WO2019146123A1 - Alertness estimation device, alertness estimation method, and computer readable recording medium - Google Patents

Alertness estimation device, alertness estimation method, and computer readable recording medium Download PDF

Info

Publication number
WO2019146123A1
WO2019146123A1 PCT/JP2018/002804 JP2018002804W WO2019146123A1 WO 2019146123 A1 WO2019146123 A1 WO 2019146123A1 JP 2018002804 W JP2018002804 W JP 2018002804W WO 2019146123 A1 WO2019146123 A1 WO 2019146123A1
Authority
WO
WIPO (PCT)
Prior art keywords
series data
time
awakening
frame rate
information indicating
Prior art date
Application number
PCT/JP2018/002804
Other languages
French (fr)
Japanese (ja)
Inventor
剛範 辻川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2018/002804 priority Critical patent/WO2019146123A1/en
Priority to JP2019567823A priority patent/JP6879388B2/en
Publication of WO2019146123A1 publication Critical patent/WO2019146123A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state

Definitions

  • the present invention relates to an arousal level estimation apparatus and a degree of arousal level estimation method for estimating an arousal level representing an arousal state of a person, and further relates to a computer readable recording medium storing a program for realizing the same. .
  • the latest arousal state of a person is detected, and depending on the detected arousal state, temperature, humidity, illuminance in the office, etc. Control of the environment can be mentioned. In particular, in this method, it is important to detect the arousal state of a person with high accuracy.
  • Patent Document 1 discloses an apparatus for estimating the arousal level of a person from the degree of opening of the eye.
  • the apparatus disclosed in Patent Document 1 obtains the eye opening time of the driver's eyes from the camera image sent at the set frame rate, obtains the variation from the obtained eye opening time, and obtains the variation from the obtained variation. Estimate the alertness of
  • Non-Patent Document 1 discloses an apparatus for estimating the arousal level (stress) of a person from a face image.
  • the device disclosed in Non-Patent Document 1 calculates low frequency HRV (Heart Rate Variability) components of human face and respiration rate from camera images sent at a set frame rate, and statistics the calculated values. Input into a model to estimate the arousal level of a person.
  • HRV Heart Rate Variability
  • One example of the object of the present invention is an arousal level estimation device, an arousal level estimation method, and a computer readable recording medium capable of accurately estimating the arousal level of a person while solving the above problems and reducing the processing load. It is to provide.
  • the awakening level estimation apparatus is an apparatus for estimating a user's awakening level
  • An image data acquisition unit for acquiring image data including a face image of the user at a set frame rate;
  • a time-series data extraction unit that extracts time-series data indicating biological information of the user from the image data acquired at the set frame rate;
  • a data processing unit that interpolates the time-series data such that the sampling number of the extracted time-series data becomes a set value;
  • An awakening level estimation unit that inputs the time-series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening level of the user; It is characterized by having. It is characterized by
  • the awakening degree estimation method is a method for estimating the awakening degree of a user, (A) acquiring image data including a face image of the user at a set frame rate; (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate; (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value; (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user; It is characterized by having.
  • a computer readable recording medium is a computer readable recording medium storing a program for estimating a user's alertness by a computer.
  • On the computer (A) acquiring image data including a face image of the user at a set frame rate; (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate; (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value; (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user; And recording a program including an instruction to execute the program.
  • FIG. 1 is a block diagram showing a configuration of an arousal level estimation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing an example of interpolation of time-series data performed in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a convolutional neural network used in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the alertness level estimation apparatus 10 according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the awakening level estimation apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a flow chart showing the operation of the awakening level estimation device 30 according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of a computer for realizing the arousal level estimation device in the first and second embodiments of the present invention.
  • Embodiment 1 The waking degree estimation device, the waking degree estimation method, and the program according to the first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
  • FIG. 1 is a block diagram showing a configuration of an arousal level estimation apparatus according to Embodiment 1 of the present invention.
  • the awakening level estimation device 10 is a device for estimating the awakening degree of the user. As shown in FIG. 1, the awakening level estimation device 10 includes an image data acquisition unit 11, a time series data extraction unit 12, a data processing unit 13, and an awakening level estimation unit 14.
  • the image data acquisition unit 11 acquires image data including a face image of the user at a set frame rate. Further, the time-series data extraction unit 12 extracts time-series data indicating biometric information of the user from the image data acquired at the set frame rate.
  • the data processing unit 13 interpolates time series data so that the sampling number of the extracted time series data becomes a set value.
  • the awakening level estimation unit 14 inputs time series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening degree of the user.
  • the frame rate of image data can be suppressed to a low level in advance. Therefore, according to the first embodiment, it is possible to accurately estimate the awakening level of a person while reducing the processing load on the device.
  • the awakening level estimation device 10 is connected to an external imaging device 20.
  • the imaging device 20 is a digital camera and outputs image data at a set frame rate.
  • the imaging device 20 is disposed so as to be able to capture a face image of the user.
  • the image data acquisition unit 11 acquires image data output from the imaging device 20.
  • time-series data extraction unit 12 extracts the above-mentioned information from the image data for each frame to generate time-series data.
  • the time-series data extraction unit 12 detects, for example, both eyes of the user from the image data, obtains the open / close degree from the detected size of both eyes, and time-series information indicating the open / close degree of the eye Generate data. Further, the time-series data extraction unit 12 detects the center position of the user's eyes from the image data, calculates the direction of the line of sight from each detected center position, and time-series data of information indicating the calculated direction of the line of sight Generate
  • the time-series data extraction unit 12 detects the center line and contour of the user's face from the image data, calculates the direction of the user's face from the positional relationship between the detected center line and contour, and calculates Generate time series data of information indicating the direction. Further, the time-series data extraction unit 12 detects the mouth of the user from the image data, obtains the degree of opening and closing from the size of the detected mouth, and generates time-series data of information indicating the degree of opening and closing of the mouth.
  • the time-series data extraction unit 12 calculates the pulse wave or blood flow of the user using the property that hemoglobin in blood absorbs the green component of light (see, for example, the following reference). Specifically, the time-series data extraction unit 12 identifies the region of the user's skin from the image data, and calculates the luminance value of each of the R, G, and B channels in the identified region. Then, the time-series data extraction unit 12 calculates the pulse wave or blood flow of the user using the fact that the green light is absorbed when the blood flow increases and the luminance value of G decreases, and the pulse wave or blood is calculated. Generate time series data of information indicating a flow.
  • the data processing unit 13 interpolates time-series data by performing up-sampling on the time-series data.
  • FIG. 2 is a diagram showing an example of interpolation of time-series data performed in the first embodiment of the present invention.
  • the frame rate of time-series data originally obtained is R
  • the frame rate of actual time-series data is (R / 2).
  • "(circle)" in the figure has shown time-sequential data.
  • the data processing unit 13 sets two consecutive time series data so that the number of samplings becomes a set value, that is, the frame rate changes from (R / 2) to R. Add new time series data in between.
  • time-series data is performed by, for example, linear interpolation or spline interpolation.
  • a neural network may be constructed using data of a frame rate of R / 2 and data of a frame rate of R as learning data, and interpolation may be performed by this neural network. Thereafter, as shown in FIG. 2, the up-sampled time-series data is input to the convolutional neural network by the awakening level estimation unit 14.
  • the data processing unit 13 can also perform various types of signal processing, such as noise removal processing, interpolation processing of missing data, removal processing of outliers, and the like. By such processing, improvement in estimation accuracy of the awakening degree by the awakening degree estimation unit 14 can be expected.
  • the learning model when the biological information indicated by the time series data is two or more pieces of information, the learning model has a layer for performing convolution for each biological information.
  • the estimation process by the awakening level estimation unit 14 in the first embodiment will be specifically described with reference to FIG.
  • FIG. 3 is a diagram showing an example of a convolutional neural network used in the first embodiment of the present invention.
  • the time-series data shows three pieces of information such as information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, and information indicating the direction of the face, and convolution is performed for each information.
  • time series data is normalized to a value such as 0 to 1 or -1 to +1 for each time series.
  • the size of time-series data indicating the degree of eye open / close is set to (D EC , W T ).
  • the awakening level estimation unit 14 inputs time-series data of size (D EC , W T ) to the convolution layer, convolutes the weight filter for each window whose size is smaller than (D EC , W T ), and applies bias. In addition, the output is obtained through the activation function. Next, the awakening level estimation unit 14 shifts the position of the window and performs the same operation using different weight filters and biases to obtain an output of size (D EC — C 1 , W EC — C 1 ).
  • the activation function may, for example, be a ReLU (Rectified Linear Unit).
  • the awakening level estimation unit 14 in pooling layer, the size (D EC_C1, W EC_C1) for the input data, size (D EC_C1, W EC_C1) for each smaller windows, the pooling process in pooling layer Do. For example, in the case of commonly used max pooling, processing is performed so that the maximum value in the window remains.
  • the awakening level estimation unit 14 shifts the window position and performs the same pooling process to obtain an output of the size ( DEC_P1 , WEC_P1 ).
  • the arousal level estimating unit 14 similarly in the next convolution layer, the size (D EC_P1, W EC_P1) for the input data, size (D EC_P1, W EC_P1) for each smaller windows, the filter It performs convolution, addition of bias, and input to the activation function. Also in this case, the awakening level estimation unit 14 shifts the position of the window and performs the same process to obtain the output of the size ( DEC_C2 , WEC_C2 ).
  • the awakening level estimation unit 14 similarly in the following pooling layer, the size (D EC_C2, W EC_C2) for the input data, size (D EC_C2, W EC_C2) for each smaller windows, the pooling process Do.
  • the awakening level estimation unit 14 shifts the position of the window and performs the same pooling process to obtain, for example, an output of a size ( DEC_P2 , 1).
  • the awakening level estimation unit 14 performs the same processing on each of time series data indicating the direction of the line of sight and time series data indicating the direction of the face. Obtain the output of EG_P2,1 ) and the output of size ( DHP_P2,1 ).
  • the awakening level estimation unit 14 concatenates and flattens the output of each time-series data as the “connection and flattening” process (see FIG. 3). Thereby, the awakening level estimation unit 14 obtains an output of size (1, DEC_P2 + DEG_P2 + DHP_P2 ).
  • the awakening level estimation unit 14 applies a bias to the weight filter and applies an activation function to all input data of the size (1, DEC_P2 + DEG_P2 + DHP_P2 ) in all the connection layers. , Get the alertness estimate as output.
  • the learning model uses a convolutional neural network, but the weight filter and the bias in the convolutional layer use the sample data to which the correct label of the awakening degree is attached in advance. It is learned by doing deep learning. Further, learning can be performed by using an error back propagation method or the like so that the difference between the correctness label of the awakening degree and the estimated value of the awakening degree decreases.
  • the learning model includes a plurality of time series data with different frame rates (for example, time series data with frame rates of R, R / 2, R / 3, R / 6, and R / 10). ) May be constructed by inputting data obtained by performing interpolation so that the number of samples becomes a set value, as learning data into a convolutional neural network. In this case, more accurate modeling is possible.
  • the configuration of the convolutional neural network is not particularly limited.
  • the learning model may have, for example, a configuration in which the second pooling layer is removed and, instead, the entire combined layer is added further after the connection and planarization.
  • Various modifications may be added to the learning model.
  • FIG. 4 is a flowchart showing the operation of the alertness level estimation apparatus 10 according to the first embodiment of the present invention.
  • FIGS. 1 to 3 will be referred to as appropriate.
  • the awakening level estimation method is implemented by operating the awakening level estimation apparatus 10. Therefore, the description of the awakening degree estimation method in the first embodiment is replaced with the following operation description of the awakening degree estimation apparatus 10.
  • the image data acquisition unit 11 acquires the output image data, and holds the acquired image data (step S1).
  • the image data acquisition unit 11 determines whether the number of stored image data has reached a predetermined value (step S2). As a result of the determination in step S2, when the number of image data has not reached the predetermined value, the image data acquisition unit 11 executes step S1 again. On the other hand, when the number of pieces of image data has reached the predetermined value as a result of the determination in step S2, the image data acquisition unit 11 passes the held image data to the time series data extraction unit 12.
  • the time-series data extraction unit 12 extracts time-series data indicating biological information of the user from the image data acquired in step S1 (step S3).
  • the time-series data extraction unit 12 can also extract time-series data for each user in step S3.
  • the data processing unit 13 interpolates time series data such that the sampling number of time series data extracted in step S3 becomes a set value (step S4).
  • the awakening level estimation unit 14 inputs the time-series data after interpolation in step S4 to the learning model constructed using the convolutional neural network, and estimates the awakening degree of the user (step S5). .
  • the awakening level estimation unit 14 For each information, convolution is performed to estimate the arousal level. Further, after step S5 is executed, steps S1 to S5 are executed again, and estimation of the awakening degree of the user is constantly performed.
  • the awakening degree estimation device 10 inputs the estimated awakening degree to the control system of the air conditioner, the operation system of the vehicle, and the like. Thereby, each system can perform optimization control based on the awakening degree of the user.
  • the frame rate of image data can be suppressed in advance. Therefore, the processing of the time-series data extraction unit 12 from the image data having a large load can be reduced, and as a result, the awakening degree of a person can be accurately estimated while reducing the processing load on the entire device. Further, in the first embodiment, the estimation accuracy of the arousal level can be further improved by modeling the convolutional neural network using data interpolated with respect to input time-series data of a plurality of frame rates. . Further, in the first embodiment, since plural pieces of biological information can be used as time series data, the accuracy of the alertness can be further improved.
  • the program in the first embodiment may be a program that causes a computer to execute steps S1 to S5 shown in FIG.
  • the processor of the computer functions as the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, and the awakening level estimation unit 14 to perform processing.
  • each computer may function as any of the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, and the awakening level estimation unit 14.
  • FIG. 5 is a block diagram showing the configuration of the awakening level estimation apparatus according to the second embodiment of the present invention.
  • the awakening level estimation apparatus 30 includes a frame rate adjustment unit 31 in addition to the same configuration as the awakening level estimation apparatus 10 according to the first embodiment shown in FIG. ing.
  • a frame rate adjustment unit 31 in addition to the same configuration as the awakening level estimation apparatus 10 according to the first embodiment shown in FIG. ing.
  • the frame rate adjustment unit 31 adjusts the frame rate according to the awakening degree estimated by the awakening degree estimation unit 14. Further, after adjusting the frame rate, the frame rate adjusting unit 31 instructs the imaging device 20 that outputs the image data to the adjusted frame rate. Also, the frame rate adjustment unit 31 may instruct the image data acquisition unit 11 and the time-series data extraction unit 12 instead of the imaging device 20 to indicate the adjusted frame rate. Further, the frame rate adjustment unit 31 can also adjust the frame rate according to the biological information indicated by the extracted time-series data.
  • the frame rate adjustment unit 31 sets the frame rate low, and reduces the processing load in the awakening degree estimation apparatus 30.
  • the frame rate adjustment unit 31 sets the frame rate high, and improves the estimation accuracy of the awakening degree, when the awakening degree changes significantly (when the change range exceeds the predetermined range).
  • FIG. 6 is a flow chart showing the operation of the awakening level estimation device 30 according to the second embodiment of the present invention.
  • FIG. 5 is referred to as appropriate.
  • the awakening level estimation method is implemented by operating the awakening level estimation device 30. Therefore, the description of the awakening level estimation method in the second embodiment is replaced with the following operation description of the awakening level estimation apparatus 30.
  • the image data acquisition unit 11 acquires the output image data, and holds the acquired image data (step S11).
  • the image data acquisition unit 11 determines whether the number of stored image data has reached a predetermined value (step S12). If the number of image data does not reach the predetermined value as a result of the determination in step S12, the image data acquisition unit 11 executes step S11 again. On the other hand, as a result of the determination in step Ss2, when the number of image data has reached the predetermined value, the image data acquisition unit 11 passes the held image data to the time-series data extraction unit 12.
  • the time-series data extraction unit 12 extracts time-series data indicating biological information of the user from the image data acquired in step S11 (step S13).
  • the time-series data extraction unit 12 can also extract time-series data for each user in step S13.
  • the data processing unit 13 interpolates time series data such that the sampling number of time series data extracted in step S13 becomes a set value (step S14).
  • the awakening level estimation unit 14 inputs time-series data after interpolation in step S14 to a learning model constructed using a convolutional neural network, and estimates the awakening degree of the user (step S15). .
  • Steps S11 to S15 are similar to steps S1 to S5 shown in FIG.
  • step S15 the frame rate adjustment unit 31 adjusts the frame rate according to the awakening degree estimated in step S15 (step S16). Subsequently, the frame rate adjustment unit 31 instructs the imaging device 20 on the frame rate adjusted in step S16 (step S17).
  • step S17 After execution of step S17, the imaging device 20 outputs image data at the instructed frame rate. Also, after step S17 is performed, steps S11 to S17 are performed again, and at that time, time-series data is generated at the instructed frame rate, and the arousal level is newly estimated. Further, also in the second embodiment, estimation of the awakening degree of the user is always performed by performing steps S11 to S15 again.
  • the awakening level estimation device 30 inputs the estimated awakening level to the control system of the air conditioner, the operation system of the vehicle, and the like. Thereby, each system can perform optimization control based on the awakening degree of the user.
  • the frame rate of image data can be adjusted.
  • an appropriate frame rate can be set in accordance with the required accuracy of the awakening degree. Also in the second embodiment, the same effect as that of the first embodiment can be obtained.
  • the program in the second embodiment may be a program that causes a computer to execute steps S11 to S17 shown in FIG.
  • the processor of the computer functions as the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, the alertness estimation unit 14, and the frame rate adjustment unit 31, and performs processing.
  • the program in the second embodiment may be executed by a computer system constructed by a plurality of computers.
  • each computer functions as any of the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, the awakening degree estimation unit 14, and the frame rate adjustment unit 31. good.
  • FIG. 7 is a block diagram showing an example of a computer for realizing the arousal level estimation device in the first and second embodiments of the present invention.
  • the computer 110 includes a central processing unit (CPU) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. And these units are communicably connected to each other via a bus 121.
  • the computer 110 may include a graphics processing unit (GPU) or a field-programmable gate array (FPGA) in addition to or instead of the CPU 111.
  • GPU graphics processing unit
  • FPGA field-programmable gate array
  • the CPU 111 develops the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executes various operations by executing these in a predetermined order.
  • the main memory 112 is typically a volatile storage device such as a dynamic random access memory (DRAM).
  • DRAM dynamic random access memory
  • the program in the present embodiment is provided in the state of being stored in computer readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via communication interface 117.
  • the storage device 113 besides a hard disk drive, a semiconductor storage device such as a flash memory may be mentioned.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and executes reading of a program from the recording medium 120 and writing of the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disk (Flexible Disk), or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) may be mentioned.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic recording media such as flexible disk (Flexible Disk)
  • CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) may be mentioned.
  • the awakening level estimation apparatus can also be realized by using hardware corresponding to each unit, not a computer on which a program is installed. Furthermore, the awakening level estimation device may be partially realized by a program, and the remaining portion may be realized by hardware.
  • An apparatus for estimating the awakening degree of a user An image data acquisition unit for acquiring image data including a face image of the user at a set frame rate; A time-series data extraction unit that extracts time-series data indicating biological information of the user from the image data acquired at the set frame rate; A data processing unit that interpolates the time-series data such that the sampling number of the extracted time-series data becomes a set value; An awakening level estimation unit that inputs the time-series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening level of the user;
  • the awakening degree estimation device characterized by having.
  • the awakening degree estimation apparatus according to supplementary note 1, wherein The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being An awakening level estimation device characterized in that.
  • the awakening degree estimation device according to the supplementary note 1 or 2, wherein
  • the biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing, An awakening level estimation device characterized in that.
  • the awakening degree estimation apparatus It is the awakening degree estimation apparatus according to appendix 3.
  • the learning model has a layer for performing convolution for each of the biological information.
  • An awakening level estimation device characterized in that.
  • the awakening degree estimation device according to any one of the supplementary notes 1 to 4,
  • the apparatus further comprises a frame rate adjustment unit that adjusts the frame rate according to the estimated awakening degree.
  • An awakening level estimation device characterized in that.
  • the awakening degree estimation apparatus according to supplementary note 5, wherein The frame rate adjustment unit further adjusts the frame rate in accordance with biological information indicated by the extracted time series data.
  • An awakening level estimation device characterized in that.
  • a method for estimating a user's alertness comprising (A) acquiring image data including a face image of the user at a set frame rate; (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate; (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value; (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
  • a method of estimating arousal level characterized by having:
  • the learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being A method for estimating arousal level characterized by
  • the alertness estimation method is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing, A method for estimating arousal level characterized by
  • the learning model has a layer for performing convolution for each of the biological information.
  • a method for estimating arousal level characterized by
  • step (e) It is an awakening degree estimation method given in appendix 11. Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data.
  • a method for estimating arousal level characterized by
  • a computer readable recording medium storing a program for estimating a user's alertness by a computer, comprising: On the computer (A) acquiring image data including a face image of the user at a set frame rate; (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate; (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value; (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user; A computer readable storage medium storing a program, comprising: instructions for executing the program.
  • a computer readable recording medium comprising The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being A computer readable recording medium characterized in that.
  • the biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing, A computer readable recording medium characterized in that.
  • the computer-readable recording medium according to appendix 15.
  • the learning model has a layer for performing convolution for each of the biological information.
  • a computer readable recording medium characterized in that.
  • (Appendix 18) 24 The computer-readable recording medium according to appendix 17. Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data. A computer readable recording medium characterized in that.
  • the present invention it is possible to accurately estimate the arousal level of a person while reducing the processing load.
  • the present invention is useful for various systems where estimation of the awakening level of a person is required, for example, an air conditioning system, an operation system of a vehicle such as a car, and the like.
  • Awakening Level Estimating Device (First Embodiment) 11 image data acquisition unit 12 time series data extraction unit 13 data processing unit 14 awakening degree estimation unit 20 imaging device 30 awakening degree estimation device (second embodiment) 31 Frame rate adjustment unit 110 Computer 111 CPU 112 main memory 113 storage device 114 input interface 115 display controller 116 data reader / writer 117 communication interface 118 input device 119 display device 120 recording medium 121 bus

Abstract

An alertness estimation device 10 is a device for estimating a user's alertness and includes: an image data acquisition unit 11 which acquires image data that includes the user's facial image at a set frame rate; a time-series data extraction unit 12 which extracts time-series data that indicates the user's bioinformation from the image data acquired at the set frame rate; a data processing unit 13 which interpolates the time-series data such that the number of samples of the time-series data is at a set value; and an alertness estimation unit 14 which inputs the interpolated time-series data into a learning model constructed using a convolutional neural network and estimates the alertness of the user.

Description

覚醒度推定装置、覚醒度推定方法、及びコンピュータ読み取り可能な記録媒体Wake level estimation device, wake level estimation method, and computer readable recording medium
 本発明は、人の覚醒状態を表す覚醒度を推定するための、覚醒度推定装置、及び覚醒度推定方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to an arousal level estimation apparatus and a degree of arousal level estimation method for estimating an arousal level representing an arousal state of a person, and further relates to a computer readable recording medium storing a program for realizing the same. .
 近年、少子高齢化により生産年齢人口が減少し、労働力不足が進行している。そして、このような状況下において、今まで人が行っていた仕事の一部を、ロボット又はAI(artificial intelligence)で置き換える試みが増加している。但し、人が行う仕事のうち、知的労働が必要となる仕事については、ロボット又はAIでの置き換えは困難である。このため、今後、人においては、知的労働の生産性を維持、向上することが必須となる。 In recent years, with the declining birthrate and aging population, the working-age population has decreased and labor shortages have progressed. Under such circumstances, there is an increasing number of attempts to replace some of the work that humans have been doing with robots or artificial intelligence (AI). However, it is difficult to replace robots with AI for tasks that require intellectual labor among human tasks. For this reason, in the future, it will be essential for people to maintain and improve the productivity of intellectual labor.
 ところで、人は、機械と異なり、眠気を感じたり(低覚醒の状態)、ストレスを感じたり(過覚醒の状態)する。つまり、人の知的労働の生産性は、心身の覚醒状態に応じて、変化する。従って、人の知的労働の生産性の向上を図るためには、覚醒状態が丁度良い状態となるようにすることが重要である。 By the way, people, unlike machines, feel sleepy (low alertness) or stress (super alertness). That is, the productivity of human intellectual labor changes according to the state of mind and body awakening. Therefore, in order to improve the productivity of human intellectual labor, it is important to make the awake state just good.
 そして、知的労働時における人の覚醒状態を丁度良い状態とするための手法としては、最新の人の覚醒状態を検出し、検出した覚醒状態に応じて、オフィス内の温度、湿度、照度といった環境を制御することが挙げられる。とりわけ、この手法においては、人の覚醒状態を精度良く検出することが重要となる。 Then, as a method for making the arousal state of a person just in a good state during intellectual labor, the latest arousal state of a person is detected, and depending on the detected arousal state, temperature, humidity, illuminance in the office, etc. Control of the environment can be mentioned. In particular, in this method, it is important to detect the arousal state of a person with high accuracy.
 例えば、特許文献1は、目の開度から人の覚醒度を推定する装置を開示している。特許文献1に開示された装置は、設定されたフレームレートで送られてくるカメラ画像からドライバーの目の開眼時間を取得し、取得した開眼時間から、そのばらつきを求め、求めたばらつきから、ドライバーの覚醒度を推定する。 For example, Patent Document 1 discloses an apparatus for estimating the arousal level of a person from the degree of opening of the eye. The apparatus disclosed in Patent Document 1 obtains the eye opening time of the driver's eyes from the camera image sent at the set frame rate, obtains the variation from the obtained eye opening time, and obtains the variation from the obtained variation. Estimate the alertness of
 また、非特許文献1は、顔画像から人の覚醒度(ストレス)を推定する装置を開示している。非特許文献1に開示された装置は、設定されたフレームレートで送られてくるカメラ画像から、人の顔の低周波HRV(Heart Rate Variability)成分と呼吸速度を算出し、算出した数値を統計モデルに入力して、人の覚醒度を推定する。 Further, Non-Patent Document 1 discloses an apparatus for estimating the arousal level (stress) of a person from a face image. The device disclosed in Non-Patent Document 1 calculates low frequency HRV (Heart Rate Variability) components of human face and respiration rate from camera images sent at a set frame rate, and statistics the calculated values. Input into a model to estimate the arousal level of a person.
国際公開第2010/092860号International Publication No. 2010/092860
 ところで、特許文献1に開示された装置、及び非特許文献1に開示された装置では、いずれにおいても、覚醒度の推定精度を保つために、カメラ画像のフレームレートを高く設定し、処理する必要がある。このため、装置に大きな処理負担がかかるという問題がある。 By the way, in any of the apparatus disclosed in Patent Document 1 and the apparatus disclosed in Non-Patent Document 1, it is necessary to set and process a high frame rate of a camera image to maintain estimation accuracy of arousal level. There is. For this reason, there is a problem that the processing load on the device is large.
 本発明の目的の一例は、上記問題を解消し、処理負担を低減しつつ、人の覚醒度を精度良く推定し得る、覚醒度推定装置、覚醒度推定方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。 One example of the object of the present invention is an arousal level estimation device, an arousal level estimation method, and a computer readable recording medium capable of accurately estimating the arousal level of a person while solving the above problems and reducing the processing load. It is to provide.
 上記目的を達成するため、本発明の一側面における覚醒度推定装置は、ユーザの覚醒度を推定するための装置であって、
 設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、画像データ取得部と、
 設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、時系列データ抽出部と、
 抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、データ処理部と、
 畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、覚醒度推定部と、
を備えていることを特徴とする。
ことを特徴とする。
In order to achieve the above object, the awakening level estimation apparatus according to an aspect of the present invention is an apparatus for estimating a user's awakening level,
An image data acquisition unit for acquiring image data including a face image of the user at a set frame rate;
A time-series data extraction unit that extracts time-series data indicating biological information of the user from the image data acquired at the set frame rate;
A data processing unit that interpolates the time-series data such that the sampling number of the extracted time-series data becomes a set value;
An awakening level estimation unit that inputs the time-series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening level of the user;
It is characterized by having.
It is characterized by
 また、上記目的を達成するため、本発明の一側面における覚醒度推定方法は、ユーザの覚醒度を推定するための方法であって、
(a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
(b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
(c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
(d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
を有することを特徴とする。
In addition, in order to achieve the above object, the awakening degree estimation method according to one aspect of the present invention is a method for estimating the awakening degree of a user,
(A) acquiring image data including a face image of the user at a set frame rate;
(B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
(C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
(D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
It is characterized by having.
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、コンピュータによってユーザの覚醒度を推定するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
(b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
(c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
(d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
Furthermore, to achieve the above object, a computer readable recording medium according to one aspect of the present invention is a computer readable recording medium storing a program for estimating a user's alertness by a computer.
On the computer
(A) acquiring image data including a face image of the user at a set frame rate;
(B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
(C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
(D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
And recording a program including an instruction to execute the program.
 以上のように、本発明によれば、処理負担を低減しつつ、人の覚醒度を精度良く推定することができる。 As described above, according to the present invention, it is possible to accurately estimate the arousal level of a person while reducing the processing load.
図1は、本発明の実施の形態1における覚醒度推定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an arousal level estimation apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1において行われる時系列データの補間の一例を示す図である。FIG. 2 is a diagram showing an example of interpolation of time-series data performed in the first embodiment of the present invention. 図3は、本発明の実施の形態1で用いられる畳み込みニューラルネットワークの一例を示す図である。FIG. 3 is a diagram showing an example of a convolutional neural network used in the first embodiment of the present invention. 図4は、本発明の実施の形態1における覚醒度推定装置10の動作を示すフロー図である。FIG. 4 is a flowchart showing the operation of the alertness level estimation apparatus 10 according to the first embodiment of the present invention. 図5は、本発明の実施の形態2における覚醒度推定装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the awakening level estimation apparatus according to the second embodiment of the present invention. 図6は、本発明の実施の形態2における覚醒度推定装置30の動作を示すフロー図である。FIG. 6 is a flow chart showing the operation of the awakening level estimation device 30 according to the second embodiment of the present invention. 図7は、本発明の実施の形態1及び2における覚醒度推定装置を実現するコンピュータの一例を示すブロック図である。FIG. 7 is a block diagram showing an example of a computer for realizing the arousal level estimation device in the first and second embodiments of the present invention.
(実施の形態1)
 以下、本発明の実施の形態1における、覚醒度推定装置、覚醒度推定方法、及びプログラムについて、図1~図4を参照しながら説明する。
Embodiment 1
The waking degree estimation device, the waking degree estimation method, and the program according to the first embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
[装置構成]
 最初に、本実施の形態1における覚醒度推定装置の構成について図1を用いて説明する。図1は、本発明の実施の形態1における覚醒度推定装置の構成を示すブロック図である。
[Device configuration]
First, the configuration of the awakening degree estimation apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of an arousal level estimation apparatus according to Embodiment 1 of the present invention.
 図1に示す、本実施の形態における覚醒度推定装置10は、ユーザの覚醒度を推定するための装置である。図1に示すように、覚醒度推定装置10は、画像データ取得部11と、時系列データ抽出部12と、データ処理部13と、覚醒度推定部14とを備えている。 The awakening level estimation device 10 according to the present embodiment shown in FIG. 1 is a device for estimating the awakening degree of the user. As shown in FIG. 1, the awakening level estimation device 10 includes an image data acquisition unit 11, a time series data extraction unit 12, a data processing unit 13, and an awakening level estimation unit 14.
 このうち、画像データ取得部11は、設定されたフレームレートで、ユーザの顔画像を含む画像データを取得する。また、時系列データ抽出部12は、設定されたフレームレートで取得された画像データから、ユーザの生体情報を示す時系列データを抽出する。 Among these, the image data acquisition unit 11 acquires image data including a face image of the user at a set frame rate. Further, the time-series data extraction unit 12 extracts time-series data indicating biometric information of the user from the image data acquired at the set frame rate.
 データ処理部13は、抽出された時系列データのサンプリング数が設定値となるように、時系列データを補間する。覚醒度推定部14は、畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の時系列データを入力して、ユーザの覚醒度を推定する。 The data processing unit 13 interpolates time series data so that the sampling number of the extracted time series data becomes a set value. The awakening level estimation unit 14 inputs time series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening degree of the user.
 以上のように、本実施の形態1では、画像データから抽出された時系列データのサンプリング数を補間することができるので、画像データのフレームレートを予め低く抑えることができる。このため、本実施の形態1によれば、装置における処理負担を低減しつつ、人の覚醒度を精度良く推定することができる。 As described above, in the first embodiment, since the sampling number of time-series data extracted from image data can be interpolated, the frame rate of image data can be suppressed to a low level in advance. Therefore, according to the first embodiment, it is possible to accurately estimate the awakening level of a person while reducing the processing load on the device.
 続いて、本実施の形態1における覚醒度推定装置10の構成について、より具体的に説明する。まず、図1に示すように、本実施の形態1では、覚醒度推定装置10は、外部の撮像装置20に接続されている。 Subsequently, the configuration of the awakening level estimation device 10 according to the first embodiment will be described more specifically. First, as shown in FIG. 1, in the first embodiment, the awakening level estimation device 10 is connected to an external imaging device 20.
 撮像装置20は、デジタルカメラであり、設定されたフレームレートで画像データを出力する。また、撮像装置20は、ユーザの顔画像を撮影できるように配置されている。画像データ取得部11は、撮像装置20から出力される画像データを取得する。 The imaging device 20 is a digital camera and outputs image data at a set frame rate. In addition, the imaging device 20 is disposed so as to be able to capture a face image of the user. The image data acquisition unit 11 acquires image data output from the imaging device 20.
 また、本実施の形態1では、時系列データが示す生体情報としては、ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報等が挙げられる。時系列データ抽出部12は、本実施の形態1では、フレーム毎に、画像データから上述の情報を抽出し、時系列データを生成する。 In the first embodiment, as biological information indicated by time series data, information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, and information indicating the pulse wave in the user Information indicating the blood flow, information indicating the degree of opening and closing of the mouth, etc. may be mentioned. In the first embodiment, the time-series data extraction unit 12 extracts the above-mentioned information from the image data for each frame to generate time-series data.
 具体的には、時系列データ抽出部12は、例えば、画像データから、ユーザの両眼を検出し、検出した両眼の大きさから開閉度合を求め、眼の開閉度合を示す情報の時系列データを生成する。また、時系列データ抽出部12は、画像データから、ユーザの両眼の中心位置を検出し、検出した各中心位置から視線の方向を算出し、算出した視線の方向を示す情報の時系列データを生成する。 Specifically, the time-series data extraction unit 12 detects, for example, both eyes of the user from the image data, obtains the open / close degree from the detected size of both eyes, and time-series information indicating the open / close degree of the eye Generate data. Further, the time-series data extraction unit 12 detects the center position of the user's eyes from the image data, calculates the direction of the line of sight from each detected center position, and time-series data of information indicating the calculated direction of the line of sight Generate
 更に、時系列データ抽出部12は、画像データから、ユーザの顔の中心線及び輪郭を検出し、検出した中心線及び輪郭の位置関係から、ユーザの顔の向きを算出し、算出した顔の向きを示す情報の時系列データを生成する。また、時系列データ抽出部12は、画像データから、ユーザの口を検出し、検出した口の大きさから開閉度合を求め、口の開閉度合を示す情報の時系列データを生成する。 Furthermore, the time-series data extraction unit 12 detects the center line and contour of the user's face from the image data, calculates the direction of the user's face from the positional relationship between the detected center line and contour, and calculates Generate time series data of information indicating the direction. Further, the time-series data extraction unit 12 detects the mouth of the user from the image data, obtains the degree of opening and closing from the size of the detected mouth, and generates time-series data of information indicating the degree of opening and closing of the mouth.
 また、時系列データ抽出部12は、血液中のヘモグロビンが光の緑色成分を吸収する性質を用いて、ユーザの脈波又は血流を算出する(例えば、下記の参考文献を参照)。具体的には、時系列データ抽出部12は、画像データから、ユーザの肌の領域を特定し、特定した領域におけるR、G、B各チャンネルの輝度値を算出する。そして、時系列データ抽出部12は、血流が増えると緑色の光が吸収され、Gの輝度値が減少することを利用して、ユーザの脈波又は血流を算出し、脈波又は血流を示す情報の時系列データを生成する。 In addition, the time-series data extraction unit 12 calculates the pulse wave or blood flow of the user using the property that hemoglobin in blood absorbs the green component of light (see, for example, the following reference). Specifically, the time-series data extraction unit 12 identifies the region of the user's skin from the image data, and calculates the luminance value of each of the R, G, and B channels in the identified region. Then, the time-series data extraction unit 12 calculates the pulse wave or blood flow of the user using the fact that the green light is absorbed when the blood flow increases and the luminance value of G decreases, and the pulse wave or blood is calculated. Generate time series data of information indicating a flow.
 参考文献:梅松旭美、辻川剛範著、「ICA-Rに基づく顔映像からの高精度心拍推定法」、NECデータサイエンス研究所、一般社団法人電子情報通信学会、信学技法IEICE Technical Report 2017 References: Asahimi Umematsu, Takenori Sugakawa, “High-accuracy heart rate estimation from face images based on ICA-R”, NEC Data Science Laboratories, The Institute of Electronics, Information and Communication Engineers, Information Science Techniques IE Technical Report 2017
 また、データ処理部13は、本実施の形態1では、図2に示すように、時系列データに対してアップサンプリングを行うことによって、時系列データを補間する。図2は、本発明の実施の形態1において行われる時系列データの補間の一例を示す図である。図2の例では、本来求められる時系列データのフレームレートはRであり、実際の時系列データのフレームレートは(R/2)である。また、図中の「○」は時系列データを示している。 In the first embodiment, as shown in FIG. 2, the data processing unit 13 interpolates time-series data by performing up-sampling on the time-series data. FIG. 2 is a diagram showing an example of interpolation of time-series data performed in the first embodiment of the present invention. In the example of FIG. 2, the frame rate of time-series data originally obtained is R, and the frame rate of actual time-series data is (R / 2). Moreover, "(circle)" in the figure has shown time-sequential data.
 図2に示すように、データ処理部13は、サンプリング数が設定値となるように、即ち、フレームレートが(R/2)からRとなるように、連続している2つの時系列データの間に新たな時系列データを追加する。 As shown in FIG. 2, the data processing unit 13 sets two consecutive time series data so that the number of samplings becomes a set value, that is, the frame rate changes from (R / 2) to R. Add new time series data in between.
 また、新たな時系列データの追加は、例えば、線形補間、スプライン補間によって行われる。更に、例えば、フレームレートがR/2のデータと、フレームレートがRのデータとを学習データとして用いて、ニューラルネットワークを構築し、このニューラルネットワークによって補間が行われる態様であっても良い。その後、図2に示すように、アップサンプリングされた時系列データは、覚醒度推定部14によって、畳み込みニューラルネットワークに入力される。 Also, addition of new time-series data is performed by, for example, linear interpolation or spline interpolation. Furthermore, for example, a neural network may be constructed using data of a frame rate of R / 2 and data of a frame rate of R as learning data, and interpolation may be performed by this neural network. Thereafter, as shown in FIG. 2, the up-sampled time-series data is input to the convolutional neural network by the awakening level estimation unit 14.
 加えて、データ処理部13は、各種信号処理、例えば、ノイズ除去処理、欠損データの補間処理、外れ値の除去処理等を行うこともできる。このような処理により、後の覚醒度推定部14による覚醒度の推定精度の向上が期待できる。 In addition, the data processing unit 13 can also perform various types of signal processing, such as noise removal processing, interpolation processing of missing data, removal processing of outliers, and the like. By such processing, improvement in estimation accuracy of the awakening degree by the awakening degree estimation unit 14 can be expected.
 また、本実施の形態1では、時系列データが示す生体情報が、2つ以上の情報である場合は、学習モデルは生体情報毎に畳み込みを行うための層を有している。ここで、図3を用いて、本実施の形態1における覚醒度推定部14による推定処理について具体的に説明する。 Further, in the first embodiment, when the biological information indicated by the time series data is two or more pieces of information, the learning model has a layer for performing convolution for each biological information. Here, the estimation process by the awakening level estimation unit 14 in the first embodiment will be specifically described with reference to FIG.
 図3は、本発明の実施の形態1で用いられる畳み込みニューラルネットワークの一例を示す図である。図3の例では、時系列データは、眼の開閉度合を示す情報、視線の方向を示す情報、及び顔の向きを示す情報といった3つの情報を示しており、情報毎に、畳み込みが行われる。また、時系列データは、時系列毎に0~1、又は-1~+1等の値に正規化されているとする。 FIG. 3 is a diagram showing an example of a convolutional neural network used in the first embodiment of the present invention. In the example of FIG. 3, the time-series data shows three pieces of information such as information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, and information indicating the direction of the face, and convolution is performed for each information. . Further, it is assumed that time series data is normalized to a value such as 0 to 1 or -1 to +1 for each time series.
 図3に示すように、眼の開閉度合を示す時系列データのサイズを(DEC,W)とする。DECは、眼の開閉度合を示す時系列データの数である。また、例えば、右眼と左眼それぞれの開閉に関する時系列データを入力する場合、DEC=2である。Wは、覚醒度推定のための時間窓幅である。例えば、10sのデータを利用する場合、フレームレートRを用いて、W=10Rである。 As shown in FIG. 3, the size of time-series data indicating the degree of eye open / close is set to (D EC , W T ). D EC is the number of time-series data indicating the degree of eye opening and closing. Further, for example, in the case of inputting time-series data on the opening and closing of the right eye and the left eye, D EC = 2. W T is a time window width for estimation of the arousal level. For example, when using 10 s data, using a frame rate R, W T = 10R.
 まず、覚醒度推定部14は、サイズ(DEC,W)の時系列データを畳み込み層に入力し、サイズが(DEC,W)より小さい窓毎に、重みフィルタを畳み込み、バイアスを加えて、活性化関数を通して出力を得る。次に、覚醒度推定部14は、窓の位置をシフトさせ、そして、異なる重みフィルタとバイアスとを用いて、同様の操作を実行し、サイズ(DEC_C1,WEC_C1)の出力を得る。なお、活性化関数としては、ReLU(Rectified Linear Unit)等が挙げられる。 First, the awakening level estimation unit 14 inputs time-series data of size (D EC , W T ) to the convolution layer, convolutes the weight filter for each window whose size is smaller than (D EC , W T ), and applies bias. In addition, the output is obtained through the activation function. Next, the awakening level estimation unit 14 shifts the position of the window and performs the same operation using different weight filters and biases to obtain an output of size (D EC — C 1 , W EC — C 1 ). The activation function may, for example, be a ReLU (Rectified Linear Unit).
 次に、覚醒度推定部14は、プーリング層で、サイズ(DEC_C1,WEC_C1)の入力データに対して、サイズが(DEC_C1,WEC_C1)より小さい窓毎に、プーリング層においてプーリング処理を行う。例えば、よく用いられるmaxプーリングの場合、窓内の値の最大値が残るように処理が行われる。次に、覚醒度推定部14は、窓の位置をシフトさせ、同様のプーリング処理を行うことで、サイズ(DEC_P1,WEC_P1)の出力を得る。 Next, the awakening level estimation unit 14, in pooling layer, the size (D EC_C1, W EC_C1) for the input data, size (D EC_C1, W EC_C1) for each smaller windows, the pooling process in pooling layer Do. For example, in the case of commonly used max pooling, processing is performed so that the maximum value in the window remains. Next, the awakening level estimation unit 14 shifts the window position and performs the same pooling process to obtain an output of the size ( DEC_P1 , WEC_P1 ).
 続いて、覚醒度推定部14は、次の畳み込み層でも同様に、サイズ(DEC_P1,WEC_P1)の入力データに対して、サイズが(DEC_P1,WEC_P1)より小さい窓毎に、フィルタの畳み込み、バイアスの加算、活性化関数への入力を行う。そして、覚醒度推定部14は、この場合も、窓の位置をシフトさせて、同様の処理を行うことで、サイズ(DEC_C2,WEC_C2)の出力を得る。 Subsequently, the arousal level estimating unit 14, similarly in the next convolution layer, the size (D EC_P1, W EC_P1) for the input data, size (D EC_P1, W EC_P1) for each smaller windows, the filter It performs convolution, addition of bias, and input to the activation function. Also in this case, the awakening level estimation unit 14 shifts the position of the window and performs the same process to obtain the output of the size ( DEC_C2 , WEC_C2 ).
 更に、覚醒度推定部14は、次のプーリング層でも同様に、サイズ(DEC_C2,WEC_C2)の入力データに対して、サイズが(DEC_C2,WEC_C2)より小さい窓毎に、プーリング処理を行う。次に、覚醒度推定部14は、窓の位置をシフトさせて、同様のプーリング処理を行うことで、例えばサイズ(DEC_P2,1)の出力を得る。 Furthermore, the awakening level estimation unit 14, similarly in the following pooling layer, the size (D EC_C2, W EC_C2) for the input data, size (D EC_C2, W EC_C2) for each smaller windows, the pooling process Do. Next, the awakening level estimation unit 14 shifts the position of the window and performs the same pooling process to obtain, for example, an output of a size ( DEC_P2 , 1).
 また、本実施の形態1では、覚醒度推定部14は、視線の方向を示す時系列データ、顔の向きを示す時系列データ、それぞれに対しても同様の処理を行い、例えば、サイズ(DEG_P2,1)の出力と、サイズ(DHP_P2,1)の出力とを得る。 Further, in the first embodiment, the awakening level estimation unit 14 performs the same processing on each of time series data indicating the direction of the line of sight and time series data indicating the direction of the face. Obtain the output of EG_P2,1 ) and the output of size ( DHP_P2,1 ).
 次に、覚醒度推定部14は、「連結&平坦化」処理として(図3参照)、時系列データそれぞれ毎の出力を連結し、平坦化する。これにより、覚醒度推定部14は、サイズ(1,DEC_P2+DEG_P2+DHP_P2)の出力を得る。 Next, the awakening level estimation unit 14 concatenates and flattens the output of each time-series data as the “connection and flattening” process (see FIG. 3). Thereby, the awakening level estimation unit 14 obtains an output of size (1, DEC_P2 + DEG_P2 + DHP_P2 ).
 その後、覚醒度推定部14は、全結合層において、サイズ(1,DEC_P2+DEG_P2+DHP_P2)の入力データ全てに対して、重みフィルタを畳み込み、バイアスを加えて、活性化関数を通し、出力として覚醒度推定値を得る。 After that, the awakening level estimation unit 14 applies a bias to the weight filter and applies an activation function to all input data of the size (1, DEC_P2 + DEG_P2 + DHP_P2 ) in all the connection layers. , Get the alertness estimate as output.
 また、本実施の形態1では、学習モデルは、畳み込みニューラルネットワークを用いているが、その畳み込み層での重みフィルタ及びバイアスは、覚醒度の正解ラベルが付与されたサンプルデータを用いて、事前にディープラーニングを行うことによって学習される。また、学習は、覚醒度の正解ラベルと覚醒度の推定値との差分が少なくなるように、誤差逆伝搬法等を用いることで行うことができる。 In the first embodiment, the learning model uses a convolutional neural network, but the weight filter and the bias in the convolutional layer use the sample data to which the correct label of the awakening degree is attached in advance. It is learned by doing deep learning. Further, learning can be performed by using an error back propagation method or the like so that the difference between the correctness label of the awakening degree and the estimated value of the awakening degree decreases.
 更に、学習においては、一定の確率で重みとバイアスとをゼロにして学習するDropoutを用いることで、過学習を防ぐことができる。また、本実施の形態1では、学習モデルは、フレームレートが異なる複数の時系列データ(例えば、フレームレートが、R、R/2、R/3、R/6、R/10の時系列データ)に対して、サンプル数が設定値なるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されていても良い。この場合、より精密なモデル化が可能となる。 Furthermore, in learning, over-learning can be prevented by using Dropout, in which weight and bias are zeroed with a certain probability. Further, in the first embodiment, the learning model includes a plurality of time series data with different frame rates (for example, time series data with frame rates of R, R / 2, R / 3, R / 6, and R / 10). ) May be constructed by inputting data obtained by performing interpolation so that the number of samples becomes a set value, as learning data into a convolutional neural network. In this case, more accurate modeling is possible.
 更に、本実施の形態1で用いられる学習モデルにおいて、畳み込みニューラルネットワークの構成は、特に限定されるものではない。学習モデルは、例えば、二つ目のプーリング層が取り除かれ、その代わりに、連結&平坦化の後段に全結合層がもう一層追加された構成であっても良い。学習モデルには、種々の変形が加えられていても良い。 Furthermore, in the learning model used in the first embodiment, the configuration of the convolutional neural network is not particularly limited. The learning model may have, for example, a configuration in which the second pooling layer is removed and, instead, the entire combined layer is added further after the connection and planarization. Various modifications may be added to the learning model.
[装置動作]
 次に、本実施の形態1における覚醒度推定装置10の動作について図4を用いて説明する。図4は、本発明の実施の形態1における覚醒度推定装置10の動作を示すフロー図である。以下の説明においては、適宜図1~図3を参酌する。また、本実施の形態1では、覚醒度推定装置10を動作させることによって、覚醒度推定方法が実施される。よって、本実施の形態1における覚醒度推定方法の説明は、以下の覚醒度推定装置10の動作説明に代える。
[Device operation]
Next, the operation of the awakening level estimation apparatus 10 according to the first embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the alertness level estimation apparatus 10 according to the first embodiment of the present invention. In the following description, FIGS. 1 to 3 will be referred to as appropriate. In the first embodiment, the awakening level estimation method is implemented by operating the awakening level estimation apparatus 10. Therefore, the description of the awakening degree estimation method in the first embodiment is replaced with the following operation description of the awakening degree estimation apparatus 10.
 図4に示すように、画像データ取得部11は、撮像装置20から画像データが出力されてくると、出力されてきた画像データを取得し、取得した画像データを保持する(ステップS1)。 As shown in FIG. 4, when the image data is output from the imaging device 20, the image data acquisition unit 11 acquires the output image data, and holds the acquired image data (step S1).
 次に、画像データ取得部11は、保持している画像データの枚数が所定値に到達しているかどうかを判定する(ステップS2)。ステップS2の判定の結果、画像データの枚数が所定値に達していない場合は、画像データ取得部11は、再度ステップS1を実行する。一方、ステップS2の判定の結果、画像データの枚数が所定値に達している場合は、画像データ取得部11は、保持している画像データを時系列データ抽出部12に渡す。 Next, the image data acquisition unit 11 determines whether the number of stored image data has reached a predetermined value (step S2). As a result of the determination in step S2, when the number of image data has not reached the predetermined value, the image data acquisition unit 11 executes step S1 again. On the other hand, when the number of pieces of image data has reached the predetermined value as a result of the determination in step S2, the image data acquisition unit 11 passes the held image data to the time series data extraction unit 12.
 次に、時系列データ抽出部12は、画像データを受け取ると、ステップS1で取得された画像データから、ユーザの生体情報を示す時系列データを抽出する(ステップS3)。また、画像データに複数のユーザが含まれている場合は、ステップS3において、時系列データ抽出部12は、ユーザ毎に、時系列データを抽出することもできる。 Next, when receiving the image data, the time-series data extraction unit 12 extracts time-series data indicating biological information of the user from the image data acquired in step S1 (step S3). When a plurality of users are included in the image data, the time-series data extraction unit 12 can also extract time-series data for each user in step S3.
 次に、データ処理部13は、ステップS3で抽出された時系列データのサンプリング数が設定値となるように、時系列データを補間する(ステップS4)。 Next, the data processing unit 13 interpolates time series data such that the sampling number of time series data extracted in step S3 becomes a set value (step S4).
 次に、覚醒度推定部14は、畳み込みニューラルネットワークを用いて構築された学習モデルに、ステップS4によって補間された後の時系列データを入力して、ユーザの覚醒度を推定する(ステップS5)。 Next, the awakening level estimation unit 14 inputs the time-series data after interpolation in step S4 to the learning model constructed using the convolutional neural network, and estimates the awakening degree of the user (step S5). .
 具体的には、図3に示すように、時系列データが、眼の開閉度合を示す情報、視線の方向を示す情報、及び顔の向きを示す情報を示す場合は、覚醒度推定部14は、情報毎に、畳み込みを行って、覚醒度を推定する。また、ステップS5の実行後は、再度ステップS1~S5が実行され、常時、ユーザの覚醒度の推定が行われる。 Specifically, as shown in FIG. 3, when the time-series data indicates information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, and information indicating the direction of the face, the awakening level estimation unit 14 For each information, convolution is performed to estimate the arousal level. Further, after step S5 is executed, steps S1 to S5 are executed again, and estimation of the awakening degree of the user is constantly performed.
 また、覚醒度推定装置10は、推定した覚醒度を、空調装置の制御システム、車両の運行システム等に入力する。これにより、各システムは、ユーザの覚醒度に基づいて、最適化制御を行うことができる。 Further, the awakening degree estimation device 10 inputs the estimated awakening degree to the control system of the air conditioner, the operation system of the vehicle, and the like. Thereby, each system can perform optimization control based on the awakening degree of the user.
[実施の形態1における効果]
 以上のように、本実施の形態1では、画像データではなく、画像から抽出した時系列データにおいてサンプリング数を補間するので、画像データのフレームレートを予め低く抑えることができる。このため、負担が大きい画像データからの時系列データ抽出部12の処理を軽減でき、結果、装置全体における処理負担を低減しつつ、人の覚醒度を精度良く推定することができる。また、本実施の形態1では、複数のフレームレートの入力時系列データに対して補間したデータを用いて畳み込みニューラルネットワークをモデル化することで、よりいっそう覚醒度の推定精度を向上させることもできる。また、本実施の形態1では、時系列データとして、複数の生体情報を用いることができるので、よりいっそう覚醒度の精度を向上させることもできる。
[Effect in Embodiment 1]
As described above, in the first embodiment, since the number of samplings is interpolated not in image data but in time-series data extracted from an image, the frame rate of image data can be suppressed in advance. Therefore, the processing of the time-series data extraction unit 12 from the image data having a large load can be reduced, and as a result, the awakening degree of a person can be accurately estimated while reducing the processing load on the entire device. Further, in the first embodiment, the estimation accuracy of the arousal level can be further improved by modeling the convolutional neural network using data interpolated with respect to input time-series data of a plurality of frame rates. . Further, in the first embodiment, since plural pieces of biological information can be used as time series data, the accuracy of the alertness can be further improved.
[プログラム]
 本実施の形態1におけるプログラムは、コンピュータに、図4に示すステップS1~S5を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における覚醒度推定装置10と覚醒度推定方法とを実現することができる。この場合、コンピュータのプロセッサは、画像データ取得部11、時系列データ抽出部12、データ処理部13、及び覚醒度推定部14として機能し、処理を行なう。
[program]
The program in the first embodiment may be a program that causes a computer to execute steps S1 to S5 shown in FIG. By installing this program in a computer and executing it, the awakening level estimation device 10 and the awakening level estimation method according to the first embodiment can be realized. In this case, the processor of the computer functions as the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, and the awakening level estimation unit 14 to perform processing.
 また、本実施の形態1におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、画像データ取得部11、時系列データ抽出部12、データ処理部13、及び覚醒度推定部14のいずれかとして機能しても良い。 Also, the program in the first embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer may function as any of the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, and the awakening level estimation unit 14.
(実施の形態2)
 次に、本発明の実施の形態2における覚醒度推定装置について、図5及び図6を参照しながら説明する。
Second Embodiment
Next, the awakening degree estimation apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6.
[装置構成]
 最初に、本実施の形態2における覚醒度推定装置の構成について図5を用いて説明する。図5は、本発明の実施の形態2における覚醒度推定装置の構成を示すブロック図である。
[Device configuration]
First, the configuration of the awakening degree estimation apparatus according to the second embodiment will be described with reference to FIG. FIG. 5 is a block diagram showing the configuration of the awakening level estimation apparatus according to the second embodiment of the present invention.
 図5に示すように、本実施の形態2における覚醒度推定装置30は、図1に示した実施の形態1における覚醒度推定装置10と同様の構成に加えて、フレームレート調整部31を備えている。以下、実施の形態1との相違点を中心に説明する。 As shown in FIG. 5, the awakening level estimation apparatus 30 according to the second embodiment includes a frame rate adjustment unit 31 in addition to the same configuration as the awakening level estimation apparatus 10 according to the first embodiment shown in FIG. ing. Hereinafter, differences from the first embodiment will be mainly described.
 フレームレート調整部31は、覚醒度推定部14によって推定された覚醒度に応じて、フレームレートを調整する。また、フレームレート調整部31は、フレームレートの調整後、画像データを出力する撮像装置20に対して、調整後のフレームレートを指示する。また、フレームレート調整部31は、撮像装置20ではなく、画像データ取得部11、時系列データ抽出部12に対して、調整後のフレームレートを指示してもよい。また、フレームレート調整部31は、抽出された時系列データが示す生体情報に応じて、フレームレートを調整することもできる。 The frame rate adjustment unit 31 adjusts the frame rate according to the awakening degree estimated by the awakening degree estimation unit 14. Further, after adjusting the frame rate, the frame rate adjusting unit 31 instructs the imaging device 20 that outputs the image data to the adjusted frame rate. Also, the frame rate adjustment unit 31 may instruct the image data acquisition unit 11 and the time-series data extraction unit 12 instead of the imaging device 20 to indicate the adjusted frame rate. Further, the frame rate adjustment unit 31 can also adjust the frame rate according to the biological information indicated by the extracted time-series data.
 具体的には、フレームレート調整部31は、覚醒度が一定している場合は、フレームレートを低く設定し、覚醒度推定装置30における処理負担を低下させる。一方、フレームレート調整部31は、覚醒度が大きく変化している場合(変化の範囲が所定の範囲を超えている場合)は、フレームレートを高く設定し、覚醒度の推定精度を向上させる。 Specifically, when the awakening degree is constant, the frame rate adjustment unit 31 sets the frame rate low, and reduces the processing load in the awakening degree estimation apparatus 30. On the other hand, the frame rate adjustment unit 31 sets the frame rate high, and improves the estimation accuracy of the awakening degree, when the awakening degree changes significantly (when the change range exceeds the predetermined range).
[装置動作]
 次に、本実施の形態2における覚醒度推定装置30の動作について図6を用いて説明する。図6は、本発明の実施の形態2における覚醒度推定装置30の動作を示すフロー図である。以下の説明においては、適宜図5を参酌する。また、本実施の形態2では、覚醒度推定装置30を動作させることによって、覚醒度推定方法が実施される。よって、本実施の形態2における覚醒度推定方法の説明は、以下の覚醒度推定装置30の動作説明に代える。
[Device operation]
Next, the operation of the awakening level estimation device 30 according to the second embodiment will be described with reference to FIG. FIG. 6 is a flow chart showing the operation of the awakening level estimation device 30 according to the second embodiment of the present invention. In the following description, FIG. 5 is referred to as appropriate. Further, in the second embodiment, the awakening level estimation method is implemented by operating the awakening level estimation device 30. Therefore, the description of the awakening level estimation method in the second embodiment is replaced with the following operation description of the awakening level estimation apparatus 30.
 図6に示すように、画像データ取得部11は、撮像装置20から画像データが出力されてくると、出力されてきた画像データを取得し、取得した画像データを保持する(ステップS11)。 As shown in FIG. 6, when the image data is output from the imaging device 20, the image data acquisition unit 11 acquires the output image data, and holds the acquired image data (step S11).
 次に、画像データ取得部11は、保持している画像データの枚数が所定値に到達しているかどうかを判定する(ステップS12)。ステップS12の判定の結果、画像データの枚数が所定値に達していない場合は、画像データ取得部11は、再度ステップS11を実行する。一方、ステップSs2の判定の結果、画像データの枚数が所定値に達している場合は、画像データ取得部11は、保持している画像データを時系列データ抽出部12に渡す。 Next, the image data acquisition unit 11 determines whether the number of stored image data has reached a predetermined value (step S12). If the number of image data does not reach the predetermined value as a result of the determination in step S12, the image data acquisition unit 11 executes step S11 again. On the other hand, as a result of the determination in step Ss2, when the number of image data has reached the predetermined value, the image data acquisition unit 11 passes the held image data to the time-series data extraction unit 12.
 次に、時系列データ抽出部12は、画像データを受け取ると、ステップS11で取得された画像データから、ユーザの生体情報を示す時系列データを抽出する(ステップS13)。また、画像データに複数のユーザが含まれている場合は、ステップS13において、時系列データ抽出部12は、ユーザ毎に、時系列データを抽出することもできる。 Next, when receiving the image data, the time-series data extraction unit 12 extracts time-series data indicating biological information of the user from the image data acquired in step S11 (step S13). When a plurality of users are included in the image data, the time-series data extraction unit 12 can also extract time-series data for each user in step S13.
 次に、データ処理部13は、ステップS13で抽出された時系列データのサンプリング数が設定値となるように、時系列データを補間する(ステップS14)。 Next, the data processing unit 13 interpolates time series data such that the sampling number of time series data extracted in step S13 becomes a set value (step S14).
 次に、覚醒度推定部14は、畳み込みニューラルネットワークを用いて構築された学習モデルに、ステップS14によって補間された後の時系列データを入力して、ユーザの覚醒度を推定する(ステップS15)。 Next, the awakening level estimation unit 14 inputs time-series data after interpolation in step S14 to a learning model constructed using a convolutional neural network, and estimates the awakening degree of the user (step S15). .
 以上のステップS11~S15の実行により、ユーザの覚醒度が推定される。ステップS11~S15は、図4に示したステップS1~S5と同様のステップである。 By executing the above steps S11 to S15, the awakening degree of the user is estimated. Steps S11 to S15 are similar to steps S1 to S5 shown in FIG.
 次に、ステップS15の実行後、フレームレート調整部31は、ステップS15によって推定された覚醒度に応じて、フレームレートを調整する(ステップS16)。続いて、フレームレート調整部31は、撮像装置20に対して、ステップS16で調整したフレームレートを指示する(ステップS17)。 Next, after execution of step S15, the frame rate adjustment unit 31 adjusts the frame rate according to the awakening degree estimated in step S15 (step S16). Subsequently, the frame rate adjustment unit 31 instructs the imaging device 20 on the frame rate adjusted in step S16 (step S17).
 ステップS17の実行後、撮像装置20は、指示されたフレームレートで、画像データを出力する。また、ステップS17の実行後は、再度ステップS11~S17が実行されるが、その際、指示されたフレームレートで、時系列データが生成されて、新たに覚醒度が推定されることになる。また、本実施の形態2においても、再度ステップS11~S15が実行されることで、常時、ユーザの覚醒度の推定が行われる。 After execution of step S17, the imaging device 20 outputs image data at the instructed frame rate. Also, after step S17 is performed, steps S11 to S17 are performed again, and at that time, time-series data is generated at the instructed frame rate, and the arousal level is newly estimated. Further, also in the second embodiment, estimation of the awakening degree of the user is always performed by performing steps S11 to S15 again.
 また、本実施の形態2においても、覚醒度推定装置30は、推定した覚醒度を、空調装置の制御システム、車両の運行システム等に入力する。これにより、各システムは、ユーザの覚醒度に基づいて、最適化制御を行うことができる。 Also in the second embodiment, the awakening level estimation device 30 inputs the estimated awakening level to the control system of the air conditioner, the operation system of the vehicle, and the like. Thereby, each system can perform optimization control based on the awakening degree of the user.
[実施の形態2における効果]
 以上のように、本実施の形態2では、画像データのフレームレートを調整することができる。本実施の形態2によれば、求められる覚醒度の精度に応じて、適切なフレームレートを設定することができる。また、本実施の形態2においても、実施の形態1と同様の効果を得ることができる。
[Effect in Embodiment 2]
As described above, in the second embodiment, the frame rate of image data can be adjusted. According to the second embodiment, an appropriate frame rate can be set in accordance with the required accuracy of the awakening degree. Also in the second embodiment, the same effect as that of the first embodiment can be obtained.
[プログラム]
 本実施の形態2におけるプログラムは、コンピュータに、図6に示すステップS11~S17を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における覚醒度推定装置30と覚醒度推定方法とを実現することができる。この場合、コンピュータのプロセッサは、画像データ取得部11、時系列データ抽出部12、データ処理部13、覚醒度推定部14、及びフレームレート調整部31として機能し、処理を行なう。
[program]
The program in the second embodiment may be a program that causes a computer to execute steps S11 to S17 shown in FIG. By installing this program in a computer and executing it, the awakening level estimation device 30 and the awakening level estimation method according to the first embodiment can be realized. In this case, the processor of the computer functions as the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, the alertness estimation unit 14, and the frame rate adjustment unit 31, and performs processing.
 また、本実施の形態2におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、画像データ取得部11、時系列データ抽出部12、データ処理部13、覚醒度推定部14、及びフレームレート調整部31のいずれかとして機能しても良い。 Further, the program in the second embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer functions as any of the image data acquisition unit 11, the time series data extraction unit 12, the data processing unit 13, the awakening degree estimation unit 14, and the frame rate adjustment unit 31. good.
(物理構成)
 ここで、本発明の実施の形態1及び2におけるプログラムを実行することによって、覚醒度推定装置を実現するコンピュータについて図7を用いて説明する。図7は、本発明の実施の形態1及び2における覚醒度推定装置を実現するコンピュータの一例を示すブロック図である。
(Physical configuration)
Here, a computer for realizing the awakening degree estimation apparatus by executing the programs in the first and second embodiments of the present invention will be described with reference to FIG. FIG. 7 is a block diagram showing an example of a computer for realizing the arousal level estimation device in the first and second embodiments of the present invention.
 図7に示すように、コンピュータ110は、CPU(Central Processing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-ProgrammableGate Array)を備えていても良い。 As shown in FIG. 7, the computer 110 includes a central processing unit (CPU) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. And These units are communicably connected to each other via a bus 121. Note that the computer 110 may include a graphics processing unit (GPU) or a field-programmable gate array (FPGA) in addition to or instead of the CPU 111.
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 develops the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executes various operations by executing these in a predetermined order. The main memory 112 is typically a volatile storage device such as a dynamic random access memory (DRAM). In addition, the program in the present embodiment is provided in the state of being stored in computer readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。 Further, as a specific example of the storage device 113, besides a hard disk drive, a semiconductor storage device such as a flash memory may be mentioned. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and executes reading of a program from the recording medium 120 and writing of the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact DiskRead Only Memory)などの光学記録媒体が挙げられる。 Further, specific examples of the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disk (Flexible Disk), or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) may be mentioned.
 なお、本実施の形態における覚醒度推定装置は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、覚醒度推定装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The awakening level estimation apparatus according to the present embodiment can also be realized by using hardware corresponding to each unit, not a computer on which a program is installed. Furthermore, the awakening level estimation device may be partially realized by a program, and the remaining portion may be realized by hardware.
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記18)によって表現することができるが、以下の記載に限定されるものではない。 A part or all of the embodiment described above can be expressed by (Appendix 1) to (Appendix 18) described below, but is not limited to the following description.
(付記1)
 ユーザの覚醒度を推定するための装置であって、
 設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、画像データ取得部と、
 設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、時系列データ抽出部と、
 抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、データ処理部と、
 畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、覚醒度推定部と、
を備えていることを特徴とする覚醒度推定装置。
(Supplementary Note 1)
An apparatus for estimating the awakening degree of a user,
An image data acquisition unit for acquiring image data including a face image of the user at a set frame rate;
A time-series data extraction unit that extracts time-series data indicating biological information of the user from the image data acquired at the set frame rate;
A data processing unit that interpolates the time-series data such that the sampling number of the extracted time-series data becomes a set value;
An awakening level estimation unit that inputs the time-series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening level of the user;
The awakening degree estimation device characterized by having.
(付記2)
 付記1に記載の覚醒度推定装置であって、
 前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
ことを特徴とする覚醒度推定装置。
(Supplementary Note 2)
The awakening degree estimation apparatus according to supplementary note 1, wherein
The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
An awakening level estimation device characterized in that.
(付記3)
 付記1または2に記載の覚醒度推定装置であって、
 前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
ことを特徴とする覚醒度推定装置。
(Supplementary Note 3)
The awakening degree estimation device according to the supplementary note 1 or 2, wherein
The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
An awakening level estimation device characterized in that.
(付記4)
 付記3に記載の覚醒度推定装置であって、
 前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
ことを特徴とする覚醒度推定装置。
(Supplementary Note 4)
It is the awakening degree estimation apparatus according to appendix 3.
When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
An awakening level estimation device characterized in that.
(付記5)
 付記1~4のいずれかに記載の覚醒度推定装置であって、
 推定された前記覚醒度に応じて、前記フレームレートを調整する、フレームレート調整部を更に備えている、
ことを特徴とする覚醒度推定装置。
(Supplementary Note 5)
The awakening degree estimation device according to any one of the supplementary notes 1 to 4,
The apparatus further comprises a frame rate adjustment unit that adjusts the frame rate according to the estimated awakening degree.
An awakening level estimation device characterized in that.
(付記6)
 付記5に記載の覚醒度推定装置であって、
 前記フレームレート調整部が、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
ことを特徴とする覚醒度推定装置。
(Supplementary Note 6)
The awakening degree estimation apparatus according to supplementary note 5, wherein
The frame rate adjustment unit further adjusts the frame rate in accordance with biological information indicated by the extracted time series data.
An awakening level estimation device characterized in that.
(付記7)
 ユーザの覚醒度を推定するための方法であって、
(a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
(b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
(c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
(d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
を有することを特徴とする覚醒度推定方法。
(Appendix 7)
A method for estimating a user's alertness, comprising
(A) acquiring image data including a face image of the user at a set frame rate;
(B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
(C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
(D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
A method of estimating arousal level characterized by having:
(付記8)
 付記7に記載の覚醒度推定方法であって、
 前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
ことを特徴とする覚醒度推定方法。
(Supplementary Note 8)
It is an awakening degree estimation method given in appendix 7.
The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
A method for estimating arousal level characterized by
(付記9)
 付記7または8に記載の覚醒度推定方法であって、
 前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
ことを特徴とする覚醒度推定方法。
(Appendix 9)
The alertness estimation method according to appendix 7 or 8,
The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
A method for estimating arousal level characterized by
(付記10)
 付記9に記載の覚醒度推定方法であって、
 前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
ことを特徴とする覚醒度推定方法。
(Supplementary Note 10)
It is the awakening degree estimation method according to appendix 9.
When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
A method for estimating arousal level characterized by
(付記11)
 付記7~10のいずれかに記載の覚醒度推定方法であって、
(e)推定された前記覚醒度に応じて、前記フレームレートを調整する、ステップを更に有している、
ことを特徴とする覚醒度推定方法。
(Supplementary Note 11)
The alertness estimation method according to any one of appendices 7 to 10, wherein
(E) adjusting the frame rate according to the estimated arousal level,
A method for estimating arousal level characterized by
(付記12)
 付記11に記載の覚醒度推定方法であって、
 前記(e)のステップにおいて、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
ことを特徴とする覚醒度推定方法。
(Supplementary Note 12)
It is an awakening degree estimation method given in appendix 11.
Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data.
A method for estimating arousal level characterized by
(付記13)
 コンピュータによってユーザの覚醒度を推定するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
(b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
(c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
(d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とするコンピュータ読み取り可能な記録媒体。
(Supplementary Note 13)
A computer readable recording medium storing a program for estimating a user's alertness by a computer, comprising:
On the computer
(A) acquiring image data including a face image of the user at a set frame rate;
(B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
(C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
(D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
A computer readable storage medium storing a program, comprising: instructions for executing the program.
(付記14)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Supplementary Note 14)
A computer readable recording medium according to appendix 13, comprising
The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
A computer readable recording medium characterized in that.
(付記15)
 付記13または14に記載のコンピュータ読み取り可能な記録媒体であって、
 前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Supplementary Note 15)
24. A computer-readable recording medium according to appendix 13 or 14,
The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
A computer readable recording medium characterized in that.
(付記16)
 付記15に記載のコンピュータ読み取り可能な記録媒体であって、
 前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Supplementary Note 16)
24. The computer-readable recording medium according to appendix 15.
When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
A computer readable recording medium characterized in that.
(付記17)
 付記13~16のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
前記プログラムが、前記コンピュータに、
(e)推定された前記覚醒度に応じて、前記フレームレートを調整する、ステップを実行させる命令を更に含む、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Supplementary Note 17)
The computer-readable recording medium according to any one of appendices 13 to 16, wherein
The program is stored in the computer
(E) adjusting the frame rate according to the estimated arousal level, further comprising an instruction to execute the step
A computer readable recording medium characterized in that.
(付記18)
 付記17に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(e)のステップにおいて、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 18)
24. The computer-readable recording medium according to appendix 17.
Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data.
A computer readable recording medium characterized in that.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
 以上のように、本発明によれば、処理負担を低減しつつ、人の覚醒度を精度良く推定することができる。本発明は、人の覚醒度の推定が求められる種々のシステム、例えば、空調システム、自動車等の乗り物の運行システム等に有用である。 As described above, according to the present invention, it is possible to accurately estimate the arousal level of a person while reducing the processing load. The present invention is useful for various systems where estimation of the awakening level of a person is required, for example, an air conditioning system, an operation system of a vehicle such as a car, and the like.
 10 覚醒度推定装置(実施の形態1)
 11 画像データ取得部
 12 時系列データ抽出部
 13 データ処理部
 14 覚醒度推定部
 20 撮像装置
 30 覚醒度推定装置(実施の形態2)
 31 フレームレート調整部
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 
10 Awakening Level Estimating Device (First Embodiment)
11 image data acquisition unit 12 time series data extraction unit 13 data processing unit 14 awakening degree estimation unit 20 imaging device 30 awakening degree estimation device (second embodiment)
31 Frame rate adjustment unit 110 Computer 111 CPU
112 main memory 113 storage device 114 input interface 115 display controller 116 data reader / writer 117 communication interface 118 input device 119 display device 120 recording medium 121 bus

Claims (18)

  1.  ユーザの覚醒度を推定するための装置であって、
     設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、画像データ取得部と、
     設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、時系列データ抽出部と、
     抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、データ処理部と、
     畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、覚醒度推定部と、
    を備えていることを特徴とする覚醒度推定装置。
    An apparatus for estimating the awakening degree of a user,
    An image data acquisition unit for acquiring image data including a face image of the user at a set frame rate;
    A time-series data extraction unit that extracts time-series data indicating biological information of the user from the image data acquired at the set frame rate;
    A data processing unit that interpolates the time-series data such that the sampling number of the extracted time-series data becomes a set value;
    An awakening level estimation unit that inputs the time-series data after interpolation into a learning model constructed using a convolutional neural network, and estimates the awakening level of the user;
    The awakening degree estimation device characterized by having.
  2.  請求項1に記載の覚醒度推定装置であって、
     前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
    ことを特徴とする覚醒度推定装置。
    The awakening degree estimation apparatus according to claim 1, wherein
    The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
    An awakening level estimation device characterized in that.
  3.  請求項1または2に記載の覚醒度推定装置であって、
     前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
    ことを特徴とする覚醒度推定装置。
    The awakening degree estimation apparatus according to claim 1 or 2, wherein
    The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
    An awakening level estimation device characterized in that.
  4.  請求項3に記載の覚醒度推定装置であって、
     前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
    ことを特徴とする覚醒度推定装置。
    The awakening degree estimation apparatus according to claim 3,
    When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
    An awakening level estimation device characterized in that.
  5.  請求項1~4のいずれかに記載の覚醒度推定装置であって、
     推定された前記覚醒度に応じて、前記フレームレートを調整する、フレームレート調整部を更に備えている、
    ことを特徴とする覚醒度推定装置。
    The awakening level estimation apparatus according to any one of claims 1 to 4, wherein
    The apparatus further comprises a frame rate adjustment unit that adjusts the frame rate according to the estimated awakening degree.
    An awakening level estimation device characterized in that.
  6.  請求項5に記載の覚醒度推定装置であって、
     前記フレームレート調整部が、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
    ことを特徴とする覚醒度推定装置。
    The awakening degree estimation apparatus according to claim 5, wherein
    The frame rate adjustment unit further adjusts the frame rate in accordance with biological information indicated by the extracted time series data.
    An awakening level estimation device characterized in that.
  7.  ユーザの覚醒度を推定するための方法であって、
    (a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
    (b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
    (c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
    (d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
    を有することを特徴とする覚醒度推定方法。
    A method for estimating a user's alertness, comprising
    (A) acquiring image data including a face image of the user at a set frame rate;
    (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
    (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
    (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
    A method of estimating arousal level characterized by having:
  8.  請求項7に記載の覚醒度推定方法であって、
     前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
    ことを特徴とする覚醒度推定方法。
    The awakening degree estimation method according to claim 7, wherein
    The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
    A method for estimating arousal level characterized by
  9.  請求項7または8に記載の覚醒度推定方法であって、
     前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
    ことを特徴とする覚醒度推定方法。
    The awakening degree estimation method according to claim 7 or 8, wherein
    The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
    A method for estimating arousal level characterized by
  10.  請求項9に記載の覚醒度推定方法であって、
     前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
    ことを特徴とする覚醒度推定方法。
    It is the awakening degree estimation method according to claim 9,
    When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
    A method for estimating arousal level characterized by
  11.  請求項7~10のいずれかに記載の覚醒度推定方法であって、
    (e)推定された前記覚醒度に応じて、前記フレームレートを調整する、ステップを更に有している、
    ことを特徴とする覚醒度推定方法。
    The method for estimating arousal level according to any one of claims 7 to 10, wherein
    (E) adjusting the frame rate according to the estimated arousal level,
    A method for estimating arousal level characterized by
  12.  請求項11に記載の覚醒度推定方法であって、
     前記(e)のステップにおいて、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
    ことを特徴とする覚醒度推定方法。
    It is the awakening degree estimation method according to claim 11,
    Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data.
    A method for estimating arousal level characterized by
  13.  コンピュータによってユーザの覚醒度を推定するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
    前記コンピュータに、
    (a)設定されたフレームレートで、前記ユーザの顔画像を含む画像データを取得する、ステップと、
    (b)設定された前記フレームレートで取得された前記画像データから、前記ユーザの生体情報を示す時系列データを抽出する、ステップと、
    (c)抽出された前記時系列データのサンプリング数が設定値となるように、前記時系列データを補間する、ステップと、
    (d)畳み込みニューラルネットワークを用いて構築された学習モデルに、補間後の前記時系列データを入力して、前記ユーザの覚醒度を推定する、ステップと、
    を実行させる命令を含む、プログラムを記録していることを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer readable recording medium storing a program for estimating a user's alertness by a computer, comprising:
    On the computer
    (A) acquiring image data including a face image of the user at a set frame rate;
    (B) extracting time-series data indicating biometric information of the user from the image data acquired at the set frame rate;
    (C) interpolating the time-series data so that the sampling number of the extracted time-series data becomes a set value;
    (D) inputting the time-series data after interpolation into a learning model constructed using a convolutional neural network to estimate the awakening degree of the user;
    A computer readable storage medium storing a program, comprising: instructions for executing the program.
  14.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記学習モデルが、フレームレートが異なる複数の時系列データに対して、サンプリング数が設定値になるように補間を行って得られたデータを、学習データとして、畳み込みニューラルネットワークに入力することによって構築されている、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer readable recording medium according to claim 13, wherein
    The learning model is constructed by inputting data obtained by performing interpolation on a plurality of time series data with different frame rates so that the sampling number becomes a set value, as learning data, to a convolutional neural network Being
    A computer readable recording medium characterized in that.
  15.  請求項13または14に記載のコンピュータ読み取り可能な記録媒体であって、
     前記時系列データが示す生体情報が、前記ユーザにおける、眼の開閉度合を示す情報、視線の方向を示す情報、顔の向きを示す情報、脈波を示す情報、血流を示す情報、口の開閉度合を示す情報のうち、少なくとも1つである、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer readable recording medium according to claim 13 or 14,
    The biological information indicated by the time series data is information indicating the degree of opening and closing of the eye, information indicating the direction of the line of sight, information indicating the direction of the face, information indicating the pulse wave, information indicating the blood flow, At least one of the information indicating the degree of opening and closing,
    A computer readable recording medium characterized in that.
  16.  請求項15に記載のコンピュータ読み取り可能な記録媒体であって、
     前記時系列データが示す生体情報が、2つ以上の情報である場合に、前記学習モデルが、前記生体情報毎に、畳み込みを行うための層を有している、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 15.
    When the biological information indicated by the time-series data is two or more pieces of information, the learning model has a layer for performing convolution for each of the biological information.
    A computer readable recording medium characterized in that.
  17.  請求項13~16のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
    前記プログラムが、前記コンピュータに、
    (e)推定された前記覚醒度に応じて、前記フレームレートを調整する、ステップを実行させる命令を更に含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer readable recording medium according to any one of claims 13 to 16, wherein
    The program is stored in the computer
    (E) adjusting the frame rate according to the estimated arousal level, further comprising an instruction to execute the step
    A computer readable recording medium characterized in that.
  18.  請求項17に記載のコンピュータ読み取り可能な記録媒体であって、
     前記(e)のステップにおいて、更に、抽出された前記時系列データが示す生体情報に応じて、前記フレームレートを調整する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer readable recording medium according to claim 17, wherein
    Further, in the step (e), the frame rate is adjusted according to biological information indicated by the extracted time-series data.
    A computer readable recording medium characterized in that.
PCT/JP2018/002804 2018-01-29 2018-01-29 Alertness estimation device, alertness estimation method, and computer readable recording medium WO2019146123A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/002804 WO2019146123A1 (en) 2018-01-29 2018-01-29 Alertness estimation device, alertness estimation method, and computer readable recording medium
JP2019567823A JP6879388B2 (en) 2018-01-29 2018-01-29 Alertness estimation device, alertness estimation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002804 WO2019146123A1 (en) 2018-01-29 2018-01-29 Alertness estimation device, alertness estimation method, and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2019146123A1 true WO2019146123A1 (en) 2019-08-01

Family

ID=67395274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002804 WO2019146123A1 (en) 2018-01-29 2018-01-29 Alertness estimation device, alertness estimation method, and computer readable recording medium

Country Status (2)

Country Link
JP (1) JP6879388B2 (en)
WO (1) WO2019146123A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090402A1 (en) * 2019-11-06 2021-05-14 日本電気株式会社 Stress estimation device, stress estimation method, and recording medium
WO2023135632A1 (en) * 2022-01-11 2023-07-20 日本電気株式会社 Stress estimation device, stress estimation method, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005239A (en) * 2007-06-25 2009-01-08 Sony Computer Entertainment Inc Encoder and encoding method
JP2017217472A (en) * 2016-06-02 2017-12-14 オムロン株式会社 State estimation device, state estimation method, and state estimation program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10902331B2 (en) * 2016-08-19 2021-01-26 Massachusetts Institute Of Technology Systems and methods for providing visual allocation management
JP6952299B2 (en) * 2017-03-28 2021-10-20 国立大学法人大阪大学 Sleep depth judgment system, sleep depth judgment device and sleep depth judgment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005239A (en) * 2007-06-25 2009-01-08 Sony Computer Entertainment Inc Encoder and encoding method
JP2017217472A (en) * 2016-06-02 2017-12-14 オムロン株式会社 State estimation device, state estimation method, and state estimation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090402A1 (en) * 2019-11-06 2021-05-14 日本電気株式会社 Stress estimation device, stress estimation method, and recording medium
WO2023135632A1 (en) * 2022-01-11 2023-07-20 日本電気株式会社 Stress estimation device, stress estimation method, and storage medium

Also Published As

Publication number Publication date
JPWO2019146123A1 (en) 2021-01-14
JP6879388B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP7014129B2 (en) Estimator generator, monitoring device, estimator generator method and estimator generator
US20200034739A1 (en) Method and device for estimating user's physical condition
US20200037732A1 (en) Beauty counseling information providing device and beauty counseling information providing method
CN111598038B (en) Facial feature point detection method, device, equipment and storage medium
JP2016515242A (en) Method and apparatus for gazing point estimation without calibration
KR20150113700A (en) System and method for diagnosis
WO2019146123A1 (en) Alertness estimation device, alertness estimation method, and computer readable recording medium
KR20200036085A (en) Artificial intelligence device
KR20200080419A (en) Hand gesture recognition method using artificial neural network and device thereof
US20220330848A1 (en) Method, Computer Program, and Device for Determining Vehicle Occupant Respiration
WO2021029881A1 (en) Systems and methods using person recognizability across a network of devices
CN113255648B (en) Sliding window frame selection method and terminal based on image recognition
KR102076759B1 (en) Multi-sensor based noncontact sleep monitoring method and apparatus using ensemble of deep neural network and random forest
CN116916504B (en) Intelligent control method, device and equipment for dimming panel and storage medium
Toivanen An advanced Kalman filter for gaze tracking signal
WO2020209117A1 (en) Stress estimation device, stress estimation method, and computer-readable recording medium
CA3139034A1 (en) System and method for filtering time-varying data for physiological signal prediction
CN109620269B (en) Fatigue detection method, device, equipment and readable storage medium
Boudaoud et al. Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram
KR102495889B1 (en) Method for detecting facial wrinkles using deep learning-based wrinkle detection model trained according to semi-automatic labeling and apparatus for the same
JP7211441B2 (en) Arousal level estimation device, arousal level estimation method, and program
EP2793102A2 (en) Information processing device
JP2023089729A (en) Computer system and emotion estimation method
KR20120072291A (en) Method for imputating of missing values using incremental expectation maximization principal component analysis
KR101508842B1 (en) Systme and method for providign evolutionary adaptive eye tracking for low-cost human computer interaction application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902266

Country of ref document: EP

Kind code of ref document: A1