WO2019146563A1 - Communication device, communication system, communication method, and program - Google Patents

Communication device, communication system, communication method, and program Download PDF

Info

Publication number
WO2019146563A1
WO2019146563A1 PCT/JP2019/001756 JP2019001756W WO2019146563A1 WO 2019146563 A1 WO2019146563 A1 WO 2019146563A1 JP 2019001756 W JP2019001756 W JP 2019001756W WO 2019146563 A1 WO2019146563 A1 WO 2019146563A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time
base station
transmission
amount
Prior art date
Application number
PCT/JP2019/001756
Other languages
French (fr)
Japanese (ja)
Inventor
譚生 李
健夫 大西
信清 貴宏
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019567068A priority Critical patent/JP6973511B2/en
Publication of WO2019146563A1 publication Critical patent/WO2019146563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2018-010571 (filed on January 25, 2018), the entire contents of the application being incorporated herein by reference. It shall be.
  • the present invention relates to a communication apparatus, a communication system, a communication method, and a program.
  • CA Carrier aggregation
  • LTE Long Term Evolution
  • CA is a technology for realizing high-speed mobile communication as compared to the case of a single CC by simultaneously and simultaneously using a plurality of frequency lines called component carriers (CCs).
  • CCs component carriers
  • the communication performance may not be maximized. This is because the communication device on the Internet side that controls the transport layer independently of the data link layer of the base station can not grasp the situation of the base station.
  • TCP Transmission Control Protocol
  • TCP Transmission Control Protocol
  • TCP Transmission Control Protocol
  • the base station when transmitting data to the terminal, stores data to be transmitted in the transmission buffer of the base station.
  • the transmission buffer of the base station is a storage area of the base station itself.
  • the base station has to stop transmission.
  • the communication apparatus on the Internet side can not complete data transmission to the base station.
  • the wireless resources transmitted from the communication apparatus on the Internet side are wasted. Therefore, if the transmission buffer of the base station becomes empty during data transmission from the communication apparatus on the Internet side, the time required for data transmission becomes large and the throughput which is the end-to-end communication speed becomes small.
  • the bandwidth of the path between the communication apparatus on the transmitting side and the communication apparatus on the receiving side is wide band, and the path is long and RTT (Round Trip Time) is large (referred to as high delay).
  • a technology such as a communication device capable of improving the throughput.
  • the communication device transitions from the first state to the second state.
  • the first state is a state in which the transmission window size is a window size (first window size) which does not exceed the reception window size.
  • the second state is a state in which the transmission window size is a window size (second window size) exceeding the reception window size.
  • the communication device of Patent Document 1 transmits a packet whose size exceeds the reception window size.
  • the transmitting apparatus of Patent Document 1 can improve end-to-end throughput by transmitting data exceeding the transmittable maximum data amount notified from the receiving side.
  • a transmission error detection method and a retransmission control method are defined.
  • a method of detecting an error when transmission failure occurs in a lower layer is defined.
  • a method is defined to control retransmission by preventing completion of upper layer communication until retransmission success.
  • a method is also defined in which a subsequent packet waits until retransmission is completed to control retransmission.
  • the terminal device on the transmitting side transmits data to the terminal device on the receiving side via the base station using the TCP protocol.
  • FIG. 2 is a block diagram showing an example of the protocol configuration of the base station 103 and an example of the protocol configuration of the terminal apparatus.
  • the base station 103 is 3GPP Rel. With a general configuration of 10 or later. Specifically, the base station 103 includes a base station PDCP (Packet Data Convergence Protocol) layer 1031, a base station RLC (Radio Link Control) layer 1032, one or more MAC (Media Access Control) layers, Or two or more physical layers.
  • the base station PDCP layer 1031 is a PDCP layer of the base station 103.
  • the base station RLC layer 1032 is an RLC layer of the base station 103.
  • FIG. 2 in order to clarify the relationship between the base station 103 and the terminal device, the description of the configuration other than the U-Plane protocol of the base station 103 is omitted.
  • FIG. 2 shows two MAC layers (base station MAC layers 1033a and 1033b) of the base station 103, this does not mean that the number of MAC layers of the base station 103 is limited to two.
  • two physical layers (base station physical layers 1034 a and 1034 b) of the base station 103 are shown in FIG. 2, this is not intended to limit the number of physical layers of the base station 103 to two.
  • the MAC layers of the base station 103 will be referred to as a base station MAC layer 1033 if it is not necessary to distinguish them.
  • the physical layers of the base station 103 will be referred to as a base station physical layer 1034 unless it is necessary to distinguish them.
  • the terminal device communication unit 121 which is a communication unit of the terminal device, performs 3GPP Rel. With a general configuration of 10 or later.
  • the terminal device communication unit 121 includes a terminal transport layer 1210, a terminal PDCP layer 1211, a terminal RLC layer 1212, one or more MAC layers, and one or more physical layers.
  • the terminal transport layer 1210 is a transport layer of the terminal device.
  • the terminal PDCP layer 1211 is a PDCP layer of the terminal device.
  • the terminal RLC layer 1212 is an RLC layer of the terminal apparatus.
  • terminal MAC layers 1213 a and 1213 b are shown in FIG. 2, this is not intended to limit the number of MAC layers of the terminal device to two.
  • terminal physical layers 1214 a and 1214 b two physical layers (terminal physical layers 1214 a and 1214 b) of the terminal device are shown, but this does not mean that the number of physical layers of the terminal device is limited to two.
  • the terminal MAC layer 1213 when it is not necessary to distinguish between the MAC layers of the terminal devices, they will be denoted as the terminal MAC layer 1213.
  • the physical layer of the terminal device is described as a terminal physical layer 1214 if it is not necessary to distinguish each other.
  • the base station RLC layer 1032 is connected to at least one base station MAC layer 1033. Also, the RLC layer (terminal RLC layer 1212) of the terminal apparatus is connected to at least one MAC layer (terminal MAC layer 1213).
  • the terminal MAC layer 1213 When the base station MAC layer 1033 completes transmitting data to the terminal MAC layer 1213, the terminal MAC layer 1213 transmits data of transmission completion to the terminal RLC layer 1212. At the same time, the terminal MAC layer 1213 transmits a transmission completion notification to the base station MAC layer 1033. Thereafter, the terminal RLC layer 1212 notifies the base station RLC layer 1032 that the data has been received normally.
  • the terminal MAC layer 1213 can not transmit data to the terminal RLC layer 1212. Therefore, when a transmission error occurs between the base station MAC layer 1033 and the terminal MAC layer 1213, the terminal MAC layer 1213 can not transfer data to the terminal RLC layer and the terminal PDCP layer 1211 above it.
  • the arrival order of data is guaranteed (RLC ACK (Acknowledgement) mode). Therefore, when a packet is retransmitted between the base station RLC layer 1032 and the terminal RLC layer 1212, the subsequent packet is received until the reception of the retransmitted packet is completed even if the subsequent packet normally arrives at the terminal RLC layer 1212. Is not transferred to the terminal PDCP layer 1211. Furthermore, no data is transferred to the terminal transport layer 1210 above the terminal PDCP layer 1211. Therefore, the terminal transport layer 1210 can not transmit a notification (ACK) indicating that data has been received to the TCP transmission apparatus.
  • ACK notification
  • the transmitting device can add new data unless it receives a transmission completion notification (ACK) from the terminal transport layer 1210. Do not send Therefore, when a packet between the base station RLC layer 1032 and the terminal RLC layer 1212 is retransmitted, the subsequent data is not transmitted until the transmitting apparatus receives the ACK packet.
  • ACK transmission completion notification
  • a fault occurs between the terminal transport layer 1210 and the base station RLC layer 1032 of the terminal apparatus on the transmission side. If a fault occurs between the terminal transport layer 1210 of the transmitting terminal and the base station RLC layer 1032, the terminal transport layer 1210 of the transmitting terminal receives an ACK when an RLC retransmission occurs. I can not send new data. As a result, the amount of data stored in the buffer of the base station 103 (hereinafter referred to as the transmission buffer of the base station 103) decreases and is exhausted. In order to avoid this, a method has been proposed in which the base station 103 notifies the terminal device on the transmission side of the buffer status [Patent Document 2] implements a function that can notify the base station of the buffer status.
  • the timing of additional transmission of data is determined using a change in the relationship between the TCP congestion window size in the communication apparatus and the reception window size notified by the terminal by the TCP ACK.
  • the communication apparatus described in Patent Document 1 can not detect that the data in the buffer of the base station has decreased to 0 even when observing changes in the congestion window size and the reception window size.
  • the communication device described in Patent Document 1 can not additionally transmit data, which may cause deterioration in communication speed.
  • a method may be considered in which additional transmission processing of data is performed simply by the increase in communication delay.
  • the communication apparatus can not appropriately set the timing for starting the additional transmission process of data and the amount of data to be additionally transmitted.
  • the amount of data for additional transmission becomes too small, communication speed degradation may occur due to the data in the base station buffer becoming zero. On the other hand, if the amount of data for additional transmission becomes excessive, the amount of data exceeding the wireless transmission capacity may be transmitted, which may cause deterioration of communication quality due to increased packet loss and communication delay.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a communication apparatus, a communication system, a communication method, and a program that contribute to preventing deterioration of communication speed.
  • a communication device transmits data to a terminal apparatus via a base station.
  • the communication device includes a response signal receiving unit that receives a confirmation response from the terminal device. Furthermore, the wireless communication speed between the base station and the terminal apparatus is calculated, and the amount of data staying in the transmission buffer of the base station is calculated as the amount of staying data, and the wireless communication rate, the amount of staying data, and A buffer status estimation unit is provided that predicts the fluctuation of the amount of stagnant data based on the acknowledgment response reception time.
  • the communication device includes a transmission time calculation unit that calculates a time at which new data is transmitted to the terminal device as an additional transmission time based on the fluctuation predicted by the buffer status estimation unit.
  • the communication device includes a new data transmission unit that transmits the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
  • a communication system includes a terminal device, a base station, and a communication device.
  • the terminal device includes a terminal device communication unit connected to a network.
  • the base station includes a transmission buffer that stores data to be transmitted to the terminal device.
  • the communication apparatus transmits data to the terminal apparatus via the base station.
  • the communication device includes a response signal receiving unit that receives a confirmation response from the terminal device.
  • the communication apparatus calculates a wireless communication speed between the base station and the terminal apparatus, calculates an amount of data accumulated in a transmission buffer of the base station as an accumulated data amount, and calculates the wireless communication speed and the wireless communication speed
  • a buffer status estimation unit is provided which predicts the fluctuation of the amount of stagnant data based on the amount of stagnant data and the reception time of the confirmation response.
  • the communication device includes a transmission time calculation unit that calculates a time at which new data is transmitted to the terminal device as an additional transmission time based on the fluctuation predicted by the buffer status estimation unit.
  • the communication device includes a new data transmission unit that transmits the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
  • a communication method includes the step of receiving a confirmation response from a terminal device. Further, the communication method includes the step of calculating a wireless communication speed between the base station and the terminal device. Furthermore, the communication method includes the step of calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data. Furthermore, the communication method includes the step of predicting a change in the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the acknowledgment. Furthermore, the communication method includes the step of calculating, as an additional transmission time, a time at which new data is transmitted to the terminal device based on the fluctuation.
  • the communication method includes the step of transmitting the new data to the terminal device at a predetermined transmission rate, at least when the additional transmission time has passed.
  • the method is tied to a particular machine, a communication device that transmits data to the terminal via the base station.
  • a program is provided.
  • the program is a program that is executed by a computer that controls a communication apparatus that transmits data to a terminal apparatus via a base station.
  • the program causes the computer to execute a process of receiving a confirmation response from the terminal device.
  • the communication method causes the computer to execute a process of calculating a wireless communication speed between the base station and the terminal device.
  • the communication method causes the computer to execute a process of calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data.
  • the program causes the computer to execute a process of predicting a change in the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the confirmation response.
  • the program causes the computer to execute a process of calculating, as an additional transmission time, a time to transmit new data to the terminal device based on the fluctuation.
  • the program causes the computer to execute the process of transmitting the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
  • the program can be recorded on a computer readable storage medium.
  • the storage medium can be non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, an optical recording medium, and the like.
  • the invention can also be embodied as a computer program product.
  • a communication device a communication system, a communication method, and a program that contribute to preventing deterioration of communication speed are provided.
  • FIG. 1 is a diagram illustrating an example of an entire configuration of a wireless communication system according to a first embodiment. It is a block diagram which shows an example of the hardware constitutions of the communication apparatus 11 which concerns on 1st Embodiment. It is a block diagram which shows an example of the hardware constitutions of the terminal device 12 which concerns on 1st Embodiment. It is a block diagram showing an example of composition of communication apparatus 11 concerning a 1st embodiment. 5 is a block diagram showing an example of the configuration of a response signal receiving unit 111.
  • FIG. 1 is a diagram illustrating an example of an entire configuration of a wireless communication system according to a first embodiment. It is a block diagram which shows an example of the hardware constitutions of the communication apparatus 11 which concerns on 1st Embodiment. It is a block diagram which shows an example of the hardware constitutions of the terminal device 12 which concerns on 1st Embodiment. It is a block diagram showing an example of composition of communication apparatus 11 concerning a 1st embodiment.
  • 5 is
  • connection lines between blocks in each block diagram include both bidirectional and unidirectional directions.
  • the unidirectional arrows schematically indicate the flow of main signals (data), and do not exclude bidirectionality.
  • input ports and output ports are respectively present at the input end and the output end of each connection line, although they are not explicitly shown. The same is true for the input / output interface.
  • the communication apparatus 1 shown in FIG. 1 transmits data to a terminal apparatus via a base station.
  • the communication device 1 includes a response signal receiving unit 2, a buffer status estimating unit 3, a transmission time calculating unit 4, and a new data transmitting unit 5.
  • the response signal receiving unit 2 receives a confirmation response from the terminal device.
  • the buffer status estimation unit 3 calculates the wireless communication speed between the base station and the terminal device, calculates the amount of data being transmitted by the base station as the amount of stagnant data, and receives the wireless communication speed, the amount of stagnant data, and the acknowledgment.
  • the fluctuation of the amount of staying data is predicted based on the time of day.
  • the transmission time calculation unit 4 calculates, as an additional transmission time, the time at which new data is transmitted to the terminal apparatus based on the change in the stagnant data of the base station predicted by the buffer status estimation unit 3.
  • the transmission process of additional data is also referred to as an additional transmission process.
  • the new data transmission unit 5 transmits the new data to the terminal apparatus at a predetermined transmission rate on condition that at least the additional transmission time has passed.
  • the communication device 1 determines the timing for transmitting new data after taking into consideration the amount of stagnated data of the base station, with the case that at least the additional transmission time has passed as a necessary condition. Therefore, the communication device 1 contributes to preventing the transmission buffer of the base station from becoming empty. As a result, the communication device 1 contributes to the prevention of impossibility of transmitting new data in the wireless layer. Therefore, the communication device 1 contributes to preventing the deterioration of the communication speed.
  • FIG. 3 is a diagram illustrating an example of the entire configuration of the wireless communication system according to the first embodiment.
  • the wireless communication system includes networks 101-1 to 101-n (n is a natural number, hereinafter the same).
  • the networks 101-1 to 101-n include communication types (wired and wireless) of different end terminals.
  • the networks 101-1 to 101-n are, for example, a LTE public cellular phone network, home Wi-Fi (Wireless Fidelity) (registered trademark, the same applies hereinafter), a LAN (Local Area Network) in a building, and the like.
  • the networks 101-1 and 101-2 are mobile networks.
  • the terminal device 12-1 connects to the network 101-1 via the base station 103-1.
  • the terminal device 12-2 connects to the network 101-2 via the base station 103-2.
  • the terminal devices 12-1 and 12-2 will be denoted as the terminal device 12 if it is not necessary to distinguish them.
  • the base stations 103-1 and 103-2 will be referred to as a base station 103, if it is not necessary to distinguish them.
  • the networks 101-1 to 101-n will be referred to as the network 101 if it is not necessary to distinguish them.
  • the terminal device 12 accesses the server 105 on the Internet 104 via the corresponding network 101 to perform data communication.
  • the communication apparatus 11 of the present invention is not applied only to the terminal apparatus 12 using the LTE network, but also supports terminals using other wireless communication formats.
  • the terminal device 12 may communicate with the communication device 11 via the Wi-Fi relay station.
  • the terminal device 12 will be described by exemplifying the case of using the LTE network. However, this is not the meaning limited to the case where the terminal device 12 according to the present embodiment uses the LTE network.
  • the case where the communication apparatus 11 is installed on the connection between the network 101 and the Internet 104 on the communication path is taken as an example.
  • the installation place of the communication device 11 is not limited to the connection portion of the mobile network and the Internet, and may be a device on another communication path other than the connection portion.
  • the communication device 11 may be installed in the server 105 on the communication path.
  • FIG. 4 is a block diagram showing an example of the hardware configuration of the communication apparatus 11 according to the first embodiment.
  • the communication device 11 includes, for example, the configuration illustrated in FIG.
  • the communication device 11 includes a central processing unit (CPU) 81, a memory 82, an input / output interface 83, and a network interface card (NIC) 84 as communication means, which are mutually connected by an internal bus.
  • CPU central processing unit
  • memory a memory
  • input / output interface a network interface card
  • NIC network interface card
  • the configuration shown in FIG. 4 does not mean that the hardware configuration of the communication apparatus 11 is limited.
  • the communication device 11 may include hardware (not shown), and may not have the input / output interface 83 as necessary. Further, the number of CPUs and the like included in the communication device 11 is not limited to the example illustrated in FIG. 4. For example, the communication device 11 may include a plurality of CPUs.
  • the memory 82 is a random access memory (RAM), a read only memory (ROM), or an auxiliary storage device (such as a hard disk).
  • RAM random access memory
  • ROM read only memory
  • auxiliary storage device such as a hard disk
  • the input / output interface 83 functions as an interface of a display device and an input device (not shown).
  • the display device is, for example, a liquid crystal display or the like.
  • the input device receives user operations such as a keyboard and a mouse, for example.
  • the function of the communication device 11 is realized by various processing modules described later.
  • the processing module is realized, for example, by the CPU 81 executing a program stored in the memory 82. Also, the program can be downloaded via a network or can be updated using a storage medium storing the program. Furthermore, the processing module may be realized by a semiconductor chip. That is, the communication device 11 is configured to include means for performing the function performed by the processing module with some hardware and / or software.
  • the terminal device 12 has, for example, the configuration illustrated in FIG.
  • the terminal device 12 is configured to include an RF (Radio Frequency) circuit 94 including an antenna 95.
  • the RF circuit 94 is a circuit for realizing wireless communication, and exchanges a wireless signal with the base station 103 through the antenna 95.
  • the description of hardware common to the communication device 11 is omitted.
  • the hardware configuration of the base station 103 is apparent to those skilled in the art, and thus the description thereof is omitted.
  • processing configurations (processing modules) of the communication device 11 and the terminal device 12 will be described.
  • FIG. 6 is a block diagram showing a configuration example of a system including the communication device 11, the terminal device 12, and the network 101.
  • the terminal device 12 is configured to include a terminal device communication unit 121.
  • the network 101 is configured to include a base station 103.
  • the communication device 11 is configured to include a response signal receiving unit 111, a buffer status estimation unit 112, a transmission time calculation unit 113, and a new data transmission unit 114.
  • the terminal device communication unit 121 of the terminal device 12 is communicably connected to the base station 103 of the network 101.
  • the network 101 is communicably connected to the response signal receiving unit 111 of the communication device 11.
  • the response signal reception unit 111 is communicably connected to the buffer status estimation unit 112, the transmission time calculation unit 113, and the new data transmission unit 114.
  • the transmission time calculation unit 113 is communicably connected to the buffer status estimation unit 112 and the new data transmission unit 114.
  • the response signal receiving unit 111 receives a response signal from the terminal device 12.
  • the buffer status estimation unit 112 transmits the transmission buffer of the base station 103 based on the wireless communication speed between the base station 103 and the terminal 12, the amount of staying data in the transmission buffer of the base station 103, and the reception time of the acknowledgment. Predict fluctuations in the amount of stagnant data within
  • the transmission time calculation unit 113 calculates the additional transmission time of the new data to the terminal apparatus 12 based on the fluctuation of the amount of staying data in the transmission buffer of the base station 103.
  • the new data transmission unit 114 transmits new data to the terminal apparatus 12 at a predetermined transmission rate when at least the additional transmission time has passed.
  • FIG. 7 is a block diagram showing an example of the configuration of the response signal receiving unit 111 shown in FIG.
  • the response signal receiving unit 111 is configured to include a general configuration of an Open Systems Interconnection (OSI) reference model.
  • the response signal receiving unit 111 includes a communication device application layer 1110, a communication device transport layer 1111, a communication device network layer 1112, a communication device MAC layer 1113 and a communication device physical layer 1114.
  • FIG. 7 relates to the configuration other than the configuration related to the response signal receiving unit 111 in order to clarify the connection relationship between the buffer status estimation unit 112, the transmission time calculation unit 113, and the new data transmission unit 114. The description is omitted.
  • the buffer status estimation unit 112 calculates the buffer status of the base station 103 based on the information (for example, transmission packet, reception packet) obtained from the communication device transport layer 111 of the response signal reception unit 111. Specifically, the buffer status estimation unit 112 calculates a time at which it is estimated that the amount of staying data of the base station 103 becomes less than or equal to a predetermined threshold as a buffer depletion time. After that, the buffer status estimation unit 112 transmits the calculated buffer depletion time to the transmission time calculation unit 113.
  • the buffer status estimation unit 112 transmits the calculated buffer depletion time to the transmission time calculation unit 113.
  • the buffer status estimation unit 112 may connect to another layer (for example, the communication device application layer 1110) of the response signal reception unit 111 without limiting the connection to the communication device transport layer 1111.
  • the communication protocol based on UDP such as QUIC is because the acknowledgment signal is not transmitted to the communication device transport layer 1111 but transmitted to the communication device application layer 1110.
  • the transmission time calculation unit 113 calculates the additional transmission time based on the transmission delay between the own communication apparatus 11 and the terminal apparatus 12, the reception time of the acknowledgment, and the buffer depletion time.
  • the transmission time calculation unit 113 transmits the calculated additional transmission time to the new data transmission unit 114. Further, the transmission time calculation unit 113 calculates a transmission rate of additional transmission (hereinafter, referred to as an additional transmission rate).
  • the new data transmission unit 114 transmits the data to the terminal device 12 via the base station 103 based on the additional transmission time received from the transmission time calculation unit 113 and the additional transmission rate received from the transmission time calculation unit 113. Send.
  • FIG. 8 is a flowchart showing an example of the operation of the communication apparatus 11 according to the first embodiment.
  • the terminal device 12 starts data communication with the communication device 11.
  • the communication protocol between the communication device 11 and the terminal device 12 according to the present embodiment is a protocol having a response confirmation function.
  • the communication protocol between the communication apparatus 11 and the terminal apparatus 12 according to the present embodiment may be TCP or the like that transmits a confirmation response in the communication apparatus transport layer 1111.
  • the communication protocol between the communication apparatus 11 and the terminal apparatus 12 according to the present embodiment is not limited to the protocol for transmitting the acknowledgment in the communication apparatus transport layer 1111, but corresponds to the protocol for transmitting the acknowledgment in other layers. You may
  • the buffer status estimation unit 112 acquires the round trip delay, the in-flight data amount, the TCP throughput, and the like from the response signal reception unit 111 as communication information (step S11).
  • the amount of in-flight data means the amount of unconfirmed data successfully transmitted and successfully received in TCP.
  • the TCP throughput means the throughput in the latest predetermined time in TCP.
  • the buffer status estimation unit 112 may use, as the TCP throughput, a value obtained by dividing the total number of bits of the packet that has been completely received by the predetermined time within the latest predetermined time. Alternatively, the buffer status estimation unit 112 may calculate TCP throughput per unit time, and use the calculated average value of TCP throughput per unit time. Alternatively, the buffer status estimation unit 112 may calculate TCP throughput per unit time, and use the calculated moving average value of TCP throughput per unit time.
  • the buffer status estimation unit 112 calculates the amount of staying data of the base station 103 and the buffer exhaustion time (step S12). Specifically, the buffer status estimation unit 112 uses the acquired communication information to calculate the amount of staying data of the base station 103 and the buffer exhaustion time. Then, the buffer status estimation unit 112 transmits the calculated buffer depletion time to the transmission time calculation unit 113.
  • the buffer status estimation unit 112 may calculate the amount of staying data of the base station 103 based on the amount of transmission data transmitted by the own communication device 11 and the amount of reception data received by the terminal device 12.
  • the terminal device 12 may notify the communication device 11 of the upper limit value of the data amount that the terminal device 12 can receive.
  • the buffer status estimation unit 112 may use the value described in the TCP header as the upper limit value of the amount of data that the terminal device 12 can receive.
  • the buffer status estimation unit 112 may calculate the amount of staying data based on the upper limit value of the reception window size of the terminal device 12.
  • the buffer status estimation unit 112 may calculate the staying data amount of the base station 103 based on the upper limit value of the staying data amount of the transmission buffer of the base station 103.
  • the buffer status estimation unit 112 calculates the time T seconds after the reference time as the buffer depletion time.
  • the reference time may be, for example, the time at which the buffer status estimation unit 112 calculates the buffer exhaustion time. Further, the reference time may be, for example, the latest time at which the communication device 11 transmitted data.
  • the buffer status estimation unit 112 may calculate the buffer exhaustion time by dividing the amount of staying data in the transmission buffer of the base station 103 and the wireless communication speed.
  • the buffer status estimation unit 112 calculates the amount of stagnant data or the wireless communication speed in the transmission buffer of the base station 103 based on the communication information acquired by the terminal device 12 on the transmitting side or the communication information acquired by the communication device 11. May be
  • the buffer status estimation unit 112 may use the TCP throughput within the latest predetermined time as an approximation of the wireless communication speed.
  • the buffer status estimation unit 112 may calculate, as an approximate value of the wireless communication speed, a value calculated taking into consideration the status of carrier aggregation based on the TCP throughput within the latest predetermined time.
  • the buffer status estimation unit 112 calculates, for the terminal apparatus 12 to which the carrier aggregation technique is applied, the TCP throughput of the latest predetermined time and the number of component carriers used by the terminal apparatus 12.
  • the buffer status estimation unit 112 calculates an approximate value of the wireless communication speed.
  • the buffer status estimation unit 112 may calculate the approximate value of the wireless communication speed using TCP throughput * f (N_CC).
  • f (N_CC) is a TCP throughput corresponding to the number of component carriers used by the terminal device 12.
  • the buffer status estimation unit 112 uses the carrier aggregation technology to estimate the number of component carriers used by the terminal device 12. In that case, as the number of component carriers increases, the frequency of occurrence of wireless communication speed deterioration increases. Therefore, the buffer status estimation unit 112 estimates the number of component carriers based on the frequency (the number of occurrences within a predetermined time) when the arrival interval of acknowledgments (for example, ACK signals) exceeds a certain threshold using this characteristic. May be
  • the transmission time calculation unit 113 calculates an additional transmission time (step S13). Specifically, the transmission time calculation unit 113 takes into consideration the time until the data transmitted by the new data transmission unit 114 arrives at the transmission buffer of the base station 103 from the response signal reception unit 111 (that is, the transmission delay). , Calculate additional sending time. This is to prevent the buffer of the base station 103 from becoming empty.
  • the transmission time calculation unit 113 calculates half of the round trip delay (RTT / 2) as the transmission delay based on the round trip delay (RTT) between the communication apparatus 11 and the terminal apparatus 12.
  • the transmission time calculation unit 113 may use, for the round trip delay, the smallest RTT in the current TCP session or a plurality of TCP sessions for the same terminal 12 or the smallest RTT in the latest time. As a result, the transmission time calculation unit 113 can use the effective minimum delay excluding the queuing delay of the base station 103.
  • the transmission time calculation unit 113 may calculate the transmission delay based on the time stamp described in the packet. For example, as shown in FIG. 9, the time at which the communication device 11 transmits a packet is Ta, and the time at which the communication device 11 receives a packet is Tb. In that case, RTT is Tb-Ta. However, in the terminal device 12, processing time is required to process the received packet. Therefore, the transmission time calculation unit 113 removes the processing time (Ty-Tx) of the terminal device 12 when calculating the effective one-way delay.
  • the transmission time calculation unit 113 uses ((Tb-Ta)-(Ty-Tx)) to transmit transmission data as a response signal
  • the time until arrival at the transmission buffer of the base station 103 from the unit 111 is calculated.
  • the terminal device 12 may describe the time Tx and the time Ty in the packet by using the option field of the header of TCP.
  • step S14 the transmission time calculation unit 113 determines whether the additional transmission time is exceeded and whether the response signal reception unit 111 has not received a new ACK.
  • step S14 If the additional transmission time is exceeded, and if the response signal receiving unit 111 has not received a new ACK during the measurement period (Yes in step S14), the transmission time calculation unit 113 performs an additional transmission process. Run. Then, the process proceeds to step S15.
  • the transmission time calculation unit 113 may start a timer. Then, the transmission time calculation unit 113 may measure an elapsed time since the start of activation of the timer.
  • step S14 when the response signal receiving unit 111 receives a new ACK before the additional transmission time is exceeded (No in step S14), the process returns to step S12 and continues the process.
  • the terminal device communication unit 121 estimates that the base station RLC layer 1032 is performing retransmission.
  • the terminal device communication unit 121 can not receive the TCP ACK.
  • the buffer status estimation unit 112 estimates that the amount of staying data in the transmission buffer of the base station 103 is decreasing successively. Therefore, the transmission time calculation unit 113 determines whether or not additional transmission is necessary.
  • the buffer status estimation unit 112 may estimate the amount of stagnated data in the transmission buffer of the base station 103 using acknowledgments of other protocols instead of TCP ACK.
  • the buffer status estimation unit 112 may estimate the amount of stagnant data in the transmission buffer of the base station 103 using a response signal of Quick UDP Internet Connections (QUIC) and Message Queue Telemetry Transport (MQTT).
  • the response signal is not limited to being transmitted to the terminal transport layer 1210, but may be transmitted to another layer (for example, an application layer).
  • the terminal device 12 according to the present embodiment is limited to the case of transmitting a response signal using TCP of the terminal transport layer 1210.
  • the transmission time calculation unit 113 measures an elapsed time after the response signal reception unit 111 receives the latest ACK. In addition, when a plurality of TCP sessions for the same terminal apparatus 12 simultaneously communicate with the communication apparatus transport layer 1111, the transmission time calculation unit 113 determines an elapsed time from the time when the latest ACK is received among the plurality of TCP sessions. Measure In addition, the transmission time calculation unit 113 may measure an elapsed time after the response signal reception unit 111 transmits the latest packet.
  • step S15 the transmission time calculation unit 113 calculates a transmission rate.
  • the wireless communication speed within the latest predetermined time may be calculated as the transmission rate.
  • the transmission time calculation unit 113 may estimate the transmission rate using other communication characteristics.
  • the transmission time calculation unit 113 may calculate the transmission rate by approximating the TCP throughput in the latest predetermined time or the TCP transmission rate in the latest predetermined time. Also, the transmission time calculation unit 113 may calculate the transmission rate using the maximum TCP throughput in the TCP session or the maximum TCP throughput in the most recent predetermined time.
  • the transmission time calculation unit 113 calculates the transmission rate using the maximum value of the TCP throughputs of a plurality of TCP sessions or the sum of the TCP throughputs of a plurality of TCP sessions within the most recent predetermined time. It is also good.
  • the communication apparatus 11 may transmit at a higher transmission rate to the terminal apparatus 12 to which the carrier aggregation technology is applied.
  • the transmission time calculation unit 113 calculates the transmission rate using, for example, the same calculation as that when the buffer status estimation unit 112 approximates the wireless communication speed. Thereafter, the transmission time calculation unit 113 transmits the calculated transmission rate to the new data transmission unit 114.
  • step S16 the new data transmission unit 114 transmits new data.
  • TCP there is a mechanism for suppressing the amount of unconfirmed data to a predetermined value even if the amount of data is successfully transmitted, for congestion control.
  • control is performed so that the amount of in-flight data does not exceed the congestion window (cwnd) size.
  • control is performed so as not to exceed the reception window (rwnd) size included in the header of the ACK packet returned from the reception side.
  • the communication apparatus 11 may have a congestion window (cwnd) size, or a reception window (rwnd) size included in the header of an ACK packet, or an upper limit value of a buffer of the communication apparatus transport layer 1111 or a base Data exceeding at least one value of the upper limit value of the transmission buffer of the station 103 can be transmitted. Therefore, when transmitting new data, the new data transmission unit 114 ignores the congestion window (cwnd) size, the reception window (rwnd) size included in the header of the ACK packet, or the buffer size of the transmission buffer. It can send data.
  • cwnd congestion window
  • rwnd reception window
  • the communication apparatus 11 is estimated based on the wireless communication characteristic of the base station 103 that the amount of staying data in the transmission buffer of the base station 103 becomes equal to or less than a predetermined threshold. Predict time (ie, buffer exhaustion time). Thereafter, the communication apparatus 11 transmits new data to the base station 103 via the new data transmission unit 114 before the amount of staying data in the transmission buffer of the base station 103 becomes equal to or less than a predetermined threshold (for example, becomes zero). Send additional. Thereby, the communication apparatus 11 according to the present embodiment can maintain the amount of staying data in the transmission buffer of the base station 103 as the amount of data larger than a predetermined threshold (for example, larger than zero). Thus, the communication device 11 contributes to the prevention of impossibility of transmitting new data in the wireless layer. As a result, the communication device 11 can prevent the deterioration of the communication performance.
  • FIG. 10 is a diagram showing an example of the configuration of the communication device 21 according to the second embodiment.
  • the base station information acquisition unit 215 acquires information on the base station 103 (hereinafter referred to as base station information) from the base station 103. For example, the base station information acquisition unit 215 sets the upper limit value of the transmission buffer of the base station 103 (hereinafter also referred to as the upper limit value of the buffer size) and the amount of data staying in the transmission buffer of the base station 103 as base station information. It may be acquired as Also, for example, the base station information acquisition unit 215 acquires base station information with the wireless communication speed of the base station 103 and the terminal device 12 and the number of communication radio waves between the base station 103 and the terminal device 12 (carrier aggregation status). May be Then, the base station information acquisition unit 215 transmits the acquired base station information to the buffer status estimation unit 212.
  • base station information acquires information on the base station 103 (hereinafter referred to as base station information) from the base station 103. For example, the base station information acquisition unit 215 sets the upper limit value of the transmission buffer of the base station
  • the response signal receiving unit 211 has the same configuration as the response signal receiving unit 111 according to the first embodiment, and thus the description thereof will be omitted.
  • the transmission time calculation unit 213 has the same configuration as the transmission time calculation unit 113 according to the first embodiment, and thus the description thereof will be omitted.
  • the new data transmission unit 214 has the same configuration as the new data transmission unit 114 according to the first embodiment, and thus the description thereof will be omitted.
  • FIG. 11 is a flowchart showing an example of the operation of the communication apparatus 21 according to the second embodiment.
  • the base station information acquisition unit 215 acquires base station information from the base station 103 (step S21). For example, from the base station 103, the base station information acquisition unit 215 sets the upper limit value of the transmission buffer (the upper limit value of the buffer size), the amount of data staying in the transmission buffer, the wireless communication speed with the terminal device 12, At least one piece of information is acquired among the number of communication radio waves (carrier aggregation status). Then, the base station information acquisition unit 215 transmits the acquired information from the base station 103 to the buffer status estimation unit 212.
  • the base station information acquisition unit 215 transmits the acquired information from the base station 103 to the buffer status estimation unit 212.
  • the buffer status estimation unit 212 acquires the round trip delay, the in-flight data amount, and the TCP throughput as communication information from the response signal reception unit 211 (step S22).
  • the buffer status estimation unit 212 calculates the amount of staying data of the base station 103 and the buffer exhaustion time (step S23). Specifically, the buffer status estimation unit 212 uses the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215, and uses the amount of stagnated data in the base station 103, and Calculate buffer exhaustion time.
  • the buffer status estimation unit 212 combines the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215 to determine the amount of staying data of the base station 103 and the buffer exhaustion time. You may calculate Alternatively, the buffer status estimation unit 212 uses one of the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215 to hold the base station 103. The amount of data and buffer exhaustion time may be calculated.
  • the buffer status estimation unit 212 can calculate the buffer exhaustion time by dividing the amount of staying data and the wireless communication speed. Specifically, the buffer status estimation unit 212 estimates the amount of stagnated data in the transmission buffer of the base station 103 and the wireless communication speed. Then, assuming that data is transmitted at the estimated wireless communication speed, the buffer status estimation unit 212 calculates the buffer depletion time by calculating the time when transmission of the estimated amount of stagnant data is finished.
  • the buffer status estimation unit 212 uses the base station information acquired from the base station information acquisition unit 215 to calculate the amount of stagnant data in the transmission buffer of the base station 103 and the wireless communication speed. For example, the buffer status estimation unit 212 uses at least one of the amount of staying data in the transmission buffer of the base station 103 acquired from the base station information acquisition unit 215 and the upper limit value of the transmission buffer of the base station 103 The amount of staying data in the transmission buffer of the base station 103 is calculated.
  • the buffer status estimation unit 212 may use the wireless communication speed between the base station 103 and the terminal device 12 acquired from the base station information acquisition unit 215 or the maximum wireless communication speed within a predetermined time.
  • the buffer status estimation unit 212 calculates that the amount of staying data in the transmission buffer of the base station 103 becomes less than or equal to a predetermined threshold (for example, becomes zero) after time T seconds from the reference time. In that case, the buffer status estimation unit 212 calculates the time after T seconds has elapsed since the reference time as the buffer depletion time. Then, the buffer status estimation unit 212 transmits the calculated buffer depletion time to the transmission time calculation unit 213.
  • a predetermined threshold for example, becomes zero
  • the transmission time calculation unit 213 calculates the additional transmission time (step S24). Specifically, the transmission time calculation unit 213 takes into consideration the time until the additionally transmitted data arrives from the response signal reception unit 211 to the transmission buffer of the base station 103 (that is, the transmission delay), and determines the additional transmission time. calculate.
  • the transmission time calculation unit 213 may use the information notified from the base station 103 to calculate the additional transmission time. For example, the transmission time calculation unit 213 uses the round trip delay between the base station 103 and the terminal 12 or the one-way delay, or the additional transmission time using the time stamp described in the information notified from the base station 103. It may be calculated.
  • the transmission time calculation unit 213 measures an elapsed time from when the response signal reception unit 211 receives the latest ACK. Further, in the communication apparatus transport layer 1111, when a plurality of TCP sessions for the same terminal apparatus 12 simultaneously communicate, the transmission time calculation unit 213 is an elapsed time from the time when the latest ACK was received among the plurality of TCP sessions. Measure Further, the transmission time calculation unit 213 may measure an elapsed time from the time when the response signal reception unit 211 transmitted the latest packet.
  • step S25 the transmission time calculation unit 213 determines whether the response signal reception unit 211 has not received a new ACK during the measurement period, in which the additional transmission time is exceeded.
  • step S25 If the additional transmission time is exceeded and the response signal reception unit 211 has not received a new ACK during the measurement period (Yes in step S25), the transmission time calculation unit 213 performs the additional transmission process. Run. Then, the process proceeds to step S26.
  • the transmission time calculation unit 213 may start a timer and measure an elapsed time after starting the timer.
  • step S25 if the response signal receiving unit 211 receives a new ACK during timer activation (No branch of step S25) until the additional transmission time is exceeded, the process proceeds to step S23 and the process is continued.
  • step S26 the transmission time calculation unit 213 calculates a transmission rate.
  • the transmission time calculation unit 213 calculates, for example, the wireless communication speed within the latest predetermined time as a transmission rate. Also, the transmission time calculation unit 213 may calculate the transmission rate by combining the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215. Also, the transmission time calculation unit 213 calculates the transmission rate using one of the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215. May be
  • the transmission time calculation unit 213 uses the wireless communication speed between the base station 103 and the terminal apparatus 12 or the maximum wireless communication speed within a predetermined time period acquired from the base station information acquisition unit 215 to transmit the transmission rate. It may be calculated.
  • the transmission time calculation unit 213 may calculate the wireless communication speed using the same method as in the first embodiment. In that case, the transmission time calculation unit 213 may use the base station information acquired from the base station information acquisition unit 215 to calculate the wireless communication speed.
  • the base station information acquisition unit 215 acquires the number of communication radio waves (carrier aggregation status) between the base station 103 and the terminal device 12. Then, the transmission time calculation unit 213 calculates the wireless communication speed based on the most recent TCP throughput for a predetermined time and the number of component carriers used by the terminal device 12. Thereafter, the transmission time calculation unit 213 transmits the calculated transmission rate to the new data transmission unit 214.
  • the new data transmission unit 214 transmits the new data (step S27).
  • the new data transmission unit 214 operates in the same manner as the new data transmission unit 114 according to the first embodiment. That is, when transmitting new data, the new data transmission unit 214 can transmit data ignoring the transmission amount, transmission time, or communication rate restriction defined by the communication protocol.
  • the response signal receiving unit 211 may receive the wireless communication speed between the base station 103 and the terminal device 12 from the terminal device 12.
  • the communication device 21 according to the present embodiment contributes to the prevention of deterioration in communication performance as compared with the communication device 11 according to the first embodiment.
  • the reason is that the communication apparatus 21 according to the second embodiment predicts the buffer exhaustion time based on the base station information acquired from the base station 103.
  • the communication apparatus 21 according to the present embodiment obtains the base station information directly from the base station 103 and calculates the transmission rate, thereby calculating the difference between the wireless communication speed acquired from the base station 103 and the calculated transmission rate. Can be reduced. Therefore, the communication apparatus 21 according to the present embodiment can avoid transmitting data using an under or over transmission rate.
  • the communication device 21 according to the present embodiment contributes to preventing the performance deterioration of the communication network.
  • the communication device 21 according to the present embodiment contributes to avoiding transmission of an amount of data exceeding the capability of the transmission buffer of the base station 103.
  • the buffer status estimation unit calculates a time at which the stagnant data is estimated to be equal to or less than a predetermined threshold as a buffer depletion time, and the transmission time calculation unit transmits between the own communication device and the terminal device
  • the communication apparatus according to Mode 1 calculates the additional transmission time based on the delay, the reception time, and the buffer depletion time.
  • the buffer status estimation unit further calculates the amount of staying data by further using the amount of transmission data transmitted by the own communication device and the amount of reception data received by the terminal device acquired from the confirmation response signal.
  • the communication device according to aspect 1 or 2.
  • the buffer status estimation unit is based on at least one of the upper limit value of the reception window size of the terminal apparatus and the upper limit value of the stagnated data amount of the transmission buffer of the base station.
  • the communication device according to any one of aspects 1 to 3, preferably for calculating an amount.
  • Mode 5 The communication apparatus according to any one of modes 1 to 4, wherein the buffer status estimation unit calculates the wireless communication speed based on the amount of transmission data transmitted by the own communication apparatus.
  • Mode 6 The communication apparatus according to any one of modes 1 to 5, further comprising: a base station information acquisition unit that acquires the wireless communication speed from the base station.
  • the transmission time calculation unit determines that at least one of an elapsed time from the reception time of the latest response signal and an elapsed time from the latest data transmission time reaches a threshold set in advance.
  • the communication apparatus according to any one of modes 1 to 6, preferably determining time as the additional transmission time.
  • Mode 8 The communication apparatus according to any one of modes 1 to 7, wherein the transmission time calculation unit calculates a transmission rate based on the wireless communication speed.
  • the buffer status estimation unit calculates a time at which the stagnant data is estimated to be less than or equal to a predetermined threshold as a buffer depletion time, and the transmission time calculation unit transmits between the own communication device and the terminal device Preferably, the communication system according to mode 9, wherein the additional transmission time is calculated based on the delay, the reception time, and the buffer depletion time.
  • the method further includes the step of calculating the time when the stagnant data is estimated to be equal to or less than a predetermined threshold as the buffer depletion time, and in the step of calculating the additional transmission time, transmission between the own communication device and the terminal device Preferably, the communication method according to Aspect 11, wherein the additional transmission time is calculated based on the delay, the reception time, and the buffer depletion time.
  • Mode 14 The process of calculating the additional transmission time by causing the computer to further execute the process of calculating the buffer depletion time as the time when the stagnant data is estimated to be equal to or less than a predetermined threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The present invention contributes to the prevention of degradation of a communication speed. A communication device for transmitting data to a terminal device via a base station. The communication device is provided with: a response signal receiving unit for receiving a confirmation response from the terminal device; a buffer state estimation unit for calculating a wireless communication speed between the base station and the terminal device, calculating the amount of data retained in a transmission buffer of the base station as the retained amount of data, and predicting a change of the retained amount of data on the basis of the wireless communication speed, the retained amount of data and the received time of the confirmation response; a transmission time calculation unit for calculating a time at which new data is transmitted to the terminal device as an additional transmission time on the basis of the change predicted by the buffer state estimation unit; and a new data transmission unit for executing transmission of new data to the terminal device at a prescribed transmission rate on condition that at least the additional transmission time has elapsed.

Description

通信装置、通信システム、通信方法及びプログラムCommunication apparatus, communication system, communication method and program
 本発明は、日本国特許出願:特願2018-010571号(2018年1月25日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、通信装置、通信システム、通信方法及びプログラムに関する。
The present invention is based on the priority claim of Japanese Patent Application: Japanese Patent Application No. 2018-010571 (filed on January 25, 2018), the entire contents of the application being incorporated herein by reference. It shall be.
The present invention relates to a communication apparatus, a communication system, a communication method, and a program.
 近年、スマートフォン等の普及により、モバイル網のトラフィックが増大している。トラフィック増加に対応する技術の一つとして、LTE(Long Term Evolution)-Advancedから導入されたキャリアアグリゲーション(Carrier Aggregation、CA)が挙げられる。CAとはコンポーネントキャリア(Component Carrier、CC)と呼ばれる周波数回線を複数かつ同時に使用することで、単一CCの場合と比較して、モバイル通信の高速化を実現する技術である。 In recent years, traffic of mobile networks has increased due to the spread of smartphones and the like. Carrier aggregation (CA) introduced from Long Term Evolution (LTE) -Advanced is one of the techniques to cope with traffic increase. CA is a technology for realizing high-speed mobile communication as compared to the case of a single CC by simultaneously and simultaneously using a plurality of frequency lines called component carriers (CCs).
 しかし、CA技術を適用した通信において、その通信性能を最大限まで引き出せていないことがある。これは、基地局のデータリンク層とは独立にトランスポート層の制御を行う、インターネット側の通信装置が、基地局の状況を把握できないことに起因する。 However, in communication using CA technology, the communication performance may not be maximized. This is because the communication device on the Internet side that controls the transport layer independently of the data link layer of the base station can not grasp the situation of the base station.
 インターネット等において標準的に用いられる、トランスポート層の通信プロトコルとして、例えば、TCP(Transmission Control Protocol)が知られている。TCPに代表される、一般的なトランスポート層のプロトコルにおいては、基地局と端末の再送有無など基地局の通信状況を把握できない。そのため、基地局の通信制御とインターネットの上位層の通信制御間における不整合が発生し、所定の通信性能を達成できない場合がある。 For example, TCP (Transmission Control Protocol) is known as a transport layer communication protocol that is standardly used in the Internet and the like. In a general transport layer protocol represented by TCP, it is not possible to grasp the communication status of the base station such as whether or not the base station and the terminal are retransmitted. Therefore, there may be a mismatch between the communication control of the base station and the communication control of the upper layer of the Internet, and a predetermined communication performance may not be achieved.
 例えば、基地局は端末にデータを送信する場合、基地局の送信バッファに、送信予定のデータを保存する。ここで、基地局の送信バッファとは、基地局自身の記憶領域である。基地局の送信バッファが一時的に空になると、基地局は送信を停止せざるを得ない。しかし、基地局の送信バッファが一時的に空になる状況を把握できない。そのため、インターネット側の通信装置は、基地局へのデータ送信を完了できない。その結果、インターネット側の通信装置から送信される無線資源が無駄になる。そのためインターネット側の通信装置からのデータ送信中に、基地局の送信バッファが空になる場合には、データ送信に要する時間は大きくなり、エンドツーエンドの通信速度であるスループットは小さくなる。 For example, when transmitting data to the terminal, the base station stores data to be transmitted in the transmission buffer of the base station. Here, the transmission buffer of the base station is a storage area of the base station itself. When the transmission buffer of the base station becomes temporarily empty, the base station has to stop transmission. However, it is not possible to grasp the situation where the transmission buffer of the base station is temporarily empty. Therefore, the communication apparatus on the Internet side can not complete data transmission to the base station. As a result, the wireless resources transmitted from the communication apparatus on the Internet side are wasted. Therefore, if the transmission buffer of the base station becomes empty during data transmission from the communication apparatus on the Internet side, the time required for data transmission becomes large and the throughput which is the end-to-end communication speed becomes small.
 このような問題に対し、エンドツーエンドのスループットを向上させるトランスポート層を制御する技術が存在する。 To address such problems, there are techniques for controlling the transport layer that improve end-to-end throughput.
 例えば、特許文献1には、送信側の通信装置と、受信側の通信装置間の経路の帯域が広帯域であり、且つ、上記経路が長く、RTT(Round Trip Time)が大きい(高遅延と呼ぶ)場合、スループットを向上できる通信装置等の技術が開示されている。具体的には、特許文献1の通信装置は、広帯域及び高遅延環境であると判定された場合に、第1の状態から、第2の状態へと遷移する。ここで、第1の状態とは、送信ウィンドウサイズが、受信ウィンドウサイズを超えないウィンドウサイズ(第1のウィンドウサイズ)である状態である。また、第2の状態とは、送信ウィンドウサイズが、受信ウィンドウサイズを超えるウィンドウサイズ(第2のウィンドウサイズ)である状態である。次に、特許文献1の通信装置は、第2の状態に遷移した場合、受信ウィンドウサイズを超えたサイズのパケットを送信する。その結果、特許文献1の送信装置は、受信側から通知された送信可能な最大データ量を超えたデータを送信することで、エンドツーエンドのスループットを向上できる。 For example, in Patent Document 1, the bandwidth of the path between the communication apparatus on the transmitting side and the communication apparatus on the receiving side is wide band, and the path is long and RTT (Round Trip Time) is large (referred to as high delay). ), There is disclosed a technology such as a communication device capable of improving the throughput. Specifically, when it is determined that the communication device of Patent Document 1 is in a broadband and high delay environment, the communication device transitions from the first state to the second state. Here, the first state is a state in which the transmission window size is a window size (first window size) which does not exceed the reception window size. The second state is a state in which the transmission window size is a window size (second window size) exceeding the reception window size. Next, when transitioning to the second state, the communication device of Patent Document 1 transmits a packet whose size exceeds the reception window size. As a result, the transmitting apparatus of Patent Document 1 can improve end-to-end throughput by transmitting data exceeding the transmittable maximum data amount notified from the receiving side.
特開2012-095190号公報JP, 2012-095190, A 国際公開第2016/023935号International Publication No. 2016/023935
 なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者らによってなされたものである。 Each disclosure of the above prior art documents is incorporated herein by reference. The following analysis is done by the present inventors.
 上述の特許文献に開示された技術では、広帯域かつ高遅延環境であると判断された場合には、データを追加送信する。それにより、通信経路上の装置において送信バッファが空になることを防止する。しかし、当該技術では、基地局の送信バッファが空になる課題を解決しきれない。なぜならば、当該技術では、適切なタイミングでデータを追加送信することが出来ない場合があるからである。以下、上記問題点について詳細に説明する。 In the technology disclosed in the above-mentioned patent documents, data is additionally transmitted when it is determined that the environment is wide band and high delay. This prevents the transmission buffer from becoming empty in the device on the communication path. However, this technique can not solve the problem that the transmission buffer of the base station becomes empty. The reason is that, with this technology, it may not be possible to additionally transmit data at an appropriate timing. The above problems will be described in detail below.
 一般的な通信標準においては、通信過程中のエラー発生が不可避である。そのため、一般的な通信標準においては、送信エラーの検出方法と再送制御方法が規定されている。 In a general communication standard, the occurrence of an error in the communication process is inevitable. Therefore, in a general communication standard, a transmission error detection method and a retransmission control method are defined.
 例えば、一般的な通信標準においては、下位層において送信失敗した場合に、エラーを検出する方法が規定されている。また、一般的な通信標準においては、再送が発生する際に、再送成功まで上位層の通信を完了しないようにして、再送を制御する方法が規定されている。さらに、一般的な通信標準においては、下位層に再送が発生すると、後続のパケットは再送が完了するまで待機して、再送を制御する方法も規定されている。 For example, in a general communication standard, a method of detecting an error when transmission failure occurs in a lower layer is defined. Further, in a general communication standard, when retransmission occurs, a method is defined to control retransmission by preventing completion of upper layer communication until retransmission success. Furthermore, in a general communication standard, when retransmission occurs in the lower layer, a method is also defined in which a subsequent packet waits until retransmission is completed to control retransmission.
 以下、図2を参照しながら、送信側の端末装置がTCPプロトコルを使用して基地局を経由し、受信側の端末装置にデータを送信する場合を例示して説明する。 Hereinafter, with reference to FIG. 2, an example will be described in which the terminal device on the transmitting side transmits data to the terminal device on the receiving side via the base station using the TCP protocol.
 図2は、基地局103のプロトコル構成の一例、及び端末装置のプロトコル構成例の一例を示すブロック図である。 FIG. 2 is a block diagram showing an example of the protocol configuration of the base station 103 and an example of the protocol configuration of the terminal apparatus.
 基地局103は、3GPP Rel.10以降の一般的な構成を備える。具体的には、基地局103は、基地局PDCP(Packet Data Convergence Protocol)層1031と、基地局RLC(Radio Link Control)層1032と、1又は2以上のMAC(Media Access Control)層と、1又は2以上の物理層と、を備える。基地局PDCP層1031は、基地局103のPDCP層である。基地局RLC層1032は、基地局103のRLC層である。 The base station 103 is 3GPP Rel. With a general configuration of 10 or later. Specifically, the base station 103 includes a base station PDCP (Packet Data Convergence Protocol) layer 1031, a base station RLC (Radio Link Control) layer 1032, one or more MAC (Media Access Control) layers, Or two or more physical layers. The base station PDCP layer 1031 is a PDCP layer of the base station 103. The base station RLC layer 1032 is an RLC layer of the base station 103.
 なお、図2には、基地局103と端末装置との関係を明確にするために、基地局103のU-Planeプロトコル以外の構成に関する記載を省略している。図2においては、基地局103の2つのMAC層(基地局MAC層1033a、1033b)を示すが、これは、基地局103のMAC層の数を、2つに限定する趣旨ではない。同様に、図2においては、基地局103の2つの物理層(基地局物理層1034a、1034b)を示すが、これは、基地局103の物理層の数を2つに限定する趣旨ではない。以下の説明では、基地局103のMAC層を、夫々、区別する必要がない場合、基地局MAC層1033と表記する。同様に、以下の説明では、基地局103の物理層を、夫々、区別する必要がない場合、基地局物理層1034と表記する。 In FIG. 2, in order to clarify the relationship between the base station 103 and the terminal device, the description of the configuration other than the U-Plane protocol of the base station 103 is omitted. Although FIG. 2 shows two MAC layers (base station MAC layers 1033a and 1033b) of the base station 103, this does not mean that the number of MAC layers of the base station 103 is limited to two. Similarly, although two physical layers (base station physical layers 1034 a and 1034 b) of the base station 103 are shown in FIG. 2, this is not intended to limit the number of physical layers of the base station 103 to two. In the following description, the MAC layers of the base station 103 will be referred to as a base station MAC layer 1033 if it is not necessary to distinguish them. Similarly, in the following description, the physical layers of the base station 103 will be referred to as a base station physical layer 1034 unless it is necessary to distinguish them.
 同様に、端末装置の通信手段である端末装置通信部121は、3GPP Rel.10以降の一般的な構成を備える。端末装置通信部121は、端末トランスポート層1210と、端末PDCP層1211と、端末RLC層1212と、1又は2以上のMAC層と、1又は2以上の物理層と、を備える。端末トランスポート層1210は、端末装置のトランスポート層である。端末PDCP層1211は、端末装置のPDCP層である。端末RLC層1212は、端末装置のRLC層である。 Similarly, the terminal device communication unit 121, which is a communication unit of the terminal device, performs 3GPP Rel. With a general configuration of 10 or later. The terminal device communication unit 121 includes a terminal transport layer 1210, a terminal PDCP layer 1211, a terminal RLC layer 1212, one or more MAC layers, and one or more physical layers. The terminal transport layer 1210 is a transport layer of the terminal device. The terminal PDCP layer 1211 is a PDCP layer of the terminal device. The terminal RLC layer 1212 is an RLC layer of the terminal apparatus.
 図2においては、端末装置の2つのMAC層(端末MAC層1213a、1213b)を示すが、これは、端末装置のMAC層の数を2つに限定する趣旨ではない。同様に、図2においては、端末装置の2つの物理層(端末物理層1214a、1214b)を示すが、これは、端末装置の物理層の数を2つに限定する趣旨ではない。以下の説明では、端末装置のMAC層を、夫々、区別する必要がない場合、端末MAC層1213と表記する。同様に、以下の説明では、端末装置の物理層を、夫々、区別する必要がない場合、端末物理層1214と表記する。 Although two MAC layers ( terminal MAC layers 1213 a and 1213 b) of the terminal device are shown in FIG. 2, this is not intended to limit the number of MAC layers of the terminal device to two. Similarly, in FIG. 2, two physical layers (terminal physical layers 1214 a and 1214 b) of the terminal device are shown, but this does not mean that the number of physical layers of the terminal device is limited to two. In the following description, when it is not necessary to distinguish between the MAC layers of the terminal devices, they will be denoted as the terminal MAC layer 1213. Similarly, in the following description, the physical layer of the terminal device is described as a terminal physical layer 1214 if it is not necessary to distinguish each other.
 3GPP(Third Generation Partnership Project)の標準モデルでは、基地局RLC層1032は、少なくとも1つの基地局MAC層1033と接続する。また、端末装置のRLC層(端末RLC層1212)は、少なくとも1つのMAC層(端末MAC層1213)と接続する。 In the standard model of 3GPP (Third Generation Partnership Project), the base station RLC layer 1032 is connected to at least one base station MAC layer 1033. Also, the RLC layer (terminal RLC layer 1212) of the terminal apparatus is connected to at least one MAC layer (terminal MAC layer 1213).
 基地局MAC層1033が端末MAC層1213にデータを伝送完了すると、端末MAC層1213は、伝送完了のデータを端末RLC層1212に伝送する。同時に、端末MAC層1213が伝送完了の通知を、基地局MAC層1033に送信する。その後、端末RLC層1212はデータを正常に受信したことを、基地局RLC層1032に通知する。 When the base station MAC layer 1033 completes transmitting data to the terminal MAC layer 1213, the terminal MAC layer 1213 transmits data of transmission completion to the terminal RLC layer 1212. At the same time, the terminal MAC layer 1213 transmits a transmission completion notification to the base station MAC layer 1033. Thereafter, the terminal RLC layer 1212 notifies the base station RLC layer 1032 that the data has been received normally.
 基地局MAC層1033と端末MAC層1213の間に伝送エラーが発生すると、端末MAC層1213はデータを端末RLC層1212に伝送できない。そのため、基地局MAC層1033と端末MAC層1213の間に伝送エラーが発生すると、端末MAC層1213は、端末RLC層およびその上位の端末PDCP層1211にもデータを転送できない。 If a transmission error occurs between the base station MAC layer 1033 and the terminal MAC layer 1213, the terminal MAC layer 1213 can not transmit data to the terminal RLC layer 1212. Therefore, when a transmission error occurs between the base station MAC layer 1033 and the terminal MAC layer 1213, the terminal MAC layer 1213 can not transfer data to the terminal RLC layer and the terminal PDCP layer 1211 above it.
 LTEにおいては、再送が発生した場合であっても、データの到着順序を保証する(RLCのACK(Acknowledgement)モード)。そのため、基地局RLC層1032と端末RLC層1212の間でパケットが再送される場合、端末RLC層1212に後続パケットが正常に届いても、再送されるパケットの受信が完了するまでは、後続パケットのデータを端末PDCP層1211に転送しない。さらに、端末PDCP層1211の上位である端末トランスポート層1210にもデータが転送されない。そのため、端末トランスポート層1210はデータを受信したことを示す通知(ACK)を、TCPの送信装置に送信できない。 In LTE, even when retransmission occurs, the arrival order of data is guaranteed (RLC ACK (Acknowledgement) mode). Therefore, when a packet is retransmitted between the base station RLC layer 1032 and the terminal RLC layer 1212, the subsequent packet is received until the reception of the retransmitted packet is completed even if the subsequent packet normally arrives at the terminal RLC layer 1212. Is not transferred to the terminal PDCP layer 1211. Furthermore, no data is transferred to the terminal transport layer 1210 above the terminal PDCP layer 1211. Therefore, the terminal transport layer 1210 can not transmit a notification (ACK) indicating that data has been received to the TCP transmission apparatus.
 また、TCPの輻輳制御には、送信中でACK未確認のデータ量を上限に抑える機能があるため、端末トランスポート層1210からの送信完了通知(ACK)を受信しない限り、送信装置は新たなデータを送信しない。したがって、基地局RLC層1032と端末RLC層1212の間にあるパケットが再送される際、送信装置がACKパケットを受信するまで、後続データを送信しない。 In addition, since TCP congestion control has a function to limit the amount of unacknowledged data during transmission to the upper limit, the transmitting device can add new data unless it receives a transmission completion notification (ACK) from the terminal transport layer 1210. Do not send Therefore, when a packet between the base station RLC layer 1032 and the terminal RLC layer 1212 is retransmitted, the subsequent data is not transmitted until the transmitting apparatus receives the ACK packet.
 一方、基地局RLC層1032と端末RLC層1212の間にあるパケットが再送される場合、基地局RLC層1032と端末RLC層1212に再送されたパケット以降のパケットを逐次伝送する機能がある。その目的は、RLC層またはMAC層の再送が発生しても、基地局103と端末装置の間にデータ伝送を停止させないことである。そのため、RLC層の間に再送が発生しても、基地局103の送信バッファ(基地局PDCP層1031のバッファ)内に保存されたデータは逐次伝送される。その結果、基地局103の送信バッファ内に保存されたデータ量(いわゆる基地局103の送信バッファ内に滞留するデータ量)は減少する。 On the other hand, when a packet between the base station RLC layer 1032 and the terminal RLC layer 1212 is retransmitted, there is a function of sequentially transmitting packets subsequent to the packet retransmitted to the base station RLC layer 1032 and the terminal RLC layer 1212. The purpose is to not stop data transmission between the base station 103 and the terminal even if retransmission of the RLC layer or MAC layer occurs. Therefore, even if retransmission occurs between RLC layers, data stored in the transmission buffer of the base station 103 (buffer of the base station PDCP layer 1031) is sequentially transmitted. As a result, the amount of data stored in the transmission buffer of the base station 103 (so-called amount of data staying in the transmission buffer of the base station 103) decreases.
 その結果、送信側の端末装置の端末トランスポート層1210と基地局RLC層1032間に不具合が発生する。送信側の端末装置の端末トランスポート層1210と基地局RLC層1032間に不具合が発生すると、RLC再送が発生した場合に、送信側の端末装置の端末トランスポート層1210は、ACKを受信するまで新たなデータを送信できない。その結果、基地局103のバッファ(以下、基地局103の送信バッファと呼ぶ)内に保存されたデータ量が減少し、枯渇してしまう。それを回避するために、基地局103が、バッファの状態を送信側の端末装置に通知する方法が提案されている[特許文献2]が、基地局にバッファの状態を通知できる機能を実装するだけでなく、送信側の端末装置にも通知されるバッファ状態を受信できる機能を実装する必要があり、装置単体で課題を解決することができない。また、実用化コストも高くなる。また、特許文献2により、基地局情報を送信側に通知できるが、無線情報をACKに乗せて通知するため、送信装置はACKを受信するまで新なデータを送信できず、課題を解決できない。この状態が継続し、基地局103の送信バッファ内に保存されたデータ量がゼロになると、無線帯域に伝送能力があっても、伝送されるデータが存在しないので、通信速度の劣化が発生する。 As a result, a fault occurs between the terminal transport layer 1210 and the base station RLC layer 1032 of the terminal apparatus on the transmission side. If a fault occurs between the terminal transport layer 1210 of the transmitting terminal and the base station RLC layer 1032, the terminal transport layer 1210 of the transmitting terminal receives an ACK when an RLC retransmission occurs. I can not send new data. As a result, the amount of data stored in the buffer of the base station 103 (hereinafter referred to as the transmission buffer of the base station 103) decreases and is exhausted. In order to avoid this, a method has been proposed in which the base station 103 notifies the terminal device on the transmission side of the buffer status [Patent Document 2] implements a function that can notify the base station of the buffer status. In addition, it is necessary to implement a function capable of receiving the buffer status notified to the terminal device on the transmission side, and the problem can not be solved by the device alone. In addition, the cost for practical use also increases. Further, although the base station information can be notified to the transmitting side according to Patent Document 2, since the radio information is put on the ACK and notified, the transmitting device can not transmit new data until the ACK is received, and the problem can not be solved. When this state continues and the amount of data stored in the transmission buffer of the base station 103 becomes zero, the communication speed may be degraded because there is no data to be transmitted even if there is transmission capability in the wireless band. .
 特許文献1の技術においては、通信装置におけるTCPの輻輳ウィンドウサイズと端末がTCP ACKによって通知する受信ウィンドウサイズとの関係の変化を用いて、データを追加送信するタイミングを決定する。上述したように、RLC層における再送は無線伝送のエラーを契機に突発的に発生する。そのため、特許文献1に記載の通信装置は、輻輳ウィンドウサイズと受信ウィンドウサイズの変化を観測しても、基地局のバッファ内のデータが0に減少したことを検知できない。その結果、特許文献1に記載の通信装置は、データを追加送信することが出来ず、通信速度の劣化が発生する場合がある。 In the technique of Patent Document 1, the timing of additional transmission of data is determined using a change in the relationship between the TCP congestion window size in the communication apparatus and the reception window size notified by the terminal by the TCP ACK. As described above, retransmission in the RLC layer occurs suddenly upon an error of radio transmission. Therefore, the communication apparatus described in Patent Document 1 can not detect that the data in the buffer of the base station has decreased to 0 even when observing changes in the congestion window size and the reception window size. As a result, the communication device described in Patent Document 1 can not additionally transmit data, which may cause deterioration in communication speed.
 また、単に通信遅延が増大したことを以て、データの追加送信処理を実行する手法も考えうる。しかし、そのような手法を利用した場合、通信装置は、データの追加送信処理を開始するタイミングと、追加送信するデータ量を適切に設定できない。 Also, a method may be considered in which additional transmission processing of data is performed simply by the increase in communication delay. However, when such a method is used, the communication apparatus can not appropriately set the timing for starting the additional transmission process of data and the amount of data to be additionally transmitted.
 追加送信のデータ量が過小になれば、基地局バッファ内のデータが0になることによる通信速度劣化が発生する可能性がある。一方で、追加送信のデータ量が過大になれば、無線の伝送能力を超えたデータ量を送信してしまい、パケットロスや通信遅延の増大による通信品質の劣化を引き起こす可能性がある。 If the amount of data for additional transmission becomes too small, communication speed degradation may occur due to the data in the base station buffer becoming zero. On the other hand, if the amount of data for additional transmission becomes excessive, the amount of data exceeding the wireless transmission capacity may be transmitted, which may cause deterioration of communication quality due to increased packet loss and communication delay.
 本発明は以上の問題を鑑みてなされたものであって、通信速度の劣化を防止することに貢献する通信装置、通信システム、通信方法及びプログラムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a communication apparatus, a communication system, a communication method, and a program that contribute to preventing deterioration of communication speed.
 第1の視点によると、通信装置が提供される。前記通信装置は、基地局を介して端末装置にデータを送信する。
 前記通信装置は、前記端末装置から確認応答を受信する、応答信号受信部を備える。
 さらに、前記基地局と前記端末装置間の無線通信速度を算出し、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出し、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻とに基づき、前記滞留データ量の変動を予測する、バッファ状況推定部を備える。
 さらに、前記通信装置は、前記バッファ状況推定部が予測した前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する、送信時刻計算部を備える。
 さらに、前記通信装置は、少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する、新規データ送信部を備える。
According to a first aspect, a communication device is provided. The communication apparatus transmits data to a terminal apparatus via a base station.
The communication device includes a response signal receiving unit that receives a confirmation response from the terminal device.
Furthermore, the wireless communication speed between the base station and the terminal apparatus is calculated, and the amount of data staying in the transmission buffer of the base station is calculated as the amount of staying data, and the wireless communication rate, the amount of staying data, and A buffer status estimation unit is provided that predicts the fluctuation of the amount of stagnant data based on the acknowledgment response reception time.
Furthermore, the communication device includes a transmission time calculation unit that calculates a time at which new data is transmitted to the terminal device as an additional transmission time based on the fluctuation predicted by the buffer status estimation unit.
Furthermore, the communication device includes a new data transmission unit that transmits the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
 第2の視点によると、通信システムが提供される。前記通信システムは、端末装置と、基地局と、通信装置とを含んで構成される。
 前記端末装置は、ネットワークに接続する、端末装置通信部を備える。
 前記基地局は、前記端末装置に送信予定のデータを格納する、送信バッファを備える。
 前記通信装置は、前記基地局を介して、前記端末装置にデータを送信する。
 さらに、前記通信装置は、前記端末装置から確認応答を受信する、応答信号受信部を備える。
 さらに、前記通信装置は、前記基地局と前記端末装置間の無線通信速度を算出し、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出し、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻とに基づき、前記滞留データ量の変動を予測する、バッファ状況推定部を備える。
 さらに、前記通信装置は、前記バッファ状況推定部が予測した前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する、送信時刻計算部を備える。
 さらに、前記通信装置は、少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する、新規データ送信部を備える。
According to a second aspect, a communication system is provided. The communication system includes a terminal device, a base station, and a communication device.
The terminal device includes a terminal device communication unit connected to a network.
The base station includes a transmission buffer that stores data to be transmitted to the terminal device.
The communication apparatus transmits data to the terminal apparatus via the base station.
Furthermore, the communication device includes a response signal receiving unit that receives a confirmation response from the terminal device.
Furthermore, the communication apparatus calculates a wireless communication speed between the base station and the terminal apparatus, calculates an amount of data accumulated in a transmission buffer of the base station as an accumulated data amount, and calculates the wireless communication speed and the wireless communication speed A buffer status estimation unit is provided which predicts the fluctuation of the amount of stagnant data based on the amount of stagnant data and the reception time of the confirmation response.
Furthermore, the communication device includes a transmission time calculation unit that calculates a time at which new data is transmitted to the terminal device as an additional transmission time based on the fluctuation predicted by the buffer status estimation unit.
Furthermore, the communication device includes a new data transmission unit that transmits the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
 第3の視点によると、通信方法が提供される。前記通信方法は、端末装置から確認応答を受信するステップを含む。
 さらに、前記通信方法は、前記基地局と前記端末装置間の無線通信速度を算出するステップを含む。
 さらに、前記通信方法は、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出するステップを含む。
 さらに、前記通信方法は、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻とに基づき、前記滞留データ量の変動を予測するステップを含む。
 さらに、前記通信方法は、前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算するステップを含む。
 さらに、前記通信方法は、少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施するステップを含む。
 なお、本方法は、基地局を介して端末装置にデータを送信する通信装置という、特定の機械に結び付けられている。
According to a third aspect, a communication method is provided. The communication method includes the step of receiving a confirmation response from a terminal device.
Further, the communication method includes the step of calculating a wireless communication speed between the base station and the terminal device.
Furthermore, the communication method includes the step of calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data.
Furthermore, the communication method includes the step of predicting a change in the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the acknowledgment.
Furthermore, the communication method includes the step of calculating, as an additional transmission time, a time at which new data is transmitted to the terminal device based on the fluctuation.
Further, the communication method includes the step of transmitting the new data to the terminal device at a predetermined transmission rate, at least when the additional transmission time has passed.
Note that the method is tied to a particular machine, a communication device that transmits data to the terminal via the base station.
 第4の視点によると、プログラムが提供される。前記プログラムは、基地局を介して端末装置にデータを送信する通信装置を制御するコンピュータに実行させるプログラムである。
 前記プログラムは、前記端末装置から確認応答を受信する処理を、前記コンピュータに実行させる。
 さらに、前記通信方法は、前記基地局と前記端末装置間の無線通信速度を算出する処理を、前記コンピュータに実行させる。
 さらに、前記通信方法は、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出する処理を、前記コンピュータに実行させる。
 前記プログラムは、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻とに基づき、前記滞留データ量の変動を予測する処理を、前記コンピュータに実行させる。
 前記プログラムは、前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する処理を、前記コンピュータに実行させる。
 前記プログラムは、少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する処理を、前記コンピュータに実行させる。
 なお、本プログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。本発明は、コンピュータプログラム製品として具現することも可能である。
According to a fourth aspect, a program is provided. The program is a program that is executed by a computer that controls a communication apparatus that transmits data to a terminal apparatus via a base station.
The program causes the computer to execute a process of receiving a confirmation response from the terminal device.
Further, the communication method causes the computer to execute a process of calculating a wireless communication speed between the base station and the terminal device.
Further, the communication method causes the computer to execute a process of calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data.
The program causes the computer to execute a process of predicting a change in the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the confirmation response.
The program causes the computer to execute a process of calculating, as an additional transmission time, a time to transmit new data to the terminal device based on the fluctuation.
The program causes the computer to execute the process of transmitting the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has passed.
The program can be recorded on a computer readable storage medium. The storage medium can be non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, an optical recording medium, and the like. The invention can also be embodied as a computer program product.
 各視点によると、通信速度の劣化を防止することに貢献する通信装置、通信システム、通信方法及びプログラムが提供される。 According to each aspect, a communication device, a communication system, a communication method, and a program that contribute to preventing deterioration of communication speed are provided.
一実施形態の概要を説明するための図である。It is a figure for explaining an outline of one embodiment. プロトコル構成例の一例を示すブロック図である。It is a block diagram which shows an example of a protocol structural example. 第1の実施形態に係る無線通信システムの全体構成の一例を示す図である。BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram illustrating an example of an entire configuration of a wireless communication system according to a first embodiment. 第1の実施形態に係る通信装置11のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the communication apparatus 11 which concerns on 1st Embodiment. 第1の実施形態に係る端末装置12のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the terminal device 12 which concerns on 1st Embodiment. 第1の実施形態に係る通信装置11の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of communication apparatus 11 concerning a 1st embodiment. 応答信号受信部111の構成の一例を示すブロック図である。5 is a block diagram showing an example of the configuration of a response signal receiving unit 111. FIG. 第1の実施形態に係る通信装置11の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the communication apparatus 11 which concerns on 1st Embodiment. 処理時刻の一例を示す図である。It is a figure which shows an example of process time. 第2の実施形態に係る通信装置21の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of communication apparatus 21 concerning a 2nd embodiment. 第2の実施形態に係る通信装置21の動作の一例を示すフローチャート図である。It is a flowchart figure which shows an example of operation | movement of the communication apparatus 21 which concerns on 2nd Embodiment.
 初めに、図1を用いて一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。また、各ブロック図のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インターフェイスも同様である。 First, an outline of one embodiment will be described with reference to FIG. The reference symbols of the drawings appended to this summary are added for convenience to each element as an example for aiding understanding, and the description of the summary is not intended to be limiting in any way. Also, connection lines between blocks in each block diagram include both bidirectional and unidirectional directions. The unidirectional arrows schematically indicate the flow of main signals (data), and do not exclude bidirectionality. Furthermore, in the circuit diagram, block diagram, internal configuration diagram, connection diagram and the like shown in the present disclosure, input ports and output ports are respectively present at the input end and the output end of each connection line, although they are not explicitly shown. The same is true for the input / output interface.
 上述の通り、通信速度の劣化を防止することに貢献する通信装置が望まれる。 As described above, a communication device that contributes to preventing deterioration in communication speed is desired.
 そこで、一例として、図1に示す通信装置1を提供する。通信装置1は、基地局を介して端末装置にデータを送信する。通信装置1は、応答信号受信部2と、バッファ状況推定部3と、送信時刻計算部4と、新規データ送信部5とを備える。 Then, the communication apparatus 1 shown in FIG. 1 is provided as an example. The communication apparatus 1 transmits data to a terminal apparatus via a base station. The communication device 1 includes a response signal receiving unit 2, a buffer status estimating unit 3, a transmission time calculating unit 4, and a new data transmitting unit 5.
 応答信号受信部2は、端末装置から確認応答を受信する。 The response signal receiving unit 2 receives a confirmation response from the terminal device.
 バッファ状況推定部3は、基地局と端末装置間の無線通信速度を算出し、基地局の送信しているデータ量を滞留データ量として算出し、無線通信速度と滞留データ量と確認応答の受信時刻とに基づき、滞留データ量の変動を予測する。 The buffer status estimation unit 3 calculates the wireless communication speed between the base station and the terminal device, calculates the amount of data being transmitted by the base station as the amount of stagnant data, and receives the wireless communication speed, the amount of stagnant data, and the acknowledgment. The fluctuation of the amount of staying data is predicted based on the time of day.
 送信時刻計算部4は、バッファ状況推定部3が予測した、基地局の滞留データの変動に基づいて、端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する。以下の説明では、追加データの送信処理を、追加送信処理とも呼ぶ。 The transmission time calculation unit 4 calculates, as an additional transmission time, the time at which new data is transmitted to the terminal apparatus based on the change in the stagnant data of the base station predicted by the buffer status estimation unit 3. In the following description, the transmission process of additional data is also referred to as an additional transmission process.
 新規データ送信部5は、少なくとも追加送信時刻を経過した場合を条件に、所定の送信レートで、端末装置に新規データの送信を実施する。 The new data transmission unit 5 transmits the new data to the terminal apparatus at a predetermined transmission rate on condition that at least the additional transmission time has passed.
 つまり、通信装置1は、少なくとも追加送信時刻を経過した場合を必要条件として、基地局の滞留データ量を考慮したうえで、新規データを送信するタイミングを決定する。そのため、通信装置1は、基地局の送信バッファが空になることを防止することに貢献する。その結果、通信装置1は、無線層において、新規データを伝送不可能になることを防止することに貢献する。従って、通信装置1は、通信速度の劣化を防止することに貢献する。 That is, the communication device 1 determines the timing for transmitting new data after taking into consideration the amount of stagnated data of the base station, with the case that at least the additional transmission time has passed as a necessary condition. Therefore, the communication device 1 contributes to preventing the transmission buffer of the base station from becoming empty. As a result, the communication device 1 contributes to the prevention of impossibility of transmitting new data in the wireless layer. Therefore, the communication device 1 contributes to preventing the deterioration of the communication speed.
[第1の実施形態]
 第1の実施形態について、図面を用いて詳細に説明する。
First Embodiment
The first embodiment will be described in detail with reference to the drawings.
 図3は、第1の実施形態に係る無線通信システムの全体構成の一例を示す図である。 FIG. 3 is a diagram illustrating an example of the entire configuration of the wireless communication system according to the first embodiment.
 第1の実施形態に係る無線通信システムは、ネットワーク101-1~101-n(nは、自然数。以下、同じ)を備える。ネットワーク101-1~101-nは、異なる終端端末の通信種類(有線や無線)を含む。ネットワーク101-1~101-nは、例えば、LTEの公衆携帯電話網、家庭用Wi-Fi(Wireless Fidelity)(登録商標、以下同じ)、建物内のLAN(Local Area Network)などである。 The wireless communication system according to the first embodiment includes networks 101-1 to 101-n (n is a natural number, hereinafter the same). The networks 101-1 to 101-n include communication types (wired and wireless) of different end terminals. The networks 101-1 to 101-n are, for example, a LTE public cellular phone network, home Wi-Fi (Wireless Fidelity) (registered trademark, the same applies hereinafter), a LAN (Local Area Network) in a building, and the like.
 例えば、ネットワーク101-1、101-2は、モバイルネットワークである。端末装置12-1は、基地局103-1を介して、ネットワーク101-1に接続する。端末装置12-2は、基地局103-2を介して、ネットワーク101-2に接続する。以下の説明では、端末装置12-1、12-2を、夫々、区別する必要がない場合、端末装置12と表記する。また、以下の説明では、基地局103-1、103-2を、夫々、区別する必要がない場合、基地局103と表記する。また、以下の説明では、ネットワーク101-1~101-nを夫々、区別する必要がない場合、ネットワーク101と表記する。 For example, the networks 101-1 and 101-2 are mobile networks. The terminal device 12-1 connects to the network 101-1 via the base station 103-1. The terminal device 12-2 connects to the network 101-2 via the base station 103-2. In the following description, the terminal devices 12-1 and 12-2 will be denoted as the terminal device 12 if it is not necessary to distinguish them. Further, in the following description, the base stations 103-1 and 103-2 will be referred to as a base station 103, if it is not necessary to distinguish them. Also, in the following description, the networks 101-1 to 101-n will be referred to as the network 101 if it is not necessary to distinguish them.
 端末装置12は、対応するネットワーク101を経由し、インターネット104上のサーバ105にアクセスし、データ通信を行う。本発明の通信装置11は、LTE網を使用する端末装置12のみに適用されず、他の無線通信形式を使用した端末にも対応する。例えば、端末装置12は、Wi-Fi中継局を経由し、通信装置11と通信してもよい。以下、説明の便宜上、端末装置12は、LTE網を使用する場合を例示して説明する。ただし、これは、本実施形態に係る端末装置12が、LTE網を使用する場合に限定する趣旨ではない。 The terminal device 12 accesses the server 105 on the Internet 104 via the corresponding network 101 to perform data communication. The communication apparatus 11 of the present invention is not applied only to the terminal apparatus 12 using the LTE network, but also supports terminals using other wireless communication formats. For example, the terminal device 12 may communicate with the communication device 11 via the Wi-Fi relay station. Hereinafter, for convenience of explanation, the terminal device 12 will be described by exemplifying the case of using the LTE network. However, this is not the meaning limited to the case where the terminal device 12 according to the present embodiment uses the LTE network.
 本実施形態では、通信装置11が通信経路上、ネットワーク101とインターネット104の接続部に設置される場合を例に挙げる。もちろん、通信装置11の設置場所は、携帯ネットワークとインターネットの接続部に限定されず、接続部以外の他の通信経路上の装置であってもよい。例えば、通信装置11が、通信経路上のサーバ105に設置される場合であってもよい。 In the present embodiment, the case where the communication apparatus 11 is installed on the connection between the network 101 and the Internet 104 on the communication path is taken as an example. Of course, the installation place of the communication device 11 is not limited to the connection portion of the mobile network and the Internet, and may be a device on another communication path other than the connection portion. For example, the communication device 11 may be installed in the server 105 on the communication path.
[ハードウェア構成]
 次に、第1の実施形態に係る各種装置のハードウェア構成を説明する。図4は、第1の実施形態に係る通信装置11のハードウェア構成の一例を示すブロック図である。
[Hardware configuration]
Next, hardware configurations of various devices according to the first embodiment will be described. FIG. 4 is a block diagram showing an example of the hardware configuration of the communication apparatus 11 according to the first embodiment.
[通信装置の構成]
 通信装置11は、例えば、図4に例示する構成を含んで構成される。例えば、通信装置11は、内部バスにより相互に接続される、CPU(Central Processing Unit)81、メモリ82、入出力インターフェイス83、及び通信手段であるNIC(Network Interface Card)84等を含む。
[Configuration of communication device]
The communication device 11 includes, for example, the configuration illustrated in FIG. For example, the communication device 11 includes a central processing unit (CPU) 81, a memory 82, an input / output interface 83, and a network interface card (NIC) 84 as communication means, which are mutually connected by an internal bus.
 但し、図4に示す構成は、通信装置11のハードウェア構成を限定する趣旨ではない。通信装置11は、図示しないハードウェアを含んでもよいし、必要に応じて入出力インターフェイス83を備えていなくともよい。また、通信装置11に含まれるCPU等の数も図4の例示に限定する趣旨ではなく、例えば、通信装置11は、複数のCPUを含んで構成されてもよい。 However, the configuration shown in FIG. 4 does not mean that the hardware configuration of the communication apparatus 11 is limited. The communication device 11 may include hardware (not shown), and may not have the input / output interface 83 as necessary. Further, the number of CPUs and the like included in the communication device 11 is not limited to the example illustrated in FIG. 4. For example, the communication device 11 may include a plurality of CPUs.
 メモリ82は、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)である。 The memory 82 is a random access memory (RAM), a read only memory (ROM), or an auxiliary storage device (such as a hard disk).
 入出力インターフェイス83は、図示しない表示装置や入力装置のインターフェイスとして機能する。表示装置は、例えば、液晶ディスプレイ等である。入力装置は、例えば、キーボードやマウス等のユーザ操作を受け付ける。 The input / output interface 83 functions as an interface of a display device and an input device (not shown). The display device is, for example, a liquid crystal display or the like. The input device receives user operations such as a keyboard and a mouse, for example.
 通信装置11の機能は、後述する各種処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ82に格納されたプログラムをCPU81が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新できる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、通信装置11は、上記処理モジュールが行う機能を何らかのハードウェア、及び/又は、ソフトウェアで実行する手段を含んで構成される。 The function of the communication device 11 is realized by various processing modules described later. The processing module is realized, for example, by the CPU 81 executing a program stored in the memory 82. Also, the program can be downloaded via a network or can be updated using a storage medium storing the program. Furthermore, the processing module may be realized by a semiconductor chip. That is, the communication device 11 is configured to include means for performing the function performed by the processing module with some hardware and / or software.
[端末装置の構成]
 端末装置12は、例えば、図5に例示する構成を備える。端末装置12は、アンテナ95を含むRF(Radio Frequency)回路94を含んで構成される。RF回路94は、無線通信を実現するための回路であり、アンテナ95を介して基地局103との間で無線信号の授受を行う。なお、端末装置12が備えるハードウェアのうち、通信装置11と共通するハードウェアの説明は省略する。
[Configuration of terminal device]
The terminal device 12 has, for example, the configuration illustrated in FIG. The terminal device 12 is configured to include an RF (Radio Frequency) circuit 94 including an antenna 95. The RF circuit 94 is a circuit for realizing wireless communication, and exchanges a wireless signal with the base station 103 through the antenna 95. Among the hardware included in the terminal device 12, the description of hardware common to the communication device 11 is omitted.
 基地局103のハードウェア構成は当業者にとって明らかなものであるため、説明を省略する。 The hardware configuration of the base station 103 is apparent to those skilled in the art, and thus the description thereof is omitted.
 続いて、通信装置11及び端末装置12の処理構成(処理モジュール)について説明する。 Subsequently, processing configurations (processing modules) of the communication device 11 and the terminal device 12 will be described.
 図6は、通信装置11と、端末装置12と、ネットワーク101を含むシステムの構成例を示すブロック図である。端末装置12は、端末装置通信部121を含んで構成される。ネットワーク101は、基地局103を含んで構成される。通信装置11は、応答信号受信部111と、バッファ状況推定部112と、送信時刻計算部113と、新規データ送信部114とを含んで構成される。 FIG. 6 is a block diagram showing a configuration example of a system including the communication device 11, the terminal device 12, and the network 101. The terminal device 12 is configured to include a terminal device communication unit 121. The network 101 is configured to include a base station 103. The communication device 11 is configured to include a response signal receiving unit 111, a buffer status estimation unit 112, a transmission time calculation unit 113, and a new data transmission unit 114.
 端末装置12の端末装置通信部121は、ネットワーク101の基地局103と通信可能に接続される。ネットワーク101は、通信装置11の応答信号受信部111と通信可能に接続される。応答信号受信部111は、バッファ状況推定部112、送信時刻計算部113、新規データ送信部114と通信可能に接続される。送信時刻計算部113は、バッファ状況推定部112と新規データ送信部114とに、通信可能に接続される。 The terminal device communication unit 121 of the terminal device 12 is communicably connected to the base station 103 of the network 101. The network 101 is communicably connected to the response signal receiving unit 111 of the communication device 11. The response signal reception unit 111 is communicably connected to the buffer status estimation unit 112, the transmission time calculation unit 113, and the new data transmission unit 114. The transmission time calculation unit 113 is communicably connected to the buffer status estimation unit 112 and the new data transmission unit 114.
 応答信号受信部111は、端末装置12から応答信号を受信する。 The response signal receiving unit 111 receives a response signal from the terminal device 12.
 バッファ状況推定部112は、基地局103と端末装置12間の無線通信速度と、基地局103の送信バッファ以内の滞留データ量と、確認応答の受信時刻とに基づいて、基地局103の送信バッファ以内の滞留データ量の変動を予測する。 The buffer status estimation unit 112 transmits the transmission buffer of the base station 103 based on the wireless communication speed between the base station 103 and the terminal 12, the amount of staying data in the transmission buffer of the base station 103, and the reception time of the acknowledgment. Predict fluctuations in the amount of stagnant data within
 送信時刻計算部113は、基地局103の送信バッファ以内の滞留データ量の変動に基づいて、端末装置12に対する新規データの追加送信時刻を計算する。 The transmission time calculation unit 113 calculates the additional transmission time of the new data to the terminal apparatus 12 based on the fluctuation of the amount of staying data in the transmission buffer of the base station 103.
 新規データ送信部114は、少なくとも追加送信時刻を経過した場合、所定の送信レートで、端末装置12に新規データを送信する。 The new data transmission unit 114 transmits new data to the terminal apparatus 12 at a predetermined transmission rate when at least the additional transmission time has passed.
 以下、図7を参照しながら、通信装置11の構成についてより詳細に説明する。 Hereinafter, the configuration of the communication device 11 will be described in more detail with reference to FIG.
 図7は、図6に示される応答信号受信部111の構成の一例を示すブロック図である。応答信号受信部111は、OSI(Open Systems Interconnection)参照モデルの一般的な構成を含んで構成される。具体的には、応答信号受信部111は、通信装置アプリケーション層1110、通信装置トランスポート層1111と、通信装置ネットワーク層1112と、通信装置MAC層1113と、通信装置物理層1114と、を含んで構成される。なお、図7には、バッファ状況推定部112と、送信時刻計算部113と、新規データ送信部114との接続関係を明確にするために、応答信号受信部111に関連する構成以外の構成に関する記載を省略している。 FIG. 7 is a block diagram showing an example of the configuration of the response signal receiving unit 111 shown in FIG. The response signal receiving unit 111 is configured to include a general configuration of an Open Systems Interconnection (OSI) reference model. Specifically, the response signal receiving unit 111 includes a communication device application layer 1110, a communication device transport layer 1111, a communication device network layer 1112, a communication device MAC layer 1113 and a communication device physical layer 1114. Configured Note that FIG. 7 relates to the configuration other than the configuration related to the response signal receiving unit 111 in order to clarify the connection relationship between the buffer status estimation unit 112, the transmission time calculation unit 113, and the new data transmission unit 114. The description is omitted.
 バッファ状況推定部112は、応答信号受信部111の通信装置トランスポート層1111から得られる情報(例えば、送信パケット、受信パケット)に基づき、基地局103のバッファ状況を算出する。具体的には、バッファ状況推定部112は、基地局103の滞留データ量が所定の閾値以下になると推定される時刻を、バッファ枯渇時刻として算出する。その後、バッファ状況推定部112は、算出したバッファ枯渇時刻を送信時刻計算部113に伝送する。 The buffer status estimation unit 112 calculates the buffer status of the base station 103 based on the information (for example, transmission packet, reception packet) obtained from the communication device transport layer 111 of the response signal reception unit 111. Specifically, the buffer status estimation unit 112 calculates a time at which it is estimated that the amount of staying data of the base station 103 becomes less than or equal to a predetermined threshold as a buffer depletion time. After that, the buffer status estimation unit 112 transmits the calculated buffer depletion time to the transmission time calculation unit 113.
 また、バッファ状況推定部112は、通信装置トランスポート層1111と接続することを限定せず、応答信号受信部111の他の層(例えば、通信装置アプリケーション層1110)と接続してもよい。例えば、QUICなどのUDPに基づく通信プロトコルは、確認応答の信号は通信装置トランスポート層1111に伝送されず、通信装置アプリケーション層1110に伝送されたためである。 Also, the buffer status estimation unit 112 may connect to another layer (for example, the communication device application layer 1110) of the response signal reception unit 111 without limiting the connection to the communication device transport layer 1111. For example, the communication protocol based on UDP such as QUIC is because the acknowledgment signal is not transmitted to the communication device transport layer 1111 but transmitted to the communication device application layer 1110.
 送信時刻計算部113は、自通信装置11と端末装置12間の送信遅延と、確認応答の受信時刻と、バッファ枯渇時刻とに基づいて、追加送信時刻を算出する。送信時刻計算部113は、算出した追加送信時刻を新規データ送信部114に伝送する。また、送信時刻計算部113は、追加送信の送信レート(以下、追加送信レートと呼ぶ)を計算する。 The transmission time calculation unit 113 calculates the additional transmission time based on the transmission delay between the own communication apparatus 11 and the terminal apparatus 12, the reception time of the acknowledgment, and the buffer depletion time. The transmission time calculation unit 113 transmits the calculated additional transmission time to the new data transmission unit 114. Further, the transmission time calculation unit 113 calculates a transmission rate of additional transmission (hereinafter, referred to as an additional transmission rate).
 新規データ送信部114は、送信時刻計算部113から受信した追加送信時刻と、送信時刻計算部113から受信した追加送信レートとに基づいて、基地局103を経由し、端末装置12に、データを送信する。 The new data transmission unit 114 transmits the data to the terminal device 12 via the base station 103 based on the additional transmission time received from the transmission time calculation unit 113 and the additional transmission rate received from the transmission time calculation unit 113. Send.
[通信装置の動作]
 図8は、第1の実施形態に係る通信装置11の動作の一例を示すフローチャートである。
[Operation of communication device]
FIG. 8 is a flowchart showing an example of the operation of the communication apparatus 11 according to the first embodiment.
 まず、端末装置12は、通信装置11とのデータ通信を開始する。本実施形態に係る通信装置11と端末装置12間の通信プロトコルは、応答確認機能を有するプロトコルである。例えば、本実施形態に係る通信装置11と端末装置12間の通信プロトコルは、通信装置トランスポート層1111において確認応答を送信するTCP等であってもよい。もちろん、本実施形態に係る通信装置11と端末装置12間の通信プロトコルは、通信装置トランスポート層1111において確認応答を送信するプロトコルに限定されず、他の層において確認応答を送信するプロトコルに対応してもよい。 First, the terminal device 12 starts data communication with the communication device 11. The communication protocol between the communication device 11 and the terminal device 12 according to the present embodiment is a protocol having a response confirmation function. For example, the communication protocol between the communication apparatus 11 and the terminal apparatus 12 according to the present embodiment may be TCP or the like that transmits a confirmation response in the communication apparatus transport layer 1111. Of course, the communication protocol between the communication apparatus 11 and the terminal apparatus 12 according to the present embodiment is not limited to the protocol for transmitting the acknowledgment in the communication apparatus transport layer 1111, but corresponds to the protocol for transmitting the acknowledgment in other layers. You may
 バッファ状況推定部112は、往復遅延、インフライトデータ量、TCPスループット等を、応答信号受信部111から通信情報として取得する(ステップS11)。ここで、インフライトデータ量とは、TCPにおいて送信成功かつ受信成功した、未確認のデータ量を意味する。また、ここで、TCPスループットとは、TCPにおける、直近の所定時間内のスループットを意味する。 The buffer status estimation unit 112 acquires the round trip delay, the in-flight data amount, the TCP throughput, and the like from the response signal reception unit 111 as communication information (step S11). Here, the amount of in-flight data means the amount of unconfirmed data successfully transmitted and successfully received in TCP. Here, the TCP throughput means the throughput in the latest predetermined time in TCP.
 例えば、バッファ状況推定部112は、直近の所定の時間内に、受信完了したパケットの総ビット数を、当該所定時間で割った値を、TCPスループットとして使用してもよい。または、バッファ状況推定部112は、単位時間当たりのTCPスループットを算出し、算出した単位時間当たりのTCPスループットの平均値を使用しても良い。または、バッファ状況推定部112は、単位時間当たりのTCPスループットを算出し、算出した単位時間当たりのTCPスループットの移動平均値を使用しても良い。 For example, the buffer status estimation unit 112 may use, as the TCP throughput, a value obtained by dividing the total number of bits of the packet that has been completely received by the predetermined time within the latest predetermined time. Alternatively, the buffer status estimation unit 112 may calculate TCP throughput per unit time, and use the calculated average value of TCP throughput per unit time. Alternatively, the buffer status estimation unit 112 may calculate TCP throughput per unit time, and use the calculated moving average value of TCP throughput per unit time.
 そして、バッファ状況推定部112は、基地局103の滞留データ量、及びバッファ枯渇時刻を計算する(ステップS12)。具体的には、バッファ状況推定部112は、取得した通信情報を使用し、基地局103の滞留データ量、及びバッファ枯渇時刻を計算する。そして、バッファ状況推定部112は、算出したバッファ枯渇時刻を送信時刻計算部113に伝送する。 Then, the buffer status estimation unit 112 calculates the amount of staying data of the base station 103 and the buffer exhaustion time (step S12). Specifically, the buffer status estimation unit 112 uses the acquired communication information to calculate the amount of staying data of the base station 103 and the buffer exhaustion time. Then, the buffer status estimation unit 112 transmits the calculated buffer depletion time to the transmission time calculation unit 113.
 例えば、バッファ状況推定部112は、自通信装置11が送信した送信データ量と、端末装置12が受信した受信データ量とに基づいて、基地局103の滞留データ量を算出してもよい。ここで、端末装置12が、当該端末装置12が受信できるデータ量の上限値を、通信装置11に通知してもよい。例えば、バッファ状況推定部112は、TCPヘッダに記載された値を、端末装置12が受信できるデータ量の上限値として使用してもよい。 For example, the buffer status estimation unit 112 may calculate the amount of staying data of the base station 103 based on the amount of transmission data transmitted by the own communication device 11 and the amount of reception data received by the terminal device 12. Here, the terminal device 12 may notify the communication device 11 of the upper limit value of the data amount that the terminal device 12 can receive. For example, the buffer status estimation unit 112 may use the value described in the TCP header as the upper limit value of the amount of data that the terminal device 12 can receive.
 または、バッファ状況推定部112は、端末装置12の受信ウィンドウサイズの上限値に基づいて、滞留データ量を算出してもよい。 Alternatively, the buffer status estimation unit 112 may calculate the amount of staying data based on the upper limit value of the reception window size of the terminal device 12.
 または、バッファ状況推定部112は、基地局103の送信バッファの滞留データ量の上限値に基づいて、基地局103の滞留データ量を算出してもよい。 Alternatively, the buffer status estimation unit 112 may calculate the staying data amount of the base station 103 based on the upper limit value of the staying data amount of the transmission buffer of the base station 103.
 そして、基準時刻から、T秒後(Tは0より大きい整数。以下、同様。)に、基地局103の送信バッファ内の滞留データ量が所定の閾値以下になる(例えば、ゼロになる)、とバッファ状況推定部112は計算したとする。その場合、バッファ状況推定部112は、その基準時刻からT秒後の時刻を、バッファ枯渇時刻として算出する。ここで、基準時刻は、例えば、バッファ状況推定部112が、バッファ枯渇時刻を算出する時点の時刻であってもよい。また、基準時刻は、例えば、通信装置11がデータを送信した、直近の時刻等であってもよい。 Then, after T seconds from the reference time (T is an integer greater than 0, the same applies hereinafter), the amount of staying data in the transmission buffer of the base station 103 becomes equal to or less than a predetermined threshold (for example, becomes zero), And the buffer status estimation unit 112 calculate. In that case, the buffer status estimation unit 112 calculates the time T seconds after the reference time as the buffer depletion time. Here, the reference time may be, for example, the time at which the buffer status estimation unit 112 calculates the buffer exhaustion time. Further, the reference time may be, for example, the latest time at which the communication device 11 transmitted data.
 ここで、通信装置11が基地局103に新たなデータを送信しない場合、基地局103の送信バッファ内の滞留データ量は所定の速度で消耗する。そのため、バッファ状況推定部112は、基地局103の送信バッファ内の滞留データ量と無線通信速度とを除算することで、バッファ枯渇時刻を計算してもよい。 Here, when the communication apparatus 11 does not transmit new data to the base station 103, the amount of staying data in the transmission buffer of the base station 103 is consumed at a predetermined speed. Therefore, the buffer status estimation unit 112 may calculate the buffer exhaustion time by dividing the amount of staying data in the transmission buffer of the base station 103 and the wireless communication speed.
 バッファ状況推定部112は、送信側の端末装置12が取得した通信情報、または通信装置11が取得した通信情報に基づいて、基地局103の送信バッファ内の滞留データ量または無線通信速度を計算してもよい。 The buffer status estimation unit 112 calculates the amount of stagnant data or the wireless communication speed in the transmission buffer of the base station 103 based on the communication information acquired by the terminal device 12 on the transmitting side or the communication information acquired by the communication device 11. May be
 また、例えば、バッファ状況推定部112は、直近の所定時間内のTCPスループットを、無線通信速度の近似値として使用してもよい。 Also, for example, the buffer status estimation unit 112 may use the TCP throughput within the latest predetermined time as an approximation of the wireless communication speed.
 また、例えば、バッファ状況推定部112は、直近の所定時間内のTCPスループットに基づいてキャリアアグリゲーションの状況を加味して計算された値を、無線通信速度の近似値として算出してもよい。LTEのキャリアアグリゲーション技術が適用される場合、無線通信速度劣化の発生頻度が上昇する。そのため、バッファ状況推定部112は、キャリアアグリゲーション技術が適用された端末装置12に関して、直近の所定時間のTCPスループットと、端末装置12が使用するコンポーネントキャリア数とを計算する。それにより、バッファ状況推定部112は、無線通信速度の近似値を算出する。 Also, for example, the buffer status estimation unit 112 may calculate, as an approximate value of the wireless communication speed, a value calculated taking into consideration the status of carrier aggregation based on the TCP throughput within the latest predetermined time. When the LTE carrier aggregation technology is applied, the frequency of occurrence of radio communication speed deterioration increases. Therefore, the buffer status estimation unit 112 calculates, for the terminal apparatus 12 to which the carrier aggregation technique is applied, the TCP throughput of the latest predetermined time and the number of component carriers used by the terminal apparatus 12. Thus, the buffer status estimation unit 112 calculates an approximate value of the wireless communication speed.
 例えば、バッファ状況推定部112は、TCPスループット*f(N_CC)を用いて、無線通信速度の近似値を算出してもよい。 For example, the buffer status estimation unit 112 may calculate the approximate value of the wireless communication speed using TCP throughput * f (N_CC).
 ここで、f(N_CC)は、端末装置12が使用するコンポーネントキャリア数に対応する、TCPスループットある。バッファ状況推定部112は、コンポーネントキャリア数毎に、異なるTCPスループットを利用して、無線通信速度の近似値を算出してもよい(例えば、f(1)=1.0, f(2)=1.02, f(3)=1.04等)。 Here, f (N_CC) is a TCP throughput corresponding to the number of component carriers used by the terminal device 12. The buffer status estimation unit 112 may calculate the approximate value of the wireless communication speed using different TCP throughputs for each component carrier number (for example, f (1) = 1.0, f (2) = 1.02, f (3) = 1.04 etc.).
 また、バッファ状況推定部112は、端末装置12が使用するコンポーネントキャリア数を推定するために、キャリアアグリゲーション技術を利用するとする。その場合、コンポーネントキャリア数が増加するほど無線通信速度劣化の発生頻度が上昇する。そこで、バッファ状況推定部112は、この特性を利用し、確認応答(例えばACK信号)の到着間隔がある閾値を超えた頻度(所定時間内の発生回数)に基づいて、コンポーネントキャリア数を推定してもよい。 Also, the buffer status estimation unit 112 uses the carrier aggregation technology to estimate the number of component carriers used by the terminal device 12. In that case, as the number of component carriers increases, the frequency of occurrence of wireless communication speed deterioration increases. Therefore, the buffer status estimation unit 112 estimates the number of component carriers based on the frequency (the number of occurrences within a predetermined time) when the arrival interval of acknowledgments (for example, ACK signals) exceeds a certain threshold using this characteristic. May be
 その後、送信時刻計算部113は、追加送信時刻を計算する(ステップS13)。具体的には、送信時刻計算部113は、新規データ送信部114が送信したデータが、応答信号受信部111から基地局103の送信バッファに到着するまでの時間(即ち、送信遅延)を考慮し、追加送信時刻を計算する。これは、基地局103のバッファが空になることを防止するためである。 Thereafter, the transmission time calculation unit 113 calculates an additional transmission time (step S13). Specifically, the transmission time calculation unit 113 takes into consideration the time until the data transmitted by the new data transmission unit 114 arrives at the transmission buffer of the base station 103 from the response signal reception unit 111 (that is, the transmission delay). , Calculate additional sending time. This is to prevent the buffer of the base station 103 from becoming empty.
 例えば、送信時刻計算部113は、通信装置11と端末装置12間の往復遅延(RTT)に基づいて、往復遅延の半分(RTT/2)を、送信遅延として算出する。 For example, the transmission time calculation unit 113 calculates half of the round trip delay (RTT / 2) as the transmission delay based on the round trip delay (RTT) between the communication apparatus 11 and the terminal apparatus 12.
 送信時刻計算部113は、往復遅延について、現在のTCPセッション、または同じ端末装置12に対する複数のTCPセッション中の最小のRTT、または直近時間内の最小のRTTを使用してもよい。これにより、送信時刻計算部113は、基地局103のキューイング遅延を排除した、実効的最小遅延を利用できる。 The transmission time calculation unit 113 may use, for the round trip delay, the smallest RTT in the current TCP session or a plurality of TCP sessions for the same terminal 12 or the smallest RTT in the latest time. As a result, the transmission time calculation unit 113 can use the effective minimum delay excluding the queuing delay of the base station 103.
 また、送信時刻計算部113は、パケットに記載されたタイムスタンプに基づいて、送信遅延を計算してもよい。例えば、図9に示すように、通信装置11がパケットを送信した時刻をTaとし、通信装置11がパケットを受信した時刻をTbとする。その場合、RTTはTb-Taである。しかし、端末装置12において、受信したパケットを処理するために、処理時間を要する。そのため、送信時刻計算部113は、実効的片道遅延を計算する際、端末装置12の処理時間(Ty-Tx)を除去する。よって、端末装置12がTx、Tyの時刻をパケットに記載する場合、送信時刻計算部113は、((Tb-Ta)-(Ty-Tx))を使用して、送信データが、応答信号受信部111から基地局103の送信バッファに到着するまでの時間を計算する。なお、例えば、端末装置12は、TCPのヘッダのオプションフィールドを利用して、時刻Tx、時刻Tyをパケットに記載してもよい。 Also, the transmission time calculation unit 113 may calculate the transmission delay based on the time stamp described in the packet. For example, as shown in FIG. 9, the time at which the communication device 11 transmits a packet is Ta, and the time at which the communication device 11 receives a packet is Tb. In that case, RTT is Tb-Ta. However, in the terminal device 12, processing time is required to process the received packet. Therefore, the transmission time calculation unit 113 removes the processing time (Ty-Tx) of the terminal device 12 when calculating the effective one-way delay. Therefore, when the terminal device 12 describes the time of Tx and Ty in a packet, the transmission time calculation unit 113 uses ((Tb-Ta)-(Ty-Tx)) to transmit transmission data as a response signal The time until arrival at the transmission buffer of the base station 103 from the unit 111 is calculated. Note that, for example, the terminal device 12 may describe the time Tx and the time Ty in the packet by using the option field of the header of TCP.
 ステップS14において、追加送信時刻を越える場合であって、且つ応答信号受信部111が新たなACKを未受信であるか否かを、送信時刻計算部113は判断する。 In step S14, the transmission time calculation unit 113 determines whether the additional transmission time is exceeded and whether the response signal reception unit 111 has not received a new ACK.
 追加送信時刻を越える場合であって、且つ測定期間中に応答信号受信部111が新たなACKを未受信である場合(ステップS14のYes分岐)には、送信時刻計算部113は、追加送信処理を実行する。そして、ステップS15に遷移する。 If the additional transmission time is exceeded, and if the response signal receiving unit 111 has not received a new ACK during the measurement period (Yes in step S14), the transmission time calculation unit 113 performs an additional transmission process. Run. Then, the process proceeds to step S15.
 例えば、応答信号受信部111がACK信号を受信した場合、送信時刻計算部113は、タイマを起動してもよい。そして、送信時刻計算部113は、タイマを起動開始してからの経過時間を測定してもよい。 For example, when the response signal receiving unit 111 receives an ACK signal, the transmission time calculation unit 113 may start a timer. Then, the transmission time calculation unit 113 may measure an elapsed time since the start of activation of the timer.
 一方、追加送信時刻を超えるまでに、応答信号受信部111が新たなACKを受信した場合(ステップS14のNo分岐)には、ステップS12に戻り、処理を継続する。 On the other hand, when the response signal receiving unit 111 receives a new ACK before the additional transmission time is exceeded (No in step S14), the process returns to step S12 and continues the process.
 次に、図2をさらに参照しながら、送信時刻計算部113が、追加送信の要否を判断する処理について詳細に説明する。 Next, the process in which the transmission time calculation unit 113 determines the necessity of the additional transmission will be described in detail with further reference to FIG.
 LTEの標準モデルにおいては、任意の基地局MAC層1033と端末MAC層1213間に伝送エラーが発生した場合、端末トランスポート層1210のACKの受信間隔の延長が発生する。端末トランスポート層1210において、端末装置12が、所定時間内にTCP ACKを受信できない場合、基地局RLC層1032が再送を実施している、と端末装置通信部121は推定する。 In the standard model of LTE, when a transmission error occurs between an arbitrary base station MAC layer 1033 and a terminal MAC layer 1213, an extension of an ACK reception interval of the terminal transport layer 1210 occurs. In the terminal transport layer 1210, when the terminal device 12 can not receive the TCP ACK within a predetermined time, the terminal device communication unit 121 estimates that the base station RLC layer 1032 is performing retransmission.
 この場合、端末装置通信部121は、TCP ACKを受信できない。しかし、基地局103の送信バッファ内の滞留データ量が逐次減少している、とバッファ状況推定部112は推定する。そのため、送信時刻計算部113は、追加送信の要否を判断する。 In this case, the terminal device communication unit 121 can not receive the TCP ACK. However, the buffer status estimation unit 112 estimates that the amount of staying data in the transmission buffer of the base station 103 is decreasing successively. Therefore, the transmission time calculation unit 113 determines whether or not additional transmission is necessary.
 また、バッファ状況推定部112は、TCP ACKに替えて、他のプロトコルの確認応答を使用して、基地局103の送信バッファ内の滞留データ量を推定してもよい。例えば、バッファ状況推定部112は、QUIC(Quick UDP Internet Connections)、MQTT(Message Queue Telemetry Transport)の応答信号を使用して、基地局103の送信バッファ内の滞留データ量を推定してもよい。通信装置11が他のプロトコルの応答信号を使用する場合、応答信号は端末トランスポート層1210に伝送されることに限定されず、他の層(例えば、アプリケーション層)に伝送されてもよい。なお、以下、説明の便宜上、端末トランスポート層1210のTCPを使用して、応答信号を伝送する場合について説明する。ただし、これは、本実施形態に係る端末装置12が、端末トランスポート層1210のTCPを使用して、応答信号を伝送する場合に限定する趣旨ではない。 Also, the buffer status estimation unit 112 may estimate the amount of stagnated data in the transmission buffer of the base station 103 using acknowledgments of other protocols instead of TCP ACK. For example, the buffer status estimation unit 112 may estimate the amount of stagnant data in the transmission buffer of the base station 103 using a response signal of Quick UDP Internet Connections (QUIC) and Message Queue Telemetry Transport (MQTT). When the communication device 11 uses a response signal of another protocol, the response signal is not limited to being transmitted to the terminal transport layer 1210, but may be transmitted to another layer (for example, an application layer). In the following, for convenience of explanation, the case of transmitting a response signal using TCP of the terminal transport layer 1210 will be described. However, this does not mean that the terminal device 12 according to the present embodiment is limited to the case of transmitting a response signal using TCP of the terminal transport layer 1210.
 送信時刻計算部113は、応答信号受信部111が直近のACKを受信してからの経過時間を測定する。また、通信装置トランスポート層1111に、同じ端末装置12に対する複数のTCPセッションが同時に通信する場合、送信時刻計算部113は、複数のTCPセッションのうち、直近のACKを受信した時刻からの経過時間を測定する。また、送信時刻計算部113は、応答信号受信部111が直近のパケットを送信してからの経過時間を測定してもよい。 The transmission time calculation unit 113 measures an elapsed time after the response signal reception unit 111 receives the latest ACK. In addition, when a plurality of TCP sessions for the same terminal apparatus 12 simultaneously communicate with the communication apparatus transport layer 1111, the transmission time calculation unit 113 determines an elapsed time from the time when the latest ACK is received among the plurality of TCP sessions. Measure In addition, the transmission time calculation unit 113 may measure an elapsed time after the response signal reception unit 111 transmits the latest packet.
 ステップS15において、送信時刻計算部113は、送信レートを計算する。 In step S15, the transmission time calculation unit 113 calculates a transmission rate.
 例えば、直近の所定時間内の無線通信速度を、送信レートとして計算してもよい。また、送信時刻計算部113は、他の通信特性を使用して、送信レートを推定してもよい。 For example, the wireless communication speed within the latest predetermined time may be calculated as the transmission rate. Also, the transmission time calculation unit 113 may estimate the transmission rate using other communication characteristics.
 また、例えば、送信時刻計算部113は、直近の所定時間内のTCPスループットまたは直近の所定時間内のTCP送信レートを近似して、送信レートとして計算してもよい。また、送信時刻計算部113は、TCPセッション中の最大のTCPスループット、または直近の所定時間内の最大のTCPスループットを使用して、送信レートを計算してもよい。 Further, for example, the transmission time calculation unit 113 may calculate the transmission rate by approximating the TCP throughput in the latest predetermined time or the TCP transmission rate in the latest predetermined time. Also, the transmission time calculation unit 113 may calculate the transmission rate using the maximum TCP throughput in the TCP session or the maximum TCP throughput in the most recent predetermined time.
 また、通信装置11が、同じ端末装置12と複数のTCPセッションを張ったとする。その場合、送信時刻計算部113は、複数のTCPセッションのTCPスループットの合算、または直近の所定時間内の複数のTCPセッションのTCPスループットの合算の最大値を使用して、送信レートを計算してもよい。 Further, it is assumed that the communication apparatus 11 establishes a plurality of TCP sessions with the same terminal apparatus 12. In that case, the transmission time calculation unit 113 calculates the transmission rate using the maximum value of the TCP throughputs of a plurality of TCP sessions or the sum of the TCP throughputs of a plurality of TCP sessions within the most recent predetermined time. It is also good.
 さらに、キャリアアグリゲーション技術が適用されるとき、無線通信速度劣化の発生頻度が上昇する。そのため、キャリアアグリゲーション技術が適用された端末装置12に対し、通信装置11は、さらに高い送信レートで送信してもよい。 Furthermore, when the carrier aggregation technique is applied, the frequency of occurrence of wireless communication speed deterioration increases. Therefore, the communication apparatus 11 may transmit at a higher transmission rate to the terminal apparatus 12 to which the carrier aggregation technology is applied.
 送信時刻計算部113は、例えば、バッファ状況推定部112が無線通信速度を近似する際と同様の計算を使用して、送信レートを計算する。その後、送信時刻計算部113は、計算した送信レートを、新規データ送信部114に伝送する。 The transmission time calculation unit 113 calculates the transmission rate using, for example, the same calculation as that when the buffer status estimation unit 112 approximates the wireless communication speed. Thereafter, the transmission time calculation unit 113 transmits the calculated transmission rate to the new data transmission unit 114.
 ステップS16において、新規データ送信部114は、新規データを送信する。 In step S16, the new data transmission unit 114 transmits new data.
 一般的に、TCPにおいては、輻輳制御のため、送信に成功したデータ量であっても未確認のデータ量を所定の値に抑える仕組みがある。具体的には、一般的に、TCPにおいては、データのインフライト量が、輻輳ウィンドウ(cwnd)サイズを超えないように制御する。また、一般的に、TCPにおいては、受信側から返信したACKパケットのヘッダに含まれた受信ウィンドウ(rwnd)サイズを超えないように制御する。 Generally, in TCP, there is a mechanism for suppressing the amount of unconfirmed data to a predetermined value even if the amount of data is successfully transmitted, for congestion control. Specifically, generally, in TCP, control is performed so that the amount of in-flight data does not exceed the congestion window (cwnd) size. Also, in general, in TCP, control is performed so as not to exceed the reception window (rwnd) size included in the header of the ACK packet returned from the reception side.
 一方、本実施形態に係る通信装置11は、輻輳ウィンドウ(cwnd)サイズ、またはACKパケットのヘッダに含まれた受信ウィンドウ(rwnd)サイズ、または通信装置トランスポート層1111のバッファの上限値、または基地局103の送信バッファの上限値の少なくとも1つの値を超えたデータを送信できる。そのため、新規データ送信部114は、新規データを送信する場合、輻輳ウィンドウ(cwnd)サイズ、ACKパケットのヘッダに含まれた受信ウィンドウ(rwnd)サイズ、または送信バッファのバッファサイズの制約を無視してデータを送信できる。 On the other hand, the communication apparatus 11 according to the present embodiment may have a congestion window (cwnd) size, or a reception window (rwnd) size included in the header of an ACK packet, or an upper limit value of a buffer of the communication apparatus transport layer 1111 or a base Data exceeding at least one value of the upper limit value of the transmission buffer of the station 103 can be transmitted. Therefore, when transmitting new data, the new data transmission unit 114 ignores the congestion window (cwnd) size, the reception window (rwnd) size included in the header of the ACK packet, or the buffer size of the transmission buffer. It can send data.
[効果]
 以上説明したように、第1の実施形態に係る通信装置11は、基地局103の無線通信特性に基づいて、基地局103の送信バッファ内の滞留データ量が所定の閾値以下になると推定される時刻(即ち、バッファ枯渇時刻)を予測する。その後、通信装置11は、基地局103の送信バッファ内の滞留データ量が所定の閾値以下になる(例えば、ゼロになる)前に、新規データ送信部114を経由し、基地局103に新規データを追加送信する。それにより、本実施形態に係る通信装置11は、基地局103の送信バッファ内の滞留データ量を、所定の閾値より大きい(例えば、ゼロより大きい)データ量に維持できる。それにより、通信装置11は、無線層において、新規データを伝送不可能になることを防止することに貢献する。その結果、通信装置11は、通信性能の低下を防止できる。
[effect]
As described above, the communication apparatus 11 according to the first embodiment is estimated based on the wireless communication characteristic of the base station 103 that the amount of staying data in the transmission buffer of the base station 103 becomes equal to or less than a predetermined threshold. Predict time (ie, buffer exhaustion time). Thereafter, the communication apparatus 11 transmits new data to the base station 103 via the new data transmission unit 114 before the amount of staying data in the transmission buffer of the base station 103 becomes equal to or less than a predetermined threshold (for example, becomes zero). Send additional. Thereby, the communication apparatus 11 according to the present embodiment can maintain the amount of staying data in the transmission buffer of the base station 103 as the amount of data larger than a predetermined threshold (for example, larger than zero). Thus, the communication device 11 contributes to the prevention of impossibility of transmitting new data in the wireless layer. As a result, the communication device 11 can prevent the deterioration of the communication performance.
[第2の実施形態]
 次に、第2の実施形態について、図面を用いて詳細に説明する。本実施形態は、基地局から基地局に関する情報を取得し、取得した情報を使用して、バッファ枯渇時刻を予測する形態である。なお、本実施形態における説明では、上記の実施形態と重複する部分の説明は省略する。さらに、本実施形態における説明では、上記の実施形態と同一の構成要素には、同一の符号を付し、その説明を省略する。また、本実施形態における説明では、上記の実施形態と同一の作用効果についても、その説明を省略する。
Second Embodiment
Next, a second embodiment will be described in detail using the drawings. In the present embodiment, information on a base station is acquired from a base station, and the acquired information is used to predict a buffer depletion time. In the description of the present embodiment, the description of the parts overlapping with the above embodiment will be omitted. Furthermore, in the description of the present embodiment, the same components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Further, in the description of the present embodiment, the description of the same effects as those of the above-described embodiment will be omitted.
[通信装置の構成]
 図10は、第2の実施形態に係る通信装置21の構成の一例を示す図である。
[Configuration of communication device]
FIG. 10 is a diagram showing an example of the configuration of the communication device 21 according to the second embodiment.
 基地局情報取得部215は、基地局103から、基地局103に関する情報(以下、基地局情報と呼ぶ)を取得する。例えば、基地局情報取得部215は、基地局103の送信バッファの上限値(以下、バッファサイズの上限値とも呼ぶ)と、基地局103の送信バッファ内に滞留するデータ量とを、基地局情報として取得してもよい。また、例えば、基地局情報取得部215は、基地局103と端末装置12の無線通信速度、基地局103と端末装置12間の通信電波数(キャリアアグリゲーション状況)を、基地局情報とを取得してもよい。そして、基地局情報取得部215は、取得した基地局情報を、バッファ状況推定部212に伝送する。 The base station information acquisition unit 215 acquires information on the base station 103 (hereinafter referred to as base station information) from the base station 103. For example, the base station information acquisition unit 215 sets the upper limit value of the transmission buffer of the base station 103 (hereinafter also referred to as the upper limit value of the buffer size) and the amount of data staying in the transmission buffer of the base station 103 as base station information. It may be acquired as Also, for example, the base station information acquisition unit 215 acquires base station information with the wireless communication speed of the base station 103 and the terminal device 12 and the number of communication radio waves between the base station 103 and the terminal device 12 (carrier aggregation status). May be Then, the base station information acquisition unit 215 transmits the acquired base station information to the buffer status estimation unit 212.
 応答信号受信部211は、第1の実施形態に係る応答信号受信部111と同じ構成を有するため、説明を省略する。 The response signal receiving unit 211 has the same configuration as the response signal receiving unit 111 according to the first embodiment, and thus the description thereof will be omitted.
 送信時刻計算部213は、第1の実施形態に係る送信時刻計算部113と同じ構成を有するため、説明を省略する。 The transmission time calculation unit 213 has the same configuration as the transmission time calculation unit 113 according to the first embodiment, and thus the description thereof will be omitted.
 新規データ送信部214は、第1の実施形態に係る新規データ送信部114と同じ構成を有するため、説明を省略する。 The new data transmission unit 214 has the same configuration as the new data transmission unit 114 according to the first embodiment, and thus the description thereof will be omitted.
[通信装置の動作]
 図11は、第2の実施形態に係る通信装置21の動作の一例を示すフローチャートである。
[Operation of communication device]
FIG. 11 is a flowchart showing an example of the operation of the communication apparatus 21 according to the second embodiment.
 まず、基地局情報取得部215は、基地局103から、基地局情報を取得する(ステップS21)。例えば、基地局情報取得部215は、基地局103から、送信バッファの上限値(バッファサイズの上限値)、送信バッファ内に滞留するデータ量、端末装置12との無線通信速度、端末装置12との通信電波数(キャリアアグリゲーション状況)のうち、少なくとも1つの情報を取得する。そして、基地局情報取得部215は、取得した基地局103からの情報を、バッファ状況推定部212に伝送する。 First, the base station information acquisition unit 215 acquires base station information from the base station 103 (step S21). For example, from the base station 103, the base station information acquisition unit 215 sets the upper limit value of the transmission buffer (the upper limit value of the buffer size), the amount of data staying in the transmission buffer, the wireless communication speed with the terminal device 12, At least one piece of information is acquired among the number of communication radio waves (carrier aggregation status). Then, the base station information acquisition unit 215 transmits the acquired information from the base station 103 to the buffer status estimation unit 212.
 バッファ状況推定部212は、往復遅延、インフライトデータ量、TCPスループットを、応答信号受信部211から通信情報として取得する(ステップS22)。 The buffer status estimation unit 212 acquires the round trip delay, the in-flight data amount, and the TCP throughput as communication information from the response signal reception unit 211 (step S22).
 バッファ状況推定部212は、基地局103の滞留データ量、及びバッファ枯渇時刻を計算する(ステップS23)。具体的には、バッファ状況推定部212は、応答信号受信部211から取得した通信情報と、基地局情報取得部215から取得した基地局情報とを使用し、基地局103の滞留データ量、及びバッファ枯渇時刻を計算する。 The buffer status estimation unit 212 calculates the amount of staying data of the base station 103 and the buffer exhaustion time (step S23). Specifically, the buffer status estimation unit 212 uses the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215, and uses the amount of stagnated data in the base station 103, and Calculate buffer exhaustion time.
 例えば、バッファ状況推定部212は、応答信号受信部211から取得した通信情報と、基地局情報取得部215から取得した基地局情報とを組み合わせて、基地局103の滞留データ量、及びバッファ枯渇時刻を計算してもよい。または、バッファ状況推定部212は、応答信号受信部211から取得した通信情報と、基地局情報取得部215から取得した基地局情報とのうち、一方の情報を使用して、基地局103の滞留データ量、及びバッファ枯渇時刻を計算してもよい。 For example, the buffer status estimation unit 212 combines the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215 to determine the amount of staying data of the base station 103 and the buffer exhaustion time. You may calculate Alternatively, the buffer status estimation unit 212 uses one of the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215 to hold the base station 103. The amount of data and buffer exhaustion time may be calculated.
 例えば、新たなデータがない場合、基地局103の送信バッファ内の滞留データ量は所定の速度で消耗する。そのため、バッファ状況推定部212は、滞留データ量と無線通信速度とを除算することで、バッファ枯渇時刻を算出できる。具体的には、バッファ状況推定部212は、基地局103の送信バッファ内の滞留データ量と無線通信速度とを推定する。そして、バッファ状況推定部212は、推定した無線通信速度でデータを送信すると仮定して、推定した滞留データ量を送信し終える時刻を算出することで、バッファ枯渇時刻を計算する。 For example, if there is no new data, the amount of staying data in the transmission buffer of the base station 103 is consumed at a predetermined rate. Therefore, the buffer status estimation unit 212 can calculate the buffer exhaustion time by dividing the amount of staying data and the wireless communication speed. Specifically, the buffer status estimation unit 212 estimates the amount of stagnated data in the transmission buffer of the base station 103 and the wireless communication speed. Then, assuming that data is transmitted at the estimated wireless communication speed, the buffer status estimation unit 212 calculates the buffer depletion time by calculating the time when transmission of the estimated amount of stagnant data is finished.
 バッファ状況推定部212は、基地局情報取得部215から取得した基地局情報を使用して、基地局103の送信バッファ内の滞留データ量と無線通信速度とを算出する。例えば、バッファ状況推定部212は、は、基地局情報取得部215から取得した基地局103の送信バッファ内の滞留データ量、基地局103の送信バッファの上限値の少なくともいずれかを使用して、基地局103の送信バッファ内の滞留データ量を算出する。 The buffer status estimation unit 212 uses the base station information acquired from the base station information acquisition unit 215 to calculate the amount of stagnant data in the transmission buffer of the base station 103 and the wireless communication speed. For example, the buffer status estimation unit 212 uses at least one of the amount of staying data in the transmission buffer of the base station 103 acquired from the base station information acquisition unit 215 and the upper limit value of the transmission buffer of the base station 103 The amount of staying data in the transmission buffer of the base station 103 is calculated.
 また、例えば、バッファ状況推定部212は、基地局情報取得部215から取得した基地局103と端末装置12間の無線通信速度、または所定時間内の最大の無線通信速度を使用してもよい。 Also, for example, the buffer status estimation unit 212 may use the wireless communication speed between the base station 103 and the terminal device 12 acquired from the base station information acquisition unit 215 or the maximum wireless communication speed within a predetermined time.
 そして、基準時刻から時間T秒経過後に基地局103の送信バッファ内の滞留データ量が所定の閾値以下になる(例えば、ゼロになる)、とバッファ状況推定部212は計算したとする。その場合、バッファ状況推定部212は、その基準時刻からT秒経過後の時刻を、バッファ枯渇時刻として算出する。そして、バッファ状況推定部212は、算出したバッファ枯渇時刻を送信時刻計算部213に伝送する。 Then, it is assumed that the buffer status estimation unit 212 calculates that the amount of staying data in the transmission buffer of the base station 103 becomes less than or equal to a predetermined threshold (for example, becomes zero) after time T seconds from the reference time. In that case, the buffer status estimation unit 212 calculates the time after T seconds has elapsed since the reference time as the buffer depletion time. Then, the buffer status estimation unit 212 transmits the calculated buffer depletion time to the transmission time calculation unit 213.
 その後、送信時刻計算部213は、追加送信時刻を計算する(ステップS24)。具体的には、送信時刻計算部213は、追加送信したデータが、応答信号受信部211から基地局103の送信バッファに到着するまでの時間(即ち、送信遅延)を考慮し、追加送信時刻を算出する。ここで、送信時刻計算部213は、基地局103から通知する情報を使用して、追加送信時刻を算出してもよい。例えば、送信時刻計算部213は、基地局103と端末装置12間の往復遅延、または片道遅延、または基地局103から通知された情報中に記載されたタイムスタンプを使用して、追加送信時刻を算出してもよい。 Thereafter, the transmission time calculation unit 213 calculates the additional transmission time (step S24). Specifically, the transmission time calculation unit 213 takes into consideration the time until the additionally transmitted data arrives from the response signal reception unit 211 to the transmission buffer of the base station 103 (that is, the transmission delay), and determines the additional transmission time. calculate. Here, the transmission time calculation unit 213 may use the information notified from the base station 103 to calculate the additional transmission time. For example, the transmission time calculation unit 213 uses the round trip delay between the base station 103 and the terminal 12 or the one-way delay, or the additional transmission time using the time stamp described in the information notified from the base station 103. It may be calculated.
 送信時刻計算部213は、応答信号受信部211が直近のACKを受信してからの経過時間を測定する。また、通信装置トランスポート層1111において、同じ端末装置12に対する複数のTCPセッションが同時に通信する場合、送信時刻計算部213は、複数のTCPセッションのうち、直近のACKを受信した時刻からの経過時間を測定する。また、送信時刻計算部213は、応答信号受信部211が直近のパケットを送信した時刻からの経過時間を測定してもよい。 The transmission time calculation unit 213 measures an elapsed time from when the response signal reception unit 211 receives the latest ACK. Further, in the communication apparatus transport layer 1111, when a plurality of TCP sessions for the same terminal apparatus 12 simultaneously communicate, the transmission time calculation unit 213 is an elapsed time from the time when the latest ACK was received among the plurality of TCP sessions. Measure Further, the transmission time calculation unit 213 may measure an elapsed time from the time when the response signal reception unit 211 transmitted the latest packet.
 ステップS25において、追加送信時刻を越える場合であって、且つ測定期間中に応答信号受信部211が新たなACKを未受信であるか否かを、送信時刻計算部213は判断する。 In step S25, the transmission time calculation unit 213 determines whether the response signal reception unit 211 has not received a new ACK during the measurement period, in which the additional transmission time is exceeded.
 追加送信時刻を超える場合であって、且つ測定期間中に応答信号受信部211が新たなACKを未受信である場合(ステップS25のYes分岐)には、送信時刻計算部213は、追加送信処理を実行する。そして、ステップS26に遷移する。 If the additional transmission time is exceeded and the response signal reception unit 211 has not received a new ACK during the measurement period (Yes in step S25), the transmission time calculation unit 213 performs the additional transmission process. Run. Then, the process proceeds to step S26.
 例えば、送信時刻計算部213は、応答信号受信部211がACK信号を受信した場合、タイマを起動して、タイマを起動開始してからの経過時間を測定してもよい。 For example, when the response signal reception unit 211 receives an ACK signal, the transmission time calculation unit 213 may start a timer and measure an elapsed time after starting the timer.
 一方、追加送信時刻を超えるまでに、タイマ起動中に、応答信号受信部211が新たなACKを受信した場合(ステップS25のNo分岐)には、ステップS23に遷移し、処理を継続する。 On the other hand, if the response signal receiving unit 211 receives a new ACK during timer activation (No branch of step S25) until the additional transmission time is exceeded, the process proceeds to step S23 and the process is continued.
 ステップS26において、送信時刻計算部213は、送信レートを計算する。 In step S26, the transmission time calculation unit 213 calculates a transmission rate.
 送信時刻計算部213は、例えば、直近の所定時間内の無線通信速度を、送信レートとして計算する。また、送信時刻計算部213は、応答信号受信部211から取得した通信情報と、基地局情報取得部215から取得した基地局情報とを組み合わせて、送信レートを計算してもよい。また、送信時刻計算部213は、応答信号受信部211から取得した通信情報と、基地局情報取得部215から取得した基地局情報とのうち、一方の情報を使用して、送信レートを計算してもよい。 The transmission time calculation unit 213 calculates, for example, the wireless communication speed within the latest predetermined time as a transmission rate. Also, the transmission time calculation unit 213 may calculate the transmission rate by combining the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215. Also, the transmission time calculation unit 213 calculates the transmission rate using one of the communication information acquired from the response signal reception unit 211 and the base station information acquired from the base station information acquisition unit 215. May be
 例えば、送信時刻計算部213は、基地局情報取得部215から取得した、基地局103と端末装置12間の無線通信速度、または所定時間内の最大の無線通信速度を使用して、送信レートを算出してもよい。 For example, the transmission time calculation unit 213 uses the wireless communication speed between the base station 103 and the terminal apparatus 12 or the maximum wireless communication speed within a predetermined time period acquired from the base station information acquisition unit 215 to transmit the transmission rate. It may be calculated.
 また、送信時刻計算部213は、第1の実施形態と同じ方法を用いて、無線通信速度を計算してもよい。その場合、送信時刻計算部213は、基地局情報取得部215から取得した基地局情報を使用して、無線通信速度を計算してもよい。 Also, the transmission time calculation unit 213 may calculate the wireless communication speed using the same method as in the first embodiment. In that case, the transmission time calculation unit 213 may use the base station information acquired from the base station information acquisition unit 215 to calculate the wireless communication speed.
 例えば、基地局情報取得部215は、基地局103と端末装置12間の通信電波数(キャリアアグリゲーション状況)を取得する。そして、送信時刻計算部213は、直近の所定時間のTCPスループットと、端末装置12が使用するコンポーネントキャリア数とに基づいて、無線通信速度を計算する。その後、送信時刻計算部213は、計算した送信レートを、新規データ送信部214に伝送する。 For example, the base station information acquisition unit 215 acquires the number of communication radio waves (carrier aggregation status) between the base station 103 and the terminal device 12. Then, the transmission time calculation unit 213 calculates the wireless communication speed based on the most recent TCP throughput for a predetermined time and the number of component carriers used by the terminal device 12. Thereafter, the transmission time calculation unit 213 transmits the calculated transmission rate to the new data transmission unit 214.
 新規データ送信部214は、新規データを送信する(ステップS27)。新規データ送信部214は、第1の実施形態に係る新規データ送信部114と同様に動作する。すなわち、新規データ送信部214は、新規データを送信する場合、通信プロトコルが規定した送信量、送信時刻、または通信レートの制限を無視してデータを送信できる。 The new data transmission unit 214 transmits the new data (step S27). The new data transmission unit 214 operates in the same manner as the new data transmission unit 114 according to the first embodiment. That is, when transmitting new data, the new data transmission unit 214 can transmit data ignoring the transmission amount, transmission time, or communication rate restriction defined by the communication protocol.
[変形例1]
 本実施形態に係る通信装置21の変形例1として、応答信号受信部211は、基地局103と端末装置12間の無線通信速度を、当該端末装置12から受信してもよい。
[Modification 1]
As a modification 1 of the communication device 21 according to the present embodiment, the response signal receiving unit 211 may receive the wireless communication speed between the base station 103 and the terminal device 12 from the terminal device 12.
 以上の通り、本実施形態に係る通信装置21は、第1の実施形態に係る通信装置11と比較して、より一層、通信性能の低下を防止することに貢献する。その理由は、第2の実施形態に係る通信装置21は、基地局103から取得した基地局情報に基づいて、バッファ枯渇時刻を予測するからである。さらに、本実施形態に係る通信装置21は、基地局103から基地局情報を直接取得して送信レートを算出することで、基地局103から取得した無線通信速度と、計算した送信レートとの差分を低減できる。そのため、本実施形態に係る通信装置21は、過少または過大な送信レートを用いて、データを送信することを避けることができる。その結果、本実施形態に係る通信装置21は、通信ネットワークの性能劣化を防止することに貢献する。さらに、本実施形態に係る通信装置21は、基地局103の送信バッファの能力を超えたデータ量を送信することを回避することに貢献する。 As described above, the communication device 21 according to the present embodiment contributes to the prevention of deterioration in communication performance as compared with the communication device 11 according to the first embodiment. The reason is that the communication apparatus 21 according to the second embodiment predicts the buffer exhaustion time based on the base station information acquired from the base station 103. Furthermore, the communication apparatus 21 according to the present embodiment obtains the base station information directly from the base station 103 and calculates the transmission rate, thereby calculating the difference between the wireless communication speed acquired from the base station 103 and the calculated transmission rate. Can be reduced. Therefore, the communication apparatus 21 according to the present embodiment can avoid transmitting data using an under or over transmission rate. As a result, the communication device 21 according to the present embodiment contributes to preventing the performance deterioration of the communication network. Furthermore, the communication device 21 according to the present embodiment contributes to avoiding transmission of an amount of data exceeding the capability of the transmission buffer of the base station 103.
 上述の実施形態の一部又は全部は、以下の形態のようにも記載され得るが、以下には限られない。 Some or all of the above-described embodiments may be described as in the following forms, but is not limited thereto.
 (形態1)上記第1の視点に係る通信装置の通りである。 (Mode 1) As described in the communication device according to the first aspect.
 (形態2)前記バッファ状況推定部は、前記滞留データが所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出し、前記送信時刻計算部は、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、好ましくは形態1に記載の通信装置。 (Mode 2) The buffer status estimation unit calculates a time at which the stagnant data is estimated to be equal to or less than a predetermined threshold as a buffer depletion time, and the transmission time calculation unit transmits between the own communication device and the terminal device Preferably, the communication apparatus according to Mode 1 calculates the additional transmission time based on the delay, the reception time, and the buffer depletion time.
 (形態3)前記バッファ状況推定部は、自通信装置が送信した送信データ量と、前記確認応答信号から取得される端末装置が受信した受信データ量とを更に用いて、前記滞留データ量を算出する、好ましくは形態1又は2に記載の通信装置。 (Mode 3) The buffer status estimation unit further calculates the amount of staying data by further using the amount of transmission data transmitted by the own communication device and the amount of reception data received by the terminal device acquired from the confirmation response signal. Preferably, the communication device according to aspect 1 or 2.
 (形態4)前記バッファ状況推定部は、前記端末装置の受信ウィンドウサイズの上限値と、前記基地局の前記送信バッファの前記滞留データ量の上限値の少なくともいずれか1つに基づき、前記滞留データ量を算出する、好ましくは形態1乃至3のいずれか一に記載の通信装置。 (Mode 4) The buffer status estimation unit is based on at least one of the upper limit value of the reception window size of the terminal apparatus and the upper limit value of the stagnated data amount of the transmission buffer of the base station. The communication device according to any one of aspects 1 to 3, preferably for calculating an amount.
 (形態5)前記バッファ状況推定部は、自通信装置が送信した送信データ量に基づいて、前記無線通信速度を算出する、好ましくは形態1乃至4のいずれか一に記載の通信装置。 (Mode 5) The communication apparatus according to any one of modes 1 to 4, wherein the buffer status estimation unit calculates the wireless communication speed based on the amount of transmission data transmitted by the own communication apparatus.
 (形態6)前記基地局から前記無線通信速度を取得する、基地局情報取得部をさらに備える、好ましくは形態1乃至5のいずれか一に記載の通信装置。 (Mode 6) The communication apparatus according to any one of modes 1 to 5, further comprising: a base station information acquisition unit that acquires the wireless communication speed from the base station.
 (形態7)前記送信時刻計算部は、直近の応答信号の受信時刻からの経過時間と、直近のデータ送信時刻からの経過時間とのうち、少なくともいずれかが、事前に設定した閾値に到達する時刻を、前記追加送信時刻として決定する、好ましくは形態1乃至6のいずれか一に記載の通信装置。 (Mode 7) The transmission time calculation unit determines that at least one of an elapsed time from the reception time of the latest response signal and an elapsed time from the latest data transmission time reaches a threshold set in advance. The communication apparatus according to any one of modes 1 to 6, preferably determining time as the additional transmission time.
 (形態8)前記送信時刻計算部は、前記無線通信速度に基づいて、送信レートを算出する、好ましくは形態1乃至7のいずれか一に記載の通信装置。 (Mode 8) The communication apparatus according to any one of modes 1 to 7, wherein the transmission time calculation unit calculates a transmission rate based on the wireless communication speed.
 (形態9)上記第2の視点に係る通信システムの通りである。 (Mode 9) The communication system according to the second aspect is as described above.
 (形態10)前記バッファ状況推定部は、前記滞留データが所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出し、前記送信時刻計算部は、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、好ましくは形態9に記載の通信システム。 (Mode 10) The buffer status estimation unit calculates a time at which the stagnant data is estimated to be less than or equal to a predetermined threshold as a buffer depletion time, and the transmission time calculation unit transmits between the own communication device and the terminal device Preferably, the communication system according to mode 9, wherein the additional transmission time is calculated based on the delay, the reception time, and the buffer depletion time.
 (形態11)上記第3の視点に係る通信方法の通りである。 (Mode 11) The communication method according to the third aspect is as described above.
 (形態12)前記滞留データが所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出するステップをさらに含み、前記追加送信時刻を計算するステップにおいて、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、好ましくは形態11に記載の通信方法。 (Mode 12) The method further includes the step of calculating the time when the stagnant data is estimated to be equal to or less than a predetermined threshold as the buffer depletion time, and in the step of calculating the additional transmission time, transmission between the own communication device and the terminal device Preferably, the communication method according to Aspect 11, wherein the additional transmission time is calculated based on the delay, the reception time, and the buffer depletion time.
 (形態13)上記第4の視点に係るプログラムの通りである。 (Mode 13) A program according to the fourth aspect is as described above.
 (形態14)前記滞留データが所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出する処理をさらに前記コンピュータに実行させ、前記追加送信時刻を計算する処理において、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、好ましくは形態13に記載のプログラム。 (Mode 14) The process of calculating the additional transmission time by causing the computer to further execute the process of calculating the buffer depletion time as the time when the stagnant data is estimated to be equal to or less than a predetermined threshold. The program according to preferably mode 13, wherein the additional transmission time is calculated based on a transmission delay between devices, the reception time, and the buffer depletion time.
 上記の形態9、11、13に示す形態は、形態1に示す形態と同様に、形態3乃至8に示す形態に展開することが可能である。 The forms shown in the above-mentioned forms 9, 11 and 13 can be developed into the forms shown in the forms 3 to 8 similarly to the form shown in the form 1.
 なお、上記の特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択(部分的削除を含む)が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。本発明で、アルゴリズム、ソフトウェア、ないしフローチャート或いは自動化されたプロセスステップが示された場合、コンピュータが用いられることは自明であり、またコンピュータにはプロセッサ及びメモリないし記憶装置が付設されることも自明である。よってその明示を欠く場合にも、本願には、これらの要素が当然記載されているものと解される。 The disclosure of the above-mentioned patent documents is incorporated herein by reference. Within the scope of the entire disclosure of the present invention (including the scope of the claims), modifications and adjustments of the embodiment are possible based on the fundamental technical concept of the invention. Further, various combinations of various disclosed elements (including each element of each claim, each element of each embodiment, each element of each drawing, etc.) or selection (partially) within the scope of the entire disclosure of the present invention Possible) including deletion. That is, the present invention of course includes the entire disclosure including the scope of the claims, and various modifications and alterations that can be made by those skilled in the art according to the technical concept. In particular, with regard to the numerical ranges described herein, it should be understood that any numerical value or small range falling within the relevant range is specifically described even if it is not otherwise described. In the present invention, when algorithms, software, or flowcharts or automated process steps are shown, it is obvious that a computer is used, and it is also obvious that a computer is provided with a processor and a memory or storage. is there. Therefore, even in the absence of such a statement, it is understood that these elements are naturally described in the present application.
1、11、21 通信装置
2、111、211 応答信号受信部
3、112、212 バッファ状況推定部
4、113、213 送信時刻計算部
5、114、214 新規データ送信部
12、12-1、12-2 端末装置
81、91 CPU
82、92 メモリ
83、93 入出力インターフェイス
84 NIC
94 RF回路
95 アンテナ
101、101-1~101-n ネットワーク
103、103-1、103-2 基地局
104 インターネット
105 サーバ
121 端末装置通信部
215 基地局情報取得部
1031 基地局PDCP層
1032 基地局RLC層
1033、1033a、1033b 基地局MAC層
1034、1034a、1034b 基地局物理層
1110 通信装置アプリケーション層
1111 通信装置トランスポート層
1112 通信装置ネットワーク層
1113 通信装置MAC層
1114 通信装置物理層
1210 端末トランスポート層
1211 端末PDCP層
1212 端末RLC層
1213、1213a、1213b 端末MAC層
1214、1214a、1214b 端末物理層
1, 11, 21 communication apparatus 2, 111, 211 response signal receiving unit 3, 112, 212 buffer status estimating unit 4, 113, 213 transmission time calculating unit 5, 114, 214 new data transmitting unit 12, 12-1, 12 -2 Terminal device 81, 91 CPU
82, 92 memory 83, 93 input / output interface 84 NIC
94 RF circuit 95 antenna 101, 101-1 to 101-n network 103, 103-1, 103-2 base station 104 Internet 105 server 121 terminal device communication unit 215 base station information acquisition unit 1031 base station PDCP layer 1032 base station RLC Layers 1033, 1033a, 1033b Base station MAC layer 1034, 1034a, 1034b Base station physical layer 1110 Communication device application layer 1111 Communication device transport layer 1112 Communication device network layer 1113 Communication device MAC layer 1114 Communication device physical layer 1210 Terminal transport layer 1211 terminal PDCP layer 1212 terminal RLC layer 1213, 1213a, 1213b terminal MAC layer 1214, 1214a, 1214b terminal physical layer

Claims (14)

  1.  基地局を介して端末装置にデータを送信する通信装置であって、
     前記端末装置から確認応答を受信する応答信号受信部と、
     前記基地局と前記端末装置間の無線通信速度を算出し、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出し、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻に基づき、前記滞留データ量の変動を予測する、バッファ状況推定部と、
     前記バッファ状況推定部が予測した前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する、送信時刻計算部と、
     少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する、新規データ送信部と、
     を備える通信装置。
    A communication apparatus for transmitting data to a terminal apparatus via a base station, comprising:
    A response signal receiving unit that receives a confirmation response from the terminal device;
    The wireless communication speed between the base station and the terminal device is calculated, and the amount of data staying in the transmission buffer of the base station is calculated as the amount of staying data, and the wireless communication rate, the amount of staying data, and the confirmation response A buffer status estimation unit that predicts the fluctuation of the amount of stagnant data based on the reception time of
    A transmission time calculation unit that calculates, as an additional transmission time, a time at which new data is transmitted to the terminal device based on the fluctuation predicted by the buffer status estimation unit;
    A new data transmission unit configured to transmit the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has elapsed;
    A communication device comprising
  2.  前記バッファ状況推定部は、前記滞留データ量が所定の閾値以下になると推定される時刻をバッファ枯渇時刻として算出し、
     前記送信時刻計算部は、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、請求項1に記載の通信装置。
    The buffer status estimation unit calculates, as a buffer exhaustion time, a time when the amount of stagnant data is estimated to be equal to or less than a predetermined threshold value.
    The communication apparatus according to claim 1, wherein the transmission time calculation unit calculates the additional transmission time based on a transmission delay between the own communication apparatus and the terminal apparatus, the reception time, and the buffer depletion time. .
  3.  前記バッファ状況推定部は、自通信装置が送信した送信データ量と、前記確認応答から取得される端末装置が受信した受信データ量とを更に用いて、前記滞留データ量を算出する、請求項1又は2に記載の通信装置。 The buffer status estimation unit further calculates the amount of staying data by further using the amount of transmission data transmitted by the own communication device and the amount of reception data received by the terminal device acquired from the confirmation response. Or the communication device according to 2.
  4.  前記バッファ状況推定部は、前記端末装置の受信ウィンドウサイズの上限値と、前記基地局の前記送信バッファの前記滞留データ量の上限値の少なくともいずれか1つに基づき、前記滞留データ量を算出する、請求項1乃至3のいずれか一に記載の通信装置。 The buffer status estimation unit calculates the staying data amount based on at least one of an upper limit value of a reception window size of the terminal apparatus and an upper limit value of the staying data amount of the transmission buffer of the base station. The communication apparatus according to any one of claims 1 to 3.
  5.  前記バッファ状況推定部は、自通信装置が送信した送信データ量に基づいて、前記無線通信速度を算出する、請求項1乃至4のいずれか一に記載の通信装置。 The communication apparatus according to any one of claims 1 to 4, wherein the buffer status estimation unit calculates the wireless communication speed based on the amount of transmission data transmitted by the own communication apparatus.
  6.  前記基地局から前記無線通信速度を取得する、基地局情報取得部をさらに備える、請求項1乃至5のいずれか一に記載の通信装置。 The communication apparatus according to any one of claims 1 to 5, further comprising a base station information acquisition unit that acquires the wireless communication speed from the base station.
  7.  前記送信時刻計算部は、直近の応答信号の受信時刻からの経過時間と、直近のデータ送信時刻からの経過時間とのうち、いずれかが事前に設定した閾値に到達する時刻を前記追加送信時刻とする、請求項1乃至6のいずれか一に記載の通信装置。 The transmission time calculation unit is configured to calculate a time when one of the elapsed time from the reception time of the latest response signal and the elapsed time from the latest data transmission time reaches a threshold set in advance. The communication apparatus according to any one of claims 1 to 6, wherein
  8.  前記送信時刻計算部は、前記無線通信速度に基づいて、送信レートを算出する、請求項1乃至7のいずれか一に記載の通信装置。 The communication apparatus according to any one of claims 1 to 7, wherein the transmission time calculation unit calculates a transmission rate based on the wireless communication speed.
  9.  ネットワークに接続する、端末装置通信部を備える、端末装置と、
     前記端末装置に送信予定のデータを格納する、送信バッファを備える基地局と、
     前記基地局を介して、前記端末装置にデータを送信する通信装置と、前記基地局と、前記端末装置と、
    を含む通信システムであって、
     前記通信装置は、
     前記端末装置から確認応答を受信する応答信号受信部と、
     前記基地局と前記端末装置間の無線通信速度を算出し、前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出し、前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻に基づき、前記滞留データ量の変動を予測する、バッファ状況推定部と、
     前記バッファ状況推定部が予測した前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する、送信時刻計算部と、
     少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する、新規データ送信部と、
     を備える通信システム。
    A terminal device including a terminal device communication unit connected to a network;
    A base station comprising a transmission buffer for storing data to be transmitted to the terminal device;
    A communication apparatus for transmitting data to the terminal apparatus via the base station, the base station, and the terminal apparatus
    A communication system including
    The communication device is
    A response signal receiving unit that receives a confirmation response from the terminal device;
    The wireless communication speed between the base station and the terminal device is calculated, and the amount of data staying in the transmission buffer of the base station is calculated as the amount of staying data, and the wireless communication rate, the amount of staying data, and the confirmation response A buffer status estimation unit that predicts the fluctuation of the amount of stagnant data based on the reception time of
    A transmission time calculation unit that calculates, as an additional transmission time, a time to transmit new data to the terminal device based on the fluctuation predicted by the buffer status estimation unit;
    A new data transmission unit configured to transmit the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has elapsed;
    A communication system comprising
  10.  前記バッファ状況推定部は、前記滞留データ量が所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出し、前記送信時刻計算部は、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、請求項9に記載の通信システム。 The buffer status estimation unit calculates a time at which the accumulated data amount is estimated to be equal to or less than a predetermined threshold as a buffer depletion time, and the transmission time calculation unit calculates a transmission delay between the own communication device and the terminal device; The communication system according to claim 9, wherein the additional transmission time is calculated based on the reception time and the buffer depletion time.
  11.  端末装置から確認応答を受信するステップと、
     基地局と前記端末装置間の無線通信速度を算出するステップと、
     前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出するステップと、
     前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻に基づき、前記滞留データ量の変動を予測するステップと、
     前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算するステップと、
     少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施するステップと、
     を含む通信方法。
    Receiving an acknowledgment from the terminal device;
    Calculating a wireless communication speed between a base station and the terminal device;
    Calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data;
    Predicting the fluctuation of the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the confirmation response;
    Calculating, as an additional transmission time, a time at which new data is transmitted to the terminal device based on the fluctuation;
    Performing transmission of the new data to the terminal device at a predetermined transmission rate on condition that at least the additional transmission time has elapsed;
    Communication method including:
  12.  前記滞留データ量が所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出するステップをさらに含み、前記追加送信時刻を計算するステップにおいて、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、請求項11に記載の通信方法。 The method further includes the step of calculating, as a buffer depletion time, a time at which the accumulated data amount is estimated to be equal to or less than a predetermined threshold, and in the step of calculating the additional transmission time, The communication method according to claim 11, wherein the additional transmission time is calculated based on the reception time and the buffer depletion time.
  13.  基地局を介して端末装置にデータを送信する通信装置を制御するコンピュータに実行させるプログラムであって、
     前記端末装置から確認応答を受信する処理と、
     前記基地局と前記端末装置間の無線通信速度を算出する処理と、
     前記基地局の送信バッファに滞留しているデータ量を滞留データ量として算出する処理と、
     前記無線通信速度と前記滞留データ量と前記確認応答の受信時刻に基づき、前記滞留データ量の変動を予測する処理と、
     前記変動に基づいて、前記端末装置に対する新規データの送信を行う時刻を追加送信時刻として計算する処理と、
     少なくとも前記追加送信時刻を経過した場合を条件に、所定の送信レートで、前記端末装置に前記新規データの送信を実施する処理と、
     を前記コンピュータに実行させるプログラム。
    A program that is executed by a computer that controls a communication apparatus that transmits data to a terminal apparatus via a base station,
    A process of receiving a confirmation response from the terminal device;
    A process of calculating a wireless communication speed between the base station and the terminal device;
    Calculating the amount of data staying in the transmission buffer of the base station as the amount of staying data;
    A process of predicting a change in the amount of stagnant data based on the wireless communication speed, the amount of stagnant data, and the reception time of the confirmation response;
    A process of calculating, as an additional transmission time, a time of transmitting new data to the terminal device based on the fluctuation;
    A process of transmitting the new data to the terminal device at a predetermined transmission rate, provided that at least the additional transmission time has passed;
    A program that causes the computer to execute.
  14.  前記滞留データ量が所定の閾値以下となると推定される時刻をバッファ枯渇時刻として算出する処理をさらに前記コンピュータに実行させ、前記追加送信時刻を計算する処理において、自通信装置と前記端末装置間の送信遅延と、前記受信時刻と、前記バッファ枯渇時刻とに基づいて、前記追加送信時刻を算出する、請求項13に記載のプログラム。 In the processing of calculating the additional transmission time by further causing the computer to execute, as the buffer exhaustion time, the process of calculating the time when the accumulated data amount is estimated to be equal to or less than a predetermined threshold, the process between the own communication device and the terminal device The program according to claim 13, wherein the additional transmission time is calculated based on a transmission delay, the reception time, and the buffer depletion time.
PCT/JP2019/001756 2018-01-25 2019-01-22 Communication device, communication system, communication method, and program WO2019146563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567068A JP6973511B2 (en) 2018-01-25 2019-01-22 Communication equipment, communication systems, communication methods and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-010571 2018-01-25
JP2018010571 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019146563A1 true WO2019146563A1 (en) 2019-08-01

Family

ID=67395434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001756 WO2019146563A1 (en) 2018-01-25 2019-01-22 Communication device, communication system, communication method, and program

Country Status (2)

Country Link
JP (1) JP6973511B2 (en)
WO (1) WO2019146563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058187A1 (en) * 2021-10-07 2023-04-13 日本電信電話株式会社 Control system, control method, controller, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528494A (en) * 2009-05-29 2012-11-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド System and method for relay node flow control in a wireless communication system
JP2015006008A (en) * 2014-10-08 2015-01-08 株式会社東芝 Radio communication terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528494A (en) * 2009-05-29 2012-11-12 ホアウェイ・テクノロジーズ・カンパニー・リミテッド System and method for relay node flow control in a wireless communication system
JP2015006008A (en) * 2014-10-08 2015-01-08 株式会社東芝 Radio communication terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058187A1 (en) * 2021-10-07 2023-04-13 日本電信電話株式会社 Control system, control method, controller, and program

Also Published As

Publication number Publication date
JP6973511B2 (en) 2021-12-01
JPWO2019146563A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US10594596B2 (en) Data transmission
US9674095B2 (en) Communication node
US9655003B2 (en) Systems and methods for improved wireless interface aggregation
US9356878B2 (en) Method for avoiding network congestion and an apparatus thereof
EP1568180B1 (en) A method for enhancing transmission quality of streaming media
US8284667B2 (en) Efficient flow control in a radio network controller (RNC)
KR102476192B1 (en) Packet transmission method and related device
KR100600607B1 (en) A apparatus for ARQ controlling in wireless portable internet system and method therof
JP2020520567A (en) Network node and method for packet data convergence protocol (PDCP) reordering
US9167473B2 (en) Communication processing method, apparatus and gateway device
US20170027016A1 (en) Communication device, wireless communication device, and communication method
WO2014069642A1 (en) Communication device, transmission data output control method, and program for same
CN109314608A (en) A kind of data transmission method, the network equipment and terminal device
CN113872726A (en) Method, device and system for adjusting sending rate in near field communication scene
KR20170142513A (en) Apparatus for multinet aggregation transmission, and packet scheduling method thereof
US20080285447A1 (en) Session Relaying Apparatus, Session Relay Method, and Session Relay Program
WO2019146563A1 (en) Communication device, communication system, communication method, and program
JP2002281047A (en) Packet communication controller and its method, data communication repeater system and its method, and network system
JP3953343B2 (en) Wireless packet communication device and wireless packet communication method
EP2890179B1 (en) Method, apparatus and computer program for data transfer
US9385931B1 (en) Determining a reordering timer
Kumar et al. Device‐centric data reordering and buffer management for mobile Internet using Multipath Transmission Control Protocol
US20210127301A1 (en) Application Notifications from Network for Throughput and Flow Control Adaptation
KR20140110184A (en) Fast throughput recovery method using MPTCP and mobile terminal using the method
JP5324038B2 (en) Communication control device, wireless communication device, communication control method, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743567

Country of ref document: EP

Kind code of ref document: A1