WO2019146577A1 - Information processing device - Google Patents
Information processing device Download PDFInfo
- Publication number
- WO2019146577A1 WO2019146577A1 PCT/JP2019/001810 JP2019001810W WO2019146577A1 WO 2019146577 A1 WO2019146577 A1 WO 2019146577A1 JP 2019001810 W JP2019001810 W JP 2019001810W WO 2019146577 A1 WO2019146577 A1 WO 2019146577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flight
- aircraft
- flying object
- control unit
- information processing
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims description 14
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 45
- 230000005856 abnormality Effects 0.000 claims abstract description 36
- 230000008859 change Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 abstract description 5
- 238000009795 derivation Methods 0.000 abstract 2
- 238000004891 communication Methods 0.000 description 16
- 238000003860 storage Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000002159 abnormal effect Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/02—Initiating means
- B64C13/16—Initiating means actuated automatically, e.g. responsive to gust detectors
- B64C13/18—Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D25/00—Emergency apparatus or devices, not otherwise provided for
Definitions
- the present invention relates to a technique for suppressing danger by a flying object.
- Patent Document 1 discloses that, when the flying object is flying, any one of the battery's output voltage, output current, and output power becomes lower than a predetermined threshold, and the flying object elevation control is performed. ing.
- Patent Document 1 Although the technology described in Patent Document 1 focuses only on so-called battery depletion in a flying object, factors other than the battery depletion may be considered as factors that make the flying object impossible to fly. Further, although the technology described in Patent Document 1 estimates whether or not there is an abnormality based on the output voltage, the output current, and the output power, whether or not these values correspond to an abnormality depends on It depends on the condition.
- an abnormality degree specifying unit which specifies an abnormality degree according to a detected value detected in a flying object, and the possibility that the aircraft can not fly at the specified abnormality degree.
- an information processing apparatus characterized by comprising:
- the flight control unit may control the operation of the aircraft when the non-flying level falls below a fluctuating safety standard.
- the flight control unit may use the safety standard that varies in accordance with the attribute of the transported object transported by the aircraft.
- the flight control unit may use the safety standard that changes according to an attribute of the ground corresponding to the airspace where the aircraft flies.
- the flight control unit may use the safety standard that changes according to the attribute of the airspace where the aircraft flies.
- the control by the flight control unit may include control of an operation related to the altitude reduction of the aircraft.
- the control of the operation by the flight control unit may include the control of the operation related to the change of course of the flight object.
- the control by the flight control unit may include control of an operation related to landing of the aircraft.
- the control by the flight control unit may include control of an operation related to switching of the aircraft to an alternative aircraft.
- FIG. 1 shows an example of the configuration of a flight control system 1.
- FIG. FIG. 2 is a view showing an example of the appearance of a flying object 10; It is a figure which shows the hardware constitutions of the flying body 10.
- FIG. 2 is a diagram showing a hardware configuration of a server device 20.
- FIG. 2 is a diagram showing an example of a functional configuration of a server device 20. It is a figure explaining the relationship between a flight impossible factor and flight control. It is a figure explaining the example of change of a safety standard.
- 5 is a flowchart showing an example of the operation of the server device 20.
- Flight control system 10 Flight object 20: Server device 21: Processor 22: Memory 23: Storage 24: Communication device 25: Bus 200: Tracking unit 201: Acquisition unit 202: Abnormal Degree specification unit 203: Parameter specification unit 204: Flight control unit.
- FIG. 1 is a diagram showing an example of the configuration of a flight control system 1.
- the flight control system 1 is a system that controls the flight of the flying object 10.
- the flight control system 1 includes a plurality of aircraft 10 and a server device 20.
- the server device 20 is an information processing device that controls the flight of the flying object 10, and in this case, in particular, sets a limited flight area where the flight of the flying object 10 is limited.
- the flight restriction of the flying object 10 mentioned here typically assumes that the flying object 10 is not allowed to enter the flight restriction area.
- limitation of the velocity or acceleration of the flying object 10 in the flight limited airspace limitation of the direction change of the flying object 10 in the flight limitation airspace, limitation of the ascent or descent of the aircraft 10 in the flight limitation airspace, It may be any limitation on the flight of the flying object 10, such as the limitation of the staying period of the flying object 10 in the flight limitation airspace, and the weight limitation of the flying object 10 flying in the flight limitation airspace.
- FIG. 2 is a view showing an example of the appearance of the flying object 10.
- the flying object 10 is, for example, a so-called drone, and includes a propeller 101, a drive device 102, and a battery 103.
- the propeller 101 rotates about an axis. As the propeller 101 rotates, the flying object 10 flies.
- the driving device 102 powers and rotates the propeller 101.
- the drive device 102 includes, for example, a motor and a transmission mechanism that transmits the power of the motor to the propeller 101.
- the battery 103 supplies power to each part of the flying object 10 including the drive device 102.
- FIG. 3 is a diagram showing the hardware configuration of the aircraft 10.
- the flying object 10 is physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a positioning device 15, an imaging device 16, a beacon device 17, a bus 18, and the like.
- the term “device” can be read as a circuit, a device, a unit, or the like.
- the processor 11 operates an operating system, for example, to control the entire computer.
- the processor 11 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the processor 11 reads a program (program code), a software module or data from the storage 13 and / or the communication device 14 to the memory 12 and executes various processes in accordance with these.
- a program a program that causes a computer to execute at least a part of the operation of the flying object 10 is used.
- the various processes performed in the aircraft 10 may be performed by one processor 11 or may be performed simultaneously or sequentially by two or more processors 11.
- the processor 11 may be implemented by one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the memory 12 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
- the memory 12 may be called a register, a cache, a main memory (main storage device) or the like.
- the memory 12 can store a program (program code), a software module, and the like that can be executed to implement the flight control method according to the embodiment of the present invention.
- the storage 13 is a computer readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magnetooptical disk (for example, a compact disk, a digital versatile disk, Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
- the storage 13 may be called an auxiliary storage device.
- the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
- the positioning device 15 measures the three-dimensional position of the aircraft 10.
- the positioning device 15 is, for example, a GPS (Global Positioning System) receiver, and measures the current position of the aircraft 10 based on GPS signals received from a plurality of satellites.
- GPS Global Positioning System
- the imaging device 16 captures an image around the flying object 10.
- the imaging device 16 is, for example, a camera, and captures an image by forming an image on an imaging element using an optical system.
- the imaging device 16 captures an image of a predetermined range in front of the aircraft 10, for example.
- the imaging direction of the imaging device 16 is not limited to the front of the aircraft 10, and may be above, below, or behind the aircraft 10. Further, for example, the imaging direction may be changed by rotating a pedestal supporting the imaging device 16.
- the beacon device 17 transmits a beacon signal of a predetermined frequency, and also receives a beacon signal transmitted from another flying object 10.
- the reach of this beacon signal is a predetermined distance such as 100 m.
- the beacon signal includes aircraft identification information that identifies the aircraft 10 that transmits the beacon signal.
- the sensor unit 19 detects detected values such as a sign of component failure of the flying object 10, abnormal noise in the flying object 10, and a remaining battery level of a battery.
- the indication of the component failure of the flying object 10 is grasped by monitoring the operating state such as the voltage value and the current value of each component, for example. These detected values are provided to the server device 20.
- the devices such as the processor 11 and the memory 12 described above are connected by a bus 18 for communicating information.
- the bus 18 may be configured as a single bus or may be configured as different buses among the devices.
- FIG. 4 is a diagram showing a hardware configuration of the server device 20.
- the server device 20 is physically configured as a computer device including a processor 21, a memory 22, a storage 23, a communication device 24, a bus 25 and the like.
- the processor 21, the memory 22, the storage 23, the communication device 24, and the bus 25 are similar to the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 18 described above, and thus the description thereof is omitted.
- FIG. 5 is a diagram showing an example of a functional configuration of the server device 20.
- Each function in the server device 20 causes the processor 21 to perform an operation by reading predetermined software (program) on hardware such as the processor 21 and the memory 22, thereby performing communication by the communication device 24, the memory 22, and the storage 23. This is realized by controlling the reading and / or writing of data in
- the tracking unit 200 records the flying object identification information of the flying object 10 under control of the server device 20 and the flight status thereof.
- the flight status includes the position where the flying object 10 is flying and the date and time at that position.
- the tracking unit 200 records position information and date and time information notified from the aircraft 10.
- the tracking unit 200 determines whether the position information and the date and time information are within a previously planned flight plan, and records the determination result. Thereby, the difference between the plan and the result of the flight of the flying object 10 is specified as the detected value detected in the flying object 10.
- the acquisition unit 201 has attributes of the ground (that is, the ground immediately below the airspace) in the airspace that is a candidate for the flight of the aircraft 10, the attributes of the airspace, the attributes of the cargo transported by the aircraft 10, and the sensor of the aircraft 10
- the detection value detected by the unit 19 is acquired.
- These attributes are information indicating features of the ground and airspace, and are acquired by the acquiring unit 201 from each of the flying objects 10 or from a database stored by the acquiring unit 201. In this database, the population distribution on the ground and the position, number, density, and type of equipment or natural objects on the ground are stored as attributes of the ground, and each of the airspaces is a candidate for the flight object 10 to fly as the attribute of airspace.
- the position (latitude / longitude / altitude) and the number and attributes of flight vehicles scheduled to fly in the airspace, and information on the communication environment of the flight vehicle 10 in each airspace, the weather in each airspace, etc. are stored. These pieces of information are pre-specified or measured and stored in this database.
- the abnormality degree specifying unit 202 specifies the degree of abnormality according to the detection value detected in the aircraft 10. How far is the aircraft 10 from normal levels from differences between the flight plan and the flight results, signs of component failure of the aircraft 10, abnormal noise in the aircraft 10, battery remaining amount of battery etc.
- the degree of abnormality (that is, the degree of abnormality) can be obtained according to a predetermined algorithm.
- the degree of abnormality means, for example, that 0 is a normal level and 10 is a maximum abnormal level, and the larger the value is, the more it deviates from the normal level (that is, it is abnormal).
- the parameter specifying unit 203 specifies a parameter (hereinafter referred to as a derived parameter) for deriving the non-flyable level indicating the possibility that the flying object 10 can not fly in the abnormality degree specified by the abnormality degree specifying unit 202.
- the derived parameters include, for example, the production time of the flying object 10, the use start time or an elapsed period from the previous maintenance time, the weather at the time of flight, and the like. For example, based on the abnormal noise in the flying object 10, when the abnormality degree is "7", whether the flying object 10 is actually impossible to fly or not depends on the manufacturing time of the flying object 10, the use start time or the last maintenance time. It depends on the time elapsed from and the weather at the time of flight.
- the possibility of being unable to fly is X1% if the time when the aircraft 10 is manufactured, the start time of use, or the elapsed time since the previous maintenance time is more than a threshold. If the duration of is less than the threshold, the probability of becoming unflyable is X2% (X2 ⁇ X1).
- the elapsed period from the use start time is short (the so-called initial failure occurrence period in a failure rate curve called a bathtub curve), the possibility of becoming unflyable may be increased.
- the parameter specifying unit 203 stores the derived parameters for deriving the non-flyable level (for example, X1, X2, Y1, Y2% described above) from each abnormality degree, and specifies by the abnormality degree specifying unit 202.
- the derived parameters corresponding to the identified abnormality degree are identified.
- the flight control unit 204 determines the non-flyable level based on the abnormality degree specified by the abnormality degree specifying unit 202 and the derived parameter specified by the parameter specifying unit 203, and the operation of the aircraft 10 according to the non-flyable level. Control. Specifically, the flight control unit 204 performs a predetermined calculation using the abnormality degree and the derived parameter to calculate the above non-flyable level such as X1, X2, Y1, Y2%, and the non-flyable level is safe. When the level is lower than the standard, the flying object 10 is controlled to perform an action according to the factor of the level of the non-flight being lower than the safety standard.
- This safety standard is an attribute of a transported object transported by the aircraft (referred to as a transported object attribute), an attribute of the ground corresponding to an airspace where the aircraft flies (grounded attribute), or an attribute of an airspace where the aircraft flies It changes according to the attribute).
- the ground attributes relate to, for example, the density of the population on the ground of the airspace where the aircraft 10 is a candidate to fly, and the number, density or type of equipment or natural objects on the ground.
- the population includes cases that change with time.
- the equipment is, for example, a building (including the presence of a roof), a road, a field, a drone landing equipment, a vehicle, etc., including those fixed on the ground and those moving on the ground.
- Equipment includes time-dependent cases. Natural products include mountains, rivers, seas, lakes, etc.
- the airspace attribute may, for example, be the altitude of the airspace, the communication environment of the airborne vehicle 10 in the airspace, the number or density of the airborne vehicles 10 in the airspace, or an airspace allocated exclusively for the particular airborne vehicle 10 It relates to whether or not to assign to a plurality of aircrafts 10 to be shared.
- the transported item attribute is information indicating the features of the transported object transported by the flying object 10, and includes, for example, its weight, fragility, and importance.
- FIG. 6 is a view for explaining a variation example of the safety standard.
- the safety standard when the transported item is a broken item, the safety standard is Th1, and when it is not a broken item, the safety standard is Th2.
- the safety standard is Th3 when there are many people on the ground attribute (for example, the population density is above the threshold), and the safety standard is Th4 when the population is low (for example, the population density is less than the threshold) .
- the safety standard At high altitude (if altitude is above threshold) as airspace attribute, the safety standard is Th5, and at low altitude (e.g. altitude is below threshold), the safety standard is Th6. However, it is Th5> Th6. That is, as the altitude of the flying object 10 is higher, it is likely to be necessary to ensure the safety of the flying object 10.
- FIG. 7 is a diagram for explaining the relationship between the non-flying factor and the flight control.
- the control by the flight control unit 204 includes instructions such as the flight date, flight path, flight speed, etc. of the flying object 10.
- the control by the flight control unit 204 includes the control of the operation related to the altitude reduction of the flying object.
- the factors relating to the failure of the flying object include differences in flight plans and results, indications of component failure of the flying object 10, and abnormal noise in the flying object 10.
- the control of the operation by the flight control unit 204 includes the control of the operation relating to the turning of the flying object.
- the control by the flight control unit 204 includes control of the operation regarding landing of the aircraft.
- the factors relating to the power shortage of the flying object include the battery remaining amount of the flying object 10 or the weather.
- the reason why the control of the flying object 10 is different depending on the factor that the non-flyable level is lower than the safety standard is as follows. For example, even if there is a factor related to the failure of the flying object as a factor below the safety standard, if the flying object 10 can continue the flight, it becomes impossible to fly compared to the factor related to the power shortage (that is, the flying object 10 Is not likely to fall). Therefore, in such a case, rather than landing the flying object 10, it is preferred to lower the altitude of the flying object 10 to reduce, for example, the risk of crash and to fulfill the flight purpose of the flying object 10 Let In this way, appropriate motion control for the aircraft 10 is considered to be different depending on the factor below the safety standard.
- multiple levels of safety standards are provided, and when the safety level falls below the first safety standard, operation control for the altitude reduction of the aircraft 10 is performed.
- the motion of the flying object 10 may be controlled stepwise, such as performing motion control relating to the landing of the flying object 10 when the safety level falls below the second lower safety standard.
- the processor 21 is read by reading predetermined software (program) on hardware such as the processor 21 and the memory 22. Means that the process is executed by performing an operation and controlling communication by the communication device 24 and reading and / or writing of data in the memory 22 and the storage 23.
- FIG. 8 is a flowchart showing an example of the operation of the server device 20.
- the acquisition unit 201 acquires various attributes such as an article attribute, a ground attribute, and an airspace attribute for a certain flying object 10, and a detection for identifying a plurality of factors that make the flight object impossible to fly.
- the data (difference between flight plan and results, indication of parts failure of the flying object 10, abnormal noise in the flying object 10, number and attributes of other flying objects, remaining battery capacity of the flying object 10, weather, etc.) It acquires (step S11).
- the abnormality degree specifying unit 202 specifies the degree of abnormality of the flying object 10 based on the detection value for specifying each factor (step S12).
- the parameter specifying unit 203 specifies a derived parameter for deriving the non-flyable level at the identified abnormality degree (step S13).
- the flight control unit 204 determines the non-flyable level based on the identified abnormality degree and the derived parameter, and compares the non-flyable level with the safety standard (step S14).
- the safety standard to be compared with the non-flyable level is determined for each of the transported item attribute, the ground attribute, and the airspace attribute. For example, if the transported item is, for example, a broken item, the safety standard is Th1. If not, the safety standard is Th2. Also, the safety standard is Th3 when there are many people on the ground attribute (for example, the population density is above the threshold), and the safety standard is Th4 when the population is low (for example, the population density is less than the threshold) . At high altitude (if altitude is above threshold) as airspace attribute, the safety standard is Th5, and at low altitude (e.g. altitude is below threshold), the safety standard is Th6.
- the flight control unit 204 compares the identified non-flyable level with the safety standard for each of the transported object attribute, ground attribute, and airspace attribute of the airframe 10, and if there is a non-flyable level below the safe standard. (Step S14: YES) As described with reference to FIG. 7, the flight control determined for the factor corresponding to the non-flyable level below the safety standard is performed (step S15). That is, when the factor below the safety standard is a factor related to the failure of the aircraft, the control by the flight control unit 204 includes the control of the operation related to the altitude reduction of the aircraft.
- the control of the operation by the flight control unit 204 includes the control of the operation related to the turning of the flying object.
- the control by the flight control unit 204 includes control of the operation regarding the landing of the aircraft.
- the control by the flight control unit 204 may include control of operations relating to switching of the aircraft 10 to an alternative aircraft. Specifically, the flight control unit 204 instructs the first flying object 10 in flight to land on the landing base, and for the second flying object 10 waiting at that base, It instructs to fly as a substitute for the first flying object 10.
- the server device 20 uses all of the transported object attribute, the ground attribute, and the airspace attribute, but at least one of the attributes may be used. Moreover, the position of the flying object 10 may be measured by the method which does not use GPS.
- each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
- at least a part of the functions of the server device 20 may be implemented on the aircraft 10.
- at least part of the functions of the aircraft 10 may be implemented on the server device 20.
- Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
- the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
- system and "network” as used herein are used interchangeably.
- radio resources may be indexed.
- determining may encompass a wide variety of operations. For example, “judgment” and “decision” may be judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision” or “decision”. Also, “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “determined” or “determined”.
- the present invention may be provided as a flight control method or an information processing method including the steps of processing performed in the flight control system 1 or the server device 20. Also, the present invention may be provided as a program executed on the airframe 10 or the server device 20. Such a program may be provided in the form of being recorded in a recording medium such as an optical disk, or may be provided in the form of being downloaded to a computer via a network such as the Internet and installed and made available. It is possible.
- Software, instructions, etc. may be sent and received via a transmission medium.
- software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
- wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
- data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
- the channels and / or symbols may be signals.
- the signal may be a message.
- the component carrier (CC) may be called a carrier frequency, a cell or the like.
- any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken there, or that in any way the first element must precede the second element.
- each device described above may be replaced with a “unit”, a “circuit”, a “device” or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Traffic Control Systems (AREA)
Abstract
A degree-of-abnormality specification unit 202 specifies a degree of abnormality that corresponds to a detection value detected in a flight body 10. A parameter specification unit 203 specifies a derivation parameter for deriving a flight-incapable level that indicates the possibility that the flight body 10 will not be capable of flight at the degree of abnormality specified by the degree-of-abnormality specification unit 202. A flight control unit 204 establishes the flight-incapable level on the basis of the degree of abnormality specified by the degree-of-abnormality specification unit 202 and the derivation parameter specified by the parameter specification unit 203, and controls the operation of the flight body 10 in accordance with the flight-incapable level.
Description
本発明は、飛行体による危険を抑制するための技術に関する。
TECHNICAL FIELD The present invention relates to a technique for suppressing danger by a flying object.
例えばドローンと呼ばれるような無人の飛行体の普及とともに、その安全確保のための技術の確立が求められている。例えば特許文献1には、飛行体が飛行中において電池の出力電圧、出力電流、及び出力電力のいずれかが所定の閾値未満になったときに、飛行体の上昇禁止制御を行うことが開示されている。
For example, with the spread of unmanned flying vehicles called drone, the establishment of technology for securing its safety is required. For example, Patent Document 1 discloses that, when the flying object is flying, any one of the battery's output voltage, output current, and output power becomes lower than a predetermined threshold, and the flying object elevation control is performed. ing.
特許文献1に記載の技術は、飛行体におけるいわゆる電池切れにのみ着目したものであるが、飛行体が飛行不能となる要因はこの電池切れ以外の要因も考えられる。また、特許文献1に記載の技術は、出力電圧、出力電流、及び出力電力に基づいて異常であるかどうかを推定しているが、これらの値が異常に相当するか否かは飛行体の状態に応じて異なる。
Although the technology described in Patent Document 1 focuses only on so-called battery depletion in a flying object, factors other than the battery depletion may be considered as factors that make the flying object impossible to fly. Further, although the technology described in Patent Document 1 estimates whether or not there is an abnormality based on the output voltage, the output current, and the output power, whether or not these values correspond to an abnormality depends on It depends on the condition.
そこで、本発明は、飛行体が飛行不能となる前に安全確保のための動作をより適切に行い得る仕組みを提供することを目的とする。
Therefore, it is an object of the present invention to provide a mechanism capable of more appropriately performing an operation for securing safety before the flight body becomes unflyable.
上記課題を解決するため、本発明は、飛行体において検出された検出値に応じた異常度を特定する異常度特定部と、特定された前記異常度において前記飛行体が飛行不能となる可能性を示す飛行不能レベルを導出するための導出パラメータを特定するパラメータ特定部と、特定された前記異常度及び前記導出パラメータに基づく前記飛行不能レベルに応じて、前記飛行体の動作を制御する飛行制御部とを備えることを特徴とする情報処理装置を提供する。
In order to solve the above problems, according to the present invention, there is provided an abnormality degree specifying unit which specifies an abnormality degree according to a detected value detected in a flying object, and the possibility that the aircraft can not fly at the specified abnormality degree. A parameter specifying unit for specifying a derived parameter for deriving a non-flyable level indicating a flight control, and a flight control for controlling the operation of the aircraft in accordance with the specified anomaly degree and the non-flyable level based on the derived parameter And an information processing apparatus characterized by comprising:
前記飛行制御部は、前記飛行不能レベルが、変動する安全基準を下回る場合に、前記飛行体の動作を制御するようにしてもよい。
The flight control unit may control the operation of the aircraft when the non-flying level falls below a fluctuating safety standard.
前記飛行制御部は、前記飛行体が搬送する搬送物の属性に応じて変動する前記安全基準を用いるようにしてもよい。
The flight control unit may use the safety standard that varies in accordance with the attribute of the transported object transported by the aircraft.
前記飛行制御部は、前記飛行体が飛行する空域に対応する地上の属性に応じて変動する前記安全基準を用いるようにしてもよい。
The flight control unit may use the safety standard that changes according to an attribute of the ground corresponding to the airspace where the aircraft flies.
前記飛行制御部は、前記飛行体が飛行する空域の属性に応じて変動する前記安全基準を用いるようにしてもよい。
The flight control unit may use the safety standard that changes according to the attribute of the airspace where the aircraft flies.
前記飛行制御部による制御は、前記飛行体の高度低下に関する動作の制御を含むようにしてもよい。
The control by the flight control unit may include control of an operation related to the altitude reduction of the aircraft.
前記飛行制御部による動作の制御は、前記飛行体の進路変さらに関する動作の制御を含むようにしてもよい。
The control of the operation by the flight control unit may include the control of the operation related to the change of course of the flight object.
前記飛行制御部による制御は、前記飛行体の着陸に関する動作の制御を含むようにしてもよい。
The control by the flight control unit may include control of an operation related to landing of the aircraft.
前記飛行制御部による制御は、前記飛行体の代替機への切り替えに関する動作の制御を含むようにしてもよい。
The control by the flight control unit may include control of an operation related to switching of the aircraft to an alternative aircraft.
本発明によれば、飛行体が飛行不能となる前に安全確保のための動作をより適切に行うことができる。
According to the present invention, it is possible to more appropriately perform the operation for securing safety before the flight body becomes unflyable.
1:飛行制御システム、10:飛行体、20:サーバ装置、21:プロセッサ、22:メモリ、23:ストレージ、24:通信装置、25:バス、200:トラッキング部、201:取得部、202:異常度特定部、203:パラメータ特定部、204:飛行制御部。
1: Flight control system 10: Flight object 20: Server device 21: Processor 22: Memory 23: Storage 24: Communication device 25: Bus 200: Tracking unit 201: Acquisition unit 202: Abnormal Degree specification unit 203: Parameter specification unit 204: Flight control unit.
[構成]
図1は、飛行制御システム1の構成の一例を示す図である。飛行制御システム1は、飛行体10の飛行を制御するシステムである。飛行制御システム1は、複数の飛行体10と、サーバ装置20とを備える。サーバ装置20は、飛行体10の飛行を制御する情報処理装置であり、ここでは特に、飛行体10の飛行が制限される飛行制限空域を設定する。ここでいう飛行体10の飛行制限とは、典型的には、飛行制限空域に対する飛行体10の進入禁止を想定している。ただし、これ以外にも、例えば飛行制限空域における飛行体10の速度又は加速度の制限、飛行制限空域における飛行体10の進行方向変更の制限、飛行制限空域における飛行体10の上昇又は下降の制限、飛行制限空域における飛行体10の滞在期間の制限、飛行制限空域で飛行する飛行体10の重量制限などの、飛行体10の飛行に関する何らかの制限であればよい。 [Constitution]
FIG. 1 is a diagram showing an example of the configuration of aflight control system 1. The flight control system 1 is a system that controls the flight of the flying object 10. The flight control system 1 includes a plurality of aircraft 10 and a server device 20. The server device 20 is an information processing device that controls the flight of the flying object 10, and in this case, in particular, sets a limited flight area where the flight of the flying object 10 is limited. The flight restriction of the flying object 10 mentioned here typically assumes that the flying object 10 is not allowed to enter the flight restriction area. However, other than this, for example, limitation of the velocity or acceleration of the flying object 10 in the flight limited airspace, limitation of the direction change of the flying object 10 in the flight limitation airspace, limitation of the ascent or descent of the aircraft 10 in the flight limitation airspace, It may be any limitation on the flight of the flying object 10, such as the limitation of the staying period of the flying object 10 in the flight limitation airspace, and the weight limitation of the flying object 10 flying in the flight limitation airspace.
図1は、飛行制御システム1の構成の一例を示す図である。飛行制御システム1は、飛行体10の飛行を制御するシステムである。飛行制御システム1は、複数の飛行体10と、サーバ装置20とを備える。サーバ装置20は、飛行体10の飛行を制御する情報処理装置であり、ここでは特に、飛行体10の飛行が制限される飛行制限空域を設定する。ここでいう飛行体10の飛行制限とは、典型的には、飛行制限空域に対する飛行体10の進入禁止を想定している。ただし、これ以外にも、例えば飛行制限空域における飛行体10の速度又は加速度の制限、飛行制限空域における飛行体10の進行方向変更の制限、飛行制限空域における飛行体10の上昇又は下降の制限、飛行制限空域における飛行体10の滞在期間の制限、飛行制限空域で飛行する飛行体10の重量制限などの、飛行体10の飛行に関する何らかの制限であればよい。 [Constitution]
FIG. 1 is a diagram showing an example of the configuration of a
図2は、飛行体10の外観の一例を示す図である。飛行体10は、例えばドローンと呼ばれるものであり、プロペラ101と、駆動装置102と、バッテリ103とを備える。
FIG. 2 is a view showing an example of the appearance of the flying object 10. The flying object 10 is, for example, a so-called drone, and includes a propeller 101, a drive device 102, and a battery 103.
プロペラ101は、軸を中心に回転する。プロペラ101が回転することにより、飛行体10が飛行する。駆動装置102は、プロペラ101に動力を与えて回転させる。駆動装置102は、例えばモーターとモーターの動力をプロペラ101に伝達する伝達機構とを含む。バッテリ103は、駆動装置102を含む飛行体10の各部に電力を供給する。
The propeller 101 rotates about an axis. As the propeller 101 rotates, the flying object 10 flies. The driving device 102 powers and rotates the propeller 101. The drive device 102 includes, for example, a motor and a transmission mechanism that transmits the power of the motor to the propeller 101. The battery 103 supplies power to each part of the flying object 10 including the drive device 102.
図3は、飛行体10のハードウェア構成を示す図である。飛行体10は、物理的には、プロセッサ11、メモリ12、ストレージ13、通信装置14、測位装置15、撮像装置16、ビーコン装置17、バス18などを含むコンピュータ装置として構成されている。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
FIG. 3 is a diagram showing the hardware configuration of the aircraft 10. The flying object 10 is physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a positioning device 15, an imaging device 16, a beacon device 17, a bus 18, and the like. In the following description, the term "device" can be read as a circuit, a device, a unit, or the like.
プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
The processor 11 operates an operating system, for example, to control the entire computer. The processor 11 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらにしたがって各種の処理を実行する。プログラムとしては、飛行体10の動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。飛行体10において実行される各種処理は、1つのプロセッサ11により実行されてもよいし、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
Further, the processor 11 reads a program (program code), a software module or data from the storage 13 and / or the communication device 14 to the memory 12 and executes various processes in accordance with these. As a program, a program that causes a computer to execute at least a part of the operation of the flying object 10 is used. The various processes performed in the aircraft 10 may be performed by one processor 11 or may be performed simultaneously or sequentially by two or more processors 11. The processor 11 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本発明の一実施の形態に係る飛行制御方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 12 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 12 may be called a register, a cache, a main memory (main storage device) or the like. The memory 12 can store a program (program code), a software module, and the like that can be executed to implement the flight control method according to the embodiment of the present invention.
ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ13は、補助記憶装置と呼ばれてもよい。
The storage 13 is a computer readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magnetooptical disk (for example, a compact disk, a digital versatile disk, Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 13 may be called an auxiliary storage device.
通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
The communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
測位装置15は、飛行体10の三次元の位置を測定する。測位装置15は、例えばGPS(Global Positioning System)受信機であり、複数の衛星から受信したGPS信号に基づいて飛行体10の現在位置を測定する。
The positioning device 15 measures the three-dimensional position of the aircraft 10. The positioning device 15 is, for example, a GPS (Global Positioning System) receiver, and measures the current position of the aircraft 10 based on GPS signals received from a plurality of satellites.
撮像装置16は、飛行体10の周囲の画像を撮影する。撮像装置16は、例えばカメラであり、光学系を用いて撮像素子上に像を結ばせることにより、画像を撮影する。撮像装置16は、例えば飛行体10の前方において所定の範囲の画像を撮影する。ただし、撮像装置16の撮影方向は、飛行体10の前方に限定されず、飛行体10の上方、下方、又は後方であってもよい。また、例えば撮像装置16を支持する台座が回転することにより、撮影方向が変更されてもよい。
The imaging device 16 captures an image around the flying object 10. The imaging device 16 is, for example, a camera, and captures an image by forming an image on an imaging element using an optical system. The imaging device 16 captures an image of a predetermined range in front of the aircraft 10, for example. However, the imaging direction of the imaging device 16 is not limited to the front of the aircraft 10, and may be above, below, or behind the aircraft 10. Further, for example, the imaging direction may be changed by rotating a pedestal supporting the imaging device 16.
ビーコン装置17は、所定の周波数のビーコン信号を送信し、また、他の飛行体10から送信されるビーコン信号を受信する。このビーコン信号の到達範囲は例えば100mなどの所定距離である。ビーコン信号には、当該ビーコン信号を送信する飛行体10を識別する飛行体識別情報が含まれている。
The beacon device 17 transmits a beacon signal of a predetermined frequency, and also receives a beacon signal transmitted from another flying object 10. The reach of this beacon signal is a predetermined distance such as 100 m. The beacon signal includes aircraft identification information that identifies the aircraft 10 that transmits the beacon signal.
センサ部19は、飛行体10の部品故障の兆候や、飛行体10における異音、電池のバッテリ残量等の検出値を検出する。飛行体10の部品故障の兆候は、例えば各部品の電圧値、電流値等の動作状態を監視することで把握される。これらの検出値はサーバ装置20に提供される。
The sensor unit 19 detects detected values such as a sign of component failure of the flying object 10, abnormal noise in the flying object 10, and a remaining battery level of a battery. The indication of the component failure of the flying object 10 is grasped by monitoring the operating state such as the voltage value and the current value of each component, for example. These detected values are provided to the server device 20.
上述したプロセッサ11やメモリ12などの各装置は、情報を通信するためのバス18で接続される。バス18は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
The devices such as the processor 11 and the memory 12 described above are connected by a bus 18 for communicating information. The bus 18 may be configured as a single bus or may be configured as different buses among the devices.
図4は、サーバ装置20のハードウェア構成を示す図である。サーバ装置20は、物理的には、プロセッサ21、メモリ22、ストレージ23、通信装置24、バス25などを含むコンピュータ装置として構成されている。プロセッサ21、メモリ22、ストレージ23、通信装置24、及びバス25は、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、及びバス18と同様であるため、その説明を省略する。
FIG. 4 is a diagram showing a hardware configuration of the server device 20. As shown in FIG. The server device 20 is physically configured as a computer device including a processor 21, a memory 22, a storage 23, a communication device 24, a bus 25 and the like. The processor 21, the memory 22, the storage 23, the communication device 24, and the bus 25 are similar to the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 18 described above, and thus the description thereof is omitted.
図5は、サーバ装置20の機能構成の一例を示す図である。サーバ装置20における各機能は、プロセッサ21、メモリ22などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ21が演算を行い、通信装置24による通信や、メモリ22及びストレージ23におけるデータの読み出し及び/又は書き込みを制御することにより実現される。
FIG. 5 is a diagram showing an example of a functional configuration of the server device 20. As shown in FIG. Each function in the server device 20 causes the processor 21 to perform an operation by reading predetermined software (program) on hardware such as the processor 21 and the memory 22, thereby performing communication by the communication device 24, the memory 22, and the storage 23. This is realized by controlling the reading and / or writing of data in
図5において、トラッキング部200は、サーバ装置20の制御下にある飛行体10の飛行体識別情報とその飛行状況を記録する。飛行状況には、飛行体10が飛行している位置と、その位置における日時とが含まれている。トラッキング部200は、飛行体10から通知される位置情報及び日時情報を記録する。また、トラッキング部200は、その位置情報及び日時情報が、予め計画された飛行計画内であるかどうかを判断し、その判断結果を記録する。これにより、飛行体10の飛行の計画と実績との差分が、飛行体10において検出された検出値として特定される。
In FIG. 5, the tracking unit 200 records the flying object identification information of the flying object 10 under control of the server device 20 and the flight status thereof. The flight status includes the position where the flying object 10 is flying and the date and time at that position. The tracking unit 200 records position information and date and time information notified from the aircraft 10. In addition, the tracking unit 200 determines whether the position information and the date and time information are within a previously planned flight plan, and records the determination result. Thereby, the difference between the plan and the result of the flight of the flying object 10 is specified as the detected value detected in the flying object 10.
取得部201は、飛行体10が飛行する候補となる空域における地上(つまり空域直下の地上)の属性、当該空域の属性、当該飛行体10が搬送する搬送物の属性、及び飛行体10のセンサ部19によって検出された検出値を取得する。これらの属性は地上や空域の特徴を示す情報であり、各飛行体10から、又は取得部201が記憶しているデータベースから、取得部201により取得される。このデータベースには、地上の属性として、地上における人口分布と、地上における設備又は自然物の位置、数、密度及び種類とが記憶され、空域の属性として、飛行体10が飛行する候補となる各空域の位置(緯度・経度・高度)及びその空域を飛行する予定の飛行体の数および属性と、各空域における飛行体10の通信環境や各空域の天候等に関する情報が、記憶されている。これらの情報は予め特定されて又は計測されてこのデータベースに記憶される。
The acquisition unit 201 has attributes of the ground (that is, the ground immediately below the airspace) in the airspace that is a candidate for the flight of the aircraft 10, the attributes of the airspace, the attributes of the cargo transported by the aircraft 10, and the sensor of the aircraft 10 The detection value detected by the unit 19 is acquired. These attributes are information indicating features of the ground and airspace, and are acquired by the acquiring unit 201 from each of the flying objects 10 or from a database stored by the acquiring unit 201. In this database, the population distribution on the ground and the position, number, density, and type of equipment or natural objects on the ground are stored as attributes of the ground, and each of the airspaces is a candidate for the flight object 10 to fly as the attribute of airspace. The position (latitude / longitude / altitude) and the number and attributes of flight vehicles scheduled to fly in the airspace, and information on the communication environment of the flight vehicle 10 in each airspace, the weather in each airspace, etc. are stored. These pieces of information are pre-specified or measured and stored in this database.
異常度特定部202は、飛行体10において検出された検出値に応じた異常度を特定する。飛行計画と飛行実績との差分、飛行体10の部品故障の兆候、飛行体10における異音、電池のバッテリ残量等の検出値から、その飛行体10が正常レベルからどの程度乖離しているか(つまりどの程度の異常度か)は所定のアルゴリズムに従い求められるようになっている。異常度は、例えば0が正常レベルで10が最大の異常レベルであり、その値が大きいほど正常レベルから乖離していること(つまり異常であること)を意味している。
The abnormality degree specifying unit 202 specifies the degree of abnormality according to the detection value detected in the aircraft 10. How far is the aircraft 10 from normal levels from differences between the flight plan and the flight results, signs of component failure of the aircraft 10, abnormal noise in the aircraft 10, battery remaining amount of battery etc. The degree of abnormality (that is, the degree of abnormality) can be obtained according to a predetermined algorithm. The degree of abnormality means, for example, that 0 is a normal level and 10 is a maximum abnormal level, and the larger the value is, the more it deviates from the normal level (that is, it is abnormal).
パラメータ特定部203は、異常度特定部202により特定された異常度において、飛行体10が飛行不能となる可能性を示す飛行不能レベルを導出するためのパラメータ(以下、導出パラメータという)を特定する。ここで、導出パラメータとは、例えば飛行体10の製造時期、使用開始時期又は前回メンテナンス時期からの経過期間、或いは、飛行時の天候等を含む。例えば飛行体10における異音に基づいて、異常度が「7」の場合、その飛行体10が実際に飛行不能となるか否かは、飛行体10の製造時期、使用開始時期又は前回メンテナンス時期からの経過期間や飛行時の天候によって異なる。例えば異常度が「7」の場合において、飛行体10の製造時期、使用開始時期又は前回メンテナンス時期からの経過期間が閾値以上の場合は、飛行不能となる可能性はX1%であるが、これらの期間が閾値未満の場合は、飛行不能となる可能性はX2%(X2<X1)である。なお、使用開始時期からの経過期間が小さいとき(いわゆる、バスタブ曲線と呼ばれる故障率曲線における初期故障発生期)は、飛行不能となる可能性を大きくしてもよい。つまり、この期間においては、摩耗や経年劣化による異常ではなく、初期不良による異常である場合が多いので、異常度が同じであったとしても、飛行不能となる確率はこの期間経過後において飛行不能となる可能性よりも高くなる。また、例えば異常度が「7」の場合に、天候が「晴れ、風速1m以下」の場合に、飛行不能となる可能性はY1%であるが、天候が「雨、風速10m以上」の場合に、飛行不能となる可能性はY2%である(Y1<Y2)である。このように、パラメータ特定部203は、各異常度から飛行不能レベル(例えば上記のX1,X2,Y1,Y2%)を導出するための導出パラメータを記憶しておき、異常度特定部202により特定された異常度に対応する導出パラメータを特定する。
The parameter specifying unit 203 specifies a parameter (hereinafter referred to as a derived parameter) for deriving the non-flyable level indicating the possibility that the flying object 10 can not fly in the abnormality degree specified by the abnormality degree specifying unit 202. . Here, the derived parameters include, for example, the production time of the flying object 10, the use start time or an elapsed period from the previous maintenance time, the weather at the time of flight, and the like. For example, based on the abnormal noise in the flying object 10, when the abnormality degree is "7", whether the flying object 10 is actually impossible to fly or not depends on the manufacturing time of the flying object 10, the use start time or the last maintenance time. It depends on the time elapsed from and the weather at the time of flight. For example, in the case where the degree of abnormality is "7", the possibility of being unable to fly is X1% if the time when the aircraft 10 is manufactured, the start time of use, or the elapsed time since the previous maintenance time is more than a threshold. If the duration of is less than the threshold, the probability of becoming unflyable is X2% (X2 <X1). In addition, when the elapsed period from the use start time is short (the so-called initial failure occurrence period in a failure rate curve called a bathtub curve), the possibility of becoming unflyable may be increased. In other words, in this period, it is not abnormal due to wear or aging, but it is often an abnormality due to initial failure, so even if the degree of abnormality is the same, the probability of being unable to fly is not possible after this period It becomes higher than the possibility of becoming. Also, for example, when the degree of abnormality is "7", the possibility of being incapable of flying is Y1% when the weather is "fine, wind speed 1 m or less", but the weather is "rain, wind speed 10 m or more" The possibility of becoming unflyable is Y2% (Y1 <Y2). As described above, the parameter specifying unit 203 stores the derived parameters for deriving the non-flyable level (for example, X1, X2, Y1, Y2% described above) from each abnormality degree, and specifies by the abnormality degree specifying unit 202. The derived parameters corresponding to the identified abnormality degree are identified.
飛行制御部204は、異常度特定部202により特定された異常度及びパラメータ特定部203により特定された導出パラメータに基づいて飛行不能レベルを求め、その飛行不能レベルに応じて飛行体10の動作を制御する。具体的には、飛行制御部204は、異常度と導出パラメータとを用いた所定の演算を行って上記のX1,X2,Y1,Y2%といった飛行不能レベルを算出し、その飛行不能レベルが安全基準を下回る場合に、当該飛行不能レベルが安全基準を下回った要因に応じた動作を行うよう飛行体10を制御する。この安全基準は、飛行体が搬送する搬送物の属性(搬送物属性という)、飛行体が飛行する空域に対応する地上の属性(地上属性という)、又は飛行体が飛行する空域の属性(空域属性という)に応じて変動する。
The flight control unit 204 determines the non-flyable level based on the abnormality degree specified by the abnormality degree specifying unit 202 and the derived parameter specified by the parameter specifying unit 203, and the operation of the aircraft 10 according to the non-flyable level. Control. Specifically, the flight control unit 204 performs a predetermined calculation using the abnormality degree and the derived parameter to calculate the above non-flyable level such as X1, X2, Y1, Y2%, and the non-flyable level is safe. When the level is lower than the standard, the flying object 10 is controlled to perform an action according to the factor of the level of the non-flight being lower than the safety standard. This safety standard is an attribute of a transported object transported by the aircraft (referred to as a transported object attribute), an attribute of the ground corresponding to an airspace where the aircraft flies (grounded attribute), or an attribute of an airspace where the aircraft flies It changes according to the attribute).
地上属性は、例えば飛行体10が飛行する候補となる空域の地上における人口の密度や、地上における設備又は自然物の数、密度又は種類に関する。人口は時間的に変動する場合を含む。設備は例えば建造物(屋根の有無を含む)、道路、田畑、ドローン着陸設備或いは車両などであり、地上の固定されたもののほか、地上を移動するものを含む。設備は時間的に変動する場合を含む。自然物は、山、河川、海、湖沼等を含む。
The ground attributes relate to, for example, the density of the population on the ground of the airspace where the aircraft 10 is a candidate to fly, and the number, density or type of equipment or natural objects on the ground. The population includes cases that change with time. The equipment is, for example, a building (including the presence of a roof), a road, a field, a drone landing equipment, a vehicle, etc., including those fixed on the ground and those moving on the ground. Equipment includes time-dependent cases. Natural products include mountains, rivers, seas, lakes, etc.
空域属性は、例えば空域の高度、空域における飛行体10の通信環境、空域における飛行体10の数又は密度、又は空域が特定の飛行体10に対して時空間的に専有するよう割り当てるものか或いは複数の飛行体10に対して共有するよう割り当てるものかということに関する。
The airspace attribute may, for example, be the altitude of the airspace, the communication environment of the airborne vehicle 10 in the airspace, the number or density of the airborne vehicles 10 in the airspace, or an airspace allocated exclusively for the particular airborne vehicle 10 It relates to whether or not to assign to a plurality of aircrafts 10 to be shared.
搬送物属性は、飛行体10によって搬送される搬送物の特徴を示す情報であって、例えば、その重量、壊れ易さ、重要度を含む。
The transported item attribute is information indicating the features of the transported object transported by the flying object 10, and includes, for example, its weight, fragility, and importance.
図6は安全基準の変動例を説明する図である。搬送物属性として例えば搬送物が壊れ物である場合には、安全基準はTh1であり、壊れ物でない場合には、安全基準はTh2である。ただし、Th1>Th2である。つまり、搬送物が壊れ物である場合には、飛行体10の安全確保がより必要となりやすい。また、地上属性として人口多(例えば人口密度が閾値以上)である場合には、安全基準はTh3であり、人口少(例えば人口密度が閾値未満)である場合には、安全基準はTh4である。ただし、Th3>Th4である。つまり、人口が多いほど、飛行体10の安全確保が必要となりやすい。空域属性として高高度(高度が閾値以上である場合)には、安全基準はTh5であり、低高度(例えば高度が閾値未満)である場合には、安全基準はTh6である。ただし、Th5>Th6である。つまり、飛行体10の高度が高いほど、飛行体10の安全確保が必要となりやすい。
FIG. 6 is a view for explaining a variation example of the safety standard. For example, when the transported item is a broken item, the safety standard is Th1, and when it is not a broken item, the safety standard is Th2. However, it is Th1> Th2. That is, in the case where the transported object is a broken object, it is likely that the safety of the flying object 10 is needed more. Also, the safety standard is Th3 when there are many people on the ground attribute (for example, the population density is above the threshold), and the safety standard is Th4 when the population is low (for example, the population density is less than the threshold) . However, Th3> Th4. That is, as the population is larger, it is likely to be necessary to ensure the safety of the flying object 10. At high altitude (if altitude is above threshold) as airspace attribute, the safety standard is Th5, and at low altitude (e.g. altitude is below threshold), the safety standard is Th6. However, it is Th5> Th6. That is, as the altitude of the flying object 10 is higher, it is likely to be necessary to ensure the safety of the flying object 10.
図7は、飛行不能要因と飛行制御との関係を説明する図である。飛行制御部204による制御は、飛行体10の飛行日時、飛行経路、飛行速度等の指示が含まれる。図7に示すように、安全基準を下回った要因が飛行体の故障に関する要因である場合には、飛行制御部204による制御は、飛行体の高度低下に関する動作の制御を含む。この飛行体の故障に関する要因は、飛行の計画と実績との差分、飛行体10の部品故障の兆候、飛行体10における異音といったものが検出対象となる。安全基準を下回った要因が飛行体の衝突に関する要因である場合には、飛行制御部204による動作の制御は、飛行体の進路変さらに関する動作の制御を含む。飛行体の衝突に関する要因として、他の飛行体の数・属性や通信状態といったものが検出対象となる。安全基準を下回った要因が飛行体の電力不足に関する要因である場合には、飛行制御部204による制御は、飛行体の着陸に関する動作の制御を含む。飛行体の電力不足に関する要因は、飛行体10のバッテリ残量又は天候といったものが検出対象となる。
FIG. 7 is a diagram for explaining the relationship between the non-flying factor and the flight control. The control by the flight control unit 204 includes instructions such as the flight date, flight path, flight speed, etc. of the flying object 10. As shown in FIG. 7, when the factor below the safety standard is a factor related to the failure of the flying object, the control by the flight control unit 204 includes the control of the operation related to the altitude reduction of the flying object. The factors relating to the failure of the flying object include differences in flight plans and results, indications of component failure of the flying object 10, and abnormal noise in the flying object 10. If the factor falling below the safety standard is a factor relating to the collision of the flying object, the control of the operation by the flight control unit 204 includes the control of the operation relating to the turning of the flying object. As factors related to the collision of the flying object, the number, attributes, communication state, etc. of other flying objects are to be detected. When the factor falling below the safety standard is a factor related to the power shortage of the aircraft, the control by the flight control unit 204 includes control of the operation regarding landing of the aircraft. The factors relating to the power shortage of the flying object include the battery remaining amount of the flying object 10 or the weather.
このように、飛行不能レベルが安全基準を下回った要因に応じて飛行体10の制御を異ならせる理由は以下のとおりである。例えば安全基準を下回った要因として飛行体の故障に関する要因があったとしても、飛行体10が飛行を継続できている場合は、電力不足に関する要因と比較すると、飛行不能となる(つまり飛行体10が墜落する)蓋然性は高くない。したがって、このような場合は、飛行体10を着陸させるのではなく、飛行体10の高度を低下させて例えば墜落時の危険性を小さくするとともに、飛行体10の飛行目的を遂行することを優先させる。このように、飛行体10に対する適切な動作制御は、安全基準を下回った要因に応じてそれぞれ異なると考えられる。なお、飛行体の電力不足に関する要因に関しては、安全基準のレベルを複数段階設けておき、そのうち安全度がより高い1つめの安全基準を下回ったときに飛行体10の高度低下に関する動作制御を行い、安全度がより低い2つめの安全基準を下回ったときに飛行体10の着陸に関する動作制御を行う、といったように飛行体10の動作を段階的に制御してもよい。
The reason why the control of the flying object 10 is different depending on the factor that the non-flyable level is lower than the safety standard is as follows. For example, even if there is a factor related to the failure of the flying object as a factor below the safety standard, if the flying object 10 can continue the flight, it becomes impossible to fly compared to the factor related to the power shortage (that is, the flying object 10 Is not likely to fall). Therefore, in such a case, rather than landing the flying object 10, it is preferred to lower the altitude of the flying object 10 to reduce, for example, the risk of crash and to fulfill the flight purpose of the flying object 10 Let In this way, appropriate motion control for the aircraft 10 is considered to be different depending on the factor below the safety standard. In addition, regarding factors related to the power shortage of the aircraft, multiple levels of safety standards are provided, and when the safety level falls below the first safety standard, operation control for the altitude reduction of the aircraft 10 is performed. The motion of the flying object 10 may be controlled stepwise, such as performing motion control relating to the landing of the flying object 10 when the safety level falls below the second lower safety standard.
[動作]
次に本実施形態の動作を説明する。なお、以下の説明において、サーバ装置20を処理の主体として記載する場合には、具体的にはプロセッサ21、メモリ22などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ21が演算を行い、通信装置24による通信や、メモリ22及びストレージ23におけるデータの読み出し及び/又は書き込みを制御することにより、処理が実行されることを意味する。 [Operation]
Next, the operation of this embodiment will be described. In the following description, when theserver device 20 is described as a subject of processing, specifically, the processor 21 is read by reading predetermined software (program) on hardware such as the processor 21 and the memory 22. Means that the process is executed by performing an operation and controlling communication by the communication device 24 and reading and / or writing of data in the memory 22 and the storage 23.
次に本実施形態の動作を説明する。なお、以下の説明において、サーバ装置20を処理の主体として記載する場合には、具体的にはプロセッサ21、メモリ22などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ21が演算を行い、通信装置24による通信や、メモリ22及びストレージ23におけるデータの読み出し及び/又は書き込みを制御することにより、処理が実行されることを意味する。 [Operation]
Next, the operation of this embodiment will be described. In the following description, when the
図8は、サーバ装置20の動作の一例を示すフローチャートである。サーバ装置20において、取得部201は、或る飛行体10について搬送物属性、地上属性、及び空域属性といった各属性を取得するとともに、飛行体が飛行不能となる複数の要因を特定するための検出値(飛行の計画と実績との差分、飛行体10の部品故障の兆候、飛行体10における異音、他飛行体の数・属性、飛行体10のバッテリ残量、天候等)といった各データを取得する(ステップS11)。
FIG. 8 is a flowchart showing an example of the operation of the server device 20. In the server device 20, the acquisition unit 201 acquires various attributes such as an article attribute, a ground attribute, and an airspace attribute for a certain flying object 10, and a detection for identifying a plurality of factors that make the flight object impossible to fly. The data (difference between flight plan and results, indication of parts failure of the flying object 10, abnormal noise in the flying object 10, number and attributes of other flying objects, remaining battery capacity of the flying object 10, weather, etc.) It acquires (step S11).
異常度特定部202は、各要因を特定するための検出値に基づいて飛行体10の異常度を特定する(ステップS12)。
The abnormality degree specifying unit 202 specifies the degree of abnormality of the flying object 10 based on the detection value for specifying each factor (step S12).
パラメータ特定部203は、特定された異常度において飛行不能レベルを導出するための導出パラメータを特定する(ステップS13)。
The parameter specifying unit 203 specifies a derived parameter for deriving the non-flyable level at the identified abnormality degree (step S13).
飛行制御部204は、特定された異常度及び導出パラメータに基づいて飛行不能レベルを求め、その飛行不能レベルと安全基準とを比較する(ステップS14)。ここで、飛行不能レベルと比較される安全基準は、搬送物属性、地上属性、及び空域属性ごとに決められる。例えば搬送物属性として例えば搬送物が壊れ物である場合には、安全基準はTh1であり、壊れ物でない場合には、安全基準はTh2である。また、地上属性として人口多(例えば人口密度が閾値以上)である場合には、安全基準はTh3であり、人口少(例えば人口密度が閾値未満)である場合には、安全基準はTh4である。空域属性として高高度(高度が閾値以上である場合)には、安全基準はTh5であり、低高度(例えば高度が閾値未満)である場合には、安全基準はTh6である。
The flight control unit 204 determines the non-flyable level based on the identified abnormality degree and the derived parameter, and compares the non-flyable level with the safety standard (step S14). Here, the safety standard to be compared with the non-flyable level is determined for each of the transported item attribute, the ground attribute, and the airspace attribute. For example, if the transported item is, for example, a broken item, the safety standard is Th1. If not, the safety standard is Th2. Also, the safety standard is Th3 when there are many people on the ground attribute (for example, the population density is above the threshold), and the safety standard is Th4 when the population is low (for example, the population density is less than the threshold) . At high altitude (if altitude is above threshold) as airspace attribute, the safety standard is Th5, and at low altitude (e.g. altitude is below threshold), the safety standard is Th6.
飛行制御部204は、特定された飛行不能レベルと安全基準とを、上記飛行体10の搬送物属性、地上属性、及び空域属性ごとに比較し、安全基準を下回る飛行不能レベルがある場合には(ステップS14:YES)、図7で説明したごとく、その安全基準を下回った飛行不能レベルに対応する要因について決められた飛行制御を行う(ステップS15)。つまり、安全基準を下回った要因が飛行体の故障に関する要因である場合には、飛行制御部204による制御は、飛行体の高度低下に関する動作の制御を含むことになる。また、安全基準を下回った要因が飛行体の衝突に関する要因である場合には、飛行制御部204による動作の制御は、飛行体の進路変さらに関する動作の制御を含むものとなる。また、安全基準を下回った要因が飛行体の電力不足に関する要因である場合には、飛行制御部204による制御は、飛行体の着陸に関する動作の制御を含むものとなる。
The flight control unit 204 compares the identified non-flyable level with the safety standard for each of the transported object attribute, ground attribute, and airspace attribute of the airframe 10, and if there is a non-flyable level below the safe standard. (Step S14: YES) As described with reference to FIG. 7, the flight control determined for the factor corresponding to the non-flyable level below the safety standard is performed (step S15). That is, when the factor below the safety standard is a factor related to the failure of the aircraft, the control by the flight control unit 204 includes the control of the operation related to the altitude reduction of the aircraft. In addition, when the factor below the safety standard is a factor related to the collision of the flying object, the control of the operation by the flight control unit 204 includes the control of the operation related to the turning of the flying object. In addition, when the factor below the safety standard is a factor related to the power shortage of the aircraft, the control by the flight control unit 204 includes control of the operation regarding the landing of the aircraft.
以上説明した実施形態によれば、飛行体10が飛行不能となる前に安全確保のための動作をより適切に行うことができる。
According to the embodiment described above, it is possible to more appropriately perform the operation for securing safety before the flying object 10 becomes unflyable.
[変形例]
本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。 [Modification]
The present invention is not limited to the embodiments described above. You may deform | transform the embodiment mentioned above as follows. Also, the following two or more modifications may be implemented in combination.
本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。 [Modification]
The present invention is not limited to the embodiments described above. You may deform | transform the embodiment mentioned above as follows. Also, the following two or more modifications may be implemented in combination.
飛行制御部204による制御は、飛行体10の代替機への切り替えに関する動作の制御を含むようにしてもよい。具体的には、飛行制御部204は、飛行中の第1の飛行体10に対して着陸基地に着陸するよう指示するとともに、その基地で待機中の第2の飛行体10に対して、第1の飛行体10の代替として飛行を行うよう指示する。
The control by the flight control unit 204 may include control of operations relating to switching of the aircraft 10 to an alternative aircraft. Specifically, the flight control unit 204 instructs the first flying object 10 in flight to land on the landing base, and for the second flying object 10 waiting at that base, It instructs to fly as a substitute for the first flying object 10.
実施形態では、サーバ装置20が搬送物属性、地上属性、空域属性の全てを用いていたが、少なくともいずれか1の属性を用いればよい。また、飛行体10の位置は、GPSを用いない方法により、飛行体10の位置が測定されてもよい。
In the embodiment, the server device 20 uses all of the transported object attribute, the ground attribute, and the airspace attribute, but at least one of the attributes may be used. Moreover, the position of the flying object 10 may be measured by the method which does not use GPS.
上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
また、サーバ装置20の機能の少なくとも一部が飛行体10に実装されてもよい。同様に、飛行体10の機能の少なくとも一部がサーバ装置20に実装されてもよい。
要するに、本発明に係る情報処理システムにおいて、飛行体において検出された検出値に応じた異常度を特定するステップと、特定された前記異常度において前記飛行体が飛行不能となる可能性を示す飛行不能レベルを導出するための導出パラメータを特定するステップと、特定された前記異常度及び前記導出パラメータに基づく前記飛行不能レベルに応じて、前記飛行体の動作を制御するステップとが実行されればよい。 The block diagram used for the description of the said embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
In addition, at least a part of the functions of theserver device 20 may be implemented on the aircraft 10. Similarly, at least part of the functions of the aircraft 10 may be implemented on the server device 20.
In summary, in the information processing system according to the present invention, a step of specifying an abnormality degree according to a detected value detected in a flight object, and a flight showing a possibility that the aircraft can not fly at the specified abnormality degree. If the steps of identifying the derived parameter for deriving the impotence level and controlling the operation of the aircraft according to the identified abnormality degree and the impromptu level based on the derived parameter are performed. Good.
また、サーバ装置20の機能の少なくとも一部が飛行体10に実装されてもよい。同様に、飛行体10の機能の少なくとも一部がサーバ装置20に実装されてもよい。
要するに、本発明に係る情報処理システムにおいて、飛行体において検出された検出値に応じた異常度を特定するステップと、特定された前記異常度において前記飛行体が飛行不能となる可能性を示す飛行不能レベルを導出するための導出パラメータを特定するステップと、特定された前記異常度及び前記導出パラメータに基づく前記飛行不能レベルに応じて、前記飛行体の動作を制御するステップとが実行されればよい。 The block diagram used for the description of the said embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
In addition, at least a part of the functions of the
In summary, in the information processing system according to the present invention, a step of specifying an abnormality degree according to a detected value detected in a flight object, and a flight showing a possibility that the aircraft can not fly at the specified abnormality degree. If the steps of identifying the derived parameter for deriving the impotence level and controlling the operation of the aircraft according to the identified abnormality degree and the impromptu level based on the derived parameter are performed. Good.
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), The present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
The terms "system" and "network" as used herein are used interchangeably.
本明細書で説明した情報又はパラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
The information or parameters described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information. For example, radio resources may be indexed.
上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
The names used for the parameters described above are in no way limiting. In addition, the formulas etc. that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg PUCCH, PDCCH etc.) and information elements (eg TPC etc.) can be identified by any suitable names, the various names assigned to these various channels and information elements can be Is not limited.
本明細書で使用する「判定(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判定」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining) した事を「判定」「決定」したとみなす事などを含み得る。また、「判定」、「決定」は、受信(receiving) (例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判定」「決定」したとみなす事などを含み得る。また、「判定」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判定」「決定」したとみなす事を含み得る。つまり、「判定」「決定」は、何らかの動作を「判定」「決定」したとみなす事を含み得る。
The terms "determining", "determining" as used herein may encompass a wide variety of operations. For example, “judgment” and “decision” may be judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision” or “decision”. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as "determined" or "determined". In addition, "determination" and "decision" are to be considered as "determination" and "determination" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "determination" "determination" may include considering that some action is "determination" "determination".
本発明は、飛行制御システム1やサーバ装置20において行われる処理のステップを備える飛行制御方法又は情報処理方法として提供されてもよい。また、本発明は、飛行体10又はサーバ装置20において実行されるプログラムとして提供されてもよい。かかるプログラムは、光ディスク等の記録媒体に記録した形態で提供されたり、インターネット等のネットワークを介して、コンピュータにダウンロードさせ、これをインストールして利用可能にするなどの形態で提供されたりすることが可能である。
The present invention may be provided as a flight control method or an information processing method including the steps of processing performed in the flight control system 1 or the server device 20. Also, the present invention may be provided as a program executed on the airframe 10 or the server device 20. Such a program may be provided in the form of being recorded in a recording medium such as an optical disk, or may be provided in the form of being downloaded to a computer via a network such as the Internet and installed and made available. It is possible.
ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
Software, instructions, etc. may be sent and received via a transmission medium. For example, software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。
The terms described herein and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signals. Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell or the like.
本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to an element using the designation "first," "second," etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken there, or that in any way the first element must precede the second element.
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
The “means” in the configuration of each device described above may be replaced with a “unit”, a “circuit”, a “device” or the like.
「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が、本明細書或いは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書或いは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Insofar as "including", "comprising" and variations thereof are used in the present specification or claims, these terms as well as the term "comprising" are inclusive. Intended to be Further, it is intended that the term "or" as used in the present specification or in the claims is not an exclusive OR.
本開示の全体において、例えば、英語でのa、an、及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
Throughout the disclosure, for example, when articles are added by translation, such as a, an, and the in English, these articles are not clearly indicated by the context, unless the article clearly indicates otherwise. It shall contain several things.
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be embodied as modifications and alterations without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
Claims (9)
- 飛行体において検出された検出値に応じた異常度を特定する異常度特定部と、
特定された前記異常度において前記飛行体が飛行不能となる可能性を示す飛行不能レベルを導出するための導出パラメータを特定するパラメータ特定部と、
特定された前記異常度及び前記導出パラメータに基づく前記飛行不能レベルに応じて、前記飛行体の動作を制御する飛行制御部と
を備えることを特徴とする情報処理装置。 An abnormality degree specifying unit which specifies an abnormality degree according to a detected value detected in the flying object;
A parameter specifying unit specifying a derived parameter for deriving a non-flyable level indicating a possibility that the aircraft can not fly at the specified anomaly degree;
An information processing apparatus comprising: a flight control unit configured to control an operation of the flying object in accordance with the specified abnormality degree and the non-flyable level based on the derived parameter. - 前記飛行制御部は、前記飛行不能レベルが、変動する安全基準を下回る場合に、前記飛行体の動作を制御する
ことを特徴とする請求項1記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the flight control unit controls an operation of the flight body when the non-flyable level falls below a fluctuating safety standard. - 前記飛行制御部は、前記飛行体が搬送する搬送物の属性に応じて変動する前記安全基準を用いる
ことを特徴とする請求項2記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the flight control unit uses the safety standard that changes in accordance with an attribute of a transported object transported by the aircraft. - 前記飛行制御部は、前記飛行体が飛行する空域に対応する地上の属性に応じて変動する前記安全基準を用いる
ことを特徴とする請求項2記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the flight control unit uses the safety standard that changes in accordance with an attribute of the ground corresponding to an airspace where the aircraft flies. - 前記飛行制御部は、前記飛行体が飛行する空域の属性に応じて変動する前記安全基準を用いる
ことを特徴とする請求項2記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the flight control unit uses the safety standard that changes in accordance with an attribute of an airspace in which the aircraft flies. - 前記飛行制御部による制御は、前記飛行体の高度低下に関する動作の制御を含む
ことを特徴とする請求項1~5のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 5, wherein the control by the flight control unit includes control of an operation related to a decrease in altitude of the aircraft. - 前記飛行制御部による動作の制御は、前記飛行体の進路変さらに関する動作の制御を含む
ことを特徴とする請求項1~5のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 5, wherein the control of the operation by the flight control unit includes the control of an operation related to a change in course of the flying object. - 前記飛行制御部による制御は、前記飛行体の着陸に関する動作の制御を含む
ことを特徴とする請求項1~5のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 5, wherein the control by the flight control unit includes control of an operation related to landing of the aircraft. - 前記飛行制御部による制御は、前記飛行体の代替機への切り替えに関する動作の制御を含む
ことを特徴とする請求項1~5のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 5, wherein the control by the flight control unit includes control of an operation related to switching to the alternative aircraft of the flight vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019567079A JP7104071B2 (en) | 2018-01-26 | 2019-01-22 | Information processing equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-011501 | 2018-01-26 | ||
JP2018011501 | 2018-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146577A1 true WO2019146577A1 (en) | 2019-08-01 |
Family
ID=67396164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001810 WO2019146577A1 (en) | 2018-01-26 | 2019-01-22 | Information processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7104071B2 (en) |
WO (1) | WO2019146577A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119930A1 (en) * | 2021-12-23 | 2023-06-29 | 株式会社デンソー | Control device for electric vertical takeoff and landing aircraft, and computer program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105539843A (en) * | 2015-12-03 | 2016-05-04 | 杨珊珊 | Electric unmanned plane and cruising ability estimating method thereof |
JP2017501475A (en) * | 2014-09-05 | 2017-01-12 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Flight mode selection based on situation |
JP2017210111A (en) * | 2016-05-25 | 2017-11-30 | ヤマハ発動機株式会社 | Unmanned flying object |
JP2018000015A (en) * | 2016-06-28 | 2018-01-11 | 日本ユニシス株式会社 | Automatic frost protection system using drone |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10289122B2 (en) | 2014-10-27 | 2019-05-14 | Sikorsky Aircraft Corporation | Communication link accessibility aware navigation |
US20160140851A1 (en) | 2014-11-18 | 2016-05-19 | Ziv LEVY | Systems and methods for drone navigation |
-
2019
- 2019-01-22 JP JP2019567079A patent/JP7104071B2/en active Active
- 2019-01-22 WO PCT/JP2019/001810 patent/WO2019146577A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017501475A (en) * | 2014-09-05 | 2017-01-12 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Flight mode selection based on situation |
CN105539843A (en) * | 2015-12-03 | 2016-05-04 | 杨珊珊 | Electric unmanned plane and cruising ability estimating method thereof |
JP2017210111A (en) * | 2016-05-25 | 2017-11-30 | ヤマハ発動機株式会社 | Unmanned flying object |
JP2018000015A (en) * | 2016-06-28 | 2018-01-11 | 日本ユニシス株式会社 | Automatic frost protection system using drone |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023119930A1 (en) * | 2021-12-23 | 2023-06-29 | 株式会社デンソー | Control device for electric vertical takeoff and landing aircraft, and computer program |
JP7533438B2 (en) | 2021-12-23 | 2024-08-14 | 株式会社デンソー | Control device and computer program for electric vertical take-off and landing aircraft |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019146577A1 (en) | 2020-11-26 |
JP7104071B2 (en) | 2022-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10039114B2 (en) | Radio access network for unmanned aerial vehicles | |
US20200251000A1 (en) | Flight plan recommendation based on analysis of airspace voxels | |
US20160019798A1 (en) | System and method for sending in-flight weather alerts | |
JP7194682B2 (en) | flight controller | |
WO2019093198A1 (en) | Flight control device and flight control system | |
JP6769774B2 (en) | Unmanned aerial vehicle | |
JP6857250B2 (en) | Flight control device and flight control system | |
JP2021157624A (en) | Information processing device | |
WO2019146577A1 (en) | Information processing device | |
US20210074168A1 (en) | Flight control system and flight control apparatus | |
CN112731971B (en) | Method and device for controlling unmanned aerial vehicle to land, readable storage medium and electronic equipment | |
JP7050809B2 (en) | Information processing equipment | |
JP2019101451A (en) | Information processing device | |
WO2019146578A1 (en) | Information processing device and information processing method | |
US11218905B2 (en) | Base station device, program, control device and control method | |
JP7478140B2 (en) | Demand forecasting device | |
JP6903535B2 (en) | Information processing device | |
US11924586B2 (en) | Control device, program, system, and method | |
JP7339243B2 (en) | Transmitting device and program | |
EP4271100A1 (en) | Base station device, program, system, and control method | |
JP7090215B1 (en) | Communications system | |
US20230064859A1 (en) | Vehicle tracking | |
WO2024084781A1 (en) | Information processing device | |
WO2019146551A1 (en) | Information processing device | |
JPWO2019012836A1 (en) | Aircraft management system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19744035 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019567079 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19744035 Country of ref document: EP Kind code of ref document: A1 |