WO2019146362A1 - Electronic device, power transmission device, and power transmission method - Google Patents

Electronic device, power transmission device, and power transmission method Download PDF

Info

Publication number
WO2019146362A1
WO2019146362A1 PCT/JP2018/047966 JP2018047966W WO2019146362A1 WO 2019146362 A1 WO2019146362 A1 WO 2019146362A1 JP 2018047966 W JP2018047966 W JP 2018047966W WO 2019146362 A1 WO2019146362 A1 WO 2019146362A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
radio wave
transmission device
electronic device
power
Prior art date
Application number
PCT/JP2018/047966
Other languages
French (fr)
Japanese (ja)
Inventor
巧 笹島
辻 拓也
輝 小山
啓 嶋本
浩太 鈴木
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2019146362A1 publication Critical patent/WO2019146362A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present disclosure relates to an electronic device, a power transmission device, and a power transmission method.
  • Patent Document 1 discloses a power transmitter that supplies power to a device using microwaves.
  • the power transmission method includes the following steps.
  • the first power transmission apparatus performs power transmission by the first radio wave.
  • the second power transmission apparatus performs power transmission by the second radio wave.
  • the first power transmission apparatus controls an aspect of performing power transmission by the first radio wave based on information on the second radio wave when the electronic device can receive the first radio wave and the second radio wave.
  • the electronic device receives at least one of a first radio wave transmitting power transmission from the first power transmission device and a second radio wave transmitting power transmission from the second power transmission device.
  • the electronic device can receive the first radio wave and the second radio wave, the electronic device transmits information on the second radio wave to the first power transmission device, and requests power transmission by the first radio wave to the first power transmission device.
  • the power transmission device transmits power to at least one electronic device by the first radio wave.
  • the power transmission device transmits power by the first radio wave based on the information on the second radio wave, when the electronic device can receive the second radio wave transmitting the first radio wave and the power transmission from the other power transmission device. Control the mode of operation.
  • the present disclosure relates to providing a highly convenient electronic device, a power transmission device, and a power transmission method. According to one embodiment, a highly convenient electronic device, a power transmission device, and a power transmission method can be provided.
  • a highly convenient electronic device, a power transmission device, and a power transmission method can be provided.
  • FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1 according to an embodiment.
  • the power transmission system 1 which concerns on one Embodiment is demonstrated.
  • a power transmission system 1 includes a plurality of power transmission devices, as shown in FIG. FIG. 1 illustrates a first power transmission device 10 and a second power transmission device 20 as an example of the plurality of power transmission devices.
  • the power transmission system 1 may further include other power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example.
  • the first power transmission device 10 and the second power transmission device 20 wirelessly transmit power to at least one electronic device 100 located within a predetermined range.
  • a range in which the first power transmission apparatus 10 can transmit power wirelessly is shown as a first range A1.
  • the first range A1 is shown as a range surrounded by an alternate long and short dash line.
  • a range in which the second power transmission apparatus 20 can wirelessly transmit power is shown as a second range A2.
  • the second range A2 is shown as a range surrounded by a two-dot chain line.
  • the power transmission system 1 which concerns on one Embodiment contains at least 1 electronic device 100, as shown in FIG. FIG. 1 illustrates electronic devices 100A to 100E as an example of at least one electronic device 100.
  • the electronic devices 100A to 100E are not particularly distinguished, they may be collectively referred to as the “electronic device 100” as appropriate.
  • the first power transmission apparatus 10 can wirelessly transmit power to the electronic devices 100A, 100B, 100C, and 100D located in the first range A1.
  • the second power transmission apparatus 20 can wirelessly transmit power to the electronic device 100E located in the second range A2.
  • the first power transmission apparatus 10 wirelessly transmits power to at least one electronic device 100 located within the first range A1.
  • the second power transmission apparatus 20 wirelessly transmits power to at least one electronic device 100 located in the second range A2.
  • the number of electronic devices 100 located in the first range A1 and the second range A2 may be any number.
  • the first power transmission device 10 and the second power transmission device 20 can be connected wirelessly within a predetermined range in which radio waves reach each other. Thereby, the 1st power transmission device 10 and the 2nd power transmission device 20 can communicate by radio.
  • the first power transmission device 10 and the second power transmission device 20 may be connected by wire using a predetermined cable or the like.
  • FIG. 1 the connection between the first power transmission device 10 and the second power transmission device 20 is not shown.
  • a communication method conforming to any of various communication standards may be adopted for the connection.
  • communication between the first power transmission device 10 and the second power transmission device 20 may be performed by Wi-Fi or the like.
  • communication between the first power transmission device 10 and the second power transmission device 20 may be performed by Bluetooth (registered trademark), Z-wave, ZigBee, or the like.
  • wireless communication between the first power transmission device 10 and the second power transmission device 20 may be performed using radio waves for performing the above-described power transmission. That is, in one embodiment, each of the first power transmission apparatus 10 and the second power transmission apparatus 20 may use radio waves for communication other than radio waves for power transmission, or radio waves for power transmission The radio wave for communication may be the same.
  • a first range A1 illustrated in FIG. 1 indicates a range within which radio waves transmitted by the first power transmission device 10 can reach, and a second range A2 illustrated in FIG. The range may be indicated. In this case, there is no overlap between the first range A1 and the second range A2 shown in FIG. Therefore, the first power transmission device 10 can not wirelessly transmit power to the electronic device 100E located in the second range A2.
  • the 2nd power transmission apparatus 20 can not communicate by radio
  • a platform of a railway station or a station yard is assumed.
  • a plurality of power transmission devices such as the first power transmission device 10 and the second power transmission device 20 may be installed at a predetermined position of a station, for example, as a power feeding device such as a power transmission station.
  • at least one electronic device 100 may be various electronic devices, such as a smartphone, carried by a user of the station.
  • the user of the station can perform wireless power supply without connecting a power supply cable to a connector to various electronic devices such as a smartphone carried by each user.
  • the wirelessly supplied power may be charged in storage batteries incorporated in various electronic devices, or may be consumed directly without being stored in various electronic devices.
  • the power transmission system 1 shown in FIG. 1 it is assumed that at least a part of a security system such as a home or an office is configured.
  • a security system such as a home or an office
  • a plurality of power transmission devices such as the first power transmission device 10 and the second power transmission device 20 may be installed at a predetermined position (for example, a feeding spot) in a home or office.
  • at least one electronic device 100 may be an IoT sensor group or an IoT tag for crime prevention.
  • the wirelessly-charged power may be charged in a storage battery incorporated in the IoT sensor group or the IoT tag, or may be consumed directly in the IoT sensor group or the IoT tag.
  • At least one electronic device 100 illustrated in FIG. 1 receives power transmitted from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, for example.
  • electronic device 100 can be any electronic device that requires power.
  • the electronic device 100 includes, for example, a smartphone, a mobile phone, a tablet terminal, a notebook PC, an electronic dictionary, an electronic book reader, a music player, an electronic musical instrument, a pager, a game terminal, a clock, a display device, an IoT unit, an IoT sensor, an IoT tag, Etc.
  • the electronic device 100 may be, for example, a radio, a remote control, a mouse, a drone, an IC card reader, a cash register, a vending machine, or the like.
  • the electronic device 100 is not limited to the above-described one, and can be any electronic device that can be driven by the power transmitted from the power transmission device such as the first power transmission device 10 and the second power transmission device 20.
  • electronic device 100 may have a shape that can be accommodated, for example, in a battery holder of another electronic device.
  • the electronic device 100 may have an external appearance, for example, in the form of a dry cell or a button cell.
  • the other electronic device incorporating the electronic device 100 can be driven by the power supplied from the electronic device 100.
  • FIG. 2 is a functional block diagram showing a schematic configuration of the electronic device 100.
  • the electronic device 100 will be described. Since the electronic device 100 can be various devices as described above, the description of functions specific to each of the various devices is omitted.
  • functions having high relevance to the function of receiving power transmitted from the power transmission device such as the first power transmission device 10 and the second power transmission device 20 will be mainly described. Also, in the following, more detailed description will be omitted as appropriate for items that are generally known for receiving power that is transmitted by wireless.
  • the electronic device 100 receives wireless power from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, for example. Specifically, the electronic device 100 receives an electromagnetic wave for power supply from, for example, the first power transmission device 10 and / or the second power transmission device 20. In the electronic device 100, the received electromagnetic waves are converted into direct current power. Thus, the electronic device 100 receives wireless power.
  • a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20.
  • the electronic device 100 receives an electromagnetic wave for power supply from, for example, the first power transmission device 10 and / or the second power transmission device 20.
  • the received electromagnetic waves are converted into direct current power.
  • the electronic device 100 receives wireless power.
  • the electronic device 100 includes a power receiving unit 120, a communication unit 121, a storage unit 130, a control unit 131, and a storage unit 140.
  • Power reception unit 120 receives wireless power. Specifically, the power reception unit 120 receives wireless power by generating power based on an electromagnetic wave received from the outside based on the control of the control unit 131.
  • the power receiving unit 120 includes a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal is connected to the terminal on the positive electrode side of each functional unit of the electronic device 100.
  • the negative electrode terminal is connected to the terminal on the negative electrode side of each functional unit of the electronic device 100.
  • the power receiving unit 120 supplies the generated electric power to each functional unit of the electronic device 100 through the positive electrode terminal and the negative electrode terminal.
  • the potential difference between the positive electrode terminal and the negative electrode terminal may be, for example, a potential difference according to the electronic device 100 to which power is supplied.
  • the electronic device 100 can supply the power received by the power receiving unit 120 to each functional unit of the electronic device 100.
  • the power receiving unit 120 includes a power receiving antenna 120A and a rectifier circuit 120B.
  • the power receiving antenna 120A receives electromagnetic waves from power transmission devices such as the first power transmission device 10 and the second power transmission device 20.
  • the rectifier circuit 120B converts the electromagnetic wave received by the power receiving antenna 120A into DC power.
  • the rectifier circuit 120B supplies the converted direct current power to the electronic device 100 through the positive electrode terminal and the negative electrode terminal.
  • the communication unit 121 performs wireless communication with an external device based on the control of the control unit 131.
  • the communication unit 121 may communicate with power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example. Also, the communication unit 121 may communicate with another electronic device 100.
  • the communication unit 121 may communicate with other electronic devices other than the other electronic device 100.
  • the electronic device 100 may perform wireless communication using the power receiving antenna 120A instead of the communication unit 121.
  • the communication unit 121 may transmit a power transmission request for requesting power transmission to power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example.
  • the storage unit 130 can be configured by a semiconductor memory, a magnetic memory, or the like.
  • the storage unit 130 stores various information and / or programs for operating the electronic device 100.
  • the storage unit 130 may also function as a work memory.
  • the storage unit 130 may store information received from a power transmission device such as the first power transmission device 10 or the second power transmission device 20, for example.
  • the control unit 131 is a processor that controls and manages the entire electronic device 100, including the functional blocks that constitute the electronic device 100.
  • the control unit 131 is configured of a processor such as a central processing unit (CPU) that executes a program defining a control procedure, or a dedicated processor specialized for processing of each function.
  • the control unit 131 may control various other functional units that constitute the electronic device 100.
  • Power storage unit 140 is electrically connected to the positive electrode terminal and the negative electrode terminal of power reception unit 120. Power storage unit 140 can store the power not supplied to electronic device 100 among the power received by power reception unit 120. For example, when the electronic device 100 can not receive wireless power from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, the power stored by the power storage unit 140 can be received via the positive electrode terminal and the negative electrode terminal. , May be supplied to the electronic device 100.
  • FIG. 3 is a functional block diagram showing a schematic configuration of a power transmission device such as the first power transmission device 10 and the second power transmission device 20.
  • the first power transmission device 10 will be described as a representative example.
  • the second power transmission device 20 and the other power transmission devices can also be configured similarly to the first power transmission device 10.
  • more detailed description of matters generally known for wireless power transmission will be omitted.
  • the first power transmission device 10 is, for example, a home gateway or a wireless power transmission system, and is installed, for example, indoors.
  • the first power transmission device 10 transmits, for example, wireless power to the power reception unit 120 of the electronic device 100.
  • the first power transmission device 10 generates an electromagnetic wave for power supply.
  • the first power transmission apparatus 10 transmits the generated electromagnetic waves to the electronic device 100 in the electronic device 100 located, for example, in the same room.
  • the first power transmission device 10 transmits an electromagnetic wave to the power reception unit 120 provided in each of the electronic devices 100A, 100B, 100C, and 100D.
  • the second power transmission apparatus 20 transmits an electromagnetic wave to the power receiving unit 120 included in the electronic device 100E.
  • the first power transmission apparatus 10 may perform authentication with at least one electronic device 100, and may transmit an electromagnetic wave for power supply only to the power receiving unit 120 of the electronic device 100 for which the authentication is successful. This can prevent the first power transmission device 10 from supplying power to an unintended electronic device (e.g., an electronic device in a neighboring house). On the other hand, the first power transmission apparatus 10 may transmit an electromagnetic wave for power supply to the power reception unit 120 of the electronic device 100 without performing authentication with at least one electronic device 100. Thereby, the first power transmission device 10 can be installed in a public place, and the first power transmission device 10 can supply power to any electronic device.
  • the first power transmission device 10 includes a control unit 40, a storage unit 42, a power transmission unit 50, an amplifier 52, a power transmission antenna 54, a communication unit 60, an amplifier 62, and a communication antenna 64.
  • the control unit 40 is a processor that controls and manages the entire first power transmission device 10, including the functional blocks of the first power transmission device 10.
  • the control unit 40 is configured of a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure, or a dedicated processor specialized for the processing of each function.
  • a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure, or a dedicated processor specialized for the processing of each function.
  • the storage unit 42 can be configured by a semiconductor memory, a magnetic memory, or the like.
  • the storage unit 42 stores various information and / or programs for operating the first power transmission apparatus 10 and the like.
  • the storage unit 42 may also function as a work memory.
  • the storage unit 42 may store, for example, identification information or the like of the power reception unit 120 and / or the electronic device 100 that has performed authentication.
  • the storage unit 42 may store information as to whether or not radio waves from another power transmission device such as the second power transmission device 20 have been received, as described later.
  • the storage unit 42 may store various information related to the other power transmission device.
  • the storage unit 42 may store, for example, information on an operation and / or process performed by the first power transmission device 10 when a radio wave from another power transmission device such as the second power transmission device 20 is received.
  • the first power transmission device 10 may receive various information from the second power transmission device 20 or the electronic device 100 and store the information in the storage unit 42.
  • the power transmission unit 50 transmits wireless power. Specifically, based on the control of the control unit 40, the power transmission unit 50 transmits wireless power by outputting, for example, the power supplied from a power supply such as a distribution facility as an electromagnetic wave.
  • a power supply such as a distribution facility as an electromagnetic wave.
  • the power transmission unit 50 is connected to the amplifier 52.
  • the amplifier 52 is a power amplifier that amplifies the radio wave output from the power transmission unit 50.
  • the amplifier 52 is connected to the power transmission antenna 54.
  • the power transmission antenna 54 transmits the radio wave amplified by the amplifier 52 to the power reception unit 110 of at least one electronic device 100.
  • the power transmission antenna 54 may transmit the radio wave amplified by the amplifier 52 to another power transmission device such as the second power transmission device 20, for example.
  • the power transmission unit 50 appropriately includes, for example, a functional unit such as an oscillator necessary for transmitting wireless power. In this case, the oscillator transmits wireless power by transmitting an electromagnetic wave from the power transmission antenna 54 based on the power supplied from the power supply.
  • the power transmission unit 50 performs power transmission by radio waves.
  • the radio wave for power transmission transmitted by the power transmission unit 50 of the first power transmission device 10 is appropriately referred to as a first radio wave R1. That is, the power transmission unit 50 of the first power transmission device 10 transmits power by the first radio wave R1.
  • a radio wave for power transmission transmitted by the power transmission unit 50 of the second power transmission device 20 will be appropriately referred to as a second radio wave R2. That is, the power transmission unit 50 of the first power transmission device 10 transmits power by the second radio wave R2.
  • the communication unit 60 performs wireless communication with an external device based on the control of the control unit 40.
  • the communication unit 60 communicates with at least one of (a communication unit of) another power transmission apparatus such as the second power transmission apparatus 20 and (a communication unit 121 of) at least one electronic device 100.
  • the communication unit 60 may receive radio waves transmitted from (a communication unit of) another power transmission device such as the second power transmission device 20.
  • the communication unit 60 may also receive, for example, a power transmission request transmitted from (the communication unit 121 of) the electronic device 100.
  • the communication unit 60 is connected to the amplifier 62.
  • the amplifier 52 is a power amplifier that amplifies the radio wave output from the communication unit 60.
  • the amplifier 62 is connected to the communication antenna 64.
  • the communication antenna 64 is at least one of (a communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20 and at least one of (a communication unit 121 of) the at least one electronic device 100. Send to
  • the communication unit 60 may more specifically include a transmitter 61A and a receiver 62B.
  • the transmitter 61A transmits the signal supplied from the controller 40 via the amplifier 62 and the communication antenna 64. That is, the transmitting unit 61A transmits the signal relating to the communication through the amplifier 62 and the communication antenna 64 to (the communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20, and at least one electronic device 100 (of It transmits to at least one of the communication units 121).
  • the receiver 61 B also receives a signal via the communication antenna 64 and the amplifier 62, and supplies the received signal to the controller 40.
  • the receiving unit 61B relates to the communication transmitted by at least one of (the communication unit 60 of (the communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20 and (the communication unit 121 of) the at least one electronic device 100.
  • a signal is received via communication antenna 64 and amplifier 62.
  • the receiving unit 61B may receive a signal related to communication from the communication antenna 64 without passing through the amplifier 62.
  • the communication unit 60 may communicate by a communication method such as Bluetooth (registered trademark), Z-wave, ZigBee, and Wi-Fi.
  • the receiver 61B receives radio waves for communication transmitted from other devices.
  • Each of the control unit 40, the power transmission unit 50, and the communication unit 60 may include at least one processor, such as a CPU, to provide control and processing capabilities for performing various functions.
  • Each of control unit 40, power transmission unit 50, and communication unit 60 may be realized collectively by one processor, may be realized by several processors, or may be realized by respective processors. Good.
  • the processor may be implemented as a single integrated circuit.
  • the integrated circuit is also referred to as an integrated circuit (IC).
  • the processor may be implemented as a plurality of communicatively coupled integrated circuits and discrete circuits.
  • the processor may be implemented based on various other known techniques.
  • each of the control unit 40, the power transmission unit 50, and the communication unit 60 may be configured as, for example, a CPU and a program executed by the CPU.
  • first power transmission device 10 may include, for example, a power storage unit configured by a storage battery or the like. In this case, the first power transmission device 10 can store the power supplied from the power supply.
  • the first power transmission apparatus 10 has been described above, but as described above, the second power transmission apparatus 20 may have the same or substantially the same configuration and function.
  • the range in which the first power transmission device 10 can perform power transmission by radio waves is indicated as a first range A1
  • the range in which the second power transmission device 20 can perform power transmission by radio waves is the second It showed as range A2.
  • the first power transmission apparatus 10 can perform electric power transmission to the electronic devices 100A, 100B, 100C, and 100D located in the first range A1.
  • the first power transmission device 10 can not transmit power by radio waves to the electronic device 100E located outside the first range A1.
  • the 2nd power transmission apparatus 20 can transmit electric power with an electromagnetic wave with respect to the electronic device 100E located in 2nd range A2.
  • the second power transmission device 20 can not transmit electric power by radio waves to the electronic devices 100A, 100B, 100C, and 100D located outside the second range A2.
  • the reach of the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 does not overlap. Therefore, the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 do not interfere, and there is no portion where the radio wave intensity becomes relatively high. Therefore, in such a case, there are few concerns such as a decrease in transmission efficiency and a failure in communication.
  • FIG. 4 is a diagram for explaining the operation of the power transmission system 1 according to an embodiment.
  • FIG. 4 is a diagram showing an example in which the first power transmission device 10 and the second power transmission device 20 in the power transmission system 1 are arranged to be different from those in FIG. 1. The description of FIG. 4 that is similar to that of FIG. 1 will be omitted as appropriate.
  • the relationship between the ranges reached by radio waves transmitted from the plurality of power transmission devices such as the relationship between the first range A1 and the second range A2 shown in FIG. You can change it by Also, for example, even if there is no change in the number of installed power transmission devices in the power transmission system, the positions of the plurality of power transmission devices are relatively changed, thereby changing the relationship of the reach of radio waves transmitted from the plurality of power transmission devices. It can. In particular, when at least one of the first power transmission device 10 and the second power transmission device 20 is configured to be movable, the relationship between the reach of radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 is easy. Can change to
  • the ranges reached by radio waves respectively transmitted from the first power transmission device 10 and the second power transmission device 20 partially overlap. That is, in FIG. 4, the first range A1 in which the first power transmission device 10 can perform power transmission by radio waves and the second range A2 in which the second power transmission device 20 can perform power transmission by radio waves are partial. Overlap.
  • the electronic devices 100C and 100D are included in both the first range A1 and the second range A2. Therefore, in the example illustrated in FIG. 4, the electronic devices 100C and 100D can receive radio waves respectively transmitted from both the first power transmission device 10 and the second power transmission device 20.
  • the power transmission system 1 includes the first power transmission device 10 and the second power transmission device 20, and at least one electronic device 100. Also, at least one of the electronic devices 100 can receive at least one of the first radio wave R1 transmitted from the first power transmission device 10 and the second radio wave R2 transmitted from the second power transmission device 20, respectively. Do.
  • FIG. 5 is a flowchart illustrating an example of the operation of the first power transmission device 10 according to an embodiment.
  • FIG. 5 illustrates an operation when the first power transmission apparatus 10 according to an embodiment performs power transmission by the first radio wave R1 (for example, to at least one electronic device 100).
  • the first power transmission device 10 according to an embodiment performs power transmission by the first radio wave R1 when, for example, the first power transmission device 10 starts up by turning on the switch of the first power transmission device 10 or the like. You may start the action.
  • the control unit 40 of the first power transmission device 10 determines whether communication with the communication unit 121 of at least one electronic device 100 is possible (step S1).
  • the electronic device 100 determined in step S1 whether communication is possible or not can receive the first radio wave R1 transmitted from the first power transmission device 10. That is, in step S1, it is determined whether or not the first power transmission device 10 can communicate with any one of the electronic devices 100 that can receive the first radio wave R1 transmitted from the first power transmission device 10.
  • the electronic devices 100A, 100B, 100C, and 100D located in the first range A1 are the electronic devices 100 capable of receiving the first radio wave R1 transmitted from the first power transmission device 10.
  • the control unit 40 of the first power transmission device 10 determines whether communication with any one of the electronic devices 100A, 100B, 100C, and 100D is possible.
  • the first power transmission device 10 when the communicable range of the first power transmission device 10 is the same as the first range A1 to which power can be transmitted from the first power transmission device 10, the first power transmission device 10 includes the electronic devices 100A, 100B, 100C, and 100D. Both can communicate.
  • the communicable range of the first power transmission device 10 when the communicable range of the first power transmission device 10 is not the same as the first range A1 to which power can be transmitted from the first power transmission device 10, the first power transmission device 10 is any of the electronic devices 100A, 100B, 100C, 100D. Even communication is not always possible.
  • step S1 When it is not determined in step S1 that any electronic device 100 can communicate, the control unit 40 of the first power transmission device 10 repeats the process of step S1. That is, in this case, the control unit 40 of the first power transmission device 10 stands by until it is determined that communication with any electronic device 100 is possible. On the other hand, when it is determined in step S1 that communication with any one of the electronic devices 100 is possible, the control unit 40 of the first power transmission device 10 performs the process of step S2.
  • step S2 the control unit 40 of the first power transmission device 10 communicates with the electronic device 100 determined to be communicable in step S1, and the electronic device 100 can receive the second radio wave R2 from the second power transmission device 20. It is determined whether or not.
  • the electronic device 100 determined to be communicable in step S1 can receive the first radio wave R1 transmitted from the first power transmission device 10 as described above.
  • step S2 it is determined whether such an electronic device 100 can also receive the second radio wave R2 transmitted from the second power transmission device 20. That is, in step S2, the electronic device 100 with which the first power transmission device 10 has communicated is transmitted by the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20). And it is determined whether the second radio wave R2) can be received.
  • each of the electronic devices 100C and 100D receives the plurality of radio waves (the first radio wave R1 and the first radio wave R1) transmitted from the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20). It is determined that the two radio waves R2) can be received.
  • the electronic devices 100A and 100B are included in the first range A1, but in the second range A2.
  • each of the electronic devices 100A and 100B is configured to transmit the plurality of radio waves (the first radio wave R1 and the first radio wave R1) transmitted from the plurality of power transmission devices (the first It is not determined that the two radio waves R2) can be received.
  • the first power transmission apparatus 10 may exchange various types of information by communicating with the electronic device 100 determined to be communicable in step S1.
  • the first power transmission device 10 and the electronic device 100 may exchange positional information and the like with each other.
  • the electronic device 100 may notify the first power transmission device 10 of the number of radio waves transmitted from the power transmission device. That is, in this case, the electronic device 100 notifies the first power transmission device 10 how many radio waves transmitted from the power transmission device can be received.
  • step S3 the control unit 40 of the first power transmission device 10 performs the process of step S3.
  • step S3 the control unit 40 of the first power transmission device 10 first receives the information on the second radio wave R2 from the electronic device 100 that has communicated in step S2. Since the electronic device 100 that has communicated with the first power transmission device 10 in step S2 can receive the second radio wave R2 from the second power transmission device 20, various pieces of information on the second radio wave R2 can be used as the information on the second radio wave R2. It can be acquired.
  • the information of the second radio wave R2 includes, for example, the frequency of the second radio wave R2, the arrival direction of the second radio wave R2, the directivity of the second radio wave R2, the radio wave intensity of the second radio wave R2, and / or The amount of power of the power transmitted by the two radio waves R2 may be used as various information on the second radio wave R2.
  • step S3 the control unit 40 of the first power transmission device 10 next controls an aspect of performing power transmission from the first power transmission device 10 by the first radio wave R1, based on the received information of the second radio wave R2.
  • the control of the aspect in which power transmission is performed by the first radio wave R1 when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the strengths of the radio waves of the first radio wave R1 and the second radio wave R2 are It is a control performed to prevent it from becoming too high.
  • control of the aspect in which power transmission is performed by the first radio wave R1 includes, for example, turning on / off of power transmission by the first radio wave R1, reducing the output of the radio wave intensity of the first radio wave R1, and transmitting power
  • Various control can be performed such as reduction of the amount, change of the directivity of the first radio wave R1, change of the frequency of the first radio wave R1, and the like.
  • the control unit 40 of the first power transmission device 10 causes the first power transmission device 10 to start transmission of the first radio wave R1 in a controlled manner.
  • the power transmission unit 50 and / or the amplifier 52 are controlled (step S4).
  • the first power transmission apparatus 10 can perform power transmission to the at least one electronic device 100, for example, by the first radio wave R1 whose output is controlled.
  • at least one electronic device 100 transmitted from the first power transmission apparatus 10 can receive the first radio wave R1 whose output is controlled.
  • step S4 when it is determined in step S2 that the electronic device 100 can not receive the second radio wave R2, the control unit 40 of the first power transmission device 10 performs the process of step S4 without performing the process of step S3. That is, in step S4, the control unit 40 of the first power transmission device 10 transmits the power of the first radio wave R1 without starting the transmission of the first radio wave R1. 50 and / or the amplifier 52 are controlled. In this case, in step S4, the control unit 40 of the first power transmission device 10 transmits power of the first power transmission device 10 so that transmission is started in a (normal) power transmission mode of the first radio wave R1 determined in advance. The unit 50 and / or the amplifier 52 are controlled.
  • the first power transmission apparatus 10 can perform power transmission to, for example, at least one electronic device 100 without controlling the mode of power transmission by the first radio wave R1, that is, by the original first radio wave R1. . And at least one electronic device 100 transmitted from the first power transmission apparatus 10 can receive the first radio wave R1 in a state where the mode of power transmission by the first radio wave R1 is not controlled.
  • the control unit 40 of the first power transmission device 10 performs the first power transmission device based on the information on the second radio wave R2. 1 Control the mode of transmitting power by radio wave R1.
  • the first power transmission device 10 even if radio waves transmitted from a plurality of power transmission devices can be received as in the electronic devices 100C and 100D shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
  • the example in the case of controlling the aspect of the electromagnetic wave transmitted to the electronic device 100 from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs.
  • the second power transmission device 20 may perform the above control.
  • the relationship between the reach of the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 changes easily. Do. In addition, even if the electronic device 100 moves, the relative positions of the first power transmission device 10 and the second power transmission device 20 change. In such a case, the determination result as to whether or not the electronic device 100 can receive the radio wave transmitted from at least one of the first power transmission device 10 and the second power transmission device 20 may also change. Further, the determination result as to whether or not the electronic device 100 can communicate with at least one of the first power transmission device 10 and the second power transmission device 20 may also change.
  • the first power transmission device 10 may periodically and repeatedly perform the process as illustrated in FIG. 5. Further, in one embodiment, the first power transmission device 10 may detect the change in the position of at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100, as shown in FIG. Processing as shown in 5 may be performed. A change in the position of the first power transmission device 10, the second power transmission device 20, and the electronic device 100 is detected by at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100, and the detection result May be transmitted to the first power transmission apparatus 10. Since various known techniques can be used for position detection in this case, more detailed description will be omitted.
  • the first power transmission device 10 transmits power by the first radio wave R1. Aspects may be controlled.
  • the first power transmission device 10 transmits power even if the position of at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100 changes. It is controlled such that appropriate power transmission is performed as a whole of the system 1. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
  • step S3 of FIG. 5 when the control performed in step S3 of FIG. 5 is simultaneously performed in the first power transmission device 10 and the second power transmission device 20, depending on the arrangement of each other, it is output from both the first power transmission device 10 and the second power transmission device 20. In some cases, the output of radio waves may be reduced. In such a case, in the electronic device 100 that receives power from the first power transmission device 10 and / or the second power transmission device 20 by radio waves, the necessary power may not be received.
  • the first power transmission device 10 and the second power transmission device 20 may have predetermined priorities.
  • the priority relation thus determined in advance may be stored, for example, in the storage unit 42 of the first power transmission device 10 and / or the second power transmission device 20.
  • a higher priority than the second power transmission device 20 is predetermined.
  • step S3 it is assumed that both of the first power transmission device 10 and the second power transmission device 20 can control an aspect in which power transmission is performed by radio waves. In this case, in the first power transmission apparatus 10 with high priority, control of the aspect of performing power transmission by radio waves may not be performed.
  • control is performed such that power is transmitted by radio waves.
  • the predetermined priority is reverse, the power transmission apparatus which does not perform control of the aspect which performs power transmission with an electromagnetic wave, and the power transmission apparatus which performs control of the aspect which performs power transmission with an electromagnetic wave are reverse.
  • each of the plurality of power transmission devices is controlled such that appropriate power transmission is performed as a whole Be done. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
  • FIG. 6 is a flowchart for explaining an example of control performed in step S3 shown in FIG. 6 shows a plurality of radio waves (first radio waves R1 and R1) transmitted by the electronic device 100 from the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20) in step S2 of the flowchart shown in FIG. A process performed when it is determined that the second radio wave R2) can be received is shown.
  • the control unit 40 of the first power transmission device 10 determines whether the amount of power transmission by the second radio wave R2 transmitted from the second power transmission device 20 is larger than a predetermined value. (Step S11).
  • the amount of power transmission of the second radio wave R2 transmitted from the second power transmission apparatus 20 may be received as information of the second radio wave R2 from the electronic device 100 communicated in step S2 shown in FIG.
  • the control unit 40 of the first power transmission device 10 may store, for example, the power amount of the power transmission by the second radio wave R2 received in this manner in the storage unit 42.
  • the predetermined value of the amount of power to be compared at the time of the determination in step S11 may be stored in the storage unit 42 in advance appropriately set.
  • the control part 40 of the 1st power transmission apparatus 10 may calculate such a predetermined value suitably.
  • step S11 the amount of power transmission of the second radio wave R2 transmitted from the second power transmission device 20 and the amount of power transmission of the first radio wave R1 transmitted from the first power transmission device 10 It may be determined whether or not the sum of is larger than a predetermined value.
  • step S11 When the amount of power transmission by the second radio wave R2 is larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 reduces the amount of power that the first power transmission device 10 transmits by the first radio wave R1. (Step S12).
  • the control unit 40 may control the power transmission unit 50 and / or the amplifier 52 so as to reduce the amount of power transmitted from the power transmission antenna 54 by the first radio wave R1.
  • the control unit 40 may reduce the amount of power transmitted by the first radio wave R1 by a predetermined degree.
  • the correlation between the predetermined value of the electric energy and the degree to which the electric energy of the electric power transmitted by the first radio wave R1 is reduced may be stored in advance in the storage unit 42 or externally by the receiving unit 61B or the like. It may be received from a server or the like. The correlation may be calculated by the control unit 40 from the amount of power transmission by the second radio wave R ⁇ b> 2 based on a predetermined arithmetic expression.
  • step S12 the control unit 40 determines the extent to which the amount of power of the power transmitted by the first radio wave R1 is reduced according to the extent to which the amount of power transmission by the second radio wave R2 exceeds the predetermined value. It is also good.
  • control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
  • the electronic device 100 when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the amount of power transmitted by the second radio wave R2 is greater than a predetermined value in the first power transmission device 10 When it is large, the aspect of transmitting power by the first radio wave R1 may be controlled. Further, in this case, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the first power transmission device 10 may control to reduce the amount of power transmission by the first radio wave R1.
  • the amount of power transmitted by the second radio wave R2 when the amount of power transmitted by the second radio wave R2 is larger than a predetermined value, that is, relatively large, the amount of power transmission by the first radio wave R1 is reduced.
  • the amount of power transmitted by the second radio wave R2 when the amount of power transmitted by the second radio wave R2 is not larger than a predetermined value, that is, relatively large, the amount of power transmission by the first radio wave R1 is I will not lower it.
  • the first power transmission device 10 even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected.
  • the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
  • the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs.
  • the second power transmission device 20 may perform the above control.
  • step S11 may be skipped. That is, when the electronic device 100 can receive a plurality of radio waves transmitted from a plurality of power transmission devices in step S2 shown in FIG. 5, the power of power transmission by the first radio wave R1 as in step S12 shown in FIG. The amount may be reduced.
  • FIG. 7 is a flow chart for explaining another example of control performed in step S3 shown in FIG. Also in FIG. 7, in step S2 of the flowchart illustrated in FIG. 5, the electronic device 100 transmits a plurality of radio waves (first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2) can be received is shown.
  • first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2 is shown.
  • the description of the same contents as or the contents of the same contents as the description in FIG. 6 will be simplified or omitted as appropriate.
  • step S11 When the process shown in FIG. 7 starts, the control unit 40 of the first power transmission device 10 performs the same process as step S11 shown in FIG. In addition, as a simpler example, for example, the process shown in step S11 may be skipped as in the case shown in FIG.
  • the control unit 40 of the first power transmission device 10 changes the directivity of the first radio wave R1 transmitted from the first power transmission device 10 (Ste S22). Therefore, in one embodiment, the power transmission antenna 54 provided in the first power transmission device 10 may be configured by, for example, an array antenna. Further, in this case, the control unit 40 of the first power transmission device 10 controls the directivity of the first radio wave R1 transmitted from the power transmission antenna 54 (array antenna) so as to be changed by a technique such as beam forming. Specifically, the control unit 40 may appropriately control at least one of the power transmission unit 50, the amplifier 52, and the power transmission antenna 54.
  • the control unit 40 may change the directivity of the first radio wave R1 so that the output of the first radio wave R1 corresponding to the direction of the electronic device 100 is reduced.
  • the control unit 40 of the first power transmission device 10 may first determine the arrival direction of the radio wave transmitted from the electronic device 100 by following the path of the radio wave of communication transmitted from the electronic device 100.
  • the control unit 40 may also determine the direction of the electronic device 100 based on the information acquired from the electronic device 100 in step S2.
  • the control unit 40 sets at least one of the power transmission unit 50, the amplifier 52, and the power transmission antenna 54 such that the output of the first radio wave R1 in the direction corresponding to that direction is reduced. Control.
  • step S22 the control unit 40 changes the directivity of the first radio wave R1 transmitted from the first power transmission device 10.
  • Various known techniques may be used to change the directivity of radio waves by beamforming or the like using an array antenna. For this reason, more detailed description is omitted.
  • the control unit 40 may determine the directivity of the first radio wave R1 to the directivity defined in advance.
  • the correlation between the determined direction of the electronic device 100 and the direction and / or the degree of changing the directivity of the first radio wave R1 may be stored in the storage unit 42 in advance.
  • And may be received from an external server or the like by the receiving unit 61B or the like.
  • the correlation may be calculated by the control unit 40 from the determined direction of the electronic device 100 based on a predetermined arithmetic expression.
  • control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
  • the first power transmission apparatus 10 may change the directivity of the first radio wave R1 when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2. In this case, the first power transmission apparatus 10 may change the directivity of the first radio wave R1 so that the output of the first radio wave R1 corresponding to the direction of the electronic device 100 is reduced.
  • the directivity of the first radio wave R1 is changed.
  • the directivity of the first radio wave R1 is not changed when the amount of power transmitted by the second radio wave R2 is not larger than a predetermined value, that is, relatively large. .
  • the first power transmission device 10 even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected.
  • the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
  • the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs.
  • the second power transmission device 20 may perform the above control.
  • FIG. 8 is a flow chart for explaining another example of control performed in step S3 shown in FIG. Also in FIG. 8, in step S2 of the flowchart illustrated in FIG. 5, the electronic device 100 transmits a plurality of radio waves (first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2) can be received is shown.
  • first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2 is shown.
  • the description of the same content or the content of the same content as the description in FIG. 6 or FIG. 7 will be simplified or omitted as appropriate.
  • step S11 When the process shown in FIG. 8 starts, the control unit 40 of the first power transmission device 10 performs the same process as step S11 shown in FIG. In addition, as a simpler example, for example, the process shown in step S11 may be skipped as in the case shown in FIG.
  • step S32 if the control unit 40 of the first power transmission device 10 has a frequency of the first radio wave R1 transmitted from the first power transmission device 10 different from the frequency of the second radio wave R2 transmitted by the power transmission unit of the second power transmission device 20.
  • the control unit 40 sets the frequency of the first radio wave R1 to other than N Hz. Set to frequency.
  • frequencies other than N [Hz] set as the frequency of the first radio wave R1 may be defined in advance and stored in the storage unit 42.
  • the control unit 40 of the first power transmission device 10 may determine the frequency of the second radio wave R2. In addition, the control unit 40 may determine the frequency of the second radio wave R2 based on the information acquired from the electronic device 100 in step S2 illustrated in FIG. In addition, the frequency of the second radio wave R2 may be received as information of the second radio wave R2 from the electronic device 100 communicated in step S2 shown in FIG. When the frequency of the second radio wave R2 is determined, the control unit 40 determines whether the frequency of the second radio wave R2 is different from the frequency of the first radio wave R1. When the frequency of the second radio wave R2 is the same as the frequency of the first radio wave R1, the control unit 40 changes the frequency of the first radio wave R1.
  • the control unit 40 sets the frequency of the first radio wave R1 to be different from the frequency of the second radio wave R2.
  • the control unit 40 does not change the setting of the frequency of the first radio wave R1.
  • various known techniques may be used. For this reason, more detailed description is omitted.
  • control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
  • the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, if the first power transmission device 10 has a frequency of the first radio wave R1 different from that of the second radio wave R2. You may
  • the frequency of the first radio wave R1 is set to the frequency of the second radio wave R2.
  • the frequency of the first radio wave R1 is set to the second radio wave. Not different from the frequency of R2.
  • the first power transmission device 10 even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected.
  • the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
  • the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs.
  • the second power transmission device 20 may perform the above control.
  • the priority relationship between the first power transmission device 10 and another power transmission device such as the second power transmission device 20 may be determined in advance.
  • the power transmission unit 50 of the first power transmission device 10 transmits power by the first radio wave R1 based on the priority defined between the first power transmission device 10 and another power transmission device such as the second power transmission device 20, for example. Control the manner in which the
  • each functional unit can be rearranged so as not to be logically contradictory.
  • a plurality of functional units may be combined or divided into one.
  • the embodiments according to the present disclosure described above are not limited to the implementation according to each of the embodiments described respectively, and may be implemented by combining the features or omitting some of them as appropriate. .
  • the power transmission system 1 may include the third power transmission device 30, as shown in FIG.
  • the third power transmission device 30 transmits power to the at least one electronic device 100 by the third radio wave R3.
  • the first power transmission device 10 controls the mode in which power is transmitted by the first radio wave R1 based on the information on the second radio wave R2 and the information on the third radio wave R3. Good.
  • the power transmission system 1 may include the third power transmission device 30 that transmits power to the electronic device 100 by the third radio wave R3.
  • the electronic device 100 can receive the first radio wave R1, the second radio wave R2, and the third radio wave R3, the first power transmission device 10 is based on the information on the second radio wave R2 and the information on the third radio wave R3. It is also possible to control an aspect in which power transmission is performed by the first radio wave R1.
  • each of the three or more power transmission devices performs appropriate power transmission as a whole Controlled by Therefore, according to the power transmission system 1 which concerns on one Embodiment, the convenience of a power transmission system can be improved.
  • the embodiment described above is not limited to the implementation as the power transmission system 1.
  • the embodiment described above may be implemented, for example, as a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1.
  • the above-described embodiment may be implemented by, for example, a power transmission device (independently) such as the first power transmission device 10 included in the power transmission system 1.
  • the embodiment described above may be implemented as a program executed by a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1, for example.
  • the above-described embodiment may be implemented as an electronic device such as at least one electronic device 100 included in the power transmission system 1, for example.
  • the embodiment described above may be implemented, for example, as a power transmission method of a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1.

Abstract

A power transmission method including the following steps: a step in which a first power transmission device transmits power using first radio waves; a step in which a second power transmission device transmits power using second radio waves; a step in which an electronic device is made capable of receiving at least either the first radio waves or the second radio waves; and a step in which the first power transmission device controls the format in which power is transmitted using the first radio waves, on the basis of information pertaining to the second radio waves, if the electronic device is capable of receiving first radio waves and second radio waves.

Description

電子機器、送電装置、及び送電方法Electronic device, power transmission device, and power transmission method 関連出願の相互参照Cross-reference to related applications
 本出願は、2018年1月26日に日本国に特許出願された特願2018-11864の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。 This application claims the priority of Japanese Patent Application No. 2018-11864 filed on Jan. 26, 2018, the entire disclosure of which is incorporated herein by reference.
 本開示は、電子機器、送電装置、及び送電方法に関する。 The present disclosure relates to an electronic device, a power transmission device, and a power transmission method.
 従来、電磁波を用いて電子機器に電力を供給する方法が知られている。例えば、特許文献1には、マイクロ波を用いてデバイスに電力を供給する送電機が開示されている。 Conventionally, a method of supplying power to an electronic device using an electromagnetic wave is known. For example, Patent Document 1 discloses a power transmitter that supplies power to a device using microwaves.
特開2014-223018号公報JP, 2014-223018, A
 一実施形態に係る送電方法は、次のステップを含む。
 第1送電装置が、第1電波によって送電を行うステップ。
 第2送電装置が、第2電波によって送電を行うステップ。
 電子機器が、前記第1電波及び前記第2電波の少なくとも一方を受信可能にするステップ。
 前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合、前記第2電波に関する情報に基づいて、前記第1電波によって送電を行う態様を制御するステップ。
The power transmission method according to an embodiment includes the following steps.
The first power transmission apparatus performs power transmission by the first radio wave.
The second power transmission apparatus performs power transmission by the second radio wave.
Making an electronic device capable of receiving at least one of the first radio wave and the second radio wave;
The first power transmission apparatus controls an aspect of performing power transmission by the first radio wave based on information on the second radio wave when the electronic device can receive the first radio wave and the second radio wave.
 一実施形態に係る電子機器は、第1送電装置からの送電を伝送する第1電波及び第2送電装置からの送電を伝送する第2電波の少なくとも一方を受信する。
 前記電子機器は、前記第1電波及び前記第2電波を受信可能な場合、前記第2電波に関する情報を前記第1送電装置に送信し、前記第1電波による送電を前記第1送電装置に要求する。
The electronic device according to an embodiment receives at least one of a first radio wave transmitting power transmission from the first power transmission device and a second radio wave transmitting power transmission from the second power transmission device.
When the electronic device can receive the first radio wave and the second radio wave, the electronic device transmits information on the second radio wave to the first power transmission device, and requests power transmission by the first radio wave to the first power transmission device. Do.
 一実施形態に係る送電装置は、少なくとも1つの電子機器に第1電波によって送電を行う。
 前記送電装置は、前記電子機器が前記第1電波及び他の送電装置からの送電を伝送する第2電波を受信可能な場合、前記第2電波に関する情報に基づいて、前記第1電波によって送電を行う態様を制御する。
The power transmission device according to one embodiment transmits power to at least one electronic device by the first radio wave.
The power transmission device transmits power by the first radio wave based on the information on the second radio wave, when the electronic device can receive the second radio wave transmitting the first radio wave and the power transmission from the other power transmission device. Control the mode of operation.
一実施形態に係る送電システムの構成を説明する図である。It is a figure explaining composition of a power transmission system concerning one embodiment. 一実施形態に係る電子機器の概略構成の例を示すブロック図である。It is a block diagram which shows the example of schematic structure of the electronic device which concerns on one Embodiment. 一実施形態に係る送電装置の概略構成の例を示すブロック図である。It is a block diagram showing an example of a schematic structure of a power transmission device concerning one embodiment. 一実施形態に係る送電システムの動作を説明する図である。It is a figure explaining operation of a power transmission system concerning one embodiment. 一実施形態に係る送電システムの動作を説明するフローチャートである。It is a flow chart explaining operation of a power transmission system concerning one embodiment. 一実施形態に係る送電システムの動作を説明するフローチャートである。It is a flow chart explaining operation of a power transmission system concerning one embodiment. 一実施形態に係る送電システムの動作を説明するフローチャートである。It is a flow chart explaining operation of a power transmission system concerning one embodiment. 一実施形態に係る送電システムの動作を説明するフローチャートである。It is a flow chart explaining operation of a power transmission system concerning one embodiment. 一実施形態に係る送電システムの動作を説明する図である。It is a figure explaining operation of a power transmission system concerning one embodiment.
 無線を利用した送電装置を含む送電システムの普及に向けて、利便性の向上が望まれている。本開示は、利便性の高い電子機器、送電装置、及び送電方法を提供することに関する。一実施形態によれば、利便性の高い電子機器、送電装置、及び送電方法を提供することができる。以下、一実施形態について、図面を参照して説明する。 Improvement of convenience is desired for the spread of a power transmission system including a power transmission device using wireless. The present disclosure relates to providing a highly convenient electronic device, a power transmission device, and a power transmission method. According to one embodiment, a highly convenient electronic device, a power transmission device, and a power transmission method can be provided. Hereinafter, an embodiment will be described with reference to the drawings.
 図1は、一実施形態に係る送電システム1の概略構成を示す図である。以下、一実施形態に係る送電システム1について説明する。 FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1 according to an embodiment. Hereinafter, the power transmission system 1 which concerns on one Embodiment is demonstrated.
 一実施形態に係る送電システム1は、図1に示すように、複数の送電装置を含む。図1は、複数の送電装置の一例として、第1送電装置10と、第2送電装置20とを図示している。送電システム1は、例えば第1送電装置10及び第2送電装置20のような他の送電装置を、さらに含んでもよい。 A power transmission system 1 according to an embodiment includes a plurality of power transmission devices, as shown in FIG. FIG. 1 illustrates a first power transmission device 10 and a second power transmission device 20 as an example of the plurality of power transmission devices. The power transmission system 1 may further include other power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example.
 第1送電装置10及び第2送電装置20は、それぞれ、所定の範囲内に位置する少なくとも1つの電子機器100に無線で送電を行う。図1に示すように、第1送電装置10が無線で送電を行うことができる範囲(電波の届く範囲)を、第1範囲A1として示してある。図1において、第1範囲A1は1点鎖線で囲まれた範囲として示してある。また、図1に示すように、第2送電装置20が無線で送電を行うことができる範囲(電波の届く範囲)を、第2範囲A2として示してある。図1において、第2範囲A2は2点鎖線で囲まれた範囲として示してある。 The first power transmission device 10 and the second power transmission device 20 wirelessly transmit power to at least one electronic device 100 located within a predetermined range. As shown in FIG. 1, a range in which the first power transmission apparatus 10 can transmit power wirelessly (a range in which radio waves can reach) is shown as a first range A1. In FIG. 1, the first range A1 is shown as a range surrounded by an alternate long and short dash line. Further, as shown in FIG. 1, a range in which the second power transmission apparatus 20 can wirelessly transmit power (a range in which radio waves can reach) is shown as a second range A2. In FIG. 1, the second range A2 is shown as a range surrounded by a two-dot chain line.
 また、一実施形態に係る送電システム1は、図1に示すように、少なくとも1つの電子機器100を含む。図1は、少なくとも1つの電子機器100の一例として、電子機器100A~100Eを図示している。以下、電子機器100A~100Eのそれぞれを特に区別しない場合、適宜「電子機器100」と総称することがある。図1に示す例において、第1送電装置10は、第1範囲A1内に位置する電子機器100A,100B,100C,100Dに無線で送電を行うことができる。また、図1に示す例において、第2送電装置20は、第2範囲A2内に位置する電子機器100Eに無線で送電を行うことができる。このように、一実施形態において、第1送電装置10は、第1範囲A1内に位置する少なくとも1つの電子機器100に無線で送電を行う。また、一実施形態において、第2送電装置20は、第2範囲A2内に位置する少なくとも1つの電子機器100に無線で送電を行う。第1範囲A1内及び第2範囲A2内に位置する電子機器100は、それぞれ任意の数としてよい。 Moreover, the power transmission system 1 which concerns on one Embodiment contains at least 1 electronic device 100, as shown in FIG. FIG. 1 illustrates electronic devices 100A to 100E as an example of at least one electronic device 100. Hereinafter, in the case where the electronic devices 100A to 100E are not particularly distinguished, they may be collectively referred to as the “electronic device 100” as appropriate. In the example illustrated in FIG. 1, the first power transmission apparatus 10 can wirelessly transmit power to the electronic devices 100A, 100B, 100C, and 100D located in the first range A1. Further, in the example illustrated in FIG. 1, the second power transmission apparatus 20 can wirelessly transmit power to the electronic device 100E located in the second range A2. Thus, in one embodiment, the first power transmission apparatus 10 wirelessly transmits power to at least one electronic device 100 located within the first range A1. In one embodiment, the second power transmission apparatus 20 wirelessly transmits power to at least one electronic device 100 located in the second range A2. The number of electronic devices 100 located in the first range A1 and the second range A2 may be any number.
 第1送電装置10と第2送電装置20とは、互いに電波の届く所定の範囲内においては、無線で接続することができる。これにより、第1送電装置10と第2送電装置20とは、無線で通信を行うことができる。また、第1送電装置10と第2送電装置20とは、所定のケーブルなどによって有線で接続してもよい。図1においては、第1送電装置10と第2送電装置20との接続は、図示を省略してある。ここで、第1送電装置10と第2送電装置20とが無線で接続される場合、当該接続には任意の各種通信規格に準拠した通信方式を採用してよい。例えば、第1送電装置10と第2送電装置20との間の通信は、Wi-Fiなどで行ってもよい。また、例えば、第1送電装置10と第2送電装置20との間の通信は、Bluetooth(登録商標)、Z-wave、又はZigBeeなどで行ってもよい。 The first power transmission device 10 and the second power transmission device 20 can be connected wirelessly within a predetermined range in which radio waves reach each other. Thereby, the 1st power transmission device 10 and the 2nd power transmission device 20 can communicate by radio. In addition, the first power transmission device 10 and the second power transmission device 20 may be connected by wire using a predetermined cable or the like. In FIG. 1, the connection between the first power transmission device 10 and the second power transmission device 20 is not shown. Here, when the first power transmission device 10 and the second power transmission device 20 are connected wirelessly, a communication method conforming to any of various communication standards may be adopted for the connection. For example, communication between the first power transmission device 10 and the second power transmission device 20 may be performed by Wi-Fi or the like. Also, for example, communication between the first power transmission device 10 and the second power transmission device 20 may be performed by Bluetooth (registered trademark), Z-wave, ZigBee, or the like.
 一実施形態において、第1送電装置10と第2送電装置20との間の無線通信は、上述の送電を行うための電波を用いて行ってもよい。すなわち、一実施形態において、第1送電装置10及び第2送電装置20のそれぞれは、送電のための電波とは別の、通信のための電波を用いてもよいし、送電のための電波と通信のための電波とを同じにしてもよい。例えば、図1に示す第1範囲A1は、第1送電装置10が送電を行う電波の届く範囲を示し、図1に示す第2範囲A2は、第2送電装置20が通信を行う電波の届く範囲を示すとしてもよい。この場合、図1に示す第1範囲A1と第2範囲A2とは重複する部分がない。したがって、第1送電装置10は、第2範囲A2内に位置する電子機器100Eに無線で送電を行うことはできない。また、第2送電装置20は、第1範囲A1内に位置する電子機器100A,100B,100C,100Dと無線で通信を行うことはできない。さらに、第2送電装置20は、第1範囲A1内に位置する第1送電装置10とも無線で通信を行うことはできない。 In one embodiment, wireless communication between the first power transmission device 10 and the second power transmission device 20 may be performed using radio waves for performing the above-described power transmission. That is, in one embodiment, each of the first power transmission apparatus 10 and the second power transmission apparatus 20 may use radio waves for communication other than radio waves for power transmission, or radio waves for power transmission The radio wave for communication may be the same. For example, a first range A1 illustrated in FIG. 1 indicates a range within which radio waves transmitted by the first power transmission device 10 can reach, and a second range A2 illustrated in FIG. The range may be indicated. In this case, there is no overlap between the first range A1 and the second range A2 shown in FIG. Therefore, the first power transmission device 10 can not wirelessly transmit power to the electronic device 100E located in the second range A2. Moreover, the 2nd power transmission apparatus 20 can not communicate by radio | wireless with the electronic devices 100A, 100B, 100C, and 100D located in 1st range A1. Furthermore, the second power transmission device 20 can not wirelessly communicate with the first power transmission device 10 located in the first range A1.
 図1に示す送電システム1が実装される場面としては、例えば、鉄道の駅のホーム又は駅の構内などが想定される。この場合、第1送電装置10及び第2送電装置20のような複数の送電装置は、例えば送電ステーションのような給電装置として、駅の所定位置に設置されてよい。そして、この場合、少なくとも1つの電子機器100は、駅の利用者が携帯する例えばスマートフォンなどの各種の電子デバイスとしてよい。このような設置態様においては、駅の利用者は、各自が携帯する例えばスマートフォンなどの各種の電子デバイスに、給電ケーブルをコネクタに接続せずとも、無線給電を行うことができる。なお、この場合、無線給電された電力は、各種の電子デバイスに内蔵された蓄電池に充電されてもよいし、各種の電子デバイスにおいて蓄電されずに直接消費されてもよい。 As a scene where the power transmission system 1 shown in FIG. 1 is implemented, for example, a platform of a railway station or a station yard is assumed. In this case, a plurality of power transmission devices such as the first power transmission device 10 and the second power transmission device 20 may be installed at a predetermined position of a station, for example, as a power feeding device such as a power transmission station. And in this case, at least one electronic device 100 may be various electronic devices, such as a smartphone, carried by a user of the station. In such an installation mode, the user of the station can perform wireless power supply without connecting a power supply cable to a connector to various electronic devices such as a smartphone carried by each user. In this case, the wirelessly supplied power may be charged in storage batteries incorporated in various electronic devices, or may be consumed directly without being stored in various electronic devices.
 また、図1に示す送電システム1が実装される場面としては、例えば、家庭又はオフィスなどのセキュリティシステムの少なくとも一部を構成することが想定される。例えば、家庭又はオフィスなどにIoTネットワーク機器が設置されている場合、これらの機器に対する防犯用のIoTセンサ群に無線給電を行うことができる。この場合、第1送電装置10及び第2送電装置20のような複数の送電装置は、家庭又はオフィスにおける所定位置(例えば給電スポットなど)に設置されてよい。そして、この場合、少なくとも1つの電子機器100は、防犯用のIoTセンサ群又はIoTタグなどとしてよい。なお、この場合も、無線給電された電力は、IoTセンサ群又はIoTタグなどに内蔵された蓄電池に充電されてもよいし、IoTセンサ群又はIoTタグなどにおいて直接消費されてもよい。 Moreover, as a scene where the power transmission system 1 shown in FIG. 1 is implemented, for example, it is assumed that at least a part of a security system such as a home or an office is configured. For example, when an IoT network device is installed in a home or an office, it is possible to wirelessly feed the IoT sensor group for crime prevention for these devices. In this case, a plurality of power transmission devices such as the first power transmission device 10 and the second power transmission device 20 may be installed at a predetermined position (for example, a feeding spot) in a home or office. And in this case, at least one electronic device 100 may be an IoT sensor group or an IoT tag for crime prevention. Also in this case, the wirelessly-charged power may be charged in a storage battery incorporated in the IoT sensor group or the IoT tag, or may be consumed directly in the IoT sensor group or the IoT tag.
 図1に示した少なくとも1つの電子機器100は、例えば第1送電装置10及び/又は第2送電装置20のような送電装置から送電される電力を受電する。 At least one electronic device 100 illustrated in FIG. 1 receives power transmitted from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, for example.
 一実施形態において、電子機器100は、電力を必要とする任意の電子機器とすることができる。電子機器100は、例えば、スマートフォン、携帯電話、タブレット端末、ノートPC、電子辞書、電子ブックリーダ、音楽プレーヤ、電子楽器、ページャ、ゲーム端末、時計、表示装置、IoTユニット、IoTセンサ、IoTタグ、などとしてよい。また、電子機器100は、例えば、ラジオ、リモコン、マウス、ドローン、ICカードリーダ、キャッシュレジスタ、自動販売機などとしてもよい。電子機器100は、上述のものに限られず、第1送電装置10及び第2送電装置20のような送電装置から送電される電力によって駆動可能な任意の電子機器とすることができる。 In one embodiment, electronic device 100 can be any electronic device that requires power. The electronic device 100 includes, for example, a smartphone, a mobile phone, a tablet terminal, a notebook PC, an electronic dictionary, an electronic book reader, a music player, an electronic musical instrument, a pager, a game terminal, a clock, a display device, an IoT unit, an IoT sensor, an IoT tag, Etc. Also, the electronic device 100 may be, for example, a radio, a remote control, a mouse, a drone, an IC card reader, a cash register, a vending machine, or the like. The electronic device 100 is not limited to the above-described one, and can be any electronic device that can be driven by the power transmitted from the power transmission device such as the first power transmission device 10 and the second power transmission device 20.
 また、一実施形態において、電子機器100は、例えば他の電子機器の電池ホルダに収容可能な形状としてもよい。この場合、電子機器100は、外観が例えば乾電池又はボタン型電池等の形状であってもよい。そして、電子機器100を内蔵する他の電子機器は、電子機器100から供給される電力によって駆動することができる。 In one embodiment, electronic device 100 may have a shape that can be accommodated, for example, in a battery holder of another electronic device. In this case, the electronic device 100 may have an external appearance, for example, in the form of a dry cell or a button cell. The other electronic device incorporating the electronic device 100 can be driven by the power supplied from the electronic device 100.
 図2は、電子機器100の概略構成を示す機能ブロック図である。以下、電子機器100について説明する。電子機器100は、上述のように各種の機器とすることができるため、各種の機器のそれぞれに特有の機能については、説明を省略する。以下、電子機器100が備える機能のうち、第1送電装置10及び第2送電装置20のような送電装置から送電される電力を受電する機能に関連性の高い機能について、主に説明する。また、以下、無線によって送電される電力の受電について一般に知られている事項については、適宜、より詳細な説明を省略する。 FIG. 2 is a functional block diagram showing a schematic configuration of the electronic device 100. As shown in FIG. Hereinafter, the electronic device 100 will be described. Since the electronic device 100 can be various devices as described above, the description of functions specific to each of the various devices is omitted. Hereinafter, among the functions included in the electronic device 100, functions having high relevance to the function of receiving power transmitted from the power transmission device such as the first power transmission device 10 and the second power transmission device 20 will be mainly described. Also, in the following, more detailed description will be omitted as appropriate for items that are generally known for receiving power that is transmitted by wireless.
 電子機器100は、例えば第1送電装置10及び/又は第2送電装置20のような送電装置から無線電力を受電する。具体的には、電子機器100は、例えば第1送電装置10及び/又は第2送電装置20から、電力供給のための電磁波を受信する。電子機器100において、受信した電磁波は直流電力に変換される。このようにして、電子機器100は、無線電力を受電する。 The electronic device 100 receives wireless power from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, for example. Specifically, the electronic device 100 receives an electromagnetic wave for power supply from, for example, the first power transmission device 10 and / or the second power transmission device 20. In the electronic device 100, the received electromagnetic waves are converted into direct current power. Thus, the electronic device 100 receives wireless power.
 図2に示すように、電子機器100は、受電部120と、通信部121と、記憶部130と、制御部131と、蓄電部140と、を備える。 As shown in FIG. 2, the electronic device 100 includes a power receiving unit 120, a communication unit 121, a storage unit 130, a control unit 131, and a storage unit 140.
 受電部120は、無線電力を受電する。具体的には、受電部120は、制御部131の制御に基づき、外部から受信した電磁波に基づいて発電することにより、無線電力を受電する。受電部120は、正極端子と負極端子とを備える。正極端子は、電子機器100の各機能部の正極側の端子に接続される。負極端子は、電子機器100の各機能部の負極側の端子に接続される。受電部120は、発電した電力を、正極端子及び負極端子を介して、電子機器100の各機能部に供給する。正極端子と負極端子との間の電位差は、例えば電力が供給される電子機器100に応じた電位差であってよい。このようにして、電子機器100は、受電部120が受電した電力を、電子機器100の各機能部に供給することができる。 Power reception unit 120 receives wireless power. Specifically, the power reception unit 120 receives wireless power by generating power based on an electromagnetic wave received from the outside based on the control of the control unit 131. The power receiving unit 120 includes a positive electrode terminal and a negative electrode terminal. The positive electrode terminal is connected to the terminal on the positive electrode side of each functional unit of the electronic device 100. The negative electrode terminal is connected to the terminal on the negative electrode side of each functional unit of the electronic device 100. The power receiving unit 120 supplies the generated electric power to each functional unit of the electronic device 100 through the positive electrode terminal and the negative electrode terminal. The potential difference between the positive electrode terminal and the negative electrode terminal may be, for example, a potential difference according to the electronic device 100 to which power is supplied. Thus, the electronic device 100 can supply the power received by the power receiving unit 120 to each functional unit of the electronic device 100.
 受電部120は、受電アンテナ120Aと整流回路120Bとを備える。受電アンテナ120Aは、第1送電装置10及び第2送電装置20のような送電装置から、電磁波を受信する。整流回路120Bは、受電アンテナ120Aが受信した電磁波を直流電力に変換する。整流回路120Bは、変換後の直流電力を、正極端子及び負極端子を介して、電子機器100に供給する。 The power receiving unit 120 includes a power receiving antenna 120A and a rectifier circuit 120B. The power receiving antenna 120A receives electromagnetic waves from power transmission devices such as the first power transmission device 10 and the second power transmission device 20. The rectifier circuit 120B converts the electromagnetic wave received by the power receiving antenna 120A into DC power. The rectifier circuit 120B supplies the converted direct current power to the electronic device 100 through the positive electrode terminal and the negative electrode terminal.
 通信部121は、制御部131の制御に基づき、外部の機器と無線通信を行う。通信部121は、例えば第1送電装置10及び第2送電装置20のような送電装置と通信してよい。また、通信部121は、他の電子機器100と通信してもよい。また、通信部121は、他の電子機器100以外の他の電子機器と通信してもよい。電子機器100は、通信部121の代わりに、受電アンテナ120Aを用いて無線通信を行ってもよい。通信部121は、例えば第1送電装置10及び第2送電装置20のような送電装置に送電を要求する送電要求を送信してもよい。 The communication unit 121 performs wireless communication with an external device based on the control of the control unit 131. The communication unit 121 may communicate with power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example. Also, the communication unit 121 may communicate with another electronic device 100. The communication unit 121 may communicate with other electronic devices other than the other electronic device 100. The electronic device 100 may perform wireless communication using the power receiving antenna 120A instead of the communication unit 121. The communication unit 121 may transmit a power transmission request for requesting power transmission to power transmission devices such as the first power transmission device 10 and the second power transmission device 20, for example.
 記憶部130は、半導体メモリ又は磁気メモリ等で構成されることができる。記憶部130は、各種情報及び/又は電子機器100を動作させるためのプログラム等を記憶する。記憶部130は、ワークメモリとしても機能してもよい。一実施形態において、記憶部130は、例えば第1送電装置10又は第2送電装置20のような送電装置などから受信した情報を記憶してもよい。 The storage unit 130 can be configured by a semiconductor memory, a magnetic memory, or the like. The storage unit 130 stores various information and / or programs for operating the electronic device 100. The storage unit 130 may also function as a work memory. In one embodiment, the storage unit 130 may store information received from a power transmission device such as the first power transmission device 10 or the second power transmission device 20, for example.
 制御部131は、電子機器100を構成する各機能ブロックをはじめとして、電子機器100の全体を制御及び管理するプロセッサである。制御部131は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサ又は各機能の処理に特化した専用のプロセッサで構成される。また、制御部131は、電子機器100を構成する他の各種の機能部を制御してもよい。 The control unit 131 is a processor that controls and manages the entire electronic device 100, including the functional blocks that constitute the electronic device 100. The control unit 131 is configured of a processor such as a central processing unit (CPU) that executes a program defining a control procedure, or a dedicated processor specialized for processing of each function. In addition, the control unit 131 may control various other functional units that constitute the electronic device 100.
 蓄電部140は、受電部120の正極端子及び負極端子と電気的に接続される。蓄電部140は、受電部120が受電した電力のうち、電子機器100に供給されなかった電力を蓄えることができる。蓄電部140が蓄電した電力は、例えば、電子機器100が第1送電装置10及び/又は第2送電装置20のような送電装置から無線電力を受電できない場合に、正極端子及び負極端子を介して、電子機器100に供給されてよい。 Power storage unit 140 is electrically connected to the positive electrode terminal and the negative electrode terminal of power reception unit 120. Power storage unit 140 can store the power not supplied to electronic device 100 among the power received by power reception unit 120. For example, when the electronic device 100 can not receive wireless power from a power transmission device such as the first power transmission device 10 and / or the second power transmission device 20, the power stored by the power storage unit 140 can be received via the positive electrode terminal and the negative electrode terminal. , May be supplied to the electronic device 100.
 図3は、第1送電装置10及び第2送電装置20のような送電装置の概略構成を示す機能ブロック図である。以下、代表例として、第1送電装置10について説明する。第2送電装置20及び他の送電装置も、第1送電装置10と同様の構成とすることができる。以下、無線による送電について一般に知られている事項については、適宜、より詳細な説明を省略する。 FIG. 3 is a functional block diagram showing a schematic configuration of a power transmission device such as the first power transmission device 10 and the second power transmission device 20. As shown in FIG. Hereinafter, the first power transmission device 10 will be described as a representative example. The second power transmission device 20 and the other power transmission devices can also be configured similarly to the first power transmission device 10. Hereinafter, more detailed description of matters generally known for wireless power transmission will be omitted.
 第1送電装置10は、例えばホームゲートウェイ又は無線送電システム等であり、例えば屋内に設置される。第1送電装置10は、例えば電子機器100の受電部120に無線電力を送電する。具体的には、第1送電装置10は、電力供給のための電磁波を生成する。第1送電装置10は、生成した電磁波を、例えば同一屋内に位置する電子機器100内の電子機器100に送信する。図1に示す例では、第1送電装置10は、電子機器100A,100B,100C,100Dがそれぞれ備える受電部120に対して、電磁波を送信する。また、図1に示す例では、第2送電装置20は、電子機器100Eが備える受電部120に対して、電磁波を送信する。 The first power transmission device 10 is, for example, a home gateway or a wireless power transmission system, and is installed, for example, indoors. The first power transmission device 10 transmits, for example, wireless power to the power reception unit 120 of the electronic device 100. Specifically, the first power transmission device 10 generates an electromagnetic wave for power supply. The first power transmission apparatus 10 transmits the generated electromagnetic waves to the electronic device 100 in the electronic device 100 located, for example, in the same room. In the example illustrated in FIG. 1, the first power transmission device 10 transmits an electromagnetic wave to the power reception unit 120 provided in each of the electronic devices 100A, 100B, 100C, and 100D. Further, in the example illustrated in FIG. 1, the second power transmission apparatus 20 transmits an electromagnetic wave to the power receiving unit 120 included in the electronic device 100E.
 第1送電装置10は、少なくとも1つの電子機器100との間で認証を行い、認証が成功した電子機器100の受電部120に対してのみ、電力供給のための電磁波を送信してもよい。これにより、第1送電装置10が意図しない電子機器(例えば隣家の電子機器)に電力を供給することを防ぐことができる。一方、第1送電装置10は、少なくとも1つの電子機器100との間で認証を行うことなく、電子機器100の受電部120に対して、電力供給のための電磁波を送信してもよい。これにより、第1送電装置10を公共の場所に設置させ、第1送電装置10によって任意の電子機器に電力を供給することが可能になる。 The first power transmission apparatus 10 may perform authentication with at least one electronic device 100, and may transmit an electromagnetic wave for power supply only to the power receiving unit 120 of the electronic device 100 for which the authentication is successful. This can prevent the first power transmission device 10 from supplying power to an unintended electronic device (e.g., an electronic device in a neighboring house). On the other hand, the first power transmission apparatus 10 may transmit an electromagnetic wave for power supply to the power reception unit 120 of the electronic device 100 without performing authentication with at least one electronic device 100. Thereby, the first power transmission device 10 can be installed in a public place, and the first power transmission device 10 can supply power to any electronic device.
 第1送電装置10は、制御部40と、記憶部42と、送電部50と、増幅器52と、送電アンテナ54と、通信部60と、増幅器62と、通信アンテナ64と、を備える。 The first power transmission device 10 includes a control unit 40, a storage unit 42, a power transmission unit 50, an amplifier 52, a power transmission antenna 54, a communication unit 60, an amplifier 62, and a communication antenna 64.
 制御部40は、第1送電装置10の各機能ブロックをはじめとして、第1送電装置10の全体を制御及び管理するプロセッサである。制御部40は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサ又は各機能の処理に特化した専用のプロセッサで構成される。 The control unit 40 is a processor that controls and manages the entire first power transmission device 10, including the functional blocks of the first power transmission device 10. The control unit 40 is configured of a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure, or a dedicated processor specialized for the processing of each function.
 記憶部42は、半導体メモリ又は磁気メモリ等で構成されることができる。記憶部42は、各種情報及び/又は第1送電装置10を動作させるためのプログラム等を記憶する。記憶部42は、ワークメモリとしても機能してもよい。記憶部42は、例えば、認証を行った受電部120及び/又は電子機器100の識別情報等を記憶してよい。一実施形態において、記憶部42は、後述のように、例えば第2送電装置20のような他の送電装置からの電波を受信したか否かの情報を記憶してもよい。また、記憶部42は、例えば第2送電装置20のような他の送電装置からの電波を受信した場合、当該他の送電装置に関する各種情報を記憶してもよい。また、記憶部42は、例えば第2送電装置20のような他の送電装置からの電波を受信した場合に第1送電装置10が行う動作及び/又は処理に関する情報を記憶しておいてもよい。上述の場合、第1送電装置10は、第2送電装置20又は電子機器100などから各種情報を受信して、記憶部42に記憶してよい。 The storage unit 42 can be configured by a semiconductor memory, a magnetic memory, or the like. The storage unit 42 stores various information and / or programs for operating the first power transmission apparatus 10 and the like. The storage unit 42 may also function as a work memory. The storage unit 42 may store, for example, identification information or the like of the power reception unit 120 and / or the electronic device 100 that has performed authentication. In one embodiment, the storage unit 42 may store information as to whether or not radio waves from another power transmission device such as the second power transmission device 20 have been received, as described later. In addition, when receiving a radio wave from another power transmission device such as, for example, the second power transmission device 20, the storage unit 42 may store various information related to the other power transmission device. In addition, the storage unit 42 may store, for example, information on an operation and / or process performed by the first power transmission device 10 when a radio wave from another power transmission device such as the second power transmission device 20 is received. . In the case described above, the first power transmission device 10 may receive various information from the second power transmission device 20 or the electronic device 100 and store the information in the storage unit 42.
 送電部50は、無線電力を送電する。具体的には、送電部50は、制御部40の制御に基づき、例えば配電設備等の電源から供給された電力を、電磁波として出力することにより、無線電力を送電する。 The power transmission unit 50 transmits wireless power. Specifically, based on the control of the control unit 40, the power transmission unit 50 transmits wireless power by outputting, for example, the power supplied from a power supply such as a distribution facility as an electromagnetic wave.
 送電部50は、増幅器52に接続される。増幅器52は、送電部50から出力される電波を増幅するパワーアンプである。また、増幅器52は、送電アンテナ54に接続される。送電アンテナ54は、増幅器52によって増幅された電波を、少なくとも1つの電子機器100の受電部110に送信する。また、送電アンテナ54は、増幅器52によって増幅された電波を、例えば第2送電装置20のような他の送電装置に送信してもよい。送電部50は、無線電力を送電するために必要な例えば発振器のような機能部を適宜含むものとする。この場合、発振器は、電源から供給された電力に基づき、送電アンテナ54から電磁波を送信することにより、無線電力を送電する。このように、一実施形態において、送電部50は、電波による送電を行う。以下、第1送電装置10の送電部50が送信する送電のための電波を、適宜、第1電波R1と記す。すなわち、第1送電装置10の送電部50は、第1電波R1によって送電を行う。また、以下、第2送電装置20の送電部50が送信する送電のための電波を、適宜、第2電波R2と記す。すなわち、第1送電装置10の送電部50は、第2電波R2によって送電を行う。 The power transmission unit 50 is connected to the amplifier 52. The amplifier 52 is a power amplifier that amplifies the radio wave output from the power transmission unit 50. Also, the amplifier 52 is connected to the power transmission antenna 54. The power transmission antenna 54 transmits the radio wave amplified by the amplifier 52 to the power reception unit 110 of at least one electronic device 100. The power transmission antenna 54 may transmit the radio wave amplified by the amplifier 52 to another power transmission device such as the second power transmission device 20, for example. The power transmission unit 50 appropriately includes, for example, a functional unit such as an oscillator necessary for transmitting wireless power. In this case, the oscillator transmits wireless power by transmitting an electromagnetic wave from the power transmission antenna 54 based on the power supplied from the power supply. Thus, in one embodiment, the power transmission unit 50 performs power transmission by radio waves. Hereinafter, the radio wave for power transmission transmitted by the power transmission unit 50 of the first power transmission device 10 is appropriately referred to as a first radio wave R1. That is, the power transmission unit 50 of the first power transmission device 10 transmits power by the first radio wave R1. Also, hereinafter, a radio wave for power transmission transmitted by the power transmission unit 50 of the second power transmission device 20 will be appropriately referred to as a second radio wave R2. That is, the power transmission unit 50 of the first power transmission device 10 transmits power by the second radio wave R2.
 通信部60は、制御部40の制御に基づき、外部の機器と無線通信を行う。本実施形態では、通信部60は、第2送電装置20のような他の送電装置(の通信部)、及び少なくとも1つの電子機器100(の通信部121)の少なくともいずれかと通信する。一実施形態において、通信部60は、第2送電装置20のような他の送電装置(の通信部)から送信される電波を受信してもよい。また、通信部60は、例えば電子機器100(の通信部121)から送信される送電要求などを受信してもよい。 The communication unit 60 performs wireless communication with an external device based on the control of the control unit 40. In the present embodiment, the communication unit 60 communicates with at least one of (a communication unit of) another power transmission apparatus such as the second power transmission apparatus 20 and (a communication unit 121 of) at least one electronic device 100. In one embodiment, the communication unit 60 may receive radio waves transmitted from (a communication unit of) another power transmission device such as the second power transmission device 20. The communication unit 60 may also receive, for example, a power transmission request transmitted from (the communication unit 121 of) the electronic device 100.
 通信部60は、増幅器62に接続される。増幅器52は、通信部60から出力される電波を増幅するパワーアンプである。また、増幅器62は、通信アンテナ64に接続される。通信アンテナ64は、増幅器62によって増幅された電波を、第2送電装置20のような他の送電装置(の通信部60)、及び少なくとも1つの電子機器100(の通信部121)の少なくともいずれかに送信する。 The communication unit 60 is connected to the amplifier 62. The amplifier 52 is a power amplifier that amplifies the radio wave output from the communication unit 60. Also, the amplifier 62 is connected to the communication antenna 64. The communication antenna 64 is at least one of (a communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20 and at least one of (a communication unit 121 of) the at least one electronic device 100. Send to
 図3に示すように、通信部60は、より詳細には、送信部61A及び受信部62Bを備えてよい。送信部61Aは、制御部40から供給される信号を、増幅器62及び通信アンテナ64を経て送信する。すなわち、送信部61Aは、通信に係る信号を、増幅器62及び通信アンテナ64を経て、第2送電装置20のような他の送電装置(の通信部60)、及び少なくとも1つの電子機器100(の通信部121)の少なくともいずれかに送信する。また、受信部61Bは、通信アンテナ64及び増幅器62を経て信号を受信し、当該受信した信号を制御部40に供給する。すなわち、受信部61Bは、第2送電装置20のような他の送電装置(の通信部60)、及び少なくとも1つの電子機器100(の通信部121)の少なくともいずれかによって送信された通信に係る信号を、通信アンテナ64及び増幅器62を経て受信する。または受信部61Bは、通信に係る信号を、増幅器62を経ず、通信アンテナ64から受信してもよい。 As shown in FIG. 3, the communication unit 60 may more specifically include a transmitter 61A and a receiver 62B. The transmitter 61A transmits the signal supplied from the controller 40 via the amplifier 62 and the communication antenna 64. That is, the transmitting unit 61A transmits the signal relating to the communication through the amplifier 62 and the communication antenna 64 to (the communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20, and at least one electronic device 100 (of It transmits to at least one of the communication units 121). The receiver 61 B also receives a signal via the communication antenna 64 and the amplifier 62, and supplies the received signal to the controller 40. That is, the receiving unit 61B relates to the communication transmitted by at least one of (the communication unit 60 of (the communication unit 60 of) another power transmission apparatus such as the second power transmission apparatus 20 and (the communication unit 121 of) the at least one electronic device 100. A signal is received via communication antenna 64 and amplifier 62. Alternatively, the receiving unit 61B may receive a signal related to communication from the communication antenna 64 without passing through the amplifier 62.
 一実施形態において、通信部60は、例えばBluetooth(登録商標)、Z-wave、ZigBee、及びWi-Fiなどの通信方式で通信を行ってよい。このように、一実施形態において、受信部61Bは、他の機器から送信された通信のための電波を受信する。 In one embodiment, the communication unit 60 may communicate by a communication method such as Bluetooth (registered trademark), Z-wave, ZigBee, and Wi-Fi. Thus, in one embodiment, the receiver 61B receives radio waves for communication transmitted from other devices.
 制御部40、送電部50、及び通信部60のそれぞれは、種々の機能を実行するための制御及び処理能力を提供するために、例えばCPUのような、少なくとも1つのプロセッサを含んでよい。制御部40、送電部50、及び通信部60のそれぞれは、まとめて1つのプロセッサで実現してもよいし、いくつかのプロセッサで実現してもよいし、それぞれ個別のプロセッサで実現してもよい。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。一実施形態において、制御部40、送電部50、及び通信部60のそれぞれは、例えばCPU及び当該CPUで実行されるプログラムとして構成してよい。 Each of the control unit 40, the power transmission unit 50, and the communication unit 60 may include at least one processor, such as a CPU, to provide control and processing capabilities for performing various functions. Each of control unit 40, power transmission unit 50, and communication unit 60 may be realized collectively by one processor, may be realized by several processors, or may be realized by respective processors. Good. The processor may be implemented as a single integrated circuit. The integrated circuit is also referred to as an integrated circuit (IC). The processor may be implemented as a plurality of communicatively coupled integrated circuits and discrete circuits. The processor may be implemented based on various other known techniques. In one embodiment, each of the control unit 40, the power transmission unit 50, and the communication unit 60 may be configured as, for example, a CPU and a program executed by the CPU.
 図3において、第1送電装置10を構成する各機能部に供給される電力を供給する電源、及び当該電源から各機能部に電力が供給される構成などについては、図示を省略してある。また、第1送電装置10は、例えば蓄電池などにより構成される蓄電部などを備えてもよい。この場合、第1送電装置10は、電源から供給される電力を蓄えることができる。 In FIG. 3, the power supply for supplying the power supplied to the functional units constituting the first power transmission device 10 and the configuration in which the power is supplied from the power supply to the respective functional units are not shown. In addition, first power transmission device 10 may include, for example, a power storage unit configured by a storage battery or the like. In this case, the first power transmission device 10 can store the power supplied from the power supply.
 以上、第1送電装置10について説明したが、上述のように、第2送電装置20も同様又はほぼ同様の構成及び機能を備えるものとしてよい。 The first power transmission apparatus 10 has been described above, but as described above, the second power transmission apparatus 20 may have the same or substantially the same configuration and function.
 次に、一実施形態に係る送電システム1の動作について説明する。 Next, the operation of the power transmission system 1 according to an embodiment will be described.
 まず、送電システム1における第1送電装置10及び第2送電装置20の配置の一例について説明する。上述のように、図1において、第1送電装置10が電波による送電を行うことができる範囲を第1範囲A1として示し、第2送電装置20が電波による送電を行うことができる範囲を第2範囲A2として示した。 First, an example of arrangement of the first power transmission device 10 and the second power transmission device 20 in the power transmission system 1 will be described. As described above, in FIG. 1, the range in which the first power transmission device 10 can perform power transmission by radio waves is indicated as a first range A1, and the range in which the second power transmission device 20 can perform power transmission by radio waves is the second It showed as range A2.
 この場合、図1に示す例において、第1送電装置10は、第1範囲A1内に位置する電子機器100A,100B,100C,100Dに対して電波による送電をすることができる。一方、図1に示す例において、第1送電装置10は、第1範囲A1の外に位置する電子機器100Eに対して、電波による送電をすることはできない。また、図1に示す例において、第2送電装置20は、第2範囲A2内に位置する電子機器100Eに対して電波による送電をすることができる。一方、図1に示す例において、第2送電装置20は、第2範囲A2の外に位置する電子機器100A,100B,100C,100Dに対して、電波による送電をすることはできない。 In this case, in the example illustrated in FIG. 1, the first power transmission apparatus 10 can perform electric power transmission to the electronic devices 100A, 100B, 100C, and 100D located in the first range A1. On the other hand, in the example illustrated in FIG. 1, the first power transmission device 10 can not transmit power by radio waves to the electronic device 100E located outside the first range A1. Moreover, in the example shown in FIG. 1, the 2nd power transmission apparatus 20 can transmit electric power with an electromagnetic wave with respect to the electronic device 100E located in 2nd range A2. On the other hand, in the example illustrated in FIG. 1, the second power transmission device 20 can not transmit electric power by radio waves to the electronic devices 100A, 100B, 100C, and 100D located outside the second range A2.
 このように、図1に示した配置の例においては、第1送電装置10及び第2送電装置20からそれぞれ送電される電波の届く範囲が重ならない。このため、第1送電装置10及び第2送電装置20のそれぞれから送電される電波は干渉せず、電波強度が比較的高くなる部分は存在しない。したがって、このような場合、送電効率の低下及び通信の障害などの懸念は少ない。 As described above, in the example of the arrangement illustrated in FIG. 1, the reach of the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 does not overlap. Therefore, the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 do not interfere, and there is no portion where the radio wave intensity becomes relatively high. Therefore, in such a case, there are few concerns such as a decrease in transmission efficiency and a failure in communication.
 次に、送電システム1における第1送電装置10及び第2送電装置20の配置の他の例について説明する。図4は、一実施形態に係る送電システム1の動作を説明する図である。図4は、送電システム1における第1送電装置10及び第2送電装置20を、図1とは異なるように配置した例を示す図である。図4において、図1と同様になる説明は、適宜省略する。 Next, another example of the arrangement of the first power transmission device 10 and the second power transmission device 20 in the power transmission system 1 will be described. FIG. 4 is a diagram for explaining the operation of the power transmission system 1 according to an embodiment. FIG. 4 is a diagram showing an example in which the first power transmission device 10 and the second power transmission device 20 in the power transmission system 1 are arranged to be different from those in FIG. 1. The description of FIG. 4 that is similar to that of FIG. 1 will be omitted as appropriate.
 図4に示す第1範囲A1と第2範囲A2との関係のような、複数の送電装置から送電される電波の届く範囲の関係は、送電システムにおいて送電装置を増設したり部分的に除去したりすることで、変化し得る。また、例えば送電システムにおける送電装置の設置数に変更がなくても、複数の送電装置の位置が相対的に変更されることで、複数の送電装置から送電される電波の届く範囲の関係は変化し得る。特に、第1送電装置10及び第2送電装置20の少なくとも一方が移動可能に構成されるような場合、第1送電装置10及び第2送電装置20から送信される電波の届く範囲の関係は容易に変化し得る。 The relationship between the ranges reached by radio waves transmitted from the plurality of power transmission devices, such as the relationship between the first range A1 and the second range A2 shown in FIG. You can change it by Also, for example, even if there is no change in the number of installed power transmission devices in the power transmission system, the positions of the plurality of power transmission devices are relatively changed, thereby changing the relationship of the reach of radio waves transmitted from the plurality of power transmission devices. It can. In particular, when at least one of the first power transmission device 10 and the second power transmission device 20 is configured to be movable, the relationship between the reach of radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 is easy. Can change to
 図4に示す例においては、第1送電装置10及び第2送電装置20からそれぞれ送電される電波の届く範囲が部分的に重なる。すなわち、図4においては、第1送電装置10が電波による送電を行うことができる第1範囲A1と、第2送電装置20が電波による送電を行うことができる第2範囲A2とは、部分的な重なりを有する。特に、図4に示す例においては、電子機器100C,100Dは、第1範囲A1及び第2範囲A2の双方に含まれる。したがって、図4に示す例において、電子機器100C,100Dは、第1送電装置10及び第2送電装置20の双方からそれぞれ送電される電波を受信することができる。 In the example illustrated in FIG. 4, the ranges reached by radio waves respectively transmitted from the first power transmission device 10 and the second power transmission device 20 partially overlap. That is, in FIG. 4, the first range A1 in which the first power transmission device 10 can perform power transmission by radio waves and the second range A2 in which the second power transmission device 20 can perform power transmission by radio waves are partial. Overlap. In particular, in the example shown in FIG. 4, the electronic devices 100C and 100D are included in both the first range A1 and the second range A2. Therefore, in the example illustrated in FIG. 4, the electronic devices 100C and 100D can receive radio waves respectively transmitted from both the first power transmission device 10 and the second power transmission device 20.
 図4に示した例のように、複数の送電装置を設置して電波による送電を行う場合、複数の送電装置からそれぞれ送信される電波の届く範囲が重なる位置において、電波が干渉する部分の電波強度が比較的高くなると想定される。このように、電波が干渉して電波強度が高くなると、送電効率の低下及び通信の障害などが懸念される。したがって、一実施形態に係る送電システム1においては、例えば、複数の送電装置からそれぞれ送信される電波の強度が比較的高くなると想定される場合に対処するための制御を行う。以下、このような制御について、さらに説明する。 As in the example shown in FIG. 4, when power transmission is performed by installing a plurality of power transmission devices, the radio waves in the portion where the radio waves interfere at overlapping positions where the radio waves transmitted from the plurality of power transmission devices reach each other. It is assumed that the strength is relatively high. As described above, when the radio wave interferes and the radio wave intensity increases, there is a concern that the power transmission efficiency may be reduced, the communication may be disturbed, and the like. Therefore, in the power transmission system 1 according to the embodiment, for example, control is performed to cope with the case where the strengths of radio waves transmitted from the plurality of power transmission devices are relatively high. Hereinafter, such control will be further described.
 以下、図4に示すような送電システム1において、一実施形態に係る第1送電装置10が行う動作について説明する。以下、図4に示すように、送電システム1は、第1送電装置10及び第2送電装置20、並びに、少なくとも1つの電子機器100を含むものとする。また、少なくとも1つの電子機器100は、それぞれ、第1送電装置10から送電される第1電波R1、及び第2送電装置20から送電される第2電波R2の少なくとも一方を受信可能であるものとする。 Hereinafter, in the power transmission system 1 as shown in FIG. 4, an operation performed by the first power transmission device 10 according to the embodiment will be described. Hereinafter, as shown in FIG. 4, the power transmission system 1 includes the first power transmission device 10 and the second power transmission device 20, and at least one electronic device 100. Also, at least one of the electronic devices 100 can receive at least one of the first radio wave R1 transmitted from the first power transmission device 10 and the second radio wave R2 transmitted from the second power transmission device 20, respectively. Do.
 図5は、一実施形態に係る第1送電装置10の動作の一例を説明するフローチャートである。図5は、一実施形態に係る第1送電装置10が第1電波R1によって(例えば少なくとも1つの電子機器100に)送電を行う際の動作を説明している。一例として、一実施形態に係る第1送電装置10は、第1送電装置10のスイッチをオンにするなどして、第1送電装置10が起動する際などに、第1電波R1によって送電を行う際の動作を開始してよい。 FIG. 5 is a flowchart illustrating an example of the operation of the first power transmission device 10 according to an embodiment. FIG. 5 illustrates an operation when the first power transmission apparatus 10 according to an embodiment performs power transmission by the first radio wave R1 (for example, to at least one electronic device 100). As an example, the first power transmission device 10 according to an embodiment performs power transmission by the first radio wave R1 when, for example, the first power transmission device 10 starts up by turning on the switch of the first power transmission device 10 or the like. You may start the action.
 図5に示す動作が開始すると、第1送電装置10の制御部40は、少なくとも1つの電子機器100の通信部121と通信可能か否かを判定する(ステップS1)。ここで、ステップS1において通信可能か否か判定される電子機器100は、第1送電装置10から送電される第1電波R1を受信可能なものとする。すなわち、ステップS1においては、第1送電装置10が、第1送電装置10から送電される第1電波R1を受信可能な電子機器100のいずれかと、通信可能か否かを判定する。 When the operation illustrated in FIG. 5 starts, the control unit 40 of the first power transmission device 10 determines whether communication with the communication unit 121 of at least one electronic device 100 is possible (step S1). Here, it is assumed that the electronic device 100 determined in step S1 whether communication is possible or not can receive the first radio wave R1 transmitted from the first power transmission device 10. That is, in step S1, it is determined whether or not the first power transmission device 10 can communicate with any one of the electronic devices 100 that can receive the first radio wave R1 transmitted from the first power transmission device 10.
 例えば、図4において、第1範囲A1内に位置する電子機器100A,100B,100C,100Dは、第1送電装置10から送電される第1電波R1を受信可能な電子機器100である。この場合、ステップS1において、第1送電装置10の制御部40は、これらの電子機器100A,100B,100C,100Dのいずれかと通信可能か否かを判定する。 For example, in FIG. 4, the electronic devices 100A, 100B, 100C, and 100D located in the first range A1 are the electronic devices 100 capable of receiving the first radio wave R1 transmitted from the first power transmission device 10. In this case, in step S1, the control unit 40 of the first power transmission device 10 determines whether communication with any one of the electronic devices 100A, 100B, 100C, and 100D is possible.
 例えば、第1送電装置10の通信可能な範囲が、第1送電装置10から送電可能な第1範囲A1と同じである場合、第1送電装置10は、電子機器100A,100B,100C,100Dのいずれとも通信可能である。一方、第1送電装置10の通信可能な範囲が、第1送電装置10から送電可能な第1範囲A1と同じでない場合、第1送電装置10は、電子機器100A,100B,100C,100Dのいずれとも通信可能とは限らない。 For example, when the communicable range of the first power transmission device 10 is the same as the first range A1 to which power can be transmitted from the first power transmission device 10, the first power transmission device 10 includes the electronic devices 100A, 100B, 100C, and 100D. Both can communicate. On the other hand, when the communicable range of the first power transmission device 10 is not the same as the first range A1 to which power can be transmitted from the first power transmission device 10, the first power transmission device 10 is any of the electronic devices 100A, 100B, 100C, 100D. Even communication is not always possible.
 ステップS1においていずれの電子機器100も通信可能と判定されない場合、第1送電装置10の制御部40は、ステップS1の処理を繰り返す。すなわち、この場合、第1送電装置10の制御部40は、いずれの電子機器100と通信可能と判定されるまで待機する。一方、ステップS1においていずれかの電子機器100と通信可能と判定された場合、第1送電装置10の制御部40は、ステップS2の処理を行う。 When it is not determined in step S1 that any electronic device 100 can communicate, the control unit 40 of the first power transmission device 10 repeats the process of step S1. That is, in this case, the control unit 40 of the first power transmission device 10 stands by until it is determined that communication with any electronic device 100 is possible. On the other hand, when it is determined in step S1 that communication with any one of the electronic devices 100 is possible, the control unit 40 of the first power transmission device 10 performs the process of step S2.
 ステップS2において、第1送電装置10の制御部40は、ステップS1で通信可能と判定された電子機器100と通信を行い、当該電子機器100が第2送電装置20から第2電波R2を受信可能か否か判定する。ステップS1で通信可能と判定された電子機器100は、上述のように、第1送電装置10から送電される第1電波R1を受信可能である。ステップS2においては、このような電子機器100が、さらに第2送電装置20から送電される第2電波R2も受信可能であるか否かを判定する。すなわち、ステップS2においては、第1送電装置10が通信した電子機器100が、複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能か否か判定する。 In step S2, the control unit 40 of the first power transmission device 10 communicates with the electronic device 100 determined to be communicable in step S1, and the electronic device 100 can receive the second radio wave R2 from the second power transmission device 20. It is determined whether or not. The electronic device 100 determined to be communicable in step S1 can receive the first radio wave R1 transmitted from the first power transmission device 10 as described above. In step S2, it is determined whether such an electronic device 100 can also receive the second radio wave R2 transmitted from the second power transmission device 20. That is, in step S2, the electronic device 100 with which the first power transmission device 10 has communicated is transmitted by the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20). And it is determined whether the second radio wave R2) can be received.
 例えば、第1送電装置10が、図4に示す電子機器100C,100Dと通信可能である場合、電子機器100C,100Dは、第1範囲A1及び第2範囲A2の双方に含まれる。したがって、この場合、ステップS2において、電子機器100C,100Dのそれぞれは、複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能と判定される。一方、例えば、第1送電装置10が、図4に示す電子機器100A,100Bと通信可能である場合、電子機器100A,100Bは、第1範囲A1には含まれるが、第2範囲A2には含まれない。したがって、この場合、ステップS2において、電子機器100A,100Bのそれぞれは、複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能とは判定されない。 For example, when the first power transmission apparatus 10 can communicate with the electronic devices 100C and 100D illustrated in FIG. 4, the electronic devices 100C and 100D are included in both the first range A1 and the second range A2. Therefore, in this case, in step S2, each of the electronic devices 100C and 100D receives the plurality of radio waves (the first radio wave R1 and the first radio wave R1) transmitted from the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20). It is determined that the two radio waves R2) can be received. On the other hand, for example, when the first power transmission device 10 can communicate with the electronic devices 100A and 100B shown in FIG. 4, the electronic devices 100A and 100B are included in the first range A1, but in the second range A2. Not included Therefore, in this case, in step S2, each of the electronic devices 100A and 100B is configured to transmit the plurality of radio waves (the first radio wave R1 and the first radio wave R1) transmitted from the plurality of power transmission devices (the first It is not determined that the two radio waves R2) can be received.
 また、ステップS2においては、第1送電装置10は、ステップS1で通信可能と判定された電子機器100と通信を行うことにより、各種の情報の交換を行ってもよい。例えば、第1送電装置10と電子機器100とは、互いの位置情報などを交換してもよい。また、例えば、電子機器100は、送電装置から送電される電波の数を、第1送電装置10に通知してもよい。すなわち、この場合、電子機器100は、いくつの送電装置から送電される電波を受信することができるかを、第1送電装置10に通知する。 Further, in step S2, the first power transmission apparatus 10 may exchange various types of information by communicating with the electronic device 100 determined to be communicable in step S1. For example, the first power transmission device 10 and the electronic device 100 may exchange positional information and the like with each other. Also, for example, the electronic device 100 may notify the first power transmission device 10 of the number of radio waves transmitted from the power transmission device. That is, in this case, the electronic device 100 notifies the first power transmission device 10 how many radio waves transmitted from the power transmission device can be received.
 ステップS2において電子機器100が第2電波R2も受信可能であると判定されると、第1送電装置10の制御部40は、ステップS3の処理を行う。ステップS3において、第1送電装置10の制御部40は、まず、ステップS2で通信した電子機器100から、第2電波R2の情報を受信する。ステップS2で第1送電装置10と通信した電子機器100は、第2送電装置20から第2電波R2を受信可能であるので、第2電波R2の情報として、第2電波R2に関する各種の情報を取得することができる。ここで、第2電波R2の情報とは、例えば、第2電波R2の周波数、第2電波R2の到来方向、第2電波R2の指向性、第2電波R2の電波強度、及び/又は、第2電波R2によって送信される電力の電力量など、第2電波R2に関する各種の情報としてよい。 When it is determined in step S2 that the electronic device 100 can also receive the second radio wave R2, the control unit 40 of the first power transmission device 10 performs the process of step S3. In step S3, the control unit 40 of the first power transmission device 10 first receives the information on the second radio wave R2 from the electronic device 100 that has communicated in step S2. Since the electronic device 100 that has communicated with the first power transmission device 10 in step S2 can receive the second radio wave R2 from the second power transmission device 20, various pieces of information on the second radio wave R2 can be used as the information on the second radio wave R2. It can be acquired. Here, the information of the second radio wave R2 includes, for example, the frequency of the second radio wave R2, the arrival direction of the second radio wave R2, the directivity of the second radio wave R2, the radio wave intensity of the second radio wave R2, and / or The amount of power of the power transmitted by the two radio waves R2 may be used as various information on the second radio wave R2.
 ステップS3において、第1送電装置10の制御部40は、次に、受信した第2電波R2の情報に基づいて、第1送電装置10から第1電波R1によって送電を行う態様を制御する。ここで、第1電波R1によって送電を行う態様の制御は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合に、第1電波R1及び第2電波R2の電波の強度が高くなり過ぎないようにするために行う制御である。具体的には、第1電波R1によって送電を行う態様の制御とは、例えば第1電波R1による送電のオン/オフ、第1電波R1の電波強度の出力低減、第1電波R1による送電の電力量の低減、第1電波R1の指向性の変更、第1電波R1の周波数の変更など、各種の制御とすることができる。このような制御のうち、代表的な例のいくつかについて、さらに後述する。 In step S3, the control unit 40 of the first power transmission device 10 next controls an aspect of performing power transmission from the first power transmission device 10 by the first radio wave R1, based on the received information of the second radio wave R2. Here, in the control of the aspect in which power transmission is performed by the first radio wave R1, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the strengths of the radio waves of the first radio wave R1 and the second radio wave R2 are It is a control performed to prevent it from becoming too high. Specifically, the control of the aspect in which power transmission is performed by the first radio wave R1 includes, for example, turning on / off of power transmission by the first radio wave R1, reducing the output of the radio wave intensity of the first radio wave R1, and transmitting power Various control can be performed such as reduction of the amount, change of the directivity of the first radio wave R1, change of the frequency of the first radio wave R1, and the like. Some of the representative examples of such control will be described further below.
 ステップS3において第1電波R1によって送電を行う態様が制御されたら、第1送電装置10の制御部40は、制御された態様で第1電波R1の送信を開始するように、第1送電装置10の送電部50及び/又は増幅器52を制御する(ステップS4)。これにより、第1送電装置10は、例えば少なくとも1つの電子機器100に対して、出力を制御した第1電波R1によって送電を行うことができる。そして、第1送電装置10から送電される少なくとも1つの電子機器100は、出力を制御した第1電波R1を受信することができる。 If the mode of performing power transmission is controlled by the first radio wave R1 in step S3, the control unit 40 of the first power transmission device 10 causes the first power transmission device 10 to start transmission of the first radio wave R1 in a controlled manner. The power transmission unit 50 and / or the amplifier 52 are controlled (step S4). Thereby, the first power transmission apparatus 10 can perform power transmission to the at least one electronic device 100, for example, by the first radio wave R1 whose output is controlled. Then, at least one electronic device 100 transmitted from the first power transmission apparatus 10 can receive the first radio wave R1 whose output is controlled.
 一方、ステップS2において電子機器100が第2電波R2を受信可能でないと判定されると、第1送電装置10の制御部40は、ステップS3の処理を行わずに、ステップS4の処理を行う。つまり、ステップS4において、第1送電装置10の制御部40は、第1電波R1による送電の態様を制御せずに第1電波R1の送信を開始するように、第1送電装置10の送電部50及び/又は増幅器52を制御する。この場合、ステップS4において、第1送電装置10の制御部40は、予め定められた第1電波R1の(通常の)送電の態様で送信が開始されるように、第1送電装置10の送電部50及び/又は増幅器52を制御する。これにより、第1送電装置10は、例えば少なくとも1つの電子機器100に対して、第1電波R1による送電の態様を制御せずに、すなわち本来の第1電波R1によって、送電を行うことができる。そして、第1送電装置10から送電される少なくとも1つの電子機器100は、第1電波R1による送電の態様が制御されない状態で第1電波R1を受信することができる。 On the other hand, when it is determined in step S2 that the electronic device 100 can not receive the second radio wave R2, the control unit 40 of the first power transmission device 10 performs the process of step S4 without performing the process of step S3. That is, in step S4, the control unit 40 of the first power transmission device 10 transmits the power of the first radio wave R1 without starting the transmission of the first radio wave R1. 50 and / or the amplifier 52 are controlled. In this case, in step S4, the control unit 40 of the first power transmission device 10 transmits power of the first power transmission device 10 so that transmission is started in a (normal) power transmission mode of the first radio wave R1 determined in advance. The unit 50 and / or the amplifier 52 are controlled. Thereby, the first power transmission apparatus 10 can perform power transmission to, for example, at least one electronic device 100 without controlling the mode of power transmission by the first radio wave R1, that is, by the original first radio wave R1. . And at least one electronic device 100 transmitted from the first power transmission apparatus 10 can receive the first radio wave R1 in a state where the mode of power transmission by the first radio wave R1 is not controlled.
 このように、一実施形態において、第1送電装置10の制御部40は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合、第2電波R2に関する情報に基づいて、第1電波R1によって送電を行う態様を制御する。 As described above, in the embodiment, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the control unit 40 of the first power transmission device 10 performs the first power transmission device based on the information on the second radio wave R2. 1 Control the mode of transmitting power by radio wave R1.
 このため、一実施形態に係る第1送電装置10によれば、図4に示す電子機器100C,100Dのように複数の送電装置から送電される電波を受信可能であっても、電波が干渉して電波強度が高くなるおそれは低減される。したがって、一実施形態に係る第1送電装置10によれば、送電効率の低下及び通信の障害などが懸念は低減される。一実施形態に係る第1送電装置10によれば、送電する電力及び/又は送電に使用する電波というリソースの観点からも、浪費を低減することが期待できる。このように、一実施形態に係る第1送電装置10によれば、送電の効率の向上が期待できる。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。 For this reason, according to the first power transmission device 10 according to an embodiment, even if radio waves transmitted from a plurality of power transmission devices can be received as in the electronic devices 100C and 100D shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
 以上、第1送電装置10が行う制御により、第1送電装置10から電子機器100に送電される電波の態様を制御する場合の例を説明した。一方、上述のように、以上の制御は、第2送電装置20が行ってもよい。 In the above, the example in the case of controlling the aspect of the electromagnetic wave transmitted to the electronic device 100 from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs. On the other hand, as described above, the second power transmission device 20 may perform the above control.
 ところで、上述のように、第1送電装置10及び第2送電装置20の少なくとも一方が移動すると、第1送電装置10及び第2送電装置20から送信される電波の届く範囲の関係は容易に変化する。また、電子機器100が移動しても、第1送電装置10及び第2送電装置20との相対的な位置は変化する。このような場合、電子機器100が第1送電装置10及び第2送電装置20の少なくとも一方から送電される電波を受信可能か否かの判定結果も変化し得る。また、電子機器100が第1送電装置10及び第2送電装置20の少なくとも一方と通信可能か否かの判定結果も変化し得る。 By the way, as described above, when at least one of the first power transmission device 10 and the second power transmission device 20 moves, the relationship between the reach of the radio waves transmitted from the first power transmission device 10 and the second power transmission device 20 changes easily. Do. In addition, even if the electronic device 100 moves, the relative positions of the first power transmission device 10 and the second power transmission device 20 change. In such a case, the determination result as to whether or not the electronic device 100 can receive the radio wave transmitted from at least one of the first power transmission device 10 and the second power transmission device 20 may also change. Further, the determination result as to whether or not the electronic device 100 can communicate with at least one of the first power transmission device 10 and the second power transmission device 20 may also change.
 そこで、一実施形態において、第1送電装置10は、図5に示したような処理を、定期的に繰り返し行ってもよい。また、一実施形態において、第1送電装置10は、第1送電装置10は、第1送電装置10、第2送電装置20、及び電子機器100の少なくともいずれかの位置の変化を検出したら、図5に示したような処理を行ってもよい。第1送電装置10、第2送電装置20、及び電子機器100の位置の変化は、それぞれ第1送電装置10、第2送電装置20、及び電子機器100の少なくともいずれかによって検出し、その検出結果を第1送電装置10に送信してもよい。この場合の位置検出には、各種の公知の技術を利用することができるため、より詳細な説明は省略する。 Therefore, in one embodiment, the first power transmission device 10 may periodically and repeatedly perform the process as illustrated in FIG. 5. Further, in one embodiment, the first power transmission device 10 may detect the change in the position of at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100, as shown in FIG. Processing as shown in 5 may be performed. A change in the position of the first power transmission device 10, the second power transmission device 20, and the electronic device 100 is detected by at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100, and the detection result May be transmitted to the first power transmission apparatus 10. Since various known techniques can be used for position detection in this case, more detailed description will be omitted.
 このように、一実施形態において、第1送電装置10は、第1送電装置10、第2送電装置20、及び電子機器100の少なくともいずれかの位置が変化したら、第1電波R1によって送電を行う態様を制御してもよい。 Thus, in one embodiment, when the position of at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100 changes, the first power transmission device 10 transmits power by the first radio wave R1. Aspects may be controlled.
 一実施形態に係る第1送電装置10によれば、第1送電装置10は、第1送電装置10、第2送電装置20、及び電子機器100の少なくともいずれかの位置が変化しても、送電システム1の全体として適切な送電が行われるように制御される。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。 According to the first power transmission device 10 according to the embodiment, the first power transmission device 10 transmits power even if the position of at least one of the first power transmission device 10, the second power transmission device 20, and the electronic device 100 changes. It is controlled such that appropriate power transmission is performed as a whole of the system 1. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
 ところで、図5のステップS3において行う制御は、第1送電装置10及び第2送電装置20において同時に行うと、互いの配置によっては、第1送電装置10及び第2送電装置20の双方から出力される電波の出力が共に低減してしまうこともあり得る。このような場合、第1送電装置10及び/又は第2送電装置20から電波によって電力を受電する電子機器100において、必要な電力が受電できないおそれもあり得る。 By the way, when the control performed in step S3 of FIG. 5 is simultaneously performed in the first power transmission device 10 and the second power transmission device 20, depending on the arrangement of each other, it is output from both the first power transmission device 10 and the second power transmission device 20. In some cases, the output of radio waves may be reduced. In such a case, in the electronic device 100 that receives power from the first power transmission device 10 and / or the second power transmission device 20 by radio waves, the necessary power may not be received.
 そこで、このような場合、第1送電装置10及び第2送電装置20において優先関係を予め定めておいてよい。このようにして予め定めた優先関係は、例えば第1送電装置10及び/又は第2送電装置20の記憶部42に記憶しておいてよい。この場合、例えば、第1送電装置10において、第2送電装置20よりも高い優先度が予め定められているとする。また、上述のように、ステップS3において、第1送電装置10及び第2送電装置20の双方ともに、電波によって送電を行う態様を制御することができるものとする。この場合、優先度が高い第1送電装置10においては、電波によって送電を行う態様の制御を行わないようにしてもよい。一方、この場合、優先度が低い第2送電装置20においては、電波によって送電を行う態様の制御を行う。また、予め定めた優先度が逆の場合、電波によって送電を行う態様の制御を行わない送電装置と、電波によって送電を行う態様の制御を行う送電装置も逆になる。 Therefore, in such a case, the first power transmission device 10 and the second power transmission device 20 may have predetermined priorities. The priority relation thus determined in advance may be stored, for example, in the storage unit 42 of the first power transmission device 10 and / or the second power transmission device 20. In this case, for example, in the first power transmission device 10, it is assumed that a higher priority than the second power transmission device 20 is predetermined. Further, as described above, in step S3, it is assumed that both of the first power transmission device 10 and the second power transmission device 20 can control an aspect in which power transmission is performed by radio waves. In this case, in the first power transmission apparatus 10 with high priority, control of the aspect of performing power transmission by radio waves may not be performed. On the other hand, in this case, in the second power transmission apparatus 20 with low priority, control is performed such that power is transmitted by radio waves. Moreover, when the predetermined priority is reverse, the power transmission apparatus which does not perform control of the aspect which performs power transmission with an electromagnetic wave, and the power transmission apparatus which performs control of the aspect which performs power transmission with an electromagnetic wave are reverse.
 一実施形態に係る第1送電装置10によれば、複数の送電装置のそれぞれにおいて独立して制御が行われても、複数の送電装置のそれぞれは、全体として適切な送電が行われるように制御される。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。 According to the first power transmission device 10 according to an embodiment, even if control is performed independently in each of the plurality of power transmission devices, each of the plurality of power transmission devices is controlled such that appropriate power transmission is performed as a whole Be done. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved.
 以下、図5に示したステップS3において行う制御の代表的な例のいくつかを説明する。
以下、図5に示したステップS3において第1電波R1によって送電を行う態様を制御する際の例について説明する。
Hereinafter, some representative examples of the control performed in step S3 shown in FIG. 5 will be described.
Hereinafter, an example at the time of controlling an aspect which performs power transmission by the 1st electric wave R1 in Step S3 shown in Drawing 5 is explained.
(一実施形態)
 図6は、図5に示したステップS3において行う制御の例を説明するフローチャートである。図6は、図5に示したフローチャートのステップS2において、電子機器100が複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能と判定された場合に行う処理を示す。
(One embodiment)
FIG. 6 is a flowchart for explaining an example of control performed in step S3 shown in FIG. 6 shows a plurality of radio waves (first radio waves R1 and R1) transmitted by the electronic device 100 from the plurality of power transmission devices (the first power transmission device 10 and the second power transmission device 20) in step S2 of the flowchart shown in FIG. A process performed when it is determined that the second radio wave R2) can be received is shown.
 図6に示す処理が開始すると、第1送電装置10の制御部40は、第2送電装置20から送信される第2電波R2による送電の電力量が、所定値よりも大きいか否かを判定する(ステップS11)。ここで、第2送電装置20から送信される第2電波R2による送電の電力量は、図5に示したステップS2で通信した電子機器100から、第2電波R2の情報として受信してよい。また、第1送電装置10の制御部40は、このようにして受信した第2電波R2による送電の電力量を、例えば記憶部42に記憶してよい。また、ステップS11における判定の際に比較の対象となる電力量の所定値は、予め適当に設定されたものを記憶部42に記憶しておいてよい。また、このような所定値は、適宜、第1送電装置10の制御部40が算出してもよい。 When the process shown in FIG. 6 starts, the control unit 40 of the first power transmission device 10 determines whether the amount of power transmission by the second radio wave R2 transmitted from the second power transmission device 20 is larger than a predetermined value. (Step S11). Here, the amount of power transmission of the second radio wave R2 transmitted from the second power transmission apparatus 20 may be received as information of the second radio wave R2 from the electronic device 100 communicated in step S2 shown in FIG. Further, the control unit 40 of the first power transmission device 10 may store, for example, the power amount of the power transmission by the second radio wave R2 received in this manner in the storage unit 42. Further, the predetermined value of the amount of power to be compared at the time of the determination in step S11 may be stored in the storage unit 42 in advance appropriately set. Moreover, the control part 40 of the 1st power transmission apparatus 10 may calculate such a predetermined value suitably.
 また、ステップS11の他の例においては、第2送電装置20から送信される第2電波R2による送電の電力量と、第1送電装置10から送信される第1電波R1による送電の電力量との合計が、所定値よりも大きいか否かを判定してもよい。 Further, in another example of step S11, the amount of power transmission of the second radio wave R2 transmitted from the second power transmission device 20 and the amount of power transmission of the first radio wave R1 transmitted from the first power transmission device 10 It may be determined whether or not the sum of is larger than a predetermined value.
 ステップS11において第2電波R2による送電の電力量が所定値よりも大きい場合、第1送電装置10の制御部40は、第1送電装置10が第1電波R1によって送電する電力の電力量を下げる(ステップS12)。ステップS12において、制御部40は、例えば、送電アンテナ54から第1電波R1によって送電される電力の電力量を下げるように、送電部50及び/又は増幅器52を制御してよい。 When the amount of power transmission by the second radio wave R2 is larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 reduces the amount of power that the first power transmission device 10 transmits by the first radio wave R1. (Step S12). In step S12, for example, the control unit 40 may control the power transmission unit 50 and / or the amplifier 52 so as to reduce the amount of power transmitted from the power transmission antenna 54 by the first radio wave R1.
 ここで、例えば、制御部40は、第2電波R2による送電の電力量が所定値よりも大きい場合、予め規定された程度だけ第1電波R1によって送電される電力の電力量を下げてもよい。この場合、電力量の所定値と、第1電波R1によって送電される電力の電力量を下げる程度との相関は、予め記憶部42に記憶しておいてもよいし、受信部61Bなどにより外部サーバなどから受信してもよい。また、上記相関は、第2電波R2による送電の電力量から、所定の演算式に基づいて、制御部40が算出してもよい。 Here, for example, when the amount of power transmission by the second radio wave R2 is larger than a predetermined value, the control unit 40 may reduce the amount of power transmitted by the first radio wave R1 by a predetermined degree. . In this case, the correlation between the predetermined value of the electric energy and the degree to which the electric energy of the electric power transmitted by the first radio wave R1 is reduced may be stored in advance in the storage unit 42 or externally by the receiving unit 61B or the like. It may be received from a server or the like. The correlation may be calculated by the control unit 40 from the amount of power transmission by the second radio wave R <b> 2 based on a predetermined arithmetic expression.
 また、ステップS12において、制御部40は、超える第2電波R2による送電の電力量が所定値を超えるぶんに応じて、第1電波R1によって送電される電力の電力量を下げる程度を決定してもよい。 Further, in step S12, the control unit 40 determines the extent to which the amount of power of the power transmitted by the first radio wave R1 is reduced according to the extent to which the amount of power transmission by the second radio wave R2 exceeds the predetermined value. It is also good.
 一方、ステップS11において第2電波R2による送電の電力量が所定値よりも大きくない場合、第1送電装置10の制御部40は、ステップS12の処理を行わずに、図6に示す処理を終了する。 On the other hand, when the amount of power transmission by the second radio wave R2 is not larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
 このように、一実施形態において、第1送電装置10は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合において、第2電波R2によって送電される電力量が所定値より大きいとき、第1電波R1によって送電を行う態様を制御してもよい。また、この場合、第1送電装置10は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合、第1電波R1による送電の電力量を下げるように制御してもよい。 Thus, in one embodiment, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the amount of power transmitted by the second radio wave R2 is greater than a predetermined value in the first power transmission device 10 When it is large, the aspect of transmitting power by the first radio wave R1 may be controlled. Further, in this case, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, the first power transmission device 10 may control to reduce the amount of power transmission by the first radio wave R1.
 一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きい、すなわち比較的大きい場合、第1電波R1による送電の電力量を下げる。一方、一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きくない、すなわち比較的大きくない場合、第1電波R1による送電の電力量を下げない。 According to the first power transmission device 10 according to an embodiment, when the amount of power transmitted by the second radio wave R2 is larger than a predetermined value, that is, relatively large, the amount of power transmission by the first radio wave R1 is reduced. On the other hand, according to the first power transmission device 10 according to one embodiment, when the amount of power transmitted by the second radio wave R2 is not larger than a predetermined value, that is, relatively large, the amount of power transmission by the first radio wave R1 is I will not lower it.
 このため、一実施形態に係る第1送電装置10によれば、図4に示す電子機器100Cのように複数の送電装置から送電される電波を受信可能な場合であっても、電波が干渉して電波強度が高くなるおそれは低減される。したがって、一実施形態に係る第1送電装置10によれば、送電効率の低下及び通信の障害などが懸念は低減される。一実施形態に係る第1送電装置10によれば、送電する電力及び/又は送電に使用する電波というリソースの観点からも、浪費を低減することが期待できる。このように、一実施形態に係る第1送電装置10によれば、送電の効率の向上が期待できる。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。さらに、一実施形態に係る送電システム1においては、第1送電装置10と第2送電装置20とが直接通信を行わない。したがって、一実施形態に係る送電システム1によれば、第1送電装置10と第2送電装置20とが(例えば隔離している等により)無線通信できない場合であっても、送電システムの利便性を高めることができる。 For this reason, according to the first power transmission device 10 according to an embodiment, even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
 以上、第1送電装置10が行う制御により、第1送電装置10から送信される電波の出力を低減する場合の例を説明した。一方、上述のように、以上の制御は、第2送電装置20が行ってもよい。 In the above, the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs. On the other hand, as described above, the second power transmission device 20 may perform the above control.
 また、図6に示した例をより簡潔にしたものとして、例えばステップS11に示した処理をスキップしてもよい。すなわち、図5に示したステップS2において電子機器100が複数の送電装置から送電される複数の電波を受信可能である場合、図6に示したステップS12のように第1電波R1による送電の電力量を下げてもよい。 In addition, for simplifying the example illustrated in FIG. 6, for example, the process illustrated in step S11 may be skipped. That is, when the electronic device 100 can receive a plurality of radio waves transmitted from a plurality of power transmission devices in step S2 shown in FIG. 5, the power of power transmission by the first radio wave R1 as in step S12 shown in FIG. The amount may be reduced.
(一実施形態)
 図7は、図5に示したステップS3において行う制御の他の例を説明するフローチャートである。図7も、図5に示したフローチャートのステップS2において、電子機器100が複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能と判定された場合に行う処理を示す。以下、図6における説明と同内容又はほぼ同内容の説明は、適宜、簡略化又は省略する。
(One embodiment)
FIG. 7 is a flow chart for explaining another example of control performed in step S3 shown in FIG. Also in FIG. 7, in step S2 of the flowchart illustrated in FIG. 5, the electronic device 100 transmits a plurality of radio waves (first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2) can be received is shown. Hereinafter, the description of the same contents as or the contents of the same contents as the description in FIG. 6 will be simplified or omitted as appropriate.
 図7に示す処理が開始すると、第1送電装置10の制御部40は、図6に示したステップS11と同様の処理を行う。また、より簡潔な例として、例えばステップS11に示した処理をスキップしてもよいことも、図6に示したのと同様である。 When the process shown in FIG. 7 starts, the control unit 40 of the first power transmission device 10 performs the same process as step S11 shown in FIG. In addition, as a simpler example, for example, the process shown in step S11 may be skipped as in the case shown in FIG.
 ステップS11において第2電波R2による送電の電力量が所定値よりも大きい場合、第1送電装置10の制御部40は、第1送電装置10から送信する第1電波R1の指向性を変更する(ステップS22)。このため、一実施形態において、第1送電装置10が備える送電アンテナ54は、例えばアレイアンテナによって構成してよい。また、この場合、第1送電装置10の制御部40は、送電アンテナ54(アレイアンテナ)から送信される第1電波R1の指向性を、ビームフォーミング等の技術によって変更できるように制御する。具体的には、制御部40は、送電部50、増幅器52、及び送電アンテナ54の少なくともいずれかを適宜制御してよい。 When the amount of power transmission by the second radio wave R2 is larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 changes the directivity of the first radio wave R1 transmitted from the first power transmission device 10 ( Step S22). Therefore, in one embodiment, the power transmission antenna 54 provided in the first power transmission device 10 may be configured by, for example, an array antenna. Further, in this case, the control unit 40 of the first power transmission device 10 controls the directivity of the first radio wave R1 transmitted from the power transmission antenna 54 (array antenna) so as to be changed by a technique such as beam forming. Specifically, the control unit 40 may appropriately control at least one of the power transmission unit 50, the amplifier 52, and the power transmission antenna 54.
 例えば、ステップS22において、制御部40は、電子機器100の方向に対応する第1電波R1の出力が低減するように、第1電波R1の指向性を変更してよい。この場合、第1送電装置10の制御部40は、まず、電子機器100から送信される通信の電波の経路をたどることにより、電子機器100から送信される電波の到来方向を判定してよい。また、制御部40は、ステップS2において電子機器100から取得した情報に基づいて、電子機器100の方向を判定してもよい。電子機器100の方向が判定されたら、制御部40は、その方向に対応する方向の第1電波R1の出力が低減するように、送電部50、増幅器52、及び送電アンテナ54の少なくともいずれかを制御する。このようにして、ステップS22において、制御部40は、第1送電装置10から送信する第1電波R1の指向性を変更する。アレイアンテナを用いたビームフォーミング等による電波の指向性の変更については、各種の公知技術を用いてよい。このため、より詳細な説明は省略する。 For example, in step S22, the control unit 40 may change the directivity of the first radio wave R1 so that the output of the first radio wave R1 corresponding to the direction of the electronic device 100 is reduced. In this case, the control unit 40 of the first power transmission device 10 may first determine the arrival direction of the radio wave transmitted from the electronic device 100 by following the path of the radio wave of communication transmitted from the electronic device 100. The control unit 40 may also determine the direction of the electronic device 100 based on the information acquired from the electronic device 100 in step S2. When the direction of the electronic device 100 is determined, the control unit 40 sets at least one of the power transmission unit 50, the amplifier 52, and the power transmission antenna 54 such that the output of the first radio wave R1 in the direction corresponding to that direction is reduced. Control. Thus, in step S22, the control unit 40 changes the directivity of the first radio wave R1 transmitted from the first power transmission device 10. Various known techniques may be used to change the directivity of radio waves by beamforming or the like using an array antenna. For this reason, more detailed description is omitted.
 ここで、例えば、制御部40は、電子機器100の方向が判定された場合、予め規定された指向性に第1電波R1の指向性を決定してもよい。このような決定の際、判定された電子機器100の方向と、第1電波R1の指向性を変更する方向及び/又は程度との相関は、予め記憶部42に記憶しておいてもよいし、受信部61Bなどにより外部サーバなどから受信してもよい。また、上記相関は、判定された電子機器100の方向から、所定の演算式に基づいて、制御部40が算出してもよい。 Here, for example, when the direction of the electronic device 100 is determined, the control unit 40 may determine the directivity of the first radio wave R1 to the directivity defined in advance. At the time of such determination, the correlation between the determined direction of the electronic device 100 and the direction and / or the degree of changing the directivity of the first radio wave R1 may be stored in the storage unit 42 in advance. , And may be received from an external server or the like by the receiving unit 61B or the like. The correlation may be calculated by the control unit 40 from the determined direction of the electronic device 100 based on a predetermined arithmetic expression.
 一方、ステップS11において第2電波R2による送電の電力量が所定値よりも大きくない場合、第1送電装置10の制御部40は、ステップS12の処理を行わずに、図6に示す処理を終了する。 On the other hand, when the amount of power transmission by the second radio wave R2 is not larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
 このように、一実施形態において、第1送電装置10は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合、第1電波R1の指向性を変更してもよい。この場合、第1送電装置10は、電子機器100の方向に対応する第1電波R1の出力が低減するように、第1電波R1の指向性を変更してもよい。 Thus, in one embodiment, the first power transmission apparatus 10 may change the directivity of the first radio wave R1 when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2. In this case, the first power transmission apparatus 10 may change the directivity of the first radio wave R1 so that the output of the first radio wave R1 corresponding to the direction of the electronic device 100 is reduced.
 一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きい、すなわち比較的大きい場合、第1電波R1の指向性を変更する。一方、一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きくない、すなわち比較的大きくない場合、第1電波R1の指向性を変更しない。 According to the first power transmission device 10 according to one embodiment, when the amount of power transmitted by the second radio wave R2 is larger than a predetermined value, ie, relatively large, the directivity of the first radio wave R1 is changed. On the other hand, according to the first power transmission device 10 according to one embodiment, the directivity of the first radio wave R1 is not changed when the amount of power transmitted by the second radio wave R2 is not larger than a predetermined value, that is, relatively large. .
 このため、一実施形態に係る第1送電装置10によれば、図4に示す電子機器100Cのように複数の送電装置から送電される電波を受信可能な場合であっても、電波が干渉して電波強度が高くなるおそれは低減される。したがって、一実施形態に係る第1送電装置10によれば、送電効率の低下及び通信の障害などが懸念は低減される。一実施形態に係る第1送電装置10によれば、送電する電力及び/又は送電に使用する電波というリソースの観点からも、浪費を低減することが期待できる。このように、一実施形態に係る第1送電装置10によれば、送電の効率の向上が期待できる。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。さらに、一実施形態に係る送電システム1においては、第1送電装置10と第2送電装置20とが直接通信を行わない。したがって、一実施形態に係る送電システム1によれば、第1送電装置10と第2送電装置20とが(例えば隔離している等により)無線通信できない場合であっても、送電システムの利便性を高めることができる。 For this reason, according to the first power transmission device 10 according to an embodiment, even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
 以上、第1送電装置10が行う制御により、第1送電装置10から送信される電波の出力を低減する場合の例を説明した。一方、上述のように、以上の制御は、第2送電装置20が行ってもよい。 In the above, the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs. On the other hand, as described above, the second power transmission device 20 may perform the above control.
(一実施形態)
 図8は、図5に示したステップS3において行う制御の他の例を説明するフローチャートである。図8も、図5に示したフローチャートのステップS2において、電子機器100が複数の送電装置(第1送電装置10及び第2送電装置20)からそれぞれ送電される複数の電波(第1電波R1及び第2電波R2)を受信可能と判定された場合に行う処理を示す。以下、図6又は図7における説明と同内容又はほぼ同内容の説明は、適宜、簡略化又は省略する。
(One embodiment)
FIG. 8 is a flow chart for explaining another example of control performed in step S3 shown in FIG. Also in FIG. 8, in step S2 of the flowchart illustrated in FIG. 5, the electronic device 100 transmits a plurality of radio waves (first radio wave R1 and a plurality of radio waves R1 and A process performed when it is determined that the second radio wave R2) can be received is shown. Hereinafter, the description of the same content or the content of the same content as the description in FIG. 6 or FIG. 7 will be simplified or omitted as appropriate.
 図8に示す処理が開始すると、第1送電装置10の制御部40は、図6に示したステップS11と同様の処理を行う。また、より簡潔な例として、例えばステップS11に示した処理をスキップしてもよいことも、図6に示したのと同様である。 When the process shown in FIG. 8 starts, the control unit 40 of the first power transmission device 10 performs the same process as step S11 shown in FIG. In addition, as a simpler example, for example, the process shown in step S11 may be skipped as in the case shown in FIG.
 ステップS11において第2電波R2による送電の電力量が所定値よりも大きい場合、ステップS32の処理を行う。ステップS32において、第1送電装置10の制御部40は、第1送電装置10から送信する第1電波R1の周波数を、第2送電装置20の送電部が送信する第2電波R2の周波数と異ならせる。例えば、ステップS32において、制御部40は、第1電波R1の周波数と、第2電波R2の周波数とがいずれもN[Hz]である場合、第1電波R1の周波数をN[Hz]以外の周波数に設定する。ここで、第1電波R1の周波数として設定するN[Hz]以外の周波数は、予め規定して記憶部42に記憶しておいてよい。 If the amount of power transmission by the second radio wave R2 is larger than the predetermined value in step S11, the process of step S32 is performed. In step S32, if the control unit 40 of the first power transmission device 10 has a frequency of the first radio wave R1 transmitted from the first power transmission device 10 different from the frequency of the second radio wave R2 transmitted by the power transmission unit of the second power transmission device 20. Let For example, in step S32, when the frequency of the first radio wave R1 and the frequency of the second radio wave R2 are both N Hz, the control unit 40 sets the frequency of the first radio wave R1 to other than N Hz. Set to frequency. Here, frequencies other than N [Hz] set as the frequency of the first radio wave R1 may be defined in advance and stored in the storage unit 42.
 ステップS32の処理を行うために、第1送電装置10の制御部40は、第2電波R2の周波数を判定してもよい。また、制御部40は、図5に示したステップS2において電子機器100から取得した情報に基づいて、第2電波R2の周波数を判定してもよい。また、第2電波R2の周波数は、図5に示したステップS2で通信した電子機器100から、第2電波R2の情報として受信してよい。第2電波R2の周波数が判定されたら、制御部40は、第2電波R2の周波数と第1電波R1の周波数との異同を判定する。第2電波R2の周波数と第1電波R1の周波数とが同じ場合、制御部40は、第1電波R1の周波数を変更する。この場合、制御部40は、第1電波R1の周波数を、第2電波R2の周波数とは異なるものに設定する。一方、第2電波R2の周波数と第1電波R1の周波数とが異なる場合、制御部40は、第1電波R1の周波数の設定を変更しない。複数の電波の周波数を異ならせる際には、各種の公知技術を用いてよい。このため、より詳細な説明は省略する。 In order to perform the process of step S32, the control unit 40 of the first power transmission device 10 may determine the frequency of the second radio wave R2. In addition, the control unit 40 may determine the frequency of the second radio wave R2 based on the information acquired from the electronic device 100 in step S2 illustrated in FIG. In addition, the frequency of the second radio wave R2 may be received as information of the second radio wave R2 from the electronic device 100 communicated in step S2 shown in FIG. When the frequency of the second radio wave R2 is determined, the control unit 40 determines whether the frequency of the second radio wave R2 is different from the frequency of the first radio wave R1. When the frequency of the second radio wave R2 is the same as the frequency of the first radio wave R1, the control unit 40 changes the frequency of the first radio wave R1. In this case, the control unit 40 sets the frequency of the first radio wave R1 to be different from the frequency of the second radio wave R2. On the other hand, when the frequency of the second radio wave R2 is different from the frequency of the first radio wave R1, the control unit 40 does not change the setting of the frequency of the first radio wave R1. When making the frequency of a plurality of radio waves different, various known techniques may be used. For this reason, more detailed description is omitted.
 一方、ステップS11において第2電波R2による送電の電力量が所定値よりも大きくない場合、第1送電装置10の制御部40は、ステップS12の処理を行わずに、図6に示す処理を終了する。 On the other hand, when the amount of power transmission by the second radio wave R2 is not larger than the predetermined value in step S11, the control unit 40 of the first power transmission device 10 ends the process shown in FIG. 6 without performing the process of step S12. Do.
 このように、一実施形態において、第1送電装置10は、電子機器100が第1電波R1及び第2電波R2を受信可能な場合、第1電波R1の周波数を第2電波R2の周波数と異ならせてもよい。 Thus, in one embodiment, when the electronic device 100 can receive the first radio wave R1 and the second radio wave R2, if the first power transmission device 10 has a frequency of the first radio wave R1 different from that of the second radio wave R2. You may
 一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きい、すなわち比較的大きい場合、第1電波R1の周波数を第2電波R2の周波数と異ならせる。一方、一実施形態に係る第1送電装置10によれば、第2電波R2によって送電される電力量が所定値より大きくない、すなわち比較的大きくない場合、第1電波R1の周波数を第2電波R2の周波数と異ならせない。 According to the first power transmission device 10 according to one embodiment, when the amount of power transmitted by the second radio wave R2 is larger than a predetermined value, ie, relatively large, the frequency of the first radio wave R1 is set to the frequency of the second radio wave R2. Make it different. On the other hand, according to the first power transmission device 10 according to an embodiment, when the amount of power transmitted by the second radio wave R2 is not larger than a predetermined value, that is, relatively large, the frequency of the first radio wave R1 is set to the second radio wave. Not different from the frequency of R2.
 このため、一実施形態に係る第1送電装置10によれば、図4に示す電子機器100Cのように複数の送電装置から送電される電波を受信可能な場合であっても、電波が干渉して電波強度が高くなるおそれは低減される。したがって、一実施形態に係る第1送電装置10によれば、送電効率の低下及び通信の障害などが懸念は低減される。一実施形態に係る第1送電装置10によれば、送電する電力及び/又は送電に使用する電波というリソースの観点からも、浪費を低減することが期待できる。このように、一実施形態に係る第1送電装置10によれば、送電の効率の向上が期待できる。したがって、一実施形態に係る第1送電装置10によれば、送電システムの利便性を高めることができる。さらに、一実施形態に係る送電システム1においては、第1送電装置10と第2送電装置20とが直接通信を行わない。したがって、一実施形態に係る送電システム1によれば、第1送電装置10と第2送電装置20とが(例えば隔離している等により)無線通信できない場合であっても、送電システムの利便性を高めることができる。 For this reason, according to the first power transmission device 10 according to an embodiment, even when radio waves transmitted from a plurality of power transmission devices can be received as in the electronic device 100C shown in FIG. Thus, the possibility of the radio wave intensity becoming high is reduced. Therefore, according to the first power transmission device 10 according to the embodiment, the concern about the reduction in the power transmission efficiency, the communication failure, and the like is reduced. According to the first power transmission apparatus 10 according to an embodiment, it is possible to expect to reduce waste from the viewpoint of resources such as power to be transmitted and / or radio waves used for power transmission. As described above, according to the first power transmission device 10 according to the embodiment, improvement in the efficiency of power transmission can be expected. Therefore, according to the 1st power transmission device 10 concerning one embodiment, the convenience of a power transmission system can be improved. Furthermore, in the power transmission system 1 according to the embodiment, the first power transmission device 10 and the second power transmission device 20 do not perform direct communication. Therefore, according to the power transmission system 1 according to an embodiment, the convenience of the power transmission system can be obtained even when the first power transmission device 10 and the second power transmission device 20 can not communicate wirelessly (for example, due to isolation). Can be enhanced.
 以上、第1送電装置10が行う制御により、第1送電装置10から送信される電波の出力を低減する場合の例を説明した。一方、上述のように、以上の制御は、第2送電装置20が行ってもよい。 In the above, the example in the case of reducing the output of the electromagnetic wave transmitted from the 1st power transmission apparatus 10 was demonstrated by the control which the 1st power transmission apparatus 10 performs. On the other hand, as described above, the second power transmission device 20 may perform the above control.
 上述の実施形態のそれぞれにおいても、第1送電装置10と例えば第2送電装置20のような他の送電装置との間の優先関係を予め定めておいてよい。そして、第1送電装置10と例えば第2送電装置20のような他の送電装置との間に規定された優先関係に基づいて、第1送電装置10の送電部50が第1電波R1によって送電を行う態様を制御してよい。 Also in each of the embodiments described above, the priority relationship between the first power transmission device 10 and another power transmission device such as the second power transmission device 20 may be determined in advance. The power transmission unit 50 of the first power transmission device 10 transmits power by the first radio wave R1 based on the priority defined between the first power transmission device 10 and another power transmission device such as the second power transmission device 20, for example. Control the manner in which the
 本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部に含まれる機能などは論理的に矛盾しないように再配置可能である。複数の機能部等は、1つに組み合わせられたり、分割されたりしてよい。上述した本開示に係る各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施され得る。 Although the present disclosure has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present disclosure. For example, the functions included in each functional unit can be rearranged so as not to be logically contradictory. A plurality of functional units may be combined or divided into one. The embodiments according to the present disclosure described above are not limited to the implementation according to each of the embodiments described respectively, and may be implemented by combining the features or omitting some of them as appropriate. .
 例えば、上述した実施形態においては、送電システム1は、第1送電装置10及び第2送電装置20のように、2つの送電装置を含む例を説明した。しかしながら、一実施形態において、送電システム1は、図9に示すように、第3送電装置30を含んでもよい。この場合、第3送電装置30は、少なくとも1つの電子機器100に対し、第3電波R3によって送電を行う。図9に示すような送電システム1においても、第1送電装置10は、図5のステップS2において電子機器100が第1電波R1、第2電波R2、及び第3電波R3を受信可能な場合、図5のステップS3に示したのと同様に制御してよい。この場合、図5に示したステップS3において、第1送電装置10は、第2電波R2に関する情報及び第3電波R3に関する情報に基づいて、第1電波R1によって送電を行う態様を制御してもよい。 For example, in the embodiment described above, an example in which the power transmission system 1 includes two power transmission devices, such as the first power transmission device 10 and the second power transmission device 20 has been described. However, in one embodiment, the power transmission system 1 may include the third power transmission device 30, as shown in FIG. In this case, the third power transmission device 30 transmits power to the at least one electronic device 100 by the third radio wave R3. Also in the power transmission system 1 as shown in FIG. 9, when the electronic device 100 can receive the first radio wave R1, the second radio wave R2, and the third radio wave R3 in step S2 of FIG. Control may be performed in the same manner as shown in step S3 of FIG. In this case, in step S3 shown in FIG. 5, the first power transmission device 10 controls the mode in which power is transmitted by the first radio wave R1 based on the information on the second radio wave R2 and the information on the third radio wave R3. Good.
 このように、一実施形態において、送電システム1は、電子機器100に第3電波R3によって送電を行う第3送電装置30を含んでもよい。この場合、第1送電装置10は、電子機器100が第1電波R1、第2電波R2、及び第3電波R3を受信可能な場合、第2電波R2に関する情報及び第3電波R3に関する情報に基づいて、第1電波R1によって送電を行う態様を制御してもよい。一実施形態に係る送電システム1によれば、3つ以上の送電装置のそれぞれにおいて独立して制御が行われても、3つ以上の送電装置のそれぞれは、全体として適切な送電が行われるように制御される。したがって、一実施形態に係る送電システム1によれば、送電システムの利便性を高めることができる。 Thus, in one embodiment, the power transmission system 1 may include the third power transmission device 30 that transmits power to the electronic device 100 by the third radio wave R3. In this case, when the electronic device 100 can receive the first radio wave R1, the second radio wave R2, and the third radio wave R3, the first power transmission device 10 is based on the information on the second radio wave R2 and the information on the third radio wave R3. It is also possible to control an aspect in which power transmission is performed by the first radio wave R1. According to the power transmission system 1 according to one embodiment, even if control is performed independently in each of three or more power transmission devices, each of the three or more power transmission devices performs appropriate power transmission as a whole Controlled by Therefore, according to the power transmission system 1 which concerns on one Embodiment, the convenience of a power transmission system can be improved.
 また、上述した実施形態は、送電システム1としての実施に限定されない。上述した実施形態は、例えば、送電システム1に含まれる第1送電装置10又は第2送電装置20のような送電装置として実施してもよい。特に、上述した実施形態は、例えば、送電システム1に含まれる第1送電装置10のような送電装置(単独)で実施してもよい。また、上述した実施形態は、例えば、送電システム1に含まれる第1送電装置10又は第2送電装置20のような送電装置において実行されるプログラムとして実施してもよい。また、また、上述した実施形態は、例えば、送電システム1に含まれる少なくとも1つの電子機器100のような電子機器として実施してもよい。さらに、上述した実施形態は、例えば、送電システム1に含まれる第1送電装置10又は第2送電装置20のような送電装置の送電方法として実施してもよい。 Moreover, the embodiment described above is not limited to the implementation as the power transmission system 1. The embodiment described above may be implemented, for example, as a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1. In particular, the above-described embodiment may be implemented by, for example, a power transmission device (independently) such as the first power transmission device 10 included in the power transmission system 1. Also, the embodiment described above may be implemented as a program executed by a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1, for example. Also, the above-described embodiment may be implemented as an electronic device such as at least one electronic device 100 included in the power transmission system 1, for example. Furthermore, the embodiment described above may be implemented, for example, as a power transmission method of a power transmission device such as the first power transmission device 10 or the second power transmission device 20 included in the power transmission system 1.
 1 送電システム
 10 第1送電装置
 20 第2送電装置
 30 第3送電装置
 40 制御部
 42 記憶部
 50 送電部
 52 増幅器
 54 送電アンテナ
 60 通信部
 61A 送信部
 61B 受信部
 62 増幅器
 64 通信アンテナ
 100A~100E 電子機器
 120 受電部
 120A 受電アンテナ
 120B 整流回路
 121 通信部
 130 記憶部
 131 制御部
 140 蓄電部
DESCRIPTION OF SYMBOLS 1 1 power transmission system 10 1st power transmission apparatus 20 2nd power transmission apparatus 30 3rd power transmission apparatus 40 control part 42 storage part 50 power transmission part 52 amplifier 54 power transmission antenna 60 communication part 61A transmission part 61B receiving part 62 amplifier 64 communication antenna 100A-100E electronic Device 120 Power receiving unit 120A Power receiving antenna 120B Rectifier circuit 121 Communication unit 130 Storage unit 131 Control unit 140 Power storage unit

Claims (10)

  1.  第1送電装置が、第1電波によって送電を行うステップと、
     第2送電装置が、第2電波によって送電を行うステップと、
     電子機器が、前記第1電波及び前記第2電波の少なくとも一方を受信可能にするステップと、
     前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合、前記第2電波に関する情報に基づいて、前記第1電波によって送電を行う態様を制御するステップと、
     を含む、送電方法。
    The first power transmission device performs power transmission by the first radio wave;
    The second power transmission apparatus performs power transmission by the second radio wave;
    Enabling an electronic device to receive at least one of the first radio wave and the second radio wave;
    The first power transmission apparatus controls an aspect of performing power transmission by the first radio wave based on information on the second radio wave when the electronic device can receive the first radio wave and the second radio wave; ,
    Power transmission methods, including:
  2.  前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合において、前記第2電波によって送電される電力量が所定値より大きいとき、前記第1電波によって送電を行う態様を制御する、請求項1に記載の送電方法。 The first power transmission apparatus transmits power by the first radio wave when the amount of power transmitted by the second radio wave is larger than a predetermined value when the electronic device can receive the first radio wave and the second radio wave. The power transmission method according to claim 1, which controls an aspect of performing.
  3.  前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合、前記第1電波による送電の電力量を下げる、請求項1又は2に記載の送電方法。 3. The power transmission method according to claim 1, wherein the first power transmission device reduces the amount of power for power transmission by the first radio wave when the electronic device can receive the first radio wave and the second radio wave.
  4.  前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合、前記第1電波の指向性を変更する、請求項1又は2に記載の送電方法。 The power transmission method according to claim 1 or 2, wherein the first power transmission apparatus changes the directivity of the first radio wave when the electronic device can receive the first radio wave and the second radio wave.
  5.  前記第1送電装置は、前記電子機器の方向に対応する前記第1電波の出力が低減するように、前記第1電波の指向性を変更する、請求項4に記載の送電方法。 The power transmission method according to claim 4, wherein the first power transmission device changes the directivity of the first radio wave such that the output of the first radio wave corresponding to the direction of the electronic device is reduced.
  6.  前記第1送電装置は、前記電子機器が前記第1電波及び前記第2電波を受信可能な場合、前記第1電波の周波数を前記第2電波の周波数と異ならせる、請求項1又は2に記載の送電方法。 The said 1st power transmission apparatus makes the frequency of a said 1st electromagnetic wave different from the frequency of a said 2nd electromagnetic wave, when the said electronic device can receive the said 1st electromagnetic wave and a said 2nd electromagnetic wave. Power transmission method.
  7.  前記第1送電装置は、前記第1送電装置、前記第2送電装置、及び前記電子機器の少なくともいずれかの位置が変化したら、前記第1電波によって送電を行う態様を制御する、請求項1から6のいずれかに記載の送電方法。 The first power transmission device controls an aspect of performing power transmission by the first radio wave, when the position of at least one of the first power transmission device, the second power transmission device, and the electronic device changes. The power transmission method according to any one of 6.
  8.  第3送電装置が、前記電子機器に第3電波によって送電を行うステップを含み、
     前記第1送電装置は、前記電子機器が前記第1電波、前記第2電波、及び前記第2電波を受信可能な場合、前記第2電波に関する情報及び前記第3電波に関する情報に基づいて、前記第1電波によって送電を行う態様を制御する、請求項1から7のいずれかに記載の送電方法。
    The third power transmission device includes the step of transmitting power to the electronic device by the third radio wave,
    When the electronic device can receive the first radio wave, the second radio wave, and the second radio wave, the first power transmission device is configured based on the information on the second radio wave and the information on the third radio wave. The power transmission method according to any one of claims 1 to 7, wherein an aspect of performing power transmission by the first radio wave is controlled.
  9.  第1送電装置からの送電を伝送する第1電波及び第2送電装置からの送電を伝送する第2電波の少なくとも一方を受信する電子機器であって、
     前記第1電波及び前記第2電波を受信可能な場合、前記第2電波に関する情報を前記第1送電装置に送信し、前記第1電波による送電を前記第1送電装置に要求する、電子機器。
    An electronic device that receives at least one of a first radio wave transmitting power transmission from a first power transmission device and a second radio wave transmitting power transmission from a second power transmission device,
    The electronic device transmits information on the second radio wave to the first power transmission device and requests power transmission by the first radio wave to the first power transmission device when the first radio wave and the second radio wave can be received.
  10.  少なくとも1つの電子機器に第1電波によって送電を行う送電装置であって、
     前記電子機器が前記第1電波及び他の送電装置からの送電を伝送する第2電波を受信可能な場合、前記第2電波に関する情報に基づいて、前記第1電波によって送電を行う態様を制御する、送電装置。
    A power transmission device for transmitting power to at least one electronic device by a first radio wave, comprising:
    When the electronic device is capable of receiving the first radio wave and the second radio wave transmitting power transmission from the other power transmission device, control is performed on the aspect of performing power transmission by the first radio wave based on the information on the second radio wave. , Power transmission device.
PCT/JP2018/047966 2018-01-26 2018-12-26 Electronic device, power transmission device, and power transmission method WO2019146362A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-011864 2018-01-26
JP2018011864A JP2019129678A (en) 2018-01-26 2018-01-26 Electronic apparatus, power transmission device, power transmission system, and power transmission method

Publications (1)

Publication Number Publication Date
WO2019146362A1 true WO2019146362A1 (en) 2019-08-01

Family

ID=67395903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047966 WO2019146362A1 (en) 2018-01-26 2018-12-26 Electronic device, power transmission device, and power transmission method

Country Status (2)

Country Link
JP (1) JP2019129678A (en)
WO (1) WO2019146362A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242600B2 (en) * 2020-03-18 2023-03-20 株式会社東芝 power supply
JP7153042B2 (en) * 2020-05-29 2022-10-13 ソフトバンク株式会社 Information processing device, information processing program and information processing system
JP7364729B1 (en) 2022-03-30 2023-10-18 ソフトバンク株式会社 Laser device, program, system, and method
JP7364728B1 (en) 2022-03-30 2023-10-18 ソフトバンク株式会社 Power supply management device, program, system, aircraft, and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029471A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Power transmission device and power transmission/reception system
WO2012111271A1 (en) * 2011-02-17 2012-08-23 パナソニック株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting method
JP2015128349A (en) * 2013-12-27 2015-07-09 キヤノン株式会社 Power transmission device, radio power supply system, control method and program
JP2017220960A (en) * 2016-06-02 2017-12-14 パナソニック株式会社 Wireless power feeding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029471A (en) * 2010-07-23 2012-02-09 Sanyo Electric Co Ltd Power transmission device and power transmission/reception system
WO2012111271A1 (en) * 2011-02-17 2012-08-23 パナソニック株式会社 Power transmitting apparatus, power receiving apparatus, and power transmitting method
JP2015128349A (en) * 2013-12-27 2015-07-09 キヤノン株式会社 Power transmission device, radio power supply system, control method and program
JP2017220960A (en) * 2016-06-02 2017-12-14 パナソニック株式会社 Wireless power feeding method

Also Published As

Publication number Publication date
JP2019129678A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2019146362A1 (en) Electronic device, power transmission device, and power transmission method
US11502786B2 (en) Electronic device for retransmitting data in Bluetooth network environment and method thereof
US11497072B2 (en) Electronic device and method for communication connection based on low energy in electronic device
CN105069875A (en) Electronic key, electronic devices and electronic device networking/pairing method
US9370030B2 (en) Communication system, communication apparatus, and communication method
US20230291559A1 (en) Electronic device for controlling power consumption of accessory device and operating method therefor
KR20220102492A (en) Audio device for processing audio data and operating method thereof
WO2019146360A1 (en) Power transmission apparatus, management server, and management method
US20230097491A1 (en) Electronic device transmitting pairing support signal and method operating the same
WO2019146361A1 (en) Power transmission device, power transmission system, and power transmission method
US20130285462A1 (en) Apparatus and method for transmitting wireless energy in energy transmission system
JP2018064458A (en) Transmission apparatus, notification method and program
US20230410633A1 (en) Electronic device and loss reporting method therefor
EP4287745A1 (en) Multi-connection method and device based on target wake time
US20220361094A1 (en) Electronic device, system and operation method of thereof
EP4358606A1 (en) Electronic device and nan-based communication method
US20230128203A1 (en) Electronic device for performing sa query in wlan system and operating method thereof
US20230126676A1 (en) Electronic device for wireless power transmission and operating method thereof
JP2014050052A (en) Radio communication system, radio communication method, and radio communication device
EP4247017A1 (en) Ap-based communication method and electronic device
EP4329363A1 (en) Electronic device for reducing power consumption due to measurement, and operation method of same
US20210329697A1 (en) Method for transmitting and receiving data and electronic device supporting the same
WO2019142579A1 (en) Radio wave transmission system, receiver, and control method
KR20230056963A (en) Electronic device for performing sa query in wlan system and operating method thereof
JP2022191011A (en) Electronic device, control method for the same, communication system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902356

Country of ref document: EP

Kind code of ref document: A1