WO2019146321A1 - Semiconductor laser element - Google Patents

Semiconductor laser element Download PDF

Info

Publication number
WO2019146321A1
WO2019146321A1 PCT/JP2018/046739 JP2018046739W WO2019146321A1 WO 2019146321 A1 WO2019146321 A1 WO 2019146321A1 JP 2018046739 W JP2018046739 W JP 2018046739W WO 2019146321 A1 WO2019146321 A1 WO 2019146321A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
waveguide
laser device
semiconductor laser
layer
Prior art date
Application number
PCT/JP2018/046739
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 萩野
田中 毅
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2019567919A priority Critical patent/JPWO2019146321A1/en
Publication of WO2019146321A1 publication Critical patent/WO2019146321A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present disclosure relates to a semiconductor laser device having a diffraction grating.
  • semiconductor laser devices are used as light sources for image display devices such as displays and projectors, light sources for vehicle headlamps, light sources for industrial lighting and consumer lighting, or industries such as laser welding devices, thin film annealing devices, and laser processing devices. It attracts attention as a light source of various uses, such as a light source of equipment.
  • semiconductor laser device used as a light source for the above-mentioned application it is desired to achieve high output and high beam quality in which the light output largely exceeds 1 watt.
  • a method of forming an array by arranging a plurality of wide waveguides in parallel is widely used.
  • the array type semiconductor laser device since a plurality of light emitting portions are formed, the light is collected at one place using an optical system.
  • a DFB (Distributed Feedback) laser device, a DBR (Distributed Bragg Reflector) laser device or the like is used as a structure capable of precisely controlling the oscillation wavelength.
  • Patent Document 1 discloses a conventional DFB laser device.
  • FIG. 22 is a perspective view showing the configuration of the conventional DFB laser device disclosed in Patent Document 1. As shown in FIG.
  • the conventional semiconductor laser device shown in FIG. 22 has a multimode waveguide 931 whose refractive index is changed in the lateral direction, and a DFB type that utilizes optical feedback by a diffraction grating 932 formed in a guide layer 913. It is a semiconductor laser device.
  • the semiconductor laser device shown in FIG. 22 by providing the diffraction grating only in the portion where the light intensity of the selected transverse mode is maximum, the amount of optical feedback of the selected transverse mode is made larger than that of the other modes. I'm trying to oscillate only the mode.
  • the diffraction grating is arranged only at the portion where the light intensity is maximum, the light intensity at the lateral end of the diffraction grating is large, so the power light conversion efficiency of the semiconductor laser device is reduced due to light scattering at the end. Becomes noticeable.
  • An object of the present disclosure is to provide a DFB type semiconductor laser device which has a good beam quality and can suppress a decrease in power-to-light conversion efficiency.
  • one aspect of a semiconductor laser device includes a first semiconductor layer of a first conductivity type, an active layer disposed above the first semiconductor layer, and the active layer A stacked structure including a second semiconductor layer of a second conductivity type disposed on the upper side, the stacked structure including the first semiconductor layer, the active layer, and the second semiconductor layer, and a pair of opposing resonator end faces; And a waveguide disposed between the pair of resonator end faces and having a diffraction grating formed thereon, and the direction orthogonal to the pair of resonator end faces is a waveguide direction, the diffraction in the waveguide direction
  • the filling factor of the grating varies depending on the waveguide direction and the position in the direction orthogonal to the stacking direction of the stacked structure.
  • the desired light feedback amount distribution can be obtained by changing the filling factor of the diffraction grating depending on the waveguide direction and the position in the direction orthogonal to the stacking direction. Therefore, by appropriately adjusting the filling factor of the diffraction grating, it is possible to suppress light scattering due to the diffraction grating and to selectively oscillate a desired transverse mode corresponding to the light feedback amount distribution. Therefore, it is possible to realize a DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
  • the diffraction grating has a structure which is intermittently interrupted in the waveguide direction, and a length in which the diffraction grating is continuous in the waveguide direction is It may be changed depending on the waveguide direction and the position in the direction orthogonal to the stacking direction.
  • the filling factor of the diffraction grating is defined using the period of the diffraction grating and the continuous length of the diffraction grating. Therefore, for example, when making the period of the diffraction grating constant, the waveguide direction and the waveguide direction and the position in the direction orthogonal to the stacking direction are changed by changing the length in which the diffraction grating continues in the waveguide direction. It is possible to realize a semiconductor laser device having a diffraction grating whose filling factor changes with the position in the direction orthogonal to the stacking direction.
  • the period of the diffraction grating may be changed depending on the position in the direction perpendicular to the waveguide direction and the stacking direction.
  • a semiconductor laser having a diffraction grating whose filling factor changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction by making the length in which the diffraction grating continues in the waveguide direction constant.
  • a device can be realized.
  • the filling factor may be larger than at least one end at the center of the waveguide in the direction orthogonal to the waveguide direction and the stacking direction.
  • the optical feedback amount at the center of the waveguide direction by the diffraction grating and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
  • the filling factor may be smaller than at least one end at the center of the waveguide in the direction orthogonal to the waveguide direction and the stacking direction.
  • the optical feedback amount at the center of the waveguide direction by the diffraction grating and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
  • the second semiconductor layer includes a ridge portion having a longitudinal direction in the waveguide direction, and the filling factor is orthogonal to the waveguide direction and the stacking direction. In the lower region of the ridge, and may change exponentially outside the lower region of the ridge.
  • the electric field strength distribution of the fundamental transverse mode and the amount of optical feedback can be made to coincide with each other inside and outside the waveguide, so that the selectivity of the fundamental transverse mode by the diffraction grating can be further improved.
  • the first semiconductor layer may be a cladding layer, and the diffraction grating may be disposed in the first semiconductor layer.
  • the diffraction grating can be formed in the laminated structure without separately providing a layer for disposing the diffraction grating.
  • one aspect of the semiconductor laser device includes a guide layer disposed between the first semiconductor layer and the active layer, and the diffraction grating is disposed in the guide layer. It is also good.
  • the diffraction grating can be formed in the laminated structure without separately providing a layer for disposing the diffraction grating.
  • DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
  • FIG. 1A is a schematic top view showing the configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 1B is a schematic cross-sectional view showing the configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 2A is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor laser device according to the first embodiment.
  • FIG. 2B is a schematic cross-sectional view showing a second step of the method of manufacturing a semiconductor laser device according to the first embodiment.
  • FIG. 2C is a top view showing a second step of the method of manufacturing a semiconductor laser device according to the first embodiment.
  • FIG. 2D is a schematic cross sectional view showing a third step in the method for manufacturing a semiconductor laser device according to the first embodiment.
  • FIG. 1A is a schematic top view showing the configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 1B is a schematic cross-sectional view showing the configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 2A is
  • FIG. 2E is a schematic cross sectional view showing a fourth step of the method for manufacturing the semiconductor laser device according to the first embodiment.
  • FIG. 2F is a schematic cross-sectional view showing a fifth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2G is a schematic cross sectional view showing a sixth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2H is a schematic cross-sectional view showing a seventh step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2I is a schematic cross sectional view showing an eighth step of the method for manufacturing the semiconductor laser device according to the first embodiment.
  • FIG. 2J is a schematic cross-sectional view showing a ninth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2K is a schematic cross-sectional view showing a tenth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2L is a schematic cross-sectional view showing an eleventh step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 2M is a schematic cross-sectional view showing a twelfth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment.
  • FIG. 3 is a diagram for explaining the electric field distribution in the transverse mode of the semiconductor laser device according to the first embodiment.
  • FIG. 4A is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f of the diffraction grating of the semiconductor laser device according to the first embodiment is 0.5.
  • FIG. 4B is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f of the diffraction grating of the semiconductor laser device according to the first embodiment is 0.25.
  • FIG. 4C is a graph showing the relationship between the filling factor f of the diffraction grating according to Embodiment 1 and the amount of optical feedback by the diffraction grating.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f of the diffraction grating of the semiconductor laser device according to the first embodiment is 0.5.
  • FIG. 4B is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f
  • FIG. 5 is a view showing the relationship between the filling rate of the diffraction grating and the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the first embodiment.
  • FIG. 6 is a graph showing the relationship between the amount of optical feedback and the electric field intensity distribution of laser light according to Embodiment 1, and the positions in the direction of the waveguide and in the direction perpendicular to the stacking direction.
  • FIG. 7 is a top view showing the shape of the diffraction grating according to the first embodiment.
  • FIG. 8 is a top view showing the shape of a diffraction grating according to a modification of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the semiconductor laser device according to the second embodiment.
  • FIG. 10A is a schematic cross sectional view showing a first step of a method of manufacturing a semiconductor laser device according to a second embodiment.
  • FIG. 10B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment.
  • FIG. 10C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment.
  • FIG. 10D is a schematic cross-sectional view showing a fourth step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment.
  • FIG. 10A is a schematic cross sectional view showing a first step of a method of manufacturing a semiconductor laser device according to a second embodiment.
  • FIG. 10B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment.
  • FIG. 10C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor laser device in accordance with the
  • FIG. 11 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the second embodiment and the filling factor of the diffraction grating.
  • FIG. 12 is a graph showing the electric field intensity distribution of laser light and the optical feedback amount distribution by the diffraction grating in the semiconductor laser device according to the second embodiment.
  • FIG. 13 is a top view showing the shape of the diffraction grating according to the second embodiment.
  • FIG. 14 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the third embodiment and the filling factor of the diffraction grating.
  • FIG. 15 is a graph showing the electric field intensity distribution of laser light and the optical feedback amount distribution by the diffraction grating in the semiconductor laser device according to the third embodiment.
  • FIG. 16 is a top view showing the shape of the diffraction grating according to the third embodiment.
  • FIG. 17 is a top view showing the shape of a diffraction grating according to a modification of the third embodiment.
  • FIG. 18A is a graph showing the relationship between the filling factor of the diffraction grating and the position in the direction orthogonal to the waveguide direction and the stacking direction of the diffraction grating according to the fourth embodiment.
  • 18B is a top view showing the shape of the diffraction grating according to Embodiment 4.
  • FIG. 19 is a top view showing the shape of the diffraction grating according to the fifth embodiment.
  • FIG. 20 is a diagram showing the relationship of the amount of optical feedback to the period of the diffraction grating according to the fifth embodiment.
  • FIG. 21 is a diagram showing the calculation result of the relationship between the filling factor and the amount of optical feedback when the fifth order diffraction grating is used.
  • FIG. 22 is a diagram showing the configuration of the conventional semiconductor laser device disclosed in Patent Document 1. As shown in FIG.
  • the X axis, the Y axis, and the Z axis represent three axes of a three-dimensional orthogonal coordinate system.
  • the X axis and the Y axis are axes orthogonal to each other, and both orthogonal to the Z axis.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and downward direction (vertically downward) in absolute space recognition, but are based on the stacking order in the lamination configuration. It is used as a term defined by the relative positional relationship to Also, the terms “upper” and “lower” are not only used when two components are spaced apart from one another and there is another component between the two components, but two components It applies also when arrange
  • Embodiment 1 [Configuration of semiconductor laser device] First, the configuration of the semiconductor laser 1 according to the first embodiment will be described with reference to FIGS. 1A and 1B.
  • 1A and 1B are a schematic top view and a cross-sectional view showing the configuration of a semiconductor laser device 1 according to the present embodiment, respectively.
  • FIG. 1B shows a cross section of the semiconductor laser device 1 taken along line IB-IB in FIG. 1A.
  • the semiconductor laser device 1 shown in FIGS. 1A and 1B is a DFB laser device in which a diffraction grating 70 is formed.
  • the semiconductor laser device 1 is mainly made of a nitride semiconductor.
  • the semiconductor laser device 1 includes a substrate 10, a first semiconductor layer 20, a light emitting layer 30, a second semiconductor layer 40, an electrode member 50, a dielectric layer 60, and a diffraction grating 70. And an n-side electrode 80.
  • the light emitting layer 30 includes an n-side light guide layer 31, an active layer 32 and a p-side light guide layer 33.
  • the second semiconductor layer 40 includes an electron barrier layer 41, a p-side cladding layer 42, and a p-side contact layer 43.
  • the semiconductor laser device 1 includes a laminated structure 90 including a first semiconductor layer 20, an active layer 32, and a second semiconductor layer 40.
  • the laminated structure 90 includes a pair of opposed resonator end faces 95f and 95r, and a waveguide 90a disposed between the pair of resonator end faces 95f and 95r, in which the diffraction grating 70 is formed. And.
  • the pair of resonator end faces 95 f and 95 r are disposed at the end in the direction perpendicular to the stacking direction of the stacked structure 90.
  • the second semiconductor layer 40 extends in the waveguide direction, assuming that the direction orthogonal to the pair of resonator end faces 95f and 95r is the waveguide direction (that is, the laser resonator direction or the Z-axis direction in FIG. 1B)
  • a ridge portion 40a formed of stripe-shaped (that is, ridge-shaped) convex portions, and a direction perpendicular to the waveguide direction and the lamination direction of the laminated structure 90 (that is, the Y-axis direction) from the root of the ridge portion 40a
  • the flat part 40b which spreads to.
  • the width and height of the ridge portion 40a are not particularly limited, but as an example, the width (stripe width) of the ridge portion 40a is 1 ⁇ m to 100 ⁇ m, and the height of the ridge portion 40a is 100 nm to 1 ⁇ m.
  • the width of the ridge portion 40a may be 10 ⁇ m to 50 ⁇ m, and the height of the ridge portion 40a may be 300 nm to 800 nm. In the present embodiment, the width is 10 ⁇ m and the height is 500 nm.
  • the substrate 10 is, for example, a GaN substrate.
  • an n-type hexagonal GaN substrate whose main surface is the (0001) plane is used as the substrate 10.
  • the first semiconductor layer 20 is disposed above the substrate 10 as shown in FIG. 1B.
  • the first semiconductor layer 20 is a semiconductor layer of a first conductivity type, and is, for example, an n-side cladding layer made of n-type AlGaN.
  • the diffraction grating 70 is disposed in the first semiconductor layer 20 which is a cladding layer.
  • the diffraction grating 70 is made of a material having a refractive index different from that of the first semiconductor layer 20.
  • the material forming the diffraction grating 70 is, for example, a dielectric film made of SiO 2 , SiN, AlN or the like, a semiconductor made of GaN, InGaN or the like, or air.
  • the amount of light feedback by the diffraction grating 70 increases as the difference in refractive index between the first semiconductor layer 20 and the diffraction grating 70 increases.
  • the diffraction grating 70 may be disposed in the n-side light guide layer 31 (see Embodiment 2 described later), and is formed in the p-side light guide layer 33 or the p-side cladding layer 42. It may be However, as described later, when the diffraction grating 70 is formed by regrowth of a nitride semiconductor, it is known that impurities such as Si and oxygen which work as n-type dopant pile up at the regrowth interface.
  • the n-type dopant piles up in the p-type semiconductor layer for example, a voltage increase occurs at the time of laser oscillation of the semiconductor laser device 1, and as a result, the power light conversion efficiency of the semiconductor laser device 1 is reduced. Therefore, when the diffraction grating is formed using regrowth as in the present embodiment, the decrease in the power-to-light conversion efficiency of the semiconductor laser device 1 is suppressed by providing the diffraction grating 70 in the n-type semiconductor layer. it can.
  • the light feedback amount of the diffraction grating 70 can be increased by arranging the diffraction grating 70 near the active layer 32. . Specifically, by reducing the thickness of the n-side light guide layer 31, the amount of light feedback of the diffraction grating 70 can be increased. Further, the diffraction grating 70 may be transparent to the oscillation wavelength of the semiconductor laser element 1. Thereby, the light absorption loss by the diffraction grating 70 can be suppressed.
  • the diffraction grating 70 is formed in the vicinity immediately below the ridge portion 40a, and has a periodic structure in the waveguide direction (Y-axis direction).
  • the diffraction grating 70 has a structure that is intermittently interrupted in the waveguide direction. More specifically, as shown in FIG. 1A, in the diffraction grating 70, portions of a specific shape are periodically arranged in the waveguide direction.
  • the light emitting layer 30 is disposed above the first semiconductor layer 20, as shown in FIG. 1B.
  • the light emitting layer 30 is made of a nitride semiconductor.
  • the light emitting layer 30 has, for example, a structure in which an n-side light guide layer 31 made of n-GaN, an active layer 32 made of an InGaN quantum well layer, and a p-side light guide layer 33 made of p-GaN are stacked. Have.
  • the second semiconductor layer 40 is disposed above the light emitting layer 30, as shown in FIG. 1B.
  • the second semiconductor layer 40 is a semiconductor layer of a second conductivity type different from the first conductivity type, and includes, for example, an electron barrier layer 41 made of AlGaN, a p-side cladding layer 42 made of p-type AlGaN, and p-type GaN. And the p-side contact layer 43 are stacked.
  • the p-side cladding layer 42 has a convex portion.
  • the p-side contact layer 43 is disposed on the convex portion of the p-side cladding layer 42 as the uppermost layer of the ridge portion 40 a.
  • the ridge portion 40 a in a stripe shape is configured by the convex portion of the p-side cladding layer 42 and the p-side contact layer 43.
  • the p-side cladding layer 42 has flat portions forming flat portions 40 b on both sides of the ridge portion 40 a.
  • the uppermost surface of the flat portion 40b is the surface of the p-side cladding layer 42, and the p-side contact layer 43 is not formed on the uppermost surface of the flat portion 40b.
  • the dielectric layer 60 is an insulating film made of SiO 2 formed on the side surface of the ridge portion 40 a in order to confine light. Specifically, the dielectric layer 60 is continuously formed from the side surface of the ridge portion 40a to the flat portion 40b. In the present embodiment, the dielectric layer 60 is continuous over the side surface of the p-side contact layer 43, the side surface of the protrusion of the p-side cladding layer 42, and the top surface of the p-side cladding layer 42 around the ridge portion 40a. It is formed.
  • the shape of the dielectric layer 60 is not particularly limited, but the dielectric layer 60 may be in contact with the side surface of the ridge portion 40 a and the flat portion 40 b. Thus, light emitted immediately below the ridge portion 40a can be stably confined.
  • the electrode member 50 is disposed above the second semiconductor layer 40.
  • the electrode member 50 is wider than the ridge portion 40a. That is, the width (the width in the X-axis direction) of the electrode member 50 is larger than the width (the width in the X-axis direction) of the ridge portion 40a.
  • the electrode member 50 is in contact with the top surfaces of the dielectric layer 60 and the ridge portion 40a.
  • the electrode member 50 has a p-side electrode 51 for supplying current and a pad electrode 52 disposed above the p-side electrode 51.
  • the p-side electrode 51 is in contact with the upper surface of the ridge portion 40 a.
  • the p-side electrode 51 is an ohmic electrode in ohmic contact with the p-side contact layer 43 above the ridge portion 40a, and is in contact with the top surface of the p-side contact layer 43 which is the top surface of the ridge portion 40a.
  • the p-side electrode 51 is formed using, for example, a metal material such as Pd, Pt, or Ni. In the present embodiment, the p-side electrode 51 has a two-layer structure of Pd / Pt.
  • the pad electrode 52 is wider than the ridge portion 40 a and is in contact with the dielectric layer 60. That is, the pad electrode 52 is formed to cover the ridge portion 40 a and the dielectric layer 60.
  • the pad electrode 52 is formed using, for example, a metal material such as Ti, Ni, Pt, Au or the like. In the present embodiment, the pad electrode 52 has a three-layer structure of Ti / Pt / Au.
  • the pad electrode 52 is formed inside the second semiconductor layer 40 in order to improve the yield when the semiconductor laser element 1 is singulated. That is, when the semiconductor laser 1 is viewed from the top, the pad electrode 52 is not formed at the edge of the end of the semiconductor laser 1. That is, the semiconductor laser device 1 has a non-current injection region in which current is not supplied to the edge of the end.
  • the cross-sectional shape of the region in which the pad electrode 52 is formed has a structure shown in FIG. 1B in any part.
  • an end surface coat film such as a dielectric multilayer film is formed on the resonator end faces 95f and 95r. It is difficult to form this end face coat film only on the end face, and it also wraps around the upper surface of the semiconductor laser device 1. As described above, when the end face coat film is rolled up to the upper surface, the pad electrode 52 is not formed at the end of the semiconductor laser device 1 in the waveguide direction (Z-axis direction). In some cases, the dielectric layer 60 and the end surface coat film come in contact with each other at the end in the waveguide direction.
  • the film thickness of the dielectric layer 60 may be 100 nm or more.
  • the film thickness of the dielectric layer 60 is the height of the ridge portion 40a (that is, the ridge portion 40a is flat portion 40b). It is good to make it below the height which protrudes upwards from.
  • the ridge portion 40a and the flat portion 40b may be dielectric By covering with the body layer 60, the generation of unnecessary leak current can be reduced.
  • the n-side electrode 80 is disposed on the lower surface of the substrate 10.
  • the n-side electrode 80 is an ohmic electrode in ohmic contact with the substrate 10.
  • the n-side electrode 80 is, for example, a laminated film made of Ti / Pt / Au.
  • the configuration of the n-side electrode 80 is not limited to this.
  • the n-side electrode 80 may be a laminated film in which Ti and Au are laminated.
  • FIGS. 2A to 2L are schematic cross-sectional views showing each step in the method for manufacturing the semiconductor laser device 1 according to the embodiment.
  • FIG. 2C is a top view showing a second step in the method for manufacturing the semiconductor laser device 1 according to the present embodiment.
  • MOCVD metalorganic chemical vapor deposition
  • substrate 10 which is an n-type hexagonal GaN substrate whose major surface is a (0001) plane.
  • the first semiconductor layer 20 is deposited.
  • an n-side cladding layer of n-type AlGaN is grown 3 ⁇ m as the first semiconductor layer 20 on the substrate 10.
  • a first protective film 91 is formed on the first semiconductor layer 20.
  • a 300 nm thick silicon oxide film (SiO 2 ) is formed on the first semiconductor layer 20 as the first protective film 91 by plasma CVD (Chemical Vapor Deposition) method using silane (SiH 4 ). Do.
  • the film-forming method of the 1st protective film 91 is not restricted to plasma CVD method, For example, well-known film-forming methods, such as a thermal CVD method, a sputtering method, a vacuum evaporation method, or a pulse laser film-forming method, are used. It can be used.
  • the film forming material of the first protective film 91 is not limited to the above-described one, and may be, for example, a material having selectivity for etching of the first semiconductor layer 20 described later, such as a dielectric or metal. Just do it.
  • the first protective film 91 is selectively removed using a lithography method and an etching method.
  • a photolithography method using a short wavelength light source an electron beam lithography method of direct writing with an electron beam, a nanoimprint method, or the like can be used.
  • an etching method for example, dry etching by reactive ion etching (RIE) using a fluorine-based gas such as CF 4 or wet etching such as hydrofluoric acid (HF) diluted to about 1:10 is used. be able to.
  • RIE reactive ion etching
  • HF hydrofluoric acid
  • FIG. 2C is a top view of the laminate shown in FIG. 2B.
  • FIG. 2B shows a cross section of the stack taken along line IIB-IIB in FIG. 2C.
  • a plurality of openings 91a having a desired shape are periodically formed in the first protective film 91, and the first semiconductor layer 20 is exposed in the openings 91a.
  • the opening 91 a has a diamond shape in a top view of the substrate 10.
  • the first semiconductor layer 20 is etched using the first protective film 91 formed in a desired shape as a mask to correspond to the plurality of openings 91 a in the first semiconductor layer 20.
  • a plurality of recesses 20a As a method of etching the first semiconductor layer 20, dry etching by RIE using a chlorine-based gas such as Cl 2 may be used.
  • the depth of etching is not particularly limited, in this embodiment, etching is performed to a depth of 200 nm.
  • the first protective film 91 having a desired shape is removed by wet etching using hydrofluoric acid or the like.
  • the light emitting layer 30 and the second semiconductor layer 40 are sequentially formed using an organic metal vapor phase growth method.
  • the n-side light guide layer 31 made of n-GaN is grown by 0.2 ⁇ m on the first semiconductor layer 20 in which the recess 20 a is formed.
  • the surface of the n-side light guide layer 31 after the embedding can be made substantially flat by selecting the growth condition in which the lateral growth is dominant so that the air is embedded in the recess 20 a.
  • the growth temperature may be high or the growth pressure may be low.
  • the surface of the n-side light guide layer 31 can be further planarized by forming a thin dielectric layer such as SiO 2 or AlN on at least one of the side wall and the bottom of the recess 20 a shown in FIG. 2E.
  • a thin dielectric layer such as SiO 2 or AlN
  • an active layer 32 having three cycles of a barrier layer of InGaN and an InGaN quantum well layer is grown.
  • a p-side light guide layer 33 made of p-GaN is grown to a thickness of 0.1 ⁇ m.
  • an electron barrier layer 41 made of AlGaN is grown to 10 nm.
  • a p-side cladding layer 42 composed of a 0.48 ⁇ m strained superlattice formed by repeating a p-AlGaN layer (1.5 nm) and a GaN layer (1.5 nm) for 160 cycles is grown.
  • a p-side contact layer 43 made of p-GaN is grown by 0.05 ⁇ m.
  • trimethylgallium (TMG), trimethylammonium (TMA), trimethylindium (TMI) is used as an organometallic raw material containing Ga, Al, and In.
  • ammonia (NH 3 ) is used as a nitrogen source.
  • a second protective film 92 is formed on the second semiconductor layer 40. Specifically, a 300 nm silicon oxide film (SiO 2 ) is formed as the second protective film 92 on the p-side contact layer 43 by plasma CVD using silane (SiH 4 ).
  • the second protective film 92 is selectively removed using a photolithography method and an etching method so that the second protective film 92 remains like a waveguide.
  • an etching method for example, dry etching by reactive ion etching (RIE) using a fluorine-based gas such as CF 4 or wet etching such as hydrofluoric acid (HF) diluted to about 1:10 is used. be able to.
  • the p-side contact layer 43 and the p-side cladding layer 42 are etched using the second protective film 92 formed in a waveguide shape as a mask to form a ridge on the second semiconductor layer 40.
  • the portion 40a and the flat portion 40b are formed.
  • etching of the p-side contact layer 43 and the p-side cladding layer 42 it is preferable to use dry etching by RIE using a chlorine-based gas such as Cl 2 .
  • the dielectric layer 60 is formed. That is, the dielectric layer 60 is formed on the ridge portion 40 a and the flat portion 40 b of the second semiconductor layer 40.
  • a silicon oxide film (SiO 2 ) is formed to a thickness of 300 nm by plasma CVD using silane (SiH 4 ).
  • the p-side electrode 51 made of Pd / Pt is formed only on the ridge portion 40a by using a vacuum evaporation method and a lift-off method. Specifically, the p-side electrode 51 is formed on the p-side contact layer 43 exposed from the dielectric layer 60.
  • the film-forming method of the p side electrode 51 is not restricted to a vacuum evaporation method, A sputtering method, a pulse laser film-forming method, etc. may be used.
  • the electrode material of the p-side electrode 51 may be any material that is in ohmic contact with the second semiconductor layer 40 (p-side contact layer 43), such as Ni / Au type, Pt type or the like.
  • a pad electrode 52 is formed to cover the p-side electrode 51 and the dielectric layer 60.
  • a resist is patterned on portions other than portions to be formed by photolithography and the like, and a pad electrode 52 made of Ti / Pt / Au is formed on the entire upper surface of the substrate 10 by a vacuum evaporation method or the like.
  • a pad electrode 52 having a predetermined shape is formed on the p-side electrode 51 and the dielectric layer 60 by removing unnecessary portions of the electrode.
  • an electrode member 50 composed of the p-side electrode 51 and the pad electrode 52 is formed.
  • the n-side electrode 80 is formed on the lower surface of the substrate 10. Specifically, an n-side electrode 80 made of Ti / Pt / Au is formed on the back surface of the substrate 10 (that is, the main surface on the back side of the main surface on which the first semiconductor layer 20 etc. are formed) by vacuum evaporation or the like.
  • the n-side electrode 80 having a predetermined shape is formed by patterning using a photolithography method and an etching method. Thereby, the semiconductor laser device 1 according to the present embodiment can be manufactured.
  • FIG. 3 is a diagram for explaining the electric field distribution in the transverse mode of the semiconductor laser device 1 according to the present embodiment.
  • the cross-sectional view (a) of FIG. 3 shows a schematic cross-sectional view of the semiconductor laser device 1, and the graph (b) shows the position of the cross-sectional view (a) in the lateral direction (X-axis direction of FIG. 3) and the laser light.
  • the fundamental transverse mode has a distribution in which the electric field strength is maximum at the central portion of the waveguide and the strength decreases as the waveguide end is approached.
  • the light distribution has a shape that can be expressed by a cosine function inside the waveguide of width W shown in FIG. 3, and outside the waveguide as it goes away from the waveguide 90 a It has an exponentially decreasing shape.
  • Such light distribution is formed in the waveguide type laser because the current is supplied from the ridge portion 40a and light is generated only in the ridge portion 40a, and in the direction orthogonal to the waveguide direction, This is because light is confined by the difference in refractive index between the inside and the outside of the waveguide.
  • the cosine function is cos (.kappa.X) and the exponential function is exp (-. Gamma.X)
  • the refractive index inside the waveguide is 2.5
  • the refractive index outside the waveguide is 2.2.
  • the high-order transverse mode has a distribution having a plurality of peaks, and a position where the electric field intensity is maximized exists outside the central portion of the waveguide.
  • the same gain distribution as that of the fundamental transverse mode light distribution may be provided. That is, the fundamental transverse mode can be preferentially oscillated by increasing the gain of the fundamental transverse mode and reducing the gain of the high-order transverse mode.
  • the gain in the DFB type laser device in which the diffraction grating 70 is formed can be expressed by the optical feedback amount of the diffraction grating.
  • the relationship between the filling factor f of the diffraction grating and the amount of optical feedback will be described with reference to FIGS. 4A to 4C.
  • FIGS. 4A and 4B are schematic cross-sectional views showing the configuration of the diffraction grating 70 when the filling factor f of the diffraction grating 70 of the semiconductor laser device 1 according to the present embodiment is 0.5 and 0.25, respectively.
  • FIG. 4A corresponds to the cross section of the diffraction grating 70 and the first semiconductor layer 20 at line IVA-IVA in FIG. 1A
  • FIG. 4B shows the cross section of the diffraction grating 70 and the first semiconductor layer 20 at line IVB-IVB in FIG.
  • FIG. 4C is a graph showing the relationship between the filling factor f of the diffraction grating 70 according to the present embodiment and the amount of optical feedback by the diffraction grating 70.
  • the filling factor f of the diffraction grating 70 can be restated as the duty of the diffraction grating 70.
  • the order of the diffraction grating 70 is m
  • the oscillation wavelength of the laser light in the semiconductor laser device 1 is ⁇
  • the refractive index is n
  • FIG. 4C is the calculation result of the amount of optical feedback with respect to the filling factor of the diffraction grating in the first-order diffraction grating.
  • the filling factor f is 0.5
  • the amount of optical feedback is the largest
  • the filling factor is 0 or 1
  • the amount of optical feedback is zero.
  • the DFB laser device is characterized in that the larger the amount of optical feedback of the diffraction grating 70, the easier it is to oscillate at a specific wavelength.
  • the fundamental transverse mode is adjusted by adjusting the filling factor f according to the position in the direction orthogonal to the waveguide direction and the stacking direction, and matching the amount of optical feedback with the light distribution of the fundamental transverse mode shown in graph (b) of FIG. Selective oscillation is possible.
  • FIG. 5 is a view showing the relationship between the filling factor of the diffraction grating 70 and the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 1 according to the present embodiment.
  • the cross-sectional view (a) of FIG. 5 shows a schematic cross-sectional view of the semiconductor laser device 1, and the graph (b) shows the position and diffraction grating in the lateral direction (X-axis direction of FIG. 3) of the cross-sectional view (a).
  • the relationship with the filling rate of 70 is shown.
  • the filling factor f of the diffraction grating 70 in the waveguide direction changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction.
  • the filling factor f linearly decreases from the central portion of the waveguide toward the waveguide end in the direction orthogonal to the waveguide direction and the stacking direction. With such a shape, a gain distribution reflecting the light distribution of the fundamental transverse mode shown in the graph (b) of FIG. 3 can be realized.
  • FIG. 6 is a graph showing the relationship between the amount of optical feedback and the electric field intensity distribution of laser light according to the present embodiment, and the positions in the direction of the waveguide and in the direction perpendicular to the stacking direction.
  • FIG. 6 shows the electric field intensity distribution shown in the graph (b) of FIG. 3 and the calculation results of the amount of optical feedback of the diffraction grating 70 having the filling factor distribution shown in FIG.
  • the amount of optical feedback is shown by a broken line and the electric field intensity is shown by a solid line.
  • the vertical axis of the graph shown in FIG. 6 is standardized.
  • the electric field intensity distribution and the light feedback amount distribution match in the waveguide, and by adopting such a light feedback amount distribution in the diffraction grating 70, it is basic in the semiconductor laser device 1
  • the horizontal mode can be selectively oscillated.
  • the filling factor of the diffraction grating 70 As described above, by changing the filling factor of the diffraction grating 70 depending on the waveguide direction and the position in the direction orthogonal to the stacking direction, a desired light feedback amount distribution can be obtained. Therefore, by appropriately adjusting the filling factor of the diffraction grating 70, it is possible to selectively oscillate the desired transverse mode corresponding to the light feedback amount distribution. Further, light scattering due to the diffraction grating 70 can be suppressed by adjusting the filling factor of the diffraction grating 70 so that the end of the diffraction grating 70 is not arranged in the region where the electric field intensity of the laser light is large. Therefore, according to the semiconductor laser device 1 according to the present embodiment, it is possible to realize a DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
  • FIG. 7 is a top view showing the shape of the diffraction grating 70 according to the present embodiment.
  • FIG. 8 is a top view showing the shape of a diffraction grating 70a according to a modification.
  • the diffraction grating 70 has a diamond shape in top view.
  • the period a of the diffraction grating 70 is constant, the length d continuous in the waveguide direction of the diffraction grating 70 changes in the direction orthogonal to the waveguide direction and the stacking direction. For example, if the length at which the diffraction grating 70 in the central portion of the waveguide continues in the waveguide direction is d1 and the length at which the diffraction grating 70 at the waveguide end (ridge end) is continuous in the waveguide direction is d2, There is a relationship of d1> d2.
  • the respective filling rates are defined as f1 and f2
  • the relation of f1> f2 is established. That is, the filling factor in the waveguide direction changes in the direction orthogonal to the waveguide direction and the stacking direction.
  • the shape of the diffraction grating is not limited to this, and it may be a shape that satisfies the filling factor distribution of the graph (b) of FIG.
  • it may have a triangular shape in top view.
  • the diffraction grating 70 has a structure in which it is periodically interrupted in the waveguide direction, and the length in which the diffraction grating 70 is continuous in the waveguide direction is the waveguide direction and the stacking direction It changes with the position of the direction orthogonal to.
  • the length d where the diffraction grating 70 continues in the waveguide direction is changed by the position in the direction orthogonal to the waveguide direction and the stacking direction. It is possible to realize the semiconductor laser device 1 having the diffraction grating 70 in which the filling factor f changes depending on the direction and the direction orthogonal to the stacking direction.
  • the filling factor f is smaller than at least one end at the center in the direction orthogonal to the waveguide direction and the stacking direction of the waveguide 90a.
  • the optical feedback amount at the center of the waveguide direction by the diffraction grating 70 and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction. It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
  • Second Embodiment [Configuration of semiconductor laser device]
  • the structure in which the diffraction grating 70 is formed in the first semiconductor layer 20 has been described.
  • a structure in which the diffraction grating 70 is formed in the n-side light guide layer 31 will be described.
  • the method of making the electric field distribution in the waveguide and the optical feedback amount of the diffraction grating match is described, but in the present embodiment, the shape of the diffraction grating also takes into consideration the electric field distribution outside the waveguide. explain.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the semiconductor laser device 101 according to the present embodiment.
  • the semiconductor laser device 101 according to the present embodiment includes the first semiconductor layer 20, the light emitting layer 30 and the second semiconductor layer 40 in the same manner as the semiconductor laser device 1 according to the first embodiment.
  • a laminated structure 190 is provided.
  • the laminated structure 190 includes the waveguide 190 a in which the diffraction grating 170 is formed, and the diffraction grating 170 is disposed in the light emitting layer 30. More specifically, the diffraction grating 170 is disposed in the n-side light guide layer 31 of the light emitting layer 30.
  • the diffraction grating 170 according to the present embodiment is different from the diffraction grating 170 according to the first embodiment in the shape in the outside of the waveguide 190a.
  • the shape of the diffraction grating 170 will be described later.
  • FIGS. 10A to 10D are schematic cross-sectional views showing steps in the method of manufacturing the semiconductor laser device 101 according to the present embodiment.
  • a method of manufacturing the semiconductor laser device 101 according to the present embodiment will be described focusing on differences from the first embodiment.
  • an n-side cladding layer of n-type AlGaN is grown 3 ⁇ m as the first semiconductor layer 20 on the substrate 10.
  • a silicon oxide film (SiO 2 ) of 100 nm is formed as the diffraction grating film 93 on the first semiconductor layer 20.
  • the diffraction grating film 93 is selectively removed using the lithography method and the etching method, and the diffraction grating film 93 remaining after this etching is used as the diffraction grating 170.
  • the light emitting layer 30 and the second semiconductor layer 40 are sequentially formed using an organic metal vapor phase growth method.
  • the diffraction grating 170 is disposed in the n-side light guide layer 31 of the light emitting layer 30.
  • the diffraction grating 170 can be formed in a laminated structure without separately providing a layer for disposing the diffraction grating.
  • the semiconductor laser device 101 according to the present embodiment as shown in FIG. 9 can be formed. .
  • FIG. 11 is a view showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 101 according to the present embodiment and the filling factor of the diffraction grating 170.
  • the cross-sectional view (a) of FIG. 11 shows a schematic cross-sectional view of the semiconductor laser device 101, and the graph (b) shows the position and diffraction grating in the lateral direction (X-axis direction of FIG. 11) of the cross-sectional view (a).
  • the relationship with the filling factor f of 170 is shown.
  • the filling factor of the diffraction grating 170 according to the present embodiment is different from that of the diffraction grating 70 according to the first embodiment outside the waveguide.
  • FIG. 12 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 101 according to the present embodiment and the optical feedback amount distribution by the diffraction grating 170.
  • FIG. 12 shows the electric field intensity distribution shown in the graph (b) of FIG. 3 and the calculation results of the optical feedback distribution of the diffraction grating 170 in the case where the filling factor distribution is shown in the graph (b) of FIG. It is a graph, and a vertical axis is a standardized value.
  • FIG. 13 is a top view showing the shape of the diffraction grating 170 according to the present embodiment. As shown in FIG. 13, the diffraction grating 170 changes its shape exponentially outside the waveguide. Also in the present embodiment, as in the first embodiment, although the period a of the diffraction grating 170 is constant, the length d of the diffraction grating 170 continuing in the waveguide direction is perpendicular to the waveguide direction and the stacking direction. Has changed.
  • the filling factor f of the diffraction grating 170 changes in the direction orthogonal to the waveguide direction and the stacking direction.
  • the second semiconductor layer 40 includes the ridge portion 40 a having the longitudinal direction in the waveguide direction, and the filling factor f is the waveguide direction and the lamination direction. In the orthogonal direction, it linearly changes in the lower region of the ridge portion 40a, and exponentially changes outside the lower region of the ridge portion 40a.
  • the electric field strength distribution of the fundamental transverse mode and the amount of optical feedback can be made to coincide with each other inside and outside the waveguide, so the selectivity of the fundamental transverse mode by the diffraction grating 170 can be further improved.
  • the configuration in which the diffraction grating 170 is formed in the n-side light guide layer 31 and the configuration of the diffraction grating 170 in consideration of the electric field distribution outside the waveguide are adopted. It does not have to be adopted in combination. Only one of these configurations may be employed.
  • the semiconductor laser device according to the third embodiment will be described.
  • the semiconductor laser device according to the present embodiment is different from the first and second embodiments in the filling factor distribution of the diffraction grating. Since the formation position and the manufacturing method of the diffraction grating are the same as in Embodiment 1 or Embodiment 2, the description will be omitted.
  • the configuration of the diffraction grating according to the present embodiment will be described with reference to FIG.
  • FIG. 14 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 201 according to the present embodiment and the filling factor of the diffraction grating 270.
  • the sectional view (a) of FIG. 14 shows a schematic sectional view of the semiconductor laser device 201, and the graph (b) shows the position of the lateral direction (the X-axis direction of FIG. 14) and the diffraction grating of the sectional view (a).
  • the relationship with the filling factor f of 270 is shown.
  • the filling factor of the diffraction grating 270 according to the present embodiment changes stepwise in the X direction of the diffraction grating 270, as shown in the graph (b) of FIG.
  • FIG. 15 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 201 according to the present embodiment and the optical feedback amount distribution by the diffraction grating 270.
  • FIG. 15 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 201 and calculation results of the light feedback amount distribution of the diffraction grating 270 when the filling factor distribution is shown by the graph (b) in FIG. Yes, the vertical axis is a standardized value. As shown in FIG.
  • the amount of optical feedback also changes in a stepwise manner, reflecting the filling factor. Even in the case of using such a diffraction grating 270, since the fundamental transverse mode can be selectively oscillated, good beam quality can be obtained. Further, also in the present embodiment, the end portion of the diffraction grating 270 in the lateral direction (X-axis direction) does not exist in the region where the electric field intensity of the laser light is high. It is possible to suppress the decrease in efficiency.
  • FIG. 16 is a top view showing the shape of the diffraction grating 270 according to the present embodiment.
  • the diffraction grating 70 has a shape in which a plurality of rectangles having different lengths in the waveguide direction (Z-axis direction) are combined. Although the period a of the diffraction grating 270 is constant, the length d where the diffraction grating 270 continues in the waveguide direction changes in the direction (X-axis direction) orthogonal to the waveguide direction and the stacking direction. As shown in FIG.
  • FIG. 17 is a top view showing the shape of a diffraction grating 270a according to this modification.
  • rectangular diffraction grating elements 271 to 273 having different widths in the waveguide direction and the direction orthogonal to the stacking direction may be arranged in the waveguide direction.
  • the period a is constant.
  • the length d in the waveguide direction of the diffraction grating 270a changes between the portion with the diffraction grating (length d) and the portion without the diffraction grating (length 0).
  • Embodiment 4 The diffraction grating according to the fourth embodiment will be described.
  • the diffraction grating according to the present embodiment differs from the diffraction grating 170 according to the second embodiment in the filling factor f.
  • the diffraction grating according to the present embodiment will be described focusing on differences from the diffraction grating 170 according to the second embodiment.
  • the diffraction grating is shown in which the filling factor f is greater than 0 and not more than 0.5, but the filling factor f of the diffraction grating may be greater than 0.5.
  • FIGS. 18A and 18B an example of a diffraction grating having a filling factor f larger than 0.5 will be described with reference to FIGS. 18A and 18B.
  • FIG. 18A is a graph showing the relationship between the filling direction f of the diffraction grating 370 and the position in the direction orthogonal to the waveguide direction and the stacking direction of the diffraction grating 370 according to the present embodiment.
  • FIG. 18B is a top view showing the shape of the diffraction grating 370 according to the present embodiment.
  • the same effect as that of the diffraction grating 170 according to the second embodiment can be obtained by using the diffraction grating 370 having a filling factor of 0.5 or more and 1.0 or less.
  • the filling factor at the center of the waveguide is small and the filling factor at both sides of the waveguide is larger than the center. .
  • the diffraction grating 370 is formed in the range of 2 W in width from the center of the waveguide, and the diffraction grating 370 does not exist outside the range of 2 W in width.
  • the period a of the diffraction grating 370 is constant, but the length d of the diffraction grating 370 continuing in the waveguide direction is orthogonal to the waveguide direction and the stacking direction Change in the direction of For example, if the length at which the diffraction grating 370 at the center of the waveguide continues in the waveguide direction is d1 and the length at which the diffraction grating 370 at the waveguide end (ridge edge) continues in the waveguide direction is d2, There is a relationship of d1 ⁇ d2.
  • the filling factor f is larger than at least one end at the center in the direction orthogonal to the waveguide direction and the stacking direction of the waveguide.
  • the optical feedback amount at the center of the waveguide direction by the diffraction grating 370 and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction. It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
  • the first to fourth embodiments show a method of changing the amount of optical feedback by changing the length d of the diffraction grating continuing in the waveguide direction.
  • a method of changing the amount of optical feedback by changing the period a of the diffraction grating will be described with reference to FIGS. 19 and 20.
  • FIG. The formation position of the diffraction grating and the manufacturing method are the same as in the first to fourth embodiments, and thus the description thereof is omitted.
  • FIG. 19 is a top view showing the shape of the diffraction grating 470 according to the present embodiment.
  • the diffraction grating 470 in which the period in the waveguide direction in the waveguide of width W changes in the direction (X-axis direction) orthogonal to the waveguide direction and the stacking direction It is formed.
  • the period of the waveguide central portion is a1
  • the period of the waveguide end is a2.
  • the period changes continuously.
  • the period is continuously increased as the end portion is approached from the center in the X-axis direction of the waveguide.
  • FIG. 20 is a diagram showing the relationship of the amount of optical feedback to the period of the diffraction grating 470 according to the present embodiment.
  • FIG. 20 shows the amount of optical feedback when oscillating at a wavelength corresponding to the period a1.
  • the amount of optical feedback has a peak at period a1 and decreases with distance from period a1.
  • the amount of optical feedback can hardly be obtained at periods other than the period corresponding to the oscillation wavelength.
  • the filling factor of the part where the period of the diffraction grating 470 is a1 f1 and the filling factor of the part where the period is a2 is f2
  • the length d of the diffraction grating 470 continuing in the waveguide direction is constant.
  • the period of the diffraction grating 470 changes depending on the position in the waveguide direction and the direction orthogonal to the stacking direction.
  • the continuous length of the diffraction grating 470 constant in the waveguide direction, it has the diffraction grating in which the filling factor f changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction.
  • a semiconductor laser device can be realized.
  • the material which forms the semiconductor laser element which concerns on this indication is not limited to a nitride.
  • the semiconductor laser device according to the present disclosure may be formed of a GaAs-based material.
  • FIG. 21 is a diagram showing the calculation results of the relationship between the filling factor f and the amount of optical feedback when the fifth order diffraction grating is used.
  • the period a is 400 nm. In this case, there may be ten filling factors f giving a certain amount of optical feedback.
  • the present disclosure a case where oscillation is performed only in the fundamental transverse mode for the purpose of obtaining high beam quality is shown, but it is possible to selectively oscillate only a desired higher order mode by applying the present disclosure. is there.
  • the electric field strength of the desired mode is calculated, and using the relationship between the filling factor and the amount of optical feedback shown in FIG. 4C, the filling is performed as shown in graph (b) of FIG. Determine the rate.
  • the filling factor of the diffraction grating in the part with the highest light intensity is 0.5
  • the filling factor in the lowest part is 0.
  • only the desired high-order mode can be oscillated as long as the filling factor distribution reflects the electric field strength distribution of the desired high-order mode.
  • the ridge portion 40a is formed in the second semiconductor layer 40 as the waveguide structure.
  • the waveguide structure light is emitted in the stacking direction and the direction perpendicular to the laser oscillation direction.
  • a layer having a refractive index lower than that of the second semiconductor layer 40 may be embedded in the second semiconductor layer 40.
  • the semiconductor laser device according to the present disclosure can be used as a light source of an image display device, illumination, industrial equipment, etc., and is particularly useful as a light source of equipment requiring a relatively high light output.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor laser element (1) is provided with: a first conductivity-type first semiconductor layer (20); an active layer (32) disposed over the first semiconductor layer (20); and a second conductivity-type second semiconductor layer (40) disposed over the active layer (32). A stacked structure (90), which includes the first semiconductor layer (20), the active layer (32), and the second semiconductor layer (40), includes a pair of opposing resonator end surfaces (95f and 95r) and a waveguide (90a) which is disposed between the pair of resonator end surfaces (95f and 95r) and formed with a diffraction grating (70). If a direction orthogonal to the pair of resonator end surfaces (95f and 95r) is a waveguide direction, the filling factor of the diffraction grating (70) in the waveguide direction is varied depending on the position in a direction orthogonal to the direction in which the waveguide direction and the stacked structure (90) are stacked.

Description

半導体レーザ素子Semiconductor laser device
 本開示は、回折格子を有する半導体レーザ素子に関する。 The present disclosure relates to a semiconductor laser device having a diffraction grating.
 なお、本願は、平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構 「高輝度・高効率次世代レーザー技術開発/次々世代加工に向けた新規光源・要素技術開発/高効率加工用GaN系高出力・高ビーム品質半導体レーザーの開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願である。 In addition, this application applies to the National Research and Development Corporation New Energy and Industrial Technology Development Organization "High brightness and high efficiency next-generation laser technology development / new light source / element technology development for next-generation processing / high efficiency processing" in fiscal 2016 Development of GaN-based high-power, high-beam quality semiconductor lasers "is a patent application subject to the application of Article 19 of the Industrial Technology Strengthening Act.
 近年、半導体レーザ素子は、ディスプレイやプロジェクタなどの画像表示装置の光源、車載ヘッドランプの光源、産業用照明や民生用照明の光源、又は、レーザ溶接装置や薄膜アニール装置、レーザ加工装置などの産業機器の光源など、様々な用途の光源として注目されている。また、上記用途の光源として用いられる半導体レーザ素子には、光出力が1ワットを大きく超える高出力化及び高いビーム品質が望まれている。 In recent years, semiconductor laser devices are used as light sources for image display devices such as displays and projectors, light sources for vehicle headlamps, light sources for industrial lighting and consumer lighting, or industries such as laser welding devices, thin film annealing devices, and laser processing devices. It attracts attention as a light source of various uses, such as a light source of equipment. In addition, for the semiconductor laser device used as a light source for the above-mentioned application, it is desired to achieve high output and high beam quality in which the light output largely exceeds 1 watt.
 半導体レーザ素子の高出力化の手法として、幅の広い導波路を複数並列に配列することによってアレイを形成とする手法が広く利用されている。アレイ型の半導体レーザ素子においては、発光部が複数形成されるので、光学系を用いて1箇所に集光して使用する。特に互いに異なる発光波長の複数のレーザ光を所定の光軸上に精度良く合成するには、個々のレーザ光の発振波長制御が重要である。発振波長を精密に制御できる構造として、DFB(Distributed Feedback)レーザ素子、DBR(Distributed Bragg Reflector)レーザ素子などが用いられる。 As a method of increasing the output of a semiconductor laser device, a method of forming an array by arranging a plurality of wide waveguides in parallel is widely used. In the array type semiconductor laser device, since a plurality of light emitting portions are formed, the light is collected at one place using an optical system. In particular, in order to combine a plurality of laser beams of different emission wavelengths on a predetermined optical axis with high accuracy, it is important to control the oscillation wavelength of each laser beam. As a structure capable of precisely controlling the oscillation wavelength, a DFB (Distributed Feedback) laser device, a DBR (Distributed Bragg Reflector) laser device or the like is used.
 高ビーム品質を実現するには、半導体レーザ素子において基本横モードで発振することが望ましい。しかし、高出力化のためには、導波路幅は広い方が有利であるため、光出力が1ワットを超えるような高出力レーザ光の横モードは高次モードを含むマルチモードであることが多い。このようなビーム品質と出力とのトレードオフを解決する手法として、横モードに利得差を設けることで、基本横モードを選択的に発振させる方法が提案されている(特許文献1)。 In order to achieve high beam quality, it is desirable to oscillate in the fundamental transverse mode in the semiconductor laser device. However, for higher power output, it is advantageous for the waveguide width to be wider, so that the transverse mode of high power laser light whose light output exceeds 1 watt is a multimode including higher order modes. There are many. As a method for solving such a trade-off between beam quality and output, a method is proposed in which a fundamental transverse mode is selectively oscillated by providing a gain difference in the transverse mode (Patent Document 1).
 特許文献1に、従来のDFBレーザ素子が開示されている。図22は、特許文献1に開示された従来のDFBレーザ素子の構成を示す斜視図である。 Patent Document 1 discloses a conventional DFB laser device. FIG. 22 is a perspective view showing the configuration of the conventional DFB laser device disclosed in Patent Document 1. As shown in FIG.
 図22に示す従来の半導体レーザ素子は、横方向に屈折率を変化させた多モードの導波路931を持ち、かつ、ガイド層913に形成された回折格子932による光帰還を利用したDFB型の半導体レーザ素子である。図22に示す半導体レーザ素子においては、選択した横モードの光強度が最大となる部分にのみ回折格子を設けることにより、選択した横モードの光帰還量を他のモードより大きくし、選択した横モードのみを発振させようとしている。 The conventional semiconductor laser device shown in FIG. 22 has a multimode waveguide 931 whose refractive index is changed in the lateral direction, and a DFB type that utilizes optical feedback by a diffraction grating 932 formed in a guide layer 913. It is a semiconductor laser device. In the semiconductor laser device shown in FIG. 22, by providing the diffraction grating only in the portion where the light intensity of the selected transverse mode is maximum, the amount of optical feedback of the selected transverse mode is made larger than that of the other modes. I'm trying to oscillate only the mode.
特開平6-310801号公報Japanese Patent Application Laid-Open No. 6-310801
 しかしながら、光強度が最大となる部分にのみ回折格子を配置すると、回折格子の横方向の端部における光強度が大きいため、当該端部における光散乱に起因する半導体レーザ素子の電力光変換効率低下が顕著となる。 However, if the diffraction grating is arranged only at the portion where the light intensity is maximum, the light intensity at the lateral end of the diffraction grating is large, so the power light conversion efficiency of the semiconductor laser device is reduced due to light scattering at the end. Becomes noticeable.
 本開示は、ビーム品質が良好で、かつ、電力光変換効率の低下を抑えられるDFB型の半導体レーザ素子を提供することを目的とする。 An object of the present disclosure is to provide a DFB type semiconductor laser device which has a good beam quality and can suppress a decrease in power-to-light conversion efficiency.
 上記目的を達成するために、本開示に係る半導体レーザ素子の一態様は、第1導電型の第1半導体層と、前記第1半導体層の上方に配置された活性層と、前記活性層の上方に配置された第2導電型の第2半導体層と、を備え、前記第1半導体層、前記活性層及び前記第2半導体層を含む積層構造体は、対向する一対の共振器端面と、前記一対の共振器端面の間に配置され、回折格子が形成された導波路と、を有し、前記一対の共振器端面と直交する方向を導波路方向とすると、前記導波路方向における前記回折格子の充填率は、前記導波路方向及び前記積層構造体の積層方向と直交する方向の位置によって変化している。 In order to achieve the above object, one aspect of a semiconductor laser device according to the present disclosure includes a first semiconductor layer of a first conductivity type, an active layer disposed above the first semiconductor layer, and the active layer A stacked structure including a second semiconductor layer of a second conductivity type disposed on the upper side, the stacked structure including the first semiconductor layer, the active layer, and the second semiconductor layer, and a pair of opposing resonator end faces; And a waveguide disposed between the pair of resonator end faces and having a diffraction grating formed thereon, and the direction orthogonal to the pair of resonator end faces is a waveguide direction, the diffraction in the waveguide direction The filling factor of the grating varies depending on the waveguide direction and the position in the direction orthogonal to the stacking direction of the stacked structure.
 このように、回折格子の充填率を導波路方向及び積層方向と直交する方向の位置によって変化させることによって、所望の光帰還量分布を得られる。したがって、回折格子の充填率を適切に調整することにより、回折格子に起因する光散乱を抑制し、かつ、光帰還量分布に対応する所望の横モードを選択的に発振させることができる。したがって、ビーム品質が良好で、かつ、電力光変換効率の低下を抑えられるDFB型の半導体レーザ素子を実現できる。 As described above, the desired light feedback amount distribution can be obtained by changing the filling factor of the diffraction grating depending on the waveguide direction and the position in the direction orthogonal to the stacking direction. Therefore, by appropriately adjusting the filling factor of the diffraction grating, it is possible to suppress light scattering due to the diffraction grating and to selectively oscillate a desired transverse mode corresponding to the light feedback amount distribution. Therefore, it is possible to realize a DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
 また、本開示に係る半導体レーザ素子の一態様において、前記回折格子は、前記導波路方向において周期的に断続する構造を有し、前記導波路方向において前記回折格子が連続する長さは、前記導波路方向及び前記積層方向と直交する方向の位置によって変化していてもよい。 Further, in one aspect of the semiconductor laser device according to the present disclosure, the diffraction grating has a structure which is intermittently interrupted in the waveguide direction, and a length in which the diffraction grating is continuous in the waveguide direction is It may be changed depending on the waveguide direction and the position in the direction orthogonal to the stacking direction.
 このように、回折格子が、導波路方向において周期的に断続する構造を有する場合、回折格子の充填率は、回折格子の周期と回折格子が連続する長さとを用いて定義される。このため、例えば、回折格子の周期を一定とする場合、導波路方向において回折格子が連続する長さを、導波路方向及び積層方向と直交する方向の位置によって変化させることで、導波路方向及び積層方向に直交する方向における位置によって充填率が変化する回折格子を有する半導体レーザ素子を実現できる。 As described above, when the diffraction grating has a structure that is periodically interrupted in the waveguide direction, the filling factor of the diffraction grating is defined using the period of the diffraction grating and the continuous length of the diffraction grating. Therefore, for example, when making the period of the diffraction grating constant, the waveguide direction and the waveguide direction and the position in the direction orthogonal to the stacking direction are changed by changing the length in which the diffraction grating continues in the waveguide direction. It is possible to realize a semiconductor laser device having a diffraction grating whose filling factor changes with the position in the direction orthogonal to the stacking direction.
 また、本開示に係る半導体レーザ素子の一態様において、前記回折格子の周期は、前記導波路方向及び前記積層方向と直交する方向の位置によって変化していてもよい。 In one aspect of the semiconductor laser device according to the present disclosure, the period of the diffraction grating may be changed depending on the position in the direction perpendicular to the waveguide direction and the stacking direction.
 このような構成により、例えば、導波路方向において回折格子が連続する長さを一定とすることで、導波路方向及び積層方向に直交する方向における位置によって充填率が変化する回折格子を有する半導体レーザ素子を実現できる。 With such a configuration, for example, a semiconductor laser having a diffraction grating whose filling factor changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction by making the length in which the diffraction grating continues in the waveguide direction constant. A device can be realized.
 また、本開示に係る半導体レーザ素子の一態様において、前記充填率は、前記導波路の前記導波路方向及び前記積層方向と直交する方向における中央において少なくとも一方の端部よりも大きくてもよい。 In one aspect of the semiconductor laser device according to the present disclosure, the filling factor may be larger than at least one end at the center of the waveguide in the direction orthogonal to the waveguide direction and the stacking direction.
 これにより、例えば、回折格子の充填率を0.5以下とする場合、回折格子による導波路方向及び積層方向と直交する方向の中央における光帰還量を、当該直交する方向の端部における光帰還量より大きくすることが可能となる。したがって、当該直交する方向の中央において端部より電界強度が大きい基本横モードの光帰還量を選択的に高められるため、基本横モードの発振を促すことができる。 Thus, for example, when the filling factor of the diffraction grating is set to 0.5 or less, the optical feedback amount at the center of the waveguide direction by the diffraction grating and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
 また、本開示に係る半導体レーザ素子の一態様において、前記充填率は、前記導波路の前記導波路方向及び前記積層方向と直交する方向における中央において少なくとも一方の端部よりも小さくてもよい。 In one aspect of the semiconductor laser device according to the present disclosure, the filling factor may be smaller than at least one end at the center of the waveguide in the direction orthogonal to the waveguide direction and the stacking direction.
 これにより、例えば、回折格子の充填率を0.5以上とする場合、回折格子による導波路方向及び積層方向と直交する方向の中央における光帰還量を、当該直交する方向の端部における光帰還量より大きくすることが可能となる。したがって、当該直交する方向の中央において端部より電界強度が大きい基本横モードの光帰還量を選択的に高められるため、基本横モードの発振を促すことができる。 Thus, for example, when the filling factor of the diffraction grating is set to 0.5 or more, the optical feedback amount at the center of the waveguide direction by the diffraction grating and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
 また、本開示に係る半導体レーザ素子の一態様において、前記第2半導体層は、前記導波路方向に長手方向を持つリッジ部を備え、前記充填率は、前記導波路方向及び前記積層方向と直交する方向において、前記リッジ部の下方領域では線形に変化し、前記リッジ部の下方領域よりも外側では指数関数的に変化してもよい。 In one aspect of the semiconductor laser device according to the present disclosure, the second semiconductor layer includes a ridge portion having a longitudinal direction in the waveguide direction, and the filling factor is orthogonal to the waveguide direction and the stacking direction. In the lower region of the ridge, and may change exponentially outside the lower region of the ridge.
 これにより、導波路内外ともに、基本横モードの電界強度分布と光帰還量とを一致させることができるため、回折格子による基本横モードの選択性をさらに向上できる。 As a result, the electric field strength distribution of the fundamental transverse mode and the amount of optical feedback can be made to coincide with each other inside and outside the waveguide, so that the selectivity of the fundamental transverse mode by the diffraction grating can be further improved.
 また、本開示に係る半導体レーザ素子の一態様において、前記第1半導体層は、クラッド層であり、前記回折格子は、前記第1半導体層の中に配置されていてもよい。 In one aspect of the semiconductor laser device according to the present disclosure, the first semiconductor layer may be a cladding layer, and the diffraction grating may be disposed in the first semiconductor layer.
 これにより、回折格子を配置するための層を別途設けることなく、回折格子を積層構造体に形成できる。 Thus, the diffraction grating can be formed in the laminated structure without separately providing a layer for disposing the diffraction grating.
 また、本開示に係る半導体レーザ素子の一態様は、前記第1半導体層と前記活性層との間に配置されたガイド層を備え、前記回折格子は、前記ガイド層の中に配置されていてもよい。 Further, one aspect of the semiconductor laser device according to the present disclosure includes a guide layer disposed between the first semiconductor layer and the active layer, and the diffraction grating is disposed in the guide layer. It is also good.
 これにより、回折格子を配置するための層を別途設けることなく、回折格子を積層構造体に形成できる。 Thus, the diffraction grating can be formed in the laminated structure without separately providing a layer for disposing the diffraction grating.
 ビーム品質が良好で、かつ、電力光変換効率の低下を抑えることができるDFB型の半導体レーザ素子を提供できる。 It is possible to provide a DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
図1Aは、実施の形態1に係る半導体レーザ素子の構成を示す模式的な上面図である。FIG. 1A is a schematic top view showing the configuration of the semiconductor laser device according to the first embodiment. 図1Bは、実施の形態1に係る半導体レーザ素子の構成を示す模式的な断面図である。FIG. 1B is a schematic cross-sectional view showing the configuration of the semiconductor laser device according to the first embodiment. 図2Aは、実施の形態1に係る半導体レーザ素子の製造方法における第1工程を示す模式的な断面図である。FIG. 2A is a schematic cross-sectional view showing a first step of the method of manufacturing a semiconductor laser device according to the first embodiment. 図2Bは、実施の形態1に係る半導体レーザ素子の製造方法における第2工程を示す模式的な断面図である。FIG. 2B is a schematic cross-sectional view showing a second step of the method of manufacturing a semiconductor laser device according to the first embodiment. 図2Cは、実施の形態1に係る半導体レーザ素子の製造方法における第2工程を示す上面図である。FIG. 2C is a top view showing a second step of the method of manufacturing a semiconductor laser device according to the first embodiment. 図2Dは、実施の形態1に係る半導体レーザ素子の製造方法における第3工程を示す模式的な断面図である。FIG. 2D is a schematic cross sectional view showing a third step in the method for manufacturing a semiconductor laser device according to the first embodiment. 図2Eは、実施の形態1に係る半導体レーザ素子の製造方法における第4工程を示す模式的な断面図である。FIG. 2E is a schematic cross sectional view showing a fourth step of the method for manufacturing the semiconductor laser device according to the first embodiment. 図2Fは、実施の形態1に係る半導体レーザ素子の製造方法における第5工程を示す模式的な断面図である。FIG. 2F is a schematic cross-sectional view showing a fifth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Gは、実施の形態1に係る半導体レーザ素子の製造方法における第6工程を示す模式的な断面図である。FIG. 2G is a schematic cross sectional view showing a sixth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Hは、実施の形態1に係る半導体レーザ素子の製造方法における第7工程を示す模式的な断面図である。FIG. 2H is a schematic cross-sectional view showing a seventh step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Iは、実施の形態1に係る半導体レーザ素子の製造方法における第8工程を示す模式的な断面図である。FIG. 2I is a schematic cross sectional view showing an eighth step of the method for manufacturing the semiconductor laser device according to the first embodiment. 図2Jは、実施の形態1に係る半導体レーザ素子の製造方法における第9工程を示す模式的な断面図である。FIG. 2J is a schematic cross-sectional view showing a ninth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Kは、実施の形態1に係る半導体レーザ素子の製造方法における第10工程を示す模式的な断面図である。FIG. 2K is a schematic cross-sectional view showing a tenth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Lは、実施の形態1に係る半導体レーザ素子の製造方法における第11工程を示す模式的な断面図である。FIG. 2L is a schematic cross-sectional view showing an eleventh step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図2Mは、実施の形態1に係る半導体レーザ素子の製造方法における第12工程を示す模式的な断面図である。FIG. 2M is a schematic cross-sectional view showing a twelfth step of the method for manufacturing the semiconductor laser device in accordance with the first embodiment. 図3は、実施の形態1に係る半導体レーザ素子の横モードの電界分布について説明する図である。FIG. 3 is a diagram for explaining the electric field distribution in the transverse mode of the semiconductor laser device according to the first embodiment. 図4Aは、実施の形態1に係る半導体レーザ素子の回折格子の充填率fが0.5である場合の回折格子の構成を示す模式的な断面図である。FIG. 4A is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f of the diffraction grating of the semiconductor laser device according to the first embodiment is 0.5. 図4Bは、実施の形態1に係る半導体レーザ素子の回折格子の充填率fが0.25である場合の回折格子の構成を示す模式的な断面図である。FIG. 4B is a schematic cross-sectional view showing the configuration of the diffraction grating when the filling factor f of the diffraction grating of the semiconductor laser device according to the first embodiment is 0.25. 図4Cは、実施の形態1に係る回折格子の充填率fと、回折格子による光帰還量との関係を示すグラフである。FIG. 4C is a graph showing the relationship between the filling factor f of the diffraction grating according to Embodiment 1 and the amount of optical feedback by the diffraction grating. 図5は、実施の形態1に係る半導体レーザ素子の導波路方向及び積層方向と直交する方向の位置と回折格子の充填率との関係を示す図である。FIG. 5 is a view showing the relationship between the filling rate of the diffraction grating and the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the first embodiment. 図6は、実施の形態1に係る光帰還量及びレーザ光の電界強度分布と、導波路方向及び積層方向と垂直な方向の位置との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the amount of optical feedback and the electric field intensity distribution of laser light according to Embodiment 1, and the positions in the direction of the waveguide and in the direction perpendicular to the stacking direction. 図7は、実施の形態1に係る回折格子の形状を示す上面図である。FIG. 7 is a top view showing the shape of the diffraction grating according to the first embodiment. 図8は、実施の形態1の変形例に係る回折格子の形状を示す上面図である。FIG. 8 is a top view showing the shape of a diffraction grating according to a modification of the first embodiment. 図9は、実施の形態2に係る半導体レーザ素子の構成を示す模式的な断面図である。FIG. 9 is a schematic cross-sectional view showing the configuration of the semiconductor laser device according to the second embodiment. 図10Aは、実施の形態2に係る半導体レーザ素子の製造方法における第1工程を示す模式的な断面図である。FIG. 10A is a schematic cross sectional view showing a first step of a method of manufacturing a semiconductor laser device according to a second embodiment. 図10Bは、実施の形態2に係る半導体レーザ素子の製造方法における第2工程を示す模式的な断面図である。FIG. 10B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment. 図10Cは、実施の形態2に係る半導体レーザ素子の製造方法における第3工程を示す模式的な断面図である。FIG. 10C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment. 図10Dは、実施の形態2に係る半導体レーザ素子の製造方法における第4工程を示す模式的な断面図である。FIG. 10D is a schematic cross-sectional view showing a fourth step of the method for manufacturing the semiconductor laser device in accordance with the second embodiment. 図11は、実施の形態2に係る半導体レーザ素子の導波路方向及び積層方向と直交する方向の位置と回折格子の充填率と関係を示す図である。FIG. 11 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the second embodiment and the filling factor of the diffraction grating. 図12は、実施の形態2に係る半導体レーザ素子におけるレーザ光の電界強度分布と、回折格子による光帰還量分布と、を示すグラフである。FIG. 12 is a graph showing the electric field intensity distribution of laser light and the optical feedback amount distribution by the diffraction grating in the semiconductor laser device according to the second embodiment. 図13は、実施の形態2に係る回折格子の形状を示す上面図である。FIG. 13 is a top view showing the shape of the diffraction grating according to the second embodiment. 図14は、実施の形態3に係る半導体レーザ素子の導波路方向及び積層方向と直交する方向の位置と回折格子の充填率と関係を示す図である。FIG. 14 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device according to the third embodiment and the filling factor of the diffraction grating. 図15は、実施の形態3に係る半導体レーザ素子におけるレーザ光の電界強度分布と、回折格子による光帰還量分布と、を示すグラフである。FIG. 15 is a graph showing the electric field intensity distribution of laser light and the optical feedback amount distribution by the diffraction grating in the semiconductor laser device according to the third embodiment. 図16は、実施の形態3に係る回折格子の形状を示す上面図である。FIG. 16 is a top view showing the shape of the diffraction grating according to the third embodiment. 図17は、実施の形態3の変形例に係る回折格子の形状を示す上面図である。FIG. 17 is a top view showing the shape of a diffraction grating according to a modification of the third embodiment. 図18Aは、実施の形態4に係る回折格子の導波路方向及び積層方向と直交する方向の位置と、回折格子の充填率との関係を示すグラフである。FIG. 18A is a graph showing the relationship between the filling factor of the diffraction grating and the position in the direction orthogonal to the waveguide direction and the stacking direction of the diffraction grating according to the fourth embodiment. 図18Bは、実施の形態4に係る回折格子の形状を示す上面図である。18B is a top view showing the shape of the diffraction grating according to Embodiment 4. FIG. 図19は、実施の形態5に係る回折格子の形状を示す上面図である。FIG. 19 is a top view showing the shape of the diffraction grating according to the fifth embodiment. 図20は、実施の形態5に係る回折格子の周期に対する光帰還量の関係を示した図である。FIG. 20 is a diagram showing the relationship of the amount of optical feedback to the period of the diffraction grating according to the fifth embodiment. 図21は、5次の回折格子を用いた場合の、充填率と光帰還量との関係の計算結果を示す図である。FIG. 21 is a diagram showing the calculation result of the relationship between the filling factor and the amount of optical feedback when the fifth order diffraction grating is used. 図22は、特許文献1に開示された従来の半導体レーザ素子の構成を示す図である。FIG. 22 is a diagram showing the configuration of the conventional semiconductor laser device disclosed in Patent Document 1. As shown in FIG.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The embodiments described below each show a preferable specific example of the present disclosure. Accordingly, the numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps (steps) and order of steps, etc. shown in the following embodiments are merely examples and limit the present disclosure. It is not the main point to do. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present disclosure are described as optional components.
 各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic view, and is not necessarily strictly illustrated. Therefore, the scale and the like do not necessarily match in each figure. In the drawings, substantially the same components are denoted by the same reference numerals, and redundant description will be omitted or simplified.
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を表している。X軸及びY軸は、互いに直交し、且つ、いずれもZ軸に直交する軸である。 Further, in the present specification and drawings, the X axis, the Y axis, and the Z axis represent three axes of a three-dimensional orthogonal coordinate system. The X axis and the Y axis are axes orthogonal to each other, and both orthogonal to the Z axis.
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。 Moreover, in the present specification, the terms "upper" and "lower" do not refer to the upward direction (vertically upward) and downward direction (vertically downward) in absolute space recognition, but are based on the stacking order in the lamination configuration. It is used as a term defined by the relative positional relationship to Also, the terms "upper" and "lower" are not only used when two components are spaced apart from one another and there is another component between the two components, but two components It applies also when arrange | positioned in the mutually adjacent state.
 (実施の形態1)
 [半導体レーザ素子の構成]
 まず、実施の形態1に係る半導体レーザ素子1の構成について、図1A及び図1Bを用いて説明する。図1A及び図1Bは、それぞれ本実施の形態に係る半導体レーザ素子1の構成を示す模式的な上面図及び断面図である。図1Bには、図1AのIB-IB線における半導体レーザ素子1の断面が示されている。
Embodiment 1
[Configuration of semiconductor laser device]
First, the configuration of the semiconductor laser 1 according to the first embodiment will be described with reference to FIGS. 1A and 1B. 1A and 1B are a schematic top view and a cross-sectional view showing the configuration of a semiconductor laser device 1 according to the present embodiment, respectively. FIG. 1B shows a cross section of the semiconductor laser device 1 taken along line IB-IB in FIG. 1A.
 図1A及び図1Bに示される半導体レーザ素子1は、回折格子70が形成されたDFBレーザ素子である。本実施の形態では、半導体レーザ素子1は、主に窒化物半導体で構成される。図1Bに示すように、半導体レーザ素子1は、基板10と、第1半導体層20と、発光層30と、第2半導体層40と、電極部材50と、誘電体層60と、回折格子70と、n側電極80と、を備える。発光層30は、n側光ガイド層31と、活性層32と、p側光ガイド層33と、を含む。第2半導体層40は、電子障壁層41と、p側クラッド層42と、p側コンタクト層43と、を含む。図1Bに示すように、半導体レーザ素子1は、第1半導体層20、活性層32及び第2半導体層40を含む積層構造体90を備える。図1Aに示すように、積層構造体90は、対向する一対の共振器端面95f及び95rと、一対の共振器端面95f及び95rの間に配置され、回折格子70が形成された導波路90aと、を有する。一対の共振器端面95f及び95rは、積層構造体90の積層方向と垂直な方向の端部に配置されている。 The semiconductor laser device 1 shown in FIGS. 1A and 1B is a DFB laser device in which a diffraction grating 70 is formed. In the present embodiment, the semiconductor laser device 1 is mainly made of a nitride semiconductor. As shown in FIG. 1B, the semiconductor laser device 1 includes a substrate 10, a first semiconductor layer 20, a light emitting layer 30, a second semiconductor layer 40, an electrode member 50, a dielectric layer 60, and a diffraction grating 70. And an n-side electrode 80. The light emitting layer 30 includes an n-side light guide layer 31, an active layer 32 and a p-side light guide layer 33. The second semiconductor layer 40 includes an electron barrier layer 41, a p-side cladding layer 42, and a p-side contact layer 43. As shown in FIG. 1B, the semiconductor laser device 1 includes a laminated structure 90 including a first semiconductor layer 20, an active layer 32, and a second semiconductor layer 40. As shown in FIG. 1A, the laminated structure 90 includes a pair of opposed resonator end faces 95f and 95r, and a waveguide 90a disposed between the pair of resonator end faces 95f and 95r, in which the diffraction grating 70 is formed. And. The pair of resonator end faces 95 f and 95 r are disposed at the end in the direction perpendicular to the stacking direction of the stacked structure 90.
 第2半導体層40は、一対の共振器端面95f及び95rと直交する方向を導波路方向(つまり、レーザ共振器方向、又は、図1BのZ軸方向)とすると、導波路方向に延在するストライプ状(つまり、リッジ状)の凸部からなるリッジ部40aと、リッジ部40aの根元から導波路方向及び積層構造体90の積層方向(つまりY軸方向)と直交する方向(つまりX軸方向)に広がる平坦部40bと、を有する。 The second semiconductor layer 40 extends in the waveguide direction, assuming that the direction orthogonal to the pair of resonator end faces 95f and 95r is the waveguide direction (that is, the laser resonator direction or the Z-axis direction in FIG. 1B) A ridge portion 40a formed of stripe-shaped (that is, ridge-shaped) convex portions, and a direction perpendicular to the waveguide direction and the lamination direction of the laminated structure 90 (that is, the Y-axis direction) from the root of the ridge portion 40a And the flat part 40b which spreads to.
 リッジ部40aの幅及び高さは、特に限定されないが、一例として、リッジ部40aの幅(ストライプ幅)は1μm以上100μm以下で、リッジ部40aの高さは100nm以上1μm以下である。半導体レーザ素子1を高い光出力(例えばワットクラス)で動作させるには、リッジ部40aの幅を10μm以上50μm以下とし、リッジ部40a高さを300nm以上800nm以下にするとよい。本実施の形態では、幅10μm、高さ500nmである。 The width and height of the ridge portion 40a are not particularly limited, but as an example, the width (stripe width) of the ridge portion 40a is 1 μm to 100 μm, and the height of the ridge portion 40a is 100 nm to 1 μm. In order to operate the semiconductor laser device 1 with high light output (for example, watt class), the width of the ridge portion 40a may be 10 μm to 50 μm, and the height of the ridge portion 40a may be 300 nm to 800 nm. In the present embodiment, the width is 10 μm and the height is 500 nm.
 基板10は、例えば、GaN基板である。本実施の形態では、基板10として、主面が(0001)面であるn型六方晶GaN基板を用いている。 The substrate 10 is, for example, a GaN substrate. In the present embodiment, an n-type hexagonal GaN substrate whose main surface is the (0001) plane is used as the substrate 10.
 第1半導体層20は、図1Bに示すように、基板10の上方に配置されている。第1半導体層20は、第1導電型の半導体層であり、例えば、n型AlGaNからなるn側クラッド層である。 The first semiconductor layer 20 is disposed above the substrate 10 as shown in FIG. 1B. The first semiconductor layer 20 is a semiconductor layer of a first conductivity type, and is, for example, an n-side cladding layer made of n-type AlGaN.
 本実施の形態では、クラッド層である第1半導体層20の中に回折格子70が配置されている。回折格子70は、第1半導体層20と屈折率が異なる材料で構成されている。回折格子70を形成する材料は、例えば、SiO、SiN、AlNなどからなる誘電体膜、GaN、InGaNなどからなる半導体、又は、空気などである。回折格子70による光帰還量は、第1半導体層20と回折格子70との屈折率差が大きいほど大きくなる。そこで、本実施の形態では、光帰還量を増大させるために、屈折率が最も小さい空気を第1半導体層20中に埋め込む構造としている。なお、図示しないが、回折格子70は、n側光ガイド層31に配置されていてもよい(後述する実施の形態2参照)し、p側光ガイド層33又はp側クラッド層42に形成されていてもよい。ただし、後述するように、回折格子70を窒化物半導体の再成長によって形成する場合、その再成長界面にはn型ドーパントとして働くSi、酸素などの不純物がパイルアップすることが知られている。p型半導体層中にn型ドーパントがパイルアップすると、例えば半導体レーザ素子1のレーザ発振時における電圧の上昇をもたらし、その結果、半導体レーザ素子1の電力光変換効率が低下する。よって、本実施の形態のように、再成長を用いて回折格子を形成する場合には、回折格子70をn型半導体層中に設けることで、半導体レーザ素子1の電力光変換効率低下を抑制できる。 In the present embodiment, the diffraction grating 70 is disposed in the first semiconductor layer 20 which is a cladding layer. The diffraction grating 70 is made of a material having a refractive index different from that of the first semiconductor layer 20. The material forming the diffraction grating 70 is, for example, a dielectric film made of SiO 2 , SiN, AlN or the like, a semiconductor made of GaN, InGaN or the like, or air. The amount of light feedback by the diffraction grating 70 increases as the difference in refractive index between the first semiconductor layer 20 and the diffraction grating 70 increases. Therefore, in the present embodiment, in order to increase the amount of optical feedback, air having the smallest refractive index is embedded in the first semiconductor layer 20. Although not shown, the diffraction grating 70 may be disposed in the n-side light guide layer 31 (see Embodiment 2 described later), and is formed in the p-side light guide layer 33 or the p-side cladding layer 42. It may be However, as described later, when the diffraction grating 70 is formed by regrowth of a nitride semiconductor, it is known that impurities such as Si and oxygen which work as n-type dopant pile up at the regrowth interface. When the n-type dopant piles up in the p-type semiconductor layer, for example, a voltage increase occurs at the time of laser oscillation of the semiconductor laser device 1, and as a result, the power light conversion efficiency of the semiconductor laser device 1 is reduced. Therefore, when the diffraction grating is formed using regrowth as in the present embodiment, the decrease in the power-to-light conversion efficiency of the semiconductor laser device 1 is suppressed by providing the diffraction grating 70 in the n-type semiconductor layer. it can.
 また、回折格子70と第1半導体層20との屈折率差が小さい場合でも、回折格子70を活性層32に近い位置に配置することで、回折格子70の光帰還量を大きくすることができる。具体的には、n側光ガイド層31の厚さを薄くすることで回折格子70の光帰還量を大きくできる。また、回折格子70は、半導体レーザ素子1の発振波長に対して透明としてもよい。これにより、回折格子70による光吸収損失を抑制できる。 Further, even when the difference in refractive index between the diffraction grating 70 and the first semiconductor layer 20 is small, the light feedback amount of the diffraction grating 70 can be increased by arranging the diffraction grating 70 near the active layer 32. . Specifically, by reducing the thickness of the n-side light guide layer 31, the amount of light feedback of the diffraction grating 70 can be increased. Further, the diffraction grating 70 may be transparent to the oscillation wavelength of the semiconductor laser element 1. Thereby, the light absorption loss by the diffraction grating 70 can be suppressed.
 また、回折格子70は、リッジ部40aの直下近傍に形成されており、導波路方向(Y軸方向)において周期的な構造を有する。本実施の形態では、回折格子70は、導波路方向において周期的に断続する構造を有する。より具体的には、図1Aに示すように、回折格子70は、導波路方向において特定の形状の部分が周期的に配置されている。 The diffraction grating 70 is formed in the vicinity immediately below the ridge portion 40a, and has a periodic structure in the waveguide direction (Y-axis direction). In the present embodiment, the diffraction grating 70 has a structure that is intermittently interrupted in the waveguide direction. More specifically, as shown in FIG. 1A, in the diffraction grating 70, portions of a specific shape are periodically arranged in the waveguide direction.
 発光層30は、図1Bに示すように、第1半導体層20の上方に配置されている。本実施の形態では、発光層30は、窒化物半導体によって構成される。発光層30は、例えば、n-GaNからなるn側光ガイド層31と、InGaN量子井戸層からなる活性層32と、p-GaNからなるp側光ガイド層33と、が積層された構造を有する。 The light emitting layer 30 is disposed above the first semiconductor layer 20, as shown in FIG. 1B. In the present embodiment, the light emitting layer 30 is made of a nitride semiconductor. The light emitting layer 30 has, for example, a structure in which an n-side light guide layer 31 made of n-GaN, an active layer 32 made of an InGaN quantum well layer, and a p-side light guide layer 33 made of p-GaN are stacked. Have.
 第2半導体層40は、図1Bに示すように、発光層30の上方に配置されている。第2半導体層40は、第1導電型と異なる第2導電型の半導体層であり、例えば、AlGaNからなる電子障壁層41と、p型AlGaNからなるp側クラッド層42と、p型GaNからなるp側コンタクト層43と、が積層された構造を有する。 The second semiconductor layer 40 is disposed above the light emitting layer 30, as shown in FIG. 1B. The second semiconductor layer 40 is a semiconductor layer of a second conductivity type different from the first conductivity type, and includes, for example, an electron barrier layer 41 made of AlGaN, a p-side cladding layer 42 made of p-type AlGaN, and p-type GaN. And the p-side contact layer 43 are stacked.
 p側クラッド層42は、凸部を有している。p側コンタクト層43は、リッジ部40aの最上層としてp側クラッド層42の凸部上に配置されている。このように、p側クラッド層42の凸部とp側コンタクト層43とによってストライプ状のリッジ部40aが構成されている。また、p側クラッド層42は、リッジ部40aの両側方に、平坦部40bを構成する平面部を有している。平坦部40bの最上面は、p側クラッド層42の表面であり、平坦部40bの最上面にはp側コンタクト層43が形成されていない。 The p-side cladding layer 42 has a convex portion. The p-side contact layer 43 is disposed on the convex portion of the p-side cladding layer 42 as the uppermost layer of the ridge portion 40 a. Thus, the ridge portion 40 a in a stripe shape is configured by the convex portion of the p-side cladding layer 42 and the p-side contact layer 43. In addition, the p-side cladding layer 42 has flat portions forming flat portions 40 b on both sides of the ridge portion 40 a. The uppermost surface of the flat portion 40b is the surface of the p-side cladding layer 42, and the p-side contact layer 43 is not formed on the uppermost surface of the flat portion 40b.
 誘電体層60は、光を閉じ込めるために、リッジ部40aの側面に形成されたSiOからなる絶縁膜である。具体的には、誘電体層60は、リッジ部40aの側面から平坦部40bにわたって連続的に形成されている。本実施の形態において、誘電体層60は、リッジ部40aの周辺において、p側コンタクト層43の側面とp側クラッド層42の凸部の側面とp側クラッド層42の上面とにわたって連続して形成されている。 The dielectric layer 60 is an insulating film made of SiO 2 formed on the side surface of the ridge portion 40 a in order to confine light. Specifically, the dielectric layer 60 is continuously formed from the side surface of the ridge portion 40a to the flat portion 40b. In the present embodiment, the dielectric layer 60 is continuous over the side surface of the p-side contact layer 43, the side surface of the protrusion of the p-side cladding layer 42, and the top surface of the p-side cladding layer 42 around the ridge portion 40a. It is formed.
 誘電体層60の形状は、特に限定されないが、誘電体層60は、リッジ部40aの側面及び平坦部40bと接しているとよい。これにより、リッジ部40aの直下で発光した光を安定的に閉じ込めることができる。 The shape of the dielectric layer 60 is not particularly limited, but the dielectric layer 60 may be in contact with the side surface of the ridge portion 40 a and the flat portion 40 b. Thus, light emitted immediately below the ridge portion 40a can be stably confined.
 電極部材50は、第2半導体層40の上方に配置されている。電極部材50は、リッジ部40aよりも幅広である。つまり、電極部材50の幅(X軸方向の幅)は、リッジ部40aの幅(X軸方向の幅)よりも大きい。電極部材50は、誘電体層60及びリッジ部40aの上面と接触している。 The electrode member 50 is disposed above the second semiconductor layer 40. The electrode member 50 is wider than the ridge portion 40a. That is, the width (the width in the X-axis direction) of the electrode member 50 is larger than the width (the width in the X-axis direction) of the ridge portion 40a. The electrode member 50 is in contact with the top surfaces of the dielectric layer 60 and the ridge portion 40a.
 本実施の形態において、電極部材50は、電流供給のためのp側電極51と、p側電極51の上方に配置されたパッド電極52と、を有する。 In the present embodiment, the electrode member 50 has a p-side electrode 51 for supplying current and a pad electrode 52 disposed above the p-side electrode 51.
 p側電極51は、リッジ部40aの上面と接触している。p側電極51は、リッジ部40aの上方においてp側コンタクト層43とオーミック接触するオーミック電極であり、リッジ部40aの上面であるp側コンタクト層43の上面と接触している。p側電極51は、例えば、Pd、Pt、Niなどの金属材料を用いて形成される。本実施の形態において、p側電極51は、Pd/Ptの2層構造である。 The p-side electrode 51 is in contact with the upper surface of the ridge portion 40 a. The p-side electrode 51 is an ohmic electrode in ohmic contact with the p-side contact layer 43 above the ridge portion 40a, and is in contact with the top surface of the p-side contact layer 43 which is the top surface of the ridge portion 40a. The p-side electrode 51 is formed using, for example, a metal material such as Pd, Pt, or Ni. In the present embodiment, the p-side electrode 51 has a two-layer structure of Pd / Pt.
 パッド電極52は、リッジ部40aよりも幅広であって、誘電体層60と接触している。つまり、パッド電極52は、リッジ部40a及び誘電体層60を覆うように形成されている。パッド電極52は、例えば、Ti、Ni、Pt、Auなどの金属材料を用いて形成される。本実施の形態において、パッド電極52は、Ti/Pt/Auの3層構造を有する。 The pad electrode 52 is wider than the ridge portion 40 a and is in contact with the dielectric layer 60. That is, the pad electrode 52 is formed to cover the ridge portion 40 a and the dielectric layer 60. The pad electrode 52 is formed using, for example, a metal material such as Ti, Ni, Pt, Au or the like. In the present embodiment, the pad electrode 52 has a three-layer structure of Ti / Pt / Au.
 なお、図1Aに示すように、パッド電極52は、半導体レーザ素子1を個片化する際の歩留まりを向上させるために、第2半導体層40の内側に形成されている。すなわち、半導体レーザ素子1を上面視した場合に、パッド電極52は、半導体レーザ素子1の端部周縁には形成されていない。つまり、半導体レーザ素子1は、端部周縁に電流が供給されない非電流注入領域を有する。また、パッド電極52が形成されている領域の断面形状は、どの部分でも図1Bに示される構造となる。 As shown in FIG. 1A, the pad electrode 52 is formed inside the second semiconductor layer 40 in order to improve the yield when the semiconductor laser element 1 is singulated. That is, when the semiconductor laser 1 is viewed from the top, the pad electrode 52 is not formed at the edge of the end of the semiconductor laser 1. That is, the semiconductor laser device 1 has a non-current injection region in which current is not supplied to the edge of the end. In addition, the cross-sectional shape of the region in which the pad electrode 52 is formed has a structure shown in FIG. 1B in any part.
 また、高い光出力で動作させること(つまり、高出力動作)を目的とした半導体レーザ素子1では、共振器端面95f及び95rには誘電体多層膜などの端面コート膜が形成される。この端面コート膜は、端面のみに形成することが難しく、半導体レーザ素子1の上面にも回りこむ。このように端面コート膜が上面にまで回りこんでしまうと、半導体レーザ素子1の導波路方向(Z軸方向)の端部では、パッド電極52が形成されていないため、半導体レーザ素子1の導波路方向の端部で誘電体層60と端面コート膜とが接してしまう場合がある。この際、誘電体層60が形成されていない又は誘電体層60の膜厚が光閉じ込めに対して薄いと、半導体レーザ素子1の導波路方向の端部に伝播する光が端面コート膜の影響を受けるため、光損失の原因となる。そこで、発光層30で発生した光を十分に閉じ込めるには、誘電体層60の膜厚は、100nm以上にするとよい。一方、誘電体層60の膜厚が厚すぎると、パッド電極52の形成が困難となるため、誘電体層60の膜厚は、リッジ部40aの高さ(つまり、リッジ部40aが平坦部40bから上方に突出する高さ)以下にするとよい。 Further, in the semiconductor laser device 1 intended to operate with high light output (that is, high power operation), an end surface coat film such as a dielectric multilayer film is formed on the resonator end faces 95f and 95r. It is difficult to form this end face coat film only on the end face, and it also wraps around the upper surface of the semiconductor laser device 1. As described above, when the end face coat film is rolled up to the upper surface, the pad electrode 52 is not formed at the end of the semiconductor laser device 1 in the waveguide direction (Z-axis direction). In some cases, the dielectric layer 60 and the end surface coat film come in contact with each other at the end in the waveguide direction. At this time, if the dielectric layer 60 is not formed or the film thickness of the dielectric layer 60 is thin for light confinement, the influence of the end face coating film on the light propagating to the end of the semiconductor laser device 1 in the waveguide direction. Cause loss of light. Therefore, in order to sufficiently confine the light generated in the light emitting layer 30, the film thickness of the dielectric layer 60 may be 100 nm or more. On the other hand, if the film thickness of the dielectric layer 60 is too large, it becomes difficult to form the pad electrode 52. Therefore, the film thickness of the dielectric layer 60 is the height of the ridge portion 40a (that is, the ridge portion 40a is flat portion 40b). It is good to make it below the height which protrudes upwards from.
 また、リッジ部40aの側面及び平坦部40bには、リッジ部40aを形成する際のエッチング工程でエッチングダメージが残存してリーク電流が発生する場合があるが、リッジ部40a及び平坦部40bを誘電体層60で被覆することで、不要なリーク電流の発生を低減できる。 Although etching damage may remain on the side surfaces of the ridge portion 40a and the flat portion 40b in the etching process for forming the ridge portion 40a and a leak current may be generated, the ridge portion 40a and the flat portion 40b may be dielectric By covering with the body layer 60, the generation of unnecessary leak current can be reduced.
 n側電極80は、基板10の下面に配置される。n側電極80は、基板10とオーミック接触するオーミック電極である。n側電極80は、例えば、Ti/Pt/Auからなる積層膜である。n側電極80の構成はこれに限定されない。n側電極80は、Ti及びAuが積層された積層膜であってもよい。 The n-side electrode 80 is disposed on the lower surface of the substrate 10. The n-side electrode 80 is an ohmic electrode in ohmic contact with the substrate 10. The n-side electrode 80 is, for example, a laminated film made of Ti / Pt / Au. The configuration of the n-side electrode 80 is not limited to this. The n-side electrode 80 may be a laminated film in which Ti and Au are laminated.
 [半導体レーザ素子の製造方法]
 次に、本実施の形態に係る半導体レーザ素子1の製造方法について、図2A~図2Lを用いて説明する。図2A、図2B及び図2D~図2Mは、実施の形態に係る半導体レーザ素子1の製造方法における各工程を示す模式的な断面図である。図2Cは、本実施の形態に係る半導体レーザ素子1の製造方法における第2工程を示す上面図である。
[Method of manufacturing a semiconductor laser device]
Next, a method of manufacturing the semiconductor laser device 1 according to the present embodiment will be described with reference to FIGS. 2A to 2L. FIG. 2A, FIG. 2B and FIG. 2D to FIG. 2M are schematic cross-sectional views showing each step in the method for manufacturing the semiconductor laser device 1 according to the embodiment. FIG. 2C is a top view showing a second step in the method for manufacturing the semiconductor laser device 1 according to the present embodiment.
 まず、図2Aに示すように、主面が(0001)面であるn型六方晶GaN基板である基板10上に、有機金属気層成長法(Metalorganic Chemical Vapor Deposition;MOCVD法)を用いて、第1半導体層20を成膜する。具体的には、基板10の上に、第1半導体層20としてn型AlGaNからなるn側クラッド層を3μm成長させる。 First, as shown in FIG. 2A, metalorganic chemical vapor deposition (MOCVD) is used on the substrate 10 which is an n-type hexagonal GaN substrate whose major surface is a (0001) plane. The first semiconductor layer 20 is deposited. Specifically, an n-side cladding layer of n-type AlGaN is grown 3 μm as the first semiconductor layer 20 on the substrate 10.
 次に、図2Bに示すように、第1半導体層20上に、第1保護膜91を成膜する。具体的には、第1半導体層20の上に、シラン(SiH)を用いたプラズマCVD(Chemical Vapor Deposition)法によって、第1保護膜91として、シリコン酸化膜(SiO)を300nm成膜する。 Next, as shown in FIG. 2B, a first protective film 91 is formed on the first semiconductor layer 20. Specifically, a 300 nm thick silicon oxide film (SiO 2 ) is formed on the first semiconductor layer 20 as the first protective film 91 by plasma CVD (Chemical Vapor Deposition) method using silane (SiH 4 ). Do.
 なお、第1保護膜91の成膜方法は、プラズマCVD法に限るものではなく、例えば、熱CVD法、スパッタ法、真空蒸着法、又は、パルスレーザー成膜法など、公知の成膜方法を用いることができる。また、第1保護膜91の成膜材料は、上記のものに限るものではなく、例えば、誘電体、金属など、後述する第1半導体層20のエッチングに対して、選択性のある材料であればよい。次に、リソグラフィー法及びエッチング法を用いて、第1保護膜91を選択的に除去する。リソグラフィー法としては、短波長光源を利用したフォトリソグラフィー法や、電子線で直接描画する電子線リソグラフィー法、またナノインプリント法などを用いることができる。エッチング法としては、例えば、CFなどのフッ素系ガスを用いた反応性イオンエッチング(RIE)によるドライエッチング、又は、1:10程度に希釈した弗化水素酸(HF)などのウェットエッチングを用いることができる。 In addition, the film-forming method of the 1st protective film 91 is not restricted to plasma CVD method, For example, well-known film-forming methods, such as a thermal CVD method, a sputtering method, a vacuum evaporation method, or a pulse laser film-forming method, are used. It can be used. Further, the film forming material of the first protective film 91 is not limited to the above-described one, and may be, for example, a material having selectivity for etching of the first semiconductor layer 20 described later, such as a dielectric or metal. Just do it. Next, the first protective film 91 is selectively removed using a lithography method and an etching method. As a lithography method, a photolithography method using a short wavelength light source, an electron beam lithography method of direct writing with an electron beam, a nanoimprint method, or the like can be used. As an etching method, for example, dry etching by reactive ion etching (RIE) using a fluorine-based gas such as CF 4 or wet etching such as hydrofluoric acid (HF) diluted to about 1:10 is used. be able to.
 図2Cは、図2Bに示される積層体を上面から見た図である。図2Bは、図2CのIIB-IIB線における積層体の断面が示されている。図2Cに示すように、第1保護膜91中に所望の形状の複数の開口91aが周期的に形成されており、開口91aにおいて第1半導体層20が露出している。本実施の形態では、開口91aは、基板10の上面視において、ひし形状の形状を有する。 FIG. 2C is a top view of the laminate shown in FIG. 2B. FIG. 2B shows a cross section of the stack taken along line IIB-IIB in FIG. 2C. As shown in FIG. 2C, a plurality of openings 91a having a desired shape are periodically formed in the first protective film 91, and the first semiconductor layer 20 is exposed in the openings 91a. In the present embodiment, the opening 91 a has a diamond shape in a top view of the substrate 10.
 次に、図2Dに示すように、所望の形状に形成された第1保護膜91をマスクとして、第1半導体層20をエッチングすることで、第1半導体層20中に複数の開口91aに対応する複数の凹部20aを形成する。第1半導体層20のエッチング手法としては、Clなどの塩素系ガスを用いたRIE法によるドライエッチングを用いるとよい。エッチングの深さは、特に限定されるものではないが、本実施の形態では、深さ200nmのエッチングを行う。 Next, as shown in FIG. 2D, the first semiconductor layer 20 is etched using the first protective film 91 formed in a desired shape as a mask to correspond to the plurality of openings 91 a in the first semiconductor layer 20. To form a plurality of recesses 20a. As a method of etching the first semiconductor layer 20, dry etching by RIE using a chlorine-based gas such as Cl 2 may be used. Although the depth of etching is not particularly limited, in this embodiment, etching is performed to a depth of 200 nm.
 次に、図2Eに示すように、所望の形状の第1保護膜91を、弗化水素酸などを用いたウェットエッチングによって除去する。 Next, as shown in FIG. 2E, the first protective film 91 having a desired shape is removed by wet etching using hydrofluoric acid or the like.
 次に、図2Fに示すように、有機金属気層成長法を用いて、発光層30及び第2半導体層40を順次成膜する。 Next, as shown in FIG. 2F, the light emitting layer 30 and the second semiconductor layer 40 are sequentially formed using an organic metal vapor phase growth method.
 具体的には、凹部20aが形成された第1半導体層20の上に、n-GaNからなるn側光ガイド層31を0.2μm成長させる。このとき、凹部20aに空気が埋め込まれるように、横方向成長が支配的となる成長条件を選択することで、埋め込み後のn側光ガイド層31の表面をほぼ平坦にすることができる。n側光ガイド層31の横方向成長を支配的とするためには、例えば、成長温度を高温にする、あるいは成長圧力を低圧にすればよい。なお、図2Eで示した凹部20aの側壁及び底面の少なくとも一方にSiO、AlNなどの誘電体層を薄く形成しておくことで、n側光ガイド層31の表面をより平坦化できる。続いて、InGaNからなるバリア層とInGaN量子井戸層との3周期からなる活性層32を成長させる。続いて、p-GaNからなるp側光ガイド層33を0.1μm成長させる。続いて、AlGaNからなる電子障壁層41を10nm成長させる。続いて、p-AlGaN層(1.5nm)とGaN層(1.5nm)とを160周期繰り返して形成した0.48μmの歪超格子からなるp側クラッド層42を成長させる。続いて、p-GaNからなるp側コンタクト層43を0.05μm成長させる。ここで、各層において、Ga、Al、Inを含む有機金属原料には、例えば、トリメチルガリウム(TMG)、トリメチルアンモニウム(TMA)、トリメチルインジウム(TMI)を用いる。また、窒素原料には、アンモニア(NH)を用いる。 Specifically, the n-side light guide layer 31 made of n-GaN is grown by 0.2 μm on the first semiconductor layer 20 in which the recess 20 a is formed. At this time, the surface of the n-side light guide layer 31 after the embedding can be made substantially flat by selecting the growth condition in which the lateral growth is dominant so that the air is embedded in the recess 20 a. In order to make the lateral growth of the n-side light guide layer 31 dominant, for example, the growth temperature may be high or the growth pressure may be low. The surface of the n-side light guide layer 31 can be further planarized by forming a thin dielectric layer such as SiO 2 or AlN on at least one of the side wall and the bottom of the recess 20 a shown in FIG. 2E. Subsequently, an active layer 32 having three cycles of a barrier layer of InGaN and an InGaN quantum well layer is grown. Subsequently, a p-side light guide layer 33 made of p-GaN is grown to a thickness of 0.1 μm. Subsequently, an electron barrier layer 41 made of AlGaN is grown to 10 nm. Subsequently, a p-side cladding layer 42 composed of a 0.48 μm strained superlattice formed by repeating a p-AlGaN layer (1.5 nm) and a GaN layer (1.5 nm) for 160 cycles is grown. Subsequently, a p-side contact layer 43 made of p-GaN is grown by 0.05 μm. Here, in each layer, for example, trimethylgallium (TMG), trimethylammonium (TMA), trimethylindium (TMI) is used as an organometallic raw material containing Ga, Al, and In. In addition, ammonia (NH 3 ) is used as a nitrogen source.
 次に、図2Gに示すように、第2半導体層40上に、第2保護膜92を成膜する。具体的には、p側コンタクト層43の上に、シラン(SiH)を用いたプラズマCVD法によって、第2保護膜92として、シリコン酸化膜(SiO)を300nm成膜する。 Next, as shown in FIG. 2G, a second protective film 92 is formed on the second semiconductor layer 40. Specifically, a 300 nm silicon oxide film (SiO 2 ) is formed as the second protective film 92 on the p-side contact layer 43 by plasma CVD using silane (SiH 4 ).
 次に、図2Hに示すように、フォトリソグラフィー法及びエッチング法を用いて、第2保護膜92が導波路状に残るように、第2保護膜92を選択的に除去する。エッチング法としては、例えば、CFなどのフッ素系ガスを用いた反応性イオンエッチング(RIE)によるドライエッチング、又は、1:10程度に希釈した弗化水素酸(HF)などのウェットエッチングを用いることができる。 Next, as shown in FIG. 2H, the second protective film 92 is selectively removed using a photolithography method and an etching method so that the second protective film 92 remains like a waveguide. As an etching method, for example, dry etching by reactive ion etching (RIE) using a fluorine-based gas such as CF 4 or wet etching such as hydrofluoric acid (HF) diluted to about 1:10 is used. be able to.
 次に、図2Iに示すように、導波路状に形成された第2保護膜92をマスクとして、p側コンタクト層43及びp側クラッド層42をエッチングすることで、第2半導体層40にリッジ部40a及び平坦部40bを形成する。p側コンタクト層43及びp側クラッド層42のエッチングとしては、Clなどの塩素系ガスを用いたRIE法によるドライエッチングを用いるとよい。 Next, as shown in FIG. 2I, the p-side contact layer 43 and the p-side cladding layer 42 are etched using the second protective film 92 formed in a waveguide shape as a mask to form a ridge on the second semiconductor layer 40. The portion 40a and the flat portion 40b are formed. As etching of the p-side contact layer 43 and the p-side cladding layer 42, it is preferable to use dry etching by RIE using a chlorine-based gas such as Cl 2 .
 次に、図2Jに示すように、導波路状の第2保護膜92を、弗化水素酸などを用いたウェットエッチングによって除去した後、p側コンタクト層43及びp側クラッド層42を覆うように、誘電体層60を成膜する。つまり、第2半導体層40のリッジ部40a及び平坦部40bの上に誘電体層60を形成する。誘電体層60としては、例えば、シラン(SiH)を用いたプラズマCVD法によって、シリコン酸化膜(SiO)を300nm成膜する。 Next, as shown in FIG. 2J, after removing the waveguide-like second protective film 92 by wet etching using hydrofluoric acid or the like, the p-side contact layer 43 and the p-side cladding layer 42 are covered. Then, the dielectric layer 60 is formed. That is, the dielectric layer 60 is formed on the ridge portion 40 a and the flat portion 40 b of the second semiconductor layer 40. As the dielectric layer 60, for example, a silicon oxide film (SiO 2 ) is formed to a thickness of 300 nm by plasma CVD using silane (SiH 4 ).
 次に、図2Kに示すように、フォトリソグラフィー法と弗化水素酸を用いたウェットエッチングとにより、リッジ部40a上の誘電体層60のみを除去して、p側コンタクト層43の上面を露出させる。その後、真空蒸着法及びリフトオフ法を用いて、リッジ部40a上のみにPd/Ptからなるp側電極51を形成する。具体的には、誘電体層60から露出させたp側コンタクト層43の上にp側電極51を形成する。 Next, as shown in FIG. 2K, only the dielectric layer 60 on the ridge portion 40a is removed by photolithography and wet etching using hydrofluoric acid, and the upper surface of the p-side contact layer 43 is exposed. Let Thereafter, the p-side electrode 51 made of Pd / Pt is formed only on the ridge portion 40a by using a vacuum evaporation method and a lift-off method. Specifically, the p-side electrode 51 is formed on the p-side contact layer 43 exposed from the dielectric layer 60.
 なお、p側電極51の成膜方法は、真空蒸着法に限るものではなく、スパッタ法又はパルスレーザー成膜法などであってもよい。また、p側電極51の電極材料は、Ni/Au系、Pt系など、第2半導体層40(p側コンタクト層43)とオーミック接触する材料であればよい。 In addition, the film-forming method of the p side electrode 51 is not restricted to a vacuum evaporation method, A sputtering method, a pulse laser film-forming method, etc. may be used. Further, the electrode material of the p-side electrode 51 may be any material that is in ohmic contact with the second semiconductor layer 40 (p-side contact layer 43), such as Ni / Au type, Pt type or the like.
 次に、図2Lに示すように、p側電極51、誘電体層60を覆うようにパッド電極52を形成する。具体的には、フォトリソグラフィー法などによって、形成したい部分以外にレジストをパターニングし、基板10の上方の全面に真空蒸着法などによってTi/Pt/Auからなるパッド電極52を形成し、リフトオフ法を用いて不要な部分の電極を除去することで、p側電極51、誘電体層60の上に所定形状のパッド電極52を形成する。これにより、p側電極51及びパッド電極52からなる電極部材50が形成される。 Next, as shown in FIG. 2L, a pad electrode 52 is formed to cover the p-side electrode 51 and the dielectric layer 60. Specifically, a resist is patterned on portions other than portions to be formed by photolithography and the like, and a pad electrode 52 made of Ti / Pt / Au is formed on the entire upper surface of the substrate 10 by a vacuum evaporation method or the like. A pad electrode 52 having a predetermined shape is formed on the p-side electrode 51 and the dielectric layer 60 by removing unnecessary portions of the electrode. Thus, an electrode member 50 composed of the p-side electrode 51 and the pad electrode 52 is formed.
 次に、図2Mに示すように、基板10の下面にn側電極80を形成する。具体的には、基板10の裏面(つまり、第1半導体層20などが形成された主面の裏側の主面)に真空蒸着法などによってTi/Pt/Auからなるn側電極80を形成し、フォトリソグラフィー法及びエッチング法を用いてパターニングすることで、所定形状のn側電極80を形成する。これにより、本実施の形態に係る半導体レーザ素子1を製造することができる。 Next, as shown in FIG. 2M, the n-side electrode 80 is formed on the lower surface of the substrate 10. Specifically, an n-side electrode 80 made of Ti / Pt / Au is formed on the back surface of the substrate 10 (that is, the main surface on the back side of the main surface on which the first semiconductor layer 20 etc. are formed) by vacuum evaporation or the like. The n-side electrode 80 having a predetermined shape is formed by patterning using a photolithography method and an etching method. Thereby, the semiconductor laser device 1 according to the present embodiment can be manufactured.
 [半導体レーザ素子の作用効果]
 次に、本実施の形態に係る半導体レーザ素子1の作用及び効果について、図3~図8を用いて説明する。
[Operation effect of semiconductor laser device]
Next, the operation and effects of the semiconductor laser device 1 according to the present embodiment will be described with reference to FIGS. 3 to 8.
 まず、図3を用いて本実施の形態に係る半導体レーザ素子1のような導波路型レーザ素子の光分布について説明する。図3は、本実施の形態に係る半導体レーザ素子1の横モードの電界分布について説明する図である。図3の断面図(a)は、半導体レーザ素子1の模式的な断面図を示し、グラフ(b)は、断面図(a)の横方向(図3のX軸方向)の位置とレーザ光の基本横モードの電界強度との関係を示す。 First, the light distribution of a waveguide type laser device such as the semiconductor laser device 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a diagram for explaining the electric field distribution in the transverse mode of the semiconductor laser device 1 according to the present embodiment. The cross-sectional view (a) of FIG. 3 shows a schematic cross-sectional view of the semiconductor laser device 1, and the graph (b) shows the position of the cross-sectional view (a) in the lateral direction (X-axis direction of FIG. 3) and the laser light The relationship with the electric field strength of the fundamental transverse mode of
 図3のグラフ(b)に示すように、基本横モードは、導波路の中央部で電界強度が最大となり、導波路端に近付くほど強度が小さくなる分布を有する。等価屈折率法を用いて計算を行った結果、図3に示す幅Wの導波路内部では、光分布は余弦関数で表現できる形状を有し、導波路外部では、導波路90aから遠ざかるにしたがって指数関数的に減少する形状を有する。導波路型レーザでこのような光分布が形成されるのは、電流がリッジ部40aから供給されることによって光はリッジ部40aのみで発生し、かつ、導波路方向と直交する方向には、導波路内外の屈折率差により光が閉じ込められるためである。ここで、上記余弦関数をcos(κX)、上記指数関数をexp(-γX)とすると、本実施の形態では、導波路内部の屈折率を2.5、導波路外部の屈折率を2.499、導波路幅Wを10μmとして計算を行うことにより、κ=0.26、γ=1.07を得られる。なお、図示しないが、高次の横モードは、複数のピークをもつ分布となり、導波路中央部より外側に電界強度が極大となる位置が存在する。 As shown in the graph (b) of FIG. 3, the fundamental transverse mode has a distribution in which the electric field strength is maximum at the central portion of the waveguide and the strength decreases as the waveguide end is approached. As a result of calculation using the equivalent refractive index method, the light distribution has a shape that can be expressed by a cosine function inside the waveguide of width W shown in FIG. 3, and outside the waveguide as it goes away from the waveguide 90 a It has an exponentially decreasing shape. Such light distribution is formed in the waveguide type laser because the current is supplied from the ridge portion 40a and light is generated only in the ridge portion 40a, and in the direction orthogonal to the waveguide direction, This is because light is confined by the difference in refractive index between the inside and the outside of the waveguide. Here, assuming that the cosine function is cos (.kappa.X) and the exponential function is exp (-. Gamma.X), in the present embodiment, the refractive index inside the waveguide is 2.5, and the refractive index outside the waveguide is 2.2. By performing calculation with 499 and a waveguide width W of 10 μm, κ = 0.26 and γ = 1.07 can be obtained. Although not shown, the high-order transverse mode has a distribution having a plurality of peaks, and a position where the electric field intensity is maximized exists outside the central portion of the waveguide.
 基本横モードのみを選択的に発振させるには、この基本横モードの光分布形状と同じ利得分布をもたせればよい。すなわち、基本横モードの利得が高く、かつ、高次横モードの利得を小さくすることで、基本横モードを優先的に発振させることができる。回折格子70を形成したDFB型レーザ素子における利得は回折格子の光帰還量で表現できる。ここで、回折格子の充填率fと光帰還量との関係について図4A~図4Cを用いて説明する。 In order to selectively oscillate only the fundamental transverse mode, the same gain distribution as that of the fundamental transverse mode light distribution may be provided. That is, the fundamental transverse mode can be preferentially oscillated by increasing the gain of the fundamental transverse mode and reducing the gain of the high-order transverse mode. The gain in the DFB type laser device in which the diffraction grating 70 is formed can be expressed by the optical feedback amount of the diffraction grating. Here, the relationship between the filling factor f of the diffraction grating and the amount of optical feedback will be described with reference to FIGS. 4A to 4C.
 図4A及び図4Bは、それぞれ本実施の形態に係る半導体レーザ素子1の回折格子70の充填率fが0.5及び0.25である場合の回折格子70の構成を示す模式的な断面図である。図4Aは、図1AのIVA-IVA線における回折格子70及び第1半導体層20の断面に相当し、図4Bは、図1AのIVB-IVB線における回折格子70及び第1半導体層20の断面に相当する。図4Cは、本実施の形態に係る回折格子70の充填率fと、回折格子70による光帰還量との関係を示すグラフである。 FIGS. 4A and 4B are schematic cross-sectional views showing the configuration of the diffraction grating 70 when the filling factor f of the diffraction grating 70 of the semiconductor laser device 1 according to the present embodiment is 0.5 and 0.25, respectively. It is. 4A corresponds to the cross section of the diffraction grating 70 and the first semiconductor layer 20 at line IVA-IVA in FIG. 1A, and FIG. 4B shows the cross section of the diffraction grating 70 and the first semiconductor layer 20 at line IVB-IVB in FIG. It corresponds to FIG. 4C is a graph showing the relationship between the filling factor f of the diffraction grating 70 according to the present embodiment and the amount of optical feedback by the diffraction grating 70.
 図4A及び図4Bに示すように、回折格子70の充填率fは、回折格子70の周期をa、回折格子70の1周期の中において回折格子70が連続する(つまり、回折格子70が連続して存在する)長さをdとして、f=d/aと表される。なお、回折格子70の充填率fは、回折格子70のデューティと言い換えることもできる。また、回折格子70の次数をm、半導体レーザ素子1におけるレーザ光の発振波長をλ、屈折率をnとすると、a=mλ/2nの関係式が成り立つ。例えば、半導体レーザ素子1において窒化物半導体を用いる場合、発振波長を400nm、屈折率を2.5、m=1とすると、a=80nmとなる。ここで、充填率f=0.5の場合、d=40nmとなり、充填率f=0.25の場合、d=20nmとなる。 As shown in FIGS. 4A and 4B, the filling factor f of the diffraction grating 70 is such that the period of the diffraction grating 70 is a and the diffraction grating 70 is continuous in one period of the diffraction grating 70 (that is, the diffraction grating 70 is continuous) Is represented by f = d / a, where d is a length of The filling factor f of the diffraction grating 70 can be restated as the duty of the diffraction grating 70. Further, assuming that the order of the diffraction grating 70 is m, the oscillation wavelength of the laser light in the semiconductor laser device 1 is λ, and the refractive index is n, a relational expression of a = mλ / 2n holds. For example, in the case of using a nitride semiconductor in the semiconductor laser device 1, when the oscillation wavelength is 400 nm, the refractive index is 2.5, and m = 1, a = 80 nm. Here, in the case of the filling rate f = 0.5, d = 40 nm, and in the case of the filling rate f = 0.25, d = 20 nm.
 図4Cは、1次の回折格子における回折格子の充填率に対する光帰還量の計算結果である。この場合、充填率fが0.5で光帰還量が最も大きくなり、充填率が0又は1で光帰還量が0となる。充填率fを変えることで、光帰還量を任意の値に調整することができる。DFB型レーザ素子において、回折格子70の光帰還量が大きいほど、特定の波長で発振しやすくなるという特徴をもつ。充填率fを導波路方向及び積層方向と直交する方向の位置に応じて調整し、光帰還量を図3のグラフ(b)に示した基本横モードの光分布に合わせることで、基本横モードの選択的な発振が可能となる。 FIG. 4C is the calculation result of the amount of optical feedback with respect to the filling factor of the diffraction grating in the first-order diffraction grating. In this case, when the filling factor f is 0.5, the amount of optical feedback is the largest, and when the filling factor is 0 or 1, the amount of optical feedback is zero. By changing the filling factor f, the amount of optical feedback can be adjusted to an arbitrary value. The DFB laser device is characterized in that the larger the amount of optical feedback of the diffraction grating 70, the easier it is to oscillate at a specific wavelength. The fundamental transverse mode is adjusted by adjusting the filling factor f according to the position in the direction orthogonal to the waveguide direction and the stacking direction, and matching the amount of optical feedback with the light distribution of the fundamental transverse mode shown in graph (b) of FIG. Selective oscillation is possible.
 このような充填率fの調整について、図5を用いて説明する。図5は、本実施の形態に係る半導体レーザ素子1の導波路方向及び積層方向と直交する方向の位置と回折格子70の充填率との関係を示す図である。図5の断面図(a)は、半導体レーザ素子1の模式的な断面図を示し、グラフ(b)は、断面図(a)の横方向(図3のX軸方向)の位置と回折格子70の充填率との関係を示す。 Such adjustment of the filling factor f will be described with reference to FIG. FIG. 5 is a view showing the relationship between the filling factor of the diffraction grating 70 and the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 1 according to the present embodiment. The cross-sectional view (a) of FIG. 5 shows a schematic cross-sectional view of the semiconductor laser device 1, and the graph (b) shows the position and diffraction grating in the lateral direction (X-axis direction of FIG. 3) of the cross-sectional view (a). The relationship with the filling rate of 70 is shown.
 図5に示すように、本実施の形態に係る半導体レーザ素子1においては、導波路方向における回折格子70の充填率fは、導波路方向及び積層方向と直交する方向の位置によって変化している。本実施の形態では、導波路中央部(X=0)で充填率fが0.5になるように設定し、導波路中央部から5.9μm外側の位置(つまり、X=5.9、及び、X=-5.9の位置)で充填率が0になるように設定する。充填率fは、導波路中央部から、導波路方向及び積層方向と直交する方向における導波路端部に近付くにしたがって、直線的に減少している。このような形状とすることで、図3のグラフ(b)に示す基本横モードの光分布を反映した利得分布を実現できる。 As shown in FIG. 5, in the semiconductor laser device 1 according to the present embodiment, the filling factor f of the diffraction grating 70 in the waveguide direction changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction. . In the present embodiment, the filling factor f is set to be 0.5 at the waveguide center (X = 0), and the position 5.9 μm outside the waveguide center (that is, X = 5.9, And, the filling factor is set to be 0 at the position of X = −5.9). The filling factor f linearly decreases from the central portion of the waveguide toward the waveguide end in the direction orthogonal to the waveguide direction and the stacking direction. With such a shape, a gain distribution reflecting the light distribution of the fundamental transverse mode shown in the graph (b) of FIG. 3 can be realized.
 ここで、図5に示すような充填率分布を有する回折格子70を用いた場合の、半導体レーザ素子1のレーザ光の電界強度分布及び光帰還量分布について図6を用いて説明する。図6は、本実施の形態に係る光帰還量及びレーザ光の電界強度分布と、導波路方向及び積層方向と垂直な方向の位置との関係を示すグラフである。図6には、図3のグラフ(b)に示した電界強度分布と、図5に示す充填率分布を有する回折格子70の光帰還量の計算結果とが示されている。図6においては、光帰還量が破線で、電界強度が実線で、それぞれ示されている。なお、図6に示すグラフの縦軸は規格化されている。 Here, the electric field intensity distribution and the light feedback amount distribution of the laser beam of the semiconductor laser device 1 in the case of using the diffraction grating 70 having the filling factor distribution as shown in FIG. 5 will be described with reference to FIG. FIG. 6 is a graph showing the relationship between the amount of optical feedback and the electric field intensity distribution of laser light according to the present embodiment, and the positions in the direction of the waveguide and in the direction perpendicular to the stacking direction. FIG. 6 shows the electric field intensity distribution shown in the graph (b) of FIG. 3 and the calculation results of the amount of optical feedback of the diffraction grating 70 having the filling factor distribution shown in FIG. In FIG. 6, the amount of optical feedback is shown by a broken line and the electric field intensity is shown by a solid line. The vertical axis of the graph shown in FIG. 6 is standardized.
 図6に示すように、導波路内部において、電界強度分布と光帰還量分布とが一致しており、回折格子70においてこのような光帰還量分布を採用することで、半導体レーザ素子1において基本横モードを選択的に発振させることができる。 As shown in FIG. 6, the electric field intensity distribution and the light feedback amount distribution match in the waveguide, and by adopting such a light feedback amount distribution in the diffraction grating 70, it is basic in the semiconductor laser device 1 The horizontal mode can be selectively oscillated.
 以上のように、回折格子70の充填率を導波路方向及び積層方向と直交する方向の位置によって変化させることによって、所望の光帰還量分布を得られる。したがって、回折格子70の充填率を適切に調整することにより、光帰還量分布に対応する所望の横モードを選択的に発振させることができる。また、レーザ光の電界強度が大きい領域に回折格子70の端部が配置されないように回折格子70の充填率を調整することによって、回折格子70に起因する光散乱を抑制することができる。したがって、本実施の形態に係る半導体レーザ素子1によれば、ビーム品質が良好で、かつ、電力光変換効率の低下を抑えられるDFB型の半導体レーザ素子を実現できる。 As described above, by changing the filling factor of the diffraction grating 70 depending on the waveguide direction and the position in the direction orthogonal to the stacking direction, a desired light feedback amount distribution can be obtained. Therefore, by appropriately adjusting the filling factor of the diffraction grating 70, it is possible to selectively oscillate the desired transverse mode corresponding to the light feedback amount distribution. Further, light scattering due to the diffraction grating 70 can be suppressed by adjusting the filling factor of the diffraction grating 70 so that the end of the diffraction grating 70 is not arranged in the region where the electric field intensity of the laser light is large. Therefore, according to the semiconductor laser device 1 according to the present embodiment, it is possible to realize a DFB type semiconductor laser device which is excellent in beam quality and can suppress a decrease in power-light conversion efficiency.
 図6に示すような光帰還量分布を有する回折格子70の形状について図7及び図8を用いて説明する。図7は、本実施の形態に係る回折格子70の形状を示す上面図である。図8は、変形例に係る回折格子70aの形状を示す上面図である。 The shape of the diffraction grating 70 having the light feedback amount distribution as shown in FIG. 6 will be described with reference to FIGS. 7 and 8. FIG. 7 is a top view showing the shape of the diffraction grating 70 according to the present embodiment. FIG. 8 is a top view showing the shape of a diffraction grating 70a according to a modification.
 図7に示すように、本実施の形態では、回折格子70は、上面視においてひし形状の形状を有する。回折格子70の周期aは一定であるが、回折格子70の導波路方向に連続する長さdが導波路方向及び積層方向に直交する方向において変化している。例えば、導波路中央部での回折格子70が導波路方向に連続する長さをd1、導波路端(リッジ端)での回折格子70が導波路方向に連続する長さをd2と定義すると、d1>d2の関係がある。また、それぞれの充填率をf1、f2と定義すると、充填率はf1=d1/a又はf2=d2/aの式で計算できるので、f1>f2の関係となる。すなわち、導波路方向の充填率が、導波路方向及び積層方向と直交する方向に変化している。回折格子の形状はこれに限らず、図5のグラフ(b)の充填率分布を満たす形状であればよい。例えば、図8に示す変形例に係る回折格子70aのように、上面視において三角形状の形状を有してもよい。この場合も同様に回折格子70aの導波路方向に連続する長さd1、d2を図のように定義すると、充填率はf1=d1/aあるいはf2=d2/aの式で計算できるので、f1>f2の関係となる。 As shown in FIG. 7, in the present embodiment, the diffraction grating 70 has a diamond shape in top view. Although the period a of the diffraction grating 70 is constant, the length d continuous in the waveguide direction of the diffraction grating 70 changes in the direction orthogonal to the waveguide direction and the stacking direction. For example, if the length at which the diffraction grating 70 in the central portion of the waveguide continues in the waveguide direction is d1 and the length at which the diffraction grating 70 at the waveguide end (ridge end) is continuous in the waveguide direction is d2, There is a relationship of d1> d2. Further, when the respective filling rates are defined as f1 and f2, since the filling rates can be calculated by the formula f1 = d1 / a or f2 = d2 / a, the relation of f1> f2 is established. That is, the filling factor in the waveguide direction changes in the direction orthogonal to the waveguide direction and the stacking direction. The shape of the diffraction grating is not limited to this, and it may be a shape that satisfies the filling factor distribution of the graph (b) of FIG. For example, as in a diffraction grating 70a according to a modification shown in FIG. 8, it may have a triangular shape in top view. Also in this case, if the lengths d1 and d2 continuing in the waveguide direction of the diffraction grating 70a are defined as shown in the figure, the filling factor can be calculated by the equation f1 = d1 / a or f2 = d2 / a. It becomes a relation of> f2.
 以上のように、本実施の形態では、回折格子70は、導波路方向において周期的に断続する構造を有し、導波路方向において回折格子70が連続する長さは、導波路方向及び積層方向と直交する方向の位置によって変化している。 As described above, in the present embodiment, the diffraction grating 70 has a structure in which it is periodically interrupted in the waveguide direction, and the length in which the diffraction grating 70 is continuous in the waveguide direction is the waveguide direction and the stacking direction It changes with the position of the direction orthogonal to.
 これにより、回折格子70の周期aを一定とする場合、導波路方向において回折格子70が連続する長さdを、導波路方向及び積層方向と直交する方向の位置によって変化させることで、導波路方向及び積層方向に直交する方向における位置によって充填率fが変化する回折格子70を有する半導体レーザ素子1を実現できる。 Thus, when the period a of the diffraction grating 70 is made constant, the length d where the diffraction grating 70 continues in the waveguide direction is changed by the position in the direction orthogonal to the waveguide direction and the stacking direction. It is possible to realize the semiconductor laser device 1 having the diffraction grating 70 in which the filling factor f changes depending on the direction and the direction orthogonal to the stacking direction.
 また、本実施の形態に係る半導体レーザ素子1において、充填率fは、導波路90aの導波路方向及び積層方向と直交する方向における中央において少なくとも一方の端部よりも小さい。 Further, in the semiconductor laser device 1 according to the present embodiment, the filling factor f is smaller than at least one end at the center in the direction orthogonal to the waveguide direction and the stacking direction of the waveguide 90a.
 これにより、回折格子70の充填率を0.5以下とする場合、回折格子70による導波路方向及び積層方向と直交する方向の中央における光帰還量を、当該直交する方向の端部における光帰還量より大きくすることが可能となる。したがって、当該直交する方向の中央において端部より電界強度が大きい基本横モードの光帰還量を選択的に高められるため、基本横モードの発振を促すことができる。 Thus, when the filling factor of the diffraction grating 70 is set to 0.5 or less, the optical feedback amount at the center of the waveguide direction by the diffraction grating 70 and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction. It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
 (実施の形態2)
 [半導体レーザ素子の構成]
 実施の形態1では、回折格子70を第1半導体層20中に形成した構造を説明したが、実施の形態2では、回折格子70をn側光ガイド層31中に形成する構造について説明する。また、実施の形態1では、導波路内の電界分布と回折格子の光帰還量を一致させる手法を説明したが、本実施の形態では、導波路外の電界分布も考慮した回折格子の形状について説明する。
Second Embodiment
[Configuration of semiconductor laser device]
In the first embodiment, the structure in which the diffraction grating 70 is formed in the first semiconductor layer 20 has been described. In the second embodiment, a structure in which the diffraction grating 70 is formed in the n-side light guide layer 31 will be described. Further, in the first embodiment, the method of making the electric field distribution in the waveguide and the optical feedback amount of the diffraction grating match is described, but in the present embodiment, the shape of the diffraction grating also takes into consideration the electric field distribution outside the waveguide. explain.
 図9は、本実施の形態に係る半導体レーザ素子101の構成を示す模式的な断面図である。図9に示すように、本実施の形態に係る半導体レーザ素子101は、実施の形態1に係る半導体レーザ素子1と同様に、第1半導体層20、発光層30及び第2半導体層40を含む積層構造体190を備える。本実施の形態においては、積層構造体190は、回折格子170が形成された導波路190aを含み、回折格子170は発光層30に配置される。より詳しくは、回折格子170は、発光層30のn側光ガイド層31中に配置される。また、本実施の形態に係る回折格子170は、その導波路190aの外部における形状において実施の形態1に係る回折格子170と相違する。回折格子170の形状については、後述する。 FIG. 9 is a schematic cross-sectional view showing the configuration of the semiconductor laser device 101 according to the present embodiment. As shown in FIG. 9, the semiconductor laser device 101 according to the present embodiment includes the first semiconductor layer 20, the light emitting layer 30 and the second semiconductor layer 40 in the same manner as the semiconductor laser device 1 according to the first embodiment. A laminated structure 190 is provided. In the present embodiment, the laminated structure 190 includes the waveguide 190 a in which the diffraction grating 170 is formed, and the diffraction grating 170 is disposed in the light emitting layer 30. More specifically, the diffraction grating 170 is disposed in the n-side light guide layer 31 of the light emitting layer 30. Further, the diffraction grating 170 according to the present embodiment is different from the diffraction grating 170 according to the first embodiment in the shape in the outside of the waveguide 190a. The shape of the diffraction grating 170 will be described later.
 [半導体レーザ素子の製造方法]
 次に、本実施の形態に係る半導体レーザ素子101の製造方法について、図10A~図10Dを用いて説明する。図10A~図10Dは、それぞれ本実施の形態に係る半導体レーザ素子101の製造方法における各工程を示す模式的な断面図である。以下、本実施の形態に係る半導体レーザ素子101の製造方法について、実施の形態1と異なる部分を中心について説明する。
[Method of manufacturing a semiconductor laser device]
Next, a method of manufacturing the semiconductor laser device 101 according to the present embodiment will be described with reference to FIGS. 10A to 10D. 10A to 10D are schematic cross-sectional views showing steps in the method of manufacturing the semiconductor laser device 101 according to the present embodiment. Hereinafter, a method of manufacturing the semiconductor laser device 101 according to the present embodiment will be described focusing on differences from the first embodiment.
 まず、図10Aに示すように、基板10の上に、第1半導体層20としてn型AlGaNからなるn側クラッド層を3μm成長させる。 First, as shown in FIG. 10A, an n-side cladding layer of n-type AlGaN is grown 3 μm as the first semiconductor layer 20 on the substrate 10.
 次に、図10Bに示すように、第1半導体層20上に、回折格子用膜93として、シリコン酸化膜(SiO)を100nm成膜する。 Next, as shown in FIG. 10B, a silicon oxide film (SiO 2 ) of 100 nm is formed as the diffraction grating film 93 on the first semiconductor layer 20.
 次に、図10Cに示すように、リソグラフィー法及びエッチング法を用いて、回折格子用膜93を選択的に除去する、このエッチング後に残る回折格子用膜93が回折格子170として使用される。 Next, as shown in FIG. 10C, the diffraction grating film 93 is selectively removed using the lithography method and the etching method, and the diffraction grating film 93 remaining after this etching is used as the diffraction grating 170.
 次に、図10Dに示すように、有機金属気層成長法を用いて、発光層30及び第2半導体層40を順次成膜する。このように、回折格子170上に発光層30を形成することによって、回折格子170は、発光層30のn側光ガイド層31に配置される。これにより、回折格子を配置するための層を別途設けることなく、回折格子170を積層構造体に形成できる。 Next, as shown in FIG. 10D, the light emitting layer 30 and the second semiconductor layer 40 are sequentially formed using an organic metal vapor phase growth method. As described above, by forming the light emitting layer 30 on the diffraction grating 170, the diffraction grating 170 is disposed in the n-side light guide layer 31 of the light emitting layer 30. Thus, the diffraction grating 170 can be formed in a laminated structure without separately providing a layer for disposing the diffraction grating.
 次に、実施の形態1に係る半導体レーザ素子1と同様に、電極部材50及びn側電極80を形成することによって、図9に示すような本実施の形態に係る半導体レーザ素子101を形成できる。 Next, as in the semiconductor laser device 1 according to the first embodiment, by forming the electrode member 50 and the n-side electrode 80, the semiconductor laser device 101 according to the present embodiment as shown in FIG. 9 can be formed. .
 [回折格子の構成]
 次に本実施の形態に係る回折格子の構成について図11を用いて説明する。図11は、本実施の形態に係る半導体レーザ素子101の導波路方向及び積層方向と直交する方向の位置と回折格子170の充填率と関係を示す図である。図11の断面図(a)は、半導体レーザ素子101の模式的な断面図を示し、グラフ(b)は、断面図(a)の横方向(図11のX軸方向)の位置と回折格子170の充填率fとの関係を示す。図11のグラフ(b)に示すように、本実施の形態に係る回折格子170の充填率は、導波路外において、実施の形態1に係る回折格子70と異なる。
[Diffraction grating configuration]
Next, the configuration of the diffraction grating according to the present embodiment will be described with reference to FIG. FIG. 11 is a view showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 101 according to the present embodiment and the filling factor of the diffraction grating 170. In FIG. The cross-sectional view (a) of FIG. 11 shows a schematic cross-sectional view of the semiconductor laser device 101, and the graph (b) shows the position and diffraction grating in the lateral direction (X-axis direction of FIG. 11) of the cross-sectional view (a). The relationship with the filling factor f of 170 is shown. As shown in graph (b) of FIG. 11, the filling factor of the diffraction grating 170 according to the present embodiment is different from that of the diffraction grating 70 according to the first embodiment outside the waveguide.
 図11のグラフ(b)に示すように、導波路中央部(X=0)で充填率が0.5になるように回折格子170の周期及び導波路方向に連続する長さを設定し、X=W/2=5[μm]、又は、X=-W/2=-5[μm]で充填率が0.08となるように直線的に変化させる。導波路外では、X=W/2=5[μm]、又は、X=-W/2=-5[μm]での充填率を0.08とし、導波路から離れるにしたがって指数関数exp(-γx)に従う形で、充填率を0まで減少させる。このように充填率を変化させることで、より光分布を反映した光帰還量分布が得られる。 As shown in the graph (b) of FIG. 11, the period of the diffraction grating 170 and the continuous length in the waveguide direction are set so that the filling factor is 0.5 at the waveguide center (X = 0), The filling ratio is changed linearly so as to be 0.08 at X = W / 2 = 5 [μm] or X = -W / 2 = -5 [μm]. Outside the waveguide, the filling factor at X = W / 2 = 5 [μm] or X = -W / 2 = -5 [μm] is set to 0.08, and the exponential function exp ( The fill factor is reduced to 0 in accordance with -γ x). By changing the filling factor in this way, a light feedback amount distribution that reflects the light distribution can be obtained.
 ここで、本実施の形態に係る半導体レーザ素子101におけるレーザ光の電界強度分布と、回折格子170による光帰還量との関係について図12及び図13を用いて説明する。図12は、本実施の形態に係る半導体レーザ素子101におけるレーザ光の電界強度分布と、回折格子170による光帰還量分布と、を示すグラフである。図12は、図3のグラフ(b)に示した電界強度分布と、充填率分布が図11のグラフ(b)で示される場合の回折格子170の光帰還量分布の計算結果と、を示すグラフであり、縦軸は規格化された値である。導波路内外ともに、電界強度分布と光帰還量とが一致しており、この構成により、基本横モードの選択性をさらに向上できる。図13は、本実施の形態に係る回折格子170の形状を示す上面図である。図13に示すように、回折格子170は、導波路外で指数関数的に形状が変化している。本実施の形態においても実施の形態1と同様に、回折格子170の周期aは一定であるが、回折格子170が導波路方向に連続する長さdが導波路方向及び積層方向と直交する方向に変化している。例えば、導波路中央部での回折格子170が連続する長さをd1、導波路端(リッジ端)での回折格子170が連続する長さをd2と定義すると、d1>d2の関係がある。また、それぞれの充填率をf1、f2と定義すると、充填率はf1=d1/aあるいはf2=d2/aの式で計算でき、f1>f2の関係となる。このように、回折格子170の充填率fが、導波路方向及び積層方向と直交する方向に変化している。 Here, the relationship between the electric field intensity distribution of laser light in the semiconductor laser device 101 according to the present embodiment and the amount of optical feedback by the diffraction grating 170 will be described with reference to FIGS. 12 and 13. FIG. FIG. 12 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 101 according to the present embodiment and the optical feedback amount distribution by the diffraction grating 170. FIG. 12 shows the electric field intensity distribution shown in the graph (b) of FIG. 3 and the calculation results of the optical feedback distribution of the diffraction grating 170 in the case where the filling factor distribution is shown in the graph (b) of FIG. It is a graph, and a vertical axis is a standardized value. The electric field intensity distribution and the amount of optical feedback coincide with each other inside and outside the waveguide, and this configuration can further improve the selectivity of the fundamental transverse mode. FIG. 13 is a top view showing the shape of the diffraction grating 170 according to the present embodiment. As shown in FIG. 13, the diffraction grating 170 changes its shape exponentially outside the waveguide. Also in the present embodiment, as in the first embodiment, although the period a of the diffraction grating 170 is constant, the length d of the diffraction grating 170 continuing in the waveguide direction is perpendicular to the waveguide direction and the stacking direction. Has changed. For example, when the continuous length of the diffraction grating 170 at the center of the waveguide is defined as d1 and the continuous length of the diffraction grating 170 at the waveguide end (ridge end) is defined as d2, the relationship of d1> d2 is satisfied. Further, when the respective filling rates are defined as f1 and f2, the filling rates can be calculated by the formula f1 = d1 / a or f2 = d2 / a, and the relation of f1> f2 is obtained. Thus, the filling factor f of the diffraction grating 170 changes in the direction orthogonal to the waveguide direction and the stacking direction.
 以上のように、本実施の形態に係る半導体レーザ素子101において、第2半導体層40は、導波路方向に長手方向を持つリッジ部40aを備え、充填率fは、導波路方向及び積層方向と直交する方向において、リッジ部40aの下方領域では線形に変化し、リッジ部40aの下方領域よりも外側では指数関数的に変化する。 As described above, in the semiconductor laser device 101 according to the present embodiment, the second semiconductor layer 40 includes the ridge portion 40 a having the longitudinal direction in the waveguide direction, and the filling factor f is the waveguide direction and the lamination direction. In the orthogonal direction, it linearly changes in the lower region of the ridge portion 40a, and exponentially changes outside the lower region of the ridge portion 40a.
 これにより、導波路内外ともに、基本横モードの電界強度分布と光帰還量とを一致させることができるため、回折格子170による基本横モードの選択性をさらに向上できる。 As a result, the electric field strength distribution of the fundamental transverse mode and the amount of optical feedback can be made to coincide with each other inside and outside the waveguide, so the selectivity of the fundamental transverse mode by the diffraction grating 170 can be further improved.
 なお、本実施の形態では、回折格子170をn側光ガイド層31中に形成する構成及び導波路外の電界分布も考慮した回折格子170の構成が採用されたが、これらの構成は、必ずしも組み合わせて採用される必要はない。これらの構成のうち一方だけが採用されてもよい。 In the present embodiment, the configuration in which the diffraction grating 170 is formed in the n-side light guide layer 31 and the configuration of the diffraction grating 170 in consideration of the electric field distribution outside the waveguide are adopted. It does not have to be adopted in combination. Only one of these configurations may be employed.
 (実施の形態3)
 実施の形態3に係る半導体レーザ素子について説明する。本実施の形態に係る半導体レーザ素子は、回折格子の充填率分布において実施の形態1及び実施の形態2と異なる。回折格子の形成位置や製造方法は、実施の形態1又は実施の形態2と同様であるため、説明は省略する。以下、本実施の形態に係る回折格子の構成について図14を用いて説明する。
Third Embodiment
The semiconductor laser device according to the third embodiment will be described. The semiconductor laser device according to the present embodiment is different from the first and second embodiments in the filling factor distribution of the diffraction grating. Since the formation position and the manufacturing method of the diffraction grating are the same as in Embodiment 1 or Embodiment 2, the description will be omitted. Hereinafter, the configuration of the diffraction grating according to the present embodiment will be described with reference to FIG.
 図14は、本実施の形態に係る半導体レーザ素子201の導波路方向及び積層方向と直交する方向の位置と回折格子270の充填率と関係を示す図である。図14の断面図(a)は、半導体レーザ素子201の模式的な断面図を示し、グラフ(b)は、断面図(a)の横方向(図14のX軸方向)の位置と回折格子270の充填率fとの関係を示す。本実施の形態に係る回折格子270の充填率は、図14のグラフ(b)に示すように、回折格子270のX方向において階段状に変化する。 FIG. 14 is a diagram showing the relationship between the position in the direction orthogonal to the waveguide direction and the stacking direction of the semiconductor laser device 201 according to the present embodiment and the filling factor of the diffraction grating 270. The sectional view (a) of FIG. 14 shows a schematic sectional view of the semiconductor laser device 201, and the graph (b) shows the position of the lateral direction (the X-axis direction of FIG. 14) and the diffraction grating of the sectional view (a). The relationship with the filling factor f of 270 is shown. The filling factor of the diffraction grating 270 according to the present embodiment changes stepwise in the X direction of the diffraction grating 270, as shown in the graph (b) of FIG.
 ここで、本実施の形態に係る半導体レーザ素子201におけるレーザ光の電界強度分布と、回折格子270による光帰還量との関係について図15を用いて説明する。図15は、本実施の形態に係る半導体レーザ素子201におけるレーザ光の電界強度分布と、回折格子270による光帰還量分布と、を示すグラフである。図15は、半導体レーザ素子201におけるレーザ光の電界強度分布と、充填率分布が図14のグラフ(b)で示される場合の回折格子270の光帰還量分布の計算結果と、を示すグラフであり、縦軸は規格化された値である。図15に示すように、本実施の形態に係る回折格子270においては、充填率を反映して、光帰還量も階段状に変化する。このような回折格子270を用いる場合においても、基本横モードを選択的に発振させることができるため、良好なビーム品質を得られる。また、本実施の形態においても、レーザ光の電界強度が高い領域に、回折格子270の横方向(X軸方向)の端部が存在しないため、回折格子270による光散乱に起因する電力光変換効率の低下を抑制できる。 Here, the relationship between the electric field intensity distribution of laser light in the semiconductor laser device 201 according to the present embodiment and the amount of optical feedback by the diffraction grating 270 will be described with reference to FIG. FIG. 15 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 201 according to the present embodiment and the optical feedback amount distribution by the diffraction grating 270. FIG. 15 is a graph showing the electric field intensity distribution of laser light in the semiconductor laser device 201 and calculation results of the light feedback amount distribution of the diffraction grating 270 when the filling factor distribution is shown by the graph (b) in FIG. Yes, the vertical axis is a standardized value. As shown in FIG. 15, in the diffraction grating 270 according to the present embodiment, the amount of optical feedback also changes in a stepwise manner, reflecting the filling factor. Even in the case of using such a diffraction grating 270, since the fundamental transverse mode can be selectively oscillated, good beam quality can be obtained. Further, also in the present embodiment, the end portion of the diffraction grating 270 in the lateral direction (X-axis direction) does not exist in the region where the electric field intensity of the laser light is high. It is possible to suppress the decrease in efficiency.
 続いて、本実施の形態に係る回折格子270の形状例について図16を用いて説明する。 Subsequently, a shape example of the diffraction grating 270 according to the present embodiment will be described with reference to FIG.
 図16は、本実施の形態に係る回折格子270の形状を示す上面図である。回折格子70は、導波路方向(Z軸方向)の長さが異なる複数の長方形が結合した形状をしている。回折格子270の周期aは一定であるが、導波路方向に回折格子270が連続する長さdが導波路方向及び積層方向に直交する方向(X軸方向)において変化している。図16に示すように、回折格子270のX軸方向の各位置における回折格子270が連続する長さをd1、d2及びd3と定義すると、d1>d2>d3の関係がある。上記各位置における充填率fをf1、f2及びf3と定義すると、f1=d1/a、f2=d2/a、f3=d3/aの形で計算できる。したがって、f1>f2>f3の関係があり、導波路方向及び積層方向と直交する方向に充填率が変化している。なお、回折格子の形状はこれに限らず、図14のグラフ(b)に示す充填率を満たす形状であればよい。 FIG. 16 is a top view showing the shape of the diffraction grating 270 according to the present embodiment. The diffraction grating 70 has a shape in which a plurality of rectangles having different lengths in the waveguide direction (Z-axis direction) are combined. Although the period a of the diffraction grating 270 is constant, the length d where the diffraction grating 270 continues in the waveguide direction changes in the direction (X-axis direction) orthogonal to the waveguide direction and the stacking direction. As shown in FIG. 16, when the lengths of the continuous diffraction gratings 270 at respective positions in the X-axis direction of the diffraction grating 270 are defined as d1, d2 and d3, there is a relationship of d1> d2> d3. If the filling factor f at each position is defined as f1, f2 and f3, it can be calculated in the form of f1 = d1 / a, f2 = d2 / a, f3 = d3 / a. Therefore, there is a relationship of f1> f2> f3, and the filling factor changes in the direction orthogonal to the waveguide direction and the stacking direction. The shape of the diffraction grating is not limited to this, and any shape may be used as long as the filling rate shown in the graph (b) of FIG. 14 is satisfied.
 ここで、図14のグラフ(b)に示す充填率を満たす形状を有する変形例1に係る回折格子について図17を用いて説明する。図17は、本変形例に係る回折格子270aの形状を示す上面図である。 Here, the diffraction grating according to the first modification having a shape satisfying the filling factor shown in the graph (b) of FIG. 14 will be described with reference to FIG. FIG. 17 is a top view showing the shape of a diffraction grating 270a according to this modification.
 例えば、図17に示すように、導波路方向及び積層方向と直交する方向の幅が異なる長方形の回折格子要素271~273を導波路方向に並べた形状でもよい。このような形状を有する回折格子270aにおいて、周期aは一定である。また、回折格子270aの導波路方向の長さdは回折格子がある部分(長さd)とない部分(長さ0)とで変化している。これにより、充填率f=d/aを導波路及び積層方向と直交する方向に変化させることができる。 For example, as shown in FIG. 17, rectangular diffraction grating elements 271 to 273 having different widths in the waveguide direction and the direction orthogonal to the stacking direction may be arranged in the waveguide direction. In the diffraction grating 270a having such a shape, the period a is constant. Further, the length d in the waveguide direction of the diffraction grating 270a changes between the portion with the diffraction grating (length d) and the portion without the diffraction grating (length 0). Thereby, the filling factor f = d / a can be changed in the direction orthogonal to the waveguide and the stacking direction.
 (実施の形態4)
 実施の形態4に係る回折格子について説明する。本実施の形態に係る回折格子は、充填率fにおいて、実施の形態2に係る回折格子170と相違する。以下、本実施の形態に係る回折格子について、実施の形態2に係る回折格子170との相違点を中心に説明する。
Embodiment 4
The diffraction grating according to the fourth embodiment will be described. The diffraction grating according to the present embodiment differs from the diffraction grating 170 according to the second embodiment in the filling factor f. Hereinafter, the diffraction grating according to the present embodiment will be described focusing on differences from the diffraction grating 170 according to the second embodiment.
 図4Cで示したように、ある光帰還量を与える充填率fは二つ存在し得る。上記各実施の形態においては、充填率fが0より大きく0.5以下である回折格子を示したが、回折格子の充填率fは、0.5より大きくてもよい。以下、0.5より大きい充填率fを有する回折格子例について図18A及び図18Bを用いて説明する。図18Aは、本実施の形態に係る回折格子370の導波路方向及び積層方向と直交する方向の位置と、回折格子370の充填率fとの関係を示すグラフである。図18Bは、本実施の形態に係る回折格子370の形状を示す上面図である。 As shown in FIG. 4C, there may be two filling factors f which provide a certain amount of optical feedback. In each of the above-described embodiments, the diffraction grating is shown in which the filling factor f is greater than 0 and not more than 0.5, but the filling factor f of the diffraction grating may be greater than 0.5. Hereinafter, an example of a diffraction grating having a filling factor f larger than 0.5 will be described with reference to FIGS. 18A and 18B. FIG. 18A is a graph showing the relationship between the filling direction f of the diffraction grating 370 and the position in the direction orthogonal to the waveguide direction and the stacking direction of the diffraction grating 370 according to the present embodiment. FIG. 18B is a top view showing the shape of the diffraction grating 370 according to the present embodiment.
 図18A及び図18Bに示すように、充填率が0.5以上1.0以下である回折格子370を用いて、上記実施の形態2に係る回折格子170と同様の効果を得ることができる。本実施の形態では、図18A及び図18Bに示すように、本実施の形態に係る回折格子370は、導波路の中央での充填率が小さく、導波路の両側で中央よりも充填率が大きい。また、回折格子370は、導波路の中央から幅2Wの範囲内に形成されており、幅2Wの範囲の外側には、回折格子370が存在しない。本実施の形態においても、上記各実施の形態と同様に、回折格子370の周期aは一定であるが、回折格子370が導波路方向に連続する長さdが導波路方向及び積層方向と直交する方向に変化している。例えば、導波路中央部での回折格子370が導波路方向に連続する長さをd1、導波路端(リッジ端)での回折格子370が導波路方向に連続する長さをd2と定義すると、d1<d2の関係がある。また、それぞれの充填率をf1、f2と定義すると、充填率はf1=d1/a及びf2=d2/aの式で計算できるので、f1<f2の関係が成立する。すなわち、導波路方向の充填率が、導波路方向及び積層方向と直交する方向に変化している。 As shown in FIGS. 18A and 18B, the same effect as that of the diffraction grating 170 according to the second embodiment can be obtained by using the diffraction grating 370 having a filling factor of 0.5 or more and 1.0 or less. In the present embodiment, as shown in FIGS. 18A and 18B, in the diffraction grating 370 according to the present embodiment, the filling factor at the center of the waveguide is small and the filling factor at both sides of the waveguide is larger than the center. . The diffraction grating 370 is formed in the range of 2 W in width from the center of the waveguide, and the diffraction grating 370 does not exist outside the range of 2 W in width. Also in this embodiment, as in each of the above embodiments, the period a of the diffraction grating 370 is constant, but the length d of the diffraction grating 370 continuing in the waveguide direction is orthogonal to the waveguide direction and the stacking direction Change in the direction of For example, if the length at which the diffraction grating 370 at the center of the waveguide continues in the waveguide direction is d1 and the length at which the diffraction grating 370 at the waveguide end (ridge edge) continues in the waveguide direction is d2, There is a relationship of d1 <d2. Further, when the filling rates are defined as f1 and f2, respectively, the filling rates can be calculated by the equations f1 = d1 / a and f2 = d2 / a, and thus the relationship of f1 <f2 holds. That is, the filling factor in the waveguide direction changes in the direction orthogonal to the waveguide direction and the stacking direction.
 以上のように、本実施の形態に係る回折格子370において、充填率fは、導波路の導波路方向及び積層方向と直交する方向における中央において少なくとも一方の端部よりも大きい。これにより、回折格子370の充填率を0.5以上とする場合、回折格子370による導波路方向及び積層方向と直交する方向の中央における光帰還量を、当該直交する方向の端部における光帰還量より大きくすることが可能となる。したがって、当該直交する方向の中央において端部より電界強度が大きい基本横モードの光帰還量を選択的に高められるため、基本横モードの発振を促すことができる。 As described above, in the diffraction grating 370 according to the present embodiment, the filling factor f is larger than at least one end at the center in the direction orthogonal to the waveguide direction and the stacking direction of the waveguide. Thus, when the filling factor of the diffraction grating 370 is 0.5 or more, the optical feedback amount at the center of the waveguide direction by the diffraction grating 370 and the direction orthogonal to the stacking direction is the optical feedback at the end in the orthogonal direction. It is possible to make it larger than the amount. Therefore, the amount of optical feedback of the fundamental transverse mode whose electric field strength is larger than that of the end can be selectively increased at the center of the orthogonal direction, so that oscillation of the fundamental transverse mode can be promoted.
 (実施の形態5)
 実施の形態1~4では、回折格子が導波路方向に連続する長さdを変えることで、光帰還量を変化させる手法を示した。本実施の形態では、回折格子の周期aを変えることで光帰還量を変化させる方法について図19及び図20を用いて説明する。なお、回折格子の形成位置や製造方法は、実施の形態1~4と同様であるため、説明は省略する。
Fifth Embodiment
The first to fourth embodiments show a method of changing the amount of optical feedback by changing the length d of the diffraction grating continuing in the waveguide direction. In this embodiment, a method of changing the amount of optical feedback by changing the period a of the diffraction grating will be described with reference to FIGS. 19 and 20. FIG. The formation position of the diffraction grating and the manufacturing method are the same as in the first to fourth embodiments, and thus the description thereof is omitted.
 図19は、本実施の形態に係る回折格子470の形状を示す上面図である。図19に示すように、本実施の形態においては、幅Wの導波路中に導波路方向における周期が、導波路方向及び積層方向と直交する方向(X軸方向)において変化する回折格子470が形成されている。具体的には、本実施の形態に係る回折格子470においては、導波路中央部の周期がa1であり、導波路端部の周期がa2である。これらの周期の間には、a1<a2の関係がある。さらに、導波路のX軸方向における中央から端部に近付くにしたがって、周期は連続的に変化している。本実施の形態においては、導波路のX軸方向における中央から端部に近付くにしたがって、周期は連続的に増加している。 FIG. 19 is a top view showing the shape of the diffraction grating 470 according to the present embodiment. As shown in FIG. 19, in the present embodiment, the diffraction grating 470 in which the period in the waveguide direction in the waveguide of width W changes in the direction (X-axis direction) orthogonal to the waveguide direction and the stacking direction It is formed. Specifically, in the diffraction grating 470 according to the present embodiment, the period of the waveguide central portion is a1, and the period of the waveguide end is a2. There is a relationship of a1 <a2 between these periods. Furthermore, as the waveguide approaches from the center to the end in the X-axis direction, the period changes continuously. In the present embodiment, the period is continuously increased as the end portion is approached from the center in the X-axis direction of the waveguide.
 図20は、本実施の形態に係る回折格子470の周期に対する光帰還量の関係を示した図である。図20は、周期a1に対応する波長で発振した場合の光帰還量を示している。図20に示すように、光帰還量は、周期a1でピークをもち、周期a1から離れるほど小さくなる。DFB型レーザ素子においては、回折格子470の周期に応じて発振波長が決まるので、発振波長に対応する周期以外の周期では、光帰還量はほとんど得られなくなる。 FIG. 20 is a diagram showing the relationship of the amount of optical feedback to the period of the diffraction grating 470 according to the present embodiment. FIG. 20 shows the amount of optical feedback when oscillating at a wavelength corresponding to the period a1. As shown in FIG. 20, the amount of optical feedback has a peak at period a1 and decreases with distance from period a1. In the DFB laser device, since the oscillation wavelength is determined according to the period of the diffraction grating 470, the amount of optical feedback can hardly be obtained at periods other than the period corresponding to the oscillation wavelength.
 なお、図19では、a1<a2の場合を示したが、a1>a2の場合でも同じ効果が得られる。 Although the case of a1 <a2 is shown in FIG. 19, the same effect can be obtained even in the case of a1> a2.
 充填率に関して、回折格子470の周期がa1である部分の充填率をf1、周期がa2である部分の充填率をf2と定義すると、f1=d/a1及びf2=d/a2の式で充填率を計算できる。ここで、周期a1及びa2の大小関係から、f1>f2の関係がある。なお、図19に示すように、本実施の形態においては、回折格子470が導波路方向に連続する長さdは一定である。 Regarding the filling factor, if the filling factor of the part where the period of the diffraction grating 470 is a1 is f1 and the filling factor of the part where the period is a2 is f2, the filling is performed according to the formula f1 = d / a1 and f2 = d / a2. You can calculate the rate. Here, from the magnitude relationship between the cycles a1 and a2, there is a relationship of f1> f2. As shown in FIG. 19, in the present embodiment, the length d of the diffraction grating 470 continuing in the waveguide direction is constant.
 以上のように、本実施の形態に係る回折格子470において、回折格子470の周期は、導波路方向及び積層方向と直交する方向の位置によって変化している。このような構成により、例えば、導波路方向において回折格子470が連続する長さを一定とすることで、導波路方向及び積層方向に直交する方向における位置によって充填率fが変化する回折格子を有する半導体レーザ素子を実現できる。 As described above, in the diffraction grating 470 according to the present embodiment, the period of the diffraction grating 470 changes depending on the position in the waveguide direction and the direction orthogonal to the stacking direction. With such a configuration, for example, by making the continuous length of the diffraction grating 470 constant in the waveguide direction, it has the diffraction grating in which the filling factor f changes depending on the position in the direction orthogonal to the waveguide direction and the stacking direction. A semiconductor laser device can be realized.
 (変形例など)
 以上、本開示に係る半導体発光素子について、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
(Modification etc.)
As mentioned above, although the semiconductor light-emitting device concerning this indication was explained based on each embodiment, this indication is not limited to each above-mentioned embodiment.
 例えば、上記各実施の形態では、半導体レーザ素子として、窒化物半導体レーザ素子の例を示したが、本開示に係る半導体レーザ素子を形成する材料は窒化物に限定されない。例えば、本開示に係る半導体レーザ素子は、GaAs系の材料で形成されてもよい。 For example, although the example of the nitride semiconductor laser element was shown as a semiconductor laser element in each said embodiment, the material which forms the semiconductor laser element which concerns on this indication is not limited to a nitride. For example, the semiconductor laser device according to the present disclosure may be formed of a GaAs-based material.
 また、各実施の形態では、1次の回折格子について示したが、高次の回折格子を用いることもできる。このような高次の回折格子例について図21を用いて説明する。図21は、5次の回折格子を用いた場合の、充填率fと光帰還量との関係の計算結果を示す図である。例えば、5次の回折格子を実施の形態1と同様の条件において用いる場合、周期aは400nmとなる。この場合、ある光帰還量を与える充填率fは、10個存在し得る。 In each embodiment, although the first-order diffraction grating is shown, a high-order diffraction grating can also be used. An example of such a high order diffraction grating will be described with reference to FIG. FIG. 21 is a diagram showing the calculation results of the relationship between the filling factor f and the amount of optical feedback when the fifth order diffraction grating is used. For example, when the fifth order diffraction grating is used under the same conditions as in Embodiment 1, the period a is 400 nm. In this case, there may be ten filling factors f giving a certain amount of optical feedback.
 また、本開示では、高ビーム品質を得る目的で、基本横モードのみで発振させる場合を示したが、本開示を応用すれば、所望の高次モードのみを選択的に発振させることも可能である。例えば、図3に示したように、所望のモードの電界強度を計算し、図4Cに示した充填率と光帰還量の関係を用いて、図5のグラフ(b)に示したように充填率を決定する。この例では、光強度が最も強い部分の回折格子の充填率を0.5とし、最も低い部分の充填率を0としている。このように、所望の高次モードの電界強度分布を反映した充填率分布であれば、所望の高次モードのみを発振させることもできる。 Further, in the present disclosure, a case where oscillation is performed only in the fundamental transverse mode for the purpose of obtaining high beam quality is shown, but it is possible to selectively oscillate only a desired higher order mode by applying the present disclosure. is there. For example, as shown in FIG. 3, the electric field strength of the desired mode is calculated, and using the relationship between the filling factor and the amount of optical feedback shown in FIG. 4C, the filling is performed as shown in graph (b) of FIG. Determine the rate. In this example, the filling factor of the diffraction grating in the part with the highest light intensity is 0.5, and the filling factor in the lowest part is 0. As described above, only the desired high-order mode can be oscillated as long as the filling factor distribution reflects the electric field strength distribution of the desired high-order mode.
 また、上記各実施の形態においては、導波路構造として、第2半導体層40にリッジ状のリッジ部40aが形成されたが、導波路構造は、積層方向及びレーザ発振方向に垂直な方向に光を閉じ込める構造であれば特に限定されない。例えば、第2半導体層40に、第2半導体層40より屈折率が低い層が埋め込まれてもよい。 In each of the above-described embodiments, the ridge portion 40a is formed in the second semiconductor layer 40 as the waveguide structure. However, in the waveguide structure, light is emitted in the stacking direction and the direction perpendicular to the laser oscillation direction. There is no particular limitation as long as it has a structure for containing For example, a layer having a refractive index lower than that of the second semiconductor layer 40 may be embedded in the second semiconductor layer 40.
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in the above-described embodiments within the scope obtained by applying various modifications that those skilled in the art would think to the above-described embodiments, or within the scope of the present disclosure. The forms to be included are also included in the present disclosure.
 本開示に係る半導体レーザ素子は、画像表示装置、照明又は産業機器などの光源として利用することができ、特に、比較的に高い光出力を必要とする機器の光源として有用である。 The semiconductor laser device according to the present disclosure can be used as a light source of an image display device, illumination, industrial equipment, etc., and is particularly useful as a light source of equipment requiring a relatively high light output.
 1、101、201 半導体レーザ素子
 10 基板
 20 第1半導体層
 20a 凹部
 30 発光層
 31 n側光ガイド層
 32 活性層
 33 p側光ガイド層
 40 第2半導体層
 40a リッジ部
 40b 平坦部
 41 電子障壁層
 42 p側クラッド層
 43 p側コンタクト層
 50 電極部材
 51 p側電極
 52 パッド電極
 60 誘電体層
 70、70a、170、270、270a、370,470、932 回折格子
 80 n側電極
 90、190 積層構造体
 90a、190a、931 導波路
 91 第1保護膜
 91a 開口
 92 第2保護膜
 93 回折格子用膜
 95f、95r 共振器端面
 271、272、273 回折格子要素
 913 ガイド層
DESCRIPTION OF SYMBOLS 1, 101, 201 Semiconductor laser element 10 Substrate 20 1st semiconductor layer 20a recessed part 30 light emitting layer 31 n side optical guide layer 32 active layer 33 p side optical guide layer 40 2nd semiconductor layer 40a ridge part 40b flat part 41 electron barrier layer 42 p-side cladding layer 43 p-side contact layer 50 electrode member 51 p-side electrode 52 pad electrode 60 dielectric layer 70, 70a, 170, 270, 270a, 370, 470, 932 diffraction grating 80 n- side electrode 90, 190 laminated structure Body 90a, 190a, 931 Waveguide 91 First protective film 91a Opening 92 Second protective film 93 Diffraction grating film 95f, 95r Resonator end face 271, 272, 273 Diffraction grating element 913 Guide layer

Claims (8)

  1.  第1導電型の第1半導体層と、
     前記第1半導体層の上方に配置された活性層と、
     前記活性層の上方に配置された第2導電型の第2半導体層と、を備え、
     前記第1半導体層、前記活性層及び前記第2半導体層を含む積層構造体は、対向する一対の共振器端面と、前記一対の共振器端面の間に配置され、回折格子が形成された導波路と、を有し、
     前記一対の共振器端面と直交する方向を導波路方向とすると、
     前記導波路方向における前記回折格子の充填率は、前記導波路方向及び前記積層構造体の積層方向と直交する方向の位置によって変化している
     半導体レーザ素子。
    A first semiconductor layer of a first conductivity type,
    An active layer disposed above the first semiconductor layer;
    And a second semiconductor layer of a second conductivity type disposed above the active layer.
    A stacked structure including the first semiconductor layer, the active layer, and the second semiconductor layer is disposed between a pair of opposed resonator end faces and the pair of resonator end faces, and a diffraction grating is formed. And a waveguide,
    Assuming that the direction orthogonal to the pair of resonator end faces is the waveguide direction,
    A filling factor of the diffraction grating in the waveguide direction is changed depending on a position in a direction orthogonal to the waveguide direction and a stacking direction of the multilayer structure.
  2.  前記回折格子は、前記導波路方向において周期的に断続する構造を有し、
     前記導波路方向において前記回折格子が連続する長さは、前記導波路方向及び前記積層方向と直交する方向の位置によって変化している
     請求項1記載の半導体レーザ素子。
    The diffraction grating has a structure periodically interrupted in the waveguide direction,
    The semiconductor laser device according to claim 1, wherein a length in which the diffraction grating is continuous in the waveguide direction varies depending on positions in the waveguide direction and a direction orthogonal to the stacking direction.
  3.  前記回折格子の周期は、前記導波路方向及び前記積層方向と直交する方向の位置によって変化している
     請求項1記載の半導体レーザ素子。
    The semiconductor laser device according to claim 1, wherein a period of the diffraction grating is changed depending on a position in a direction orthogonal to the waveguide direction and the stacking direction.
  4.  前記充填率は、前記導波路の前記導波路方向及び前記積層方向と直交する方向における中央において少なくとも一方の端部よりも大きい
     請求項1~3の何れか1項に記載の半導体レーザ素子。
    The semiconductor laser device according to any one of claims 1 to 3, wherein the filling factor is larger than at least one end at a center in a direction orthogonal to the waveguide direction and the stacking direction of the waveguide.
  5.  前記充填率は、前記導波路の前記導波路方向及び前記積層方向と直交する方向における中央において少なくとも一方の端部よりも小さい
     請求項1~3の何れか1項に記載の半導体レーザ素子。
    The semiconductor laser device according to any one of claims 1 to 3, wherein the filling factor is smaller than at least one end at a center in a direction orthogonal to the waveguide direction and the stacking direction of the waveguide.
  6.  前記第2半導体層は、前記導波路方向に長手方向を持つリッジ部を備え、
     前記充填率は、前記導波路方向及び前記積層方向と直交する方向において、前記リッジ部の下方領域では線形に変化し、前記リッジ部の下方領域よりも外側では指数関数的に変化する
     請求項1~5の何れか1項に記載の半導体レーザ素子。
    The second semiconductor layer includes a ridge portion having a longitudinal direction in the waveguide direction,
    The filling factor linearly changes in the lower region of the ridge portion and varies exponentially outside the lower region of the ridge portion in the direction orthogonal to the waveguide direction and the stacking direction. The semiconductor laser device according to any one of to 5.
  7.  前記第1半導体層は、クラッド層であり、
     前記回折格子は、前記第1半導体層の中に配置されている
     請求項1~6の何れか1項に記載の半導体レーザ素子。
    The first semiconductor layer is a cladding layer,
    The semiconductor laser device according to any one of claims 1 to 6, wherein the diffraction grating is disposed in the first semiconductor layer.
  8.  前記第1半導体層と前記活性層との間に配置されたガイド層を備え、
     前記回折格子は、前記ガイド層の中に配置されている
     請求項1~6の何れか1項に記載の半導体レーザ素子。
    A guide layer disposed between the first semiconductor layer and the active layer;
    The semiconductor laser device according to any one of claims 1 to 6, wherein the diffraction grating is disposed in the guide layer.
PCT/JP2018/046739 2018-01-29 2018-12-19 Semiconductor laser element WO2019146321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567919A JPWO2019146321A1 (en) 2018-01-29 2018-12-19 Semiconductor laser element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013095 2018-01-29
JP2018-013095 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019146321A1 true WO2019146321A1 (en) 2019-08-01

Family

ID=67394645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046739 WO2019146321A1 (en) 2018-01-29 2018-12-19 Semiconductor laser element

Country Status (2)

Country Link
JP (1) JPWO2019146321A1 (en)
WO (1) WO2019146321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437781B2 (en) 2020-02-27 2022-09-06 Qualcomm Incorporated Distributed feedback (DFB) laser on silicon and integrated device comprising a DFB laser on silicon
DE112022003309T5 (en) 2021-06-29 2024-04-11 Nichia Corporation Semiconductor laser element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196089A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Semiconductor laser element
JPH11220220A (en) * 1995-12-28 1999-08-10 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacture thereof
WO1999066614A1 (en) * 1998-06-18 1999-12-23 University College Cork A semi-conductor device and a method for varying current density in an active region of a junction of the semi-conductor device
JP2006202935A (en) * 2005-01-20 2006-08-03 Nec Corp Semiconductor laser and its manufacturing method
JP2007184511A (en) * 2005-12-09 2007-07-19 Fujitsu Ltd Optical element which couples light propagating in optical waveguide with diffraction grating
JP2008028375A (en) * 2006-06-20 2008-02-07 Nichia Chem Ind Ltd Nitride semiconductor laser device
JP2015138905A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Distribution feedback type semiconductor laser element and manufacturing method of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196089A (en) * 1982-05-12 1983-11-15 Hitachi Ltd Semiconductor laser element
JPH11220220A (en) * 1995-12-28 1999-08-10 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacture thereof
WO1999066614A1 (en) * 1998-06-18 1999-12-23 University College Cork A semi-conductor device and a method for varying current density in an active region of a junction of the semi-conductor device
JP2006202935A (en) * 2005-01-20 2006-08-03 Nec Corp Semiconductor laser and its manufacturing method
JP2007184511A (en) * 2005-12-09 2007-07-19 Fujitsu Ltd Optical element which couples light propagating in optical waveguide with diffraction grating
JP2008028375A (en) * 2006-06-20 2008-02-07 Nichia Chem Ind Ltd Nitride semiconductor laser device
JP2015138905A (en) * 2014-01-23 2015-07-30 三菱電機株式会社 Distribution feedback type semiconductor laser element and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437781B2 (en) 2020-02-27 2022-09-06 Qualcomm Incorporated Distributed feedback (DFB) laser on silicon and integrated device comprising a DFB laser on silicon
DE112022003309T5 (en) 2021-06-29 2024-04-11 Nichia Corporation Semiconductor laser element

Also Published As

Publication number Publication date
JPWO2019146321A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP5627871B2 (en) Semiconductor device and manufacturing method thereof
JP2003017791A (en) Nitride semiconductor device and its manufacturing method
US20070200177A1 (en) Semiconductor laser device and semiconductor laser device manufacturing method
JP5247444B2 (en) Semiconductor laser device
WO2019146321A1 (en) Semiconductor laser element
JP7306905B2 (en) semiconductor laser element
JP2013077756A (en) Semiconductor laser element
JP4780999B2 (en) Manufacturing method of semiconductor laser device
JP2013074002A (en) Light-emitting element and manufacturing method of the same
JP2015226045A (en) Semiconductor device and method of manufacturing the same
US9859683B2 (en) Distributed feedback semiconductor laser element
JP6220614B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5381692B2 (en) Semiconductor light emitting device
JP7065330B2 (en) Semiconductor laser device
WO2019058780A1 (en) Semiconductor laser element
JP5217767B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JP2018037495A (en) Nitride semiconductor laser element
JP2010118454A (en) Semiconductor laser
WO2019130655A1 (en) Nitride semiconductor laser element
JP7387604B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5204690B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof
WO2022070544A1 (en) Semiconductor laser element
WO2023058405A1 (en) Surface-emitting laser element
JP5887858B2 (en) Optical semiconductor device and manufacturing method thereof
JP2022081994A (en) Semiconductor laser element and epitaxial substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902043

Country of ref document: EP

Kind code of ref document: A1