optically detectable.
  18. 제16항에 있어서,17. The method of claim 16,
    흡광, 형광, 또는 산란 신호를 나타내는 것인, 탐침 조성물.Exhibit an absorption, fluorescence, or scattering signal.
  19. 제16항에 있어서,17. The method of claim 16,
    센서용, 바이오이미징용, 또는 치료용인 것인, 탐침 조성물.Sensor, bioimaging, or therapeutic.
  20. 제16항에 있어서,17. The method of claim 16,
    정성분석, 다중분석, 정량분석 또는 이들 중 둘 이상을 동시에 수행 가능한 것인, 탐침 조성물.Qualitative, multimeric, quantitative, or two or more of these.
  21. 제16항에 있어서,17. The method of claim 16,
    상기 금속 나노큐브 또는 금속 나노큐브 집합체는 표면 개질된 것인, 탐침 조성물.Wherein the metal nanocube or metal nanocube aggregate is surface-modified.
  22. 모서리 길이의 평균이 20 nm 이하인, 금(Au) 나노큐브.A gold (Au) nanocube having an average edge length of 20 nm or less.
  23. 제22항에 있어서, 모서리의 CSI 값이 ±10% 이내의 편차로 조절되거나, 모서리 길이가 ±10% 이내의 편차로 조절된 것인, 금 나노큐브.23. The gold nanocube of claim 22, wherein the CSI value of the edge is adjusted to a deviation within +/- 10%, or the edge length is adjusted to a deviation within +/- 10%.
  24. 제22항에 있어서, 모서리 길이의 평균이 10 nm 내지 20 nm인, 금 나노큐브.23. The gold nanocube of claim 22, wherein the average of edge lengths is 10 nm to 20 nm.
PCT/KR2019/001057 2018-01-26 2019-01-25 Method for manufacturing metal nanocube with controlled edge sharpness index WO2019147056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/733,420 US20210161952A1 (en) 2018-01-26 2019-01-25 Method for Preparing Metal Nanocube with Controlled Corner Sharpness Index

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180010219 2018-01-26
KR10-2018-0010219 2018-01-26
KR10-2018-0124004 2018-10-17
KR1020180124004A KR20190091185A (en) 2018-01-26 2018-10-17 Method for preparing a metal nanocube with a modulated corner sharpness index

Publications (1)

Publication Number Publication Date
WO2019147056A1 true WO2019147056A1 (en) 2019-08-01

Family

ID=67394669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001057 WO2019147056A1 (en) 2018-01-26 2019-01-25 Method for manufacturing metal nanocube with controlled edge sharpness index

Country Status (1)

Country Link
WO (1) WO2019147056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347059A (en) * 2020-03-30 2020-06-30 江南大学 Synthesis method of porous gold @ silver @ gold nanocubes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080069058A (en) * 2007-01-22 2008-07-25 한국생명공학연구원 Sythesis of gold nanoparticles of various crystal shapes using halide ion
KR20150096187A (en) * 2014-02-14 2015-08-24 서울대학교산학협력단 method of manufacturing nanoparticles using seed growth
KR20160084064A (en) * 2015-01-05 2016-07-13 한국과학기술원 Nano-fluid including nanorods and solar collector using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080069058A (en) * 2007-01-22 2008-07-25 한국생명공학연구원 Sythesis of gold nanoparticles of various crystal shapes using halide ion
KR20150096187A (en) * 2014-02-14 2015-08-24 서울대학교산학협력단 method of manufacturing nanoparticles using seed growth
KR20160084064A (en) * 2015-01-05 2016-07-13 한국과학기술원 Nano-fluid including nanorods and solar collector using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU: "Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures", LANGMUIR, vol. 26, no. 14, 17 June 2010 (2010-06-17), pages 12307 - 12313, XP055629792 *
ZHANG: "Individual Au-Nanocube Based Plasmonic Nanoprobe for Cancer Relevant MicroRNA Biomarker Detection", ACS SENS., vol. 2, 25 August 2017 (2017-08-25), pages 1435 - 1440, XP055629793 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111347059A (en) * 2020-03-30 2020-06-30 江南大学 Synthesis method of porous gold @ silver @ gold nanocubes

Similar Documents

Publication Publication Date Title
Zheng et al. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine
Rekha et al. Synthesis of highly stable silver nanorods and their application as SERS substrates
Jeong et al. High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties
US20060207388A1 (en) Method of producing gold nanoprisms
Shobin et al. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing
KR20210088469A (en) Method for preparing a metal nanocube with a modulated corner sharpness index
US20180050905A1 (en) Sorting process of nanoparticles and applications of same
Prucek et al. Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment—a new substrate for surface enhanced IR-visible Raman spectroscopy
WO2019147056A1 (en) Method for manufacturing metal nanocube with controlled edge sharpness index
Han et al. Hierarchically branched silver nanostructures (HBAgNSs) as surface plasmon regulating platforms for multiplexed colorimetric DNA detection
Bai et al. Galvanic replacement mediated growth of dendritic gold nanostructures with a three-fold symmetry and their applications to SERS
Zao et al. Convenient synthesis of silver nanoplates with adjustable size through seed mediated growth approach
Jiang et al. Seed-mediated synthesis of floriated Ag nanoplates as surface enhanced Raman scattering substrate for in situ molecular detection
Schneider et al. One step fabrication of glass–silver@ core–shell fibers: silver-doped phosphate glasses as precursors of SERS substrates
Khanadeev et al. Large-scale high-quality 2D silica crystals: dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis
Geitner et al. The morphology and evolution of bipyramidal gold nanoparticles
Rekha et al. Simultaneous detection of different probe molecules using silver nanowires as SERS substrates
Lu et al. Room-temperature mechanochemical synthesis of silver nanoparticle homojunction assemblies for the surface-enhanced raman scattering substrate
Qi et al. Cuprous oxide nanospheres as probes for light scattering imaging analysis of live cells and for conformation identification of proteins
Guarrotxena et al. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis
Nogueira et al. Adsorption of 2, 2′-dithiodipyridine as a tool for the assembly of silver nanoparticles
Ma et al. Hot spots in photoreduced Au nanoparticles on DNA scaffolds potent for robust and high-sensitive surface-enhanced Raman scattering substrates
Lv et al. Investigation of 3D silvernanodendrite@ glass as surface-enhanced Raman scattering substrate for the detection of Sildenafil and GSH
Gao et al. Mild benzene-thermal route to GaP nanorods and nanospheres
WO2020036438A1 (en) Method for synthesizing single metal nanobridged structure and method for manufacturing dna point mutation detection sensor by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744273

Country of ref document: EP

Kind code of ref document: A1