WO2019146037A1 - Motor drive device and air conditioner - Google Patents

Motor drive device and air conditioner Download PDF

Info

Publication number
WO2019146037A1
WO2019146037A1 PCT/JP2018/002283 JP2018002283W WO2019146037A1 WO 2019146037 A1 WO2019146037 A1 WO 2019146037A1 JP 2018002283 W JP2018002283 W JP 2018002283W WO 2019146037 A1 WO2019146037 A1 WO 2019146037A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control unit
motor drive
temperature
motor
Prior art date
Application number
PCT/JP2018/002283
Other languages
French (fr)
Japanese (ja)
Inventor
嘉仁 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019567462A priority Critical patent/JP6847273B2/en
Priority to PCT/JP2018/002283 priority patent/WO2019146037A1/en
Publication of WO2019146037A1 publication Critical patent/WO2019146037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a motor drive device and an air conditioner for driving and controlling a motor of an indoor unit.
  • drive control of the motor is performed using a three-phase inverter circuit that converts DC power into three-phase AC power from the viewpoint of energy efficiency and economy.
  • patent document 1 has three series of series circuits of IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which are switching elements, and two series circuits of each series circuit are included. Two-phase energization in which each IGBT is turned on and off and the MOSFETs in the remaining series circuit are turned on, and each IGBT in each series circuit is turned on and off in a different phase from each other, and each MOSFET is turned on in the opposite phase The efficiency of energy conversion is improved by selectively performing three-phase energization to turn off according to the level of the load.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • motor drive control is performed when the temperature of the motor drive control unit that controls the motor by outputting a signal for driving the motor to the inverter circuit exceeds the operation guaranteed temperature range. It may not work properly and may lead to fan motor drive stoppage.
  • This invention is made in view of the above, Comprising: It aims at obtaining the motor drive device which can suppress the stop of a motor.
  • the present invention provides a power generation unit for converting power supplied from a commercial power supply into DC power, and two-phase modulation or three-phase modulation for driving a motor. And an inverter output unit which is controlled by the motor drive control unit and supplies alternating current power obtained by converting direct current power according to a modulation scheme to the motor.
  • a temperature detection unit for detecting the temperature of the inverter output unit or the temperature of the motor drive control unit
  • a current detection unit for detecting the current supplied to the motor from the inverter output unit
  • a current threshold for detecting the current supplied to the motor from the inverter output unit
  • the controller is provided with a control unit that causes the motor drive control unit to change the modulation scheme from three-phase modulation to two-phase modulation when the temperature is smaller than the value and the temperature is equal to or higher than the first temperature threshold.
  • the motor drive device has an effect that it is possible to suppress the stop of the motor.
  • the figure which shows the structure of the air conditioner concerning Embodiment 1 of this invention Flow chart for explaining the operation of the air conditioner according to the first embodiment
  • the figure which shows the time change of the electric current threshold value concerning Example 1, the demagnetizing current value, and an electric current The figure which shows the time change of the 1st and 2nd temperature threshold value, the threshold value of overheat protection, and electric current concerning Embodiment 1
  • the figure which shows the time change of the 1st, 2nd and 3rd temperature threshold value, the threshold value of overheat protection, and electric current concerning Embodiment 1 The figure which shows the structure of another air conditioner concerning Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of an air conditioner 100 according to Embodiment 1 of the present invention.
  • the air conditioner 100 includes a motor drive device 200 and a motor 13.
  • the motor drive device 200 includes a power supply generation unit 2, a power supply circuit unit 3, a main body control unit 4, a drive power supply unit 5, an inverter output unit 6 which is a switching circuit having an inverter element, and a motor drive control unit 7. , A temperature detection unit 10, a current detection unit 11, and a voltage detection unit 12.
  • the input side of the power supply generation unit 2 is connected to the commercial power supply 1, and the output side is connected to the power supply circuit unit 3 and the inverter output unit 6.
  • the power supply generation unit 2 converts the first AC power supplied from the commercial power supply 1 into DC power, and supplies DC power to the power supply circuit unit 3 and the inverter output unit 6.
  • the motor drive control unit 7 outputs a signal for driving the motor 13 to the inverter output unit 6 to control the inverter output unit 6.
  • a specific example of the inverter output unit 6 is a circuit in which three series circuits in which two switching elements as inverter elements are connected in series are connected in parallel corresponding to three phases.
  • the modulation method is three-phase modulation
  • three-phase AC power whose phase is shifted by 120 ° C. is output from the inverter output unit 6, and when the modulation method is two-phase modulation, the phases are 90 mutually from the inverter output unit 6.
  • Two-phase AC power shifted by ° C. is output. Switching between three-phase modulation and two-phase modulation is performed by changing the switching pattern of the switching element of the circuit.
  • the motor drive control unit 7 can switch the modulation scheme in which the inverter output unit 6 drives the motor 13 to two-phase modulation or three-phase modulation by changing the switching pattern.
  • the inverter output unit 6 supplies the motor 13 with second alternating current power obtained by converting the direct current power supplied from the power supply generation unit 2 in accordance with the modulation method.
  • the power supply circuit unit 3 is connected to each of the main body control unit 4, the drive power supply unit 5 and the temperature detection unit 10, and supplies power to each of them.
  • the drive power supply unit 5 is connected to each of the inverter output unit 6 and the motor drive control unit 7 to supply power to each.
  • the main body control unit 4 is a control unit of the entire air conditioner 100, and is connected to the motor drive control unit 7.
  • the main body control unit 4 and the motor drive control unit 7 can communicate with each other in both directions. The mutual communication between the main body control unit 4 and the motor drive control unit 7 can be performed periodically.
  • the main control unit 4 is also connected to the drive power supply unit 5 so that the drive power supply unit 5 can be controlled to either an on state for supplying power or an off state for not supplying power.
  • the main control unit 4 turns on or off the drive power supply unit 5 as needed to control the presence or absence of power supply from the drive power supply unit 5 to the inverter output unit 6 and the motor drive control unit 7. In FIG.
  • the main control unit 4 is connected to the drive power supply unit 5 to be able to control the drive power supply unit 5, but the drive is performed without the main control unit 4 controlling the drive power supply unit 5.
  • the power supply unit 5 may be configured to always supply power.
  • a control unit in which the main body control unit 4 and the motor drive control unit 7 are integrated may be provided in the motor drive device 200, and the integrated control unit controls the entire air conditioner 100. Alternatively, the integrated control unit may control the entire motor drive device 200.
  • the temperature detection unit 10 is a temperature detection unit of a motor drive circuit that detects the temperature around the drive circuit of the motor 13 such as the temperature of the inverter output unit 6 or the temperature of the motor drive control unit 7.
  • the temperature detection unit 10 may include a plurality of detection units for detecting each temperature, such as a detection unit for detecting the temperature of the inverter output unit 6 and a detection unit for detecting the temperature of the motor drive control unit 7. Absent.
  • the temperature detection unit 10 transmits the detected temperature to the main control unit 4.
  • the current detection unit 11 detects the current supplied from the inverter output unit 6 to the motor 13, and transmits the detected current value to the motor drive control unit 7.
  • the current value transmitted to the motor drive control unit 7 is transmitted to the main body control unit 4 by the motor drive control unit 7.
  • the voltage detection unit 12 detects the voltage supplied from the power supply generation unit 2 to the inverter output unit 6, and transmits the detected voltage value to the motor drive control unit 7.
  • the motor drive control unit 7 or the main body control unit 4 can control the inverter output unit 6 using the voltage value in addition to the current value detected by the current detection unit 11.
  • FIG. 2 is a flowchart for explaining the operation of the air conditioner 100 according to the first embodiment.
  • step S1 the main control unit 4 turns on the drive power supply unit 5 (step S1). As a result, power feeding to the motor drive control unit 7 is started, and the motor drive control unit 7 starts up.
  • the main control unit 4 does not control the drive power supply unit 5 and the drive power supply unit 5 is always on, the operation of step S1 is omitted.
  • step S2 communication is started between the main control unit 4 and the motor drive control unit 7 (step S2).
  • the motor drive control unit 7 receives a motor drive command from the main body control unit 4, the motor drive control unit 7 outputs a signal for driving the motor 13 to the inverter output unit 6 (step S3) to drive the motor 13 (step S4).
  • the modulation method of motor drive here is three-phase modulation.
  • the temperature detection unit 10 and the current detection unit 11 each start detection, and transmit the detection result to the main control unit 4 (step S5).
  • the temperature detection unit 10 directly transmits the temperature that is the detection result to the main body control unit 4, and the current detection unit 11 transmits the current value that is the detection result to the main body control unit 4 via the motor drive control unit 7 once.
  • the storage unit of the main body control unit 4 holds the current threshold value for the current value detected by the current detection unit 11.
  • the current threshold value is set to a current value such that the driven motor 13 is not broken.
  • FIG. 3 is a diagram showing temporal changes of the current threshold value, the demagnetizing current value, and the current according to the first embodiment.
  • a demagnetization current value exists as a value of the current at which the magnet of the motor 13 demagnetizes.
  • the current threshold value supplied to the motor 13 rises and reaches the demagnetizing current value. Destruction can occur. Therefore, the current threshold value is set to a current value lower than the demagnetizing current value so that the motor 13 is not broken.
  • the storage unit of the main body control unit 4 holds first and second temperature threshold values for the temperature detected by the temperature detection unit 10.
  • the first and second temperature threshold values are set to values that do not destroy the drive circuit due to temperature rise or values that do not stop the driving of the motor 13.
  • FIG. 4 is a diagram showing time changes of first and second temperature threshold values, a threshold value of overheat protection, and current according to the first embodiment.
  • the first and second temperature threshold values are set to a temperature at which the drive circuit does not break or a temperature at which the drive of the motor 13 is not stopped. It may be set so as not to exceed, or set so as not to exceed the operation guaranteed temperature range of the motor drive control unit 7 performing motor drive control.
  • the threshold value of the overheat protection of the inverter element as an example of the temperature at which the first and second temperature thresholds should not exceed. Then, the first temperature threshold is provided at a temperature lower than the threshold of the overheat protection. Further, a second temperature threshold is provided at a temperature lower than the thermal protection threshold and higher than the first temperature threshold. That is, the second temperature threshold is greater than the first temperature threshold. As a specific example, the first temperature threshold is 90 ° C. and the second temperature threshold is 100 ° C.
  • step S5 the body control unit 4 determines whether the current value detected by the current detection unit 11 is equal to or greater than the set current threshold (step S6). If the detected current value is equal to or higher than the current threshold (step S6: Yes), the main control unit 4 transmits a command to reduce the target number of revolutions of the motor 13 to the motor drive control unit 7 to drive the motor
  • the control unit 7 controls the inverter output unit 6 to decrease the target rotation speed (step S7). In this manner, the target rotational speed of the motor 13 is decreased, and the current value detected by the current detection unit 11 is decreased as shown in FIG. 3, so that the current value does not reach the demagnetization current value.
  • step S7 the process returns to step S5.
  • Step S6 determines whether the temperature detected by the temperature detection unit 10 is equal to or higher than the set first temperature threshold It is determined whether or not it is (step S8). If the detected temperature is smaller than the set first temperature threshold (step S8: No), the main control unit 4 continues the current motor control (step S9). After step S9, the process returns to step S5.
  • the main control unit 4 changes the motor drive modulation method from three phase modulation to two phase modulation. It transmits to the motor drive control unit 7 to control the inverter output unit 6 to change the modulation scheme to two-phase modulation to the motor drive control unit 7 (step S10).
  • the modulation method By setting the modulation method to two-phase modulation, the switching frequency is reduced compared to three-phase modulation, and hence the switching loss at the time of driving the motor can be reduced. .
  • the temperature detection unit 10 and the current detection unit 11 transmit the detection result to the main control unit 4 again (step S11).
  • the temperature detection unit 10 directly transmits the detected temperature to the main control unit 4, and the current detection unit 11 transmits the detected current value to the main control unit 4 via the motor drive control unit 7.
  • the body control unit 4 determines whether the current value detected by the current detection unit 11 is equal to or greater than the set current threshold (step S12). If the detected current value is equal to or greater than the current threshold (step S12: Yes), the main control unit 4 decreases the target number of revolutions of the motor 13 (step S13). The target rotation speed of the motor 13 is decreased to decrease the current value detected by the current detection unit 11, so that the current value does not reach the demagnetization current value. After step S13, the process returns to step S11.
  • step S12 determines whether the detected current value is smaller than the current threshold (step S12: No). If the detected current value is smaller than the current threshold (step S12: No), the main control unit 4 determines whether the temperature detected by the temperature detection unit 10 is equal to or higher than the set second temperature threshold It is determined whether or not it is (step S14). If the detected temperature is smaller than the set second temperature threshold (step S14: No), the main control unit 4 continues the current motor control (step S15). After step S15, the process returns to step S11.
  • step S14 If the detected temperature is equal to or higher than the set second temperature threshold (step S14: Yes), the main control unit 4 decreases the target rotation speed of the motor 13 as shown in FIG. 4 (step S13). ). That is, even if the motor drive modulation method is two-phase modulation, the temperature rise is not suppressed, so the temperature rise is suppressed by reducing the target rotational speed, and the drive of the motor 13 is stopped due to overheating or the drive circuit is broken. Do not do After step S13, the process returns to step S11.
  • the motor drive device 200 can suppress the stop by continuing the drive of the motor 13 as much as possible regardless of the temperature around the motor drive circuit. become. That is, it is possible to reduce the frequency at which the drive of the motor 13 is stopped for destruction or protection of the drive circuit of the motor 13. And by continuing to drive the motor 13, comfort can be maintained.
  • step S10 when the modulation scheme is changed to two-phase modulation to suppress a temperature rise in step S10, the process does not return to three-phase modulation thereafter.
  • three-phase modulation has the advantage that the carrier sound is smaller than two-phase modulation. Therefore, when the temperature detected by the temperature detection unit 10 of the motor drive device 200 becomes lower than another threshold temperature lower than the first temperature threshold after suppressing the temperature rise by the two-phase modulation. It is possible to change the modulation scheme back to three-phase modulation to reduce carrier noise and further improve the user's comfort.
  • FIG. 5 is a flowchart including an operation of changing the modulation method of the motor 13 according to the first embodiment from two-phase modulation to three-phase modulation.
  • FIG. 6 is a diagram showing time changes of the first, second and third temperature thresholds, the overheat protection threshold and the current according to the first embodiment.
  • FIG. 6 shows, in addition to FIG. 4, a third temperature threshold with respect to the temperature detected by the temperature detection unit 10.
  • the third temperature threshold is set to a temperature lower than the first temperature threshold, that is, a smaller value, and the storage unit of the body control unit 4 adds to the first and second temperature thresholds.
  • the third temperature threshold is also held.
  • the first temperature threshold is 90.degree. C.
  • the second temperature threshold is 100.degree. C.
  • the third temperature threshold is 80.degree.
  • step S10 the motor 13 is driven by two-phase modulation.
  • step S11, S12, S13 and S14 are the same operations as steps S11, S12, S13 and S14 in FIG.
  • steps S11, S12, S13 and S14 in order to return the modulation scheme to three-phase modulation, differences from step S14 onward in FIG. 2 will be described.
  • step S14 determines that the temperature detected by the temperature detection unit 10 is the third temperature threshold. It is determined whether it is less than or equal to the value (step S16). If the detected temperature is higher than the set third temperature threshold (step S16: No), the main control unit 4 continues the current motor control (step S17). After step S17, the process returns to step S11.
  • step S16 If the detected temperature is less than or equal to the set third temperature threshold (step S16: Yes), the body control unit 4 changes the motor drive modulation method from two phase modulation to three phase modulation. It transmits to the motor drive control unit 7 to control the inverter output unit 6 to change the modulation scheme to three-phase modulation to the motor drive control unit 7 (step S18).
  • step S18 the process may proceed to step S5 of FIG. That is, the step of steps S11 to S15 of FIG. 2 is replaced with steps S11 to S18 of FIG. 5, and after step S18, if the process proceeds to step S5 of FIG. It is also possible to control to switch between the two phase modulation and the two phase modulation as appropriate.
  • the motor drive device 200 can continue the drive of the motor 13 as much as possible regardless of the temperature around the motor drive circuit and suppress the stop. Since the carrier noise of the motor 13 can be reduced as much as possible, the comfort can be further maintained.
  • FIG. 7 is a diagram showing the configuration of another air conditioner 101 according to the first embodiment.
  • the air conditioner 101 includes a motor drive device 201 and a motor 13.
  • the motor drive device 201 has a configuration in which the voltage detection unit 12 is removed from the motor drive device 200 of FIG. 1.
  • the air conditioner 101 of FIG. 7 having a simpler configuration than the air conditioner 100, the operations of FIGS. 2 and 5 are possible in the same manner as described above, and the same effects as described above are obtained.
  • FIG. 8 is a diagram showing the configuration of the air conditioner 102 according to Embodiment 2 of the present invention.
  • the air conditioner 102 of FIG. 8 includes a motor drive device 202 and a motor 13.
  • the power supply circuit unit 3 is connected to each of the body control unit 4 and the drive power supply unit 5 to supply power thereto. doing.
  • the drive power supply unit 5 of the motor drive device 202 is connected to each of the inverter output unit 6, the motor drive control unit 7, and the temperature detection unit 10, and supplies power to each of them.
  • the temperature detection unit 10 of the motor drive device 202 transmits the temperature, which is the detection result, to the main control unit 4 via the motor drive control unit 7 in the same manner as the current detection unit 11.
  • the main control unit 4 can control the drive power supply unit 5 in the on state or the off state.
  • Drive power supply unit 5 starts power supply to inverter output unit 6, motor drive control unit 7 and temperature detection unit 10 when it is turned on, and when it is turned off, inverter output unit 6, motor drive control unit 7 and temperature detection Stop the power supply to the unit 10.
  • the configuration and operation of the air conditioner 102 other than the above are the same as those of the air conditioner 100 of FIG.
  • the temperature detection unit 10 does not have to detect the temperature around the motor drive circuit.
  • the main control unit 4 turns the drive power supply unit 5 off, and the power supply to the temperature detection unit 10 is stopped. . Thereby, energy saving can be achieved from the motor drive device 200 according to the first embodiment.
  • FIGS. 2 and 5 are possible as in the first embodiment, and it goes without saying that the same effects as in the first embodiment can be obtained. Moreover, it is also possible to remove the voltage detection part 12 from the motor drive device 202 like the motor drive device 201 of FIG.
  • FIG. 9 is a block diagram showing the configuration of the microcomputer 50 according to the first and second embodiments.
  • the main control unit 4 according to the first and second embodiments can be realized by the microcomputer 50.
  • the microcomputer 50 includes a central processing unit (CPU) 51 that executes computations and control, a random access memory (RAM) 52 that the CPU 51 uses for a work area, and a read only memory (ROM) 53 that stores programs and data. It includes an I / O (Input / Output) 54 which is hardware for exchanging signals with the outside, and a peripheral device 55 including an oscillator for generating a clock.
  • the ROM 53 may be a non-volatile memory such as a rewritable flash memory. Therefore, the storage unit of the main body control unit 4 storing the current threshold and the first, second and third temperature thresholds is realized by the ROM 53 or the like.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
  • SYMBOLS 1 commercial power supply
  • 2 power supply generation part 3 power supply circuit part
  • 4 main body control part 5 drive power supply part
  • 6 inverter output part 7 motor drive control part
  • 10 temperature detection part 11 current detection part
  • 12 voltage detection part 13 motor
  • 50 microcomputer 51 CPU, 52 RAM, 53 ROM, 54 I / O, 55 peripheral devices, 100, 101, 102 air conditioners, 200, 201, 202 motor drive devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

This motor drive device (200) is provided with: a power supply generation unit (2) for converting power supplied from a commercial power supply (1) to a DC power; a motor drive control unit (7) capable of switching a modulation method for driving a motor (13) to a two-phase modulation or a three-phase modulation; an inverter output unit (6) controlled by the motor drive control unit (7) and supplying an AC power to the motor (13), said AC power being obtained by converting the DC power according to the modulation method; a temperature detection unit (10) for detecting the temperature of the inverter output unit (6) or the temperature of the motor drive control unit (7); a current detection unit (11) for detecting current supplied from the inverter output unit (6) to the motor (13); and a control unit (4) for, when the current is smaller than a current threshold value and the temperature is a first temperature threshold value or more, instructing the motor drive control unit (7) to change the modulation method from the three-phase modulation to the two-phase modulation.

Description

モータ駆動装置および空気調和機Motor drive device and air conditioner
 本発明は、室内機のモータを駆動制御するモータ駆動装置および空気調和機に関する。 The present invention relates to a motor drive device and an air conditioner for driving and controlling a motor of an indoor unit.
 モータを搭載した機器では、エネルギー効率及び経済性の観点から直流電力を三相交流電力に変換する三相インバータ回路を用いてモータの駆動制御を行っている。 In an apparatus equipped with a motor, drive control of the motor is performed using a three-phase inverter circuit that converts DC power into three-phase AC power from the viewpoint of energy efficiency and economy.
 特許文献1においては、スイッチング素子であるIGBT(Insulated Gate Bipolar Transistor)およびMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の直列回路を三相分有し、各直列回路のうち2つの直列回路のそれぞれのIGBTがオン、オフして残りの1つの直列回路のMOSFETがオンする二相通電と、各直列回路のそれぞれのIGBTが互いに異なる位相でオン、オフしそれと逆相でそれぞれのMOSFETがオン、オフする三相通電とを、負荷の高低に応じて選択的に実行することでエネルギー変換の効率向上を図っている。 In patent document 1, it has three series of series circuits of IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) which are switching elements, and two series circuits of each series circuit are included. Two-phase energization in which each IGBT is turned on and off and the MOSFETs in the remaining series circuit are turned on, and each IGBT in each series circuit is turned on and off in a different phase from each other, and each MOSFET is turned on in the opposite phase The efficiency of energy conversion is improved by selectively performing three-phase energization to turn off according to the level of the load.
特開2008-104282号公報JP 2008-104282 A
 特許文献1のような従来技術では、負荷の状況に基づいて変調方式を変更している。しかし、このような従来技術では、インバータ回路の周囲温度が高い状態であると、負荷が低い状態であってもインバータ回路のインバータ素子が高温となり、インバータ素子の過熱保護機能によりファンモータの駆動停止、さらにはインバータ素子の破壊に至ってしまうことがある。 In the prior art such as Patent Document 1, the modulation scheme is changed based on the load condition. However, in such a prior art, if the ambient temperature of the inverter circuit is high, even if the load is low, the inverter element of the inverter circuit becomes high temperature, and the overheat protection function of the inverter element stops the driving of the fan motor. Furthermore, the inverter element may be destroyed.
 また、仮にインバータ素子の温度に問題はなくても、インバータ回路にモータを駆動する信号を出力してモータを制御するモータ駆動制御部の温度が動作保証温度範囲を超えた場合にモータ駆動制御が正常に働かなくなり、ファンモータ駆動停止に至る可能性がある。 Also, even if there is no problem with the temperature of the inverter element, motor drive control is performed when the temperature of the motor drive control unit that controls the motor by outputting a signal for driving the motor to the inverter circuit exceeds the operation guaranteed temperature range. It may not work properly and may lead to fan motor drive stoppage.
 本発明は、上記に鑑みてなされたものであって、モータの停止を抑制することができるモータ駆動装置を得ることを目的とする。 This invention is made in view of the above, Comprising: It aims at obtaining the motor drive device which can suppress the stop of a motor.
 上述した課題を解決し、目的を達成するために、本発明は、商用電源から供給された電力を直流電力に変換する電源生成部と、モータを駆動する変調方式を二相変調または三相変調に切り替えることが可能なモータ駆動制御部と、モータ駆動制御部に制御されて、直流電力を変調方式に従って変換した交流電力をモータに供給するインバータ出力部を備える。さらに、本発明は、インバータ出力部の温度またはモータ駆動制御部の温度を検出する温度検出部と、インバータ出力部からモータへ供給されている電流を検出する電流検出部と、電流が電流しきい値より小さく且つ温度が第1の温度しきい値以上の場合に、モータ駆動制御部に変調方式を三相変調から二相変調に変更させる制御部を備える。 In order to solve the problems described above and to achieve the object, the present invention provides a power generation unit for converting power supplied from a commercial power supply into DC power, and two-phase modulation or three-phase modulation for driving a motor. And an inverter output unit which is controlled by the motor drive control unit and supplies alternating current power obtained by converting direct current power according to a modulation scheme to the motor. Furthermore, according to the present invention, a temperature detection unit for detecting the temperature of the inverter output unit or the temperature of the motor drive control unit, a current detection unit for detecting the current supplied to the motor from the inverter output unit, and a current threshold The controller is provided with a control unit that causes the motor drive control unit to change the modulation scheme from three-phase modulation to two-phase modulation when the temperature is smaller than the value and the temperature is equal to or higher than the first temperature threshold.
 本発明にかかるモータ駆動装置は、モータの停止を抑制することが可能になるという効果を奏する。 The motor drive device according to the present invention has an effect that it is possible to suppress the stop of the motor.
本発明の実施の形態1にかかる空気調和機の構成を示す図The figure which shows the structure of the air conditioner concerning Embodiment 1 of this invention. 実施の形態1にかかる空気調和機の動作を説明するフローチャートFlow chart for explaining the operation of the air conditioner according to the first embodiment 実施の形態1にかかる電流しきい値、減磁電流値および電流の時間変化を示す図The figure which shows the time change of the electric current threshold value concerning Example 1, the demagnetizing current value, and an electric current 実施の形態1にかかる第1および第2の温度しきい値、過熱保護のしきい値および電流の時間変化を示す図The figure which shows the time change of the 1st and 2nd temperature threshold value, the threshold value of overheat protection, and electric current concerning Embodiment 1 実施の形態1にかかるモータの変調方式を二相変調から三相変調に変更する動作を含んだフローチャートA flowchart including an operation of changing the modulation method of the motor according to the first embodiment from two-phase modulation to three-phase modulation 実施の形態1にかかる第1、第2および第3の温度しきい値、過熱保護のしきい値および電流の時間変化を示す図The figure which shows the time change of the 1st, 2nd and 3rd temperature threshold value, the threshold value of overheat protection, and electric current concerning Embodiment 1 実施の形態1にかかる別の空気調和機の構成を示す図The figure which shows the structure of another air conditioner concerning Embodiment 1. 本発明の実施の形態2にかかる空気調和機の構成を示す図The figure which shows the structure of the air conditioner concerning Embodiment 2 of this invention. 実施の形態1および2にかかるマイクロコンピュータの構成を示すブロック図Block diagram showing the configuration of the microcomputer according to the first and second embodiments
 以下に、本発明の実施の形態にかかるモータ駆動装置および空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a motor drive device and an air conditioner according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる空気調和機100の構成を示す図である。空気調和機100は、モータ駆動装置200およびモータ13を備える。モータ駆動装置200は、電源生成部2と、電源回路部3と、本体制御部4と、駆動電源供給部5と、インバータ素子を有するスイッチング回路であるインバータ出力部6と、モータ駆動制御部7と、温度検出部10と、電流検出部11と、電圧検出部12とを備える。
Embodiment 1
FIG. 1 is a diagram showing a configuration of an air conditioner 100 according to Embodiment 1 of the present invention. The air conditioner 100 includes a motor drive device 200 and a motor 13. The motor drive device 200 includes a power supply generation unit 2, a power supply circuit unit 3, a main body control unit 4, a drive power supply unit 5, an inverter output unit 6 which is a switching circuit having an inverter element, and a motor drive control unit 7. , A temperature detection unit 10, a current detection unit 11, and a voltage detection unit 12.
 電源生成部2の入力側は商用電源1に接続され、出力側は電源回路部3およびインバータ出力部6に接続される。電源生成部2は、商用電源1から供給される第一の交流電力を直流電力に変換して、電源回路部3およびインバータ出力部6に直流電力を供給する。モータ駆動制御部7は、モータ13を駆動する信号をインバータ出力部6へ出力してインバータ出力部6を制御する。 The input side of the power supply generation unit 2 is connected to the commercial power supply 1, and the output side is connected to the power supply circuit unit 3 and the inverter output unit 6. The power supply generation unit 2 converts the first AC power supplied from the commercial power supply 1 into DC power, and supplies DC power to the power supply circuit unit 3 and the inverter output unit 6. The motor drive control unit 7 outputs a signal for driving the motor 13 to the inverter output unit 6 to control the inverter output unit 6.
 インバータ出力部6の具体例は、インバータ素子であるスイッチング素子が2つ直列接続された直列回路が三相の各相に対応して3つ並列接続された回路である。変調方式が三相変調の場合は、インバータ出力部6から位相が120℃ずつずれた三相の交流電力が出力され、変調方式が二相変調の場合は、インバータ出力部6から位相が互いに90℃ずれた二相の交流電力が出力される。三相変調と二相変調との切替えは、上記回路のスイッチング素子のスイッチングパターンを変更することにより行われる。 A specific example of the inverter output unit 6 is a circuit in which three series circuits in which two switching elements as inverter elements are connected in series are connected in parallel corresponding to three phases. When the modulation method is three-phase modulation, three-phase AC power whose phase is shifted by 120 ° C. is output from the inverter output unit 6, and when the modulation method is two-phase modulation, the phases are 90 mutually from the inverter output unit 6. Two-phase AC power shifted by ° C. is output. Switching between three-phase modulation and two-phase modulation is performed by changing the switching pattern of the switching element of the circuit.
 モータ駆動制御部7は、上記スイッチングパターンを変更することによりインバータ出力部6がモータ13を駆動する変調方式を二相変調または三相変調に切り替えることが可能である。インバータ出力部6は、電源生成部2から供給された直流電力を上記変調方式に従って変換した第二の交流電力をモータ13に供給する。 The motor drive control unit 7 can switch the modulation scheme in which the inverter output unit 6 drives the motor 13 to two-phase modulation or three-phase modulation by changing the switching pattern. The inverter output unit 6 supplies the motor 13 with second alternating current power obtained by converting the direct current power supplied from the power supply generation unit 2 in accordance with the modulation method.
 電源回路部3は、本体制御部4、駆動電源供給部5および温度検出部10のそれぞれに接続され、それぞれに電力を供給している。駆動電源供給部5は、インバータ出力部6およびモータ駆動制御部7のそれぞれに接続され、それぞれに電力を供給している。 The power supply circuit unit 3 is connected to each of the main body control unit 4, the drive power supply unit 5 and the temperature detection unit 10, and supplies power to each of them. The drive power supply unit 5 is connected to each of the inverter output unit 6 and the motor drive control unit 7 to supply power to each.
 本体制御部4は空気調和機100全体の制御部であって、モータ駆動制御部7に接続されている。本体制御部4とモータ駆動制御部7とは双方向に相互に通信を行うことができる。本体制御部4とモータ駆動制御部7との相互通信は定期的に行うことができる。本体制御部4は、駆動電源供給部5にも接続されて、電力供給を行うオン状態または電力供給を行わないオフ状態のいずれかに駆動電源供給部5を制御できるようになっている。本体制御部4は、必要に応じて駆動電源供給部5をオン状態またはオフ状態にして駆動電源供給部5からのインバータ出力部6およびモータ駆動制御部7への電力供給の有無を制御する。図1において、本体制御部4は、駆動電源供給部5に接続されて駆動電源供給部5を制御できるようになっているが、本体制御部4が駆動電源供給部5を制御しないで、駆動電源供給部5は常時電力供給を行うような構成にしても構わない。また、本体制御部4とモータ駆動制御部7とが一体化された制御部がモータ駆動装置200に設けられていてもよく、一体化された制御部が空気調和機100全体を制御する構成であってもよいし、一体化された制御部がモータ駆動装置200全体を制御する構成であってもよい。 The main body control unit 4 is a control unit of the entire air conditioner 100, and is connected to the motor drive control unit 7. The main body control unit 4 and the motor drive control unit 7 can communicate with each other in both directions. The mutual communication between the main body control unit 4 and the motor drive control unit 7 can be performed periodically. The main control unit 4 is also connected to the drive power supply unit 5 so that the drive power supply unit 5 can be controlled to either an on state for supplying power or an off state for not supplying power. The main control unit 4 turns on or off the drive power supply unit 5 as needed to control the presence or absence of power supply from the drive power supply unit 5 to the inverter output unit 6 and the motor drive control unit 7. In FIG. 1, the main control unit 4 is connected to the drive power supply unit 5 to be able to control the drive power supply unit 5, but the drive is performed without the main control unit 4 controlling the drive power supply unit 5. The power supply unit 5 may be configured to always supply power. In addition, a control unit in which the main body control unit 4 and the motor drive control unit 7 are integrated may be provided in the motor drive device 200, and the integrated control unit controls the entire air conditioner 100. Alternatively, the integrated control unit may control the entire motor drive device 200.
 駆動電源供給部5は、オン状態になるとインバータ出力部6およびモータ駆動制御部7への給電を開始し、オフ状態になるとインバータ出力部6およびモータ駆動制御部7への給電を停止する。温度検出部10は、インバータ出力部6の温度またはモータ駆動制御部7の温度といったモータ13の駆動回路の周辺の温度を検出するモータ駆動回路の温度検出部である。温度検出部10は、インバータ出力部6の温度を検出する検出部とモータ駆動制御部7の温度を検出する検出部といったように、それぞれの温度を検出する複数の検出部を備えていても構わない。温度検出部10は、検出した温度を本体制御部4に送信する。電流検出部11は、インバータ出力部6からモータ13へ供給されている電流を検出し、検出した電流値をモータ駆動制御部7へ送信する。モータ駆動制御部7へ送信された電流値は、モータ駆動制御部7によって本体制御部4へ送信される。電圧検出部12は、電源生成部2からインバータ出力部6に供給されている電圧を検出し、検出した電圧値をモータ駆動制御部7に送信する。モータ駆動制御部7または本体制御部4は、電流検出部11が検出した電流値に加えて、上記電圧値も用いてインバータ出力部6を制御することができる。 When the drive power supply unit 5 is turned on, power supply to the inverter output unit 6 and the motor drive control unit 7 is started, and when it is turned off, power supply to the inverter output unit 6 and the motor drive control unit 7 is stopped. The temperature detection unit 10 is a temperature detection unit of a motor drive circuit that detects the temperature around the drive circuit of the motor 13 such as the temperature of the inverter output unit 6 or the temperature of the motor drive control unit 7. The temperature detection unit 10 may include a plurality of detection units for detecting each temperature, such as a detection unit for detecting the temperature of the inverter output unit 6 and a detection unit for detecting the temperature of the motor drive control unit 7. Absent. The temperature detection unit 10 transmits the detected temperature to the main control unit 4. The current detection unit 11 detects the current supplied from the inverter output unit 6 to the motor 13, and transmits the detected current value to the motor drive control unit 7. The current value transmitted to the motor drive control unit 7 is transmitted to the main body control unit 4 by the motor drive control unit 7. The voltage detection unit 12 detects the voltage supplied from the power supply generation unit 2 to the inverter output unit 6, and transmits the detected voltage value to the motor drive control unit 7. The motor drive control unit 7 or the main body control unit 4 can control the inverter output unit 6 using the voltage value in addition to the current value detected by the current detection unit 11.
 次に、実施の形態1にかかる空気調和機100の動作について説明する。電源生成部2に商用電源1が接続されると直流電力が生成され、生成された直流電力は電源回路部3およびインバータ出力部6に供給される。電源回路部3は、上記直流電力が供給されると本体制御部4、駆動電源供給部5および温度検出部10のそれぞれに対して電力を供給する。本体制御部4、駆動電源供給部5および温度検出部10への電力の供給が開始されてからの動作を以下に図2を用いて説明する。図2は、実施の形態1にかかる空気調和機100の動作を説明するフローチャートである。 Next, the operation of the air conditioner 100 according to the first embodiment will be described. When the commercial power supply 1 is connected to the power supply generation unit 2, DC power is generated, and the generated DC power is supplied to the power supply circuit unit 3 and the inverter output unit 6. The power supply circuit unit 3 supplies power to each of the main body control unit 4, the drive power supply unit 5 and the temperature detection unit 10 when the DC power is supplied. The operation after the supply of power to the main control unit 4, the drive power supply unit 5 and the temperature detection unit 10 is started will be described below with reference to FIG. FIG. 2 is a flowchart for explaining the operation of the air conditioner 100 according to the first embodiment.
 まず、本体制御部4は駆動電源供給部5をオン状態にする(ステップS1)。これにより、モータ駆動制御部7への給電が開始されて、モータ駆動制御部7が立ち上がる。なお、本体制御部4が駆動電源供給部5を制御しないで、駆動電源供給部5が常時オン状態である場合は、ステップS1の動作は省かれる。 First, the main control unit 4 turns on the drive power supply unit 5 (step S1). As a result, power feeding to the motor drive control unit 7 is started, and the motor drive control unit 7 starts up. When the main control unit 4 does not control the drive power supply unit 5 and the drive power supply unit 5 is always on, the operation of step S1 is omitted.
 ステップS1の後、本体制御部4とモータ駆動制御部7との間で通信が開始される(ステップS2)。本体制御部4からモータ駆動制御部7がモータ駆動指令を受け取ると、モータ駆動制御部7はモータ13を駆動する信号をインバータ出力部6へ出力し(ステップS3)、モータ13が駆動する(ステップS4)。なお、ここでのモータ駆動の変調方式は三相変調であるとする。モータ13が駆動を開始した後、温度検出部10および電流検出部11はそれぞれ検出を開始し、検出結果を本体制御部4に送信する(ステップS5)。温度検出部10は、本体制御部4へ検出結果である温度を直接送信し、電流検出部11は、モータ駆動制御部7を一旦介して本体制御部4に検出結果である電流値を送信する。 After step S1, communication is started between the main control unit 4 and the motor drive control unit 7 (step S2). When the motor drive control unit 7 receives a motor drive command from the main body control unit 4, the motor drive control unit 7 outputs a signal for driving the motor 13 to the inverter output unit 6 (step S3) to drive the motor 13 (step S4). Here, it is assumed that the modulation method of motor drive here is three-phase modulation. After the motor 13 starts driving, the temperature detection unit 10 and the current detection unit 11 each start detection, and transmit the detection result to the main control unit 4 (step S5). The temperature detection unit 10 directly transmits the temperature that is the detection result to the main body control unit 4, and the current detection unit 11 transmits the current value that is the detection result to the main body control unit 4 via the motor drive control unit 7 once. .
 本体制御部4の記憶部は、電流検出部11が検出した電流値に対する電流しきい値を保持している。電流しきい値は、駆動されるモータ13が破壊されないような電流値に設定される。図3は、実施の形態1にかかる電流しきい値、減磁電流値および電流の時間変化を示す図である。図3に示すように、モータ13の磁石が減磁してしまう電流の値として減磁電流値が存在する。空気調和機100の風路に埃等が堆積することでファンモータであるモータ13の負荷が上昇するとモータ13へ供給されている電流値が上昇し、減磁電流値に達すると、モータ13の破壊が発生する可能性がある。したがって、電流しきい値は、モータ13が破壊されないように減磁電流値よりも低い電流値に設定されている。 The storage unit of the main body control unit 4 holds the current threshold value for the current value detected by the current detection unit 11. The current threshold value is set to a current value such that the driven motor 13 is not broken. FIG. 3 is a diagram showing temporal changes of the current threshold value, the demagnetizing current value, and the current according to the first embodiment. As shown in FIG. 3, a demagnetization current value exists as a value of the current at which the magnet of the motor 13 demagnetizes. When the load of the motor 13 which is a fan motor rises due to the accumulation of dust and the like in the air passage of the air conditioner 100, the current value supplied to the motor 13 rises and reaches the demagnetizing current value. Destruction can occur. Therefore, the current threshold value is set to a current value lower than the demagnetizing current value so that the motor 13 is not broken.
 さらに、本体制御部4の記憶部は、温度検出部10が検出した温度に対する第1および第2の温度しきい値を保持している。第1および第2の温度しきい値は、温度上昇によって駆動回路が破壊しないような値またはモータ13の駆動が停止しないような値に設定される。図4は、実施の形態1にかかる第1および第2の温度しきい値、過熱保護のしきい値および電流の時間変化を示す図である。第1および第2の温度しきい値を駆動回路が破壊しないような温度またはモータ13の駆動が停止しないような温度に設定するとは、インバータ出力部6のインバータ素子の過熱保護のしきい値を超えないように設定したり、モータ駆動制御を行っているモータ駆動制御部7の動作保証温度範囲を超えないように設定したりすることが挙げられる。図4では、第1および第2の温度しきい値が超えるべきではない温度の例としてインバータ素子の過熱保護のしきい値を示す。そしてこの過熱保護のしきい値よりも低い温度に第1の温度しきい値を設ける。さらに、この過熱保護のしきい値よりも低く且つ第1の温度しきい値より高い温度に第2の温度しきい値を設ける。すなわち、第2の温度しきい値は第1の温度しきい値より大きい。具体例として、第1の温度しきい値は90℃で、第2の温度しきい値は100℃である。 Furthermore, the storage unit of the main body control unit 4 holds first and second temperature threshold values for the temperature detected by the temperature detection unit 10. The first and second temperature threshold values are set to values that do not destroy the drive circuit due to temperature rise or values that do not stop the driving of the motor 13. FIG. 4 is a diagram showing time changes of first and second temperature threshold values, a threshold value of overheat protection, and current according to the first embodiment. The first and second temperature threshold values are set to a temperature at which the drive circuit does not break or a temperature at which the drive of the motor 13 is not stopped. It may be set so as not to exceed, or set so as not to exceed the operation guaranteed temperature range of the motor drive control unit 7 performing motor drive control. FIG. 4 shows the threshold value of the overheat protection of the inverter element as an example of the temperature at which the first and second temperature thresholds should not exceed. Then, the first temperature threshold is provided at a temperature lower than the threshold of the overheat protection. Further, a second temperature threshold is provided at a temperature lower than the thermal protection threshold and higher than the first temperature threshold. That is, the second temperature threshold is greater than the first temperature threshold. As a specific example, the first temperature threshold is 90 ° C. and the second temperature threshold is 100 ° C.
 ステップS5の後、本体制御部4は、電流検出部11により検出された電流値が設定された電流しきい値以上であるか否かを判定する(ステップS6)。検出された電流値が電流しきい値以上である場合(ステップS6:Yes)、本体制御部4は、モータ13の目標回転数を減少させる指令をモータ駆動制御部7に送信して、モータ駆動制御部7に目標回転数を減少させるようにインバータ出力部6を制御させる(ステップS7)。このようにしてモータ13の目標回転数を減少させて、図3に示すように電流検出部11が検出する電流値を下げさせることにより、電流値が減磁電流値に至らないようにする。ステップS7の後は、ステップS5に戻る。 After step S5, the body control unit 4 determines whether the current value detected by the current detection unit 11 is equal to or greater than the set current threshold (step S6). If the detected current value is equal to or higher than the current threshold (step S6: Yes), the main control unit 4 transmits a command to reduce the target number of revolutions of the motor 13 to the motor drive control unit 7 to drive the motor The control unit 7 controls the inverter output unit 6 to decrease the target rotation speed (step S7). In this manner, the target rotational speed of the motor 13 is decreased, and the current value detected by the current detection unit 11 is decreased as shown in FIG. 3, so that the current value does not reach the demagnetization current value. After step S7, the process returns to step S5.
 検出された電流値が電流しきい値より小さい場合(ステップS6:No)、本体制御部4は、温度検出部10により検出された温度が設定された第1の温度しきい値以上であるか否かを判定する(ステップS8)。検出された温度が設定された第1の温度しきい値より小さい場合(ステップS8:No)、本体制御部4は、現在のモータ制御を継続する(ステップS9)。ステップS9の後は、ステップS5に戻る。 If the detected current value is smaller than the current threshold (Step S6: No), the main control unit 4 determines whether the temperature detected by the temperature detection unit 10 is equal to or higher than the set first temperature threshold It is determined whether or not it is (step S8). If the detected temperature is smaller than the set first temperature threshold (step S8: No), the main control unit 4 continues the current motor control (step S9). After step S9, the process returns to step S5.
 検出された温度が設定された第1の温度しきい値以上である場合(ステップS8:Yes)、本体制御部4は、モータ駆動の変調方式を三相変調から二相変調に変更させる指令をモータ駆動制御部7に送信して、モータ駆動制御部7に変調方式を二相変調に変更するようにインバータ出力部6を制御させる(ステップS10)。変調方式を二相変調にすることにより、スイッチングの頻度が三相変調より減少するのでモータ駆動時のスイッチング損失を下げることになるので、インバータ素子の温度上昇を三相変調よりも抑えることができる。 If the detected temperature is equal to or higher than the set first temperature threshold (step S8: Yes), the main control unit 4 changes the motor drive modulation method from three phase modulation to two phase modulation. It transmits to the motor drive control unit 7 to control the inverter output unit 6 to change the modulation scheme to two-phase modulation to the motor drive control unit 7 (step S10). By setting the modulation method to two-phase modulation, the switching frequency is reduced compared to three-phase modulation, and hence the switching loss at the time of driving the motor can be reduced. .
 二相変調に変更した後、再度温度検出部10および電流検出部11は検出結果を本体制御部4に送信する(ステップS11)。温度検出部10は、検出した温度を本体制御部4へ直接送信し、電流検出部11は、モータ駆動制御部7を介して本体制御部4に検出した電流値を送信する。 After changing to the two-phase modulation, the temperature detection unit 10 and the current detection unit 11 transmit the detection result to the main control unit 4 again (step S11). The temperature detection unit 10 directly transmits the detected temperature to the main control unit 4, and the current detection unit 11 transmits the detected current value to the main control unit 4 via the motor drive control unit 7.
 ステップS11の後、本体制御部4は、電流検出部11により検出された電流値が設定された電流しきい値以上であるか否かを判定する(ステップS12)。検出された電流値が電流しきい値以上である場合(ステップS12:Yes)、本体制御部4は、モータ13の目標回転数を減少させる(ステップS13)。モータ13の目標回転数を減少させて、電流検出部11が検出する電流値を下げさせることにより、電流値が減磁電流値に至らないようにする。ステップS13の後は、ステップS11に戻る。 After step S11, the body control unit 4 determines whether the current value detected by the current detection unit 11 is equal to or greater than the set current threshold (step S12). If the detected current value is equal to or greater than the current threshold (step S12: Yes), the main control unit 4 decreases the target number of revolutions of the motor 13 (step S13). The target rotation speed of the motor 13 is decreased to decrease the current value detected by the current detection unit 11, so that the current value does not reach the demagnetization current value. After step S13, the process returns to step S11.
 検出された電流値が電流しきい値より小さい場合(ステップS12:No)、本体制御部4は、温度検出部10により検出された温度が設定された第2の温度しきい値以上であるか否かを判定する(ステップS14)。検出された温度が設定された第2の温度しきい値より小さい場合(ステップS14:No)、本体制御部4は、現在のモータ制御を継続する(ステップS15)。ステップS15の後は、ステップS11に戻る。 If the detected current value is smaller than the current threshold (step S12: No), the main control unit 4 determines whether the temperature detected by the temperature detection unit 10 is equal to or higher than the set second temperature threshold It is determined whether or not it is (step S14). If the detected temperature is smaller than the set second temperature threshold (step S14: No), the main control unit 4 continues the current motor control (step S15). After step S15, the process returns to step S11.
 検出された温度が設定された第2の温度しきい値以上である場合(ステップS14:Yes)、本体制御部4は、図4に示すようにモータ13の目標回転数を減少させる(ステップS13)。すなわち、モータ駆動の変調方式を二相変調にしても温度上昇が抑えられなかったので、目標回転数を減少させることで温度上昇を抑え、過熱によりモータ13の駆動が停止したり駆動回路が破壊したりしないようにする。ステップS13の後は、ステップS11に戻る。 If the detected temperature is equal to or higher than the set second temperature threshold (step S14: Yes), the main control unit 4 decreases the target rotation speed of the motor 13 as shown in FIG. 4 (step S13). ). That is, even if the motor drive modulation method is two-phase modulation, the temperature rise is not suppressed, so the temperature rise is suppressed by reducing the target rotational speed, and the drive of the motor 13 is stopped due to overheating or the drive circuit is broken. Do not do After step S13, the process returns to step S11.
 実施の形態1にかかるモータ駆動装置200は、以上のようにモータ13を動作させることで、モータ駆動回路の周辺の温度によらずモータ13の駆動をできるだけ継続させて停止を抑制することが可能になる。すなわち、モータ13の駆動回路の破壊または保護のためにモータ13の駆動が停止する頻度を低減することが可能である。そして、モータ13を駆動させ続けることにより、快適性を保つことができる。 By operating the motor 13 as described above, the motor drive device 200 according to the first embodiment can suppress the stop by continuing the drive of the motor 13 as much as possible regardless of the temperature around the motor drive circuit. become. That is, it is possible to reduce the frequency at which the drive of the motor 13 is stopped for destruction or protection of the drive circuit of the motor 13. And by continuing to drive the motor 13, comfort can be maintained.
 上で説明した図2のフローチャートにおいては、ステップS10において、温度上昇を抑えるために変調方式が二相変調に変更されると、その後は、三相変調には戻らない。しかし、三相変調は二相変調と比較して、キャリア音が小さいというメリットがある。したがって、二相変調により温度上昇を抑えた後、モータ駆動装置200の温度検出部10が検出する温度が第1の温度しきい値より低い温度の別のしきい値よりも低くなった場合は、変調方式を三相変調に戻して、キャリア音の低減を図って、ユーザの快適性をさらに向上させることが可能である。 In the flowchart of FIG. 2 described above, when the modulation scheme is changed to two-phase modulation to suppress a temperature rise in step S10, the process does not return to three-phase modulation thereafter. However, three-phase modulation has the advantage that the carrier sound is smaller than two-phase modulation. Therefore, when the temperature detected by the temperature detection unit 10 of the motor drive device 200 becomes lower than another threshold temperature lower than the first temperature threshold after suppressing the temperature rise by the two-phase modulation. It is possible to change the modulation scheme back to three-phase modulation to reduce carrier noise and further improve the user's comfort.
 図5は、実施の形態1にかかるモータ13の変調方式を二相変調から三相変調に変更する動作を含んだフローチャートである。図6は、実施の形態1にかかる第1、第2および第3の温度しきい値、過熱保護のしきい値および電流の時間変化を示す図である。図6は、図4に加えて、温度検出部10が検出した温度に対する第3の温度しきい値が示されている。第3の温度しきい値は、第1の温度しきい値より低い温度、すなわち小さい値に設定されており、本体制御部4の記憶部は、第1および第2の温度しきい値に加えて第3の温度しきい値も保持している。具体例として、第1の温度しきい値は90℃で、第2の温度しきい値は100℃で、第3の温度しきい値は80℃である。 FIG. 5 is a flowchart including an operation of changing the modulation method of the motor 13 according to the first embodiment from two-phase modulation to three-phase modulation. FIG. 6 is a diagram showing time changes of the first, second and third temperature thresholds, the overheat protection threshold and the current according to the first embodiment. FIG. 6 shows, in addition to FIG. 4, a third temperature threshold with respect to the temperature detected by the temperature detection unit 10. The third temperature threshold is set to a temperature lower than the first temperature threshold, that is, a smaller value, and the storage unit of the body control unit 4 adds to the first and second temperature thresholds. The third temperature threshold is also held. As a specific example, the first temperature threshold is 90.degree. C., the second temperature threshold is 100.degree. C., and the third temperature threshold is 80.degree.
 図5のフローチャートにおいて、はじめに、モータ13を二相変調にて駆動する(ステップS10’)。その後の、ステップS11,S12,S13,S14は図2のステップS11,S12,S13,S14と同じ動作であるので説明は省略する。以下、変調方式を三相変調に戻すために、図2のステップS14以降と異なる点を説明する。 In the flowchart of FIG. 5, first, the motor 13 is driven by two-phase modulation (step S10 '). The subsequent steps S11, S12, S13 and S14 are the same operations as steps S11, S12, S13 and S14 in FIG. Hereinafter, in order to return the modulation scheme to three-phase modulation, differences from step S14 onward in FIG. 2 will be described.
 検出された温度が設定された第2の温度しきい値より小さい場合(ステップS14:No)、本体制御部4は、温度検出部10により検出された温度が設定された第3の温度しきい値以下であるか否かを判定する(ステップS16)。検出された温度が設定された第3の温度しきい値より大きい場合(ステップS16:No)、本体制御部4は、現在のモータ制御を継続する(ステップS17)。ステップS17の後は、ステップS11に戻る。 If the detected temperature is lower than the set second temperature threshold (step S14: No), the main control unit 4 determines that the temperature detected by the temperature detection unit 10 is the third temperature threshold. It is determined whether it is less than or equal to the value (step S16). If the detected temperature is higher than the set third temperature threshold (step S16: No), the main control unit 4 continues the current motor control (step S17). After step S17, the process returns to step S11.
 検出された温度が設定された第3の温度しきい値以下である場合(ステップS16:Yes)、本体制御部4は、モータ駆動の変調方式を二相変調から三相変調に変更させる指令をモータ駆動制御部7に送信して、モータ駆動制御部7に変調方式を三相変調に変更するようにインバータ出力部6を制御させる(ステップS18)。ステップS18の後は、図2のステップS5へ進むようにすればよい。すなわち、図2のステップS11~S15の部分を図5のステップS11~S18に置き換えて、ステップS18の後は、図2のステップS5へ進むようにすれば、モータ駆動の変調方式を三相変調と二相変調との間で適宜切り替える制御も可能になる。 If the detected temperature is less than or equal to the set third temperature threshold (step S16: Yes), the body control unit 4 changes the motor drive modulation method from two phase modulation to three phase modulation. It transmits to the motor drive control unit 7 to control the inverter output unit 6 to change the modulation scheme to three-phase modulation to the motor drive control unit 7 (step S18). After step S18, the process may proceed to step S5 of FIG. That is, the step of steps S11 to S15 of FIG. 2 is replaced with steps S11 to S18 of FIG. 5, and after step S18, if the process proceeds to step S5 of FIG. It is also possible to control to switch between the two phase modulation and the two phase modulation as appropriate.
 実施の形態1にかかるモータ駆動装置200は、以上のようにモータ13を動作させることで、モータ駆動回路の周辺の温度によらずモータ13の駆動をできるだけ継続させて停止を抑制できることに加えて、モータ13のキャリア音もできるだけ低減することができるので、さらに快適性を保つことができる。 By operating the motor 13 as described above, the motor drive device 200 according to the first embodiment can continue the drive of the motor 13 as much as possible regardless of the temperature around the motor drive circuit and suppress the stop. Since the carrier noise of the motor 13 can be reduced as much as possible, the comfort can be further maintained.
 図7は、実施の形態1にかかる別の空気調和機101の構成を示す図である。空気調和機101は、モータ駆動装置201およびモータ13を備える。モータ駆動装置201は、図1のモータ駆動装置200から電圧検出部12を削除した構成である。空気調和機100より簡素な構成の図7の空気調和機101でも、図2および図5の動作は上記と同様に可能であり、上記と同様な効果が得られる。 FIG. 7 is a diagram showing the configuration of another air conditioner 101 according to the first embodiment. The air conditioner 101 includes a motor drive device 201 and a motor 13. The motor drive device 201 has a configuration in which the voltage detection unit 12 is removed from the motor drive device 200 of FIG. 1. With the air conditioner 101 of FIG. 7 having a simpler configuration than the air conditioner 100, the operations of FIGS. 2 and 5 are possible in the same manner as described above, and the same effects as described above are obtained.
実施の形態2.
 図8は、本発明の実施の形態2にかかる空気調和機102の構成を示す図である。図8の空気調和機102は、モータ駆動装置202およびモータ13を備える。モータ駆動装置202においては、実施の形態1にかかる図1のモータ駆動装置200と異なり、電源回路部3は、本体制御部4および駆動電源供給部5のそれぞれに接続され、それぞれに電力を供給している。モータ駆動装置202の駆動電源供給部5は、インバータ出力部6、モータ駆動制御部7および温度検出部10のそれぞれに接続され、それぞれに電力を供給している。そして、モータ駆動装置202の温度検出部10は、電流検出部11と同様にモータ駆動制御部7を介して本体制御部4に検出結果である温度を送信する。本体制御部4は、駆動電源供給部5をオン状態またはオフ状態に制御することができる。駆動電源供給部5は、オン状態になるとインバータ出力部6、モータ駆動制御部7および温度検出部10への給電を開始し、オフ状態になるとインバータ出力部6、モータ駆動制御部7および温度検出部10への給電を停止する。これ以外の空気調和機102の構成および動作は図1の空気調和機100と同様であるので、説明を省略する。
Second Embodiment
FIG. 8 is a diagram showing the configuration of the air conditioner 102 according to Embodiment 2 of the present invention. The air conditioner 102 of FIG. 8 includes a motor drive device 202 and a motor 13. In the motor drive device 202, unlike the motor drive device 200 of FIG. 1 according to the first embodiment, the power supply circuit unit 3 is connected to each of the body control unit 4 and the drive power supply unit 5 to supply power thereto. doing. The drive power supply unit 5 of the motor drive device 202 is connected to each of the inverter output unit 6, the motor drive control unit 7, and the temperature detection unit 10, and supplies power to each of them. Then, the temperature detection unit 10 of the motor drive device 202 transmits the temperature, which is the detection result, to the main control unit 4 via the motor drive control unit 7 in the same manner as the current detection unit 11. The main control unit 4 can control the drive power supply unit 5 in the on state or the off state. Drive power supply unit 5 starts power supply to inverter output unit 6, motor drive control unit 7 and temperature detection unit 10 when it is turned on, and when it is turned off, inverter output unit 6, motor drive control unit 7 and temperature detection Stop the power supply to the unit 10. The configuration and operation of the air conditioner 102 other than the above are the same as those of the air conditioner 100 of FIG.
 モータ13の駆動が停止している場合は、温度検出部10は、モータ駆動回路の周辺の温度を検出する必要がない。図8のモータ駆動装置202は、モータ13の駆動が停止している場合は、本体制御部4が駆動電源供給部5をオフ状態にしており、温度検出部10への給電が停止されている。これにより、実施の形態1にかかるモータ駆動装置200より省エネルギー化が図れる。 When the driving of the motor 13 is stopped, the temperature detection unit 10 does not have to detect the temperature around the motor drive circuit. In the motor drive device 202 of FIG. 8, when the drive of the motor 13 is stopped, the main control unit 4 turns the drive power supply unit 5 off, and the power supply to the temperature detection unit 10 is stopped. . Thereby, energy saving can be achieved from the motor drive device 200 according to the first embodiment.
 実施の形態2にかかる空気調和機102においても、図2および図5の動作は実施の形態1と同様に可能であり、実施の形態1と同様な効果が得られることは言うまでもない。また、図7のモータ駆動装置201のようにモータ駆動装置202から電圧検出部12を削除することも可能である。 Also in the air conditioner 102 according to the second embodiment, the operations shown in FIGS. 2 and 5 are possible as in the first embodiment, and it goes without saying that the same effects as in the first embodiment can be obtained. Moreover, it is also possible to remove the voltage detection part 12 from the motor drive device 202 like the motor drive device 201 of FIG.
 図9は、実施の形態1および2にかかるマイクロコンピュータ50の構成を示すブロック図である。実施の形態1および2にかかる本体制御部4はマイクロコンピュータ50で実現することができる。マイクロコンピュータ50は、演算および制御を実行するCPU(Central Processing Unit)51と、CPU51がワークエリアに用いるRAM(Random Access Memory)52と、プログラムおよびデータを記憶するROM(Read Only Memory)53と、外部と信号をやりとりするハードウェアであるI/O(Input/Output)54と、クロックを生成する発振子を含む周辺装置55と、を備える。マイクロコンピュータ50である本体制御部4が図2および図5に示したフローチャートに従って実行する制御は、ROM53に記憶されるソフトウェアであるプログラムをCPU51が実行することにより実現される。ROM53は、書き換え可能なフラッシュメモリといった不揮発性のメモリであってもよい。したがって、電流しきい値、第1、第2および第3の温度しきい値を記憶する本体制御部4の記憶部は、ROM53などにより実現される。 FIG. 9 is a block diagram showing the configuration of the microcomputer 50 according to the first and second embodiments. The main control unit 4 according to the first and second embodiments can be realized by the microcomputer 50. The microcomputer 50 includes a central processing unit (CPU) 51 that executes computations and control, a random access memory (RAM) 52 that the CPU 51 uses for a work area, and a read only memory (ROM) 53 that stores programs and data. It includes an I / O (Input / Output) 54 which is hardware for exchanging signals with the outside, and a peripheral device 55 including an oscillator for generating a clock. The control executed by the main control unit 4 which is the microcomputer 50 according to the flowcharts shown in FIGS. 2 and 5 is realized by the CPU 51 executing a program which is software stored in the ROM 53. The ROM 53 may be a non-volatile memory such as a rewritable flash memory. Therefore, the storage unit of the main body control unit 4 storing the current threshold and the first, second and third temperature thresholds is realized by the ROM 53 or the like.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
 1 商用電源、2 電源生成部、3 電源回路部、4 本体制御部、5 駆動電源供給部、6 インバータ出力部、7 モータ駆動制御部、10 温度検出部、11 電流検出部、12 電圧検出部、13 モータ、50 マイクロコンピュータ、51 CPU、52 RAM、53 ROM、54 I/O、55 周辺装置、100,101,102 空気調和機、200,201,202 モータ駆動装置。 DESCRIPTION OF SYMBOLS 1 commercial power supply, 2 power supply generation part, 3 power supply circuit part, 4 main body control part, 5 drive power supply part, 6 inverter output part, 7 motor drive control part, 10 temperature detection part, 11 current detection part, 12 voltage detection part , 13 motor, 50 microcomputer, 51 CPU, 52 RAM, 53 ROM, 54 I / O, 55 peripheral devices, 100, 101, 102 air conditioners, 200, 201, 202 motor drive devices.

Claims (8)

  1.  商用電源から供給された電力を直流電力に変換する電源生成部と、
     モータを駆動する変調方式を二相変調または三相変調に切り替えることが可能なモータ駆動制御部と、
     前記モータ駆動制御部に制御されて、前記直流電力を前記変調方式に従って変換した交流電力を前記モータに供給するインバータ出力部と、
     前記インバータ出力部の温度または前記モータ駆動制御部の温度を検出する温度検出部と、
     前記インバータ出力部から前記モータへ供給されている電流を検出する電流検出部と、
     前記電流が電流しきい値より小さく且つ前記温度が第1の温度しきい値以上の場合に、前記モータ駆動制御部に前記変調方式を三相変調から二相変調に変更させる制御部と、
     を備えるモータ駆動装置。
    A power generation unit that converts power supplied from a commercial power supply into DC power;
    A motor drive control unit capable of switching a modulation method for driving a motor to two-phase modulation or three-phase modulation;
    An inverter output unit which is controlled by the motor drive control unit and supplies alternating current power obtained by converting the direct current power according to the modulation method to the motor;
    A temperature detection unit that detects the temperature of the inverter output unit or the temperature of the motor drive control unit;
    A current detection unit that detects a current supplied from the inverter output unit to the motor;
    A control unit that causes the motor drive control unit to change the modulation scheme from three-phase modulation to two-phase modulation when the current is smaller than a current threshold and the temperature is equal to or higher than a first temperature threshold;
    A motor drive comprising:
  2.  前記制御部は、前記電流が電流しきい値以上の場合に、前記モータ駆動制御部に前記モータの目標回転数を減少させる請求項1に記載のモータ駆動装置。 The motor drive device according to claim 1, wherein the control unit causes the motor drive control unit to reduce a target rotational speed of the motor when the current is equal to or more than a current threshold value.
  3.  前記制御部は、前記電流が電流しきい値より小さく且つ前記温度が前記第1の温度しきい値より大きい第2の温度しきい値以上の場合に、前記モータ駆動制御部に前記モータの目標回転数を減少させる請求項1に記載のモータ駆動装置。 The controller sets the target of the motor to the motor drive controller when the current is smaller than a current threshold and the temperature is equal to or higher than a second temperature threshold larger than the first temperature threshold. The motor drive device according to claim 1, wherein the rotational speed is reduced.
  4.  前記制御部は、前記電流が電流しきい値より小さく且つ前記温度が前記第1の温度しきい値より小さい第3の温度しきい値以下の場合に、前記モータ駆動制御部に前記変調方式を二相変調から三相変調に変更させる請求項1に記載のモータ駆動装置。 The control unit causes the motor drive control unit to execute the modulation scheme when the current is smaller than a current threshold and the temperature is equal to or lower than a third temperature threshold smaller than the first temperature threshold. The motor drive device according to claim 1, wherein the two-phase modulation is changed to the three-phase modulation.
  5.  前記インバータ出力部および前記モータ駆動制御部に電力を供給する駆動電源供給部と、
     前記電源生成部から電力を供給されて、前記制御部、前記駆動電源供給部および前記温度検出部に電力を供給する電源回路部と、
     をさらに備え、
     前記制御部は、駆動電源供給部からの電力の供給の有無を制御する請求項1から4のいずれか1つに記載のモータ駆動装置。
    A drive power supply unit for supplying power to the inverter output unit and the motor drive control unit;
    A power supply circuit unit that is supplied with power from the power supply generation unit and supplies power to the control unit, the drive power supply unit, and the temperature detection unit;
    And further
    The motor drive device according to any one of claims 1 to 4, wherein the control unit controls presence / absence of supply of power from a drive power supply unit.
  6.  前記インバータ出力部、前記モータ駆動制御部および前記温度検出部に電力を供給する駆動電源供給部と、
     前記電源生成部から電力を供給されて、前記制御部および前記駆動電源供給部に電力を供給する電源回路部と、
     をさらに備え、
     前記制御部は、駆動電源供給部からの電力の供給の有無を制御する請求項1から4のいずれか1つに記載のモータ駆動装置。
    A drive power supply unit that supplies power to the inverter output unit, the motor drive control unit, and the temperature detection unit;
    A power supply circuit unit which is supplied with power from the power supply generation unit and supplies power to the control unit and the drive power supply unit;
    And further
    The motor drive device according to any one of claims 1 to 4, wherein the control unit controls presence / absence of supply of power from a drive power supply unit.
  7.  前記電源生成部から前記インバータ出力部に供給されている電圧を検出する電圧検出部をさらに備える請求項1から6のいずれか1つに記載のモータ駆動装置。 The motor drive device according to any one of claims 1 to 6, further comprising a voltage detection unit that detects a voltage supplied from the power supply generation unit to the inverter output unit.
  8.  請求項1から7のいずれか1つに記載のモータ駆動装置と、前記モータとを備える空気調和機。 An air conditioner comprising the motor drive device according to any one of claims 1 to 7 and the motor.
PCT/JP2018/002283 2018-01-25 2018-01-25 Motor drive device and air conditioner WO2019146037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019567462A JP6847273B2 (en) 2018-01-25 2018-01-25 Motor drive and air conditioner
PCT/JP2018/002283 WO2019146037A1 (en) 2018-01-25 2018-01-25 Motor drive device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002283 WO2019146037A1 (en) 2018-01-25 2018-01-25 Motor drive device and air conditioner

Publications (1)

Publication Number Publication Date
WO2019146037A1 true WO2019146037A1 (en) 2019-08-01

Family

ID=67394911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002283 WO2019146037A1 (en) 2018-01-25 2018-01-25 Motor drive device and air conditioner

Country Status (2)

Country Link
JP (1) JP6847273B2 (en)
WO (1) WO2019146037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051990A (en) * 2020-09-23 2022-04-04 日立グローバルライフソリューションズ株式会社 Control device and washer dryer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174888A (en) * 2005-11-25 2007-07-05 Hitachi Ltd Semiconductor device, motor equipped with it, and motor driving apparatus
JP2007288858A (en) * 2006-04-13 2007-11-01 Sharp Corp Motor controller, refrigerator, and air conditioner
JP2008109768A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Motor driving inverter controller and apparatus equipped therewith
JP2015006101A (en) * 2013-06-21 2015-01-08 アスモ株式会社 Motor control device
JP2015070672A (en) * 2013-09-27 2015-04-13 株式会社豊田自動織機 Motor compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165470B2 (en) * 2013-03-04 2017-07-19 株式会社東芝 Motor control device, heat pump system and air conditioner
JP6287765B2 (en) * 2014-11-06 2018-03-07 株式会社豊田自動織機 Electric compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174888A (en) * 2005-11-25 2007-07-05 Hitachi Ltd Semiconductor device, motor equipped with it, and motor driving apparatus
JP2007288858A (en) * 2006-04-13 2007-11-01 Sharp Corp Motor controller, refrigerator, and air conditioner
JP2008109768A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Motor driving inverter controller and apparatus equipped therewith
JP2015006101A (en) * 2013-06-21 2015-01-08 アスモ株式会社 Motor control device
JP2015070672A (en) * 2013-09-27 2015-04-13 株式会社豊田自動織機 Motor compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051990A (en) * 2020-09-23 2022-04-04 日立グローバルライフソリューションズ株式会社 Control device and washer dryer
JP7252927B2 (en) 2020-09-23 2023-04-05 日立グローバルライフソリューションズ株式会社 Control device and washer/dryer

Also Published As

Publication number Publication date
JP6847273B2 (en) 2021-03-24
JPWO2019146037A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP4736875B2 (en) Fan motor driving apparatus and fan motor driving method
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
JP6596323B2 (en) Converter device, drive control device, motor, and compressor
US11070157B2 (en) Motor drive unit, compressor, and air conditioner
JP5476788B2 (en) Inverter device
JP2011229304A (en) Inverter device
WO2019146037A1 (en) Motor drive device and air conditioner
US9893670B2 (en) Inverter control apparatus and air conditioner
JP3683259B2 (en) Motor drive device
JP2005020919A (en) Controller for electric motor
JP2007244106A (en) Inverter control device and motor-driven compressor
JPH10146090A (en) Inverter
JP6488490B1 (en) Motor control device and motor device
US11296625B2 (en) Control device and control method for synchronous electric motor
JP6057497B2 (en) DC brushless motor drive device
JP6647448B2 (en) Inverter control device and inverter control method
JP4415428B2 (en) Motor control method
JP2000297764A (en) Inverter device for air conditioner motor and its control method
JP2007174806A (en) Motor driving device and motor driver equipped therewith
KR102411784B1 (en) Air conditioner and controlling method thereof
JP2018121384A (en) Variable speed motor system with power-assisted fan
JP7283923B2 (en) Control device, motor system, control method and program
JP6267762B2 (en) DC brushless motor drive device
JP6969480B2 (en) Power converter
JP6616199B2 (en) Motor control device having means for changing speed change rate of motor deceleration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902560

Country of ref document: EP

Kind code of ref document: A1